

Advance Praise for Head First iPhone Development

“The great thing about this book is its simple, step-by-step approach. It doesn’t try to teach everything—it
just launches you right into building iPhone applications in a friendly, conversational way. It’s a fantastic
book for people who already know how to write code and just want to get straight into the meat of
building iPhone applications.”

— Eric Shephard, owner of Syndicomm

“Head First iPhone Development was clearly crafted to get you easily creating, using and learning iPhone
technologies without needing a lot of background with Macintosh development tools.”

— Joe Heck, Seattle Xcoders founder

“This book is infuriating! Some of us had to suffer and learn iPhone development ‘the hard way,’ and
we’re bitter that the jig is up.”

— Mike Morrison, Stalefish Labs founder

“Head First iPhone Development continues the growing tradition of taking complex technical subjects and
increasing their accessibility without reducing the depth and scope of the content. iPhone Development
is a steep learning curve to climb by any measure, but with Head First iPhone Development, that curve is
accompanied with pre-rigged ropes, a harness, and an experienced guide! I recommend this book for
anyone who needs to rapidly improve their understanding of developing for this challenging and exciting
platform.”

— Chris Pelsor, snogboggin.com

Praise for other Head First books

“Head First Object Oriented Analysis and Design is a refreshing look at subject of OOAD. What sets this book
apart is its focus on learning. The authors have made the content of OOAD accessible, usable for the
practitioner.”

— Ivar Jacobson, Ivar Jacobson Consulting

“I just finished reading HF OOA&D and I loved it! The thing I liked most about this book was its focus
on why we do OOA&D-to write great software!”

— Kyle Brown, Distinguished Engineer, IBM

“Hidden behind the funny pictures and crazy fonts is a serious, intelligent, extremely well-crafted
presentation of OO Analysis and Design. As I read the book, I felt like I was looking over the shoulder
of an expert designer who was explaining to me what issues were important at each step, and why.”

— Edward Sciore, Associate Professor, Computer Science Department,
Boston College

“All in all, Head First Software Development is a great resource for anyone wanting to formalise their
programming skills in a way that constantly engages the reader on many different levels.”

— Andy Hudson, Linux Format

“If you’re a new software developer, Head First Software Development will get you started off on the right foot.
And if you’re an experienced (read: long-time) developer, don’t be so quick to dismiss this...”

— Thomas Duff, Duffbert’s Random Musings

“There’s something in Head First Java for everyone. Visual learners, kinesthetic learners, everyone can
learn from this book. Visual aids make things easier to remember, and the book is written in a very
accessible style—very different from most Java manuals…Head First Java is a valuable book. I can see the
Head First books used in the classroom, whether in high schools or adult ed classes. And I will definitely
be referring back to this book, and referring others to it as well.”

— Warren Kelly, Blogcritics.org, March 2006

Praise for other Head First books

“Another nice thing about Head First Java, 2nd Edition is that it whets the appetite for more. With later
coverage of more advanced topics such as Swing and RMI, you just can’t wait to dive into those APIs
and code that flawless, 100000-line program on java.net that will bring you fame and venture-capital
fortune. There’s also a great deal of material, and even some best practices, on networking and threads—
my own weak spot. In this case, I couldn’t help but crack up a little when the authors use a 1950s
telephone operator—yeah, you got it, that lady with a beehive hairdo that manually hooks in patch
lines—as an analogy for TCP/IP ports... you really should go to the bookstore and thumb through Head
First Java, 2nd Edition. Even if you already know Java, you may pick up a thing or two. And if not, just
thumbing through the pages is a great deal of fun.”

— Robert Eckstein, Java.sun.com, April 2005

“Of course it’s not the range of material that makes Head First Java stand out, it’s the style and approach.
This book is about as far removed from a computer science textbook or technical manual as you can get.
The use of cartoons, quizzes, fridge magnets (yep, fridge magnets …). And, in place of the usual kind of
reader exercises, you are asked to pretend to be the compiler and compile the code, or perhaps to piece
some code together by filling in the blanks or … you get the picture... The first edition of this book was
one of our recommended titles for those new to Java and objects. This new edition doesn’t disappoint
and rightfully steps into the shoes of its predecessor. If you are one of those people who falls asleep with
a traditional computer book then this one is likely to keep you awake and learning.”

— TechBookReport.com, June 2005

“Head First Web Design is your ticket to mastering all of these complex topics, and understanding what’s
really going on in the world of web design...If you have not been baptized by fire in using something as
involved as Dreamweaver, then this book will be a great way to learn good web design. ”

— Robert Pritchett, MacCompanion, April 2009 Issue

“Is it possible to learn real web design from a book format? Head First Web Design is the key to designing
user-friendly sites, from customer requirements to hand-drawn storyboards to online sites that work
well. What sets this apart from other ‘how to build a web site’ books is that it uses the latest research
in cognitive science and learning to provide a visual learning experience rich in images and designed
for how the brain works and learns best. The result is a powerful tribute to web design basics that any
general-interest computer library will find an important key to success.”

— Diane C. Donovan, California Bookwatch: The Computer Shelf

“I definitely recommend Head First Web Design to all of my fellow programmers who want to get a grip on
the more artistic side of the business. ”

— Claron Twitchell, UJUG

Other related books from O’Reilly

iPhone SDK Development

Programming the iPhone User Experience

iPhone Game Development

Best iPhone Apps

iPhone SDK Application Development

iPhone Open Application Development

Other books in O’Reilly’s Head First series

Head First C#

Head First Java

Head First Object-Oriented Analysis and Design (OOA&D)

Head First HTML with CSS and XHTML

Head First Design Patterns

Head First Servlets and JSP

Head First EJB

Head First SQL

Head First Software Development

Head First JavaScript

Head First Physics

Head First Statistics

Head First Ajax

Head First Rails

Head First Algebra

Head First PHP & MySQL

Head First PMP

Head First Web Design

Head First Networking

Beijing • Cambridge • K�ln • Sebastopol • Taipei • Tokyo

Dan Pilone
Tracey Pilone

Head First iPhone
Development

Wouldn’t it be dreamy if
there was a book to help me
learn how to develop iPhone
apps that was more fun than

going to the dentist? It’s
probably nothing but a

fantasy…

Head First iPhone Development
by Dan Pilone and Tracey Pilone

Copyright © 2010 Dan Pilone and Tracey Pilone. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates

Series Editor: Brett D. McLaughlin

Editors: Brett D. McLaughlin, Courtney Nash

Design Editor: Mark Reese

Cover Designer: Karen Montgomery

Production Editor: Scott DeLugan

Indexer: Angela Howard

Proofreader: Colleen Toporek

Page Viewers: Vinny and Nick

Printing History:
October 2009: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations,
Head First iPhone Development, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No PCs were harmed in the making of this book.

ISBN: 978-0-596-80354-4

[M]

Vinny

Nick

To Dan, my best friend and husband, and Vinny and Nick, the best
boys a mother could ask for.

—Tracey

This book is dedicated to my family: my parents who made all of
this possible, my brothers who keep challenging me, and my wife
and sons, who don’t just put up with it—they help make it happen.

—Dan

viii

Dan Pilone is a Software Architect for
Vangent, Inc., and has led software development
teams for the Naval Research Laboratory, UPS,
Hughes, and NASA. He’s taught graduate and
undergraduate Software Engineering at Catholic
University in Washington, D.C.

Dan’s previous Head First books are Head First
Software Development and Head First Algebra, so he’s
used to them being a little out of the ordinary, but
this is the first book to involve bounty hunters.
Even scarier was watching Tracey shift to become
a night owl and Apple fan-girl to get this book
done.

Dan’s degree is in Computer Science with a
minor in Mathematics from Virginia Tech and he
is one of the instructors for the O’Reilly iPhone
Development Workshop.

Tracey Pilone would first like to thank her
co-author and husband for sharing another book
and being relentless in his willingness to stay up
late to get things right.

She is a freelance technical writer who supports
mission planning and RF analysis software for the
Navy, and is the author of Head First Algebra.

Before becoming a writer, she spent several years
working as a construction manager on large
commercial construction sites around Washington,
D.C. There she was part of a team responsible for
coordinating the design and construction of office
buildings, using engineering and management
skills that somehow all came in handy writing
Head First books.

She has a Civil Engineering degree from Virginia
Tech, holds a Professional Engineer’s License,
and received a Masters of Education from the
University of Virginia.

the authors

Dan

Tracey

ix

table of contents

 Intro xxi

1 Getting Started: Going mobile 1

2 iPhone App Patterns: Hello @twitter 37

3 Objective-C for the iPhone: Twitter needs variety 89

4 Multiple Views: A table with a view 131

5 plists and Modal Views: Refining your app 185

6 Saving, Editing, and Sorting Data: Everyone’s an editor... 239

7 Tab Bars and Core Data: Enterprise apps 303

8 Migrating and Optimizing with Core Data: Things are changing 377

9 Camera, Map Kit, and Core Location: Proof in the real world 431

i Leftovers: The top 6 things (we didn’t cover) 487

ii Preparing Your App for Distribution: Get ready for the App Store 503

Table of Contents (the real thing)

Your brain on iPhone Development. Here you are trying to

learn something, while here your brain is doing you a favor by making sure the

learning doesn’t stick. Your brain’s thinking, “Better leave room for more important

things, like which wild animals to avoid and whether naked snowboarding is a

bad idea.” So how do you trick your brain into thinking that your life depends on

knowing enough to develop your own iPhone apps?

Intro

Who is this book for? xxii

We know what you’re thinking xxiii

Metacognition: thinking about thinking xxv

Here’s what YOU can do to bend your brain into submission xxvii

Read me xxviii

The technical review team xxx

Acknowledgments xxxi

Table of Contents (Summary)

x

table of contents

Going mobile1 The iPhone changed everything.
It’s a gaming platform, a personal organizer, a full web browser, oh yeah,

and a phone. The iPhone is one of the most exciting devices to come out

in some time, and with the opening of the App Store, it’s an opportunity for

independent developers to compete worldwide with big named software

companies. All you need to release your own app are a couple of software

tools, some knowledge, and enthusiasm. Apple provides the software and

we’ll help you the knowledge; we’re sure you’ve got the enthusiasm covered.

getting started

There’s a lot of buzz and a lot of money tied up in the App Store... 2

Mobile applications aren’t just ported desktop apps 3

Anatomy of an iPhone app 5

Mike can’t make a decision 6

Make a good first impression 7

It all starts with the iPhone SDK 8

Xcode includes app templates to help you get started 10

Xcode is the hub of your iPhone project... 12

...and plays a role in every part of writing your app 13

Build your interface using... Interface Builder 14

Add the button to your view 16

The iPhone Simulator lets you test your app on your Mac 17

What happened? 22

Use Interface Builder to connect UI controls to code 23

Interface Builder lists which events a component can trigger 24

Elements dispatch events when things happen to them 24

Connect your events to methods 25

Your iPhone Toolbox 35

What
should I
do?

xi

table of contents

Hello @twitter!
Apps have a lot of moving parts.
OK, actually, they don’t have any real moving parts, but they do have lots of UI

controls. A typical iPhone app has more going on than just a button, and now it’s time

to build one. Working with some of the more complicated widgets means you’ll need

to pay more attention than ever to how you design your app as well. In this chapter,

you’ll learn how to put together a bigger application and some of the fundamental

design patterns used in the iPhone SDK.

iPhone app patterns

First we need to figure out what Mike (really) wants 39

App design rules—the iPhone HIG 44

HIG guidelines for pickers and buttons 47

Create a new View-based project for Insta-Twit 48

The life of a root view 52

First, get the data from Mike 55

Use pickers when you want controlled input 56

Fill the picker rows with Mike’s data 57

Pickers get their data from a datasource... 58

There’s a pattern for that 59

First, declare that the controller conforms to both protocols 64

The datasource protocol has two required methods 66

Connect the datasource just like actions and outlets 67

There’s just one method for the delegate protocol 68

The button needs to be connected to an event 72

Connect the picker to our outlet 78

Use our picker reference to pull the selected values 79

Your iPhone Toolbox 87

2

xii

table of contents

3 Twitter needs variety
We did a lot in Chapter 2, but what language was that?�
Parts of the code you’ve been writing might look familiar, but it’s time you got a sense

of what’s really going on under the hood. The iPhone SDK comes with great tools

that mean that you don’t need to write code for everything, but you can’t write entire

apps without learning something about the underlying language, including properties,

message passing, and memory management. Unless you work that out, all your

apps will be just default widgets! And you want more than just widgets, right?

objective-c for the iPhone

Messages going
here between
textField and
the controller.

Renee is catching on.... 90

Make room for custom input 91

Header files describe the interface to your class 93

Auto-generated accessors also handle memory management 99

To keep your memory straight, you need to remember just two things 101

But when Mike’s finished typing... 111

Customize your UITextField 113

Components that use the keyboard ask it to appear... 114

Ask the textField to give up focus 115

Messages in Objective-C use named arguments 117

Use message passing to tell our view controller when the Done button is pressed 118

Something’s still not right 122

Your Objective-C Toolbox 129

xiii

table of contents

So, how do these views fit together? 135

The navigation template pulls multiple views together 136

The navigation template starts with a table view 137

A table is a collection of cells 140

Just a few more drinks 148

Plists are an easy way to save and load data 150

Arrays (and more) have built-in support for plists 153

Use a detail view to drill down into data 156

A closer look at the detail view 157

Use the navigation controller to switch between views 167

Navigation controllers maintain a stack of views 168

Dictionaries store information as key-value pairs 172

Debugging—the dark side of iPhone development 175

First stop on your debugging adventure: the console 176

Interact with your application while it’s running 177

Xcode supports you after your app breaks, too 178

The Xcode debugger shows you the state of your application 179

What the heck is going on? 181

Your iPhone Toolbox 183

4 A table with a view
Most iPhone apps have more than one view.
We’ve written a cool app with one view, but anyone who’s used an iPhone knows

that most apps aren’t like that. Some of the more impressive iPhone apps out there

do a great job of moving through complex information by using multiple views. We’re

going to start with navigation controllers and table views, like the kind you see in

your Mail and Contact apps. Only we’re going to do it with a twist...

multiple views

Look, I don’t have time for posting to

Twitter. I need to know a ton of drink recipes every

night. Is there an app for that?

xiv

table of contents

5 Refining your app
So you have this almost-working app...
That’s the story of every app! You get some functionality working, decide to add

something else, need to do some refactoring, and respond to some feedback from

the App Store. Developing an app isn’t always ever a linear process, but there’s a lot to

be learned in that process.

plists and modal views

Anatomy of a
crash

Dictionary

name =
Cupid’s
Cocktail
ingredients
= Cherry
liqueur,
peach ...
directions
= Shake

It all started with Sam... 186

Use the debugger to investigate the crash 188

Update your code to handle a plist of dictionaries 191

The detail view needs data 194

Each dictionary has all the information we need 195

We have a usability problem 201

Use a disclosure indicator if your cell leads to more information 203

Sales were going strong... 206

Use navigation controller buttons for editing 211

The button should create a new view 215

We need a view... but not necessarily a new view 216

The view controller defines the behavior for the view 217

A nib file contains the UI components and connections... 218

You can subclass and extend views like any other class 219

Modal views focus the user on the task at hand... 224

Any view can present a modal view 225

Our view doesn’t have a navigation bar 230

Create the save and cancel buttons 232

Write the save and cancel actions 233

Your iPhone Toolbox 237

xv

table of contents

6 Everyone’s an editor...
Displaying data is nice, but adding and editing information
is what makes an iPhone app really rock. DrinkMixer is great—it uses

some cell customization, and works with plist dictionaries to display data. It’s a handy

reference application, and you’ve got a good start on adding new drinks. Now, it’s time to

give the user the ability to modify the data—saving, editing, and sorting—to make it more

useful for everyone. In this chapter we’ll take a look at editing patterns in iPhone apps and

how to guide users with the nav controller.

saving, editing, and sorting data

NSNotification
object

Sam is ready to add a Red-Headed School Girl... 240

...but the keyboard is in the way 241

We need to wrap our content in a scroll view 243

The scroll view is the same size as the screen 245

The keyboard changes the visible area 248

iPhone notifies you about the keyboard 250

Register with the default notification center for events 251

Keyboard events tell you the keyboard state and size 257

The table view doesn’t know its data has changed 276

You need to ask the table view to reload its data 276

The array is out of order, too 280

Table views have built-in support for editing and deleting 288

Your iPhone Development Toolbox 301

xvi

table of contents

7 Enterprise apps
Enterprise apps mean managing more data in different
ways. Companies large and small are a significant market for iPhone apps. A small

handheld device with a custom app can be huge for companies that have staff on

the go. Most of these apps are going to manage lots of data, and iPhone 3.x has

built in Core Data support. Working with that and another new controller, the tab bar

controller, we’re going to build an app for justice!

