
Michael
Fitzgerald

Ruby
Pocket
Reference
INSTANT HELP
FOR RUBY
PROGRAMMERS

2nd Edition

Ruby Pocket Reference
Fitzgerald

ISBN: 978-1-491-92601-7

US $14.99 CAN $17.99

Updated for Ruby 2.2, this handy reference offers brief yet clear explana-
tions of Ruby’s core elements—from operators to blocks to documentation
creation—and highlights the key features you may work with every day.
Need to know the correct syntax for a conditional? Forgot the name of that
String method? This book is organized to help you find the facts fast.

Ruby Pocket Reference, 2nd Edition is ideal for experienced programmers
who are new to Ruby. Whether you’ve come to Ruby because of Rails,
or you want to take advantage of this clean, powerful, and expressive
language for other applications, this reference will help you easily pinpoint
the information you need.

You’ll find detailed reference material for:

■ Keywords, operators, comments, numbers, and symbols

■ Variables, pre-defined global variables, and regular
expressions

■ Conditional statements, method use, classes, and
exception handling

■ Methods for the BasicObject, Object, Kernel, String, Array,
and Hash classes

■ Time formatting directives

■ New syntax since Ruby 1.9

Michael Fitzgerald is an author, coder, and novelist who has written
over 20 books. He is the author of O’Reilly’s Learning Ruby, Learning
XSLT, and XML Hacks, and co-author on the XML Pocket Reference.

oreilly.com, Twitter: @oreillymedia

Ruby Pocket Reference

PROGR AMMING L ANGUAGES / RUBY

SECOND
EDITION

Michael
Fitzgerald

Ruby
Pocket
Reference
INSTANT HELP
FOR RUBY
PROGRAMMERS

2nd Edition

Ruby Pocket Reference
Fitzgerald

ISBN: 978-1-491-92601-7

US $14.99 CAN $17.99

Updated for Ruby 2.2, this handy reference offers brief yet clear explana-
tions of Ruby’s core elements—from operators to blocks to documentation
creation—and highlights the key features you may work with every day.
Need to know the correct syntax for a conditional? Forgot the name of that
String method? This book is organized to help you find the facts fast.

Ruby Pocket Reference, 2nd Edition is ideal for experienced programmers
who are new to Ruby. Whether you’ve come to Ruby because of Rails,
or you want to take advantage of this clean, powerful, and expressive
language for other applications, this reference will help you easily pinpoint
the information you need.

You’ll find detailed reference material for:

■ Keywords, operators, comments, numbers, and symbols

■ Variables, pre-defined global variables, and regular
expressions

■ Conditional statements, method use, classes, and
exception handling

■ Methods for the BasicObject, Object, Kernel, String, Array,
and Hash classes

■ Time formatting directives

■ New syntax since Ruby 1.9

Michael Fitzgerald is an author, coder, and novelist who has written
over 20 books. He is the author of O’Reilly’s Learning Ruby, Learning
XSLT, and XML Hacks, and co-author on the XML Pocket Reference.

oreilly.com, Twitter: @oreillymedia

Ruby Pocket Reference

PROGR AMMING L ANGUAGES / RUBY

SECOND
EDITION

Michael Fitzgerald

Ruby Pocket Reference
SECOND EDITION

978-1-491-92601-7

[M]

Ruby Pocket Reference
by Michael Fitzgerald

Copyright © 2015 Michael Fitzgerald. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo‐
tional use. Online editions are also available for most titles (http://safaribook‐
sonline.com). For more information, contact our corporate/institutional sales
department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian MacDonald
Production Editors: Colleen Lobner and Nicole Shelby
Copyeditor: Gillian McGarvey
Proofreader: Kim Cofer
Indexer: WordCo Indexing Services
Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

July 2007: First Edition
August 2015: Second Edition

Revision History for the Second Edition
2015-08-05: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491926017 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Ruby
Pocket Reference, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that
the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained
in this work is at your own risk. If any code samples or other technology this
work contains or describes is subject to open source licenses or the intellec‐
tual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491926017

Table of Contents

Introduction 1
Conventions Used in This Book 1
Using Code Examples 2
Safari® Books Online 3
How to Contact Us 4
Acknowledgments 4
Running Ruby 5
Interactive Ruby (irb) 8
Ruby’s Keywords 14
Ruby’s Operators 17
Comments 19
Numbers 20
Variables 22
Symbols 24
Predefined Global Variables 25
Keyword Literals 29
Global Constants 30
Ranges 31
Methods 32
Conditional Statements 41

iii

Classes 51
Files 64
The IO Class 69
Exception Handling 72
BasicObject Class 75
Object Class 76
Kernel Module 82
String Class 98
Array Class 147
Hash Class 165
Time Formatting Directives 173
Ruby Documentation 176
RubyGems 183
Rake 185
Ruby Resources 188
Glossary 191
Index 209

iv | Table of Contents

Ruby Pocket Reference

Introduction
Ruby is an open source, object-oriented scripting language cre‐
ated by Yukihiro “Matz” Matsumoto and initially released in
Japan in 1995. Ruby has since gained worldwide acceptance as
an easy-to-learn, powerful, and expressive programming lan‐
guage. An interpreted language, Ruby runs on all major plat‐
forms. For the latest information on Ruby, see http://www.ruby-
lang.org. For online Ruby documentation, see http://ruby-
doc.org.

This edition of the Ruby Pocket Reference supports version 2.2.2
of Ruby, the current version at the time of writing.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames,
and file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function

1

http://www.ruby-lang.org
http://www.ruby-lang.org
http://ruby-doc.org
http://ruby-doc.org

names, databases, data types, environment variables, state‐
ments, and keywords.

Constant width bold

Shows commands or other text that should be typed liter‐
ally by the user.

Constant width italic

Shows text that should be replaced with user-supplied val‐
ues or by values determined by context.

NOTE

This element signifies a general note.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is avail‐
able for download at https://github.com/michaeljamesfitzgerald/
Ruby-Pocket-Reference-2nd-Edition.

This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in your
programs and documentation. You do not need to contact us
for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several
chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing
this book and quoting example code does not require permis‐
sion. Incorporating a significant amount of example code from
this book into your product’s documentation does require per‐
mission.

2 | Ruby Pocket Reference

https://github.com/michaeljamesfitzgerald/Ruby-Pocket-Reference-2nd-Edition
https://github.com/michaeljamesfitzgerald/Ruby-Pocket-Reference-2nd-Edition

We appreciate, but do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For
example: “Ruby Pocket Reference, 2nd Edition by Michael Fitz‐
gerald (O’Reilly). Copyright 2015 Michael Fitzgerald,
978-1-4919-2601-7.”

If you feel your use of code examples falls outside fair use or
the permission given above, feel free to contact us at permis‐
sions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand
digital library that delivers expert
content in both book and video form

from the world’s leading authors in technology and busi‐
ness.

Technology professionals, software developers, web designers,
and business and creative professionals use Safari Books
Online as a primary resource for research, problem solving,
learning, and certification training.

Safari Books Online offers a range of plans and pricing for
enterprise, government, education, and individuals.

Members have access to thousands of books, training videos,
and prepublication manuscripts in one fully searchable data‐
base from publishers like O’Reilly Media, Prentice Hall Profes‐
sional, Addison-Wesley Professional, Microsoft Press, Sams,
Que, Peachpit Press, Focal Press, Cisco Press, John Wiley &
Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hun‐
dreds more. For more information about Safari Books Online,
please visit us online.

Safari® Books Online | 3

mailto:permissions@oreilly.com
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/

How to Contact Us
Please address comments and questions concerning this book
to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, exam‐
ples, and any additional information. You can access this page
at http://bit.ly/ruby-pocket-ref-2e.

To comment or ask technical questions about this book, send
email to bookquestions@oreilly.com.

For more information about our books, courses, conferences,
and news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
The second edition of this book is dedicated to the memory of
my brother Mark S. Fitzgerald (1955–2012).

I want to thank Simon St. Laurent for helping to make this
book happen and Brian MacDonald for his patient support
while I wrote this new edition. I also want to thank my techni‐
cal reviewers, Justin Page and Mike Korcynski, who essentially
busted my technical chops. Thanks, guys.

4 | Ruby Pocket Reference

http://bit.ly/ruby-pocket-ref-2e
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Running Ruby
Test whether Ruby is available on your computer by typing the
following at a command or shell prompt:

$ ruby --version

The response you get from this command should look similar
to the following (if running Mac OS X Yosemite):

ruby 2.2.2p95 (2015-04-13 revision 50295)
 [x86_64-darwin14]

You can install Ruby on any of the major platforms—Windows,
Mac, or flavors of Linux. For Ruby file archives and installation
instructions, see http://www.ruby-lang.org/en/downloads and
https://www.ruby-lang.org/en/documentation/installation/. To
manage multiple versions of Ruby on a single computer, con‐
sider using Ruby Version Manager or RVM (http://rvm.io) or
rbenv (https://github.com/sstephenson/rbenv). To easily and
straightforwardly install the latest version of Ruby on a Mac,
try Homebrew (http://brew.sh).

Running the Ruby Interpreter
View Ruby switches (command-line options) by entering:

$ ruby --help

Or, for a shorter message:
$ ruby -h

Usage:
ruby [switches] [--] [programfile] [arguments]

-0 [octal]
Specify a record separator (\0 if no argument).

-a

Autosplit mode with -n or -p (splits $_ into $F).

-c

Check program syntax only (replies Syntax OK).

Running Ruby | 5

http://www.ruby-lang.org/en/downloads
https://www.ruby-lang.org/en/documentation/installation/
http://rvm.io
https://github.com/sstephenson/rbenv
http://brew.sh

-Cdirectory

cd to directory before executing script.

-d [or] --debug
Set debugging flags (sets predefined variable $DEBUG to
true).

-e 'command'

Execute one line of script; more than one -e allowed; omit
programfile.

-Eex[:in] [or] --encoding=ex[:in]

Specify the default internal and external character encod‐
ings.

-Fpattern

split() pattern for autosplit (-a).

-iextension

Edit ARGV files in place (make backup if optional extension
supplied).

-Idirectory

Specify $LOAD_PATH (predefined variable) directory; may
be used more than once.

-l

Enable line-ending processing.

-n

Assume 'while gets(); ... end' loop around your
script.

-p

Assume loop like -n but print line also like sed.

-rlibrary

Require library before executing your script.

-s

Enable some switch parsing for switches after script name.

6 | Ruby Pocket Reference

-S

Look for the script using PATH environment variable.

-T[level=1]

Turn on tainting checks.

-v [or] --verbose
Print version information, then turn on verbose mode
(compare --version).

-w

Turn on warnings for script.

-W[level=2]

Set warning level: 0 = silence, 1 = medium, and 2 = ver‐
bose (default).

-x[directory]

Strip off text before #! (shebang) line, and optionally cd to
directory.

--copyright

Print the Ruby copyright message.

--enable=feature[, . . .] [or] --disable=feature[, . . .]
Enable or disable features. See “Features.”

--external-encoding=encoding [or]
--internal-encoding=encoding

Specify the default external or internal character encoding.

--version

Print version information (compare -v).

--help

Show this help message (compare -h [short message]).

Features:

gems

Rubygems (default: enabled).
rubyopt

RUBYOPT environment variable (default: enabled).

Running Ruby | 7

Interactive Ruby (irb)
Interactive Ruby, or irb, is an interactive programming envi‐
ronment that comes with Ruby. It was written by Keiju Ishit‐
suka. To invoke it, type irb at a shell or command prompt, and
begin entering Ruby statements and expressions. Use exit or
quit to exit. See http://ruby-doc.org/stdlib-2.2.2/libdoc/irb/rdoc/
index.html.

Usage:
irb[.rb] [options] [programfile] [arguments]

For example, to get the current version of irb, use:
irb --version # => irb 0.9.6(09/06/30)

Options:

-f

Suppress reading of the file ˜/.irbrc.

-m

bc mode (mathn, fraction, or matrix available). [Note that
mathn is deprecated as of 2.2.]

-d

Set $DEBUG to true (same as ruby -d).

-r load-module
Same as ruby -r.

-I path
Specify $LOAD_PATH directory.

-U

Same as ruby -U.

-E enc
Same as ruby -E.

-w

Same as ruby -w.

8 | Ruby Pocket Reference

http://ruby-doc.org/stdlib-2.2.2/libdoc/irb/rdoc/index.html
http://ruby-doc.org/stdlib-2.2.2/libdoc/irb/rdoc/index.html

-W[level=2]

Same as ruby -W.

--context-mode n

Set n[0–3] to method to create binding object when new
workspace created.

--echo

Show result (default).

--noecho

Don’t show result.

--inspect

Use inspect for output (default except for bc mode).

--noinspect

Don’t use inspect for output.

--readline

Use Readline extension module.

--noreadline

Don’t use Readline extension module.

--prompt prompt-mode (--prompt-mode prompt-mode)

Switch prompt mode. Predefined prompt modes are
default, simple, xmp, and inf-ruby.

--inf-ruby-mode

Use prompt appropriate for inf-ruby-mode on Emacs.
Suppresses --readline.

--sample-book-mode (--simple-prompt)

Simple prompt mode.

--noprompt

No prompt mode.

--single-irb

Share self with sub-irb.

Interactive Ruby (irb) | 9

--tracer

Display trace for each execution of command.

--back-trace-limit n

Display backtrace top n and tail n. The default value is 16.

--irb_debug n

Set internal debug level to n (not commonly used).

--verbose

Show details.

--noverbose

Don’t show details.

-v (--version).
Print the version of irb.

-h (--help).
Print help.

--

Separate options of irb from list of command-line
arguments.

Following is a sample of expressions evaluated by irb:
$ irb --noprompt
23 + 27
50
50 - 23
27
10 * 5
50
10**5
100000
50 / 5
10
x = 1
1
x + 59
60
hi = "Hello, Matz!"
"Hello, Matz!"
hi.each_char { |s| print s }
Hello, Matz!=> "Hello, Matz!"

10 | Ruby Pocket Reference

1.upto(10) { |n| print n, " " }
1 2 3 4 5 6 7 8 9 10 => 1
100 < 1_000
true
class Hello
attr :hi, true
end
nil
h = Hello.new
#<Hello:0x3602cc>
h.hi = "Hello, Matz!"
"Hello, Matz!"
h.hi
"Hello, Matz!"
self
main
self.class
Object
exit # or quit

You can also invoke a single program with irb. After running
the program, irb exits:

$ cat hello.rb
#!/usr/bin/env ruby

class Hello
 def initialize(hello)
 @hello = hello
 end
 def hello
 @hello
 end
end

salute = Hello.new("Hello, Matz!")
puts salute.hello
$ irb hello.rb
hello.rb(main):001:0> #!/usr/bin/env ruby
hello.rb(main):002:0*
hello.rb(main):003:0* class Hello
hello.rb(main):004:1> def initialize(hello)
hello.rb(main):005:2> @hello = hello
hello.rb(main):006:2> end
hello.rb(main):007:1> def hello
hello.rb(main):008:2> @hello
hello.rb(main):009:2> end
hello.rb(main):010:1> end

Interactive Ruby (irb) | 11

=> nil
hello.rb(main):011:0>
hello.rb(main):012:0* salute = Hello.new("Hello,
 Matz!")
=> #<Hello:0x007fd28b036f50 @hello="Hello, Matz!">
=> #<Hello:0x319f20 @hello="Hello, Matz!">
hello.rb(main):013:0> puts salute.hello
Hello, Matz!
=> nil
hello.rb(main):014:0> $

When running any code that follows in this book, you can run
it either in irb or with the Ruby interpreter, unless another one
is specified.

Using a Shebang Comment on Unix/Linux
Use a shebang comment on the first line of a Ruby program to
help a Unix/Linux system execute the commands in a program
file according to a specified interpreter, Ruby. Keep in mind
that this does not work on Windows. Listed here is a very short
program named hi.rb with a shebang on the first line:

#!/usr/bin/env ruby

puts "Hi, world!"

Other possible shebang lines or comments are #!/usr/bin/ruby
-w (warnings on) or #!/usr/local/bin/ruby. The location of
the Ruby executable could vary given that you might be using a
version manager like RVM and rbenv. With a shebang in place,
you can type the name of the executable script, followed by
Return or Enter, at a shell prompt without invoking the Ruby
interpreter directly:

$./hello.rb

TIP

Make sure the file is executable with chmod +x.

12 | Ruby Pocket Reference

Associating File Types on Windows
Windows doesn’t know or care about a shebang comment (#!),
but you can achieve a similar result by creating a file type asso‐
ciation with the assoc and ftype commands on Windows
(DOS). To find out whether an association exists for the file
extension .rb, use the assoc command:

C:\Ruby Code>assoc .rb
File association not found for extension .rb

If it’s not found, associate the .rb extension with a file type like
this:

C:\Ruby Code>assoc .rb=rbFile

Then test again whether the association exists:
C:\Ruby Code>assoc .rb
.rb=rbFile

Now test to see whether the file type for Ruby exists with ftype:
C:\Ruby Code>ftype rbfile
File type 'rbfile' not found or no open command
 associated with it.

If not found, you can create it with a command like this,
depending on where Ruby is located on your machine:

C:\Ruby Code>ftype rbfile="C:\Program Files\Ruby\bin
 \ruby.exe" "%1" %*

Be sure to put the correct path to the executable for the Ruby
interpreter, followed by the substitution variables. %1 is a sub‐
stitution variable for the file you want to run; %* accepts all
other parameters that may appear on the command line. Test it:

C:\Ruby Code>ftype rbfile rbfile="C:\Program Files\Ruby
 \bin\ruby.exe" "%1" %*

Finally, add .rb to the PATHEXT environment variable. See
whether it is there already with set:

C:\Ruby Code>set PATHEXT
PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;
 .WSF;.WSH;.tcl

Interactive Ruby (irb) | 13

If it is not there, add it like this:
C:\Ruby Code>set PATHEXT=.rb;%PATHEXT%

Then test again:
C:\Ruby Code>set PATHEXT
PATHEXT=.rb;.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;
 .WSF;.WSH;.tcl

All is now in order:
C:\Ruby Code>type hi.rb
#!/usr/bin/env ruby

puts "Hi, World!"

Make sure you are able to execute the file:
C:\Ruby Code>cacls hi.rb /g username:f
Are you sure (Y/N)?y
processed file: C:\Ruby Code\hi.rb

Run the program by entering the program’s filename at the
command prompt, with or without the file extension:

C:\Ruby Code>hi
Hi, World!

To preserve these settings, you can add these commands to
your autoexec.bat file, or set the environment variables by
selecting Start → Control Panel → System, clicking the
Advanced tab, and then clicking the Environment Variables
button.

Ruby’s Keywords
Table 1 contains a list of Ruby’s keywords (also known as
reserved words).

Table 1. Ruby’s keywords

Keyword Description

BEGIN Code, enclosed in braces ({ }), to run before the program
runs.

14 | Ruby Pocket Reference

Keyword Description

END Code, enclosed in braces ({ }), to run after the program
ends.

alias Creates an alias for an existing method. See also
Module#alias_method.

and Logical operator; same as && except and has lower
precedence.

begin Begins a code block or group of statements; closes with end.

break Terminates a while or until loop, or a method inside a
block.

case Compares an expression with a matching when clause; closes
with end. See also when.

class Begins class definition; closes with end.

def Begins method definition; closes with end.

defined? A special operator that determines whether a variable,
method, super method, or block exists.

do Begins a block, then executes code in that block; closes with
end.

else Executes following code if previous conditional is not true;
used with if, elsif, unless, or case. See if, elsif.

elsif Executes following code if previous conditional is not true;
used with if or another elsif.

end Ends a code block (group of statements) started with begin,
class, def, do, if, etc.

ensure Always executes at block termination; use after last rescue.

false Logical or Boolean false; singleton; instance of False
Class; a keyword literal. See true.

for Begins a for loop; used with in.

if Executes code block if conditional statement is true. Closes
with end. Compare unless, until.

Ruby’s Keywords | 15

Keyword Description

in Used with for loop. See for.

module Begins module definition; closes with end.

next Jumps to the point immediately before the evaluation of the
loop’s conditional. Compare redo.

nil Empty, uninitialized, or invalid; always false, but not the
same as zero; singleton; instance of NilClass; a keyword
literal.

not Logical operator; same as !.

or Logical operator; same as || except or has lower
precedence.

redo Restarts current iteration, transferring control back to top of
loop or iterator. Compare to next.

rescue Evaluates an expression after an exception is raised; used
before ensure.

retry Inside rescue, jumps to top of block (begin). Iterator
restart deprecated as of 1.9.

return Returns a value from a method or block. May be omitted, but
method and block always return a value, whether explicit or
not.

self Evaluates to the current object; a keyword literal.

super Calls method of the same name in the superclass. The
superclass is the parent of this class.

then Separator used with if, unless, when, case, and res
cue. May be omitted, unless conditional is all on one line.

true Logical or Boolean true; singleton; instance of True
Class; a keyword variable. See false.

undef Undefines a method in the current class.

unless Executes code block if conditional statement is false.
Compare if and until.

16 | Ruby Pocket Reference

Keyword Description

until Executes code block while conditional statement is false.
Compare if and unless.

when Starts a clause (one or more) under case. See case.

while Executes code while the conditional statement is true.

yield Executes the block passed to a method.

__ENCODING__ Current character encoding (object of Encoding class); a
keyword literal.

__FILE__ Name (string) of current source file; a keyword literal.

__LINE__ Number (integer) of current line in the current source file; a
keyword literal.

Ruby’s Operators
Table 2 lists all of Ruby’s operators in descending order of
precedence. Operators that are implemented as methods may
be overridden and are indicated in the Method? column with a
checkmark (✓).

Table 2. Ruby’s operators

Operator Description Method?

! ~ + Boolean NOT, bitwise complement,
unary plus

✓

** Exponentiation ✓
- Unary minus ✓
* / % Multiplication, division, modulo

(remainder)
✓

+ - Addition (or concatenation), subtraction ✓
<< >> Bitwise shift-left (append), bitwise

shift-right
✓

& Bitwise AND ✓

Ruby’s Operators | 17

Operator Description Method?

| ^ Bitwise OR, bitwise exclusive OR ✓
> >= < <= Greater than, greater than or equal to,

less than, less than or equal to
✓

<=> == === !=

=~ !~

Equality comparison (spaceship,
equality, equality, not equal to, match,
not match)

✓

&& Boolean AND

|| Boolean OR

.. ... Range inclusive (..), range exclusive
(...)

✓
(not ...)

? : Ternary (acts like compact if/then/
else)

= += -= *= /=

%= **= <<= >>=

&= |= ^= &&=

Assignment (=), abbreviated
assignment (all others)

not Logical negation

and or Logical composition

defined? Tests variable definition and type

The following trivial program, over_op.rb, shows one way to
override the definition for the unary operator -. The at sign (@)
lets the interpreter know that the operator is unary, not binary.
Once overridden, the operator will convert the string str to a
symbol—not particularly useful, but you get the idea.

str = "Matz"

def str.-@
 to_sym
end

p -str # :Matz

18 | Ruby Pocket Reference

Here is a slightly less trivial version using a class. See “Classes”
on page 51.

class MyString < String

 def -@
 to_sym
 end

end

str = MyString.new "Matz"

p -str # :Matz

Comments
A comment hides a line of code, part of a line of code, or multi‐
ple lines of code from the Ruby interpreter, either by using the
hash or pound character (#), or =begin and =end. Create a com‐
ment by using a hash character at the beginning of a line:

I'm a comment. Ignore me.

Or a comment may follow a statement or expression, hiding
part of a line:

first_name = "Matsumoto" # Or given name

You can use hash characters to hide several lines together:
This is a comment.
This is another comment.
This is yet another comment.
Okay. That's enough.

Or you can hide multiple lines using the =begin/=end syntax:
=begin
This is a comment.
This is a comment, too.
This is a comment, too.
I said that already.
=end

Comments | 19

Numbers
Numbers are not primitives in Ruby as in other languages; each
number in Ruby is an object, an instance of one of Ruby’s core
numeric classes.

• Numeric is Ruby’s base class for numbers. The Integer
class is the basis for two concrete classes that hold whole
numbers: Fixnum and Bignum.

• Fixnum is used for fixed-length numbers (integers) with
the bit length of the native machine word, minus 1,
whereas Bignum holds integers outside the range of
Fixnum.

• A Bignum is created automatically if an operation or
assignment yields a result too large for Fixnum; the only
limitation on the size of integer Bignum can represent is
the available memory.

• The Float class is for floating-point numbers. It is the
native architecture’s double-precision floating-point rep‐
resentation internally.

• The Complex class represents complex numbers—that is, a
number expressed in the form a+bi where i is an imagi‐
nary number (or unit). Once a part of the standard
library, Complex is now in Ruby’s core.

• Rational represents rational numbers—that is, the quo‐
tient of two integers in the form a/b. Now part of Ruby’s
core.

Here are several numeric classes from the standard library.
Before you can use these, you must require code from the
standard library using, for example, require 'matrix'. For
more details, see Kernel#require at http://ruby-doc.org/
core-2.2.2/Kernel.html or type ri Kernel#require at a shell
prompt. Kernel is a Ruby module that’s included in the Object
class, making its methods available to all Ruby programs.

20 | Ruby Pocket Reference

http://ruby-doc.org/core-2.2.2/Kernel.html
http://ruby-doc.org/core-2.2.2/Kernel.html

• BigDecimal provides arbitrary precision for very large or
very accurate floating-point decimal arithmetic. Its par‐
ent class is Numeric.

• The Matrix class represents mathematical matrices, pro‐
viding methods for creating matrices, operating on them,
and determining their properties. Its parent is Object.

Table 3 lists some numeric examples.

Table 3. Ruby’s numbers and their associated types

Number Description

2411 Integer, of class Fixnum.

2_411 Integer, of class Fixnum (underscore ignored).

2411.0 Float, of class Float.

0.2411E4 Scientific notation, of class BigDecimal.

04553 Octal, of class Fixnum.

0x96b Hexadecimal, of class Fixnum.

0b100101101011 Binary, of class Fixnum.

24110000000000000000 Integer, of class Bignum.

(2411+2i) Complex number, result of
Complex(2411,2).

2411i i suffix converts to complex (2411/1).

(2/1) Rational number, result of
Rational(2411,1205.5).

2411r r suffix converts to rational (0+2411i).

2411ri ri suffix converts to (0+(2411/1)*i).

Figure 1 shows a hierarchy of Ruby’s math classes.

Numbers | 21

Figure 1. Hierarchy of Ruby math classes

Variables
A variable is an identifier that is assigned to an object, and
which may hold a value. Ruby variables are not declared, nor
are they statically typed. Instead, the type of value is assigned at
runtime. Ruby uses duck typing, which is a kind of dynamic
typing. If a value behaves or acts like a certain type (duck), such
as an integer, Ruby gives it a context and treats it as such (it’s
probably a duck). If a variable is able to act like an integer, for
example, then it is legal and appropriate to use it in that con‐
text.

22 | Ruby Pocket Reference

Local Variables
A local variable has a local scope or context. If defined within a
method, for example, its scope is kept within that method.
Local variable names must begin with either a lowercase letter
or an underscore (_), and must not be prefixed with @, @@, or $
because they are reserved for other types of variables. Follow‐
ing are a few examples of local variables:

x = 1.0 # x is a Float
y = "Yes" # y is a String
_temp = 16 # _temp is a Fixnum

Instance Variables
An instance variable belongs to a particular instance of a class,
hence the name. It can only be accessed from outside that
instance via an accessor (helper) method. Instance variables are
always prefixed with a single at sign (@), as in @hello. See
“Classes” on page 51.

Class Variables
A class variable is shared among all instances of a class. Only
one copy of a class variable exists for a given class. It is prefixed
by two at signs (@@), such as @@times. You have to initialize
(declare a value for) a class variable before you use it. See
“Classes” on page 51.

Global Variables
Global variables are globally available to a program, inside any
structure. Their scope is the whole program. They are prefixed
by a dollar sign ($), such as $amount. Matz’s opinion of global
variables is, and I quote, “They are ugly, so don’t use them.”
Take his advice. Use singletons instead. See “Singletons” on
page 57.

Variables | 23

A global variable may be aliased with the keyword alias, as
shown in this simple example (alias_global.rb):

$a = 100
alias $b $a
puts $b # => 100

Constants
Constant names must begin with a capital letter (Matz) and by
convention frequently use all capitals (MATZ), making them easy
to spot. Class names, for example, are constants. As their name
suggests, constants are not expected to have their values
changed after initial assignment. You can reassign a value to a
constant, but Ruby will generate a warning if you do. Second,
and more importantly, since constants refer to objects, the con‐
tents of the object to which the constant refers might change
without Ruby generating a warning. Thus, Ruby constants are
called mutable because although a constant is only expected to
refer to a single object throughout the program, the value of
that object may vary. Finally, constants must have a value
assigned to them to exist.

Parallel Variable Assignment
With parallel assignment, you can assign several values to sev‐
eral variables in a single expression, based on order. A list of
variables, separated by commas, can be placed to the left of the
equals sign, with the list of values to assign them on the right.
Here are a few examples:

x, y, z = 100, 200, 500
a, b, c = "cash", 1.99, 100

Symbols
Ruby has a special object called a symbol. Symbols are like pla‐
ceholders for identifiers and strings. They are always prefixed
by a colon (:); for example, :en and :logos. Only one copy of
the symbol is held in a single memory address as long as the

24 | Ruby Pocket Reference

program is running. You don’t create a symbol directly by
assigning a value to it. You create a symbol by calling the
String#to_sym or String#intern methods on a string, or by
assigning a symbol to a symbol:

name = "Bobby"
name.to_sym # => :Bobby
name.intern # => :Bobby
"Hello".to_sym # => :Hello
:Hello.to_s # => "Hello"
:Hello.id2name # => "Hello"
name == :Bobby.to_s # => true
hash = { :lang1 => :English, :lang2 => :German,
 :lang3 => :French }

For more information, see http://ruby-doc.org/core-2.2.2/
Symbol.html.

Predefined Global Variables
Table 4 lists Ruby’s predefined global variables. To generate a
list of these variables with Ruby, invoke the following at a com‐
mand prompt:

ruby -e 'puts global_variables.sort'

Or in a program, iterate over the globals with each (to yield
symbols):

global_variables.sort.each { |name| p name }

Kernel#p writes one or more objects to standard output, fol‐
lowed by a newline, à la object.inspect.

Table 4. Predefined global variables

Global variable Description

$! The exception information message containing the last
exception raised. raise sets this variable. Access with =>
in a rescue clause. The Exception#cause method,
available since 2.1, also returns this information.

$@ The stack backtrace (array) of the last exception, retrievable
via Exception#backtrace.

Predefined Global Variables | 25

http://ruby-doc.org/core-2.2.2/Symbol.html
http://ruby-doc.org/core-2.2.2/Symbol.html

Global variable Description

$& The string matched by the last successful pattern match in
this scope, or nil if the last pattern match failed. Same as
m[0] where m is a MatchData object. Read only. Local.

$` String preceding (to the left of) whatever was matched by
the last successful pattern match in the current scope, or
nil if the last pattern match failed. Same as
m.pre_match where m is a MatchData object. Read
only. Local.

$' String following (to the right of) whatever was matched by
the last successful pattern match in the current scope, or
nil if the last pattern match failed. Same as
m.post_match where m is a MatchData object. Read
only. Local.

$+ Last bracket (highest group) matched by the last successful
search pattern, or nil if the last pattern match failed.
Useful if you don’t know which of a set of alternative
patterns matched. Read only. Local.

$1, $2, . . . Subpattern from the corresponding set of parentheses in
the last successful pattern matched, not counting patterns
matched in nested blocks that have been exited already, or
nil if the last pattern match failed. Same as m[n] where m
is a MatchData object. Read only. Local.

$˜ Information about the last match in the current scope.
Regex#match returns the last match information. Setting
this variable affects match variables like $&, $+, $1, $2,
etc. The nth subexpression can be retrieved by $˜[nth].
Local.

$= Case-insensitive flag; nil by default. Deprecated in 1.9.

$/ Input record separator, newline by default. Works like awk’s
RS variable. If it is set to nil, a whole file will be read at
once. gets, readline, etc. take the input record
separator as an optional argument. See also $-0.

26 | Ruby Pocket Reference

Global variable Description

$\ Output record separator for print and IO#write; nil by
default.

$, Output field separator between arguments; also the default
separator for Array#join, which allows you to indicate a
separator explicitly.

$; The default separator for String#split; nil by default.
See also $-F

$. The current input line number of the last file that was read.
Same as ARGF.lineno.

$< The virtual concatenation file of the files given by
command-line arguments, or standard input (in case no
argument file is supplied). $<.filename returns the
current filename. Alias for ARGF.