tab bars and core data

Fugitive

HF bounty hunting 304

Choose a template to start iBountyHunter 308

Drawing how iBountyHunter works... 310

Build the fugitive list view 316

Next up: the captured view 318

After a quick meeting with Bob... 327

Core Data lets you focus on your app 329

Core Data needs to know what to load 330

Core Data describes entities with a Managed Object Model 333

Build your Fugitive entity 334

Whip up a Fugitive class without writing a line 341

Use an NSFetchRequest to describe your search 344

Add the database as a resource 354

The template sets things up for a SQLite DB 355

The iPhone’s application structure defines where you can read and write 358

Copy the database to the correct place 359

To be continued... 373

Your Core Data Toolbox 375

xvii

table of contents

8 Things are changing
We have a great app in the works. iBountyHunter successfully loads the

data that Bob needs and lets him view the fugitives in an easy way. But what about when

the data has to change? Bob wants some new functionality, and what does that do to

the data model? In this chapter you’ll learn how to handle changes to your data model

and how to take advantage of more Core Data features.

migrating and optimizing with core data

captured
- Boolean
- NOT Optional

- NO by default

Bob needs documentation 378

Everything stems from our object model 381

The data hasn’t been updated 384

Data migration is a common problem 385

We need to migrate the old data into the new model 386

Xcode makes it easy to version the data model 387

Core Data can “lightly” migrate data 389

Bob has some design input 394

A quick demo with Bob 406

Use predicates for filtering data 408

We need to set a predicate on our NSFetchRequest 409

Core Data controller classes provide efficient results handling 416

Time for some high-efficiency streamlining 417

Next we need to change the search to use the controller... 417

Refactor viewWillAppear to use the controller 418

We need to refresh the data 423

Your Data Toolbox 429

xviii

table of contents

9 Proof in the real world
The iPhone knows where it is and what it sees. As any iPhone user

knows, the iPhone goes way beyond just managing data: it can also take pictures, figure

out your location, and put that information together for use in your app. The beauty about

incorporating these features is that just by tapping into the tools that iPhone gives you,

suddenly you can import pictures, locations, and maps without much coding at all.

camera, map kit, and core location

For Bob, payment requires proof ! 432

The way to the camera... 441

There’s a method for checking 451

Prompt the user with action sheets 452

Bob needs the where, in addition to the when 458

Core Location can find you in a few ways 464

Add a new framework 466

Just latitude and longitude won’t work for Bob 472

Map Kit is new with iPhone 3.0 473

A little custom setup for the map 474

Annotations require a little more finesse 479

Your extras Toolbox 485

It’s been great having you here! 486

xix

table of contents

The top 6 things (we didn’t cover)
appendix i, leftovers

Ever feel like something’s missing?� We know what
you mean... Just when you thought you were done, there’s more.

We couldn’t leave you without a few extra details, things we just couldn’t

fit into the rest of the book. At least, not if you want to be able to carry

this book around without a metallic case and castor wheels on the

bottom. So take a peek and see what you (still) might be missing out on.

#1. Internationalization and Localization 488

Localizing string resources 490

#2. UIWebView 492

#3. Device orientation and view rotation 494

Handling view rotations 495

Handling rotation with two different views 496

#4. View animations 497

#5. Accelerometer 498

Understanding the device acceleration 499

#6. A word or two about gaming... 500

Quartz and OpenGL 501

xx

table of contents

Get ready for the App Store
appendix ii, preparing your app for distribution

You want to get your app in the App Store, right?� So

far, we’ve basically worked with apps in the simulator, which is fine. But

to get things to the next level, you’ll need to install an app on an actual

iPhone or iPod Touch before applying to get it in the App Store. And the

only way to do that is to register with Apple as a developer. Even then,

it’s not just a matter of clicking a button in Xcode to get an app you wrote

on your personal device. To do that, it’s time to talk with Apple.

Apple has rules 504

The Provisioning Profile pulls it all together 505

Keep track in the Organizer 506

xxi

table of contents

how to use this book

Intro
I can’t believe they
put that in an iPhone
development book!

In this section, we answer the burning question:

“So why DID they put that in an iPhone development book?”

xxii intro

how to use this book

1

2

3

Who is this book for?

Who should probably back away from this book?

If you can answer “yes” to all of these:

If you can answer “yes” to any of these:

this book is for you.

this book is not for you.

[Note from marketing: this book is for anyone with a credit card. Or cash. Cash is nice, too - Ed]

Do you have previous development experience?

Do you want to learn, understand, remember, and
apply important iPhone design and development
concepts so that you can write your own iPhone apps,
and start selling them in the App Store?

Do you prefer stimulating dinner party conversation
to dry, dull, academic lectures?

1

2

3

Are you completely new to software development?

Are you already developing iPhone apps and looking for
a reference book on Objective-C?

Are you afraid to try something different? Would
you rather have a root canal than mix stripes with
plaid? Do you believe that a technical book can’t be
serious if there’s a bounty hunter in it?

It definitely helps if you’ve already got some object-oriented chops, too. Experience with Mac development is helpful, but definitely not required.

Check out Head First Java for an excellent introduction to object-oriented development, and then come back and join us in iPhoneville.

you are here 4 xxiii

the intro

Great. Only
540 more dull,

dry, boring pages.

We know what you’re thinking.

And we know what your brain is thinking.

“How can this be a serious iPhone development book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with
the brain’s real job—recording things that matter. It doesn’t bother
saving the boring things; they never make it past the “this is obviously
not important” filter.

How does your brain know what’s important? Suppose you’re out for a
day hike and a tiger jumps in front of you. What happens inside your
head and body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows...

This must be important! Don’t forget it!
But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone.
You’re studying. Getting ready for an exam. Or trying to learn some
tough technical topic your boss thinks will take a week, ten days at
the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying
to make sure that this obviously non-important content doesn’t clutter
up scarce resources. Resources that are better spent storing the really
big things. Like tigers. Like the danger of fire. Like how you should
never again snowboard in shorts.

And there’s no simple way to tell your brain, “Hey brain, thank you
very much, but no matter how dull this book is, and how little I’m
registering on the emotional Richter scale right now, I really do want
you to keep this stuff around.”

Your brain thinks THIS is important.

Your brain t
hinks

THIS isn’t worth
saving.

xxiv intro

how to use this book

So what does it take to learn something?� First, you have to get it, then make

sure you don’t forget it. It’s not about pushing facts into your head. Based on the

latest research in cognitive science, neurobiology, and educational psychology,

learning takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and

make learning much more effective (up to 89% improvement in recall and

transfer studies). It also makes things more understandable.

Put the words within or near the graphics

they relate to, rather than on the bottom or on another

page, and learners will be up to twice as likely to solve

problems related to the content.

Use a conversational and personalized style.

In recent studies, students performed up to 40% better on post-

learning tests if the content spoke directly to the reader, using a

first-person, conversational style rather than taking a formal tone.

Tell stories instead of lecturing. Use casual language. Don’t take

yourself too seriously. Which would you pay more attention to: a

stimulating dinner party companion, or a lecture?

Get the learner to think more deeply. In other words, unless you actively

flex your neurons, nothing much happens in your head. A reader has to be motivated,

engaged, curious, and inspired to solve problems, draw conclusions, and generate new

knowledge. And for that, you need challenges, exercises, and thought-provoking questions,

and activities that involve both sides of the brain and multiple senses.

Get—and keep—the reader’s attention. We’ve all had the “I

really want to learn this but I can’t stay awake past page one” experience.

Your brain pays attention to things that are out of the ordinary,

interesting, strange, eye-catching, unexpected. Learning a new, tough,

technical topic doesn’t have to be boring. Your brain will learn much

more quickly if it’s not.

Touch their emotions. We now know that your ability to remember

something is largely dependent on its emotional content. You remember

what you care about. You remember when you feel something. No, we’re not talking

heart-wrenching stories about a boy and his dog. We’re talking emotions like surprise,

curiosity, fun, “what the...?” , and the feeling of “I Rule!” that comes when you solve a puzzle,

learn something everybody else thinks is hard, or realize you know something that “I’m more

technical than thou” Bob from engineering doesn’t.

We think of a “Head First” reader as a learner.

This sucks.
Can’t we just

import the
list from Sam

somehow?

you are here 4 xxv

the intro

If you really want to learn, and you want to learn more quickly and more deeply,
pay attention to how you pay attention. Think about how you think. Learn how you
learn.

Most of us did not take courses on metacognition or learning theory when we were
growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn about
iPhone development. And you probably don’t want to spend a lot of time. And since
you’re going to build more apps in the future, you need to remember what you read.
And for that, you’ve got to understand it. To get the most from this book, or any book
or learning experience, take responsibility for your brain. Your brain on this
content.

The trick is to get your brain to see the new material you’re learning
as Really Important. Crucial to your well-being. As important as a
tiger. Otherwise, you’re in for a constant battle, with your brain doing
its best to keep the new content from sticking.

Metacognition: thinking about thinking

I wonder how I
can trick my brain
into remembering

this stuff...

So just how DO you get your brain to think that
iPhone development is a hungry tiger?
There’s the slow, tedious way, or the faster, more effective way.
The slow way is about sheer repetition. You obviously know that
you are able to learn and remember even the dullest of topics
if you keep pounding the same thing into your brain. With enough
repetition, your brain says, “This doesn’t feel important to him, but he keeps looking at
the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

xxvi intro

how to use this book

Here’s what WE did:

BULLET POINTS

We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s
concerned, a picture really is worth a thousand words. And when text and pictures work
together, we embedded the text in the pictures because your brain works more effectively
when the text is within the thing the text refers to, as opposed to in a caption or buried in the
text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area
of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain
is tuned to pay attention to the biochemistry of emotions. That which causes you to feel
something is more likely to be remembered, even if that feeling is nothing more than a little
humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening
to a presentation. Your brain does this even when you’re reading.

We included loads of activities, because your brain is tuned to learn and remember more
when you do things than when you read about things. And we made the exercises challenging-
yet-do-able, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while
someone else wants to understand the big picture first, and someone else just wants to see
an example. But regardless of your own learning preference, everyone benefits from seeing the
same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you
can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make evaluations and
judgments.

We included challenges, with exercises, and by asking questions that don’t always have
a straight answer, because your brain is tuned to learn and remember when it has to work at
something. Think about it—you can’t get your body in shape just by watching people at the
gym. But we did our best to make sure that when you’re working hard, it’s on the right things.
That you’re not spending one extra dendrite processing a hard-to-understand example,
or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because you’re a person.
And your brain pays more attention to people than it does to things.

you are here 4 xxvii

the intro

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

1

2

3

4

5 Drink water. Lots of it.
Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

Make this the last thing you read before
bed. Or at least the last challenging thing.

6

7

9 Create something!
Apply this to your daily work; use what you are
learning to make decisions on your projects. Just
do something to get some experience beyond the
exercises and activities in this book. All you need is
a pencil and a problem to solve… a problem that
might benefit from using the tools and techniques
you’re studying for the exam.

Listen to your brain.

8 Feel something!
Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke
is still better than feeling nothing at all.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you
won’t learn faster by trying to shove more in, and
you might even hurt the process.

Talk about it. Out loud.
Speaking activates a different part of the brain.
If you’re trying to understand something, or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

Part of the learning (especially the transfer to
long-term memory) happens after you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing time, some of what you
just learned will be lost.

Read the “There are No Dumb Questions”
That means all of them. They’re not optional
sidebars—they’re part of the core content!
Don’t skip them.

Do the exercises. Write your own notes.
We put them in, but if we did them for you,
that would be like having someone else do
your workouts for you. And don’t just look at
the exercises. Use a pencil. There’s plenty of
evidence that physical activity while learning
can increase the learning.

Slow down. The more you understand,
the less you have to memorize.
Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really is asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering.

Cut this out and stick it on your refrigerator.

Here’s what YOU can do to bend
your brain into submission

xxviii intro

how to use this book

Read me
This is a learning experience, not a reference book. We deliberately stripped out everything
that might get in the way of learning whatever it is we’re working on at that point in the
book. And the first time through, you need to begin at the beginning, because the book
makes assumptions about what you’ve already seen and learned.

We start off by building an app in the very first chapter.
Believe it or not, even if you’ve never developed for the iPhone before, you can jump right
in and starting building apps. You’ll also learn your way around the tools used for iPhone
development.

We don’t worry about preparing your app to submit to the App
Store until the end of book.
In this book, you can get on with the business of learning how to create iPhone apps
without stressing over the packaging and distribution of your app out of the gate. But, we
know that’s what everyone who wants to build an iPhone app ultimately wants to do, so we
cover that process (and all it’s glorious gotchas) in an Appendix at the end.

We focus on what you can build and test on the simulator.
The iPhone SDK comes with a great (and free!) tool for testing your apps on your
computer. The simulator lets you try out your code without having to worry about getting it
in the app store or on a real device. But, it also has its limits. There’s some cool iPhone stuff
you just can’t test on the simulator, like the accelerometer and compass. So we don’t cover
those kinds of things in very much detail in this book since we want to make sure you’re
creating and testing apps quickly and easily.

The activities are NOT optional.

The exercises and activities are not add-ons; they’re part of the core content of the book.
Some of them are to help with memory, some are for understanding, and some will help
you apply what you’ve learned. Don’t skip the exercises. Even crossword puzzles are
important—they’ll help get concepts into your brain the way you’ll see them on the PMP
exam. But more importantly, they’re good for giving your brain a chance to think about the
words and terms you’ve been learning in a different context.

The redundancy is intentional and important.
One distinct difference in a Head First book is that we want you to really get it. And we
want you to finish the book remembering what you’ve learned. Most reference books don’t
have retention and recall as a goal, but this book is about learning, so you’ll see some of the
same concepts come up more than once.

you are here 4 xxix

the intro

The Brain Power exercises don’t have answers.
For some of them, there is no right answer, and for others, part of the learning
experience of the Brain Power activities is for you to decide if and when your answers
are right. In some of the Brain Power exercises, you will find hints to point you in the
right direction.

System requirements
To develop for the iPhone, you need an Intel-based Mac, period. We wrote this book
using Snow Leopard and Xcode 3.2. If you are running Leopard with an older version
of Xcode, we tried to point out where there were places that would trip you up. For
some of the more advanced capabilities, like the accelerometer and the camera, you’ll
need an actual iPhone or iPod Touch and to be a registered developer. In Chapter 1,
we point you in the direction to get the SDK and Apple documentation, so don’t worry
about that for now.

xxx intro

The technical review team

the review team

Michael Morrison
Eric Shepherd

Technical Reviewers:

For this book we had an amazing, elite group of tech reviewers. They did a fantastic job, and we’re really grateful for
their incredible contribution.

Joe Heck is a software developer, technology manager, author, and instructor who’s been involved with computing for
25 years, and developing for the iPhone platform since the first beta release. Employed at the Walt Disney Interactive
Media Group, Joe is involved in various technologies and development platforms, and assisted the development team
for Disney’s iPhone game “Fairies Fly.” He’s the founder of the Seattle Xcoders developer group, which supports
Macintosh and iPhone development in the Seattle area, and the author of SeattleBus, an iPhone app that provides real-
time arrival and departure times of Seattle public transportation (available at the iPhone App Store). He also knows
a ton about iPhones, and made sure that we were technically solid in every facet of the book. His attention to detail
means that all of our nitty gritty answers are complete and correct.

Eric Shepherd got started programming at age nine and never looked back. He’s been a technical writer, writing
developer documentation since 1997, and is currently the developer documentation lead at Mozilla. In his spare time,
he writes software for old Apple II computers—because his day job just isn’t geeky enough—and spends time with
his daughter. Eric’s review feedback was hugely helpful. His input meant that any typos or bugs we left in the code
were caught and fixed. His thorough review means that no one else has to go through the problems he had in actually
making the code work.

Michael Morrison is a writer, developer, and author of Head First JavaScript, Head First PHP & MySQL, and even a
few books that don’t have squiggly arrows, stick figures, and magnets. Michael is the founder of Stalefish Labs (www.
stalefishlabs.com), an edutainment company specializing in games, toys, and interactive media, including a few
iPhone apps. Michael spends a lot of time wearing helmets, be it for skateboarding, hockey, or iPhone debugging. Since
he has iPhone Head First experience, Mike was a great combo to have helping us. Reviewing in both capacities, he was
nice enough to always propose a solution for us when he found a layout problem, which makes those comments easier
to take!

All three of these guys did a tremendous amount of review at the end in a short period of time and we really appreciate
it! Thanks so much!

Joe Heck

you are here 4 xxxi

the intro

Acknowledgments
Our editors:

Thanks to Courtney Nash, who was there from the beginning and
took us through to production, which normally is a long time, but not
for us! She pushed us to make sure that every step of the way the book
stayed true to its Head First title, even when it would’ve been WAY
easier not to. She knows the chapter we’re talking about.