$> Default output for print; printf, $stdout by default.
Alias for $defout.

$_ Last input line of string by gets or readline in the
current scope; set to nil if gets or readline meets EOF.
Local.

$0 Name of the current Ruby program being executed.

$* Command-line arguments given for the script, with options
(arguments) for the Ruby interpreter removed.

$$ Process number (process.pid) of the Ruby program
being executed.

$? Exit status of the last executed child process.

$: Load path for scripts and binary modules by
Kernel#load or Kernel#require. Alias for
$LOAD_PATH; see also $-l.

$" Array containing the module names loaded by Ker
nel#require. Used to prevent require from loading
modules twice. Compare $LOADED_FEATURES.

Predefined Global Variables | 27

Global variable Description

$DEBUG True if -d or --debug switch is set. Prints each exception
raised to $stderr (but not its backtrace). Setting this to
true enables debug output as if -d were given on the
command line; setting to false disables debug output.
See also $-d.

$LOADED_

FEATURES

Array containing the module names loaded by
Kernel#require. Used for preventing require from
loading modules twice. Compare $".

$FILENAME Name of the file currently being read from ARGF ($<).
Same as ARGF.filename or $<.filename.

$LOAD_PATH Load path for scripts and binary modules by
Kernel#load or Kernel#require. Alias for $: and
$-I.

$stderr The current standard error output; STDERR by default.

$stdin The current standard input; STDIN by default.

$stdout The current standard output; STDOUT by default.

$VERBOSE True if verbose flag is set by -v, -w, or --verbose
switches; nil disables warnings, including those from Ker
nel#warn.

$-0 Input record separator, newline by default. Works like awk’s
RS variable. If set to nil, a whole file will be read at once.
gets, readline, etc. take the input record separator as
an optional argument. Alias of $/.

$-a True if option -a is set. Read-only.

$-d True if -d or --debug switch is set. Prints each exception
raised to $stderr (but not its backtrace). Setting this to
true enables debug output as if -d were given on the
command line; setting to false disables debug output.
Alias of $DEBUG.

$-F The default separator for String#split; nil by default.
Alias of $;.

28 | Ruby Pocket Reference

Global variable Description

$-i In in-place-edit mode, this variable holds the extension,
otherwise nil. Can enable or disable in-place-edit mode.

$-I Load path for scripts and binary modules by Ker
nel#load or Kernel#require. Alias for $: and
$LOAD_PATH.

$-l True if option -l is set (enable line-ending processing).
Read-only.

$-p True if option -p is set (which assumes loop like -n but
prints line also, like sed). Read-only.

$-v [or] $-w True if verbose flag is set by -v, -w, or --verbose
switches; nil disables warnings, including those from Ker
nel#warn. Alias for $VERBOSE.

Keyword Literals
Table 5 shows Ruby’s keyword literals, which are objects that
look like a variable, act like a constant, and can’t be assigned a
value.

Table 5. Keyword literals

Keyword Literal Description

false Logical or Boolean false; singleton; instance of False
Class. See also true.

nil Empty, uninitialized, or invalid; always false, but not the
same as zero; singleton; instance of NilClass.

self Evaluates to the current object.

true Logical or Boolean true; singleton; instance of True
Class. See false.

__ENCODING__ Current character encoding (object of Encoding class).

__FILE__ Name (string) of current source file.

__LINE__ Number (integer) of current line in the current source file.

Keyword Literals | 29

Global Constants
Table 6 describes all of Ruby’s global constants.

Table 6. Global constants

Global Constant Description

ARGF I/O-like stream that allows access to a virtual
concatenation of all files provided on the command
line, or standard input if no files are provided. Alias for
$<.

ARGV Array that contains all the command-line arguments
passed to a program. Alias for $*.

DATA An input stream for reading the lines of code
following the __END__ directive. Not defined if
__END__ is not present in code.

ENV A hash-like object containing the program’s
environment variables; can be treated as a hash.

FALSE Alias for false; false is preferred.

NIL Alias for nil; nil is preferred.

PLATFORM Alias for RUBY_PLATFORM. Deprecated.

RELEASE_DATE Alias for RUBY_RELEASE_DATE. Deprecated.

RUBY_PLATFORM A string indicating the platform of the Ruby
interpreter; for example, “x86_64-darwin14.”

RUBY_RELEASE_DATE A string indicating the release date of the Ruby
interpreter; for example, “2014-12-25.”

RUBY_VERSION The Ruby version; for example, “2.2.2.”

STDERR Standard error output stream with default value of
$stderr.

STDIN Standard input stream with default value of $stdin.

STDOUT Standard output stream with default value of
$stdout.

TOPLEVEL_BINDING A Binding object at Ruby’s top level.

30 | Ruby Pocket Reference

Global Constant Description

TRUE Alias for true; true is preferred.

VERSION Alias for RUBY_VERSION. Deprecated.

Ranges
A range is an interval or set of values. Ruby supports ranges
using the operators .. (inclusive) and ... (exclusive). The
range 1..12, for example, includes all the numbers in the range,
1 through 12; however, in the range 1...12, the ending value 12
is excluded.

The === method determines whether a value is a member of or
included in a range:

(1..25) === 14 # => true, in range
(1..25) === 26 # => false, out of range
(1...25) === 25 # => false, out of range
 (used ...)

You can use a range to create an array of digits:
(1..9).to_a # => [1, 2, 3, 4, 5, 6, 7, 8, 9]

You can also create an inclusive range like this:
digits = Range.new(1, 9)
digits.to_a # => [1, 2, 3, 4, 5, 6, 7, 8, 9]

Or an exclusive range like this:
digits = Range.new(1,9,true)
digits.to_a # => [1, 2, 3, 4, 5, 6, 7, 8]

For more information, see http://ruby-doc.org/core-2.2.2/
Range.html.

Ranges | 31

http://ruby-doc.org/core-2.2.2/Range.html
http://ruby-doc.org/core-2.2.2/Range.html

NOTE

A flip-flop expression is an obscure use of a range operator.
For example, (1..7).each {|n| p n if n==2..n>=5}
prints 2 through 5. A flip-flop expression is false until the
expression on the left evaluates to true. It remains true
until the expression on the right evaluates to true, and
then goes back to false. Got that? Flip-flops came to Ruby
by way of Perl, sed, and awk. They should generally be
avoided but are worth a mention for the intrepid out there
who will use them all the time.

Methods
Methods provide a way to collect and organize program state‐
ments and expressions into one place so that you can use them
conveniently and repeatedly. Most of Ruby’s operators are
actually methods. Here is a simple definition of a method
named hello, created with the keywords def and end:

def hello
 puts "Hello, world!"
end

When you invoke the method hello, it outputs or emits a
string:

hello # => Hello, world!

You can undefine a method with undef:
undef hello # undefines the method named hello
hello # try calling this method now
NameError: undefined local variable or method
 'hello' for main:Object

Methods might or might not have parameters. The repeat
method, inane as it is, takes two parameters, word and times:

def repeat(word, times)
 puts word * times
end

32 | Ruby Pocket Reference

repeat("Hello! ", 3) # => Hello! Hello! Hello!
repeat "Goodbye! ", 4 # => Goodbye! Goodbye!
 Goodbye! Goodbye!

Parentheses are optional in most Ruby method definitions and
calls; however, if you call a method within a method—a nested
call—it might cause some confusion, both on the part of the
coder and the Ruby interpreter. When using parentheses, keep
in mind that the opening parenthesis must follow the method
name with no intervening space.

For more information, see http://ruby-doc.org/core-2.2.2/doc/
syntax/methods_rdoc.html.

For the purposes of this book, parameters are part of
the method definition or signature, and arguments are the val‐
ues passed by those parameters. I say this because sometimes
parameters and arguments are used interchangeably.

NOTE

You may join an object and its method with either :: or .,
but usually :: is used with class methods. You may also use
with instance methods.

Block Arguments
Blocks are namelessly passed to their associated methods.
However, you can pass blocks to methods directly by using a
block argument, which essentially turns them into named
blocks. (No exception is generated if the block is not passed.)
The block parameter must be the last parameter in the method
definition and must be prefixed with an ampersand, as in &b.
Because the value of the block argument is actually a Proc
object, you have to use the Proc#call method rather than yield
to process the block. Here’s a sample (block_arg.rb):

def my_iterator(x, &b)
 i = 0

Methods | 33

http://ruby-doc.org/core-2.2.2/doc/syntax/methods_rdoc.html
http://ruby-doc.org/core-2.2.2/doc/syntax/methods_rdoc.html

 while(i < x)
 b.call(i*x) # Use call with block parameter
 i += 1
 end
end

my_iterator(12) {|x| print x.to_s + " "}
=> 0 12 24 36 48 60 72 84 96 108 120 132

Return Values
Methods have return values. In other languages, you explicitly
return a value with a return statement. In Ruby, the value of
the last expression evaluated is returned, with or without an
explicit return statement. This is a Ruby idiom. You can also
define a return value explicitly with the return keyword:

def hello
 return "Hello, world!"
end

Method Name Conventions
Ruby has conventions about the last character in method
names. These conventions are very common but not enforced
by the language. If a method name ends with a question mark
(?), such as eql?, it means that the method returns a Boolean
(true or false). For example:

x = 1.0
y = 1.0
x.eql? y # => true

If a method name ends in an exclamation point (!), like
delete!, it indicates that the method is destructive, meaning it
makes what are called in place changes to an object rather than
to a copy—that is, it changes the object itself. You can see the
difference in the result of the String methods delete and
delete!:

der_mensch = "Matz!" # => "Matz!"
der_mensch.delete("!") # => "Matz"
puts der_mensch # => Matz!

34 | Ruby Pocket Reference

der_mensch.delete!("!") # => "Matz"
puts der_mensch # => Matz

If a method name ends in an equals sign (=), in the form
family_name=, it means that the method is a setter—one that
performs an assignment or sets a variable, such as an instance
variable in a class:

class Name
 def family_name=(family)
 @family_name = family
 end
 def given_name=(given)
 @given_name = given
 end
end

n = Name.new
n.family_name= "Matsumoto" # => "Matsumoto"
n.given_name= "Yukihiro" # => "Yukihiro"
p n # => <Name:0x1d441c @family_name="Matsumoto",
 @given_name="Yukihiro">

Default Arguments
The repeat method shown earlier has two arguments. You can
give those arguments default values by using an equals sign fol‐
lowed by a value. When you call the method without argu‐
ments, the defaults are used automatically. Redefine repeat
with these default values: Hello for word, and 3 for times. Call it
first without arguments, and then with them:

def repeat(word="Hello! ", times=3)
 puts word * times
end

repeat # => Hello! Hello! Hello!

repeat("Goodbye! ", 5) # => Goodbye! Goodbye!
 Goodbye! Goodbye! Goodbye!

You can also assign default values like this:
def repeat(word: "Hello! ", times: 3)
 puts word * times
end

Methods | 35

Variable Arguments
You can be flexible about the number of arguments a method
has because Ruby lets you pass a variable number of arguments
by prefixing an argument with a splat (*), which connotes one
or more; however, only one argument may be prefixed by a
splat. Here is an example with a variable argument:

def num_args(*args)
 length = args.size
 label = length == 1 ? " argument" : " arguments"
 num = length.to_s + label + " (" + args.inspect
 + ")"
 num
end

puts num_args # => 0 arguments ([])

puts num_args(1) # => 1 argument ([1])

puts num_args(100, 2.5, "three") # => 3 arguments
 ([100, 2.5, "three"])

You can use regular or ordinary arguments along with variable
arguments, and variable arguments may precede or follow a
variable argument. Arguments with defaults must precede vari‐
able arguments:

def two_plus(one, two, *args)
 length = args.size
 label = length == 1 ? " variable argument" :
 "variable arguments"
 num = length.to_s + label + " (" + args.inspect + ")"
 num
end

puts two_plus(1, 2) # => 0 variable arguments ([])

puts two_plus(1000, 3.5, 14.3) # => 1 variable
 argument ([14.3])

puts two_plus(100, 2.5, "three", 70, 14.3)
=> 3 variable arguments (["three", 70, 14.3])

36 | Ruby Pocket Reference

Aliasing Methods
Ruby has two ways to alias methods. The alias keyword cre‐
ates method aliases, though such aliases are lexically scoped.
You can also use the method Module#alias_method. Its result
will be its value at runtime.

With the alias keyword, you create a copy of the method with
a new method name, though both method invocations will
point to the same object. The following example illustrates how
to create an alias for the method greet with the keyword alias
(alias_key.rb):

def greet
 "Hi"
end
alias hi greet # alias greet as hi
hi # => "Hi"

A call to alias_method, a private instance method of the Module
module, looks like this (alias_method.rb):

class Greeting
 def greet
 "Hi"
 end
 alias_method :hi, :greet # alias greet as hi
end
puts Greeting.new.hi # => "Hi"

Blocks
A block in Ruby is more than just a code block or group of
statements. A Ruby block is always invoked in conjunction
with a method. Blocks, in fact, are closures, sometimes referred
to as nameless functions. They work like methods within other
methods that share variables with their outer methods. In
Ruby, the closure or block is wrapped by braces ({}) or by do/
end, and depends on the associated method (such as each) to do
its work.

Methods | 37

Here is a simple call to a block with the method each from
Array:

pacific = ["Washington", "Oregon", "California"]

pacific.each do |element|
 puts element
end

The name within the bars (|element|) can be any name you
want. The block uses it as a local variable to keep track of every
element in the array, and later uses it to perform something
with the element. You can replace do/end with a pair of braces,
as is most commonly done. The braces actually have a higher
precedence than do/end:

pacific.each { |e| puts e }

Be aware that if you use a variable name that already exists in
the containing scope, the block assigns that variable each suc‐
cessive value, which might not be what you want. It does not
generate a local variable to the block with that name, as you
might expect. Thus, you get this behavior:

j = 7
(1..4).to_a.each { | j | } # j now equals 4

The yield statement

A yield statement executes a block associated with a method.
For example, this gimme method contains nothing more than a
yield statement:

def gimme
 yield
end

To find out what yield does, call gimme and see what happens:
gimme
LocalJumpError: no block given
 from (irb):11:in 'gimme'
 from (irb):13
 from :0

38 | Ruby Pocket Reference

You get an error here because yield’s job is to execute the
code block that is associated with the method. That was miss‐
ing in the call to gimme. We can avoid this error by using the
Kernel#block_given? method. Redefine gimme with an if state‐
ment:

def gimme
 if block_given?
 yield
 else
 puts "I'm blockless!"
 end
end

Try it again with and without a block:
gimme { print "Say hi to the people." } # => Say hi to the
people.

gimme # => I'm blockless!

Redefine gimme to contain two yields, and then call it with a
block:

def gimme
 if block_given?
 yield
 yield
 else
 puts "I'm blockless!"
 end
end

gimme { print "Say hi again. " } # => Say hi again.
 Say hi again.

Another thing you should know is that after yield executes,
control comes back to the next statement immediately follow‐
ing yield.

Procs
Ruby lets you store procs (procedures) as first-class objects,
complete with context. Because a proc is a first-class object, it
can do things that other first-class objects can do—be created

Methods | 39

at runtime, stored in data structures, passed as parameters, and
so forth.

You can create procs in several ways—with Proc::new or by
calling either the Kernel#lambda or Kernel#proc methods. Here
are some lightweight examples (proc.rb). Note the lambda lit‐
eral syntax, available since 1.9:

count = Proc.new { [1,2,3,4,5].each do |i| print i
 end; puts }
your_proc = lambda { puts "Lurch: 'You rang?'" }
other_proc = ->{ puts "Hmmmmm." } # new syntax
my_proc = proc { puts "Morticia: 'Who was at the
 door, Lurch?'" }

What kind of objects did you just create?
p count.class # => Proc
p your_proc.class # => Proc
p other_proc.class # => Proc
p my_proc.class # => Proc

Calling all procs
count.call # => 12345
your_proc.call # => Lurch: 'You rang?'
other_proc.call # => Hmmmmm.
my_proc.call # => Morticia: 'Who was at the door,
 Lurch?'

In addition, with the new lambda literal syntax for blocks, you
replace the method name lambda with ->, move arguments just
before the braces, and use parentheses instead of a pair of par‐
allel bars (|). For example:

y = ->(x){x+1}

Also, you can call the method lambda? to test whether an object
is a lambda or not:

other_proc.lambda? # => true
my_proc.lambda? # => false

You can convert a block passed as a method argument to a Proc
object by preceding the argument name with an ampersand (&)
as follows:

40 | Ruby Pocket Reference

def return_block
 yield
end

def return_proc(&proc)
 yield
end

return_block { puts "Got block!" }
return_proc {puts "Got block, convert to proc!"}

The method return_block has no arguments; all it has in its
body is a yield statement. The yield statement’s purpose, once
again, is to execute a block when the block is passed to a
method. The next method, return_proc, has one argument,
&proc. When a method has an argument preceded by an
ampersand, it accepts the block, when one is submitted, and
converts it to a Proc object. With yield in the body, the method
executes the block cum proc, without having to bother with the
Proc call method.

Conditional Statements
A conditional statement tests whether a statement is true or
false and performs logic based on the answer. Both true and
false are keyword literals—you can’t assign values to them.
The former is an object of TrueClass, and the latter is an object
of FalseClass.

Flow Control
For convenience, Table 7 lists Ruby’s flow control statements,
most of which are used with conditionals.

Table 7. Flow control statements

Keyword or
method

Description

break Exits a loop or iterator.

catch Kernel#catch executes a block, usually together with
Kernel#throw. Used with exception handling.

Conditional Statements | 41

Keyword or
method

Description

next Skips current iteration, moves to next.

redo Restarts loop or iterator from beginning.

retry Reexecutes block in rescue clause; however, iterator restart
deprecated in 1.9.

return Returns value and exits.

throw Kernel#throw transfers control to catch block. Used with
exception handling.

The if Statement
These three statements, each with a different form, begin with
the keyword if and close with end:

if x == y then puts "x equals y" end

if x != y: puts "x is not equal to y" end

if x > y
 puts "x is greater than y"
end

The separator then (and its alias :, deprecated since 1.9) is
optional unless the statement is on one line.

Negation

The negation operator ! reverses the true/false value of its
expression:

if !x == y then puts "x does not equal y" end

if !x > y
 puts "x is not greater than y"
end

Multiple tests

Combine multiple tests in an if statement using && and ||, or
their synonyms and and or, which have lower precedence:

42 | Ruby Pocket Reference

ruby = "nifty"
programming = "fun"

if ruby == "nifty" && programming == "fun"
 puts "Keep programming!"
end

if a == 10 && b == 27 && c == 43 && d == -14
 print sum = a + b + c + d
end

if ruby=="nifty" and programming=="fun" and
 weather=="nice"
 puts "Stop programming and go outside!"
end

if a == 10 || b == 27 || c = 43 || d = −14
 print sum = a + b + c + d
end

if ruby == "nifty" or programming == "fun"
 puts "Keep programming!"
end

Statement modifier for if

You can also use if as a statement modifier by placing the if at
the end of the statement:

puts "x is less than y" if x < y

The else statement

Add an optional else to execute a statement when if is not
true:

if x >= y
 puts "x greater than or equal to y"
else
 puts "x is not greater than or equal to y"
end

The elsif statement

Use one or more optional elsif statements to test multiple
statements (ending with an optional else, which must be last):

Conditional Statements | 43

if x == y
 puts "x equals y"
elsif x != y
 puts "x is not equal to y"
elsif x > y
 puts "x is greater than y"
elsif x < y
 puts "x is less than y"
elsif x >= y
 puts "x is greater than or equal to y"
elsif x <= y
 puts "x is less than or equal to y"
else
 puts "Well, for the love of Pete"
end

The unless Statement
An unless statement is a negated form of the if statement.
Here is the first example of unless:

unless lang == "de"
 dog = "dog"
else
 dog = "Hund"
end

That first example is a negated form of the following if state‐
ment, and both examples accomplish the same thing:

if lang == "de"
 dog = "Hund"
else
 dog = "dog"
end

This example is saying, in effect, that unless the value of lang is
de, dog will be assigned the value of dog; otherwise, assign dog
the value Hund.

Statement modifier for unless

As with if, you can also use unless elegantly as a statement
modifier:

puts num += 1 unless num > 88

44 | Ruby Pocket Reference

The while Statement
A while loop executes the code it contains as long as its condi‐
tional statement remains true:

i = 0
breeds = ["quarter", "arabian", "appaloosa",
 "paint"]
puts breeds.size # => 4
temp = []

while i < breeds.size do
 temp << breeds[i].capitalize
 i +=1
end

temp.sort! # => ["Appaloosa", "Arabian", "Paint", "Quarter"]
breeds.replace(temp)
p breeds # => ["Appaloosa", "Arabian", "Paint", "Quarter"]

The do keyword is optional. Once again, the method Kernel#p
writes objects to standard output, followed by a newline.

You can also use begin and end with while, where the code in
the loop is evaluated before the conditional is checked (like do/
while in C):

temp = 98.3

begin
 print "Your temperature is " + "%.1f" % temp +
 " Fahrenheit. "
 puts "You're okay."
 temp += 0.1
end while temp < 98.6

puts "Your temperature is " + "%.1f" % temp +
 " Fahrenheit."

The output looks like this:
Your temperature is 98.3 Fahrenheit. You're okay.
Your temperature is 98.4 Fahrenheit. You're okay.
Your temperature is 98.5 Fahrenheit. You're okay.
Your temperature is 98.6 Fahrenheit. I think you're okay.
Your temperature is 98.7 Fahrenheit.

Conditional Statements | 45

The statement %.1f" % temp means format the variable temp as
a float with one decimal place after the number. See
Kernel#sprintf for more information on formating strings.

You can break out of a while loop with the keyword break:
while i < breeds.size
 temp << breeds[i].capitalize
 break if temp[i] == "Arabian"
 i +=1
end
p temp # => ["Quarter", "Arabian"]

When the if modifier following break found Arabian in the
temp array, it broke out of the loop immediately.

Statement modifier for while

As with if, you can use while as a statement modifier at the
end of a statement, as shown here:

cash = 100_000.00 # underscores are ignored
sum = 0

sum += 1.00 while sum < cash

The until Statement
As unless is a negated form of if, until is a negated form of
while. Compare the following statements:

weight = 150
while weight < 200 do
 puts "Weight: " + weight.to_s
 weight += 5
end

Here is the same logic expressed with until:
weight = 150
until weight == 200 do
 puts "Weight: " + weight.to_s
 weight += 5
end

And as with while, you have another form you can use with
until and that’s with begin/end:

46 | Ruby Pocket Reference

weight = 150

begin
 puts "Weight: " + weight.to_s
 weight += 5
end until weight == 200

In this form, the statements in the loop are evaluated once
before the conditional is checked.

Statement modifier for until

And finally, like while, you can also use until as a statement
modifier:

puts age += 1 until age > 28

The case Statement
Ruby’s case statement, together with the when clause, provides a
way to express conditional logic in a more succinct way. It is
similar to the switch statement found in other languages, but
case can check objects of any type that can respond to the
equality property and/or any equivalence operators, including
strings. By the way, case never “falls through” as switch does.

One reason using case/when is more convenient and concise
than if/elsif/else is because the logic of == is assumed. Sev‐
eral examples follow. In all case statements, as in the following
example (case.rb), else is optional:

lang = "fr"

dog = case lang
 when "en"
 "dog"
 when "es"
 "perro"
 when "fr"
 "chien"
 when "de"
 "Hund"
 else "dog"
end

Conditional Statements | 47

The string chien is assigned to the variable dog because the
value of lang is fr. This example does not print any output.

NOTE

Using a colon (:) instead of a newline or then is deprecated
as of 1.9.

If the lang variable held a symbol instead of a string (as in
case_symbol.rb), the code would look like:

lang = :de

doggy = case lang
 when :en then "dog"
 when :es then "perro"
 when :fr then "chien"
 when :de then "Hund"
end
puts doggy

The string value Hund is printed to standard output because the
value of lang is the symbol :de. The next example
(case_range.rb) uses several ranges to test the value of a variable
(scale). Note the use of semicolons (;) in the when clauses:

scale = 8

out = case scale
 when 0 then "lowest"
 when 1..3; "medium-low"
 when 4..5; "medium"
 when 6..7; "medium-high"
 when 8..9; "high"
 when 10; "highest"
 else "off scale"
end
puts "Scale: " + out

The result is high because scale is in the range 8 to 9, inclusive.
The result is printed to standard output.

48 | Ruby Pocket Reference

This last example (case_comma.rb) uses a comma and a
Boolean OR operator in the when clause. The comma syntax is
considered obscure; using || is recommended:

family = "Yukihiro"
given = "Matsumoto"

hi = case
 when family=="Yukihiro", given=="Matsumoto"
 "Hello, Matz!"
 when family == "Thomas" || given == "Dave"
 "Hey, Dave!"
end
puts hi

The for Loop
This example of a for loop uses a range (1..10) to print out a
list of numbers from 1 to 10, inclusive. The do is optional,
unless the for loop is on one line:

for i in 1..10 do print i, " " end # => 1 2 3 4 5
 6 7 8 9 10

for i in 1..10
 print i, " "
end # => 1 2 3 4 5 6 7 8 9 10

This for loop prints out a single times table (from 1 to 12) for
the number 2:

for i in 1..12
 print "2 x " + i.to_s + " = ", i * 2, "\n"
end

Following is a nested for loop that prints full times tables for
multiplicands 1 through 12:

for i in 1..12
 for j in 1..12
 print i.to_s + " x " + j.to_s + " = ", j * i, "\n"
 end
end

Conditional Statements | 49

An alternative to the for loop, in a similar instance, is the
Integer#times method:

12.times { |i| print i, " " } # => 0 1 2 3 4 5 6 7 8 9 10 11

The Conditional Operator
The conditional operator or expression (?:) is a concise struc‐
ture that descended from C to Ruby. It is also called the ternary
operator or base three operator and is a snug version of if/then/
else. An example follows:

label = length == 1 ? " argument" : " arguments"

This expression assigns a string value to label based on the
value of length. If the value of length is 1, the string value
argument (singular) will be assigned to label; but if it is not
true—that is, length has a value other than 1—the string value
of label will be arguments (plural).

Executing Code Before or After a Program
The following structures allow code (bmi.rb) to execute before
and after a program runs. Both BEGIN and END are followed by
blocks enclosed by braces ({}):

BEGIN { puts "Welcome! Date and time: " + Time.now.to_s }

def bmi(weight, height)
 703.0*(weight.to_f/(height.to_f**2))
end

print "Enter your weight (a number, in lbs.): "
w = gets.chomp.to_f
print "Enter your height (a number, in inches): "
h = gets.chomp.to_f

my_bmi = bmi(w, h)

print "Your BMI is " + x = sprintf("%0.2f",
 my_bmi) + " which means you're "

if my_bmi < 18.5 then
 puts "underweight. "
 elsif my_bmi >= 18.5 && my_bmi <= 24.9 then

50 | Ruby Pocket Reference

 puts "at a healthy weight. "
 elsif my_bmi >= 25.0 && my_bmi <= 29.9 then
 puts "overweight. "
 else
 puts "obese. "
end

END { puts "Try again tomorrow!" }

Classes
In an object-oriented programming language like Ruby, a class
is a container that holds properties (class members) such as
methods and variables. Classes can inherit properties from a
parent or superclass, creating a hierarchy of classes with a base
class at the root or top. In Ruby, BasicObject is the base, essen‐
tially blank class (was Object until 1.9). Ruby uses single inheri‐
tance—that is, a Ruby class can inherit the properties of only
one parent class. (Multiple inheritance, as in C++, allows a class
to inherit from more than one parent.) You can define more
than one class in a single file in Ruby. A class itself is an object,
even if you don’t directly instantiate it. Classes are always open
so you can add to any class, even a built-in one.

A class is defined with the keyword class, and the definition
concludes with (you guessed it) end:

class Hello

 def initialize(name)
 @name = name
 end

 def hello
 puts "Hello, " + @name + "!"
 end

end

hi = Hello.new("Matz")
hi.hello # => Hello, Matz!

The initialize method defines the instance variable @name by
storing a copy of the name argument passed into the initialize

Classes | 51

method. The initialize method is a Ruby convention that acts
like a class constructor, but not completely. At this point, the
instance is already there, fully instantiated. initialize is the
first code that is executed after the object is instantiated;
you can execute just about any Ruby code in initialize. initi
alize is always private; that is, it is scoped only to the current
object, not beyond it. You can access the instance variable
@name with the method hello.

Reopening a Ruby Class
You can reopen or augment an existing Ruby class. To add a
method to an existing Ruby class, for example, such as the
built-in class Array, you could do something like the following:

class Array
 def array_of_ten
 (1..10).to_a
 end
end

arr = Array.new
ten = arr.array_of_ten
p ten # => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

NOTE

Reopening a built-in class in Ruby might be convenient
(it’s kind of amazing, really), but there are trade-offs such
as the visibility of changes, readability, and so forth. Pro‐
ceed with caution (but have fun).

Instance Variables
As mentioned previously, an instance variable is a variable that
is available from within an instance of a class, and is limited in
scope because it belongs to a given object. An instance variable
is prefixed by a single at sign (@), as in:

@name = "Easy Jet"

52 | Ruby Pocket Reference

You can define an instance variable inside a method or outside
of one, but you can only access an instance variable from out‐
side an object via a method. You can, however, access an
instance variable within the object without a method:

class Horse

 @name = "Easy Jet"

end

This works if you only want to reference @name from within the
object. You have no way to retrieve the value of @name directly
from outside of the object. You must define a getter (accessor)
method to retrieve the value:

class Horse

 def name
 @name = "Easy Jet"
 end

end

h = Horse.new
h.name # => "Easy Jet"

You often want a setter in addition to a getter. A setter is an
accessor method that sets the value of a variable:

class Horse

 def name
 @name
 end

 def name=(value)
 @name = value
 end

end

h = Horse.new
h.name= "Poco Bueno"
h.name # => "Poco Bueno"

Classes | 53

The setter method name= follows a Ruby convention: the name
of the method ends with an equals sign (=). This convention is
not a requirement. You could call name= whatever you like, as
long as the characters are legal. Here is another version of the
class Horse, which initializes the instance variable @name with
the standard initialize method. Later the program creates an
instance of the class by calling new, and then accesses the
instance variable through the accessor method horse_name, via
the instance horse:

class Horse

 def initialize(name)
 @name = name
 end

 def horse_name
 @name
 end

end

horse = Horse.new("Doc Bar")
puts horse.horse_name # => Doc Bar

Accessors
Ruby simplifies the creation of getters and setters by
meta-programming with the methods Module#attr, Mod

ule#attr_reader, Module#attr_writer, and Module#attr_acces
sor (Module is the superclass of Class so you can invoke these
and other Module methods from any class definition). The attr
method creates a single getter method, named by a symbol,
with an optional setter method (if the second argument is
true):

class Dog
 attr :bark, true
end

Dog.instance_methods - Object.instance_methods
 # => [:bark, :bark=]

54 | Ruby Pocket Reference

dog = Dog.new

dog.bark="Woof!"
puts dog.bark # => Woof!

By calling attr with :bark and true as arguments, the class Dog
will have the instance methods bark and bark=. If you call attr
with only the :bark argument, Dog would have only the getter
method bark. (Notice that you can subtract Object’s instance
methods with - when retrieving Dog’s instance methods.)

The attr_reader and attr_writer methods accept as argu‐
ments the names of one or more instance variables, and then
create corresponding methods that return (attr_reader) or set
(attr_writer) the values of each instance variable. (Instance
variables are not actually created until you assign values to
them.) Consider this example:

class Dog
 attr_reader :bark # getter
 attr_writer :bark # setter
end

dog = Dog.new

dog.bark="Woof!"
puts dog.bark # => Woof!

dog.instance_variables.sort # => [:@bark]
Dog.instance_methods.sort - Object.instance_methods
 # => [:bark, :bark=]

Calling the attr_accessor method does the same job as calling
both attr_reader and attr_writer together, for one or more
instance variables:

class Gaits
 attr_accessor :walk, :trot, :canter
end

Gaits.instance_methods.sort - Object.instance_methods
 # => [:canter, :canter=, :trot, :trot=, :walk, :walk=]

Classes | 55

Class Variables
A class variable is shared among all instances of a class, so only
one copy of a class variable exists for a given class. In Ruby, a
class variable is prefixed by two at signs (@@). You must initial‐
ize a class variable before you use it, such as @@times = 0:

class Repeat

 @@total = 0

 def initialize(string, times)
 @string = string
 @times = times
 end

 def repeat
 @@total += @times
 return @string * @times
 end

 def total
 "Total times, so far: " + @@total.to_s
 end
end

data = Repeat.new("ack ", 8)
ditto = Repeat.new("Again! ", 5)
ditty = Repeat.new("Rinse. Lather. Repeat. ", 2)

puts data.repeat # => ack ack ack ack ack ack ack ack
puts data.total # => Total times, so far: 8

puts ditto.repeat # => Again! Again! Again! Again!
 Again!
puts ditto.total # => Total times, so far: 13

puts ditty.repeat # => Rinse. Lather. Repeat.
 Rinse. Lather. Repeat.
puts ditty.total # => Total times, so far: 15

Class Methods
A class method is a method that is associated with a class (and
with a module in Ruby), not with an instance of a class. You
can invoke class methods by prefixing the name of the method

56 | Ruby Pocket Reference

with the name of the class to which it belongs, such as to
Math.sqrt(36). Class methods are also called static methods.
You can also associate the name of a module with a method
name, just like with a class, but in order to use such a method,
you must include the module in a class. To define a class
method, you simply prefix the name of the method with the
name of the class or module or the keyword literal self in the
method definition. (With Ruby, you can easily add methods to
any object. Because classes are objects, adding class methods
simply adds methods to the Class object.)

class Area

Use either self.rect or Area.rect
def self.rect(length, width, units="inches")
 def Area.rect(length, width, units="inches")
 area = length * width
 printf("The area of this rectangle is %.2f %s.",
 area, units)
 end
end

Area.rect(12.5, 16) # => The area of this rectangle is
 200.00 inches.

Singletons
Another way to define class methods is by using a class within a
class and the keyword literal self. This is called a singleton
class. A singleton is an object that may be instantiated only
once and is often used in place of a global variable. Ruby has a
module in its standard library to help create singleton objects;
see http://ruby-doc.org/stdlib-2.2.2/libdoc/singleton/rdoc/Single
ton.html. Singleton takes care of so many things under the
hood, such as:

• The new and allocate methods are made private.
• The inherited and clone methods are overridden to

ensure that singleton properties are kept when inherited
and cloned.

Classes | 57

http://ruby-doc.org/stdlib-2.2.2/libdoc/singleton/rdoc/Singleton.html
http://ruby-doc.org/stdlib-2.2.2/libdoc/singleton/rdoc/Singleton.html

• The instance method returns the same object every time
it’s called.

• The load method is overridden to call instance.
• The clone and dup methods are also overridden to raise

TypeErrors to prevent cloning or duping.

Consider this adaptation that requires the singleton library
and then includes the Singleton module:

require 'singleton'

class Area
include Singleton

 def self.rect(length: 10.0, width: 10.0,
 units: "inches")
 area = length*width
 printf("The area of this rectangle is %.2f
 %s.\n", area, units)
 end
 end

Area.rect # The area of this rectangle is 100.00 inches.

A singleton class is tied to a particular object, can be instanti‐
ated only once, and is not distinguished by a prefixed name.
The method Area.rect is also effectively a singleton method
because it is tied to the singleton class.

Here is a way to define a singleton method that is tied to a sin‐
gle object:

class MySingleton
end

s = MySingleton.new
def s.handle
 puts "I'm a singleton method!"
end

s.handle # => I'm a singleton method!

58 | Ruby Pocket Reference

Inheritance
As mentioned earlier, when a child class inherits or derives
from a parent, it has access to the methods and properties
of the parent class. Inheritance is accomplished with the <
operator:

class Name
 attr_accessor :given_name, :family_name
end

class Address < Name
 attr_accessor :street, :city, :state, :country
end

a = Address.new
puts a.respond_to?(:given_name) # => true

If the class Name were in a different file, you’d just use
Kernel#require to load that file first, and then the inheritance
operation will work.

Load path
The system path is not necessarily the same thing as the Ruby
path or load path. Ruby has a predefined variable called
$LOAD_PATH (which also has a Perl-like synonym, $:).
$LOAD_PATH is an array that contains the names of directories
that are searched by Kernel#load and Kernel#require methods
when loading files. Ruby can also use the environment vari‐
ables PATH and RUBYPATH (if they are set). PATH is the system path
and acts as a search path for Ruby programs, among other
things; RUBYPATH might be the same thing as PATH, but because it
takes precedence over PATH, it is likely to hold other directories
beyond it.

Abstract Classes
While Ruby has no special syntax for creating abstract classes
or methods, you can still create “abstract” classes and then
override (redefine) the method definitions in a concrete class,
as shown in the sample program abstract.rb. Hello inherits

Classes | 59

both the hello and bye methods, but because it does not over‐
ride bye, the call to that method does nothing.

class AbstractHello
 def hello;end
 def bye;end
end

class Hello < AbstractHello
 def hello
 puts "Hello"
 end
end

Hello.new.hello
Hello.new.bye

Anonymous Classes
If you’ve coded in other languages, there’s no doubt the concept
of an anonymous class is familiar to you. It is a nameless class
that allows you to create class and instance at the same time,
which can be useful when you want to be concise (see http://
blog.jayfields.com/2008/02/ruby-creating-anonymous-
classes.html). Here are a few lines of code (anon.rb) that illus‐
trate how easy it is to create an anonymous class in Ruby with
Class, and then perform some forensics on it. Remember that a
class name must be a constant. In this code, the class name is
nil until klass is assigned to a constant. Then the magic hap‐
pens.

klass = Class.new #<Class:0x007fae64002340>
klass.name # nil
klass.ancestors # [#<Class:0x007fae64002340>,
 Object, Kernel, BasicObject]
klass.methods # [:allocate, :new, :superclass,
 :freeze, . . .]
MyClass = klass # MyClass
klass.name # "MyClass"
klass.ancestors # [MyClass, Object, Kernel,
 BasicObject]

60 | Ruby Pocket Reference

http://blog.jayfields.com/2008/02/ruby-creating-anonymous-classes.html
http://blog.jayfields.com/2008/02/ruby-creating-anonymous-classes.html
http://blog.jayfields.com/2008/02/ruby-creating-anonymous-classes.html

NOTE

This behavior applies to modules, too. Try m =
Module.new, then m.name.

Public, Private, and Protected
The visibility or access of methods and constants might be set
with the following methods:

public

The method is accessible by anyone from anywhere; this is
the default.

private

The receiver for the method is always the current object or
self, so its scope is always the current object (private
methods are often helper methods; that is, methods that
get called by other methods to perform a task).

protected

The method can be used only by instances of the class
where it was defined or by derived classes.

Methods following the keywords private or protected will
have the indicated visibility until changed or until the defini‐
tion ends (names.rb):

class Names

 def initialize(given, family, nick, pet)
 @given = given
 @family = family
 @nick = nick
 @pet = pet
 end

these methods are public by default

 def given
 @given
 end

Classes | 61

 def family
 @family
 end

all following methods private, until changed

private

 def nick
 @nick
 end

all following methods protected, until changed

protected

 def pet
 @pet
 end

end

name = Names.new("Klyde", "Kimball", "Abner",
 "Teddy Bear")

name.given # => "Klyde"
name.family # => "Kimball"

see what happens when you call nick

name.nick # throws a NoMethodError

You can also set a method’s visibility after its definition, but you
must use symbols for method names:

protected :pet

Modules and Mixins
A Ruby module associates a name with a set of method and
constant names. The module name can be used in classes or in
other modules by means of the method Module#include. (Note
that all classes are modules, as Module is the superclass of Class.
This means that you can invoke methods like include from any
class.) Generally, the scope or context of such a namespace is

62 | Ruby Pocket Reference

the class or module where the namespace (module name) is
included.

A module name must be a constant; that is, it must start with
an uppercase letter. A module can contain methods, constants,
other modules, and even classes. It can inherit from another
module, but not from a class. As a class may include a module,
it may also include modules that have inherited other modules.
Here’s an example:

module Dice

 # virtual roll of a pair of dice
 def roll
 r_1 = rand(6)
 r_2 = rand(6)
 r1 = r_1>0?r_1:1
 r2 = r_2>0?r_2:6
 total = r1+r2
 printf("You rolled %d and %d (%d).\n", r1,
 r2, total)
 total
 end

end

class Game
 include Dice
end

g = Game.new
g.roll

If the module Dice and the class Game were in separate files, call
require 'dice' at the beginning of the file containing the
module, before including that module.

When you define module methods like class methods—that is,
prefixed with the module name (or with self)—you can call
the method as shown here:

module Binary

def self.to_bin(num)
 def Binary.to_bin(num)
 bin = sprintf("%08b", num)

Classes | 63

 end

end

Binary.to_bin(123) # => "01111011"

Files
You can manipulate file directories (folders) and files from
within Ruby programs using methods from the Dir and File
classes. For documentation, see http://www.ruby-doc.org/
core-2.2.2/Dir.html and http://www.ruby-doc.org/core-2.2.2/
File.html. For example, you can change directories (using an
absolute path), and then store the value of the directory path in
a variable as follows:

Dir.chdir("/Users/penelope")
home = Dir.pwd # => "/Users/penelope/"
p home # => "/Users/penelope"

If you need a directory, create it with mkdir; later on, delete it
with rmdir (or delete, a synonym of rmdir):

Dir.mkdir("/Users/herman/sandbox")
Dir.rmdir("/Users/herman/sandbox")

You can also set permissions (the mask 755 sets permissions for
owner, group, world [anyone] to rwxr-xr-x where r means
read, w means write, and x means execute) on a new directory
(not one that already exists) with mkdir:

Dir.mkdir("/Users/floyd/sandbox", 755)

Creating a New File
To create a new file and open it at the same time, use the File
method new, like this:

file = File.new("file.rb", "w")

The first argument to new names the new file file.rb, and the
second argument specifies the file mode: r for readable, w for
writable, or x for executable. The effects of the different modes
are shown in Table 8.

64 | Ruby Pocket Reference

http://www.ruby-doc.org/core-2.2.2/Dir.html
http://www.ruby-doc.org/core-2.2.2/Dir.html
http://www.ruby-doc.org/core-2.2.2/File.html
http://www.ruby-doc.org/core-2.2.2/File.html

Table 8. File modes

Mode Description

"r" Read-only; starts at beginning of file (default mode).

"r+" Read-write; starts at beginning of file.

"w" Write-only; truncates existing file to zero length or creates a new file for
writing.

"w+" Read-write; truncates existing file to zero length or creates a new file for
reading and writing.

"a" Write-only; starts at end of file if file exists, otherwise creates a new file
for writing.

"a+" Read-write; starts at end of file if file exists, otherwise creates a new file
for reading and writing.

"b" (DOS/Windows only) Binary file mode (may appear with any of the key
letters listed above).

Opening an Existing File
You can open an existing file with the open method. Use
file.closed? to test whether a file is closed. It returns true or
false:

file = File.open("my_text.txt")
file.each { |line| print "#{file.lineno}. ", line }
file.closed? # => false
file.close

The expression substitution syntax—that is, #{file.lineno},
inserts the line number in the output, followed by the line from
the file (see “Expression Substitution” on page 100). The open,
each, and close methods are all from the IO class, not File.

ARGV and ARGF
Another interesting way to output the contents of a file is with
ARGV, using only two lines of code:

ARGV << "my_text.txt"
print while gets

Files | 65

ARGV (or $*) is an array, and each of its elements is a filename
submitted on the command line, usually. But in this case, we’ve
appended a filename to ARGV directly with <<, which is an array
method. You can apply any method to ARGV that you might
apply to any other array. For example, try adding this
command:

p ARGV

Or:
p ARGV#[0]

The Kernel#gets method gets lines from ARGV, and as long as
gets returns a string, that line is printed with print.

ARGF ($<) is, once again, a virtual concatenation of all files that
appear on the command line:

while line = ARGF.gets
 print line
end

While there is a line to be retrieved from files on the command
line, the code prints that line to standard output. To see how it
works, run the program argf.rb with several files on the com‐
mand line:

argf.rb my_text.txt my_text_2.txt

Both files (if they exist) are printed on the display, one line at a
time.

Renaming and Deleting Files
You can rename and delete files programmatically with Ruby
using the rename and delete methods. Test these methods by
typing these lines into irb:

File.new("to_do.txt", "w")

File.rename("to_do.txt", "chaps.txt")

File.delete("chaps.txt")

66 | Ruby Pocket Reference

File Inquiries
The following command tests whether a file exists before open‐
ing it:

File.open("file.rb") if File.exists?("file.rb")

The method exist? (singular) is a synonym of exists?.

Inquire whether the file is really a file by using file?:
File.file?("my_text.txt") # => true

Or find out if it is a directory by using directory?:
a directory
File.directory?("/usr/local/bin") # => true

a file
File.directory?("file.rb") # => false

Test whether the file is readable by using readable?, writable by
using writable?, and executable by using executable?:

File.readable?("mumble.txt") # => true
File.writable?("bumble.txt") # => true
File.executable?("rumble.txt") # => false

You can find out if a file has a length of zero (0) by using zero?:
system("touch blurb.txt") # Create a zero-length
 file
File.zero?("blurb.txt") # => true

File.size?("sonnet_129.txt") # => 594
File.size("sonnet_129.txt") # => 594

The method size is a synonym for size?.

Inquire about the type of a file by using ftype:
File.ftype("file.rb") # => "file"

The ftype method identifies the type of the file by returning
one of the following: file, directory, characterSpecial,
blockSpecial, fifo, link, socket, or unknown.

Files | 67

Find out when a file was created, modified, or last accessed by
using ctime, mtime, and atime, respectively:

File.ctime("file.rb") # => Wed May 08 10:06:37
 −0700 2015
File.mtime("file.rb") # => Wed May 08 10:44:44
 −0700 2015
File.atime("file.rb") # => Wed May 08 10:45:01
 −0700 2015

File Modes and Ownership
Use the chmod method with a mask (see Table 9) to change the
mode or permissions/access list of a file:

file = File.new("to_do.txt", "w")
file.chmod(0755)

Another way to do this:
file = File.new("to_do.txt", "w").chmod(0755)
system "ls -l" # => -rwxr-xr-x 1 ralphy techw 0 June
 1 22:15 to_do.txt

This means that only the owner can write the file, but anyone
can read or execute it. Compare it to:

file = File.new("to_do.txt", "w").chmod(0644)
system "ls -l" # => -rw-r--r-- 1 ralphy techw 0
 May 8 22:13 to_do.txt

In this case, everyone can read the file but only the owner can
write the file, and no one can execute it.

Table 9. Masks for chmod

Mask Description

0700 rwx mask for owner

0400 r for owner

0200 w for owner

0100 x for owner

0070 rwx mask for group

0040 r for group

68 | Ruby Pocket Reference

Mask Description

0020 w for group

0010 x for group

0007 rwx mask for other

0004 r for other

0002 w for other

0001 x for other

4000 Set user ID on execution

2000 Set group ID on execution

1000 Save swapped text, even after use

You can change the owner and group of a file with the chown
method, which is like the Unix/Linux command chown (you
need superuser or root privileges to use this method):

file = File.new("to_do.txt", "r")
file.chown(109, 3333)

Or:
file = File.new("to_do.txt", "r").chown(109,
 3333)

Now perform this system command (works on Unix/Linux sys‐
tems only) to see the result:

system "ls -l to_do.txt"
=> -rw-r--r-- 1 109 3333 0 Nov 8 11:38 to_do.txt

The IO Class
The basis for all input and output in Ruby is the IO class, which
represents an input/output (I/O) stream of data.

The IO Class | 69

NOTE

Version 2.2.2 has 18 more IO methods than version 1.8.7.
This short section can only cover a few of those methods.
For more information, see http://ruby-doc.org/
core-2.2.2/IO.html.

Standard streams include standard input stream ($stdin) or
the keyboard; standard output stream ($stdout), which is the
display or screen; and standard error output stream ($stderr),
which is also the display by default. IO is closely associated with
the File class, and File is the only standard subclass of IO in
Ruby. Here’s a sampling of IO code.

To create a new I/O stream named ios, use the new method.
The first argument is 1, which is the numeric file descriptor for
standard output. Standard output can also be represented by
the predefined Ruby variable $stdout (see Table 10). The
optional second argument, w, is a mode string meaning write:

ios = IO.new(1, "w")

ios.puts "IO, IO, it's off to work I go ."

$stdout.puts "Do you copy?"

Table 10. Standard streams

Stream description File
descriptor

Predefined Ruby
global variable

Ruby
environment
variable

Standard input stream 0 $stdin STDIN

Standard output stream 1 $stdout STDOUT

Standard error output
stream

2 $stderr STDERR

70 | Ruby Pocket Reference

http://ruby-doc.org/core-2.2.2/IO.html
http://ruby-doc.org/core-2.2.2/IO.html

Other mode strings include r or read-only (the default), r+ for
read-write, and w for write-only. For details on all available
modes, see Table 11.

Table 11. I/O modes

Mode Description

r Read-only. Starts at the beginning of the file (default mode).

r+ Read-write. Starts at the beginning of the file.

w Write-only. Truncates existing file to zero length, or creates a new file for
writing.

w+ Read-write. Truncates existing file to zero length, or creates a new file for
reading and writing.

a Write-only. Starts at the end of file, if the file exists; otherwise, creates a
new file for writing.

a+ Read-write. Starts at the end of the file, if file exists; otherwise, creates a
new file for reading and writing.

b Binary file mode. May appear with any of the modes listed in this table.
DOS/Windows only.

With the IO#fileno, test what the numeric file descriptor is for
your I/O stream (IO#to_i also works):

ios.fileno # => 1
ios.to_i # => 1

$stdout.fileno # => 1

You can also write strings to the stream (buffer) with the <<
method, and then flush the buffer with flush:

ios << "Ask not " << "for whom the bell tolls."
 << " -John Donne"

ios.flush # => Ask not for whom the bell tolls.
 -John Donne

The IO Class | 71

NOTE

As of 2.2, when flushing IO#flush, don’t assume that the
metadata of the file is updated immediately. On some plat‐
forms (especially Windows), it’s delayed until the file sys‐
tem load is decreased. Use IO#fsync (not discussed here) if
you want to guarantee metadata updates.

Finally, close the stream with close (this also flushes any pend‐
ing writes):

ios.close

Exception Handling
Exceptions occur when a program has bugs and the normal
program flow is interrupted. Ruby is prepared to handle such
problems with its own built-in exceptions, but you can handle
them in your own way with Ruby’s exception handling features.
Ruby’s model is similar to the C++ and Java models. Table 12
shows a comparison of the keywords or methods used to per‐
form exception handling in the three languages.

Table 12. C++, Java, and Ruby exception handling compared

C++ Java Ruby

try {} try {} begin/end

catch {} catch {} rescue keyword (compare with
Kernel#catch method)

Not applicable finally ensure

throw throw raise (compare with Kernel#throw method)

I’d like to point out some changes in the Exception class since
1.9. For more background information, see http://www.ruby-
doc.org/core-2.2.2/Exception.html. In 1.9, to_str was removed
and ==, which tests if an object is an exception, was added. The
cause method returns the previous exception (like $!), and the

72 | Ruby Pocket Reference

http://www.ruby-doc.org/core-2.2.2/Exception.html
http://www.ruby-doc.org/core-2.2.2/Exception.html

array returned by backtrace_locations contains different
information than the one returned by backtrace. Both have
been available since 2.1.

The rescue and ensure Clauses
Handle errors/exceptions by using the rescue and ensure clau‐
ses:

begin
 eval "1 / 0"
rescue ZeroDivisionError
 puts "Oops. You tried to divide by zero again."
 exit 1
ensure
 puts "Tsk. Tsk."
end

The Kernel#eval method evaluates a string as a Ruby state‐
ment. The result is disastrous, but this time the rescue clause
catches the error, gives you a custom report in the form of the
Oops string, and exits the program. (Kernel#exit’s argument 1
is a catchall for general errors.) You can have more than one
ensure clause if your program calls for it.

Instead of giving its default message—that is,
ZeroDivisionError: divided by 0—Ruby returns the message
in rescue, plus the message in ensure. Even though the pro‐
gram exited at the end of the rescue clause, ensure yields its
block no matter what.

The raise Method
You don’t have to wait for Ruby to raise an exception: you can
raise one yourself with Kernel#raise. If things go haywire in a
program, you can raise an exception, as shown here in raise.rb:

bad_dog = true

if bad_dog
 raise StandardError, "bad doggy"
else

Exception Handling | 73

 arf_arf
end

The program throws the following:
raise.rb:4:in '<main>': bad doggy (StandardError)

If called without arguments, raise raises a RuntimeError if
there was no previous exception. If raise has only a String
argument, it raises a RuntimeError with the argument as a
message. If the first argument is an exception, such as
StandardError, the exception is raised with the given message if
such a message is present.

The catch and throw Methods
Kernel#catch executes a block that properly terminates if there
is no accompanying Kernel#throw. If a throw accompanies
catch, Ruby searches for a catch that has the same symbol as
the throw. catch will then return the value given to throw, if
present.

NOTE

Calling catch and throw together defines a general-pur‐
pose control structure, and though similar, using raise
instead of throw is preferred for exception handling.

The following program (catch.rb) is an adaptation of an exam‐
ple from Matz’s Ruby in a Nutshell (O’Reilly, 2002). It defines a
method, throw_me, which is called from catch, terminating exe‐
cution and then exiting. result is then printed to standard
output:

def throw_me(num)
 throw(:exit, num*num)
end

result = catch(:exit) {
 puts "Before calling throw_me . . ."

74 | Ruby Pocket Reference

 throw_me(5)
 puts "After calling throw_me" # oops, never executed
}

puts result # returns 25

BasicObject Class
The BasicObject class is the Ruby parent class (not Object, as
formerly). An explicit blank class, use BasicObject to create
object hierarchies that are independent of Ruby’s object hierar‐
chy, proxy objects like the Delegator class, or other objects
where you want to avoid namespace pollution. BasicObject
does not include Kernel and is outside of the namespace of the
standard library, so common classes will not be found without
using a full class path.

This documentation is adapted and abbreviated from http://
www.ruby-doc.org/core-2.2.2/BasicObject.html, where you can
find code examples and longer explanations. BasicObject’s
public instance methods are listed next.

BasicObject Public Instance Methods
object!

Boolean negate.

object! = other

Returns true if two objects not equal, otherwise false.

object == other

Returns true if objects are same.

object.__id__

Returns integer identifer for object.

object.__send__(symbol [, args . . .])

Invokes method identified by symbol, passing any argu‐
ments specified.

object.equal? other

Returns true if objects are same. Never override.

BasicObject Class | 75

http://www.ruby-doc.org/core-2.2.2/BasicObject.html
http://www.ruby-doc.org/core-2.2.2/BasicObject.html

object.instance_eval(string [, filename [, lineno]])

[or] object.instance_eval {|obj| block }
Evaluates string containing Ruby source code, or block,
within context of object.

object.instance_exec(arg . . .) {|var . . . | block }

Executes block within context of object.

Object Class
The following public instance methods are part of the Object
class, which is the former base class of Ruby before
BasicObject appeared in version 1.9. This documentation is
adapted and abbreviated from http://www.ruby-doc.org/
core-2.2.2/Object.html, where you can find code examples and
longer explanations. Object includes the Kernel module, whose
methods are listed in “Kernel Module” on page 82.

To view a list (array) of Object’s instance (not singleton) meth‐
ods, call the instance_methods method:

Object.instance_methods

See also Module#instance_methods for details.

Object Public Instance Methods
object !~ other_object

Returns true if objects don’t match, otherwise false.

object <=> other_object

Returns true if objects are same, otherwise nil.

object === other_object

Effectively same as == for class Object, but typically over‐
ridden by descendants to provide meaningful semantics.

object =~ other_object

Pattern match. Overridden by descendants to provide
meaningful semantics.

76 | Ruby Pocket Reference

http://www.ruby-doc.org/core-2.2.2/Object.html
http://www.ruby-doc.org/core-2.2.2/Object.html

object.class

Returns class of object. Must always have an explicit
receiver.

object.clone

Produces shallow copy of object: copies instance vari‐
ables, but not objects they reference. Also copies frozen
and tainted states of object. Compare Object#dup.

object.dclone

Provides unified clone operation for REXML.XPathParser to
use across multiple object types.

object.define_singleton_method(symbol, method) [or]
object.define_singleton_method(symbol) { block }

Defines singleton method for object; method parameter
can be Proc, Method, or UnboundMethod object. If block
specified, used as method body.

object.display

Prints object on given port.

object.dup

Produces shallow copy of object: copies instance vari‐
ables, but not objects they reference. Also copies tainted
state of object. Compare with Object#clone.

object.enum_for(method = :each, *args) [or]
object.enum_for(method = :each, *args) { |*args| block }

Creates new Enumerator which enumerates by calling
method on object, passing args, if any. If block given, it
will be used to calculate size of enumerator without need
to iterate it.

object == other_object [or] object.equal(other_object)
[or] object.eql?(other_object)

Returns true only if both objects are same; == typically
overridden by subclass; should not override equal?; eql?
returns true if objects return same hash key.

Object Class | 77

object.extend(module, [...])

Adds instance methods from module (one or more) to
object.

object.freeze

Prevents further modification to object.

object.frozen?

Returns frozen status of object.

object.hash

Generates Fixnum hash value for object.

object.inspect

Returns a human-readable string representation of object.

object.instance_of?(class)

Returns true if object is instance of given class.

object.instance_variable_defined?(string) [or]
object.instance_variable_defined?(symbol)

Returns true if instance variable defined. String argu‐
ments converted to symbols.

object.instance_variable_get(string) [or]
object.instance_variable_get(symbol)

Returns value of instance variable, nil if not set. Include @.

object.instance_variable_set(string) [or]
object.instance_variable_set(symbol)

Sets instance variable named by symbol to given object,
frustrating efforts to provide proper encapsulation. Does
not have to exist prior to this call. If instance variable
name is passed as a string, that string is converted to sym‐
bol.

object.instance_variables

Returns array of instance variable names for object.

78 | Ruby Pocket Reference

object.is_a?

Returns true if object is class of object, or if class is
superclass of object or module included in object. Com‐
pare Object#kind_of?.

object.itself

Returns object.

object.kind_of?(class)

Returns true if object is class of object, or if class is super‐
class of object or module included in object. Compare
with Object#is_a?.

object.method(symbol)

Looks up named method as receiver in object.

object.methods(regular=true)

Returns list of names of public and protected methods of
object.

object.nil?

Only object nil returns true.

object.__id__ [or] object.object_id
Returns integer indentifier for object.

object.private_methods(all = true)

Returns list of private methods accessible to object.

object.protected_methods

Returns list of protected methods accessible to object.

object.public_method(symbol)

Searches public method symbol in object. Compare with
Object#method.

object.public_methods(all=true)

Returns list of public methods accessible to object. If all
= false, only methods in object are listed.

Object Class | 79

object.public_send(symbol [, args...]) [or]
object.public_send(string [, args...])

Invokes method identified by symbol, passing it any speci‐
fied arguments. Calls public methods only. When method
is identified by string, string is converted to symbol.

object.remove_instance_variable(symbol)

Removes named instance variable from object, returning
that variable’s value.

object.respond_to?(symbol, include_all=false) [or]
object.respond_to?(string, include_all=false)

Returns true if object responds to given method. Private
and protected methods are included in search only if
optional second parameter evaluates to true.

object.respond_to_missing?(symbol, include_all) [or]
object.respond_to_missing?(string, include_all)

Hook method. Returns whether object can respond to ID
method or not. Do not use directly.

object.send(symbol [, args...]) [or]
object.__send__(symbol [, args...]) [or]
object.send(string [, args...]) [or]
object.__send__(string [, args...])

Invokes method identified by symbol, passing it any argu‐
ments specified. Use __send__ if name send clashes with
existing method in object. When method identified by
string, it is converted to a symbol.

object.singleton_class

Returns singleton class of object, creating new singleton
class if object doesn’t have one.

object.singleton_method

Searches for singleton methods only in object. Compare
Object#method.

80 | Ruby Pocket Reference

object.singleton_methods(all=true)

Returns array of names of singleton methods for object. If
optional all parameter true, list includes methods in
modules included in object. Only public and protected
singleton methods are returned.

object.taint

Mark object as tainted.

object.tainted?

Returns true if object is tainted.

object.tap { |x|... }

Yields object to block, then returns block.

object.timeout

Deprecated. Use Timeout#timeout instead.

object.to_enum(method = :each, *args) [or]
object.to_enum(method = :each, *args) {|*args| block }

Creates new Enumerator, which enumerates by calling
method on object, and passing args, if any. If block given,
used to calculate size of enumerator without need to iter‐
ate it. Compare with Object#Enumerator#size.

object.to_s

Returns string representation of object.

object.trust

Deprecated. Compare with Object#untaint.

object.untaint

Removes tainted mark from object.

object.untrust

Deprecated. Compare with Object#taint.

object.untrusted?

Deprecated. Compare with Object#tainted?.

Object Class | 81

object.xmp

Creates new XMP object. Only available when you require
IRB.XMP library.

Kernel Module
These public methods are from the Kernel module. (Kernel is
included in the Object class and other classes.) This documen‐
tation is adapted and abbreviated from http://www.ruby-
doc.org/core-2.2.2/Kernel.html, where you can find additional
information, code examples, and longer explanations.

Array(argument)

Returns argument as array.

BigDecimal(argument, [. . .])

Returns argument, one or more, as new BigDecimal object
or objects.

Complex(x,y)

Returns x+i*y as Complex object.

Float(argument)

Returns argument converted to Float object.

Hash(argument)

Converts argument to hash by calling arg.to_hash; empty
when argument is nil or [].

Integer(argument)

Converts argument to Fixnum or Bignum.

JSON(object, arguments)

If object is string-like, parse string and return parsed
result as Ruby data structure; otherwise, generate JSON
text from Ruby data structure object and return it.

Pathname(path)

Creates new Pathname object from path, returns pathname
object.

82 | Ruby Pocket Reference

http://www.ruby-doc.org/core-2.2.2/Kernel.html
http://www.ruby-doc.org/core-2.2.2/Kernel.html

Rational(x,y)

Returns x/y as Rational object.

String(argument)

Returns argument as string.

URI(uri_string)

Alias for URI.parse.

__callee__

Returns called name of current method as symbol. If
called outside of method, returns nil.

__dir__

Returns canonicalized absolute path of directory of file
from which method is called.

__method__

Returns name at definition of current method as symbol.
If called outside of method, returns nil.

`cmd`

Returns standard output of running cmd in subshell.

abort [or] Kernel#abort([message]) [or]
Process.abort([message])

Terminate execution immediately, effectively by calling
Kernel.exit(false). If message given, written to STDERR
prior to terminating.

at_exit { block }

Converts block to Proc object and therefore binds it at
point of call, registers it for execution when program exits.
If multiple handlers registered, executed in reverse order
of registration.

autoload(module, filename)

Registers filename to be loaded first time module accessed.

autoload?(name)

Returns filename to be loaded if name is registered as auto‐
load.

Kernel Module | 83

binding

Returns Binding object, describing variable and method
bindings at point of call.

block_given?

Returns true if yield would execute block in current con‐
text. Compare Kernel#iterator?.

callcc { |cont| block }

Generates Continuation object, which it passes to associ‐
ated block.

caller(start = 1, length = nil) [or] caller(range)

Returns current execution stack, which is an array
containing strings in form file:line or file:line: in
method. Optional start parameter determines number of
initial stack entries to omit from top of stack. Second
optional length parameter limits how many entries
returned from stack. Returns nil if start is greater than
size of current execution stack. Optionally, you can pass
range, which returns array containing entries within speci‐
fied range.

caller_locations(start = 1, length = nil) [or]

caller_locations(range)

Returns current execution stack, which is an array con‐
taining backtrace location objects. Optional start param‐
eter determines number of initial stack entries to omit
from top of stack. A second optional length parameter
limits how many entries are returned from stack. Returns
nil if start is greater than size of current execution stack.
Optionally can pass range, which returns array containing
entries within specified range. Compare with
Thread::Backtrace::Location for more information.

catch([tag]) { |tag| block }

Executes its block. If throw not called, block executes nor‐
mally and catch returns value of last expression evaluated.