And to Brett McLaughlin, who started us off on this book by
responding to an IM that said “What do you think about Head
First iPhone?” and got it turned into a book. He also played
the learner (complete with the occasional complaining) for us
throughout the book and was a big help in pacing the initial
chapters.

The O’Reilly team:

To Karen Shaner, who handled the tech review process, which got a little—
ahem—accelerated there at the end. And also to Laurie Petrycki, who
trusted us to do another Head First book less than a year after the last one.
Finally, to our design editor Mark Reese for his graphics and layout help.

Our friends and family:

To all of the Pilones and the Chadwicks, who put up with a lot being pushed until October while
we worked on the book and gave us the support we needed to become grown ups who can write this
stuff. To Dan’s brother, Paul, whose relentless “Seriously, Macs are awesome” mantra convinced Dan to
get one and find out what all this OS X development stuff is about.

To Vinny and Nick, who put up with a good bit of shuffling around the past couple of months so we
could get this done, and are totally going to get some major Mommy and Daddy time now. They both
want iPhones.

To our friends who listened to the whining about getting this thing done and who took the kids for a
couple hours here and there so we could get finished and encouraged us when we needed it!

Finally, to Apple, as silly as it sounds, because without the iPhone being such a unique and game-
changing device, there would be no book!

Brett McLaughlin
Mark Reese

Courtney Nash

xxxii intro

how to use this book

Safari® Books Online
Safari® Books Online is an on-demand digital library that lets you
easily search over 7,500 technology and creative reference books and
videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are available
for print, and get exclusive access to manuscripts in development and post feedback for the
authors. Copy and paste code samples, organize your favorites, download chapters, bookmark
key sections, create notes, print out pages, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full digital
access to this book and others on similar topics from O’Reilly and other publishers, sign up for
free at http://my.safaribooksonline.com.

this is a new chapter 1

getting started1

Going mobile

The iPhone changed everything. It’s a gaming platform, a personal

organizer, a full web-browser, oh yeah, and a phone. The iPhone is one of the most

exciting devices to come out in some time, and with the opening of the App Store, it’s an

opportunity for independent developers to compete worldwide with big-name software

companies. All you need to release your own app are a couple of software tools, some

knowledge, and enthusiasm. Apple provides the software, and we’ll help you with the

knowledge; we’re sure you’ve got the enthusiasm covered.

I just don’t see what all this
iPhone fuss is about. My phone
works just fine...

2 Chapter 1

everyone wants iphone apps

There’s a lot of buzz and a lot of money tied up in
the App Store...

The App Store is a HUGE success!

Developers have been submitting

apps to the Apple App Store for

the iPhone and the iPod Touch

in record numbers, and making

significant income.

Apps have been downloaded at

incredible rates, and users have

been enjoying new apps with really

creative ways of using the iPhone

unique’s interface.
Apple’s App Store celebrates 1st birthday

Apple launched its acclaimed App Store one year ago and since

has become the focus of trends, controversy, and lots and lots of

money. While many apps up for sale are free, many are not, and

the price for iPhone apps continues to rise. Developers have been leveraging the capabilities of the iPhone in

unexpected ways to bring fun and added utility to the device that

you buy from the store.
Even users of the iPod Touch can also download the apps to
their devices.
Many people try several new apps a day, and you can install
enough apps on your phone to fill several screens....

you are here 4 3

getting started

There are about a billion good reasons to get into the App Store, and
now it’s time for you to jump in. To get there from here, you’ll learn
about designing and implementing an iPhone app, but it’s not the
same as developing for the desktop, or writing a web application.

It’s important to think an iPhone application through from the
beginning. You need to constantly ask yourself “What is it the user is
trying to do?” Get rid of everything else, minimize the input they have
to provide, and keep it focused.

Check the factors that you need to consider when you’re working on a mobile app, in general.

Memory

App speed

Usage fees

Internet access

Display capabilities

User input tools (keyboard,
mouse, display, etc.)

Mobile applications aren’t just
ported desktop apps

This is NOT
the same
as this

Which of these factors are different for the iPhone?

4 Chapter 1

going mobile

iPhones have a small screen and are task-focused
Even with the iPhone’s fantastic screen, it’s still relatively small (320x480). You need to put
real thought into every screen and keep it focused on the specific task the user is doing.

iPhones have limited CPU and memory
On top of that, there’s no virtual memory and every bit of CPU oomph you use means more
battery drain. iPhone OS monitors the system closely and if you go crazy with memory
usage, it’ll just kill your app. And no one wants that.

Only one application can run at a time
If it’s your application running, why should you care? Because if anything else happens, like
the phone rings, a text message comes in, the user clicks on a link, etc., your app gets shut
down and the user moves on to another application. You need to be able to gracefully exit at
any time and be able to put users back into a reasonable spot when they return.

iPhone apps are not small desktop apps
There’s a lot of talk about how the iPhone is a small computer that people
carry with them. That’s definitely true, but it doesn’t mean iPhone apps are just
small desktop apps. Some of the most important issues that you’ll encounter
designing an app for the iPhone:

Memory

App speed

Usage fees

Internet access

Display capabilities

User input tools (keyboard,
mouse, display, etc.)

Mobile devices have limited memory
and a lot of it is already allocated.

Mobile device users don’t have a
lot of time, so apps need to load
and work quickly.

Sending texts or accessing the Internet costs money for some mobile users.

The Net is not always available for the mobile user - and it’s typically slow.

Typical mobile devices have different display sizes and resolutions, and you need to plan for that...

Some mobile devices use arrows,
some have extra buttons, and
others have touch screens.

Check the factors that you need to consider when you’re working on a mobile app, in general.

Which of these factors are different for the iPhone?

typical, and there is only one display size to deal with. And while there is a keyboard available, it’s all
touch screen!

For the iPhone, unlimited data and texts are

you are here 4 5

getting started

Data

Anatomy of an iPhone app
Before we dive into creating our first app, let’s take a look at what makes up a typical
iPhone app.

Pictures

First we have one or more views...
iPhone apps are made up of one or more views—in a
normal app, these views have GUI components on them like
text fields, buttons, labels, etc. Games have views too, but
typically don’t use the normal GUI components. Games
generally require their own custom interfaces that are created
with things like OpenGL or Quartz.

...then the code that makes the views work...
iPhone apps have a clean separation between the GUI (the
view) and the actual code that provides the application logic.
In general, each view has a View Controller behind it that
reacts to button presses, table row selection, tilting the phone,
etc. This code is almost always written in Objective-C using
Apple’s IDE (integrated development environment), Xcode.

...and any other resources, all packaged into
your application.
If you’re new to developing for OS X you might be surprised
to find out that applications (iPhone and full desktop apps)
are really just directories. Any app directory contains
the actual binary executable, some metadata about the
application (the author, the icon filename, code signatures,
etc.) and any other application resources like images,
application data, help files, etc. iPhone applications behave
the same way, so when you tell Xcode about other resources
your application needs, it will bundle them up for you when
you build the application.

Views can be built
using code,

graphically usin
g Interface Builder,

or some combination of bot
h. Most

apps use a mix.

Xcode is the IDE of choice for

writing iPhone apps. It includes
a

number of application tem
plates to

get you started.

Every iPhone app has some

resources associated w
ith

it. At a minimum, your
application will have an
icon file, an Info.plist

 that

has information about
the application itself,

 and

the actual binary. Other

common resources are
interface files, called

 nibs.

Now let’s get started on your first iPhone App...

6 Chapter 1

help mike make up his mind

Mike

Mike can’t make a decision
Mike’s a great guy, but he never knows what he wants to
do. Help him save time waffling about what to do, and
give him a straightforward answer.

The way I see it is I already made the decision
to buy an iPhone... I shouldn’t have to think again!

We’ll write Mike an app.
Mike has an iPhone, so let’s write him an
app that requires a simple button push
to tell him what to do when he needs to
make a decision.

you are here 4 7

getting started

Make a good first impression
When users start up your application, the first thing they see is your view. It
needs to be usable and focused on what your application is supposed to do.
Throughout this book, whenever we start a new application, we’re going to
take a little time to sketch up what we want it to look like.

Our first application is pretty straightforward: it is going to be a single view
with a button that Mike can press to get a decision. To keep things simple,
we’ll change the label of the button to show what he should do after he
pushes it.

The iPhone screen is
320 x 480 pixels.

What should
I do?

This is a button

Press the button and
the label text will
change to tell Mike what

he should do.

Now that we know what to
build, let’s get into the tools.

iDecide

Let’s call
it iDecide.

This is the iPhone simulator - this lets you run and test your application without using a real phone. We’ll talk more about it later.

This is the status bar - your app can choose to hide it, but unless you’re writing a game, you should probably leave it.

We’ll sketch
up our GUIs for each

application
before we build the

m. Pen

& paper are
 some of the be

st mock-

up tools yo
u could use

.

8 Chapter 1

download the SDK

It all starts with the iPhone SDK
It’s time to go get some tools. Head over to http://developer.apple.com/iphone.
You can download the SDK (and other useful Apple development resources) for
free with the basic registration, but to distribute a completed app on the App
Store or install your app on the iPhone for testing you need to become a paid
Standard or Enterprise Developer. The SDK comes with a simulator for testing
directly on your Mac, so free registration is all you’ll need for now.

The SDK comes with Xcode, Instruments, Interface Builder, and the iPhone
Simulator. Code for the iPhone is written in Xcode using Objective-C. Interface
Builder is used for graphically editing GUIs, Instruments helps you assess memory
usage and performance for your app, and the Simulator is used for testing.

Register as a developer at
http://developer.apple.
com/iphone.

Download the latest SDK;
this book is based on the
3.1 SDK. Just look for the
Download button at the
top of the page.

Install the SDK. Once
the Installation completes,
you can find Xcode.
app in /Developer/
Applications. Just
double-click it to start it
up.

You will probably want to drag it onto your Dock—we’re going to be using it a lot.

you are here 4 9

getting started

Q: What are the most important things
to consider when developing a mobile
app?

A: There are two key things to keep in
mind when developing a mobile application.
First, the device has limited resources:
memory, CPU, storage, Net access speed (if
they have access at all), etc. Second, usage
patterns are different for mobile applications.
Mobile apps are generally convenience
applications—users want to fire up your
application, quickly accomplish their goal,
and go back to what they were doing in the
real world.

Q: I’ve developed for mobile platforms
before, and it was a mess. Nothing
worked the same between different
devices, you couldn’t count on the screen
size, they didn’t even have the same
number of buttons on different devices!
Is this any better?

A:YES! For the most part, developing for
iPhone avoids these problems. iPhones all
have a 320x480 screen, an accelerometer, a
single home key, etc. However...

Q: There are several different models
of the iPhone out there. Are they all the
same? What about the iPod Touch?

A: Not all iPhone and iPod Touch devices
are the same. For example, not all devices
have a camera or GPS. Net access speeds
vary by device as well depending on whether

they’re connected to EDGE, 3G, or Wifi. To
make matters more complicated, the iPhone
3GS has a faster processor and better video
card than previous iPhone models. If you
take advantage of any features that might
not be present on all devices you must make
sure your code can handle not having that
feature available. Apple will test for this
(for example, trying to use the camera on a
first generation iPod Touch) and reject your
application if it doesn’t accomodate a device
properly.

Q: What language does the iPhone use?

A: iPhone apps are generally written in
Objective-C, an object-oriented language
that is also used for Mac development.
However, you can use C and even C++
on the iPhone. Since the GUI and Core
Framework libraries for the iPhone are
written in Objective-C, most developers use
Objective-C for their application; however,
it’s not uncommon to see support libraries
written in C.

Q: Do I have to use an IDE? I’m really
a command-line kinda developer.

A: Technically speaking, no, you don’t
have to use the Xcode IDE for straight
development. However, the IDE makes
iPhone development so much easier that
you really should ask yourself if you have
a good reason for avoiding it, especially
since to deploy onto an actual iPhone or the
simulator for testing, it’s mandatory. This
book uses the Xcode IDE as well as other

Apple development tools like Interface
Builder, and we encourage you to at least try
them out before you abandon them.

Q: Can I give applications I write out
to friends?

A: Yes and no. First, if you want to put
an application on anyone’s actual device
(including your own) you’ll need to become
a registered Apple iPhone Developer. Once
you’ve done that, you can register a device
and install your application on it. However,
that’s not really a great way to get your
application out there, and Apple limits how
many devices you can register this way. It’s
great for testing your application, but not
how you want to go about passing it around.

A better way is to submit your application
to the iTunes App Store. You can choose
to distribute your application for free or
charge for it, but by distributing it through the
iTunes App Store, you make your application
available to the world (and maybe make
some money, too!). We’ll talk more about
distributing apps later in the book.

Q: Can I develop an app for the
iPhone then rebuild it for other phones
like Windows Mobile, Android, or
Blackberries?

A: In a word, no. When you develop for
iPhone, you use Apple’s iPhone frameworks,
like Cocoa Touch, as well as Objective-C.
Neither of these are available on other
devices.

Now let’s get started.
Launch Xcode...

10 Chapter 1

get started with templates

Xcode includes app templates
to help you get started
When you start Xcode, you’ll get a welcome screen
where you can select Create a New Project. You’ll
get this dialog:

This is the very
same Xcode that
you’d use to develop
for the Mac. Since
we’re working
with the iPhone,
make sure iPhone
OS Application is
selected..

These are
the basic App
templates. Based
on your selection,
different code
and files are
populated for you.

As we go through the book, we’ll use different types of projects and discuss why you’d
choose one over another for each app. For iDecide, we have one screen (or view) that
we’re not going to be flipping or anything, so start with the View-based Application
and name it iDecide.

If you click on each project type,
the description here will help fill
you in on some details.

The Xcode template includes
more than just source code.

you are here 4 11

getting started

Header files describe the interface for the classes in the project you selected.

Databases, plists, and other types of data are stored in here for your app.

This is the folder where
you’ll store the icon for
your app and any other
images you need.

Resources

Frameworks

Files

Xcode will generate
at least one view for
your template, which
is a *.xib file.

The .m files
contain the basic
implementation
files for the app
type you selected.

Root View

The frameworks that
your template type
needs are already
included.

Frameworks are development libraries - depending on what your application does, you’ll need different frameworks. For example, there’s a MapKit framework, a Core Data framework, etc.

12 Chapter 1

it all happens in xcode

Xcode is the hub of your iPhone project...
When Xcode opens with your new View-based project, it will be populated with all of the
files that you see below. We’ll be using some of the other tools that came with the SDK
(especially Interface Builder and the Simulator), but they are all working with the files that
are included here.

The files and frameworks shown were stubbed out based on our selection of a View-based
application. As we go forward, we’ll use different types of apps and that will lead to different
defaults.

Class files are the Objective C files that your App will use - most code will be written here.

Other sources include
your main function and
precompiled info.

Resources contains
all of your Interface
Builder (.xib) files,
pictures, data, and
other stuff that your
app will need to run.

Frameworks shows a
list of the libraries
you’re using.

The Detail View shows a list of
the selected files. Whatever is
selected will show here

The Editor Pane shows your file with
the appropriate editor loaded and
allows you to work directly with the
code, plist, whatever.

You don’t have to group your files this way, but this is the default from the template. This grouping works well for us, so we’ll leave it alone.

Here is where you can configure
whether to build your app for
the simulator or a real device.
We’ll stick with the simulator
throughout the book.

The toolbar includes
 options for

setting breakpoint
s, building and

running your applic
ation, and more.

We’ll mostly use Build and Debug.

Folder groupings in Xcode are not file locations.

you are here 4 13

getting started

...and plays a role in every part
of writing your app

OK, enough talking about Xcode: double-
click on iDecideViewController.xib and
we’ll start with the view.

Xcode is much more than just a text editor. As you’ve already seen, Xcode
includes the templates to get you started developing an application.
Depending on your application, you may use all of a template or just parts
of it, but you’ll almost always start with one of them. Once you get your
basic app template in place, you’ll use Xcode for a lot more:

Maintaining your project resources
Xcode will create a new directory for your project and sort the various
files into subdirectories. You don’t have to stick with the default layout,
but if you decide to reorganize, do it from within Xcode. Xcode also has
built-in support for version control tools like Subversion and can be used
to checkout and commit your project changes.

Editing your code and resources
You’ll use Xcode to edit your application code, and it supports a variety
of languages beyond just Objective-C. Xcode also has a number of
built-in editors for resource files like plists (we’ll talk more about them
later on). For resources Xcode doesn’t handle natively, like UI definition
(.xib) files, double-clicking on one of those files in Xcode will launch the
appropriate editor, in this case Interface Builder. Some file types Xcode
can only view, like pictures, or it will merely list, like sound files.