84 | Ruby Pocket Reference

chomp [or] chomp(string)
Equivalent to $_ = $_.chomp(string) where $_ is last line
of string, with newline removed. Available only when
-p/-n command-line option specified. Compare
String#chop.

chop

Equivalent to ($_.dup).chop! (except nil never returned)
where $_ is last line of string, with last character removed.
Available only when -p/-n command-line option speci‐
fied. Compare String#chomp.

eval(string, binding, filename, lineno)

Evaluates Ruby expression(s) in string. If optional bind‐
ing given, must be Binding object, and evaluation per‐
formed in its context. If optional filename and lineno
parameters present, used when reporting syntax errors.

exec(environment, command . . . , options)

Replaces current process in optional environment by run‐
ning, given external command with optional options.

exit(status=true) [or] Kernel.exit(status = true) [or]
Process.exit(status = true)

Initiates termination of Ruby script by raising SystemExit
exception.

exit!(status = false)

Exits process immediately with no exit handlers; status
returned to underlying system as exit status.

fail [or] fail(string) [or]
fail(exception [, string [, array]])

With no arguments, raises exception in $! or raises
RuntimeError if $! is nil. With single string argument,
raises RuntimeError with string as message. Otherwise,
first parameter should be name of Exception class (or
object that returns Exception object when sent exception
message); optional second parameter string sets message

Kernel Module | 85

associated with exception; optional third parameter array
is array of callback information. Compare Kernel#raise.

Process.fork [or] Process.fork { block } [or]

Kernel.fork [or] Kernel.fork { block }

Creates subprocess. If block specified, runs in subprocess,
and subprocess terminates with status of zero. Otherwise,
fork call returns twice: once in parent, returning process
ID of child, and once in child, returning nil.

format(format_string, arguments, . . .)

Returns string resulting from applying format_string

to any additional arguments. Within format_string, any
characters other than format sequences are copied
to result. For more information on format_string,
see Kernel#sprintf. Compare Kernel#printf and
Kernel#sprintf.

gem(gem_name, requirements)

Activates specific version of RubyGems gem_name; require
ments is list of version requirements that specified gem
must match.

gem_original_require(path)

The Kernel#require from before RubyGems was loaded.

gets(nil) [or] gets(separator = $/) [or] gets(limit)

[or] gets(separator,limit)

Returns (and assigns to $_) next line from list of files in
ARGV (or $*), or from standard input if no files are present
on command line. Returns nil at end of file. Optional
argument specifies record separator and separator is
included with contents of each record. separator of nil
reads entire contents, and zero-length separator reads
input one paragraph at time, where paragraphs are divided
by two consecutive newlines. If first argument is integer,
or optional second argument limit given, returning string
would not be longer than given value given in bytes. If

86 | Ruby Pocket Reference

multiple filenames are present in ARGV, gets(nil) reads
contents, one file at time.

global_variables

Returns array of names of global variables.

gsub(pattern, replacement) [or] gsub(pattern) { |...|

block }

Replaces all strings matching pattern with replacement.
Equivalent to $_.gsub(args), except that $_ will be upda‐
ted if substitution occurs. Available only when -p/-n
command-line option specified. Compare Kernel#sub.

iterator?

Returns true if yield would execute block in current
context; iterator? is mildly deprecated. Compare with
Kernel#block_given?.

lambda { |...| block }

Equivalent to Proc.new, except resulting Proc objects
check number of parameters passed when called.

j(object[, . . .])

Outputs object, zero or more, to STDOUT as JSON strings
in shortest form—that is, in one line.

jj(object[, . . .])

Outputs object or objects to STDOUT as JSON strings in
pretty format, with indentation over many lines.

load(filename, wrap = false)

Loads and executes Ruby program in file filename. If file
name does not resolve to absolute path, file searched for in
library directories listed in $:. If optional wrap parameter
is true, loaded script is executed under anonymous mod‐
ule, protecting calling program’s global namespace. Local
variables in loaded file are propagated to loading environ‐
ment.

local_variables

Returns names of current local variables.

Kernel Module | 87

loop [or] loop { block }

Repeatedly executes block. If no block given, returns enu‐
merator. StopIteration raised if block breaks loop.

open(path [, mode [, perm]] [, opt]) [or]

open(path [, mode [, perm]] [, opt]) {|io| block }

Creates IO object connected to given stream, file, or sub‐
process. If path does not start with pipe character (|), treat
it as name of file to open using specified mode (defaulting
to “r”). See IO.new for full documentation of mode string
directives.

p [or] p(object) [or] p(object[, . . .])

For each object, one or more, directly write
object.inspect, followed by newline, to program’s stan‐
dard output. Compare with Kernel#sprintf.

pretty_inspect

Returns pretty printed object as string. Must require pp.

print(object[, . . .])

Prints each object, one or more, to STDOUT. If output field
separator ($,) is not nil, its contents appear between each
field. If output record separator ($\) is not nil, it is
appended to output. If no arguments given, prints $_.
Objects that aren’t strings converted by calling their to_s
method.

printf(io, format_string, object[,. . .]) [or]

printf(format_string, object[, . . .])

Formats object, zero or more, according to
format_string. For more information on format_string,
see Kernel#sprintf.

proc { |...| block }

Creates new Proc object, bound to current context. Com‐
pare with Proc.new.

88 | Ruby Pocket Reference

putc(int)

Prints one character to default output. Compare with
IO#putc for information about multibyte characters.

puts(object[, . . .])

Prints object to default output, followed by newline.
Compare with Kernel#print.

raise [or] raise(string) [or]

raise(exception [, string [, array]])

With no arguments, raises exception in $! or raises
RuntimeError if $! is nil. With single string argument,
raises RuntimeError with string as message. Otherwise,
first parameter should be name of Exception class (or
object that returns Exception object when sent exception
message). Optional second parameter sets message associ‐
ated with exception, and third parameter is array of call‐
back information. Exceptions are caught by rescue clause
of begin-end blocks.

rand(max = 0)

If called without max argument, or if max.to_i.abs == 0,
returns pseudorandom floating-point number between 0.0
and 1.0, including 0.0 and excluding 1.0. When max.abs is
greater than or equal to 1, returns pseudo-random integer
greater than or equal to 0 and less than max.to_i.abs.
When max is range, returns random number where
range.member?(number) == true. Negative or floating-
point values for max allowed, but results may surprise.
Kernel#srand ensures that sequences of random numbers
are reproducible between different runs of program. Com‐
pare with Kernel#srand and Random#rand.

readline(separator = $/) [or] readline(limit) [or]

readline(separator, limit)

Equivalent to Kernel#gets except raises EOFError at end of
file. Compare Kernel#gets and Kernel#readlines.

Kernel Module | 89

readlines(separator = $/) [or] readlines(limit) [or]

readlines(separator, limit)

Returns array containing lines returned by calling
Kernel#gets(separator) until end of file. Compare
Kernel#gets and Kernel#readline.

require(name)

Loads given name, returning true if successful, false if fea‐
ture already loaded. If filename name does not resolve to
absolute path, it is searched for in directories listed in
$LOAD_PATH ($:). If filename name has extension .rb, loaded
as source file; if extension is .so, .o, or .dll, or default
shared library extension on current platform, Ruby loads
shared library as Ruby extension. Otherwise, Ruby tries
adding .rb, .so, and so on to name until found. If file named
cannot be found, LoadError is raised.

require_relative(string)

Ruby tries to load library named string, relative to requir‐
ing file’s path. If file’s path cannot be determined,
LoadError is raised. If file is loaded, true is returned, false
otherwise.

scanf(format, b)

Scans STDIN for data matching format. Must require scanf.
Compare scanf and IO#scanf.

select(read_array, write_array, error_array, timeout)

Calls select(2) system call. Monitors given arrays of IO
objects, waiting for one or more IO objects until ready for
reading and writing, and have pending exceptions respec‐
tively, and returns array that contains arrays of those IO
objects. Returns nil if optional timeout given and no IO
object is ready in timeout seconds. read_array (required)
is array of IO objects that waits until ready for read;
optional write_array is array of IO objects that waits until
ready for write; optional error_array is array of IO objects
that waits for exceptions; optional timeout is numeric
value in seconds.

90 | Ruby Pocket Reference

set_trace_func(proc) [or] set_trace_func(nil)

Establishes proc as handler for tracing, or disables tracing
if parameter is nil. This method is obsolete; please use
TracePoint instead.

sleep(duration)

Suspends current thread for optional duration seconds
(which may be any number, including Float with frac‐
tional seconds). Returns actual number of seconds slept
(rounded), which may be less than that asked for if
another thread calls Thread#run. If called without argu‐
ment, sleeps forever.

spawn(environment, command[. . .], options)

Executes specified command and returns its PID. Similar
to Kernel#system but doesn’t wait for command to finish.
Parent process should use Process.wait to collect termi‐
nation status of its child or use Process.detach to register
disinterest in their status; otherwise, operating system may
accumulate zombie processes. Optional environment argu‐
ment is hash that sets environment variables; required
command is command-line string, with possible arguments,
passed to shell; optional options is hash (too numerous to
list here; see ri Kernel#spawn or online documentation at
ruby-doc.org from more information). See Kernel#exec for
standard shell.

sprintf(format_string, arguments[, . . .])

Returns string resulting from applying format_string to
any additional arguments. Within format_string, any
characters other than format sequences are copied to
result. Syntax of format sequence is %[flags][width]

[.precision]type. Format sequence consists of percent
sign, followed by optional flags, width, and precision
indicators, then terminated with field type character. Field
type controls how corresponding sprintf argument is to
be interpreted, while flags modify that interpretation. Field

Kernel Module | 91

type characters are listed in Tables Table 13, Table 14, and
Table 15.

Table 13. Integer formats

Field Integer format

b Convert argument as binary number. Negative numbers will be
displayed as two’s complement prefixed with ..1.

B Equivalent to b, but uses uppercase 0B for prefix in alternative
format by #.

d Convert argument as decimal number.

i Identical to d.

o Convert argument as octal number. Negative numbers will be
displayed as two’s complement prefixed with ..7.

u Identical to d.

x Convert argument as hexadecimal number. Negative numbers will
be displayed as two’s complement prefixed with ..f (representing
infinite string of leading ffs).

X Equivalent to x, but uses uppercase letters.

Table 14. Float formats

Field Float format

e Convert floating-point argument into exponential notation with one
digit before decimal point as [-]d.dddddde[+-]dd. Precision
specifies number of digits after decimal point (defaulting to six).

E Equivalent to e, but uses uppercase E to indicate exponent.

f Convert floating-point argument as [-]ddd.dddddd, where
precision specifies number of digits after decimal point.

g Convert floating-point number using exponential form if exponent is
less than -4 or greater than or equal to precision, or in dd.dddd
form otherwise. Precision specifies number of significant digits.

G Equivalent to g, but use uppercase E in exponent form.

92 | Ruby Pocket Reference

Field Float format

a Convert floating-point argument as [-]0xh.hhhhp[+-]dd,
which consists of optional sign, 0x, fraction part as hexadecimal, p,
and exponential part as decimal.

A Equivalent to a, but use uppercase X and P.

Table 15. Other formats

Field Other format

c Argument is numeric code for single character or single character
string itself.

p The valuing of argument.inspect.

s Argument is string to be substituted. If format sequence contains
precision, at most that many characters will be copied.

% A percent sign itself will be displayed. No argument taken.

The flags modify the behavior of formats. Flag characters
are listed in Table 16.

Table 16. Format flags

Flag Applies to Meaning

space bBdiouxX
aAeEfgG
(numeric
format)

Leave space at start of non-negative numbers. For
o, x, X, b, and B, use minus sign with absolute
value for negative values.

(digit)
$

all Specifies absolute argument number for this field.
Absolute and relative argument numbers cannot
be mixed in sprintf string.

Kernel Module | 93

Flag Applies to Meaning

bBoxX
aAeEfgG

Use alternative format. For conversions o, increase
precision until first digit will be 0 if it is not
formatted as complements. For conversions x, X,
b, and B on non-zero, prefix result with 0x, 0X,
0b, and 0B, respectively. For a, A, e, E, f, g, and
G, force decimal point to be added, even if no
digits follow. For g and G, do not remove trailing
zeros.

+ bBdiouxX
aAeEfgG
(numeric
format)

Add leading plus sign to non-negative numbers.
For o, x, X, b, and B, use minus sign with absolute
value for negative values.

- all Left-justify result of this conversion.

0
(zero)

bBdiouxX
aAeEfgG
(numeric
format)

Pad with zeros, not spaces. For o, x, X, b, and B,
radix-1 is used for negative numbers formatted as
complements.

* all Use next argument as field width. If negative, left-
justify result. If asterisk is followed by number and
dollar sign ($), use indicated argument as width.

srand(number = Random.new_seed)

Seeds system pseudo-random number generator,
Random::DEFAULT, with number. Previous seed value is
returned. If number is omitted, seeds generator using
source of entropy provided by operating system, if avail‐
able (/dev/urandom on Unix systems or RSA cryptographic
provider on Windows), which is then combined with
time, process id (PID), and sequence number. May be
used to ensure repeatable sequences of pseudorandom
numbers between different runs of program. By setting
seed to known value, programs can be made deterministic
during testing.

94 | Ruby Pocket Reference

sub(pattern, replacement) [or]

sub(pattern) { |...| block }

Replaces all strings matching pattern with replacement.
Equivalent to $_.sub(args), except that $_ will be updated
if substitution occurs. Available only when -p/-n

command-line option specified. Compare Kernel#gsub.

syscall(number, arguments[, . . .])

Calls operating system function identified by number and
returns result of function or raises SystemCallError if
failed. Optional arguments for function may follow number.
They must be either String or Integer objects. String
object passed as pointer to byte sequence; Integer object
passed as integer whose bit size is same as pointer. Up to
nine parameters may be passed (14 on Atari-ST). syscall
is essentially unsafe and unportable. DL (Fiddle) library is
preferred for safer and more portable programming.

system(environment, command . . ., options)

Executes command in subshell, in one of following forms:

commandline

Command-line string that is passed to standard shell.
cmdname, arg1, . . .

Command name and one or more arguments (no
shell).

cmdname, argv0, arg1, . . .

Command name, argv[0], and zero or more argu‐
ments (no shell).

Returns true if command gives zero exit status, false for
non-zero exit status, nil if command execution fails. An
error status is available in $?. Arguments are processed in
same way as for Kernel#spawn. Compare Kernel#exec for
standard shell.

Kernel Module | 95

test(command, file1, file2)

Uses command (a character) to perform various tests on
file1 or on file1 and file2. Table 17 lists tests on single
files.

Table 17. File tests

Command Returns Meaning

A Time Last access time for file1

b Boolean True if file1 is block device

c Boolean True if file1 is character device

C Time Last change time for file1

d Boolean True if file1 exists and is directory

e Boolean True if file1 exists

f Boolean True if file1 exists and is regular file

g Boolean True if file1 has \CF{setgid} bit set (false
under NT)

G Boolean True if file1 exists and has group ownership
equal to caller’s group

k Boolean True if file1 exists and has sticky bit set

l Boolean True if file1 exists and is symbolic link

M Time Last modification time for file1

o Boolean True if file1 exists and is owned by caller’s
effective uid

O Boolean True if file1 exists and is owned by caller’s real
uid

p Boolean True if file1 exists and is FIFO

r Boolean True if file1 is readable by effective UID/GID of
caller

R Boolean True if file1 is readable by real UID/GID of caller

96 | Ruby Pocket Reference

Command Returns Meaning

s int/nil If file1 has nonzero size, return size; otherwise,
return nil

S Boolean True if file1 exists and is socket

u Boolean True if file1 has setuid bit set

w Boolean True if file1 exists and is writable by effective
UID/GID

W Boolean True if file1 exists and is writable by real UID/GID

x Boolean True if file1 exists and is executable by effective
UID/GID

X Boolean True if file1 exists and is executable by real
UID/GID

z Boolean True if file1 exists and has zero length

Tests in Table 18 take two files.

Table 18. File tests for two files

- Boolean True if file1 and file2 are identical

= Boolean True if modification times of file1 and file2 are equal

< Boolean True if modification time of file1 is prior to that of file2

> Boolean True if modification time of file1 is after that of file2

throw(tag, object)

Transfers control to end of active catch block waiting for
tag. Raises UncaughtThrowError if there is no catch block
for tag. Optional second parameter object supplies return
value for catch block, which otherwise defaults to nil.
Compare Kernel#catch.

trace_var(symbol, command) [or]
trace_var(symbol) { |val| block }

Controls tracing of assignments to global variables.
Parameter symbol identifies variable (as either string name
or symbol identifier); command (which may be string or

Kernel Module | 97

Proc object) or block is executed whenever variable is
assigned. Block or Proc object receives variable’s new value
as parameter. Compare Kernel#untrace_var.

trap(signal, command) [or] trap(signal) { |...| block }
Specifies handling of signals. First parameter, signal, is
signal name (a string such as SIGALRM, SIGUSR1, and so on)
or signal number. Characters SIG may be omitted from
signal names; command or block specifies code to be run
when signal is raised. If command is string IGNORE or
SIG_IGN, signal is ignored. If command is DEFAULT or
SIG_DFL, Ruby’s default handler is invoked. If command is
EXIT, script is terminated by signal. If command is
SYSTEM_DEFAULT, operating system’s default handler is
invoked. Otherwise, given command or block runs. Special
signal name EXIT or signal number zero (0) is invoked just
prior to program termination. Returns previous handler
for given signal.

untrace_var(symbol, command)

Removes tracing for specified command on given global
variable and returns nil. If no command specified,
removes all tracing for that variable and returns array con‐
taining commands actually removed.

warn(message [, . . .])

Displays each given message, followed by record separator
on STDERR, unless warnings have been disabled (for exam‐
ple, with -W0 flag).

String Class
A String object in Ruby holds an arbitrary sequence of one or
more characters written in human language. Ruby has a built-
in class called String that defines a number of methods used
frequently when programming Ruby. Those methods are listed
and described briefly in this section. Following are some string-
related features of Ruby.

98 | Ruby Pocket Reference

String Literals
In most cases, the value of a string literal in Ruby is enclosed in
either single or double quotes. Single-quoted strings have the
following characteristics:

• Are enclosed in or surrounded by single quotes or apos‐
trophe characters (')

• Allow backslash notation only for a literal single quote or
apostrophe (\') and a literal backslash character (\\)

• Can extend over multiple lines when a backslash charac‐
ter (\) appears at the end of a line

• Must escape newlines with '\ to avoid embedding new‐
lines in the string

• Don’t allow expression substitution

Following is an example of a single-quoted string:
'This isn\'t such a bad day and '\
'and that\'s the truth.'

Double-quoted strings have the following traits:

• Are enclosed in or surrounded by double-quote charac‐
ters (")

• Allow backslash notation (\n [newline], \t [tab], and so
forth)

• Allow the entry of Unicode characters (in UTF-8 encod‐
ing) in the form \uxxxx in the range 0000 and FFFF (can‐
not drop leading zeros), or \u{xxxxxx} in the range 0 and
10FFFF (can drop leading zeros), or multiple codepoints
in the form \u{xxxxxx[xxxxxx . . .]} (one to six hexa‐
decimal digits, separated by spaces or tabs)

• Allow the entry of octal digits in the form \onnn (one to
three digits in the ranges 0 to 7, 00 to 77, and 000 and
377, respectively)

• Allow non-terminating quote marks when escaped with a
backslash, as in \"

• Can extend multiple lines with a backslash character (\)
at the end of a line

String Class | 99

• Allow expression substitution (string interpolation) with
#{expr}. Here is a double-quoted string:

"This isn't a single-quoted string\n\
and it works just grand, don't it?"

See also “Here Documents” on page 102.

String Concatenation
You can concatenate or join strings in Ruby in several ways—
with or without a plus sign. The following two concatenations
produce the same result:

str1 = "Hello, " "world!"
str2 = "Hello, " + "world!"
str1 == str2 # true
puts str1
puts str2

NOTE

The method String#concat is a synonym for an append
operation (<<), not a concatenation.

Expression Substitution
Expression substitution is a means of embedding the value of
any Ruby expression into a string using #{ and }, as shown here
(string_interp.rb):

x, y, z = 12, 36, 72

puts "The value of x is #{ x }."

puts "The sum of x and y is #{ x + y }."

puts "The average was #{ (x + y + z)/3 }."

The output of this program is:

100 | Ruby Pocket Reference

The value of x is 12.
The sum of x and y is 48.
The average was 40.

You can embed global variables and instance variables in
abbreviated form, like this:

$glob = "global variable"
puts "This syntax works for a #$glob." # same as
 #{$glob}

@inst = "instance variable"
puts "This syntax works for an #@inst." # same as
 #{@inst}

Expression substitution is also called string interpolation. You
can also perform string interpolation with Kernel#printf,
IO#printf, and Kernel#sprintf. See Kernel#sprintf for more
information.

General Delimited Strings
With general delimited strings, you can create strings inside of a
pair of matching, arbitrary delimiter characters; for example, !,
(, {, <, etc., preceded by a percent character (%). Q, q, and x have
special meanings. Escape with backslash (\). General delimited
strings can be nested. Here are a few examples:

%|Ecclesiastes| # follows double-quoted string rules

%Q{ Hamlet } # follows double-quoted string rules

%q[Much Ado about Nothing] # follows single-quoted
 string rules

%r!Middlemarch! # regular expression pattern,
 equivalent to /Middlemarch/

%x!ls! # => equivalent to backticked (`) command
 output for ls
=> "file.ext\nanother_file.ext\nyet_another_file.ext\n"

String Class | 101

Here Documents
A here document (or sometimes heredoc) is a useful bit of syn‐
tax borrowed from Unix that allows you to quickly build multi‐
line strings inside a nested pair of identifiers, preceded by << or
<<-. The characters that follow have special meaning:

<<

Delimiter followed by no intervening space, then option‐
ally by a single- or double-quote, then by an identifier
(string) that, if quoted, may or may not contain white‐
space. This identifier is also used at the end of the docu‐
ment that appears on a line by itself following the string
literal (the here document itself). If present earlier, paired
with a single- or double-quote, following the identifier.
May be followed by a comment.

<<-

Same as << but closing identifier may be indented or pre‐
ceded with whitespace.

'

Optional. Precedes and follows identifier, which may in
this case contain whitespace. No need to escape the single
quote (apostrophe) or backslash; they are interpreted liter‐
ally. Must be paired with another single quote.

"

Same as single quote.
`

2153.140If the identifier is enclosed in backticks, the string
literal will be interpreted as a system command.

#

Precedes a comment but only on the first line. It’s never
part of the string literal.

Here are several examples:
puts <<x # double-quoted string
To every thing there is a season,
and a time to every purpose
under the heaven.
x

102 | Ruby Pocket Reference

double-quoted string, assigned to variable hamlet
hamlet = <<"poor yorick"
Alas, poor Yorick! I knew him, Horatio: a fellow
of infinite jest, of most excellent fancy: he hath
borne me on his back a thousand times; and now, how
abhorred in my imagination it is! my gorge rims at
it. Here hung those lips that I have kissed I know
not how oft.
poor yorick

single-quoted string
puts <<'Benedick'
Shall quips and sentences and these paper bullets
of the brain awe a man from the career of his
humour? No, the world must be peopled. When I
said I would die a bachelor, I did not think I
should live till I were married. Here comes
Beatrice. By this day! she's a fair lady: I do
spy some marks of love in her.
Benedick

back-quoted string
dir = <<`listdir`
ls -l
listdir

indented string
puts <<-cummings
 it's
 spring
 and
 the

 goat-footed

 balloonMan whistles
 far
 and
 wee
 cummings

Escape Characters
Table 19 provides a list of escape or non-printable characters
that can be represented with backslash notation. In a double-

String Class | 103

quoted string, an escape character is interpreted; in a single-
quoted string, an escape character is preserved.

Table 19. Escape (non-printable) characters

Notation Hexadecimal
value

Description

\x Backslash before any character is same as
character by itself, except special characters in
this table

\a 0x07 BEL or bell (ASCII decimal 7)

\b 0x08 BS or backspace (ASCII decimal 8)

\cx Shorthand for \C-x

\C-x Though x can be any character, it is usually control
sequence where x is in range A–Z (ASCII decimal
1–26) but can use upper- or lowercase

\e 0x1b ESC or escape (ASCII decimal 27)

\eol Escapes line terminator

\f 0x0c FF or formfeed (ASCII decimal 12)

\M-x Metacharacter sequence where x typically > 126

\n 0x0a LF or newline (ASCII decimal 10)

\n Octal notation in range 0–7

\nn Octal notation in range 00–77

\nnn Octal notation in range 000–377

\r 0x0d CR or carriage return (ASCII decimal 13)

\s 0x20 SP or space (ASCII decimal 32)

\t 0x09 TAB (ASCII decimal 9)

\unnnn Unicode codepoint. Each n is a hexadecimal digit.
May not drop leading zeros (since Ruby 1.9).

\u{hex

digits}

 Unicode codepoint in range 0–10FFFF. May drop
leading zeros (since Ruby 1.9).

104 | Ruby Pocket Reference

Notation Hexadecimal
value

Description

\v 0x0b VT or vertical tab (ASCII decimal 11)

\xn Hexadecimal notation in range 0–F (upper- and
lowercase allowed)

\xnn Hexadecimal notation in range 00–FF (upper-
and lowercase allowed)

Character Encoding
Ruby now offers robust encoding support. Since version 1.9,
Ruby strings have been composed of sequences of characters
instead of bytes or integers as in previous versions. Before ver‐
sion 1.9, a string in Ruby was a sequence of bytes, or numbers
representing characters. The String class was rewritten to
accommodate this change. A character is now represented as a
string of length 1. See http://ruby-doc.org/core-2.2.2/Encod
ing.html.

When would you use encoding? If, for example, you wanted to
use the Japanese Hiragana script in Ruby, you could set your
encoding to EUC_JP or Shift_JIS.

The -K command-line option has been replaced by the -E and
--encoding command-line options; and instead of the $KCODE
global variable, you can now use the __ENCODING__ keyword to
obtain the source encoding, returned as an Encoding object.
This keyword is both preceded and followed by a pair of
underscores (_). Here’s several ways you can use the new
command-line option:

ruby -E US-ASCII hello.rb
ruby --encoding=UTF-8 myprog.rb

You can also set the encoding with a magic or coding comment
appearing on the first line of a program, or if the program uses
a shebang comment, as a second line. An example coding com‐
ment is shown here:

coding: EUC_JP

String Class | 105

http://ruby-doc.org/core-2.2.2/Encoding.html
http://ruby-doc.org/core-2.2.2/Encoding.html

Table 20 shows several common encoding values for Ruby as a
sample. Calling the class method Encoding.name_list returns
an array containing available encoding values or names—170
of them in version 2.2.

Table 20. Common encoding values

Encoding Description

ASCII-8BIT 8-bit ASCII (same as BINARY)

BINARY Alias for 8-bit ASCII (same as ASCII-8BIT)

EUC-JP EUC-JP (Japanese)

ISO-8859-1 –

ISO-8859-16

ISO/IEC 8859 8-bit, single-byte coded graphic
character sets

SHIFT_JIS SHIFT_JIS (Japanese)

SJIS Alias for SHIFT_JIS (Japanese)

US-ASCII 7-bit ASCII

UTF-8 Multibyte UTF-8

UTF-16 Multibyte UTF-16

UTF-32 Multibyte UTF-32

Regular Expressions
A regular expression is a special sequence or pattern of charac‐
ters that helps you match or find other strings or sets of strings
using a specialized syntax. See http://ruby-doc.org/core-2.2.2/
Regexp.html. Ruby is supported by the Oniguruma regular
expression library (see http://www.geocities.jp/kosako3/onigur
uma/).

Strings are matched with regular expression patterns, delimited
with a pair of slashes (/) or r%{ }. Here is a string (opening)
that contains the first two lines of Shakespeare’s Sonnet 29. The
match operator =~ finds the pattern /beweep/ starting at charac‐
ter position 57:

106 | Ruby Pocket Reference

http://ruby-doc.org/core-2.2.2/Regexp.html
http://ruby-doc.org/core-2.2.2/Regexp.html
http://www.geocities.jp/kosako3/oniguruma/
http://www.geocities.jp/kosako3/oniguruma/

opening = "When in disgrace with fortune and men's
 eyes\nI all alone beweep my outcast state,\n"
/beweep/ =~ opening
=> 57

The !˜ operator returns true when a pattern does not match a
string; it is false otherwise:

%r{wept} !~ opening
=> true
%r{beweep} !~ opening
=> false

The method Regexp#match returns a matched pattern, nil
otherwise:

mat = opening.match(/beweep/)
=> #<MatchData "beweep">

The MatchData class encapsulates the results of a matched pat‐
tern, and those results can be accessed by predefined globals
and methods such as $~ (the MatchData object), $& (the last
match [Regexp.last_match]), $` (or Regexp#pre_match), and $'
(or Regexp#post_match). See Table 30 and http://www.ruby-
doc.org/core-2.2.2/MatchData.html.

Let’s take a moment to look at what is now in the MatchData
object mat using some predefined global variables and a few
methods from this class (match.rb):

opening = "When in disgrace with fortune and men's
 eyes\nI all alone beweep my outcast state,\n"
mat = opening.match(/beweep/)
p $~ #<MatchData "beweep">
p $& == Regexp.last_match.to_s # true
p mat == Regexp.last_match # true
p $& # "beweep"
p mat.to_s # "beweep"
p $` # "When in disgrace with fortune and men's
 eyes\nI all alone "
p mat.pre_match # "When in disgrace with fortune and men's
 eyes\nI all alone "
p $' # " my outcast state,\n"
p mat.post_match # " my outcast state,\n"

String Class | 107

http://www.ruby-doc.org/core-2.2.2/MatchData.html
http://www.ruby-doc.org/core-2.2.2/MatchData.html

MatchData has 19 methods, most of which are not mentioned
here.

Alternation lets you match alternate forms of a pattern using
the bar (|):

opening.match(/men|man/)
=> #<MatchData "men">

Grouping uses parentheses to group a subexpression, like this
one that contains an alternation:

opening.match /m(e|a)n/
=> #<MatchData "men" 1:"e">

Anchors anchor a pattern, such as to the beginning of a line
with a caret (^) or the end of a line with a dollar sign ($), like
so:

opening.match /^When in/
=> #<MatchData "When in">
opening.match /outcast state,$/
=> #<MatchData "outcast state,">

See Table 22 for a list of available anchors.

Character shorthands are single characters preceded by a back‐
slash that have special meaning. For example, the \d shorthand
represents a digit; it is the same as using character class [0-9].
Similarly to ^, the shorthand \A matches the beginning of a
string, not a line. The shorthand \z matches the end of a string,
not a line, similarly to $. The shorthand \Z matches the end of a
string before the newline character, assuming that a newline
character (\n) is at the end of the string (it won’t work other‐
wise).

To match a three-digit number in the form 123, try this:
str = "Easy as 123"
str.match /\d\d\d/
=> #<MatchData "123">

Or try:
str.match /\d+/

108 | Ruby Pocket Reference

The plus sign (+) is a repetition operator. It means one or more
occurrences of the previous pattern. Another repetition opera‐
tor is ?, which means zero or one occurrence. Here is a way to
use ? with just a single character, u:

color_us = "color"
colour_uk = "colour"
color_us.match /colou?r/
=> #<MatchData "color">
colour_uk.match /colou?r/
=> #<MatchData "colour">

An asterisk (*) operator indicates zero or more occurrences.
Braces ({}) let you specify the exact number of digits, like \d{3}
or \d{4}:

phone = "555-123-4567"
phone.match /\d{3}-\d{3}-\d{4}/

It is also possible to indicate an at least amount with {m,}, and a
minimum/maximum amount with {m,n}.

Regular Expression Reference Tables

Character classes. Table 21 shows examples of character classes.
A hyphen (-) denotes a range, as in [0-1]. A caret (^) has the
effect of negation and does not mean “at the beginning of the
line.” You must escape square brackets and hyphens if you want
them to be interpreted literally (\[, \], and \-). You can also
use && lower precedence in a character class, as in [a-w&&[^c-
g]z] ==& ([a-w] AND ([^c-g] OR z)) ==> [abh-w] (See http://
www.geocities.jp/kosako3/oniguruma/doc/RE.txt).

Table 21. Character classes in Ruby regular expressions

Character Class Description

[.] Matches any character except a newline (unless in multiline
mode)

[a-zA-Z0-9_] Matches word characters (compare with \w)

[^a-zA-Z0-9_] Matches non-word characters (compare with \W)

String Class | 109

http://www.geocities.jp/kosako3/oniguruma/doc/RE.txt
http://www.geocities.jp/kosako3/oniguruma/doc/RE.txt

Character Class Description

[0-9] Matches digits (compare with \d)

[^0-9] Matches non-digits (compare with \D)

[0-9a-fA-F] Matches hexdigits (compare with \h)

[^0-9a-fA-F] Matches non-hexdigits (compare with \H)

[\t\r\n\f] Matches whitespace characters (compare with \s)

[^ \t\r\n\f] Matches non-whitespace characters (compare with \S)

Anchors. Table 22 lists Ruby’s anchor metacharacters.

Table 22. Anchor metacharacters in Ruby regular expressions

Metacharacter(s) Description

^ Matches beginning of line

$ Matches end of line

\A Matches beginning of string

\b Matches word boundaries when outside brackets; backspace
(0x08) when inside brackets

\B Matches non-word boundaries

\G Matches point where last match finished or start position

\z Matches end of string

\Z Matches end of string. If string ends with a newline, it matches
just before newline.

Character shorthands. Table 23 shows character shorthands
(also known as character class metacharacters).

Table 23. Character shorthands in Ruby regular expressions

Shorthand Description

. Matches any character except a newline (unless in multiline
mode)

110 | Ruby Pocket Reference

Shorthand Description

\a Matches bell character

[\b] Matches backspace character (must be used in a character
class)

\cx Matches control character

\C-x Matches control character

\d Matches decimal digit character ([0-9])

\D Matches non-digit character ([^0-9])

\e Matches escape character

\f Matches formfeed character

\h Matches hexdigit character ([0-9a-fA-F])

\H Matches non-hexdigit character ([^0-9a-fA-F])

\M-x Matches metacharacter

\M-\Cx Matches meta-control character

\n Newline

\nnn Octal character

\r Return

\s Matches whitespace character ([\t\r\n\f])

\S Matches non-whitespace character ([^ \t\r\n\f])

\t Tab

\v Vertical tab

\w Matches word character ([a-zA-Z0-9_])

\W Matches non-word character ([^a-zA-Z0-9_])

\xhh Hexadecimal character

\x{hhhhhhhh} Hexadecimal character (wide)

POSIX bracket expressions. POSIX bracket expressions are simi‐
lar to character classes and are a portable alternative to them,

String Class | 111

but also match non-ASCII characters. /\d/ only matches ASCII
decimal digits 0 through 9 but /[[:digit:]]/ matches any
character in the Unicode Nd category. These can be negated, as
in [[:^blank:]]. Table 24 lists POSIX expressions.

Table 24. POSIX bracket expressions in Ruby regular expressions

Expression Description

[[:alnum:]] Alphabetic and numeric character

[[:alpha:]] Alphabetic character

[[:ascii:]] A character in the ASCII character set (non-POSIX)

[[:blank:]] Space or tab

[[:cntrl:]] Control character

[[:digit:]] Digit

[[:graph:]] Non-blank character (excludes spaces, control characters, and
similar)

[[:lower:]] Lowercase alphabetical character

[[:print:]] Like [:graph:], but includes the space character

[[:punct:]] Punctuation character

[[:space:]] Whitespace character ([:blank:], newline, carriage
return, etc.)

[[:upper:]] Uppercase alphabetical

[[:word:]] A character in one of the following Unicode general
categories Letter, Mark, Number, Connector_Punctuation
(non-POSIX)

[[:xdigit:]] Digits allowed in hexadecimal number (0-9a-fA-F)

Quantifiers. Quantifiers (also called repetition operators or repe‐
tition metacharacters) are shown in Table 25. A greedy match
attempts to match the whole target string and then backtracks
one character at a time. A reluctant or lazy match looks at the

112 | Ruby Pocket Reference

target one character at a time. A possessive match is greedy but
does not backtrack.

Table 25. Quantifiers in Ruby regular expressions

Quantifier Description

* Zero or more times (greedy)

+ One or more times (greedy)

? Zero or one times (optional) (greedy)

{n} Exactly n times (greedy)

{n,} n or more times (greedy)

{,m} m or less times (greedy)

{n,m} At least n and at most m times (greedy)

*? Zero or more times (reluctant or lazy)

+? One or more times (reluctant)

?? Zero or one times (optional) (reluctant or lazy)

{n}? Exactly n times (reluctant or lazy)

{n,}? n or more times (reluctant or lazy)

{,m}? m or less times (reluctant or lazy)

{n,m}? At least n and at most m times (reluctant or lazy)

*+ Zero or more times (possessive)

++ One or more times (possessive)

?+ Zero or one times (optional) (possessive)

Character properties. The \p{} construct matches characters
with a named property, similar to the POSIX bracket classes.
Table 26 lists these properties. You can negate these with
\p{^property} or \P{property}.

String Class | 113

Table 26. Character properties in Ruby regular expressions

Property Description

\p{Any} Any Unicode character (including unassigned characters)

\p{ASCII} A character in the ASCII character set

\p{Assigned} An assigned character

\p{Alnum} Alphabetic and numeric character

\p{Alpha} Alphabetic character

\p{Blank} Space or tab

\p{Cntrl} Control character

\p{Digit} Digit

\p{Graph} Non-blank character (excludes spaces, control characters, and
similar)

\p{Hiragana} Hiragana script with encodings EUC_JP or Shift_JIS

\p{Katakana} Katakana script with encodings EUC_JP or Shift_JIS

\p{Lower} Lowercase alphabetical character

\p{Print} Like \p{Graph}, but includes the space character

\p{Punct} Punctuation character

\p{Space} Whitespace character ([:blank:], newline, carriage
return, etc.)

\p{Upper} Uppercase alphabetical

\p{XDigit} Digits and characters allowed in a hexadecimal number
(0-9a-fA-F)

\p{Word} A member of one of the following Unicode general category
Letter, Mark, Number, Connector_Punctuation

Unicode character categories. Table 27 lists abbreviations for
general Unicode character categories. You can negate these
with \p{^property} or \P{property}. These work with UTF8,
UTF16, and UTF32.

114 | Ruby Pocket Reference

Table 27. General categories for Ruby regular expressions

Category Description

\p{C} ‘Other’

\p{Cc} ‘Other: Control’

\p{Cf} ‘Other: Format’

\p{Cn} ‘Other: Not Assigned’

\p{Co} ‘Other: Private Use’

\p{Cs} ‘Other: Surrogate’

\p{L} ‘Letter’

\p{Ll} ‘Letter: Lowercase’

\p{Lm} ‘Letter: Mark’

\p{Lo} ‘Letter: Other’

\p{Lt} ‘Letter: Titlecase’

\p{Lu} ‘Letter: Uppercase

\p{M} ‘Mark’

\p{Mc} ‘Mark: Spacing Combining’

\p{Me} ‘Mark: Enclosing’

\p{Mn} ‘Mark: Nonspacing’

\p{N} ‘Number’

\p{Nd} ‘Number: Decimal Digit’

\p{Nl} ‘Number: Letter’

\p{No} ‘Number: Other’

\p{P} ‘Punctuation’

\p{Pc} ‘Punctuation: Connector’

\p{Pd} ‘Punctuation: Dash’

\p{Pe} ‘Punctuation: Close’

\p{Pf} ‘Punctuation: Final Quote’

String Class | 115

Category Description

\p{Pi} ‘Punctuation: Initial Quote’

\p{Po} ‘Punctuation: Other’

\p{Ps} ‘Punctuation: Open’

\p{S} ‘Symbol’

\p{Sc} ‘Symbol: Currency’

\p{Sk} ‘Symbol: Modifier’

\p{Sm} ‘Symbol: Math’

\p{So} ‘Symbol: Other’

\p{Z} ‘Separator’

\p{Zl} ‘Separator: Line’

\p{Zp} ‘Separator: Paragraph’

\p{Zs} ‘Separator: Space’

Unicode scripts. Table 28 shows the Unicode language scripts
that Ruby supports.

Table 28. Unicode scripts for Ruby regular expressions

Script Script Script

Arabic Hac Oriyc

Armeniac Hanguc Osmanyc

Balinesc Hanunoc Phags_Pc

Bengalc Hebrec Phoeniciac

Bopomofc Hiraganc Rejanc

Braillc Inherited Runic

Buginesc Kannadc Saurashtrc

Buhic Katakanc Shaviac

Canadian_Aboriginac Kayah_LcKharoshthc Sinhalc

116 | Ruby Pocket Reference

Script Script Script

Cariac Khmec Sundanesc

Chac Lac Syloti_Nagrc

Cherokec Latin Syriac

Commoc Lepchc Tagaloc

Coptic Limbc Tagbanwc

Cuneiforc Linear_c Tai_Lc

Cyprioc Lyciac Tamic

Cyrillic Lydiac Telugc

Deserec Malayalac Thaanc

Devanagarc Mongoliac Thac

Ethiopic Myanmac Tibetac

Georgiac New_Tai_Luc Tifinagc

Glagolitic Nkc Ugaritic

Gothic Oghac Vac

Greec Ol_Chikc Yi

Gujaratc Old_Italic

Gurmukhc Old_Persiac

Modifiers (options). Table 29 lists the four modifiers or options
you can used with patterns.

Table 29. Modifiers (options) in Ruby regular expressions

Modifier Description

/pattern/i Ignore case (or constant Regexp::IGNORECASE)

/pattern/m Treat a newline as a character matched by a full stop or period (.)
(or constant Regexp::MULTILINE)

/pattern/x Ignore whitespace and comments in the pattern (or constant
Regexp::EXTENDED)

String Class | 117

Modifier Description

/pattern/o Perform #{} interpolation only once

Special global variables. Several global variables are available
that have special meaning with regard to regular expressions, as
shown in Table 30.

Table 30. Special global variables in Ruby regular expressions

Global Variable Description

$~ Equivalent to ::last_match

$& Contains the complete matched text

$` Contains string before match

$' Contains string after match

$1, $2, etc. Contains text matching first, second, etc. capture group

$+ Contains last capture group

Encoding overrides. You can override the source character
encoding with one of the four options shown in Table 31.

Table 31. Encoding for Ruby regular expressions

Option Description

/pattern/u UTF-8

/pattern/e EUC-JP

/pattern/s Windows-31J

/pattern/n ASCII-8BIT

Extended groups. Table 32 shows extended groups, including
lookaheads and lookbehinds.

118 | Ruby Pocket Reference

Table 32. Extended groups in Ruby regular expressions

Group Description

(?# . . .) Comment

(?i) [or] (?-i) Ignore case (on/off)

(?m) [or] (?-m) Multiline mode (on/off)

(?x) [or] (?-x) Extended form (on/off)

(?[i|m|x]-[i|m|

x]:subexp)

Options (on/off) for subexp

(?:subexp) Non-captured group

(subexp) Captured group

(?=pattern) Positive lookahead assertion: ensures that the
following characters match pattern, but doesn’t
include those characters in the matched text

(?!pattern) Negative lookahead assertion: ensures that the
following characters do not match pattern, but
doesn’t include those characters in the matched
text

(?<=pattern) Positive lookbehind assertion: ensures that the
preceding characters match pattern, but
doesn’t include those characters in the matched
text

(?<!pattern) Negative lookbehind assertion: ensures that the
preceding characters do not match pattern, but
doesn’t include those characters in the matched
text

(?>subexp Atomic group (don’t backtrack in subexp)

(?<name>subexp)

[or] (?'name'sub
exp)

Named group

Back references. Table 33 shows back referencing options.

String Class | 119

Table 33. Back references in Ruby regular expressions

Reference Description

\n Back reference by group number (n >= 1)

\kn Back reference by group number (n >= 1)

\k'n' Back reference by group number (n >= 1)

\kn Back reference by relative group number (n >= 1)

\k'-n' Back reference by relative group number (n >= 1)

\k<name> Back reference by group name

\k'name' Back reference by group name

Subexpression calls. Table 34 lists options for calling subexpres‐
sions.

Table 34. Subexpression calls in Ruby regular expressions

Call Description

\g<name> Call by group name

\g'name' Call by group name

\gn Call by group number (n >= 1)

\g'n' Call by group number (n >= 1)

\g-n Call by relative group number (n >= 1)

\g'-n' Call by relative group number (n >= 1)

String Methods
Following are the public String methods, adapted and abbrevi‐
ated from http://www.ruby-doc.org/core-2.2.2/String.html, and
formatted and printed here for your convenience.

Public class methods

String.new(string = "")

Returns new string containing copy of string.

120 | Ruby Pocket Reference

http://www.ruby-doc.org/core-2.2.2/String.html

String.try_convert(object)

Tries to convert object into string using String#to_str.
Returns converted string or nil if object cannot be con‐
verted for any reason.

Public instance methods

string % argument

Uses string as format specification, returns string result
of applying argument. If format specification contains
more than one substitution, argument must be Array or
Hash containing values to be substituted. See
Kernel#sprintf for details.

string * integer

Returns new string containing integer number of copies of
string. integer must be greater than or equal to 0.

string + other_string

Returns new string containing other_string concatenated
to string.

string << integer

Concatenates (appends) given object to string. If object is
integer, considered codepoint and is converted to charac‐
ter before concatenation.

string <=> other_string

Returns -1, 0, +1, or nil, depending on whether string is
less than, equal to, or greater than other_string, nil if val‐
ues are incomparable.

string == object

Returns true if string == object, otherwise false. If
object is not instance of String but responds to to_str,
then strings are compared using case equality—that is,
Object#===; otherwise, returns similarly to #eql?, compar‐
ing length and content. Compare String#=== and
Object#===.

String Class | 121

string === object

Returns true if string == object; otherwise, false. Typi‐
cally overridden by descendants to provide meaningful
semantics in case statements. Compare String#== and
Object#==.

string =~ object

If object is regular expression, use as pattern to match
against string, returning position where match starts, nil
if no match. Otherwise, invokes object.=~, passing string
as argument. Default =~ in Object returns nil.

string[index] [or] string[start, length] [or]
string[range] [or] string[regexp] [or]
string[regexp, capture] [or] string[match_string]

If passed single index, returns substring of one character
at that index. If passed start index and length, returns
substring containing length characters, starting at index.
If passed range, its beginning and end are interpreted as
offsets delimiting substring to be returned. If index nega‐
tive, counted from end of string. For start and range
cases, start is just before character and index matching
string’s size. Empty string returned when start for charac‐
ter range is at end of string. Returns nil if initial index
falls outside string or length negative.

If regular expression supplied, matching portion of string
returned. If capture follows regular expression, which
may be capture group index or name, that component of
MatchData is returned instead. If match_string given, that
string is returned if it occurs in string. Returns nil if reg‐
ular expression does not match or match string not found.

122 | Ruby Pocket Reference

string[fixnum]= new_string [or] string[fixnum, fixnum]=
new_string [or] string[range]= aString [or]
string[regexp]= new_string [or] string[regexp, fixnum]=

new_string [or] string[regexp, name]= new_string [or]
string[other_str]= new_string

Replaces (assigns) some or all of content of string. Por‐
tion of string affected is determined using same criteria as
String#[]. If replacement string is not same length as text
it is replacing, string adjusted accordingly. If regular
expression or string is used as index and it doesn’t match
position in string, IndexError is raised. If regular expres‐
sion form is used, optional second fixnum allows you to
specify which portion of match to replace. Forms that take
fixnum will raise IndexError if value is out of range; range
form will raise RangeError, and Regexp and String forms
raise IndexError on negative match.

string.ascii_only?

Returns true for string that has only ASCII characters,
false otherwise.

string.b

Returns copied string with ASCII-8BIT encoding.

string.block_scanf

Scans current string until match is exhausted, yielding
each match as encountered in string. Block not necessary
as results will simply be aggregated into array. (Must
require scanf library with Kernel#require.)

string.bytes

Returns array of bytes in string (shorthand for
string.each_byte.to_a). If block given, which is depre‐
cated form, works same as String#each_byte.

string.bytesize

Returns length of string in bytes. Compare
String#length and String#size.

String Class | 123

string.byteslice(fixnum) [or] string.byteslice(fixnum,
fixnum) [or] string.byteslice(range)

If passed single fixnum, returns substring of one byte at
that position; if passed two fixnums, returns substring
starting at offset given by first, length given by second; if
given range, returns substring containing bytes at offsets
given by range. If offset is negative, counted from end of
string. Returns nil if initial offset falls outside string,
length is negative, or beginning of range is greater than
end. Encoding remains original.

string.capitalize

Returns copy of string with first character converted to
uppercase, and remainder lowercase. Case conversion
effective only in ASCII region. Compare String#capital
ize!.

string.capitalize!

Modifies string in place by converting first character to
uppercase; remainder, lowercase; nil if no changes made.
Case conversion effective only in ASCII region. Compare
String#capitalize.

string.casecmp(other_string)

Case-insensitive version of String#<=>. Compare
String#<=>.

string.center(width, padstring=' ')

Centers string in width. If width greater than length of
string, returns new string of length width with string cen‐
tered and padded with padstring; otherwise, returns
string.

string.chars

Returns array of characters from string (shorthand for
string.each_char.to_a). If block is given, which is depre‐
cated form, works same as String#each_char.

124 | Ruby Pocket Reference

string.chomp(separator = $/)

Returns new string with given record separator removed
from end of string (if present). If $/ has not been changed
from default Ruby record separator, chomp also removes
carriage return characters (\n, \r, and \r\n). If $/ is empty
string, removes all trailing newlines from string. Com‐
pare String#chop and String#chomp!.

string.chomp!(separator = $/)

Modifies string in place as described in String#chomp,
returning string, or nil if no modifications made. Com‐
pare with String#chomp and String#chop.

string.chop

Returns new string with last character removed. If string
ends with \r\n, both characters removed. Applying chop
to empty string returns an empty string. String#chomp is
often safer alternative, as it leaves string unchanged if it
doesn’t end in record separator. Compare with
String#chomp and String#chop!.

string.chop!

Processes string as for String#chop, returning string or
nil if string empty. Compare with String#chop and
String#chomp!.

string.chr

Returns one-character string at beginning of string.

string.clear

Makes string empty.

string.codepoints

Returns array of integer ordinals of characters in string.
Shorthand for string.each_codepoint.to_a. If block
given, which is deprecated form, works same as
String#each_codepoint.

String Class | 125

string.concat(integer) [or] string.concat(object)
Concatenates (appends) given object to string. If object
is integer, it is considered as codepoint and converted to
character before concatenation.

string.count(other_string, . . .)

Each other_string, one or more, defines set of characters
to count. Intersection of these sets defines characters to
count in string. Any other_string that starts with caret
(^) is negated. Sequence c1-c2 means all characters
between c1 and c2. Backslash character (\) can be used to
escape caret (^) or dash (-) and is otherwise ignored
unless it appears at end of sequence or end of
other_string.

string.crypt(salt_string)

Applies one-way cryptographic hash to string by invok‐
ing standard library function crypt(3) with given
salt_string. While format and result are system and
implementation dependent, using salt that matches regu‐
lar expression \A[a-zA-Z0-9./]{2} should be valid and
safe on any platform in which only first two characters are
significant.

string.delete(other_string, . . .)

Returns copy of string with all characters in intersection of
other_string (one or more) deleted. Uses same rules for
building set of characters as String#count. Compare with
String#delete!.

string.delete!(other_string, . . .)

Performs delete operation in place, returning string, or nil
if string was not modified. Compare with String#delete.

string.downcase

Returns copy of string with all uppercase letters replaced
with their lowercase counterparts. Operation is locale-
insensitive—only characters A to Z affected. Case replace‐

126 | Ruby Pocket Reference

ment is effective only in ASCII region. Compare with
String#downcase!.

string.downcase!

Downcases contents of string, returning nil if no changes
were made. Note that case replacement is effective only in
ASCII region. Compare with String#downcase.

string.dump

Produces version of string with all non-printing charac‐
ters replaced by \nnn notation and all special characters
escaped.

string.each_byte [or] string.each_byte { |fixnum| block }
Passes each byte in string to given block, or returns enu‐
merator if no block given.

string.each_char [or] string.each_char { |cstr| block }
Passes each character in string to given block, or returns
enumerator if no block given.

string.each_codepoint [or]
string.each_codepoint { |integer| block }

Passes integer ordinal of each character in string, also
known as codepoint when applied to Unicode strings, to
given block. If no block given, enumerator returned
instead.

string.each_line(separator = $/) [or]
string.each_line(separator = $/) { |substr| block }

Splits string using supplied parameter as record separator
($/ by default), passing each substring in turn to supplied
block. If zero-length record separator supplied, string is
split into paragraphs delimited by multiple successive
newlines. If no block, returns enumerator.

string.empty?

Returns true if string has length of zero.

String Class | 127

string.encode([options]) [or] string.encode(encoding [,
options]) [or] string.encode(dst_encoding, src_encoding
[, options])

First form returns copy of string transcoded to Encod
ing#default_internal, depending on options. Next form
returns copy of string, transcoded to encoding. Last form
returns copy of string, transcoded from src_encoding to
dst_encoding. Options are as follows:

:invalid

If value is :replace, encode replaces invalid byte
sequences in string with replacement character.
Default is to raise Encoding.InvalidByteSequenceEr
ror exception.

:undef

If value is :replace, encode replaces characters
that are undsefined in destination encoding with
replacement character. Default is to raise
Encoding.UndefinedConversionError.

:replace

Sets replacement string to given value. Default
replacement string is uFFFD for Unicode encoding
forms; ? otherwise.

:fallback

Sets replacement string by given object for unde‐
fined character. Object should be hash, proc, method,
or an object that has [] method. Its key is undefined
character encoded in source encoding of current
transcoder. Its value can be any encoding until it can
be converted into destination encoding of transcoder.

:xml

Value must be :text or :attr. If value is :text,
encode replaces undefined characters with their
(uppercase hexadecimal) numeric character refer‐
ences. The &, <, and > characters are converted to
&, <, and >, respectively. If value is :attr,

128 | Ruby Pocket Reference

encode also quotes replacement result (using "), and
replaces " with ".

:cr_newline

Replaces LF (n) with CR (r) if value is true.

:crlf_newline

Replaces LF (n) with CRLF (rn) if value is true.

:universal_newline

Replaces CRLF (rn) and CR (r) with LF (n) if value is
true.

string.encode!(encoding, options) [or] string.encode!
(dst_encoding, src_encoding, options)

First form transcodes contents of string from
string.encoding to encoding; second form transcodes
contents of string from src_encoding to dst_encoding;
options gives details for conversion. See String#encode
for details. Returns string even if no changes made.

string.encoding

Returns encoding object that represents encoding of
string.

string.end_with?(suffix, . . .)

Returns true if string ends with one or more suffixes
given.

string.eql?(other_string)

Two strings are equal if they have same length and con‐
tent.

string.ext(new_extension)

Replace file extension with new_extension. If there is no
extension on string, append new_extension to end. If
new_extension not given or empty, remove existing exten‐
sion. (String#ext is user-added method for String class
from Rake.)

String Class | 129

string.force_encoding(encoding)

Changes encoding to encoding, returns string.

string.getbyte(index)

Returns indexth byte as integer, in range 0 through 255.

string.gsub(pattern) [or] string.gsub(pattern,
replacement) [or] string.gsub(pattern, hash) [or]
string.gsub(pattern) { |match| block }

Returns copy of string with all occurrences of pattern
substituted for second argument. Pattern is typically a reg‐
ular expression (Regexp); if given as string, any regular
expression metacharacters it contains are interpreted liter‐
ally; for example, \d will match backlash followed by d
instead of digit.

If replacement is string, it will be substituted for matched
text. May contain back-references to pattern’s capture
groups of form \d, where d is group number; or \kn, where
n is group name. If it is double-quoted string, both back-
references must be preceded by an additional backslash.
However, within replacement, special match variables,
such as $&, will not refer to current match. If second argu‐
ment is hash and matched text is one of its keys, corre‐
sponding value is replacement string.

In block form, current match string is passed in as param‐
eter, and variables such as $1, $2, $`, $&, and $' will be set
appropriately. Value returned by block will be substituted
for match on each call. Result inherits any tainting in orig‐
inal string or any supplied replacement string. When nei‐
ther block nor second argument are supplied, returns enu‐
merator. Compare String#gsub!.

string.gsub!(pattern) [or] string.gsub!(pattern, replace
ment) [or] string.gsub!(pattern) { |match| block }

Performs substitutions of String#gsub in place, returning
string, or nil if no substitutions were performed. If no

130 | Ruby Pocket Reference

block or replacement given, returns enumerator. Compare
with String#gsub.

string.hash

Return hashcode based on string’s length, content, and
encoding. Compare with Object#hash.

string.hex

Treats leading characters from string as string of hexa‐
decimal digits (with optional sign and optional 0x) and
returns corresponding number. Zero returned on error.

string.include?(other_string)

Returns true if string contains given string or character,
false otherwise.

string.index(substring, offset) [or] string.index(regexp,
offset)

Returns index of first occurrence of given substring or
regular expression pattern (Regexp) in string. Returns nil
if not found. If second parameter present, specifies posi‐
tion in string to begin search.

string.insert(index, other_string)

Inserts other_string before character at given index,
modifying string. Negative indices count from end of
string, and insert after given character. Intent is insert
string so that it starts at given index.

string.inspect

Returns printable version of string, surrounded by quote
marks, with special characters escaped. Compare with
String#to_str.

string.intern

Returns symbol corresponding to string, creating symbol
if it did not previously exist. This can also be used to cre‐
ate symbols that cannot be represented using :sym nota‐
tion. Compare with Symbol#id2name and String#to_sym.

String Class | 131

string.iseuc

Returns true if string’s encoding is EUC-JP, false other‐
wise. Compare with String#issjis and String#isutf8.

string.issjis

Returns true if string’s encoding is ISO-2022-JP, false
otherwise. Compare with String#iseuc and
String#isutf8.

string.isutf8

Returns true if string’s encoding is UTF-8, false other‐
wise. Compare with String#iseuc and String#issjis.

string.kconv(to_enc, from_enc)

Converts string to to_enc. to_enc and from_enc are given
as constants of Kconv or Encoding objects.

string.length

Returns number of characters in string. Compare with
String#bytesize and alias String#size.

string.lines(separator = $/)

Returns array of lines in string split using supplied record
separator ($/ by default); shorthand for
string.each_line(separator).to_a. If block given, which
is deprecated form, works same as String#each_line.

string.ljust(integer, padstr=' ')

If integer is greater than length of string, returns new
string of length integer with string left justified and pad‐
ded with padstr; otherwise, returns string.

string.lstrip

Returns copy of string with leading whitespace removed.
Compare with String#lstrip, String#rstrip, and
String#strip.

string.lstrip!

Removes leading whitespace from string in place, return‐
ing nil if no change was made. Compare with
String#lstrip, String#rstrip! and String#strip!.

132 | Ruby Pocket Reference

string.match(pattern) [or] string.match(pattern, pos)
Converts pattern to regular expression if it isn’t already
one, then invokes its match method on string. If second
parameter pos present, specifies position in string to
begin search. If block given, invoke block with MatchData
if match succeeds.

string.next

Returns successor to string. Successor is calculated by
incrementing characters starting from rightmost alphanu‐
meric (or rightmost character if no alphanumerics) in
string. Incrementing digit always results in another digit,
and incrementing letter results in another letter of same
case. Incrementing nonalphanumerics uses underlying
character set’s collating sequence. Compare with
String#next!.

string.next!

Equivalent to String#succ, but modifies string in place.
Compare with String#next.

string.oct

Treats leading characters of string as string of octal digits
(with an optional sign) and returns corresponding num‐
ber. Returns 0 if conversion fails.

string.ord

Returns integer ordinal of one-character string.

string.partition(sep) [or] string.partition(regexp)
Searches sep or pattern (regexp) in string and returns
part before it, match, and part after it. If not found,
returns two empty strings and string.

string.pathmap(spec = nil, block)

Map file path according to given specification, which con‐
trols details of mapping. The special patterns listed in the
following table are recognized.

String Class | 133

Specifier Description

%p The complete path.

%f The base filename of the path, with its file extension, but without any
directories.

%n The filename of the path without its file extension.

%d The directory list of the path.

%x The file extension of the path. An empty string if there is no extension.

%X Everything but the file extension.

%s The alternate file separator if defined; otherwise, use #, the standard
file separator.

%% A percent sign.

The %d specifier can have a numeric prefix (for example, %2d). If
number is positive, only return (up to) n directories in path,
starting from lefthand side. If n negative, return (up to) n
directories from righthand side of path. Compare with
String#pathmap_explode, String#pathmap_partial, and
String#pathmap_replace.

string.pathmap_explode

Explode path into individual components. Used by
pathmap. This extension comes from Rake. Compare
with String#pathmap, String#pathmap_partial, and
String#pathmap_replace.

string.pathmap_partial(n)

Extracts partial path from path. Include n directories from
the frontend (lefthand side) if n is positive, from backend
(righthand side) if n negative. This extension comes
from Rake. Compare with String#pathmap, String#path
map_explode, and String#pathmap_replace.

string.pathmap_replace(patterns, block)

Perform pathmap replacement operations on given path
pattern. Patterns take form pat1, rep1;pat2,

rep2. This extension comes from Rake. Compare

134 | Ruby Pocket Reference

with String#pathmap, String#pathmap_explode, and
String#pathmap_partial.

string.prepend(other_string)

Prepend other_string to string.

string.replace(other_string)

Replaces contents and taintedness of string with corre‐
sponding values in other_string.

string.reverse

Returns new string with characters from string in reverse
order. Compare with String#reverse!.

string.reverse!

Reverses string in place. Compare with String#reverse.

string.rindex(substring, fixnum) [or]
string.rindex(regexp, fixnum)

Returns index of last occurrence of substring or pattern
(regexp) in string. Returns nil if not found. If second
parameter is present, it specifies position in string to end
search—characters beyond this point not considered.

string.rjust(integer, padstr = ' ')

If integer is greater than length of string, returns new
string of length integer with string right justified and
padded with padstr; otherwise, returns string.

string.rpartition(sep) [or] string.rpartition(regexp)
Searches sep or pattern (regexp) in string from end of
string, and returns part before it, match, and part after it.
If it is not found, returns two empty strings and string.

string.rstrip

Returns copy of string with trailing whitespace removed.
Compare with String#rstrip!, String#lstrip,
String#strip.

String Class | 135

string.rstrip!

Removes trailing whitespace from string in place, return‐
ing nil if no change made. Compare with String#rstrip,
String#lstrip!, and String#strip!.

string.scan(pattern) [or] string.scan(pattern) { |
match, ...| block }

Both forms iterate through string, matching pattern
(which may be a regular expression or string). For each
match, result is generated and either added to result array
or passed to block. If pattern contains no groups, each
individual result consists of matched string ($&). If pattern
contains groups, each individual result is itself array con‐
taining one entry per group.

string.scanf(format_string) { |current_match| block }

Scans current string for match via format_string. If a
block given, functions exactly like String#block_scanf.
Must require scanf to use this method. Compare with
String#block_scanf.

string.scrub [or] string.scrub(replace) [or] string.scrub
{ |bytes| }

If string is invalid byte sequence, replace invalid bytes
with given replace character, else returns string. If block
given, replace invalid bytes with return values of block.

string.scrub! [or] string.scrub!(repl) [or] string.scrub!
{ |bytes| }

If string is invalid byte sequence, replaces invalid bytes
with given replacement character, string returns string. If
block given, replace invalid bytes with return values of
block.

string.setbyte(index, integer)

Modifies indexth byte as integer.

string.shellescape

Escapes string so it can be safely used in Bourne shell
command line. Compare with String#shellsplit.

136 | Ruby Pocket Reference

string.shellsplit

Splits string into array of tokens, in same way Unix
Bourne shell does. Compare with String#shellescape.

string.size

Returns number of characters in string. Compare with
String#bytesize and alias String#length.

string.slice(index) [or] string.slice(start, length) [or]
string.slice(range) [or] string.slice(regexp) [or]
string.slice(regexp, capture) [or]
string.slice(match_string)

If passed single index, returns substring of one character
at that index. If passed start index and length, returns
substring containing length characters from start. If
passed range, its beginning and end are interpreted as off‐
sets delimiting substring to be returned. If index is nega‐
tive, it is counted from end of string. For start and range
cases, start is just before character and index matching
string’s size. Returns empty string when start of charac‐
ter range is at end of string. Returns nil if initial index
falls outside string or length is negative.

If regular expression supplied, matching portion of string
is returned. If capture follows regular expression, which
may be capture group index or name, that component of
MatchData is returned instead. If match_string is given,
that string is returned if it occurs in string. Returns nil if
regular expression does not match or match string cannot
be found. Compare with String#slice!.

string.slice!(fixnum) [or] string.slice!(fixnum, fixnum)
[or] string.slice!(range) [or] string.slice!(regexp) [or]
string.slice!(other_string)

Deletes specified portion from string in place, as specified
by String#slice, and returns portion deleted. Compare
with String#slice.

String Class | 137

string.split(pattern = $;, limit)

Divides string into substrings based on delimiter, return‐
ing array of substrings. If pattern is string, its contents are
used as delimiter when splitting string. If pattern is sin‐
gle space, string is split on whitespace, with leading
whitespace and runs of contiguous whitespace characters
ignored.

If pattern is regular expression, string is divided where
pattern matches. Whenever pattern matches zero-length
string, string is split into individual characters. If pattern
contains groups, respective matches will be returned in
array as well.

string.squeeze(other_string, . . .)