Building and testing your application
Xcode comes with all of the compilers necessary to build your code
and generate a working application. Once your application is compiled,
Xcode can install it on the iPhone Simulator or a real device. Xcode
includes a top-notch debugger with both graphical and command-line
interfaces to let you debug your application. You can launch profiling
tools like Instruments to check for memory or performance issues.

Prepare your application for sale
Once you get your application thoroughly tested and you’re ready to
sell it, Xcode manages your provisioning profiles and code signing
certificates that let you put your application on real devices or upload it
to the iTunes App Store for sale.

14 Chapter 1

get to know your GUI builder

Build your interface using... Interface Builder
When you open any *.xib file in Interface Builder, it will automatically show the
Main window, your view, and a library of UI elements. Interface Builder allows
you to drag and drop any of the basic library elements into your view, edit them,
and work with the connections between the code and these elements. All of these
elements come from the Cocoa Touch framework, a custom UI framework for
the iPhone and the iPod Touch.

This is the Main window. It shows the objects and views
that are currently created for that particular nib.
File’s Owner and the First Responder exist for every
nib, and the others will vary. We’ll talk about both in
much greater detail later.

The library
shows all of
the elements
you can choose
from to drop
into your view.
If you scroll
around, you’ll
see there are a
lot of options.

Each screen in your applicat
ion is a view. This

shows what your view will look like (minus

any data that needs to b
e loaded) in the

app. You can build views using code and/

or by dragging and droppi
ng controls using

Interface Builder. We’ll use Interface Builder

for iDecide.

you are here 4 15

getting started

Views for iPhone Apps are called
nibs, and have an .xib extension.

No—Interface Builder creates nibs.
Nibs (which have .xib extensions) are XML documents that
are loaded by the framework when the app starts up. We’ll talk
a lot more about this in the next chapter, but for now it’s just
important to understand that Interface Builder is not creating
Objective-C code. It’s creating an XML description of the GUI
you’re building, and the Cocoa Touch framework uses that to
actually create the buttons and whatnot for your application at
runtime. Everything we do in Interface Builder could be done in
pure Objective-C code, but as you’ll see, there are some things
that are really just easier to lay out with a GUI builder.

A GUI builder sure sounds easier. I guess it
just spits out Objective-C code into my files?

We create the XML
description using
Interface Builder...

And that view is what the user sees when they run our app.

What
should I
do?

iDecideViewController.xib

...then the Cocoa Touch framework built into

our app uses the descripti
on in the .xib file

to create the actual Cocoa Touch objects in

our view.

16 Chapter 1

drag and drop UI elements

Add the button to your view
To add elements to the view, all you need to do is drag and drop the
elements you want onto your view. For our app, we just need a button
with a label on it.

Test Drive

Drag the rectangular button
onto the view.
The initial size of the button will be
small, so resize it to be a bit bigger.
Just grab the corners of the button
and pull.

1

Drag the label onto the button.
Edit the new label on the button to say

“What should I do?” by double-clicking on
the “label”and type the new text, then move
the text around to center it on the button.

2

Now, save in Interface Builder and return to Xcode and click Build and Run, either
from the Build menu or from the button in the main Xcode window. That will launch
the Simulator.

you are here 4 17

getting started

The iPhone Simulator lets you test
your app on your Mac
The Simulator is a great tool for testing your apps quickly and
for free. It doesn’t come with all of the applications that a real
phone does, but for the most part it behaves the same way.
When you first start the simulator you see the Springboard,
just like on a real iPhone, with iDecide installed (and a default
icon that you can change later). Xcode then opens the app
and your code is running.

There are some differences between using the Simulator
and your iPhone. For starters, shaking and rotating your
Mac won’t accomplish anything. To approximate rotation
and check landscape and portrait views, there are some
commands under the Hardware menu.

 The Simulator has limitations.

Memory, performance, camera, GPS, and other characteristics cannot be
reliably tested using the Simulator. We’ll talk more about these later, but
memory usage and performance are tough to test on the simulator simply
because your Mac has so many more resources than the iPhone. To test

these things, you need to install on an actual iPhone (which means joining one of the
paid development programs).

Q: Are there other things that don’t
work on the Simulator?

A: The Simulator can only work with
some gestures, network accessibility and
core location are limited, and it doesn’t
have an accelerometer or camera. For more
information, reference Apple’s iPhone OS
3.0 Library documentation, via the Help
menu in the Simulator.

The Simulator is great for getting started with
your application, but at some point you have
to move over to a real device. Also, be aware

that the iPod Touch and the iPhone are two
different devices with different capabilities.
You really should test on both, which means
you’ll need to join one of the paid programs.

Q: What’s with this whole nibs have a
xib extension thing?

A: That’s an odd artifact showing the
roots of OS X. Nibs date back to the
NeXTStep days, before NeXT was acquired
by Apple. In OS X Leopard, Apple released
a new format for nib files based on an XML
Schema and changed the extension to xib.
So, while the format is XML and they have

a .xib extension, people still refer to them as
nibs. You’ll see more NeXTStep heritage in
library class names too—almost everything
starts with “NS”, short for NeXTStep.

Q: Why didn’t anything happen when I
clicked on the button in the Simulator?

A: It’s temping to expect that button to
just work out of the gate, given how much
XCode sets up for you. However, if you think
about what we’ve done, there has been
some XML created to load a framework
and draw a button, but we didn’t tell it to do
anything with that button yet...

18 Chapter 1

actions happen in the code

UI behavior is implemented in
Objective-C.
Interface Builder creates your button, but to make that
button actually do something, you’ll need to code what
it should do.

Controls trigger events in Objective-C when things
happen to them, like the button being pressed or text
changing in a text field. For events like button presses,
Interface Builder has to connect the view controls with
code in your controller class for action methods, tagged
with IBAction (for Interface Builder Action). We’ll
talk more about the Objective-C syntax later, but for
now, you’ll need to declare a method in your header (.h)
file and the implementation in the .m.

OK, so Interface Builder created XML,
but we still need to write code to implement
the button press, right?

Button

-(IBAction)
buttonPressed:(id)
sender

{

method that the button
calls

}

The .xib file describes the
button as you configured

it in

Interface Builder.

-(IBAction)
buttonPressed:(id)
sender;

iDecideViewController.h

iDecideViewController.xib

This line declares a method

called buttonPressed
that

Interface Builder will recognize

as a possible callback.

iDecideViewController.m

You provide the method
implementation in the
.m file. Here’s where you
code up what should
actually happen when
the button is pressed.

.xib

you are here 4 19

getting started

Below is the code for when the button gets tapped. Add the bolded
code to the iDecideViewController.h and iDecideViewController.m files.

 #import <UIKit/UIKit.h>

 @interface iDecideViewController : UIViewController {

 IBOutlet UILabel *decisionText;

 }

 @property (retain, nonatomic) UILabel *decisionText;

 -(IBAction)buttonPressed:(id)sender;

 @end

 #import “iDecideViewController.h”

 @implementation iDecideViewController

 @synthesize decisionText;

 -(IBAction)buttonPressed:(id)sender

 {

 decisionText.text = @”Go for it!”;

 }

- (void)dealloc {

 [decisionText release];
 [super dealloc];

 }

We’ll need to change the
label text to provide Mike’s
answer, so we need to be
able to get to the label
control that the framework
will build from our nib.

We’ll talk more about
properties later in the book.

Here’s the action that will be called

when the button is pressed.

This is the implementation of
the method that gets called
when the button is pressed.

We’ll use our reference to
the label to change the
text.

The @synthesize tells the compiler
to create the property we
declared in the header file.

The dealloc method is where you can

clean up your memory usage. We’ll talk

more about this in Chapter 3.

iDecideViewController.h

iDecideViewController.m

20 Chapter 1

declare your method and then implement it

This code is typical of what you’ll see in a
header file. There’s a declaration of the
new IBOutlet and IBAction, and a property
for our UILabel.

The IBAction is dealing with what happens
when the button is pressed, and the
IBOutlet is a reference to the label we’ll use
for output text for the button. We’ll look
at both of these in more detail later.

Here’s the code from before in the context of the full files for
iDecideViewController.h and iDecideViewController.m.

 #import <UIKit/UIKit.h>

 @interface iDecideViewController :
UIViewController {

 IBOutlet UILabel
*decisionText;
 }

 @property (retain, nonatomic)
UILabel *decisionText;

 -(IBAction)buttonPressed:(id)
sender;

 @end

 #import “iDecideViewController.h”

 @implementation iDecideViewController

 @synthesize decisionText;

 -(IBAction)buttonPressed:(id)
sender

 {

decisionText.text = @”Go for it!”;

 }

- (void) dealloc {

 [decisionText release];
 [super dealloc];

 }

This is implementation code. Here, we’re
defining the method that is called when the
button is pressed. We use a constant string
to change the text in the label. Remember,
decisionText is a reference to the UILabel
we created in Interface Builder.

The release call is for memory management
Objective-C uses reference counting for
memory management (we’ll talk more about
this in a bit) and needs to be released to
free up the memory.

iDecideViewController.h

iDecideViewController.m

you are here 4 21

getting started

Test Drive
Build and run the code again. Try clicking on the
button and see if it works.

Nothing
happens!

Why didn’t the button change? Since the code
compiled correctly, it’s not that...

22 Chapter 1

connecting components to code

What happened?
The Objective-C code is all set to handle it when the button is
pressed, but Interface Builder has no idea it needs to connect
the button to that code. We can use Interface Builder to hook
up our button to the buttonPressed method we just wrote.
Then, when the .xib file is loaded by the framework, it will
connect the button object it creates with our code.

Button

-(IBAction)
buttonPressed:(id)
sender

{

method that the button
calls

}

-(IBAction)
buttonPressed:(id)
sender;

iDecideViewController.xib

iDecideViewController.m

Unless the UI components are hooked up to
the code, nothing is going to happen.
We need to connect the button’s “Hey, I just got pressed”
event to our buttonPressed action method. That will get our
method called when the user taps on the button. We then
need to get a reference to the UILabel that the framework is
going to create for us when the nib is loaded—that’s where
the IBOutlet comes in. Let’s start with the outlet so we can
change the UILabel text when the button is pressed.

This is the p
art we’re

missing - the link be
tween the

instantiate
d button a

nd the

code that
needs to ge

t called...

iDecideViewController.h

.xib
.h

you are here 4 23

getting started

Hit this button to display the hierarchy view; it’s a little easier to see what’s going on with the nib.

A list of everything in your view, plus its class name.

 Right-click on the label you dropped on the
button. This will bring up a list of events and
references.

1

 Click on the circle next to New Referencing
Outlet and drag it to File’s Owner (this
represents the class file that will load this
nib—in our case, iDecideViewController). Then
click on the decisionText outlet. Now when
the decisionText UILabel is generated, our
decisionText property will be set to a reference
to the control, thanks to the IBOutlet.

2

Ok—I get how
we can now change
the label, but how
does interface
builder know that you
pressed a button?

Use Interface Builder to connect UI controls to code
Jump back into Interface Builder for iDecideViewController.xib, and let’s hook up the
components to our new code.

If you don’t have a two button mouse, just hit CTRL and then click.

24 Chapter 1

elements dispatch events

Interface Builder lists which events a component
can trigger
We need to attach the right component event to the code. We wrote an action method
earlier that we can connect the button to:

- (IBAction) buttonPressed:(id)sender;

This is the name of the method that will get called. The name can be anything, but the method must have one argument of type (id).

IB = Interface
Builder

Now we need to pick the event that should trigger this method. If you right-click on
the button in Interface Builder, you’ll see a list of events it could dispatch. We want the
TouchUpInside event.

All IBAction messages

take one argument: the

sender of the message.

This is the element that

triggered the acti
on.

This list shows all of the

events that the butt
on

can register. We’ll get into

the different events
later

in the book.

Most of these events sound like what they are.

We’ll be using the “touch
up inside” event.

Elements dispatch events when things happen
to them
Whenever something happens to an element, for instance, a button gets tapped,
the element dispatches one or more events. What we need to do is tell the button
to notify us when that event gets raised. We’ll be using the TouchUpInside event.
If you think about how you click a button on the iPhone, the actual click inside
the button isn’t what matters: it’s when you remove your finger (touch up) that
the actual tap occurs. Connecting an event to a method is just like connecting an
element to an outlet.

you are here 4 25

getting started

Connect your events to methods
Just like with outlets, you drag the connection from the
button event to File’s Owner and select the action that
should be called.

 Right-click on the button you dropped on the view. This
will bring up a list of events and references like it did with
the label.

1

 Next click on the circle next to Touch Up Inside and
drag it to File’s Owner. Click on the buttonPressed
action. Now when the button gets pressed, our
buttonPressed method will be called.

2

So does it really matter whether I use an
IBOutlet or an IBAction since Interface
Builder can use both?

It matters a lot!

They’re not the same. Use an IBOutlet when you need a
reference to something in the interface (e.g., so you can
change the label text). Use an IBAction when you want
a control to tell your code when something happens (like
the button gets pressed).

26 Chapter 1

actions and outlets

Tonight’s talk: IBActions speak louder than... a lot of things

IBAction:

Hi, Outlet. What’s it like to only be an enabler?

Uh—I’m an Action, all about doing. My job is to
kick off a method when something happens—an
event. That’s getting something done. You just sit
there and point to stuff going on.

Yeah, but when the user does something, I make it
happen! I do the saving, I do the actual clicking!

Really, because the compiler just ignores you!

Well, for starters, the “IB” in IBAction stands for
Interface Builder!

`

Well, we do have that in common. Anyway,
Interface Builder knows when I’m around that some
event in a nib can set me off and keep me informed.

Thanks. That’s nice of you to admit.

IBOutlet:

What are you talking about? I do stuff.

Big deal. At least I’m aware of everything going on.

Listen, it’s true that I’m just an instance variable
that works with an object in a nib, but that doesn’t
mean I’m not important.

It does, but I tell Interface Builder a lot. You’re not
very tight with IB, are you?

Big deal, I have “IB” in my name, too.

Well, I guess that is pretty important.

you are here 4 27

getting started

Test Drive
Now that everything is hooked up, it’s ready to run. Make sure that you save in Interface
Builder and then go back into Xcode and build and run.

IBAction:

Care to explain?

Oh—I see. You know, there is one thing that you
have that I’ve always wanted.

You can be anything! Stick IBOutlet in front of
any variable name and you’re good. I have more
complicated syntax, because I need to have the idea
of a sender in there.

Me too.

IBOutlet:

But I’m secure in my relationship with Interface
Builder. Without me, the code couldn’t change
anything in the UI.

Sure. An IBOutlet variable can point to a specific
object in the nib (like a text field or something), and
code (yes, probably your code) can use me to change
the UI, set a text field’s content, change colors, etc.

What’s that?

I do like the freedom! Glad we could work things
out.

28 Chapter 1

mike’s on his way

Test Drive

It works!
Click here!

Get a message here!

you are here 4 29

getting started

You’re on your way to being #1
on the App Store.

How about a Twitter app?

Phew. Now I
know what to do!

Mike can make at least one
decision.
Your app is working! All the pieces are
fitting together: the *.xib file describes the
interface, Interface Builder has connected it
to the code, and Objective-C is making it all
work together.

30 Chapter 1

a little recap

Q: What is that File’s Owner thing?

A: Interface Builder has an expectation
of what class will be the nib’s File’s Owner.
You can change what class Interface Builder
thinks it will be, but by default a new project
is set up so that the main View Controller
created by Xcode is the File’s Owner for
the main view created by Xcode. That’s
why we didn’t have to change anything.
Since the File’s Owner is set up to be our
iDecideViewController, Interface Builder
could look at the iDecideViewController
header and see we had an IBOutlet named
descriptionText and an IBAction named
button pressed. When you connected
the UILabel’s referencing outlet to File’s
Owner descriptionText, Interface Builder

saved the information necessary so that
when the nib is loaded by the application,
the references are set correctly in our
iDecideViewController. The same thing
happened with the TouchUpInside event,
except in this case instead of hooking up a
component to a reference, it hooked up a
component’s event to a method that should
be called.

Beware—Interface Builder’s expectation of
the class that will load the nib does not mean
that other classes can’t try—it just might
not work well if that class doesn’t have the
necessary properties and methods.

Q: What’s with the “Outlet” stuff?

A: Interface Builder has the idea of

Outlets and Actions, and we’ll talk more
about them in a bit. Basically an Outlet is a
reference to something and an Action is a
message (method) that gets sent (called)
when something happens.

Q: Why does our new text string have
an @ in front of it?

A: Cocoa Touch uses a string class
named NSString for its text strings. Since
it’s so common, Objective-C has built in
support for creating them from constants.
You indicate a string constant should be an
NSString by putting an @ symbol in front of
it. Otherwise, it’s just a normal char* like in
C or C++.

 � Interface Builder creates nib files (with a
.xib extension) that describe the GUI in
XML

 � Nib files are loaded by the Cocoa Touch
framework and are turned into real
instances of Cocoa Touch classes at
runtime.

 � In order to connect the components
described in a nib to your code, you use
IBOutlets and IBActions.

 � Xcode is where your code and files are
maintained for your application.

 � Xcode is the hub for your project
development and offers support for editing
your code, building your application, and
debugging it once it’s running.

 � The iPhone Simulator lets you test your
application on your Mac without needing a
real device.

you are here 4 31

getting started

Description

A typical iPhone plan that is different
from most other mobile phones.

Xcode, Instruments, Interface Builder,
and the iPhone Simulator.

Reference from the code to the
interface.

Images, databases, the icon file, etc.

Maintaining and editing code and
resources, debugging code, and
preparing an app for deployment.

Indicates a method that can be called
in response to an event.

Item

IBOutlet

Functions of Xcode

Unlimited data usage

IBAction

Components of the SDK

Application resources

Match each iPhone development item to its description.

32 Chapter 1

who does what solution

SOlUTion

Description

A typical iPhone plan that is different
from most other mobile phones.

Xcode, Instruments, Interface Builder,
and the iPhone Simulator.

Reference from the code to the
interface.

Images, databases, the icon file, etc.

Maintaining and editing code and
resources, debugging code, and
preparing an app for deployment.

Item

IBOutlet

Functions of Xcode

Unlimited data usage

IBAction

Components of the SDK

Application resources

Match each iPhone development item to its description.

Indicates a method that can be called
in response to an event.

you are here 4 33

getting started

iPhonecross
Bend your brain around some of the new
terminology we used in this chapter.

Untitled Puzzle
Header Info 1
Header Info 2

etc...

1

2

3

4

5

6 7

8 9

10

11

12

13

Across
4. Something that the simulator cannot reliably test.
5. This is used to set up an outgoing connection from the

implementation code to the view.
7. The term to describe each screen of an iPhone app.
8. The framework used to write iPhone apps.

10. The folder used to organize the images for the app.
12. The name of the IDE for iPhone apps.
13. These are used in Xcode to provide classes to be accessed.

Down
1. The language used to write iPhone apps.
2. This is used on a desktop to test an app.
3. This is used to recieve an event in code and trigger

something.
6. This is the name of the editor used for Objective-C.
9. The iPhone is this kind of device.

11. The name of a file used to create a view.

34 Chapter 1

iPhonecross solution

iPhonecross Solution
Bend your brain around some of the new
terminology we used in this chapter.

Untitled Puzzle
Header Info 1
Header Info 2

etc...

O1

S2 B
I3 I J
B P4 E R F O R M A N C E E
A U C
C I5 B O U T L E T T
T A I
I X6 T V7 I E W

C8 O C O A T O U C H O M9 E
N O R10 E S O U R C E S

N11 D B
I12 N T E R F A C E B U I L D E R
B L

F13 R A M E W O R K S

Across
4. Something that the simulator cannot reliably test.

[PERFORMANCE]
5. This is used to set up an outgoing connection from the

implementation code to the view. [IBOUTLET]
7. The term to describe each screen of an iPhone app. [VIEW]
8. The framework used to write iPhone apps. [COCOATOUCH]

10. The folder used to organize the images for the app.
[RESOURCES]

12. The name of the IDE for iPhone apps.
[INTERFACEBUILDER]

13. These are used in Xcode to provide classes to be accessed.
[FRAMEWORKS]

Down
1. The language used to write iPhone apps. [OBJECTIVEC]
2. This is used on a desktop to test an app. [SIMULATOR]
3. This is used to recieve an event in code and trigger

something. [IBACTION]
6. This is the name of the editor used for Objective-C.

[XCODE]
9. The iPhone is this kind of device. [MOBILE]

11. The name of a file used to create a view. [NIB]

you are here 4 35

getting started

Your iPhone Toolbox
You’ve got Chapter 1 under your belt
and now you’ve added basic IPhone app
interactions to your tool box. For a complete

list of tooltips in the book, go to http://www.
headfirstlabs.com/iphonedev.

CH
AP

T
ER

 1

Data

Pictures

...and any other resources, all packaged into
your application.
Images and other data are referenced together in Xcode so
that all of the files that you need can be easily dealt with.

Views are constructed in Interface Builder
A view is made up of nib (*.xib) files and the GUIs are edited
with Interface Builder.

...then the code that makes the views work...
This code is almost always written in Objective-C using
Xcode.

this is a new chapter 37

@grandmom please bring me some soda.
I’m so over the milk. #babyrants

iPhone app patterns2

Hello @twitter!

Apps have a lot of moving parts. OK, actually, they don’t have any real

moving parts, but they do have lots of UI controls. A typical iPhone app has more going on

than just a button, and it’s time to build one. Working with some of the more complicated

widgets means you’ll need to pay more attention than ever to how you design your app,

as well. In this chapter, you’ll learn about some of the fundamental design patterns used in

the iPhone SDK, and how to put together a bigger application.

38 Chapter 2

mike needs your help again

Mike

Mike is back. He has a great girlfriend, Renee, but
they’ve been having some problems. She thinks that
he doesn’t talk about his feelings enough.

Author’s note:

Head First does not take

any responsibility for
Mike’s

relationship problems.

A Twitter app is the way to go here.
That would be perfect: I can just tweet
about my feelings and then she’ll be happy.

There’s (about to be) an app for that.
Using some solid design and the basic controls
included in the Interface Builder library, you can
have Mike posting to Twitter in no time. But first,
what should his tweets say?

you are here 4 39

iPhone app patterns

First we need to figure out
what Mike (really) wants
Mike isn’t a complex guy. He wants an easy interface to
talk to Twitter and he really doesn’t want to have to type
much.

Here’s what Mike
handed you at the
end of the night

App Magnets
Now that we know what Mike wants, what do we need to do? Take
the magnets below and put them in order of the steps you’ll follow
to build his Twitter app.

Determine app layout

Handle the data

Build the GUI

Send outpu
t to Twitt

er

Here’s what I want:

- Not much typing

- Instant communication

- Easy to use

- My tweets like this:
 I’m _____

and feeling _
____ about it.”

Figure out how to use
the controls

40 Chapter 2

start with the app layout

App Magnets Solution
Now that we know what Mike wants, what do we need
to do? Take the magnets below and put them in order
of the steps you’ll follow to build his Twitter app.

Determine app layout

Build the GUI

Send outpu
t to Twitt

er

Handle the data

Before you start coding
anything, sketch up what
you’re thinking.

Some people write backend code first - we’re going to go back and forth depending on our project, but to get started, we’ll do the GUI first this time.

Here we need to manage the data coming from the controls...

Q: How do you figure out the app
layout?

A: We’re going to give you a couple to
choose from to get started, but in general,
it’s important to think about what your app
needs to do and focus on those features first.

Q: Are we always going to start with a
sketch?

A: Yes! Good software design starts
with knowing what you’re building and how

the user is going to work with the app. The
app for Mike is going to work with Twitter,
and he’s going to be able to make some
selections for his feelings and thoughts.
That’s it!

Q: How do we talk to Twitter?

A: Don’t worry, we’ll give you some code
to help you to work with that.

Just FYI, though, Twitter has a really well-
documented API. We’ll give you what you
need, but feel free to add more features!

Q: Does every control work differently
than the others?

A: For the most part, no—once you learn
a few basic patterns, you’ll be able to find
your way through most of the SDK. Some
of the controls have a few peculiarities here
and there, but for the most part they should
start to look familiar.

Figure out how to use
the controls

After you’ve landed on
 the

general app design, yo
u need to

get into the documentation a

little and figure out
how to

implement the controls you’v
e

chosen.

We’ll help you out with this last step, too.

you are here 4 41

iPhone app patterns

InstaTwit

Send Button

I’m and feeling
hello
worlding

awesome

about it.

App Layout Construction

Here are two designs to evaluate. Based on
aesthetics, usability, and standard iPhone app
behavior, which one is better for Mike?

Twitter
URL here

Text field for
user name

Text field
for password

I’m
and feeling

Send Cancel

InstaTwit

Pre-populated
text, so just
insert a couple
of words

The button will have user info and url preconfigured

Spinning controller
filled in with
activities and
feelings

Labels that
will be part
of the tweet

Option #1 Option #2

Which app is better?

Why? (Be specific.)

Why not the other?

42 Chapter 2

keep it simple

App Layout Construction

We’ve given you two designs to evaluate. Based
on aesthetics, usability, and standard iPhone app
behavior, which one is better for Mike?

I’m
and feeling

Send Cancel

InstaTwit

Option #1

Which app is better?

Why? (Be specific.)

Why not the other?

#2.

Option #2 has a lot less typing and fewer fields overall.
Since the user doesn’t need to change his username or password often there’s no reason to put
it on the main view every time he runs the app.

Option #1 has a lot of typing and settings to remember. The buttons are confusing.

Lots of typing in here. This isn’t always bad, but we can do better.

More typing here
for

stuff he probab
ly won’t

change after th
e first

time...
...and again here

.

Cancel what? iPhone apps almost never have “Quit” type buttons. If the user changes his mind, he hits the home button and the app is shut down.

The send button would be

better at the bottom
 of

the page, not stuck b
etween

controls like this.

Your user doesn’t nee
d to know or

care about the Twitter URL. It’s

always the same anyhow, so we can

take care of this for
 him.

Bad

you are here 4 43

iPhone app patterns

InstaTwit

Send Button

I’m and feeling
hello
worlding

awesome

about it.

Option #2

This is the one
you’re going to
build for Mike.

App flows cleanly from top to bottom.

Instead of having Mike type in
what he’s doing and his feelings,
we can give him a picker to select
from. This means fewer options
since they’re predetermined, but
is way easier to use and Mike’s a
simple guy after all, right?

Smart send button that

keeps the user tweeting, not

remembering passwords or

URLs.

Q: Do I really need to care about usability and aesthetics so
much?

A: Usability and aesthetics are what made the iPhone a success,
and Apple will defend them to the death. Even more importantly, you
don’t get to put anything on the App Store or on anyone else’s iPhone
without their approval. Apple has sold over a billion apps—if yours
doesn’t fit with the iPhone look and feel or is hard to use, people will
find someone else’s app and never look back.

Q: We got rid of the username, password, and URL fields.
The URL one I understand, but what about the other two?

A: Anytime your app needs configuration information that the user
doesn’t need to change frequently, you should keep it out of the main
task flow. Apple even provides a special place for these called a
Settings bundle that fits in with the standard iPhone settings. We’re
not going to use that in this chapter (we’ll just hardcode the values)
but later we’ll show you how to put stuff in the Settings page. That’s
usually the right place for things like login details.

Q: How am I supposed to know what Apple thinks is good
design or aesthetically pleasing?

A: Funny you should ask... go ahead, turn the page.

Good!

Common text is shown as a

label - Mike doesn’t have

to try to move the cursor

around it.

44 Chapter 2

what’s your (app) type?

App design rules—the iPhone HIG
The iPhone Human Interface Guide (HIG) is a document that Apple
distributes for guidance in developing iPhone Apps for sale on the App
Store. You can download it at http://developer.apple.com/iphone. This
isn’t just something nice they did to help you out; when you submit an
app for approval, you agree that your app will conform to the HIG.

We can’t overstate this: you have to follow the HIG, as Apple’s
review process is thorough and they will reject your application if it
doesn’t conform. Complain, blog with righteous anger, then conform.
Now let’s move on.

Apple also distributes a few other guides and tutorials, including the
iPhone Application Programming Guide. This is another great source of
information and explains how you should handle different devices, like
the iPhone and the iPod Touch. Not paying attention to the iPod Touch
is another great way to get your app rejected from the App Store.

Application types
The HIG details three main types of applications that are commonly
developed for the iPhone. Each type has a different purpose and
therefore offers a different kind of user experience. Figuring out what
type of application you’re building before you start working on the
GUI helps get you started on the road to good interface design.

Help manage information and complete tasks. Info is hierarchical, and you navigate by drilling down into more levels of detail.

Get a specific
set of info

to the user w
ith as little

interaction o
r settings

configuration
 as possible.

Note: While the author
s

do not suggest
 testing

these methods of bein
g

rejected from the App

Store, we can speak with

authority that
 they work.

Productivity Apps Utility Apps

Usually have more

interface desig
n than a

productivity ap
p, and are

expected to st
ay very

consistent with the HIG.

Immersive Apps

Games are a classic example, but like this simulated level, all immersive apps require a very custom interface that allows the user to interact with the device. As a result, HIG guidelines aren’t as crucial in this case.

you are here 4 45

iPhone app patterns

Type of App App Description

Below are a bunch of different application ideas. For each one, think about what kind
of app it really is and match it to the app types on the right.

InstaTwit 1.0: Allows you to tweet
with minimal typing.

News Reader: Gives you a list of
the news categories and you can
get the details on stories you
choose.

Marble Game: A marble rolling
game that uses the accelerometer
to drive the controls.

Stopwatch Tool: Gives you a
stopwatch that starts and stops by
touching the screen

Recipe Manager: A meal listing
that allows you to drill down and
look at individual recipes.

Immersive Application

Utility Application

Productivity Application

46 Chapter 2

who does what solution

Type of App App Description

Match each app description to its application type.

InstaTwit 1.0: Allows you to tweet
with minimal typing.

News Reader: Gives you a list of
the news categories and you can
get the details on stories you
choose.

Marble Game: A marble rolling
game that uses the accelerometer
to drive the controls.

Stopwatch Tool: Gives you a
stopwatch that starts and stops by
touching the screen

Recipe Manager: A meal listing
that allows you to drill down and
look at individual recipes.

Immersive Application

Utility Application

Productivity Application

SOlUTion

Since we have one screen and no typing, InstaTwit is more of a Utility App

Since this App has a list-driven, drill-down interface, it’s Productivity

Using the
accelerometer
as the control
and a big
rolling marble...

We want a
very focused
stopwatch GUI,
no real data to
work through

Lots of data to
work through here:
tables, a drill-down
to recipes—definitely
productivity

you are here 4 47

iPhone app patterns

Determine ap
p layout

Handle the data

Build the
 GUI

Send o
utput

to twi
tter

We just finished
with this...

HIG guidelines for pickers and
buttons
The HIG has a section on the proper use of all the standard
controls, including the two that we’ve selected for InstaTwit.
Before you build the view with your controls, it’s a good idea to
take a quick look at the recommendations from Apple. You’ll find
this information in Chapter 9, Application Controls, of the HIG.

Figure out how to use
the widgets

Now let’s move
on to building
the GUI.

The picker only displays a fe
w items

on the screen at a time, so remember

that your user isn’t going t
o be able to

see all the options at once.

The picker’s overall size is fixed, although you can hide it or have it be part of the view (like we do in InstaTwit).

If you have units to display,
they need to be fixed to
the selection bar here.

The rounded rectangle button is pretty straightforward, but keep in mind it should always perform some kind of action.

48 Chapter 2

a new view

Create a new View-based project
for InstaTwit
Once you’ve started Xcode, select File → New Project.
Just like iDecide, for InstaTwit we have one screen and we’re
not going to be flipping it or anything fancy, so again choose
the View-based Application and name it Instatwit.

 The new project type is not necessarily the
same as your app type.

For example, a Productivity App can be written as a
View-based Application, a Window-based Application,
Navigation-based Application, or a Tab Bar Application.

Start with the view layout
Now that we have the autogenerated code, we’re going to start working with
the interface. To do that, we’ll be editing the nib (.xib) file. Double-click on
InstatwitViewController.xib in the Resources folder, and launch Interface Builder.

We’ll be working with
these other project
types later in the book.

you are here 4 49

iPhone app patterns

w It’s time to build the View. Using drag and drop, pull over
the elements from the Interface Builder library that you
need to build the view.

InstaTwit

Tweet it!

I’m and feeling
hello
worlding

awesome

about it.

Labels

Picker

Round Rect
Button, titled
“Tweet it”

 Find each of the elements (we’ve given them the
proper name for you) in the library and drag and
drop them into the View window.

1

 Select the top label and hit ⌘1. That will
launch the Inspector.

2

Edit label
text here

 Edit the labels and button text for the title,
“I’m”, “and feeling”, and “about it”, as
well as the title for the button. Don’t worry
about the picker values just yet.

3

Once you save it, your
view should look like
this...

50 Chapter 2

preview your view

wv The View is all built and ready to go. Here’s what you should
have on your screen now. Once you tweak everything to look
just how you want it, we’ll run InstaTwit.

Your labels may not be this big. By default,

the label will not resize to the f
ont, but

to fit the space. To m
ake it larger, just

resize using the dots
at the edges of the

label field.