Builds set of characters from other_string parameter(s)
using procedure described for String#count. Returns new
string where runs of same character that occur in this set
are replaced by single character. If no arguments given, all
runs of identical characters replaced by single character.
Compare with String#squeeze!.

string.squeeze!(other_string, . . .)

Squeezes string in place, returning either string, or nil if
no changes made. Compare with String#squeeze.

string.start_with?(prefixes, . . .)

Returns true if string starts with one of prefixes (one or
more) given.

string.strip

Returns copy of string with leading and trailing white‐
space removed. Compare with String#strip!.

string.strip!

Removes leading and trailing whitespace from string in
place. Returns nil if string not altered. Compare with
String#strip.

138 | Ruby Pocket Reference

string.sub(pattern, replacement) [or] string.sub(pattern,
hash) [or] string.sub(pattern) { |match| block }

Returns copy of string with first occurrence of pattern
replaced by second argument; pattern is typically regular
expression; if given as string, any regular expression meta‐
characters it contains will be interpreted literally; for
example, \\d will match backlash followed by d, instead of
digit. If replacement is string, it will be substituted for
matched text. It may contain back-references to pattern’s
capture groups of form \d, where d is group number, or
\knL, where n is group name. If it is double-quoted string,
both back-references must be preceded by additional
backslash. However, within replacement, special match
variables, such as &$, will not refer to current match. If sec‐
ond argument is hash, and matched text is one of its keys,
corresponding value is replacement string. In block form,
current match string is passed in as parameter, and vari‐
ables such as $1, $2, $`, $&, and $' will be set appropriately.
Value returned by block will be substituted for match on
each call. Compare with String#gsub and String#sub!.

string.sub!(pattern, replacement) [or]
string.sub!(pattern) { |match| block }

Performs same substitution as String#sub in place.
Returns string if substitution was performed or nil if no
substitution performed. Compare with String#sub and
String#gsub!.

string.succ

Returns successor to string. Successor is calculated by
incrementing characters starting from rightmost alphanu‐
meric (or rightmost character if there are no alphanumer‐
ics) in string. Incrementing digit always results in another
digit, and incrementing letter results in another letter of
same case. Incrementing nonalphanumerics uses underly‐
ing character set’s collating sequence. Compare with
String#next and String#succ!.

String Class | 139

string.succ!

Equivalent to String#succ, but modifies string in place.
Compare with String#next! and String#succ.

string.sum(n = 16)

Returns basic n-bit checksum of characters in string,
where n is optional Fixnum parameter, defaulting to 16.
Result is simply sum of binary value of each byte in string
modulo 2**n – 1. This does not claim to be particularly
good checksum.

string.swapcase

Returns copy of string with uppercase alphabetic charac‐
ters converted to lowercase and lowercase characters con‐
verted to uppercase. Case conversion is effective only in
ASCII region. Compare with String#capitalize and
String#swapcase!.

string.swapcase!

Equivalent to String#swapcase, but modifies string in
place, returning string, or nil if no changes made. Case
conversion is effective only in ASCII region. Compare
String#capitalize! and String#swapcase.

string.to_c

Returns complex number that denotes string form. Parser
ignores leading whitespaces and trailing garbage. Any
digit sequences can be separated by an underscore.
Returns zero for null or garbage string. Compare with
Kernel#Complex.

string.to_d

Returns string as BigDecimal. Require BigDecimal and Big
Decimal/util.

string.to_f

Returns result of interpreting leading characters in string
as floating-point number. Extraneous characters past end
of valid number are ignored. If there is no valid number at

140 | Ruby Pocket Reference

start of string, 0.0 is returned. Method never raises an
exception.

string.to_i(base = 10)

Returns result of interpreting leading characters in string
as integer base base (between 2 and 36). Extraneous char‐
acters past end of valid number are ignored. If there is no
valid number at start of string, zero (0) returned. Method
never raises exception when base is valid.

string.to_r

Returns rational number that denotes string form. Parser
ignores leading whitespace and trailing garbage. Any
digit sequences can be separated by an underscore.
Returns zero (0) for null or garbage string. Compare with
Kernel#Rational.

string.to_s

Returns string. Compare with String#to_str and
String#inspect.

string.to_str

Returns string. Compare with String#to_s and
String#inspect.

string.to_sym

Returns symbol corresponding to string, creating symbol
if it did not previously exist. This can also be used to cre‐
ate symbols that cannot be represented using :sym nota‐
tion. Compare with Symbol#id2name and String#intern.

string.toeuc

Converts string to EUC-JP, returning new string.

string.tojis

Converts string to ISO-2022-JP, returning new string.

string.tolocale

Converts string to locale encoding, returning new string.

String Class | 141

string.tosjis

Converts string to SHIFT_JIS, returning new string.

string.toutf8

Converts string to UTF-8, returning new string.

string.toutf16

Converts string to UTF-16, returning new string.

string.toutf32

Converts string to UTF-32, returning new string.

string.tr(from_string, to_string)

Returns copy of string with characters in from_string
replaced by corresponding characters in to_string. If
to_string is shorter than from_string, it is padded with
its last character in order to maintain correspondence.
Both strings may use c1-c2 notation to denote ranges of
characters, and from_string may start with caret (^),
which denotes all characters except those listed. Backslash
character \ can be used to escape ^ or - and is otherwise
ignored unless it appears at end of range or end of
from_string or to_string. Compare with String#tr!.

string.tr!(from_string, to_string)

Translates string in place, using same rules as String#tr.
Returns string, or nil if no changes made. Compare with
String#tr.

string.tr_s(from_string, to_string)

Processes copy of string as described under String#tr,
then removes duplicate characters in regions that were
affected by translation. Compare with String#tr and
String.tr_s!.

string.tr_s!(from_string, to_string)

Performs String#tr_s processing on string in place,
returning string, or nil if no changes were made. Com‐
pare with String#tr and String#tr_s.

142 | Ruby Pocket Reference

string.unicode_normalize(form = :nfc)

Returns normalized form of string, using Unicode nor‐
malizations NFC, NFD, NFKC, or NFKD. Normalization
form used determined by form, which is any of the four
values: :nfc (default), :nfd, :nfkc, or :nfkd. Compare with
String#unicode_normalize! and String#unicode_normal
ized?.

string.unicode_normalize!

Normalizes string in place, according to String#uni
code_normalize. Compare with String#unicode_normal
ize and String#unicode_normalized?.

string.unicode_normalized?

Checks whether string is in Unicode normalization form
form, which is any of the four values representing Unicode
normalizations: :nfc (default), :nfd, :nfkc, or :nfkd.
Compare with String#unicode_normalize.

string.unpack(format)

Decodes string (which may contain binary data) accord‐
ing to format string, returning an array of each value
extracted. Format string consists of sequence of single-
character directives, summarized in table. Each directive
may be followed by number, indicating number of times to
repeat with this directive. An asterisk (*) will use up all
remaining elements. Directives sSiIlL may each be fol‐
lowed by an underscore (_) or exclamation mark (!) to use
underlying platform’s native size for specified type; other‐
wise, it uses platform-independent consistent size. Spaces
are ignored in format string. Compare with Array#pack.

This table summarizes various formats and Ruby classes
returned by each. Compare these tables with the one for
Array#pack (Table 35), which is organized alphabetically
(roughly).

String Class | 143

Integer Directives Returns Description

C Integer 8-bit unsigned (unsigned char).

S Integer 16-bit unsigned, native endian (uint16_t).

L Integer 32-bit unsigned, native endian (uint32_t).

Q Integer 64-bit unsigned, native endian (uint64_t).

c Integer 8-bit signed (signed char).

s Integer 16-bit signed, native endian (int16_t).

l Integer 32-bit signed, native endian (int32_t).

q Integer 64-bit signed, native endian (int64_t).

S_, S! Integer Unsigned short, native endian.

I, I_, I! Integer Unsigned int, native endian.

L_, L! Integer Unsigned long, native endian.

Q_, Q! Integer Unsigned long long, native endian (ArgumentEr
ror if platform has no long long type). Q_ and Q!
available since Ruby 2.1.

s_, s! Integer Signed short, native endian.

i, i_, i! Integer Signed int, native endian.

l_, l! Integer Signed long, native endian.

q_, q! Integer Signed long long, native endian (ArgumentEr
ror if platform has no long long type.) q_ and q!
available since Ruby 2.1.

S> L> Q> Integer Same as directives without > except big endian.

s> l> q>

S!> I!> (Available since Ruby 1.9.3)

L!> Q!> S> is same as n.

s!> i!> L> is same as N.

l!> q!>

S< L< Q< Integer Same as directives without < except little endian.

144 | Ruby Pocket Reference

Integer Directives Returns Description

s< l< q<

S!< I!< (Available since Ruby 1.9.3).

L!< Q!< S< is same as v.

s!< i!< L< is same as V.

l!< q!<

n Integer 16-bit unsigned, network (big endian) byte order.

N Integer 32-bit unsigned, network (big endian) byte order.

v Integer 16-bit unsigned, VAX (little endian) byte order.

V Integer 32-bit unsigned, VAX (little endian) byte order.

U Integer UTF-8 character.

w Integer BER-compressed integer (compare Array#pack).

Float Directives Returns Description

D, d Float Double-precision, native format.

F, f Float Single-precision, native format.

E Float Double-precision, little-endian byte order.

e Float Single-precision, little-endian byte order.

G Float Double-precision, network (big-endian) byte order.

g Float Single-precision, network (big-endian) byte order.

String
Directives

Returns Description

A String Arbitrary binary string (remove trailing nulls and
ASCII spaces).

a String Arbitrary binary string.

Z String Null-terminated string.

B String Bit string (MSB first).

b String Bit string (LSB first).

String Class | 145

String
Directives

Returns Description

H String Hex string (high nibble first).

h String Hex string (low nibble first).

u String UU-encoded string.

M String Quoted-printable, MIME encoding (see RFC2045).

m String Base64-encoded string (see RFC 2045) (default).

m Base64-encoded string (see RFC 4648) if followed by
0.

P String Pointer to structure (fixed-length string).

p String Pointer to null-terminated string.

Miscellaneous Directives Returns Description

@ None Skip to offset given by length argument.

X None Skip backward one byte.

x None Skip forward one byte.

string.upcase

Returns copy of string with all lowercase letters replaced
with uppercase counterparts. Operation is locale-
insensitive—only characters a to z are affected. Case
replacement effective only in ASCII region.

string.upcase!

Upcases contents of string in place, returning nil if no
changes made. Case replacement is effective only in ASCII
region.

string.upto(other_string, exclusive = false) [or]
string.upto(other_string, exclusive = false) { |s|

block }

Iterates through successive values, starting at string and
ending at other_string inclusive, passing each value in
turn to block. String#succ method is used to generate

146 | Ruby Pocket Reference

each value. If optional second argument exclusive omit‐
ted or false, last value included; otherwise, will be exclu‐
ded. If no block, returns enumerator. If string and
other_string contain only ASCII numeric characters,
both are recognized as decimal numbers. In addition,
width of string (with, for example, leading zeros) handled
appropriately.

string.valid_encoding?

Returns true for string that is encoded correctly.

Array Class
The Array class is one of Ruby’s built-in collection classes.
Arrays are compact, ordered collections of objects. Ruby arrays
can hold objects such as String, Integer, Fixnum, Hash, Symbol,
even other Array objects. Any object that Ruby can create, it
can hold in an array. Each element in an array is associated
with and referred to by an index, sometimes known as a sub‐
script in other languages. Array elements are automatically
indexed (numbered) with an integer (Fixnum), starting with 0,
then numbered consecutively, adding 1 for each additional ele‐
ment. In certain instances, you can refer to the last element of
an array with -1, the second to last with -2, and so forth. Ruby
arrays are not as rigid as arrays in other languages. With static,
compiled programming languages, you have to guess the ulti‐
mate size of the array at the time it is created. Not so with Ruby
—arrays grow automatically.

Creating Arrays
There are many ways to create or initialize an array. One way is
with the new class method:

months = Array.new

You can set the size of an array (the number of elements in an
array) with an argument:

months = Array.new(12) [or] months = Array.new 12

Array Class | 147

The array months now has a size (length) of 12 elements. You
can return the size of an array with either the size or length
methods:

months.size # => 12 [or] months.length # => 12

Another form of new lets you assign an object such as a string
to each element in the array:

month = Array.new(12, "month")

You can also use a block with new, populating each element
with what the block evaluates to:

num = Array.new(10) { |e| e = e * 2 }

This yields an array of even numbers:
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

Another Array class method, [], initializes an array like this:
month_abbrv = Array.[]("jan", "feb", "mar", "apr", "may",
 "jun", "jul", "aug", "sep", "oct", "nov", "dec")

Or by dropping the period or “dot” (.) and parentheses (()),
which is possible because of Ruby’s flexible method syntax:

month_abbrv = Array["jan", "feb", "mar", "apr", "may",
 "jun", "jul", "aug", "sep", "oct", "nov", "dec"]

An even simpler method for creating an array is by using only
the square brackets (notice nil is not quoted):

months = [nil, "January", "February", "March", "April",
 "May", "June", "July", "August", "September", "October",
 "November", "December"]

The Kernel module, included in Object, has an Array method
that only accepts a single argument. Here the method takes a
range as an argument to create an array of digits:

digits = Array(0..9) # => [1, 2, 3, 4, 5, 6, 7, 8, 9]

With the %w notation, you can define an array of strings. It
assumes that all elements are strings—even nil—while saving
keystrokes (no quotes or commas):

148 | Ruby Pocket Reference

months = %w[nil January February March April May June
 July August September October November December]

To fill an array with numbers as strings using %w, follow this
syntax:

year = %w[2010 2011 2012 2013 2014 2015 2016 2017
 2018 2019]

As numbers (not strings), use this:
year = [2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017,
 2018, 2019]

You can even have an array that contains objects from different
classes, not all just one type. For example, here’s an array that
contains four elements, each a different kind of object:

hodge_podge = ["January", 1, :year, [2025,01,01]]

Following are the public class and instance methods of the
Array class, adapted and abbreviated from http://www.ruby-
doc.org/core-2.2.2/Array.html, where you will find examples and
more detailed explanations of these methods.

Array Class Methods
Array.[](. . .) [or] Array[. . .] [or] [...]

Returns a new array populated with given objects.

Array.new(size = 0, object = nil) [or] Array.new(array)

[or] Array.new(size) { |index| block }

Returns new array. In first form, new array is empty. In the
second, it is created with size copies of object (that is,
size references to the same object). Third form creates
copy of array passed as parameter. In last form, array of
given size is created. Each element in this array is calcula‐
ted by passing element’s index to given block and storing
return value.

Array Class | 149

http://www.ruby-doc.org/core-2.2.2/Array.html
http://www.ruby-doc.org/core-2.2.2/Array.html

Array.try_convert(object)

Tries to convert object into array, using to_ary instance
method. Returns converted array or nil if object cannot
be converted for any reason.

Array Instance Methods
array & other_array

Returns new array with elements common to both but no
duplicates.

array * integer [or] array * string

Returns new array by concatenating integer copies
of self, or with string argument, equivalent to
self.join(string).

array + other_array

Returns new array by concatenation of arrays.

array - other_array

Returns new copy of array, removing any items that also
appear in other_array. Order of array preserved.

array | other_array

Set union. Returns new array by joining array with
other_array, excluding duplicates and preserving order.
Compare with Array#uniq.

array << object

Pushes object onto end of array. Returns array itself. Sev‐
eral appends may be chained together.

array <=> other_array

Returns integer if array is less than (-1), equal to (0), or
greater than (+1) other_array.

array == other_array

Arrays are equal if they contain same number of elements
and each element is equal to its corresponding element.

150 | Ruby Pocket Reference

array[index] [or] array[start, length] [or] array[range]

[or] array.slice(index) [or] array.slice(start, length)

[or] array.slice(range)

Returns element at index, or returns subarray starting at
the start index and continuing for length elements, or
returns subarray specified by range of indices. Negative
indices count backward from end of array (-1 is the last
element). For start and range cases, starting index is just
before element. Additionally, empty array is returned
when starting index for element range is at end of array.
Returns nil if index (or start) are out of range.

array[index]= object [or] array[start, length]= object|

an_array|nil [or] array[range]= object|an_array|nil

Sets element at index, or replaces subarray from start
index for length elements, or replaces subarray specified
by range of indices. If indices are greater than current
capacity of array, array grows automatically. Elements are
inserted into array at start if length is zero. Negative indi‐
ces count backward from end of array. For start and
range cases, start index is just before element. Compare
with Array#push and Array#unshift.

array.abbrev(pattern = nil)

Calculates set of unambiguous abbreviations for strings in
array. Optional pattern parameter is pattern or string.
Only input strings that match pattern or start with string
are included in output (hash). Must require abbrev.

array.any? { |object| block }

Passes each element of array to block. Returns true if
block ever returns a value other than false or nil. If block
not given, Ruby adds implicit block of { |object|

object } that causes method to return true if at least one
collection member is not false or nil.

array.assoc(object)

Searches through array whose elements are also arrays,
comparing object with first element of each contained

Array Class | 151

array using object.==. Returns first contained array that
matches (that is, the first associated array), or nil if no
match found. Compare with Array#rassoc.

array.at(index)

Returns element at index, nil if out of range. Negative
index counts from end of array. Compare with Array#[].

array.bsearch { |x| block }

Binary search. Finds value from array that meets given
condition in O(log n) where n is the size of array.

array.clear

Deletes all elements from array.

array.collect [or] array.collect { |item| block }

Invokes block once for each element in array, creating
new array containing values returned by block. If no block
given, enumerator returned. Compare with Array#map.

array.collect! [or] array.collect! { |item| block }

Invokes block once for each element in array, replacing
element with value returned by block. If no block given,
returns enumerator. Compare with Array#map!.

array.combination(n) [or]

array.combination(n) { |c| block }

When invoked with block, yields all combinations of
length n of elements from array and returns array itself. If
no block given, enumerator returned.

array.compact

Returns copy of self with all nil elements removed.

array.compact!

Removes nil elements from array. Returns nil if no
changes made; otherwise, returns array.

array.concat other_array

Appends elements of other_array to array.

152 | Ruby Pocket Reference

array.count [or] array.count(object) array.count { |

item| block }

Returns number of elements as integer. If argument given,
counts number of elements that equal object using ==; if
block, counts number of elements for which block returns
true.

array.cycle(n = nil) [or] cycle(n = nil) { |object|

block }

Calls block for each element n times or forever if nil
given. Does nothing if non-positive number given or
array is empty. Returns nil if loop has finished without
getting interrupted. If no block given, enumerator
returned.

array.dclone

Provides unified clone operation for REXML.XPathParser to
use across multiple object types.

array.delete(object) [or] array.delete(object) { block }

Deletes items from array equal to object, nil if not found;
if block given, returns results of block if not found.

array.delete_at(index)

Deletes element at index, returning that element or nil if
index out of range. Compare with Array#slice!.

array.delete_if { |item| block }

Deletes every element of array for which block evaluates
true.

array.drop(n)

Drops first n elements from array and returns rest of ele‐
ments in new array. Compare with Array#take.

array.drop_while [or] array.drop_while { |arr| block }

Drops elements up to but not including the first element
for which block returns nil or false and returns array
containing remaining elements. If no block given, enu‐
merator returned. Compare with Array#take_while.

Array Class | 153

array.each { |item| block }

Calls block once for each element in array, passing ele‐
ment as parameter. Compare with Array#each_index.

array.each_index { |index| block }

Calls block once for each index, passing it as parameter.
Compare with Array#each.

array.empty?

Returns true if array has no elements.

array.eql?(other_array)

Returns true if array and other_array are same object or
if both have same content.

array.fetch(index) [or] array.fetch(index, default) [or]

array.fetch(index) { |index| block }

Returns element at index, but throws IndexError if out of
range. Prevent this by supplying default. Alternatively, if
block given, will only be executed when out-of-range
index referenced. Negative index values count from the
end of array.

array.fill(object) [or] array.fill(object, range) [or]

array.fill(object, start [, length]) [or] array.fill { |

index| block } [or] array.fill(range) { |index| block }

[or] array.fill(start [, length]) { |index| block }

First three forms set selected elements of array (which
may be entire array) to object; start as nil equivalent to
zero; length of nil equivalent to length of array. Last three
forms fill array with value of given block, which is passed
absolute index of each element to be filled. Negative values
of start count from the end of array, where -1 is index of
last element.

array.find_index [or] array.find_index(object) [or]

array.find_index { |item| block }

Returns index of first object in array where object is == to
object. If block given, returns index of first object for

154 | Ruby Pocket Reference

which block returns true. Returns nil if no match found.
An enumerator is returned if neither block nor argument
given. Compare with Array#rindex.

array.first [or] array.first(n)

Returns first element or first n elements of array. If array
empty, first form returns nil, second form returns empty
array. Compare with Array#last.

array.flatten

Returns new array as one-dimensional flattening of array,
extracting every element of array into new array. Compare
with Array#flatten!.

array.flatten!

Flattens array in place (no subarrays), returning nil if no
modifcations made. Compare with Array#flatten.

array.frozen?

Returns true if array is frozen, even temporarily.

array.hash

Computes a hashcode for array. Equal arrays (as per eql?)
have same hashcode.

array.include?(object)

Returns true if object present in array, otherwise false.

array.index(object)

Returns index of first object in array == to object, nil if
no match.

array.initialize_copy(other_array)

Replaces contents of array with contents of other_array,
truncating or expanding array as needed. Compare with
Array#replace.

array.indexes

Removed. Compare with Array#values_at.

array.indices

Removed. Compare with Array#values_at.

Array Class | 155

array.insert(index, object . . .)

Inserts object (or objects) at index. Negative indices count
back from end of array.

array.inspect

Returns string representation of array. Compare with
Array#to_s.

array.join(separator = $,)

Returns string created by converting array to string,
with each element separated by separator. If separator is
nil, uses current $,, default output separator; if both
separator and $, are nil, uses empty string.

array.keep_if [or] array.keep_if { |item| block }

Deletes every element in array for which block evaluates
false. If no block, returns enumerator. Compare with
Array#select.

array.last [or] array.last(n)

Returns last element or last n elements of array. If array
empty, first form returns nil, second, []

array.length

Returns number of elements in array, zero if array empty.
Compare with size and Array#size.

array.map { |item| block }

Invokes block once for each element in array, creating
new array containing values returned by block. If no block
given, enumerator returned. Compare with
Array#collect.

array.map!

Invokes block once for each element in array, replacing
element with value returned by block. If no block given,
returns enumerator. Compare with Array#collect!.

array.nitems

Removed.

156 | Ruby Pocket Reference

array.pack(aTemplateString)

Packs contents of array into a binary sequence according
to directives in aTemplateString (see the following table).
Directives A, a, and Z may be followed by a count, which
gives width of resulting field. Remaining directives also
may take a count, indicating number of array elements to
convert. If count is asterisk (*), all remaining array ele‐
ments will be converted. Any of the directives sSiIlL may
be followed by an underscore (_) or exclamation mark (!)
to use the underlying platform’s native size for specified
type; otherwise, they use a platform-independent size.
Spaces are ignored in the template string. Compare with
String#unpack.

Table 35 summarizes various formats and Ruby classes
returned by each. Compare Table 35 with the one for
String#unpack, which is organized by Ruby class.

Table 35. Array pack directives

Directive Array
Element

Description

@ Moves to absolute position.

A String Arbitrary binary string (space padded, count is
width).

a String Arbitrary binary string (null padded, count is
width).

B String Bit string (MSB first).

b String Bit string (LSB first).

C Integer 8-bit unsigned (unsigned char).

c Integer 8-bit signed (signed char)

D, d Float Double-precision, native format.

E Float Double-precision, little-endian byte order.

e Float Single-precision, little-endian byte order.

Array Class | 157

Directive Array
Element

Description

F, f Float Single-precision, native format.

G Float Double-precision, network (big-endian) byte order.

g Float Single-precision, network (big-endian) byte order.

H String Hex string (high nibble first).

h String Hex string (low nibble first).

I, I_, I! Integer Unsigned int, native endian.

i, i_, i! Integer Signed int, native endian.

L Integer 32-bit unsigned, native endian (uint32_t).

L_, L! Integer Unsigned long, native endian.

l Integer 32-bit signed, native endian (int32_t).

l_, l! Integer Signed long, native endian.

M String Quoted printable, MIME encoding (see RFC2045).

m String Base64-encoded string (see RFC 2045, count is
width). If count is 0, no linefeeds are added; see
RFC 4648.

N Integer 32-bit unsigned, network (big-endian) byte order.

n Integer 16-bit unsigned, network (big-endian) byte order.

P String Pointer to a structure (fixed-length string).

p String Pointer to a null-terminated string.

Q Integer 64-bit unsigned, native endian (uint64_t).

Q_, Q! Integer Unsigned long long, native endian (ArgumentEr
ror if platform has no long long type.) Q_ and Q!
have been available since Ruby 2.1.

q Integer 64-bit signed, native endian (int64_t).

q_, q! Integer Signed long long, native endian (ArgumentEr
ror if platform has no long long type.) q_ and q!
have been available since Ruby 2.1.

158 | Ruby Pocket Reference

Directive Array
Element

Description

S Integer 16-bit unsigned, native endian (uint16_t).

S< L< Q< Integer Same as the directives without < except little
endian.

s< l< q<

S!< I< (Available since Ruby 1.9.3).

L!< Q!< S< same as v.

s!< i!< L< is same as V.

l!< q!<

S> L> Q> Integer Same as the directives without > except big
endian.

s> I> q>

S!> I> (Available since Ruby 1.9.3).

L!> Q!> S> same as n.

s!> i!> L> is same as N.

l!> q!>

S_, S! Integer Unsigned short, native endian.

s Integer 16-bit signed, native endian (int16_t).

s_, s! Integer Signed short, native endian.

U Integer UTF-8 character.

u String UU-encoded string.

V Integer 32-bit unsigned, VAX (little-endian) byte order.

v Integer 16-bit unsigned, VAX (little-endian) byte order.

w Integer BER-compressed integer.

X Back up a byte.

x Null byte.

Z String Same as a, except that null is added with *.

Array Class | 159

array.permutation [or] array.permutation { |p| block }

[or] array.permutation(n) [or] arraypermutation(n) { |p|

block }

Yields all permutations of all elements in array when
invoked with block. If n specified, yields all permutations
of length n, returns self. If no block, returns enumerator.

array.pop [or] array.pop(n)

Removes last element from array and returns it; nil if
array empty. If n, returns array of last n elements. Com‐
pare with Array#slice! and Array#push.

array.product(other_array, . . .) [or]

array.product(other_array, . . .) { |p| block }

Returns array of all combinations of elements from all
arrays, one or more. If block, yields all combinations,
returns self.

array.push(object, . . .)

Pushes or appends object or objects to end of array. Sev‐
eral appends may be chained. Compare with Array#pop.

array.rassoc(key)

Searches array whose elements are also arrays, comparing
object with second element of each contained array using
object.==. Returns first contained array that matches
object. Compare with Array#assoc.

array.reject [or] array.reject { |item| block}

Returns new array containing items in array for which
block not true; nil if no change. If no block, returns enu‐
merator. Compare with Array#delete_if.

array.reject! [or] array.reject! { |item| block}

Deletes elements from array for which block evaluates
true, nil if no change. Equivalent to Array#delete_if.
Compare with Array#reject.

160 | Ruby Pocket Reference

array.repeated_combination(n) [or]

array.repeated_combination(n) { |c| block }

When invoked with block, yields all repeated combina‐
tions of length n of elements from array, then returns
array itself. If no block, returns enumerator. Compare
with Array#repeated_permutation.

array.repeated_permutation(n) [or]

array.repeated_permutation(n) { |c| block }

When invoked with block, yields all repeated permuta‐
tions of length n of elements from array, then returns
array itself. If no block, returns enumerator. Compare
with Array#repeated_combination.

array.replace(other_array)

Replaces contents of array with contents of other_array,
truncating or expanding array as needed. Compare with
Array#initialize_copy.

array.reverse

Returns new array containing array’s elements in reverse
order. Compare with Array#reverse!.

array.reverse!

Reverses array in place. Compare with Array#reverse.

array.reverse_each [or] array.reverse_each { |item|

block }

Same as Array#each but traverses array in reverse order.

array.rindex [or] array.rindex(object) [or] array.rindex

{ |item| block }

Returns index of last object in array == to object. If block,
returns index of first object for which block returns true,
starting from last object; nil if no match. If no argument
or block, returns enumerator. Compare with Array#index.

Array Class | 161

array.rotate(count)

Returns new array by rotating array so that element at
count is first element of new array. Compare with
Array#rotate!.

array.rotate!(count)

Rotates array in place so element at count comes first,
then returns self. If count negative, starts from end of
array (last element is -1).

array.sample [or] array.sample(random: rng) [or]

array.sample(n) [or] array.sample(n, random: rng)

Chooses random element or random number n of ele‐
ments from array. Optional rng argument used as random
number generator. If empty, first form returns nil, second,
empty array.

array.select [or] array.select { |item| block }

Returns new array containing all elements of array for
which block returns true. If no block, returns enumerator.
Compare with Array#select!.

array.select! [or] array.select! { |item| block }

Invokes block, passing in elements from array, deleting
elements for which block returns false. If no block,
returns enumerator. Compare with Array#select and
Array#keep_if.

array.shelljoin

Builds command-line string from argument list array,
joining all elements escaped for the Bourne shell and sepa‐
rated by space.

array.shift [or] array.shift(n)

Removes first element of array, or first n number of ele‐
ments, and returns them, shifting all other elements down
by one, nil if array empty.

162 | Ruby Pocket Reference

array.shuffle [or] array.shuffle(random: rng)

Returns new array with elements of array shuffled.
Optional rng argument used as random number generator.

array.shuffle! [or] array.shuffle!(random: rng)

Shuffles elements of array in place. Optional rng argu‐
ment used as random number generator.

array.size

Returns number of elements in array, zero if array empty.
Compare with Array#length.

array.slice(index) [or] array.slice(start, length) [or]

array.slice(range)

Returns element at index, or subarray at start and con‐
tinuing for length, or returns subarray specified by range
of indices. Returns nil if index or start out of range. Neg‐
ative indices count backward from end of array (-1 is last
element). For start and range, start is just before ele‐
ment. Returns empty array when start for element range
at end of array. Compare with Array#[] and Array#slice!.

array.slice!(index) [or] array.slice!(start, length)

[or] array.slice!(range)

Deletes element or elements specified by index, start and
length, or range. Compare with Array#slice.

array.sort [or] array.sort { |a, b| block }

Returns new array created by sorting array. Compare with
Array#sort!.

array.sort! [or] array.sort! { |a, b| block }

Sorts array in place. Compare with Array#sort.

array.sort_by! [or] array.sort_by! { |object| block }

Sorts array in place using set of keys generated by map‐
ping values in array through block. If no block, returns
enumerator.

Array Class | 163

array.take(n)

Returns first n elements in array. Compare with
Array#drop and Array#take_while.

array.take_while [or] array.take_while { |array| block }

Passes elements to block until it returns nil or false, then
stops and returns array of all prior elements. If no block,
returns enumerator. Compare with Array#take and
Array#drop_while.

array.to_a

Returns array (self). If called on subclass of Array, con‐
verts receiver to Array object. Compare with
Array#to_ary.

array.to_ary

Returns array (self). Compare with Array#to_a.

array.to_h

Returns hash by interpreting array containing subarrays
of key-value pairs.

array.to_s

Returns string representation of array. Compare with
Array#inspect.

array.transpose

Transposes array’s rows and columns, assuming array is
array of arrays.

array.uniq [or] array.uniq { |item| . . . }

Returns new array without duplicate values from array. If
block, uses return values of block for comparison. Com‐
pare with Array#uniq!.

array.uniq! [or] array.uniq! { |item| . . .}

Removes duplicate values from array. If block given, uses
return values of block for comparison. Compare with
Array#uniq.

164 | Ruby Pocket Reference

array.unshift(object, . . .)

Prepends object or objects to front of array, moving
other elements to higher indices. Compare with
Array#shift.

array.values_at(selector, . . .)

Returns new array containing elements in array corre‐
sponding to selector or selectors that are integer indices
or ranges. Compare with Array#shift.

array.zip(arg, . . .) [or] array.zip(arg, . . .) { |

array| block }

Converts any arguments to array, merging elements of
array with corresponding elements from each argument,
one or more. If block, invoked for each output array;
otherwise, returns array of arrays.

Hash Class
A hash is an unordered collection of key-value pairs that look
like this: "storm" => "tornado". (Not the same as a hashcode.
See Object#hash.) A hash is similar to an Array, but instead of a
default integer index starting at zero, indexing is done with
keys that can be made up from any Ruby object. In other
words, you can use integer keys just like an Array, but you can
use any Ruby object as a key, even an Array! (Hashes are
actually implemented as arrays in Ruby.)

Hashes are accessed by keys or values. Keys must be unique. If
you attempt to access a hash with a key that does not exist, the
method will return nil unless the hash has a default value. The
key-value pairs in a hash are not stored in the same order in
which they are inserted (the order you placed them in the
hash), so don’t be surprised if the contents are not ordered.

Hash Class | 165

Creating Hashes
There are a variety of ways to create hashes. You can create an
empty hash with the new class method:

months = Hash.new

You can also use new to create a hash with a default value, which
is otherwise just nil:

months = Hash.new("month") [or] months = Hash.new "month"

When you access any key in a hash that has a default value, or if
the key or value doesn’t exist, accessing the hash will return the
default value:

months[0] [or] months[72] [or] months[234] # => "month"

Hash also has a class method [], which is called in one of two
ways—with a comma separating the pairs, like this (keys are
symbols, values are strings):

christmas_carol = Hash[:name, "Ebenezer Scrooge", :part
ner,
 "Jacob Marley", :employee, "Bob Cratchit", :location,
 "London", :year, 1843]
=> {:name=>"Ebenezer Scrooge", :employee=>"Bob Cratchit",
 :year=>1843, :partner=>"Jacob Marley", :location=>"Lon
don"}

Or with =>:
christmas_carol = Hash[:name => "Ebenezer Scrooge",
 :partner => "Jacob Marley", :employee => "Bob Cratchit"
=>:location, "London", :year => 1843]
=> {:name=>"Ebenezer Scrooge", :employee=>"Bob Cratchit",
 :year=>1843, :partner=>"Jacob Marley", :location=>"Lon
don"}

The easiest way to create a hash is with curly braces. With Ruby
1.9 or later, you can also use this syntax (colon after):

numeros = { uno: 1, dos: 2, tres: 3 }

The spaces are optional. Here’s another example using braces,
but with keys and values separated by =>:

166 | Ruby Pocket Reference

months = { 1 => "January", 2 => "February",
 3 => "March", 4 => "April", 5 => "May",
 6 => "June", 7 => "July", 8 => "August",
 9 => "September", 10 => "October",
 11 => "November", 12 => "December" }

You could use strings as keys in the following, but why not use
symbols, which are more efficient?

month_list = { :jan => "January", :feb => "February",
 :mar => "March", :apr => "April", :may => "May",
 :jun => "June", :jul => "July", :aug => "August",
 :sep => "September", :oct" => "October",
 :nov => "November", :dec => "December" }

Finally, you can use any Ruby object as a key or value, even an
array, so even this will work: [1,"jan"] => "January".

Following are the public methods of the Hash class, adapted and
abbreviated from http://www.ruby-doc.org/core-2.2.2/
Hash.html, where you will find examples and more detailed
explanations of the methods.

Hash Class Methods
Hash[[key (=>|,) value]*]

Creates a new hash with zero or more key-value pairs, sep‐
arated by => or ,. Creates new hash with zero or more key-
value pairs, separated by arrows (=>), commas (,), or
colons (:) following keys.

Hash.new [or] Hash.new(object) [or] Hash.new {|hash,

key| block}

Creates new, empty hash or one with default value. May
also create hash via block.

Hash.try_convert(object)

Tries to convert object into hash, using to_hash instance
method. Returns converted hash or nil if object cannot
be converted for any reason.

Hash Class | 167

http://www.ruby-doc.org/core-2.2.2/Hash.html
http://www.ruby-doc.org/core-2.2.2/Hash.html

Hash Instance Methods
hash == other_hash

Tests whether two hashes are equal, based on whether they
have same number of key-value pairs, and whether the
key-value pairs match corresponding pair in each hash.

hash[key]

Retrieves value associated with key. If not found, returns
default value, if (see default, default=). Compare with
[key]=.

hash[key]= value

Assigns value to key in hash. Compare with store.

hash.any?[{|(key,value)| block }]

Passes each element to given block. Method returns true if
block returns value other than false or nil. If block not
given, Ruby adds implicit block of { |object| object }
that causes any? to return true if at least one collection
member is not false or nil.

hash.assoc(object)

Searches hash, comparing object with key, returning key-
value pair or nil.

hash.clear

Removes all key-value pairs from hash.

hash.compare_by_identity

Compares keys in hash by identity.

hash.compare_by_identity?

Returns true if hash will compare keys by identity.

hash.default(key = nil)

Returns default value of hash.

hash.default= object

Sets default value of hash.

168 | Ruby Pocket Reference

hash.default_proc

Returns block if invoked with block, otherwise nil.

hash.default_proc= (proc_object|nil)

Sets default proc to execute on each failed key lookup.

hash.delete(key) [or] hash.delete(key) {| key | block }

Deletes key-value pair, returns key; otherwise, returns
default, if set.

hash.delete_if [or] hash.delete_if {| key, value |

block }

Deletes every key-value pair for which block evaluates
true. If no block given, returns enumerator.

hash.each [or] hash.each {| key, value | block } [or]

hash.each_pair [or] hash.each_pair {| key, value |

block }

Calls block once for each key, passing key-value pair as
parameters. If no block given, returns enumerator.

hash.each_key [or] hash.each_key {| key | block }
Calls block once for each key, passing key as parameter. If
no block given, returns enumerator.

hash.each_pair [or] hash.each_pair {| key, value |

block }

Calls block once for each key, passing key-value pair as
parameters. If no block given, returns enumerator.

hash.each_value [or] hash.each_value {| value | block }

Calls block once for each key, passing value as parameter.
If no block given, returns enumerator.

hash.empty?

Returns true if no key-value pairs exist in hash, otherwise
false.

hash.eql?(other_hash)

Returns true if both hashes have same content.

Hash Class | 169

hash.fetch(key [, default]) [or] hash.fetch(key) {| key

| block }

Returns value for given key. If key not found, with no
other arguments, raises KeyError exception; if default
given, returns default; if block, runs and returns result.

hash.flatten [or] hash.flatten(level)

Returns new array—one-dimensional flattening of hash.
For every key or value, extract its elements into new array.
Does not flatten recursively by default; optional level
argument determines level of recursion to flatten.

hash.has_key?(key)

Returns true if key present. Compare with include?, key?,
member?.

hash.has_value?(value)

Returns true if value present, otherwise false. Compare
with value?.

hash.hash

Computes with hashcode.

hash.include?(key)

Returns true if key present. Compare with has_key?, key?,
and member?.

hash.indexes

Removed. Compare with select.

hash.indices

Removed. Compare with select.

hash.inspect

Returns hash as string. Compare with to_s.

hash.invert

Returns new hash, inverting keys and values.

hash.keep_if [or] hash.keep_if {|key, value| block }

Deletes every key-value pair for which block evaluates
false; otherwise, returns enumerator.

170 | Ruby Pocket Reference

hash.key(value)

Returns key for value, if key present.

hash.key?(key)

Returns true if key present.

hash.keys

Returns array of keys from hash.

hash.length

Returns number of key-value pairs. Compare with size.

hash.member?(key)

Returns true if key present.

hash.merge(other_hash) [or] hash.merge(other_hash) {|

key,oldval,newval| block }

Returns new hash with key-value pairs of both; if no
block, values from duplicate keys are those of other_hash;
otherwise, value of each duplicate key determined by call‐
ing block with key, value in hash and value in other_hash.
Compare with update.

hash.merge!(other_hash) [or] hash.merge!(other_hash) {|

key,oldval,newval| block }

Same as merge, but changes done in place.

hash.rassoc(object)

Searches hash, comparing object with value using == and
returning first match.

hash.rehash

Rebuilds hash based on current hash values for each key.
Recommended when you mutate a key.

hash.reject [or] hash.reject {|key,value| block}

Returns new hash from entries for which block returns
false; if no block, returns enumerator.

hash.reject! {|key,value| block}

Same as reject, but changes made in place.

Hash Class | 171

hash.replace(other_hash)

Replace contents of hash with that of other_hash.

hash.select [or] hash.select {|key,value| block}

Return new hash from entries for which block returns
true; if no block, returns enumerator.

hash.select!

Same as select, but changes made in place.

hash.shift

Removes key-value pair and returns it as two-item array
([key, value]), or hash’s default value, if empty.

hash.size

Returns number of key-value pairs. Compare with length.

hash.sort [or] hash.sort {|key,value| block}

Sorts key-value pairs in hash, returning arrays.

hash.store(key, value)

Stores, or associates, key-value pair in hash. Compare with
[]=.

hash.to_a

Converts hash to nested array.

hash.to_h

Returns self. If called on hash subclass, converts receiver to
hash object. Compare with to_hash.

hash.to_hash

Returns self. Compare with to_h.

hash.to_s

Returns hash as string. Compare with inspect.

hash.update(other_hash) [or] hash.update(other_hash) {|

key,oldval,newval| block}

Returns new hash with key-value pairs of both; if no
block, values from duplicate keys are those of other_hash;
otherwise, value of each duplicate key determined by call‐

172 | Ruby Pocket Reference

ing block with key, value in hash and value in other_hash.
Compare with merge, merge!.

hash.value?(value)

Returns true if given value present. Compare with
has_value?.

hash.values

Returns array with values from hash.

hash.values_at(key[, . . .])

Returns array containing values associated with given keys
(one or more). Compare select, values.

Time Formatting Directives
The directives in Table 36 are used with the method
Time#strftime.

Table 36. Directives for formatting time

Directive Description

%A Weekday name (Sunday).

%^A Uppercased weekday name (SUNDAY).

%a Abbreviated weekday name (Sun).

%^a Uppercased, abbreviated weekday name (SUN).

%B Month name (January).

%b Abbreviated month name (Jan).

%^B Uppercased month name (JANUARY).

%^b Uppercased, abbreviated month name (JAN).

%C Year / 100 (rounded down, such as 20 in 2009).

%c Date, time (%a %b %e %T %Y).

%D Date (%m/%d/%y).

%d Day of month, zero-padded (01..31).

%-d Day of month, no-padded (1..31).

Time Formatting Directives | 173

Directive Description

%e Day of month, blank-padded (1..31).

%F ISO 8601 date format (%Y-%m-%d).

%G Week-based year.

%g Last two digits of the week-based year (00..99).

%H Hour of day, 24-hour clock, zero-padded (00..23).

%h Equivalent to %b.

%I Hour of the day, 12-hour clock, zero-padded (01..12).

%L Millisecond of second (000..999). Digits under millisecond are
truncated to not produce 1000.

%j Day of year (001..366).

%k Hour of day, 24-hour clock, blank-padded (0..23).

%l Hour of day, 12-hour clock, blank-padded (1..12).

%M Minute of hour (00..59).

%m Month of year, zero-padded (01..12).

%-m Month of year, no-padded (1..12).

%_m Month of year, blank-padded (1..12).

%N Fractional seconds digits, default is nine digits (nanosecond). The
digits under the specified length are truncated to avoid carry up.
Examples:

• %3N millisecond (three digits)
• %6N microsecond (six digits)
• %9N nanosecond (nine digits)
• %12N picosecond (12 digits)
• %15N femtosecond (15 digits)
• %18N attosecond (18 digits)
• %21N zeptosecond (21 digits)
• %24N yoctosecond (24 digits)

%n Newline character (\n).

174 | Ruby Pocket Reference

Directive Description

%P Meridian indicator, lowercase (am or pm).

%p Meridian indicator, uppercase (AM or PM).

%R 24-hour time (%H:%M).

%r 12-hour time (%I:%M:%S %p).

%S Second of minute (00..60).

%s Number of seconds since 1970-01-01 00:00:00 UTC.

%T 24-hour time (%H:%M:%S).

%t Tab character (\t).

%U Week number of year. Week starts with Sunday (00..53).

%u Day of week. Monday is 1 (1..7).

%V Week number of week-based year (01..53).

%v VMS date (%e-%^b-%4Y).

%W Week number of year. Week starts with Monday. (00..53).

%w Day of week. Sunday is 0 (0..6).

%X Same as %T.

%x Same as %D.

%Y Year with century, if provided, will pad result at least four digits.

%y year % 100 (00..99).

%Z Abbreviated time zone name or similar information. (OS dependent).

%z Time zone as hour and minute offset from UTC (e.g., +0900).

%:z Hour, minute offset from UTC with colon (e.g., +09:00).

%::z Hour, minute, second offset from UTC (e.g., +09:00:00).

%% Literal % character.

Time Formatting Directives | 175

Ruby Documentation
Ruby documentation refers to the documentation generated by
RDoc (see https://github.com/rdoc/rdoc and http://docs.seat
tlerb.org/rdoc/), a program that extracts documentation from
Ruby source files, both from C and Ruby files.

The documentation is stored in comments in the source files
and encoded so that RDoc can easily find it. RDoc can generate
output as HTML, XML, ri (Ruby Interactive), or Windows help
(.chm) files.

To see the RDoc-generated HTML documentation for Ruby on
the Web, go to http://www.ruby-doc.org/core. If you have rdoc
and Ruby documentation installed on your system, which you
likely do, you can type something like the following at a shell
prompt to print formatted documentation on standard output:

ri Kernel#print

You will get this output:
= Kernel#print

(from ruby core)

 print(obj, ...) -> nil

Prints each object in turn to $stdout. If the
output field separator ($,) is not nil, its
contents will appear between each field. If the
output record separator ($\) is not nil, it will
be appended to the output. If no arguments are
given, prints $_. Objects that aren't strings will
be converted by calling their to_s method.

 print "cat", [1,2,3], 99, "\n"
 $, = ", "
 $\ = "\n"
 print "cat", [1,2,3], 99

produces:

176 | Ruby Pocket Reference

https://github.com/rdoc/rdoc
http://docs.seattlerb.org/rdoc/
http://docs.seattlerb.org/rdoc/
http://www.ruby-doc.org/core

 cat12399
 cat, 1, 2, 3, 99

The following describes the very basic RDoc version 4.2.0, and
is adapted from its documentation. (See https://github.com/
rdoc/rdoc and http://docs.seattlerb.org/rdoc for more informa‐
tion.)

Usage:
rdoc [options] [names, [. . .]]

The way in which RDoc generates output depends on the out‐
put formatter being used, and on the options you give. Files are
parsed and the documentation they contain collected, before
any output is produced. This allows cross-references to be
resolved between all files. If a name is a directory, it is traversed.
If no names are specified, all Ruby files in the current directory
(and subdirectories) are processed.

Options can be specified via the RDOCOPT environment variable,
which functions similar to the RUBYOPT environment variable
for Ruby. For example:

$ export RDOCOPT="--show-hash"

Makes RDoc show hashes in method links by default.
Command-line options will always override those in RDOCOPT.

Available formatters are:

darkfish

HTML generator, written by Michael Granger
pot

Creates .pot file
ri

Creates ri data files

RDoc understands the following file formats:

• C: \.(?:([CcHh])\1?|c([+xp])\2|y)\z
• ChangeLog: (/|\\|\A)ChangeLog[^/\\]*\z
• Markdown: \.(md|markdown)(?:\.[^.]+)?$

Ruby Documentation | 177

https://github.com/rdoc/rdoc
https://github.com/rdoc/rdoc
http://docs.seattlerb.org/rdoc

• RD: \.rd(?:\.[^.]+)?$
• Ruby: \.rbw?$
• Simple
• TomDoc: Only in Ruby files

The following RDoc options have been deprecated:

--accessor

Support discontinued.

--diagram

Support discontinued.

--help-output

Support discontinued.

--image-format

Was an option for --diagram.

--inline-source

Source code is now always inlined.

--merge

ri now always merges class information.

--one-file

Support discontinued.

--op-name

Support discontinued.

--opname

Support discontinued.

--promiscuous

Files always only document their content.

--ri-system

Ruby installers use other techniques.

178 | Ruby Pocket Reference

Parsing options:

-e is preferred over --charset, --encoding
Specifies output encoding. All files read are converted to
this encoding. Default is UTF-8.

--locale=NAME

Specifies the output locale.

--locale-data-dir=DIR

Specifies the directory where locale data live.

-a, --all
Synonym for --visibility=private.

-x, --exclude=PATTERN

Do not process files or directories matching PATTERN.

-E, --extension=NEW=OLD

Treat files ending with .new as if they ended with .old.
Using -E cgi=rb will cause xxx.cgi to be parsed as a Ruby
file.

-U, --[no-]force-update
Forces RDoc to scan all sources even if newer than the flag
file.

-p, --pipe
Convert RDoc on stdin to HTML.

-w, --tab-width=WIDTH

Set the width of tab characters.

--visibility=VISIBILITY

Minimum visibility to document a method. One of
public, protected (the default), private, or nodoc (show
everything).

--markup=MARKUP

The markup format for the named files. The default is
rdoc. Valid values are: markdown, rd, rdoc, tomdoc.

Ruby Documentation | 179

--root=ROOT

Root of the source tree documentation will be generated
for. Set this when building documentation outside the
source directory. Default is the current directory.

--page-dir=DIR

Directory in which guides, your FAQ, or other pages not
associated with a class live. Set this when you don’t store
such files at your project root. NOTE: Do not use the same
filename in the page directory and in the root of your
project.

Common generator options:

-O, --force-output
Forces RDoc to write the output files, even if the output
directory exists and does not seem to have been created by
RDoc.

-f, --fmt, --format=FORMAT

Set the output formatter. One of: darkfish, pot, ri.

-i, --include=DIRECTORIES

Set (or add to) the list of directories to be searched when
satisfying :include: requests. Can be used more than
once.

-C[LEVEL], --[no-]coverage-report, --[no-]dcov
Prints a report on undocumented items. Does not gener‐
ate files.

-o, --output, --op=DIR

Set the output directory.

-d

Deprecated --diagram option. Prevents firing debug mode
with legacy invocation.

180 | Ruby Pocket Reference

HTML generator options:

-c, --charset=CHARSET

Specifies the output HTML character set. Use --encoding
instead of --charset if available.

-A, --hyperlink-all
Generate hyperlinks for all words that correspond to
known methods, even if they do not start with # or ::
(legacy behavior).

-m, --main=NAME

NAME will be the initial page displayed.

-N, --[no-]line-numbers
Include line numbers in the source code. By default, only
the number of the first line is displayed, in a leading com‐
ment.

-H, --show-hash
A name of the form #name in a comment is a possible
hyperlink to an instance method name. When displayed,
the # is removed unless this option is specified.

-T, --template=NAME

Set the template used when generating output. The default
depends on the formatter used.

--template-stylesheets=FILES

Set (or add to) the list of files to include with the HTML
template.

-t, --title=TITLE

Set TITLE as the title for HTML output.

--copy-files=PATH

Specify a file or directory to copy static files from. If a file
is given, it will be copied into the output dir. If a directory
is given, the entire directory will be copied. You can use
this multiple times.

Ruby Documentation | 181

-W, --webcvs=URL

Specify a URL for linking from a web frontend to CVS. If
the URL contains a %s, the name of the current file will be
substituted; if the URL doesn’t contain a %s, the filename
will be appended to it.

ri generator options:

-r, --ri
Generate output for use by ri. The files are stored in
the .rdoc directory under your home directory unless
overridden by a subsequent --op parameter, so no special
privileges are needed.

-R, --ri-site
Generate output for use by ri. The files are stored in a
site-wide directory, making them accessible to others, so
special privileges are needed.

Generic options:

--write-options

Write .rdoc_options to the current directory with the
given options. Not all options will be used. See
RDoc::Options for details.

--[no-]dry-run

Don’t write any files.

-D, --[no-]debug
Displays lots of internal stuff.

--[no-]ignore-invalid

Ignore invalid options and continue (default true).

-q, --quiet
Don’t show progress as we parse.

-V, --verbose
Display extra progress as RDoc parses.

182 | Ruby Pocket Reference

-v, --version
Print the version.

-h, --help
Display this help.

RubyGems
RubyGems is a package utility for Ruby (https://rubygems.org),
originally written by Jim Weirich. It installs Ruby software
packages, and keeps them up-to-date. It is quite easy to learn
and use—even easier than tools like the Unix/Linux tar utility
(http://www.gnu.org/software/tar) or Java’s jar utility (http://
java.sun.com/j2se/1.5.0/docs/tooldocs/windows/jar.html).

For more information, read the RubyGems documentation at
http://guides.rubygems.org. This site provides most everything
you need to know about using RubyGems. If you don’t have
RubyGems installed, go to https://rubygems.org/pages/download
for installation instructions.

NOTE

You’ll find this information on binstubs from Sam Ste‐
phenson useful: https://github.com/sstephenson/rbenv/wiki/
Understanding-binstubs.

Check to see whether RubyGems is installed by typing the fol‐
lowing at a shell prompt:

$ gem --version
2.4.6

Get help on RubyGems:
$ gem --help
RubyGems is a sophisticated package manager for
Ruby. This is a basic help message containing
pointers to more information.

RubyGems | 183

https://rubygems.org/
http://www.gnu.org/software/tar
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/jar.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/jar.html
http://guides.rubygems.org
https://rubygems.org/pages/download
https://github.com/sstephenson/rbenv/wiki/Understanding-binstubs
https://github.com/sstephenson/rbenv/wiki/Understanding-binstubs

 Usage:
 gem -h/--help
 gem -v/--version
 gem command [arguments...] [options...]

 Examples:
 gem install rake
 gem list --local
 gem build package.gemspec
 gem help install

 Further help:
 gem help commands list all 'gem' commands
 gem help examples show some examples of usage
 gem help gem_dependencies gem dependencies file guide
 gem help platforms gem platforms guide
 gem help <COMMAND> show help on COMMAND
 (e.g. 'gem help install')
 gem server present a web page at
 http://localhost:8808/
 with info about installed
gems
 Further information:
 http://guides.rubygems.org

Get a list of RubyGems commands by typing:
$ gem help commands

Get help on a specific RubyGems command, for example,
check:

$ gem help check

Show RubyGems examples:
$ gem help examples

To list available remote RubyGems packages, use the following
(drop the --remote flag to see what you have locally):

$ gem list --remote
[truncated — you'll get almost 100,000 gems]

Install or update Rake (make à la Ruby, discussed in the next
section). You may need root privileges to do this (essentially,
you’ll need a root password). I use sudo (http://www.sudo.ws) to
do this:

184 | Ruby Pocket Reference

http://www.sudo.ws

$ sudo gem install rake

Rake
A build tool helps you build, compile, or otherwise process
files, sometimes large numbers of them. Rake is a build tool
like make (http://www.gnu.org/software/make) and Apache ant
(http://ant.apache.org), but it is written in Ruby. It is used by
many Ruby applications, not just Rails. Rails operations use
Rake frequently, so it is worth mentioning here.

Rake uses a Rakefile to figure out what to do. A Rakefile con‐
tains named tasks. When you create a Rails project, a Rakefile
is automatically created to help you deal with a variety of jobs,
such as running tests and looking at project statistics. (After
creating a Rails project with one of the following tutorials,
while in the main Rails project directory, run rake --tasks or
rails stats to get a flavor of what Rake does.)

You’ll find information on Rake at http://docs.seattlerb.org/
rake/. Additionally, you’ll find a good introduction to Rake by
Martin Fowler at http://martinfowler.com/articles/rake.html.
Here’s the Github repository: https://github.com/ruby/rake.

Check to see whether Rake is present:
$ rake --version
rake, version 10.4.2

If this command fails, use RubyGems to install Rake, as shown
in the previous section. RubyGems must be installed first.

To run Rake help, type:
$ rake --help

The following is displayed:
rake [-f rakefile] {options} targets . . .

Rake | 185

http://www.gnu.org/software/make
http://ant.apache.org
http://docs.seattlerb.org/rake/
http://docs.seattlerb.org/rake/
http://martinfowler.com/articles/rake.html
https://github.com/ruby/rake

Options:

--backtrace=[OUT]

Enable full backtrace. OUT can be stderr (default) or
stdout.

--comments

Show commented tasks only.

--job-stats [LEVEL]

Display job statistics. LEVEL=history displays a complete
job list.

--rules

Trace the rules resolution.

--suppress-backtrace PATTERN

Suppress backtrace lines matching regexp PATTERN.
Ignored if --trace is on.

-A, --all
Show all tasks, even uncommented ones (in combination
with -T or -D).

-B, --build-all
Build all prerequisites, including those that are up-to-date.

-D, --describe [PATTERN]
Describe the tasks (matching optional PATTERN), then exit.

-e, --execute CODE
Execute some Ruby code and exit.

-E, --execute-continue CODE
Execute some Ruby code, and then continue with normal
task processing.

-f, --rakefile [FILENAME]
Use FILENAME as the Rakefile to search for.

-G, --no-system, --nosystem
Use standard project Rakefile search paths; ignore system-
wide Rakefiles.

186 | Ruby Pocket Reference

-g, --system
Using system-wide (global) Rakefiles (usually ~/.rake/
*.rake).

-I, --libdir LIBDIR
Include LIBDIR in the search path for required modules.

-j, --jobs [NUMBER]
Specifies the maximum number of tasks to execute in par‐
allel (default is number of CPU cores + 4).

-m, --multitask
Treat all tasks as multitasks.

-n, --dry-run
Do a dry run without executing actions.

-N, --no-search, --nosearch
Do not search parent directories for the Rakefile.

-P, --prereqs
Display the tasks and dependencies, and then exit.

-p, --execute-print CODE
Execute some Ruby code, print the result, and then exit.

-q, --quiet
Do not log messages to standard output.

-r, --require MODULE
Require MODULE before executing Rakefile.

-R, --rakelibdir RAKELIBDIR, --rakelib
Auto-import any .rake files in RAKELIBDIR (default is rake
lib).

-s, --silent
Like --quiet, but also suppresses the “in directory”
announcement.

-t, --trace=[OUT]
Turn on invoke/execute tracing, enable full backtrace. OUT
can be stderr (default) or stdout.

Rake | 187

-T, --tasks [PATTERN]
Display the tasks (matching optional PATTERN) with
descriptions, and then exit.

-v, --verbose
Log message to standard output.

-V, --version
Display the program version.

-W, --where [PATTERN]
Describe the tasks (matching optional PATTERN), and then
exit.

-X, --no-deprecation-warnings
Disable the deprecation warnings.

-h, -H, --help
Display this help message.

Ruby Resources
• Ruby language main site
• Matz’s blog (in Japanese)
• Ruby documentation
• Ruby forum
• Ruby on Rails
• Rails Conf
• Ruby on Rails blog
• byebug debugger by David Rodríguez
• The Ruby Programming Language by David Flanagan and

Yukihiro Matsumoto (O’Reilly)
• Programming Ruby 1.9 & 2.0, 4th Edition, by Dave Tho‐

mas, Andy Hunt, and Chad Fowler (Pragmatic Book‐
shelf)

• The Ruby Way: Solutions and Techniques in Ruby Pro‐
gramming, 3rd Edition, by Hal Fulton and André Arko
(Addison-Wesley)

188 | Ruby Pocket Reference

http://www.ruby-lang.org
http://www.rubyist.net/~matz
http://www.ruby-doc.org
http://www.ruby-forum.com
http://www.rubyonrails.org
http://railsconf.com
http://weblog.rubyonrails.org
https://github.com/deivid-rodriguez/byebug
http://bit.ly/ruby-prog
http://bit.ly/prog-ruby-1920
http://bit.ly/theRubyWay
http://bit.ly/theRubyWay

• Why’s (Poignant) Guide to Ruby, by Why the Lucky Stiff
(aka Jonathan Gillette)

• Ruby Cookbook, 2nd Edition, by Lucas Carlson and Leo‐
nard Richardson (O’Reilly)

• The Well-Grounded Rubyist, 2nd Edition, by David A.
Black (Manning)

• Ruby in a Nutshell, by Yukihiro Matsumoto (O’Reilly),
which is old but still valuable in many ways (I have a
copy signed by the author and still use it often)

Ruby Resources | 189

http://mislav.uniqpath.com/poignant-guide
http://bit.ly/ruby_cookbook_2e
http://bit.ly/wg-rubyist
http://bit.ly/Ruby-Nutshell

Glossary

accessor
A method for accessing data in a class that is usually inac‐
cessible otherwise. Also called getter and setter methods—
def a;@a;end and def b=(val);@b=val;end are examples
of a getter and setter, respectively. The Module#attr, Mod
ule#attr_accessor, Module#attr_reader, and Mod

ule#attr_writer metaprogramming methods also define
accessors.

aliasing
Using the Ruby keyword alias or Module#alias_method,
you can alias a method by specifying a new and old name.

ARGF
An I/O-like stream that allows access to a virtual concate‐
nation of all files provided on the command line, or stan‐
dard input if no files are provided.

ARGV
An array that contains all of the command-line arguments
passed to a program.

argument
The value of a parameter, passed to a method. With the
method hello (name), in the call hello ("Matz"), the
value "Matz" is the argument. See also method.

191

array
A data structure containing an ordered list of elements—
which can be composed of any Ruby object—starting with
an index of 0. See also hash.

ASCII
Abbreviation for American Standard Code for Informa‐
tion Interchange. ASCII is a character set representing 128
letters, numbers, symbols, and special codes, in the range
0–127. Each character can be represented by an 8-bit byte
(octet). One of many possible character sets (encodings)
now available in Ruby. See also UTF-8.

block
A nameless function, always associated with a method call,
contained in a pair of braces ({}) or do/end.

block comment
See comment.

C extensions
Ruby is actually written in the C programming language.
You can extend Ruby with C code, perhaps for perfor‐
mance gains or to do some heavy lifting. See also Ruby
Inline.

carriage return
See newline.

child class
A class that is derived from a parent or superclass. See also
superclass.

class
A collection of code, including methods and variables,
which are called members. The code in a class sets the
rules for objects of the given class. See also instance, mod‐
ule, object.

192 | Glossary

http://www.zenspider.com/projects/rubyinline.html
http://www.zenspider.com/projects/rubyinline.html

class variable
A variable that can be shared between objects of a given
class. In Ruby, a class variable is prefixed with two at signs,
as in @@count. See also global variable, instance variable,
local variable.

closure
A nameless function or method. It is like a method within
another method that refers to or shares variables with the
enclosing or outer method. In Ruby, the closure or block is
wrapped by braces ({}) or do/end, and depends on the
associated method to do its work. See also block.

coding comment
A comment at the start of a Ruby program file that speci‐
fies an encoding for the file. For example, # coding:

utf-8. See also encoding.

comment
Program text that is ignored by the Ruby interpreter. If it
is preceded by a #, and not buried in double quotes, the
text or line is ignored by the Ruby interpreter. Block com‐
ments, enclosed by =begin/=code, can contain comments
that cover more than one line. These are also called
embedded documents.

composability
The degree to which you can express logic by combining
and recombining parts of a language (see “The Design of
RELAX NG,” by James Clark, at http://www.thaiopen
source.com/relaxng/design.html#section:5).

concatenation
Joining or chaining together two strings performed in
Ruby with the +, <<, and concat methods.

conditional expression
See conditional operator.

 | 193

http://www.thaiopensource.com/relaxng/design.html#section:5
http://www.thaiopensource.com/relaxng/design.html#section:5

conditional operator
An operator that takes three arguments separated by ?
and :, a concise form of if/then/else. For example, label
= length == 1 ? " argument" : " arguments".

conditional statement
Tests whether a given statement is true or false, executing
code (or not) based on the outcome. Conditional state‐
ments are formed with keywords such as if, while, and
unless.

constant
In Ruby, a constant name is capitalized or all uppercase.
Class names, for example, are constants. A constant is not
immutable in Ruby, though when you change the value of
a constant, the Ruby interpreter warns you that the con‐
stant is already initialized. See also variable.

data structure
Data electronically stored in a way that (usually) allows
efficient retrieval of the data. Arrays and hashes are exam‐
ples of data structures.

database
A systematic collection of information, stored on a com‐
puter. Ruby on Rails is an example of a database-enabled
web application framework.

default
A value that is assigned automatically when interacting
with code or a program.

delegation
Delegation in object-oriented programming is, basically,
the delegation of tasks from one object to another helper
object. See BasicObject#method_missing. Ruby also has a
delegator library. See http://ruby-doc.org/stdlib-2.2.2/
libdoc/delegate/rdoc/Delegator.html.