Filling in the picker data requires some code, and we’ll get to that in a minute. What you see here are default values.

The inspector for
the button is
slightly different—
the title is
further down in
the window.

Did you notice the blue guidelines in the simulator? They’re in the view when you’re laying out elements to help you center things and keep them lined up with each other.

you are here 4 51

iPhone app patterns

Test Drive
Now it’s time to check out InstaTwit in the
Simulator. Save in Interface Builder, go back into
Xcode, and hit Build and Debug from the Build
menu (or ⌘ return).

The picker isn’t
showing up because
there isn’t any
data yet...

To get the picker to show, it needs to have data to
fill it. Where do you think that the code for the data
should go?

52 Chapter 2

the view-view controller relationship

The life of a root view
In Chapter 1 we touched on how Interface Builder creates XML
descriptions of your view, called a nib, and that the Cocoa Touch
framework turns that into a real view in your application. Now
that you’ve built a couple apps, let’s take a closer look at what’s
going on under the hood.

Main
Window

Like in most other languages, main(...) gets called first.
When your application is launched by the user, the iPhone provides a
quick animation of your app zooming into the screen (this is actually a
PNG file you can include with your app), then calls your main method.
Main is provided by the templates and you almost never need to touch it.

1

Main kicks off a Cocoa Touch Application.
The standard main(...) kicks off a Cocoa Touch
UIApplicationMain, which uses the information in
your application’s Info.plist file to figure out what nib
to load. With the View template we used, it’s a nib
called MainWindow.xib.

2

MainWindow.xib contains the
connections for our application.
If you look in MainWindow.xib,
you’ll see it has an instance of
our InstaTwitAppDelegate, for its
UIApplicationDelegate and an instance
of our InstaTwitViewController.
When the Cocoa framework loads this
nib, it will create an instance of our
InstaTwitViewController and tell it to
load our InstaTwitViewController.xib.

3

InstaTwitViewController
instantiated from
MainWindow.xib

This is the View Controller. It subclasses UIViewController.

When we built the nib, w
e used the gener

ic proxy File’s

Owner for outlet a
nd action connec

tions. When the nib

is actually loaded
, there’s a real o

bject there to r
eceive

those connection
s. For us, it’s th

e InstaTwitViewController.We’ll talk more about delegates soon, too.

you are here 4 53

iPhone app patterns

The Cocoa Touch framework
creates our custom view from the
InstaTwitViewController.xib.
When we constructed the nib, we used the
File’s Owner proxy object to stand in for
the object that owns the nib contents. At
this point the framework is loading the nib
on behalf of our InstaTwitViewController
class so that instance is used for connections.
As the framework creates instances of our
components, they’re connected up to the
instance of InstaTwitViewController.

4

When events occur with components, methods
are invoked on our controller instance.
The actions we associated between the controls and the
File’s Owner in the nib were translated into connections
between the controls and our instance. Now when a
control fires off an event, the framework calls a method
on our InstaTwitViewController instance.

5

The nib file contains serialized instances of objects as we configured them. They are usually control objects like buttons or labels, but can be anything that can be serialized.

Now let’s put this
knowledge to use and add
some data for the picker.

This is our view.

54 Chapter 2

no dumb questions

Q: Isn’t good design vs. bad design a
little subjective?

A: Yes and no. Obviously, different
people will have differing opinions about
what UI looks better. However, Apple has
very specific guidelines about how certain
controls should be used and best practices
that should be followed. In general, if you’re
using a common iPhone control, make sure
you’re using it in a way that’s consistent with
existing applications.

Q: How can I run these apps on my
iPhone?

A: To get an app you write installed
on your iPhone you’ll need to sign up for
either the Standard or Enterprise Developer
programs at http://developer.apple.com/
iphone/. Everything in this book is designed
to work with just the Simulator, so don’t feel
like you need to go do that just yet. We’ll talk
more about putting apps on an actual phone
later in the book.

Q: The InstaTwit icon looks horrible.
What can I do?

A: The icon for an application is just
a PNG file in your project. We’ll add and
configure icons later, but for now, just know
that you’ll need a .png file in the resources
directory for that purpose—we’ll hook you up
with some cool icons later.

Q: Do I have to use Interface Builder
for the view?

A: No. Everything that you do in Interface
Builder can be done in code. Interface
Builder makes it a lot easier to get things
started, but sometimes you’ll need that code-
level control of a view to do what you want.
We’ll be switching back and forth depending
on the project and view.

Q: I’m still a little fuzzy on this nib
thing. Do they hold our UI or regular
objects?

A: They can hold both. When you
assemble a view using Interface Builder, it
keeps track of the controls you’re using and
the links to other classes. These controls
are serialized into an XML document; when
you save it out, this is your nib. Interface
Builder is able to serialize non-control
classes, too. That’s how it saves out our
InstaTwitViewController in MainWindow.xib.
When the nib is restored from disk, objects
in the nib are reinstantiated and populated
with the values you gave them in Interface
Builder.

Q: So does Interface Builder save out
the File’s Owner too?

A:No, File’s Owner is a proxy. File’s
Owner represents whatever class is asking
to have this nib loaded. So the File’s Owner
proxy isn’t actually stored in the nib, but
Interface Builder needs that proxy so you
can make association with controls you used
in your view. When the nib is restored (and
the control objects are instantiated), the nib
loading code will make the connections to the
real owning object that asked to load the nib.

you are here 4 55

iPhone app patterns

First, get the data from Mike
Mike likes what you have put together for the UI, so
now we need a little more information before we fill
the picker.

I like the interface. Here’s my list of
what I do and how I feel about it so you
can fill in the rest. Can’t wait until it’s done
because I’m soooo over talking about it...

Things I do:

sleeping

eating

working

thinking

crying

begging

leaving

shopping

Things I feel:

awesome

sad
happy

ambivalent

nauseous

psyched

confused

hopeful

anxiousGotta add “hello worlding”

This data will be used as part of the picker, but how
do you implement that?

56 Chapter 2

when to pick a picker

Use pickers when you want
controlled input
In our case, the picker is the perfect element for our
app. No typing at all, but it allows Mike to have
some input over what gets selected. There’s some
terminology that you need to know about pickers
before we get our data in there.

We want two columns.
The picker calls these
components.

The number of rows, or items, comes from Mike’s list, so 9 for each component.

Remember the screen size issue when building iPhone apps? The longest word needs to fit in a column or it’s going to be abbreviated. There’s not a lot of space to work with.

A picker is a la
rge element

(320 x 216) and the o
verall

size cannot b
e changed.

When in doubt, check out Apple’s API
documentation
By now you’re already thinking about how to implement that
picker. It’s time to get into the API documentation. In Xcode,
go to the Help menu and then the Documentation option.

You’ll need to
 subscribe to

the Apple iPhone OS 3.X

Doc Set to kee
p up to date.

Search for “UIPickerView” and it will pull
up all the information on the class that you
need to implement for the picker.

you are here 4 57

iPhone app patterns

Fill the picker rows with
Mike’s data
The picker needs to know how many rows it needs and
how many columns. And that information is tied to the
words that Mike provided.

OK, so we can just set the picker rows
with the values Mike gave us like we did
with the button label, right?

The picker is different.
The picker doesn’t want to be told what
to do, it’s going to ask when it wants your
input. You’re going to see this pattern
show up with controls that could use a lot
of data like pickers and later, table views.
Let’s take a closer look...

58 Chapter 2

datasources and delegates

Pickers get their data from a datasource...
Most of the elements in the Cocoa Touch framework have the concept of
datasources and delegates. Each UI control is responsible for how things look
on the screen (the cool spinning dial look, the animation when the user spins
a wheel, etc.), but it doesn’t know anything about the data it needs to show or
what to do when something is selected.

Datasource

Q: Why is the delegate providing the content? That really seems like data.

A: That’s something particular to a picker and it has to do with the fact that the picker delegate can change how the data is shown. In the
simplest form, it can just return strings to the picker. If it wants to get fancy, it can return the entire view (yes, just like the view you built with
Interface Builder, but smaller) to use images or special fonts, whatever.

A delegate is responsible for the behavior of an element. When someone
selects something—or in this case, scrolls the picker to a value—the control
tells the delegate what happened and the delegate figures out what to do in
response. Just like with datasources, different controls need different kinds of
delegates. For the picker, we need a UIPickerViewDelegate.

The datasource provides the bridge between the control and the data it
needs to display. The control will ask the datasource for what it needs and
the datasource is responsible for providing the information in a format
the control expects. In our case, the datasource provides the number of
components (or columns) for the picker and the total number of rows for the
picker. Different controls need different kinds of datasources. For the picker,
we need a UIPickerViewDatasource.

Delegate

Hey - the user just
spun me to row 3.

So how many rows
and components do
I need?

What’s the word
for row 3?

...and tell their delegates when something happens.

Picker
control

you are here 4 59

iPhone app patterns

There’s a pattern for that
You’re going to see this Control-Datasource-
Delegate pattern show up throughout the rest of
this book. Nearly all of the complex controls use it. If
you squint a little, even the View-View Controller
relationship we’ve been using follows this pattern (minus
the datasource).

Datasource

Control

Delegate

A datasource works with the databases, plists, images, or general information that your app will need.

A control represents the GUI
that your user will interact
with. Generally, it will be
assembled with Interface
Builder, but it can be built in
code, too. Each approach has
benefits and drawbacks, and
sometimes you’ll use both on
the same project.

The delegate contains t
he logic that

controls the flow of information. It

saves and displays info
rmation and

controls which view is seen when. Even

our views follow this pattern - their

delegate is the ViewController.

Each control has specific needs for its datasource and delegate and
we’ll talk about how that’s handled in Objective-C in a minute.
However, it’s important to realize that while the responsibilities are
split between the datasource and the delegate in the pattern, they
don’t necessarily have to be implemented in different classes. The control
wants a delegate and a datasource—it doesn’t care whether they’re
provided by the same object or not: it’s going to ask the datasource
for datasource-related things and the delegate for delegate-related
things.

Let’s take a closer look at how the UIPicker uses its datasource and
delegate to get an idea of how all of this fits together.

Controls have their own specific
datasources and delegates

60 Chapter 2

picking apart the picker

Head First: Hello Picker, thanks for joining us.

Picker: My pleasure. I don’t usually get to talk to
anyone but my datasource and delegate so this is a
real treat.

Head First: I’m glad you brought those up. So
we’ve worked with controls like buttons and labels,
but they just have properties. What’s going on with
this delegate and datasource business?

Picker: Well, to be clear, I have properties too—
there just isn’t too much exciting going on there.
What makes me different is that I could be working
with a lot of data. I might only have one row or
I might have a hundred; it just depends on the
application.

Head First: Ah, OK. A label only has one string in
it, so there can be a property that holds that string.
No problem.

Picker: Exactly! So, instead of trying to cram all of
the data into me directly, it’s cleaner to just let me ask
for what I need when I need it.

Head First: But you need to ask for it in a specific
way, right?

Picker: That’s the beauty of my setup. I ask for
what I need to know in a specific way—that’s why
there’s a UIPickerDatasource—but I don’t care
where my datasource gets its information. For
example, I need to know how many rows I need to
show, so I ask my datasource. It could be using an
array, a database, a plist, whatever—I don’t care. All
I need to know is how many rows.

Head First: That’s really nice—so you could be
showing data coming from just about anything, and

as long as your datasource knows how to answer
your questions, you don’t care how it stores the data
internally.

Picker: You got it. Now the delegate is a little
different. I can draw the wheels and all that, but I
don’t know what each application wants to do when
someone selects a row, so I just pass the buck to my
delegate.

Head First: So whichever one implements the
delegate, it codes things so that when you tell it what
happened, it performs the right action, like saving
some value or setting a clock or whatever....

Picker: That’s it. Now, I have to confess I have one
little oddity going on...

Head First: Oh, I was waiting for this... this is
where you ask the delegate for the value to show in a
row, right?

Picker: Yeah—other controls ask their datasource.
I could come up with a lot of excuses, but... well, we
all have our little quirks, right?

Head First: I appreciate your honesty. It’s not all
bad, though; your delegate can do some neat things
with each row, can’t it?

Picker: Oh yeah! When I ask the delegate for a
particular row, it can give me back a full view instead
of just a string. Sometimes they have icons in them
or pictures—really, anything you can cram in a view,
I can display.

Head First: That’s great. Well, we’re out of time,
but thanks again for stopping by.

Picker: My pleasure! Now I’m off to take my new
datasource for a spin...

The Picker Exposed
This week’s interview:
How to avoid spinning out of
control...

you are here 4 61

iPhone app patterns

Delegate or datasource?Picker characteristic (or method)

Match each picker characteristic to where it belongs—the delegate or
the datasource. You’ll need to go digging in the API to figure out where
the three methods go.

Delegate

Datasource
pickerView:titleForRow:forComponent

numberOfComponentsInPickerView

Directions for drawing the view
for the items

The number of components

The row values (strings or views)

Working together, the delegate
and the datasource provide what
is needed to render the picker.

pickerView:numberOfRowsInComponent

62 Chapter 2

picker parts

Delegate or datasource?Picker characteristic (or method)

Match each picker characteristic to where it belongs—the delegate
or the data source. You’ll need to go digging in the API to figure out
where the three methods go.

pickerView:titleForRow:forComponent

pickerView:numberOfRowsInComponent

numberOfComponentsInPickerView

Directions for drawing the
rectangles for the items

The number of components

The row values (strings or views)

Delegate

Datasource

SOlUTion

Part of the UIPickerViewDelegate protocol;

returns a title for one entry in
 the picker.

A required part of the UIPickerViewDataSource
Protocol; returns the number of components.

A required part of the UIPickerViewDataSource
Protocol that returns the number of rows.

you are here 4 63

iPhone app patterns

Hang on—there are protocols in both the datasource
and the delegate?

Protocols define what messages the datasource
and delegates need respond to.
Pickers (and other controls that use delegates and datasources)
have specific messages to which their supporting classes need to
respond. These messages are defined in protocols. Protocols are
Objective-C’s idea of a pure interface. When your class can speak
a particular protocol, you’re said to conform to it.

Whatever class
we use as

the delegate
for our picke

r

has to confor
m to the

UIPickerViewDelegate proto
col.

Protocols typically have some required methods to implement and others that
are optional. For example, the UIPickerViewDatasource protocol has a required
method named pickerView:numberOfRowsInComponent; it has to be in
the datasource for the picker to work. However, UIPickerViewDelegate protocol has
an optional method named pickerView:titleForRow:forComponent, so
it doesn’t need to be in the delegate unless you want it.

So how do you know what protocols you need to worry about? The documentation
for an element will tell you what protocols it needs to talk to. For example, our
UIPickerView needs a datasource that speaks the UIPickerDataSource protocol and
a delegate that speaks the UIPickerDelegate protocol. Click on the protocol name
and you’ll see the documentation for which messages are optional and which are
required for a protocol. We’ll talk more about how to implement these in the next
chapter; for now, we’ll provide you the code to get started.

Protocols tell you what methods
(messages) you need to implement

Datasource

Delegate

Hey - the user just
spun me to “row 3”.

So how many rows
and components do
you need?

What’s the word
for row 3?

Likewise, whatever class
we use for

our datasourc
e needs to co

nform to

the UIPickerViewDatasource pro
tocol. Remember - these d

on’t hav
e to

be diffe
rent ob

jects; t
here ar

e

just tw
o differ

ent pro
tocols w

e

need to
 worry ab

out.

64 Chapter 2

sometimes it’s okay to conform

Next, add Mike’s activities and feelings to the implementation file
Now we’re into InstatwitViewController.m file, the actual implementation. We’ll need to add
some methods to implement the required methods from the protocols, but we’ll get back to that in
a second. First, let’s add the list from Mike. We’re going to use the two arrays we declared in the
header to store the words that Mike gave us.

First, declare that the controller conforms to both
protocols
Now that you know what you need to make the picker work, namely a delegate and a datasource,
let’s get back into Xcode and create them. Under Classes you have two files that need to be edited:
InstatwitViewController.h and InstatwitViewController.m. Both files were created when you started the
project.

The .h and .m files work together, with the header file (.h) declaring the class’s interface, variable
declarations, outlets, and actions, etc.; the implementation file (.m) holds the actual implementation
code. We need to update the header file to state that our InstatwitViewController conforms to both the
UIPickerViewDataSource and the UIPickerViewDelegate protocols.

#import <UIKit/UIKit.h>

@interface InstatwitViewController : UIViewController
<UIPickerViewDataSource, UIPickerViewDelegate> {
 NSArray* activities;

 NSArray* feelings;

 }

@end We’re going to set up two arrays for Mike:
one for activities and one for feelings.

Here’s where we say our
class will conform to the
UIPickerViewDataSource
and UPickerViewDelegate
protocols.

Go ahead and add

what’s bolded.