194 | Glossary

http://ruby-doc.org/stdlib-2.2.2/libdoc/delegate/rdoc/Delegator.html
http://ruby-doc.org/stdlib-2.2.2/libdoc/delegate/rdoc/Delegator.html

each
In Ruby, a method named each (or named similarly, like
each_line) iterates over a given block, processing the data
piece by piece—by bytes, characters, lines, elements, and
so forth, depending on the structure of the data. See also
block.

embedded document
See comment.

embedded Ruby
See ERB.

enumerable
In Ruby, the Enumerable module provides collection
classes with methods for traversal, search, and sort capa‐
bility. See http://ruby-doc.org/core-2.2.2/Enumerable.html.

enumerator
In Ruby, an enumerator is an Enumerable object that enu‐
merates or lists some other object. See also enumerable.

error
A problem or defect in code that usually causes a program
to halt. Common errors in Ruby programs are identified
with classes such as ArgumentError, EOFError, and ZeroDi
visionError. See also exception.

ERB
An abbreviation for eRuby (embedded Ruby). A technique,
similar to JavaServer Pages, for embedding Ruby code in
tags—such as <%= and %>—in text files, including HTML
and XHTML, which is executed when the files are pro‐
cessed. Ruby on Rails makes extensive use of embedded
Ruby. ERB is part of Ruby’s standard library (see http://
ruby-doc.org/stdlib-2.2.2/libdoc/erb/rdoc/index.html), but
other implementations also exist, such as Erubis (http://
www.kuwata-lab.com/erubis) and ember (http://snk.tuxfam
ily.org/lib/ember/).

 | 195

http://ruby-doc.org/core-2.2.2/Enumerable.html
http://ruby-doc.org/stdlib-2.2.2/libdoc/erb/rdoc/index.html
http://ruby-doc.org/stdlib-2.2.2/libdoc/erb/rdoc/index.html
http://www.kuwata-lab.com/erubis
http://www.kuwata-lab.com/erubis
http://snk.tuxfamily.org/lib/ember/
http://snk.tuxfamily.org/lib/ember/

encoding
Since 1.9, Ruby has offered built-in Unicode support and
other multibyte text representations as well. In addition, it
added the --encoding (-E) command-line switch, magic or
coding comments, and eliminated the -K switch and the
predefined variable $KCODE. Classes such as String and
Regexp are now encoding-aware.

eRuby
See ERB.

exception
Allows you to catch and manage runtime and other errors
while programming. Managed with rescue, ensure, and
raise. See also error.

expression
A programming statement that returns a value and
includes keywords, operators, variables, and so forth.

expression substitution
In Ruby, a syntax that allows you to embed expressions in
strings and other contexts. The substitution is enclosed in
#{ and }, and the result of the expression replaces the sub‐
stitution in place when the code runs via the Ruby inter‐
preter. This is also called string interpolation. You can also
perform string interpolation with Kernel#printf,
IO#printf, and Kernel#sprintf.

extension, file
The part of the filename (if present) that follows a period
(RHS). The conventional file extension for Ruby is .rb.

extension, C
See C extensions.

file mode
Depending on how it is set, determines the ability to read,
write, and execute a file. One way to set a file’s mode is
with File.new at the time of file creation.

196 | Glossary

float
In Ruby, objects that represent real numbers, such as 1.0.
A floating-point number in Ruby is an instance of the
Float class.

gem
See RubyGems.

general delimited strings
A technique for creating strings using %! and !, where !
can be an arbitrary non-alphanumeric character. Alterna‐
tive syntax: %Q!string! for double-quoted strings, %q!
string! for single-quoted strings, and %x!string! for back
quoted strings.

getter method
A method that “gets” the value of an instance variable, for
example, def a;@a;end. See also accessor, setter method.

garbage collection
Garbage collection, or GC, in Ruby automatically destroys
unneeded, unreachable objects, making programs less
likely to spring memory links. The GC module offers sev‐
eral methods that manage garbage collection explicitly. See
http://ruby-doc.org/core-2.2.2/GC.html. See also Object

Space::garbage_collect.

GC
See garbage collection.

Git
Git is a popular, distributed version control system that
quickly and efficiently handles coding projects large and
small. See GitHub.

GitHub
GitHub is a popular, online Git repository that offers the
functionality of Git as well as its own special features. See
also Git.

 | 197

http://ruby-doc.org/core-2.2.2/GC.html

global variable
A variable whose scope includes the entire program. Can
be done with a singleton. See also class variable, instance
variable, local variable, singleton.

graphical user interface
See GUI.

GUI
An abbreviation for graphical user interface. A user inter‐
face that focuses on graphics rather than text. Tcl/Tk is
Ruby’s built-in GUI library.

hash
An unordered collection of data where keys are mapped to
values. See also array, hash code.

hash code
An integer calculated from an object. Identical objects
have the same hash code. Generated by a hash method. See
also hash.

here document
A technique that allows you to build strings from multiple
lines, using <<name/name where name is an arbitrary name.
Alternative syntax: <<"string"/string for double-quoted
strings, <<'string'/string for single-quoted
strings, <<'string'/string for back quoted strings,
and <<-string/string for indented strings.

hexadecimal
A base-16 number, represented by the digits 0–9 and the
letters A–F or a–f. Often prefixed with 0x. For example,
the base-10 number 26 is represented as 0x1A in hexadeci‐
mal.

index
An integer that numbers or identifies the elements in an
array. Array indexes always start with 0. See also array.

198 | Glossary

inheritance
The ability of a class to inherit features from another class
via the < operator. See also multiple inheritance, single
inheritance.

instance
An object that is created when a class is instantiated, often
with new class method; for example, str = String.new cre‐
ates str, an instance of the String class.

instance variable
A variable associated with an instance of a class. In Ruby,
instance variables are prefixed with a single at sign—for
example, @name. See also class variable, local variable,
global variable.

I/O
An abbreviation for input/output. Refers to the flow of
data to and from a computing device, such as reading data
to and from a file. The IO class is the basis for all of Ruby’s
I/O, and the File class is a subclass of IO.

key
A key is associated with a value in a hash data structure.
You use keys to access hash values. See also hash.

keyword
A special word used in programming syntax, such as
class or def in Ruby. Also called a reserved word.

lambda
In Ruby, a Kernel method that expects a block and returns
a Proc object. This object is a lambda, not a proc. It is
bound to the current context and does parameter check‐
ing (checks the number of them) when called. See also
block, proc.

library
See standard library.

 | 199

line-end character
See newline.

linefeed
See newline.

local variable
3009.40A variable with local scope, such as inside a
method. You cannot access a local variable from outside of
its scope. In Ruby, local variables begin with a lowercase
letter or an underscore (_). num and _outer are examples of
local variables. See also class variable, global variable,
instance variable.

loop
A repeatable iteration of one or more programming state‐
ments. Ruby uses for loops, and even has a Kernel#loop
method for such a task. A loop may be stopped (with
break). Control then passes to the next statement in the
program, to a special location, or it may exit the program.

magic comments
See coding comment.

main
The initial, top-level execution context for Ruby pro‐
grams. Test it by entering self in irb.

match
When a method finds its specified regular expression, it is
said to match. See also regular expression.

member
Variables and methods are considered members of a class
or object. See also class, method, object, variable.

metaprogramming
Programming that creates and/or manipulates other pro‐
grams. Ruby’s define_method method is an important tool
that can be used in metaprogramming. Reflection is

200 | Glossary

another capability that plays a role in metaprogramming.
See also reflection.

method
A named collection of statements, with or without argu‐
ments, that returns a value (either explicitly or implicitly).
A method is a member of a class. See also class.

mixin
When a module is included in a class, it is mixed into the
class, hence the name mixin. Using mixins helps avoid
issues that can arise from multiple inheritance. See also
module.

mode, file
See file mode.

module
A module is like a class but cannot be instantiated like a
class. A class can include a module so that when the class
is instantiated, it gets the included module’s methods and
so forth. The methods from an included module become
instance methods in the class that includes the module.
This is called mixing in, and a module is referred to as a
mixin. See also class, mixin.

modulo
A division operation that returns the remainder of the
operation. The percent sign (%) is used as the modulo
operator.

multiple inheritance
When a class can inherit more than one class. C++, for
example, supports multiple inheritance, which has disad‐
vantages (such as name collision) that, in many opinions,
outweigh the advantages. See also single inheritance.

name collision
Names (identifiers) collide when they cannot be resolved
unambiguously. This is a risk of multiple inheritance.

 | 201

namespace
In Ruby, a module acts as a namespace. A namespace is a
set of names—such as method names—that have a scope
or context. A Ruby module associates a single name with a
set of method and constant names. The module name can
be used in classes in other modules. Generally, the scope
or context of such a namespace is the class or module
where the namespace (module name) is included. A Ruby
class can also be considered a namespace.

newline
A character that ends a line, such as a linefeed (Mac OS X
and Unix/Linux) or a combination of characters such as
character return and linefeed (Windows).

nil
Empty, uninitialized, or invalid. nil is always false, but is
not the same as zero. It is an object of NilClass.

object
An instance of a class, a thing, an entity, or a concept that
is represented in contiguous memory in a computer. See
also instance, class.

object-oriented programming
A programming practice based on organizing data with
methods that can manipulate that data. The methods and
data (members) are organized into classes that can be
instantiated as objects. See also class.

octal
A base-8 number, represented by the digits 0–7. Often
prefixed with 0 [zero]. The decimal number 026 (note pre‐
fix) is 32 in octal, for example. You can enter octal digits in
a string in the form \onnn where n is a digit. This form can
take one to three digits in the ranges 0 to 7, 00 to 77, and
000 and 377, respectively.

OOP
See object-oriented programming.

202 | Glossary

operators
Operators perform operations, such as addition, subtrac‐
tion, multiplication, and division. Ruby operators include,
like other languages, + for addition, – for subtraction, * for
multiplication, / for division, % for modulo, and so forth.
Many Ruby operators are methods (that can be overrid‐
den).

overloading
Method or function overloading is a practice in object-
oriented programming that allows methods with the same
name to operate on different kinds of data (methods or
functions with the same name but different signatures).
You can’t really overload methods in Ruby without
branching the logic inside the method. See also overriding.

overriding
Redefining a method. The latest definition is the one rec‐
ognized by the Ruby interpreter. See also overloading.

package
See RubyGems.

parent class
See superclass.

path
The location of a file on a filesystem. Used to help locate
files for opening, executing, and so forth. Contained in the
PATH environment variable.

pattern
A sequence of ordinary and special characters that enables
a regular expression engine to locate a string. See also reg‐
ular expression.

pop
A term related to a stack—a last-in, first-out (LIFO) data
structure. When you pop an element off a stack, you are

 | 203

removing the last element first. You can pop elements off
(out of) an array in Ruby. See also push.

push
A term related to a stack—a last-in, first-out (LIFO) data
structure. When you push an element onto a stack, you
are adding an element onto the end of the array. You can
push elements onto an array in Ruby. See also pop.

precision
Refers to the preciseness with which a numerical quantity
is expressed. The Precision module in Ruby enables you
to convert numbers (float to integer, integer to float).

private
A method that is marked private can only be accessed, or
is only visible, within its own class. See also protected,
public.

proc
In Ruby, a procedure that is stored as an object, complete
with context; an object of the Proc class. See also lambda.

protected
A method that is marked protected can only be accessed
or visible within its own class, or from within child classes.
See also private, public.

public
A method that is marked public (which is the default) is
accessible or visible in its own class and from other classes.
See also private, protected.

RDoc
A tool for generating documentation embedded in com‐
ments in Ruby source code. See https://github.com/rdoc/
rdoc and http://docs.seattlerb.org/rdoc.

Rails
See also Ruby on Rails.

204 | Glossary

https://github.com/rdoc/rdoc
https://github.com/rdoc/rdoc
http://docs.seattlerb.org/rdoc

Rake
A build tool written in Ruby with capabilities like make.
See http://docs.seattlerb.org/rake/ and https://github.com/
ruby/rake.

random number
With the Kernel#rand or Kernel#srand methods, Ruby can
generate an arbitrary, pseudorandom number.

range
In Ruby, a way of representing inclusive (..) and exclusive
(...) ranges of objects, usually numbers. For example,
1..10 is a range of numbers from 1 to 10, inclusive;
using ... instead of .. excludes the last value from the
range.

rational number
A fraction. In Ruby, rational numbers are handled via the
Rational class.

RoR
Abbreviation for Ruby on Rails. See Ruby on Rails.

receiver
An object that receives or is the context for the action that
a method performs. In the method call str.length, str is
the receiver of the length method.

reflection
The ability of a language such as Ruby to examine and
manipulate itself. For example, the reflection method
class from Object returns an object’s class.

regular expression
A concise sequence or pattern of ordinary and special
characters used to match strings. See also match.

reserved word
See keyword.

 | 205

http://docs.seattlerb.org/rake/
https://github.com/ruby/rake
https://github.com/ruby/rake

RubyForge
Was web-based archive for Ruby applications that shut
down in 2014.

RubyGems
The premier packing system for Ruby applications. A
RubyGems package is called a gem. It comes with Ruby
(though you can choose to install it explicitly).

Ruby on Rails
A popular, open source web application framework writ‐
ten in Ruby. It was first released in 2004 and, at the time of
writing, was at version 4.2. It follows the model-view-
controller, or MVC, architectural pattern. Matz once
called it Ruby’s killer app. See http://rubyonrails.org.

self
self represents the current object or receiver invoked by a
method. See also receiver.

setter method
A method that “sets” the value of an instance variable; for
example, def b=(val);@b=val;end. See also accessor, getter
method.

single inheritance
When a class can inherit from only one class, as opposed
to multiple classes where a class may inherit from multiple
classes. See also multiple inheritance.

singleton
A singleton class is tied to a particular object, can be
instantiated only once, and is not distinguished by a pre‐
fixed name. A singleton method is tied to the Singleton
class. May be used like or in place of a class variable.

standard library
A library or collection of Ruby code containing packages
that perform specialized tasks. Some example packages are
REXML for XML processing, and Iconv for character set

206 | Glossary

http://rubyonrails.org

conversion. Online documentation is available at http://
ruby-doc.org/stdlib.

statement
An instruction for a program to carry out.

string
A sequence of objects, usually symbols of human-readable
characters.

string interpolation
See expression substitution.

substitution
See expression substitution.

superclass
The parent class. A child class is derived from the parent
or superclass. See also child class.

Tcl/Tk
The Tcl scripting language with the Tk user interface tool‐
kit is provided in Ruby’s standard library.

ternary operator
See conditional operator.

thread
Ruby supports threading. Threading allows programs to
execute multiple tasks simultaneously (or almost simulta‐
neously) by slicing the time on the clock that runs the
computer processor. The threads in Ruby are operating-
system independent, so threading is available on all plat‐
forms that run Ruby, even if the OS doesn’t support them.

Unicode
An international character coding system that allows
65,000 or more characters. You can enter Unicode charac‐
ters in a string (using UTF-8 encoding) in the form \uxxxx
in the range 0000 and FFFF (you can’t drop leading zeros),
or \u{xxxxxx} in the range 0 and 10FFFF (you can drop

 | 207

http://ruby-doc.org/stdlib
http://ruby-doc.org/stdlib

leading zeros), or multiple codepoints in the form
\u{xxxxxx[xxxxxx . . .]} (one to six hexadecimal dig‐
its, separated by spaces or tabs). See http://
www.unicode.org.

UTF-8
A character set, based on one to four bytes, that can
describe most characters in human writing systems. Set
with --encoding or -E. See also ASCII.

variable
An identifier or name that may be assigned to an object
which in turn may hold a quantity or a value. See also class
variable, global variable, instance variable, local variable.

XML
An abbreviation for Extensible Markup Language. A lan‐
guage specified by the W3C that enables you to create
vocabularies using elements and other markup. Ruby uses
REXML, Builder, and libxml to process XML.

208 | Glossary

http://www.unicode.org
http://www.unicode.org
http://www.w3c.org

Index

Symbols
! (exclamation mark)

!= (not equal to) operator, 18
!~ (not match) operator, 18,

107
logical negation operator, 17,

42
method names ending in, 34

(hash character)
#! shebang line, 7, 12
in Ruby comments, 19

$ (dollar sign)
$ predefined variable, 26, 27
$! predefined variable, 25
$$ predefined variable, 27
$& predefined variable, 26
$* predefined variable, 27
$+ predefined variable, 26
$, output field separator

between arguments, 27
$-0 predefined variable, 28
$-a predefined variable, 28
$-d predefined variable, 28
$-F predefined variable, 28
$-i predefined variable, 29
$-I predefined variable, 29
$-l predefined variable, 29

$-p predefined variable, 29
$-v predefined variable, 29
$-w predefined variable, 29
$. predefined variable, 27
$/ predefined variable, 26
$0 predefined variable, 27
$1, $2... predefined variable,

26
$: predefined variable, 27
$; predefined variable, 27
$< predefined variable, 27
$= predefined variable, 26
$> predefined variable, 27
$? predefined variable, 27
$@ predefined variable, 25
$DEBUG predefined variable,

28
$FILENAME predefined vari‐

able, 28
$LOADED_FEATURES pre‐

defined variable, 28
$LOAD_PATH predefined

variable, 28, 59
$stderr predefined variable,

28, 70
$stdin predefined variable, 28,

70

209

$stdout predefined variable,
28, 70

$VERBOSE predefined vari‐
able, 28

$_ predefined variable, 27
$` predefined variable, 26
$~ predefined variable, 26
end-of-line matching in regu‐

lar expressions, 108
prefixing global variable

names, 23
% (percent sign)

%1 (substitution variable), 13
%= (modulus assignment)

operator, 18
modulo (remainder) operator,

17
& (ampersand)

&& (logical and) operator, 18
&& combining multiple tests

of if statement, 42
&&= (logical and assignment)

operator, 18
&= (bitwise and assignment)

operator, 18
Array instance method, 150
bitwise and operator, 17
preceding method argument

names, 40
() (parentheses)

grouping in regular expres‐
sions, 108

in method definitions and
calls, 33

* (asterisk)
* method, 150
** (exponentiation) operator,

17
**= (exponentiation assign‐

ment) operator, 18
*= (multiplication assign‐

ment) operator, 18

*? repetition operator in regu‐
lar expressions, 113

multiplication operator, 17
preceding variable arguments,

36
repetition operator in regular

expressions, 109, 113
* (splat), 36
+ (plus sign)

+= (add assignment) opera‐
tor, 18

+? repetition operator in reg‐
ular expressions, 113

addition operator, 17
Array instance method, 150
positive unary operator, 17
repetition operator in regular

expressions, 109, 113
- (minus sign)

-= (subtraction assignment)
operator, 18

Array class method, differ‐
ence between arrays, 150

negative unary operator, 17
subtraction operator, 17

. (period)
.. inclusive and ... exclusive

range operators, 18, 31
matching any character in

regular expressions, 109
/ (slash)

/= (division assignment)
operator, 18

division operator, 17
: (colon)

in symbol names, 24
< > (angle brackets)

< (less than) operator, 18, 59
<< (left shift) operator, 17
<< method, 71, 150
<<= (left-shift assignment)

operator, 18

210 | Index

<= (less than or equal to)
operator, 18

<=> (spaceship) operator, 18
<=> method, 150
> (greater than) operator, 18
>= (greater than or equal to)

operator, 18
>> (right shift) operator, 17
>>= (right-shift assignment)

operator, 18
= (equals sign)

== (equality) operator, 18
== method, 76, 150, 168
=== (equality) operator, 18
=== method, 31, 76
=> in a rescue clause,access‐

ing exception messages,
25

=>, Hash class method, 166
=~ (match) operator, 18
=~ method, 76, 106
assignment operator, 18
method names ending in, 35
setter method name ending

with, 54
? (question mark)

?: (conditional) operator, 50
?: (ternary) operator, 18
method names ending in, 34
repetition operator in regular

expressions, 109
@ (at sign)

@@, prefixing class variable
names, 56

prefixing instance variable
names, 52

[] (square brackets)
Array class method, 148, 151
Hash class method, 166
regular expression character

classes, 109
[]= method, 151, 168

\ (backslash)

escape characters, 103
literal characters in regular

expressions, 109
^ (caret)

beginning-of-line matching in
regular expressions, 108

bitwise exclusive or operator,
18

negating character classes in
regular expressions, 109

^= (bitwise xor assignment)
operator, 18

_ (underscore)
in local variable names, 23

{ } (curly braces)
enclosing blocks, 37
quantifiers in regular expres‐

sions, 109
| (vertical bar)

alternation in regular expres‐
sion pattern matching,
108

Array class method, 150
bitwise or operator, 18
|= (bitwise or assignment)

operator, 18
|| (logical or) operator, 18, 42

~ (tilde), complement operator,
17

A
abstract classes, 59
accessors, 54, 191
alias keyword, 37
aliasing, 37, 191
anchors, regular expression, 108,

110
anonymous classes, 60
ARGF, 66, 191
argument

block arguments, 33
defined, 191

arguments, parameters vs., 33

Index | 211

ARGV, 65, 191
array, 191
Array class, 147-165

array class methods, 149
array instance methods,

150-165
creating arrays, 147-149

ASCII, 192
assoc command (Windows), 13

B
base three operator, 50
BasicObject class, 51, 75

public instance methods, 75
block arguments, 33
block comment (see comment)
blocks, 37-39

defined, 192
yield statement and, 38-39

build tool, 185

C
C extensions, 192
C++

exception handling, 72
carriage return (see newline)
case statement, 47-49
catch method, 74
character class metacharacters,

110
character classes, regular expres‐

sion, 109
character encoding, 105
character shorthands, regular

expression, 108, 110
child class, 192
class methods, 56

singletons, 57
class variable, 193
class variables, 23, 56
classes, 51-63

abstract classes, 59

accessors, 54
anonymous classes, 60
BasicObject class, 75
class methods, 56
class variables, 56
defined, 192
inheritance, 59
instance variables, 52
IO class, 69-72
modules and mixins, 62
Object class, 76-82
public, private, protected, 61
reopening a Ruby class, 52
singletons, 57

closures, 37, 193
coding comment, 193
comments, 19, 193
composability, 193
concatenation, 100, 193
conditional expression (see con‐

ditional operator)
conditional operator, 50, 194
conditional statements, 41-50

and conditional operators, 50
case statement, 47-49
defined, 194
executing code before or after

a program, 50
flow control, 41
for loop, 49
if statements, 42-43
unless statements, 44
until statement, 46
while statements, 45

constant
global, 30

constants, 24, 194

D
data structure, 194
database, 194
default, 194
default arguments, 35

212 | Index

delegation, 194
deleting files, 66
documentation, Ruby, 176-183
duck typing, 22

E
each, 195
else statement, 43
elseif statements, 43
embedded document (see com‐

ment)
embedded Ruby (see ERB)
encoding, 105, 196
ensure clause, 73
enumerable module, 195
enumerator, 195
ERB, 195
error, 195
eRuby (see ERB)
escape characters, 103
exception, 196
exception handling, 72-74

catch and throw methods, 74
ensure clause, 73
raise method, 73
rescue clause, 73

expression, 196
expression substitution, 100, 196
extension, C (see C extensions)
extension, file, 196

F
file mode, 196
file type associations

on Windows, 13-14
files, 64-69

creating, 64
deleting, 66
inquiries, 67
modes, 68
opening, 65

outputting with ARGV and
ARGF, 65

ownership, 68
renaming, 66

flip-flop expression, 32
float, 197
flow control statements, 41
for loop, 49
Fowler, Martin, 185
ftype command (Windows), 13

G
garbage collection (GC), 197
gems (see RubyGems)
general delimited strings, 101, 197
getter method, 53, 197
Git, 197
GitHub, 197
global constants, 30
global variables, 198

predefined, 25-29
graphical user interface (see GUI)
greedy match, 112
grouping, regular expression, 108
GUI, 198

H
hash, 198
hash class, 165-173

creating hashes, 166-167
hash class methods, 167
hash instance methods,

168-173
hash code, 198
here document (heredoc), 102,

198
hexadecimal, 198
Homebrew, 5

I
I/O, 199
if statements, 42-43

Index | 213

else statements, 43
elseif statements, 43
multiple tests for, 42
negation, 42
statement modifier, 43

index, 147, 198
inheritance, 59, 199

load path, 59
initialize method, 52
instance, 199
instance variables, 52, 199
Interactive Ruby (irb)

associating file types on Win‐
dows, 8-14

using a shebang comment on
Unix/Linux, 12

IO class, 69-72
Ishitsuka, Keiju, 8

J
Java

exception handling, 72

K
Kernel module, 82-98
key, 199
keyword literals, 29
keywords, 14-17, 199

L
lambda, 40, 199
lazy match, 112
library (see standard library)
line-end character (see newline)
linefeed (see newline)
Linux

using shebang comment on,
12

load path, 59
loops

defined, 200
for, 49

M
magic comments (see coding

comment)
main, 200
match, 200
Matsumoto, Yukihiro "Matz", 1
member, 200
metaprogramming, 200
methods, 32-41

aliasing, 37
block arguments, 33
blocks, 37-39
class methods, 56
default arguments, 35
defined, 201
name conventions, 34
procs, 39
return values, 34
variable arguments, 36
yield statements and, 38-39

mixin, 201
mode, file (see file mode)
modules, 62, 201
modulo, 201
multiple inheritance, 201
mutability, of constants, 24

N
name collision, 201
nameless functions, 37
namespace, 202
negation operator, 42
nested calls, 33
newline, 202
nil, 202
numbers, in Ruby, 20-21

O
object, 202
Object class, 76-82
object-oriented programming,

202

214 | Index

octal, 202
OOP (see object-oriented pro‐

gramming)
operators, 17-19, 203
overloading, 203
overriding, 203

P
package (see RubyGems)
parameters, arguments vs., 33
parent class (see superclass)
parentheses, 33
paths

defined, 203
load path, 59

pattern, 203
pop, 203
POSIX bracket expressions, 111
possessive match, 113
precision, 204
predefined global variables, 25-29
private classes, 61, 204
proc, 204
procs (procedures), 39
protected classes, 61, 204
public classes, 61, 204
push, 204

Q
quantifiers, regular expression,

112

R
Rails (see Ruby on Rails)
raise method, 73
Rake, 185-188, 205
random number, 205
ranges, 31, 205
rational number, 205
rbenv, 5
RDoc, 176-183, 204
receiver, 205

reflection, 205
regular expressions, 106-120, 205

anchors, 110
back references, 119
character classes, 109
character properties, 113
character shorthands, 110
encoding overrides, 118
extended groups, 118
modifiers (options), 117
POSIX bracket expressions,

111
quantifiers, 112
reference tables, 109-120
special global variables, 118
subexpression calls, 120
Unicode character categories,

114
Unicode scripts, 116

reluctant match, 112
renaming files, 66
repetition metacharacter, regular

expression, 112
repetition operator, regular

expression, 109, 112
rescue clause, 73
reserved words, 14 (see keyword)
return values, 34
RoR, 205
Ruby documentation, 176-183
Ruby on Rails (RoR), 206
Ruby Version Manager (RVM), 5
RubyForge, 206
RubyGems, 183-184, 206
running Ruby, 5-7

S
self, 206
setter method, 35, 53, 206
shebang comment

on Unix/Linux, 12
single inheritance, 51, 206
singletons, 57, 206

Index | 215

splat (*), 36
standard library, 206
statement modifier

for unless, 44
for until statement, 47
for while statements, 46
if, 43

statements
defined, 207
flow control, 41

static methods, 57
Stephenson, Sam, 183
string, 207
String class, 98-147

character encoding, 105
encoding, 105
escape characters, 103
expression substitution, 100
general delimited strings, 101
here documents, 102
regular expressions, 106-120
string concatenation, 100
string literals, 99
String methods, 120-147

string interpolation, 101
string literals, 99
String methods, 120-147

public class methods, 120
public instance methods,

121-147
subscript, 147
substitution (see expression sub‐

stitution)
superclass, 207
symbols, 24

T
Tcl/Tk, 207
ternary operator, 50
thread, 207
throw method, 74
time formatting directives,

173-175

U
Unicode

character categories, 114
defined, 207
scripts, 116

Unix
using shebang comment on,

12
unless statements, 44

statement modifier for, 44
until statement, 46

statement modifier for, 47
UTF-8, 208

V
variable arguments, 36
variable(s), 22-24

class variables, 23, 56
defined, 22, 208
global variables, 23
instance variables, 23, 52
local variables, 23
parallel assignment, 24
predefined global, 25-29

W
Weirich, Jim, 183
while statements, 45

statement modifier for, 46
Windows

file type associations on,
13-14

X
XML, 208

Y
yield statements, 38-39

216 | Index

About the Author
Michael Fitzgerald is an author, coder, and novelist who has
written over 20 books. In addition to English, his technical
works have been translated into Spanish, Portuguese, French,
German, Polish, Korean, Japanese, and Chinese. When he’s not
writing, he likes to spend time on skis, riding horses, running,
and with his family. You can connect with him at michaeljames
fitzgerald.com.

Colophon
The animals on the cover of Ruby Pocket Reference are giraffes
(Giraffa camelopardalis), the tallest of all land animals. A giraffe
can reach 16 to 18 feet in height and weigh up to 3,000 pounds.
Its species name, camelopardalis, is derived from an early
Roman name, which described the giraffe as resembling both a
camel and a leopard. The spots that cover its body act as cam‐
ouflage in the African savanna. Its long neck and tough, pre‐
hensile tongue allow it to feed in treetops, consuming about
140 pounds of leaves and twigs daily. And its complex cardio‐
vascular system and 24-pound heart regulate circulation
throughout its tremendous body: in the upper neck, a pressure-
regulation system prevents excess blood flow to the brain when
the giraffe lowers its head to drink, while thick sheaths of skin
on the lower legs maintain high extravascular pressure to com‐
pensate for the weight of the fluid pressing down on them.

Giraffes travel in herds comprised of about a dozen females,
one or two males, and their young. Other males may travel
alone, in pairs, or in bachelor herds. Male giraffes determine
female fertility by tasting the female’s urine to detect estrus. Yet
sexual relations in male giraffes are most frequently homosex‐
ual: the proportion of same-sex courtships varies between 30
and 75 percent. Among females, homosexual mounting
appears to comprise only 1 percent of all incidents. Gestation
lasts between 14 and 15 months, after which a single calf is

http://michaeljamesfitzgerald.com
http://michaeljamesfitzgerald.com

born. Only 25 to 50 percent of calves reach adulthood, as the
giraffe’s predators—including lions, leopards, hyenas, and Afri‐
can wild dogs—mainly prey on young.

Giraffes use their long necks and keen sense of smell, hearing,
and eyesight to guard against attacks. They can reach speeds of
up to 30 miles per hour and fight off predators using their mus‐
cular hind legs. A single kick from an adult giraffe can shatter a
lion’s skull. Giraffes were once hunted for their skin and tail but
are currently a protected species.

Many of the animals on O’Reilly covers are endangered; all of
them are important to the world. To learn more about how you
can help, go to animals.oreilly.com.

The cover image is from loose plates (original source
unknown). The cover fonts are URW Typewriter and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s
Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Ruby Pocket Reference
	Introduction
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Running Ruby
	Running the Ruby Interpreter

	Interactive Ruby (irb)
	Using a Shebang Comment on Unix/Linux
	Associating File Types on Windows

	Ruby’s Keywords
	Ruby’s Operators
	Comments
	Numbers
	Variables
	Local Variables
	Instance Variables
	Class Variables
	Global Variables
	Constants
	Parallel Variable Assignment

	Symbols
	Predefined Global Variables
	Keyword Literals
	Global Constants
	Ranges
	Methods
	Block Arguments
	Return Values
	Method Name Conventions
	Default Arguments
	Variable Arguments
	Aliasing Methods
	Blocks
	Procs

	Conditional Statements
	Flow Control
	The if Statement
	The unless Statement
	The while Statement
	The until Statement
	The case Statement
	The for Loop
	The Conditional Operator
	Executing Code Before or After a Program

	Classes
	Reopening a Ruby Class
	Instance Variables
	Accessors
	Class Variables
	Class Methods
	Singletons
	Inheritance
	Abstract Classes
	Anonymous Classes
	Public, Private, and Protected
	Modules and Mixins

	Files
	Creating a New File
	Opening an Existing File
	ARGV and ARGF
	Renaming and Deleting Files
	File Inquiries
	File Modes and Ownership

	The IO Class
	Exception Handling
	The rescue and ensure Clauses
	The raise Method
	The catch and throw Methods

	BasicObject Class
	BasicObject Public Instance Methods

	Object Class
	Object Public Instance Methods

	Kernel Module
	String Class
	String Literals
	String Concatenation
	Expression Substitution
	General Delimited Strings
	Here Documents
	Escape Characters
	Character Encoding
	Regular Expressions
	String Methods

	Array Class
	Creating Arrays
	Array Class Methods
	Array Instance Methods

	Hash Class
	Creating Hashes
	Hash Class Methods
	Hash Instance Methods

	Time Formatting Directives
	Ruby Documentation
	RubyGems
	Rake
	Ruby Resources

	Glossary
	Index