#import “InstatwitViewController.h”

@implementation InstatwitViewController

The break here skips commented out default code that we’re not using.

All implementation code go
es

after @implementation. Here

we indicate that
we’re realizing

the InstatwitViewController

interface we defined in the

header.

InstatwitViewController.h

InstatwitViewController.m

you are here 4 65

iPhone app patterns

 -
(void)dealloc {

 [activities release];

 [feelings release];

 [super dealloc];

}

@end

Remove the /* marks that were here and then add the code.
This method gets called on your view controller after the view
is loaded from the .xib file. This is where you can do some
initialization and setup for the view.

// Implement
viewDidLoad to do additional setup after loading the view,
typically from a nib.

 - (void)viewDidLoad {

 [super viewDidLoad];

 activities = [[NSArray alloc] initWithObjects:@”sleeping”,
@”eating”, @”working”, @”thinking”, @”crying”, @”begging”,
@”leaving”, @”shopping”, @”hello worlding”, nil];

 feelings = [[NSArray alloc] initWithObjects:@”awesome”,
@”sad”, @”happy”, @”ambivalent”, @”nauseous”, @”psyched”,
@”confused”, @”hopeful”, @”anxious”, nil];

}

Here we
establish the
arrays with
Mike’s lists.
We’ll call them
in a bit to fill
in the picker.

You need to release all of these
objects to clean up the memory, as an
iPhone is small (so not much memory).
We’ll talk about memory a lot more in
Chapter 3.

Now we just need the protocols...

The “@” before those strings tells the compiler to make them NSStrings instead of char*. NSStrings are real Objective-C classes, as opposed to a simple C-style character pointer. Most Objective-C classes use NSStrings instead of char*’s.
InstatwitViewController.m

66 Chapter 2

how many rows?

 - (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)
pickerView {

 return 2;

 }

 - (NSInteger)pickerView:(UIPickerView *)
pickerViewnumberOfRowsInComponent :(NSInteger)component {

 if (component == 0) {

 return [activities count];

 }

 else {

 return [feelings count];

 }

}

Here’s the
two required
methods for
the picker.

How many
components?

How many rows in each
component? They come
from different arrays,
so we need to treat
them seperately.

The datasource protocol has two required
methods
Let’s focus on the datasource protocol methods first. We said
in the header file that InstatwitViewController conforms to the
UIPickerViewDatasource protocol. That protocol has two required
methods, numberOfComponentsInPickerView:pickerView and
pickerView:numberOfRowsInComponent. Since we know we want
two wheels (components) in our view, we can start by putting that method in
our implementation file:

Our second method needs to return the number of rows for each
component. The component argument will tell us which component
the picker is asking about, with the first component (the activities) being
component 0. The number of rows in each component is the just the
number of items in the appropriate array.

Now that we have the methods implemented,
let’s wire it up to the picker.

InstatwitViewController.m

you are here 4 67

iPhone app patterns

Connect the datasource just like actions
and outlets
Now that the datasource protocol is implemented, the data is in place and
it’s just a matter of linking it to the picker. Hop back into Interface Builder
to make that connection:

A list of everything in your view, plus it’s class name.
 Right-click on the Picker in the view to bring
up the picker connections box.

1

 Notice that the File’s Owner for this view is
our InstatwitViewController, which realizes the
datasource and delegate protocols we need. You
need to connect the picker’s dataSource to our
controller, the File’s Owner. To do that, click
inside the circle next to the dataSource, and drag
over the to File’s Owner.

2

 If you don’t save in Interface Builder,
it won’t work!

Xcode will run the last saved version, not
anything else. On to the delegate...

68 Chapter 2

getting to a specific row

There’s just one method for the
delegate protocol
The UIPickerViewDelegate protocol only has one required
method (well, technically there are two optional methods,
and you have to implement one of them). We’re going to use
pickerView:titleForRow:forComponent. This method has
to return an NSString with the title for the given row in the
given component. Again, both of these values are indexed
from 0, so we can use the component value to figure out
which array to use, and then use the row value as an index.

 - (NSString *)pickerView:(UIPickerView *)pickerView
titleForRow:(NSInteger)row forComponent:(NSInteger)component {

 switch (component) {

 case 0:

 return [activities objectAtIndex:row];

 case 1:

 return [feelings objectAtIndex:row];

 }

 return nil;

}

 - (void)viewDidUnload {

 // Release any retained subviews of the main view.

 // e.g. self.myOutlet = nil;

}

Our choice of two methods, one of
which needs to be implemented.

The signature for these messages comes right out of the UIPickerViewDelegate and UIPickerViewDataSource documentation. Just cut and paste it if you want.

Return the string in the array at the
appropriate location - row 0 is the
first string, row 1 second, etc.

This gets called as your app is being shut down
and the view is unloaded. We don’t need it for
now, so leave it as it was in the template.

Now back to Interface Builder to wire up the delegate...

InstatwitViewController.m

you are here 4 69

iPhone app patterns

Test Drive
Save your work in Interface Builder, go back into Xcode and save
that, and Build and Run (⌘ return). When the Simulator pops up,
you should see everything working!

Spin those dials - they’re all the things on Mike’s list and they work great!

 Right-click on the picker in the Picker again
and bring up the connections window.

1

 The File’s Owner realizes the delegate protocol
as well. Click inside the circle next to the
delegate, and drag over the to File’s Owner.

2

70 Chapter 2

protocol options

Q: What happens if I don’t implement
a required method in a protocol?

A: Your project will compile, but you’ll
get a warning. If you try to run your
application, it will almost certainly crash with
an “unrecognized selector” exception when
a component tries to send your class the
missing required message.

Q: What if I don’t implement an
optional method in a protocol?

A: That’s fine. But whatever functionality
that it would provide isn’t going to be there.
You do need to be a little careful in that
sometimes Apple marks a couple of methods

as optional but you have to implement at
least one of them. That’s the case with
the UIPickerViewDelegate. If you don’t
implement at least one of the methods
specified in the docs, your app will crash
with an error when you try to run it.

Q: Are there limits to the number of
protocols a class can realize?

A: Nope. Now, the more you realize, the
more code you’re going to need to put in
that class, so there’s a point where you
really need to split things off into different
classes to keep the code manageable. But
technically speaking, you can realize as
many as you want.

Q: I’m still a little fuzzy, what’s the
difference between the interface we put in
a header file and a protocol?

A: An interface in a header file is how
Objective-C declares the properties, fields,
and messages a class responds to. It’s
like a header file in C++ or the method
declarations in a Java file. However,
you have to provide implementation for
everything in your class’s interface. A
protocol on the other hand is just a list of
messages—there is no implementation.
It’s the class that realizes the protocol that
has to provide implementation. These are
equivalent to interfaces in Java and pure
virtual methods in C++.

 � The picker needs a delegate and a data-
source to work.

 � In a picker, each dial is a component.

 � In a picker, each item is a row.

 � Protocols define the messages your class
must realize—some of them might be
optional.

you are here 4 71

iPhone app patterns

OK, that’s great and all. It looks really
nice. But the “Tweet it!” button doesn’t do
anything yet...

Now let’s get that button talking to
Twitter...
We got the picker working, but if you try out
the “Tweet it!” button, nothing happens when
something’s selected. We still need to get the button
responding to Mike and then get the whole thing to
talk to Twitter.

Think about what we need to do to get the
button working. What files will we use? What will
the button actually do?

72 Chapter 2

an action-packed button

The button needs to be
connected to an event
We need to wire up the button like we did in Chapter
1. Once Mike has selected what he’s doing and
feeling, he’ll hit “Tweet it!” Then we need to get his
selections out of the picker and send them to Twitter.

All that, in one little button...

So we just need to go back to IB and wire
up the TouchUpInside event again, right?

Yes, but what will we wire that event to?

you are here 4 73

iPhone app patterns

Without an action, your
button won’t work!
We learned about actions in Chapter 1, and without
one there won’t be anything in the connections
window to wire up in Interface Builder.

- (IBAction) buttonPressed:(id)sender;

This is the name of the method that will get called. The name can be anything, but the method must have one argument of type (id).

IB = Interface
Builder

All IBAction messages

take one argument: the

sender of the message.

This is the element that

triggered the acti
on.

Here’s the action we created for the button press in Chapter 1:

w to cre We need to change both the header and implementation
files for the InstatwitViewController.

1

Then provide an implementation for that method in our .m file, and
write a message to the log so you know it worked before sending to
Twitter

2

Start with the header and add an IBAction named sendButtonTapped.

74 Chapter 2

add an action

wv

Now go back and hook it up with Interface Builder...

#import <UIKit/UIKit.h>

@interface InstatwitViewController : UIViewController
<UIPickerViewDataSource, UIPickerViewDelegate> {

 NSArray* activities;

 NSArray* feelings;

}

- (IBAction) sendButtonTapped: (id) sender;

Declare your IBAction here so we can use it
in the .m file and Interface Builder knows
we have an action available.

 - (void)didReceiveMemoryWarning {

 // Releases the view if it doesn’t have a superview.

 [super didReceiveMemoryWarning];

 // Release any cached data, images, etc that aren’t in use.

}

 - (IBAction) sendButtonTapped: (id) sender {

 NSLog(@”Tweet button tapped!”);

}

This will give you the
output on the console..

Same method declaration as the .h

The IBAction is what allows the code
to respond to a user event, remember...

Declare your IBAction in the header file and
provide the implementation in the .m file.

1

2

InstatwitViewController.m

InstatwitViewController.h

you are here 4 75

iPhone app patterns

Save, then Build and Run. You should get the “Tweet
button tapped!” message in the console. Test Drive

So now we need to get the data
from that picker, right? Would an IBOutlet

be the right thing for that?

Yes! An IBOutlet provides a reference to
the picker.
In Chapter 1, we used an outlet to access and change
the text field value on the button. Now, to gather up the
actual message to send to Twitter, we need to extract
the values chosen from the picker, then create a string
including the label text.

So far the picker has been calling us when it needed
information; this time, when Mike hits the “Tweet it”
button, we need to get data out of the picker. We’ll use
an IBOutlet to do that.

76 Chapter 2

getting the data from the picker

Here’s our outlet
declaration. This lets
Interface Builder
know you have
something to connect
to. IBOutlets are
actually #defined to
nothing; they’re just
there for Interface
Builder.

 #import <UIKit/UIKit.h>

 @interface InstatwitViewController : UIViewController
<UIPickerViewDataSource, UIPickerViewDelegate> {

 IBOutlet UIPickerView *tweetPicker;

 NSArray* activities;

 NSArray* feelings;

 }

 @property (nonatomic, retain) UIPickerView* tweetPicker;

 - (IBAction) sendButtonTapped: (id) sender;

 @end

Here we declare a field in
the class called tweetPicker.
The type is a pointer to a
UIPickerView.

The property for tweetPicker has some
memory management options that we’ll
explain more in Chapter 3.

Add the IBOutlet and property to
our view controller
In addition to declaring the IBOutlet, we’ll declare a property
with the same name. We’ll talk more about properties in the
next chapter, but in short, that will get us proper memory
management and let the Cocoa Touch framework set our
tweetPicker field when our nib loads.

InstatwitViewController.h

Start with the header file...

you are here 4 77

iPhone app patterns

#import “InstatwitViewController.h”

@implementation InstatwitViewController

@synthesize tweetPicker;

 - (void)dealloc {

 [tweetPicker release];

 [activities release];

 [feelings release];

 [super dealloc];

}

@end

@ synthesize goes along
 with the

@property declaration
in the .h

file. See Chapter 3 for more info...

The last thing you need to do with tweetPicker is release our reference to it - another memory thing. We’ll come back to the memory management in Chapter 3, we promise.

InstatwitViewController.m

...and then add the implementation.

What’s next?

78 Chapter 2

connect the outlet to the code

Connect the picker to our outlet
You’re probably expecting this by now! Back into Interface Builder to
make the connection from the UIPickerView to the IBOutlet in our
view controller. Right-click on the UIPickerView, grab the circle next
to the “New Referencing Outlet,” and drop it on File’s Owner—our
InstatwitViewController sporting its new tweetPicker outlet.

When you click and drag up to
File’s Owner, you will be able to
connect it to the tweetPicker
outlet you just created.

What do you need to do now to get the data out of
the picker and into your Twitter message? Think
about the “Tweet it!” button press action and how
that will need to change...

you are here 4 79

iPhone app patterns

Use our picker reference to pull
the selected values
Now all that’s left is to use our reference to the picker to get
the actual values Mike selects. We need to reimplement the
sendButtonTapped method to pull the values from the
picker. Looking at the UIPickerView documentation, the
method we need is selectedRowInComponent:. That
method returns a row value, which, just like before, we can
use as an index into our arrays.

 - (IBAction) sendButtonTapped: (id) sender {

 NSString* themessage = [NSString stringWithFormat:@”I’m %@ and feeling %@
about it.”,

 [activities objectAtIndex:[tweetPicker selectedRowInComponent:0]],

 [feelings objectAtIndex:[tweetPicker selectedRowInComponent:1]]];

 NSLog(themessage);

 NSLog(@”Tweet button tapped!”);

}
Pull this log message out and put in one to see
what the final Twitter message will be.

Here’s the implementation for our callb
ack. We

need to create a strin
g and fill in the value

s from

the picker. the “%@” in the string format get

replaced with the values we pass in.

To figure out what Mike chose on the picker, we need to ask the picker what row is selected, and get the corresponding string from our arrays.

We’re just going to log this message to the console so we can see
the string we’re building, and then we’ll send this to Twitter in
just a minute. Let’s make sure we implemented this correctly first
before tweeting to the whole world...

InstatwitViewController.mWe want to build a new string with the full tweet text

in it, so we’ll use NSString’s stringWithFormat method to

create a templated string. There are lots of othe
r options

you could use with a string format, like characters, in
tegers,

etc., but for now we just need to insert
the two selected

strings, so we’ll use %@.

80 Chapter 2

ready to tweet

Test Drive
OK, try it out. You should get a convincing tweet in the
console:

Once we add the Twitter info, this is

what will actually show up in your feed

as a tweet.

All that’s left is to talk to Twitter—
we’ll help you with that.

you are here 4 81

iPhone app patterns

Ready Bake
Code

//TWITTER BLACK MAGIC

 NSMutableURLRequest *theRequest=[NSMutableURLRequest requestWithURL:[NSURL
URLWithString:@”http://YOUR_TWITTER_USERNAME:YOUR_TWITTER_PASSWORD@twitter.com/
statuses/update.xml”]

 cachePolicy:NSURLRequestUseProtocolCachePolicy

 timeoutInterval:60.0];

 [theRequest setHTTPMethod:@”POST”];

 [theRequest setHTTPBody:[[NSString stringWithFormat:@”status=%@”,
themessage] dataUsingEncoding:NSASCIIStringEncoding]];

 NSURLResponse* response;

 NSError* error;

 NSData* result = [NSURLConnection sendSynchronousRequest:theRequest
returningResponse:&response error:&error];

 NSLog(@”%@”, [[[NSString alloc] initWithData:result
encoding:NSASCIIStringEncoding] autorelease]);

// END TWITTER BLACK MAGIC

To post to Twitter, we’re going to use their API. Rather than
go into a Twitter API tutorial, we’ll give you the code you
need to tweet the string. Type the code you see below into the
InstatwitViewController.m, just below the NSLog with the
Twitter message in the sendButtonTapped method.

Your username and password
need to go in here.

 If you don’t have a Twitter account,
just go get one!

Just go to twitter.com and register. Once
you do that, you can enter your username

and password, and this will work like a charm.

After adding that code, you can just save, build and go. It will
now show up on your Twitter feed. Go ahead, try it out!

InstatwitViewController.m

82 Chapter 2

mike’s feeling great about your app

That is great! Now, Renee is happy and feels
included and I don’t actually have to talk out loud
about my feelings. At all. Ever.

you are here 4 83

iPhone app patterns

iPhonecross
Flex your vocab skills with this crossword.

Untitled Puzzle
Header Info 1
Header Info 2

etc...

1 2

3 4

5

6

7 8

9

10

11

Across
3. This typically handles the information itself in the app.
6. This is the document Apple uses to evaluate apps for
 the App Store.
7. You see this listed in the view and it controls the view.
9. This component allows for controlled input from several

selections.
10. This type of app is typically one screen, and gives you the

basics with minimal interaction.
11. These define to which messages the datasource and

delegate respond.

Down
1. This typically contains the logic that controls the flow of

information in an app.
2. The best way to figure out what protocols you need to worry

about is to check the ____________.
4. This app type typically involves hierarchical data.
5. This app type is mostly custom controllers and graphics.
8. The other name for an *.xib file.

84 Chapter 2

more app types

We’ve listed a couple of descriptions of a some different
apps. Using the app description, sketch out a rough view
and answer the questions about each one.

Generic giant button app
There are several of these currently up for sale
on the app store. This app consists of pushing
a big button and getting some noise out of
your iPhone.

1

What type of app is this?

What are the main concerns in the HIG
about this app type?

Book inventory app
This app’s mission is to keep a list of the books
in your library, along with a quick blurb of
what it’s about and the author.

2

What type of app is this?

What are the main concerns in the HIG
about this app type?

you are here 4 85

iPhone app patterns

iPhonecross Solution
Flex your vocab skills with this crossword.

Untitled Puzzle
Header Info 1
Header Info 2

etc...

D1 D2

D3 A T A S O U R C E P4 O
L R C

I5 E O U
H6 U M A N I N T E R F A C E G U I D E M

M A U E
F7 I L E S O W N E R N8 T C N

R P9 I C K E R T T
S B I A

U10 T I L I T Y F V T
V I I I
E L P11 R O T O C O L S

E Y N

Across
3. This typically handles the information itself in the app.

[DATASOURCE]
6. This is the document apple uses to evaluate apps for the

App Store. [HUMANINTERFACEGUIDE]
7. You see this listed in the view and it controls the view.

[FILESOWNER]
9. This component allows for controlled input from several

selections. [PICKER]
10. This type of app is typically one screen, and gives you the

basics with minimal interaction. [UTILITY]
11. These define to which messages the datasource and

delegate respond. [PROTOCOLS]

Down
1. This typically contains the logic that controls the flow of

information in an app. [DELEGATE]
2. The best way to figure out what protocols you need to worry

about is to check the ____________. [DOCUMENTATION]
4. This app type typically involves hierarchical data.

[PRODUCTIVITY]
5. This app type is mostly custom controllers and graphics.

[IMMERSIVE]
8. The other name for an *.xib file. [NIBFILE]

86 Chapter 2

exercise solution

We’ve listed a couple of descriptions of a some different apps.
Using the app description, sketch out a rough view and answer
the questions about each one.

Generic giant button app
There are several of these currently up for sale
on the app store. This app consists of pushing
a big button and getting some noise out of
your iPhone.

1

What type of app is this?

What are the main concerns in the HIG
about this app type?

Book inventory app.
This app’s mission is to keep a list of the books
in your library, along with a quick blurb of
what it’s about and the author.

2

What type of app is this?

What are the main concerns in the HIG
about this app type?

Bug button
that you push

Just one view

An immersive app

The big thing Apple cares about is that
controls “provide an internally consistent
experience.” So everything can be custom, it
needs to focused and well organized.

A productivity app

The HIG has many more specific rules about
this app type, because you’ll be using standard
controls. EACH control needs to be checked
out for proper usage.

Another view for details, need to figure
out how to get to it...

Book list

Some navigation stuff here

you are here 4 87

iPhone app patterns

Your iPhone Toolbox

You’ve got Chapter 2 under
your belt and now you’ve

added protocols, delegates, and
datasources to your toolbox. For a

complete list of tooltips in the book,
go to http://www.headfirstlabs.com/
iphonedev. CH

AP
T

ER
 2

 � The picker needs a delegate and data-
source to work.

 � In a picker, each dial is a component.

 � In a picker, each item is a row.

 � Protocols define the messages your class
must realize—some of them might be
optional.

Protocols
Define the messages your

datasource and
 delegate must

respond to.

Are declared in
the header (.h

)

file.
Some of them might be optiona

l. Datasource
Provides the b

ridge between the

control and th
e data it need

s to

show.
Works with databases,

plists,

images, and othe
r general info

that your app
will need to disp

lay.

Can be the same object as a

delegate, but h
as its own specific

protocols.

Delegate
Responsible for

the behavior o
f a

UI element..

Contains the log
ic that contro

ls

the flow of information, like

saving or displa
ying data, and

which view is seen when.

Can be in same object as th
e

datasource, bu
t has its own

specific protoc
ols.

88 Chapter 2

renee is getting suspicious

This is Renee, Mike’s girlfriend

It’s so great that Mike and I are
communicating now! But I’ve noticed that
Mike’s starting to sound like he’s in a rut, saying
the same thing over and over again! Is there
something we need to talk about?

Sounds like Mike is going
to need some modifications
to InstaTwit to keep his
relationship on solid ground...

this is a new chapter 89

I know these are letters and
all, but I have no idea what
you’re saying...

objective-c for the iPhone3

Twitter needs variety

We did a lot in chapter 2, but what language was that?�
Parts of the code you’ve been writing might look familiar, but it’s time you got a sense of

what’s really going on under the hood. The iPhone SDK comes with great tools that mean

that you don’t need to write code for everything, but you can’t write entire apps without

learning something about the underlying language, including properties, message passing,

and memory management. Unless you work that out, all your apps will be just default

widgets! And you want more than just widgets, right?

90 Chapter 3

renee wants more

InstaTwit was working great, and is so easy to use!
But I think Renee is on to me. She said I sound like
I’m in a rut. I need to be able to add to my tweets
or this isn’t going to work much longer.

Renee is catching on....
Mike has been diligently using InstaTwit to communicate his feelings, but his
girlfriend is starting to think something weird is going on. Even for Mike, who
is a guy who likes his routines, his tweets are starting to sound suspicious.

We need to make some adjustments
to our InstaTwit design.
Take a look at the various UI controls available in
Interface Builder, and think about what would be a
quick and easy way for Mike to add to his tweets.

you are here 4 91

objective-c for the iPhone

We’ll put the text field in here

Scoot this
stuff down a
little

Code Magnets
Using what you know from adding the picker and the button, match the
magnet with the method or file that you’ll need to edit to add the text field.

Add an IBOutlet and @property
declaration for the UITextField

Add [notesfield release]
Link the UITextField

to the IBOutlet

Add UITextField
to the view

Add
notesField to

@synthesize

 1

 2

 3

 4

 5

to InstatwitViewController.h.

to the top of
InstatwitViewController.m.

to the dealloc in
InstatwitViewController.m.

using Interface Builder.

to the property created in step
#1, using Interface Builder.

Create a delegate and datasource for the notesField

Add an IBAction for
the UITextField

Make room for custom input
It’s nothing fancy, but Mike could add a little personal flavor to his
tweets with a text field at the start. It means he’ll need to do some
typing, but in the end his tweets will be more unique.

92 Chapter 3

IBOutlet UIPickerView *tweetPicker;

 IBOutlet UITextField *notesField;

 NSArray* activities;

 NSArray* feelings;

}

@property (nonatomic, retain) UIPickerView* tweetPicker;

@property (nonatomic, retain) UITextField* notesField;

design magnets solution

Design Magnets Solution
Using what you know from adding the picker and the button, match the
magnet with the method or file that you’ll need to edit to add the text field.

Add an IBOutlet and @property
declaration for the UITextField 1 to InstatwitViewController.h.

What we need is a UITextFi
eld. To implement the new

field, we need to declare a clas
s member (with IBOutlet

so Interface Builder sees it) and add
a property that we’ll

call notesField.

Wait a minute. We keep adding
code to this .h file, but I still don’t
know what a .h file really does!
What gives?

A .h file is a header file.
It’s where you declare the interface and methods for a class. All
of the classes we’ve used so far, like UITextField, NSString, and
NSArray, have header files you can look through. Take a minute to
look through a couple and start thinking about what is happening
in those files.

 Beware of private framework headers

Sometimes you’ll come across a really
tempting method that’s not defined in the Apple
Documentation. Using undocumented APIs will
get your app rejected from the iTunes store.

InstatwitViewController.h

you are here 4 93

objective-c for the iPhone

- (IBAction) sendButtonTapped: (id) sender;

Here’s our current InstatwitViewController.h file. Fill in the
blanks and explain what each line does.

#import <UIKit/UIKit.h>

@interface InstatwitViewController : UIViewController
<UIPickerViewDataSource, UIPickerViewDelegate> {

 IBOutlet UIPickerView *tweetPicker;

 IBOutlet UITextField *notesField;

 NSArray* activities;

 NSArray* feelings;

}

@property (nonatomic, retain) UIPickerView* tweetPicker;

@property (nonatomic, retain) UITextField* notesField;

- (IBAction) sendButtonTapped: (id) sender;

- (IBAction) textFieldDoneEditing:(id) sender;

@end

Header files describe the interface to your class
In Objective-C, classes are defined with interfaces in the header file. It’s where you declare if your
class inherits from anything, as well as your class’ fields, properties, and methods.

IBOutlet UIPickerView *tweetPicker;

@interface InstatwitViewController :
UIViewController

InstatwitViewController.h

Interfaces, class fields,
methods, and properties

InstatwitViewController.m

InstatwitViewController.h

94 Chapter 3

sharpen solution

Here’s our current InstatwitViewController.h file. Fill in the blanks
and explain what each line does.

#import <UIKit/UIKit.h>

@interface InstatwitViewController :
UIViewController <UIPickerViewDataSource,
UIPickerViewDelegate> {

 IBOutlet UIPickerView *tweetPicker;

 IBOutlet UITextField *notesField;

 NSArray* activities;

 NSArray* feelings;

}

import incorporates another file (almost always a header
file) into this file when it’s compiled. It’s used to pull in classes,
constants, etc. from other files.

This is where we can declare fields of our class.

Here’s our inheritances and interfaces.

It’s almost identical to C’s #include,

except that it automatically prevents

including the same header multiple
times (so no more #ifndef
MY_HEADER).

@interface indicates you’re
going to declare a class.

Next comes the class name, and if it inherits from something then a colon and the super class’s name.

Any protocols you implement go in angle brackets separated by commas. Protocols are like Java interfaces or pure virtual classes in C++, and a class can realize as many as you want.

IBOutlet allows Interface Builder to

recognize fields that you can at
tach to

controls (like our notes field in
InstaTwit).

The syntax for fields is just like in C++: Basic types like int and float are used as is; pointer types use an asterisk. By default, all fields are given protected access, but you can change that with @private or @public sections similar to C++.

Objective-C doesn’t support
multiple inheritance...

InstatwitViewController.h

you are here 4 95

objective-c for the iPhone

@property (nonatomic, retain) UIPickerView* tweetPicker;

@property (nonatomic, retain) UITextField* notesField;

- (IBAction) sendButtonTapped: (id) sender;

- (IBAction) textFieldDoneEditing:(id) sender;

@end

Once you’ve closed the field section of your interface, you
can declare properties. @property tells Objective-C to
autogenerate getter and setter methods for you.

The @property keyword tells the
compiler this is a property that will be

backed by getter and (maybe) setter

methods.

These are property attributes; we’ll

talk more about these shortly...

Here’s our type an
d property

name, just like the f
ield in

the class.

These are the method declarations.

@end: ends your class interface declaration.

The minus sign means it’s an instance

method (a + means it’s static). All
methods in Objective-C are public.

IBAction lets Interf
ace

Builder identify m
ethods

that can be att
ached to

events.

IBAction method signatures must take one argument of type id, which is like a void * in C++ or Object reference in Java.

InstatwitViewController.h

96 Chapter 3

@synthesize tweetPicker, notesField;

magnets solution

Design Magnets Solution (Continued)
Using what you know from adding the picker and the button, match the
magnet with the method or file that you’ll need to edit to add the text field.

Add notesField

to @synthesize
 2 to the top of

InstatwitViewController.m.

Here you synthesize the accessor methods from @property. You can create a new @synthesize line or just add it after a comma on the line that’s already there.

OK, so if we declared a property
in the .h file, then adding @synthesize
in the .m file must auto-generate some
code, right?

Yes! It generates the getter and setter methods.
Using @property lets the compiler know we have a property,
but that’s not enough. Using the @synthesize keyword in the
implementation files, we can have the compiler auto-generate the
setter and getter method we talked about earlier. The compiler will
generate a getter, and, if it’s a readwrite property, a setter and
implement it based on the @property attributes declared in the .h
file. So what do the different @property attributes do...?

Back in that design we
were working on...

 I B O u t l e t UIPickerView *tweetPicker;

 IBOutlet UITextField *notesField;

 NSArray* activities;

 NSArray* feelings;

}

@property (nonatomic, retain) UIPickerView* tweetPicker;

@property (nonatomic, retain) UITextField* notesField;

Add an IBOutlet and @property
declaration for the UITextField 1 to InstatwitViewController.h.

InstatwitViewController.h

InstatwitViewController.m

you are here 4 97

objective-c for the iPhone

When you want the property to be modifiable by
people. The compiler will generate a getter and a
setter for you. This is the default.

readonly

Below is a list of the most commonly used property attributes and
definitions. Match each attribute with its definition.

assign

retain

copy

readwrite

When you’re dealing with basic types, like ints, floats,
etc. The compiler just creates a setter with a simple
myField = value statement. This is the default, but
not usually what you want.

When you’re dealing with object values. The compiler
will retain the value you pass in (we’ll talk more about
retaining in a minute) and release the old value when a
new one comes in.

When you don’t want people modifying the property.
You can still change the field value backing the
property, but the compiler won’t generate a setter.

When you want to hold onto a copy of some value
instead of the value itself; for example, if you want
to hold onto an array and don’t want people to be able
to change its contents after they set it. This sends a
copy message to the value passed in then retains that.

98 Chapter 3

who does what solution

When you want the property to be modifiable by
people. The compiler will generate a getter and a
setter for you. This is the default.readonly

assign

retain

copy

readwrite

When you’re dealing with basic types, like ints, floats,
etc. The compiler just creates a setter with a simple
myField = value statement. This is the default, but
not usually what you want.

When you’re dealing with object values. The compiler
will retain the value you pass in (we’ll talk more about
retaining in a minute) and release the old value when a
new one comes in.

When you don’t want people modifying the property.
You can still change the field value backing the
property, but the compiler won’t generate a setter.

When you want to hold onto a copy of some value
instead of the value itself; for example, if you want
to hold onto an array and don’t want people to be able
to change its contents after they set it. This sends a
copy message to the value passed in then retains that.

SOlUTion

Q: How does the compiler know what field to use to hold the
property value?

A: By default, the compiler assumes the property name is the
same as the field name. In reality, it doesn’t have to be. You can
specify the field to use to back a property when you @synthesize it
like this: @synthesize secretString=_superSecretField;.

Q: What about that nonatomic keyword?

A: By default, generated accessors are multithread safe and use
mutexes when changing a property value. These are considered
atomic. However, if your class isn’t being used by multiple threads,
that’s a waste. You can tell the compiler to skip the whole mutex thing
by declaring your property as nonatomic.

Below is a list of the most commonly used property attributes and
definitions. Match each attribute with its definition.

you are here 4 99

objective-c for the iPhone

Auto-generated accessors also handle memory
management
Objective-C on the iPhone doesn’t have a garbage collector, so you have to use reference counting.
That involves keeping up with how many references there are to an object, and only freeing it up
when the count drops to zero (it’s no longer being used). When you use properties, the compiler
handles it for us. The properties we’ve declared so far have all used the retain attribute. When the
compiler generates a setter for that property, it will properly handle memory management for us,
like this:

@property (nonatomic, retain) NSString* secretString;

@synthesize secretString

- (NSString*) secretString {

 return secretString;

}

- (void) setSecretString: (NSString*) newValue {

 if (newValue != secretString) {

 [secretString release];

 secretString = [newValue retain];

 }

}

Here the compiler just return
s

the value, nothin
g exciting.

Since we didn’t say the
 property

is readonly, the
compiler will

generate a sette
r for us.

Since we used the retai
n keyword, the

generated sette
r checks to make sure

the new value is differen
t, then does

a release on the
old value and a r

etain

on the new one.

Nonatomic means no

locks...
Retain says we’re using an object type and we want

to hang onto the object passed to the set
ter.

This would be in your @implementation section.

Write the code that Objective-C generates for each property
declaration below.

1. @property (nonatomic, readonly) NSString* myField

2. @property (nonatomic, retain) NSString* myField

3. @property (nonatomic, assign) NSString* myField

100 Chapter 3

sharpen solution

1. @property (nonatomic, readonly) NSString* myField

2. @property (nonatomic, retain) NSString* myField

3. @property (nonatomic, assign) NSString* myField

- (NSString*) myField {
 return myField;
}
- (void) setMyField: (NSString*)
newValue {
 if (newValue !=myField) {
 [myField release];
 myField = [newValue retain];
 }
}

- (NSString*) myField {
 return myField;
}

- (NSString*) myField {
 return myField;
}
 - (void) setMyField: (NSString*) newValue
 {
 myField = newValue;
}

Be careful with this one... NSStrings are reference counted objects, so while this will technically work, having an assign property for an NSString is probably a bad idea.

However, for basic types like booleans and floa
ts,

you can’t do reference counting. Assignment is
almost always what you want.

Below is the code that the compiler will generate for each
property.

you are here 4 101

objective-c for the iPhone

I bet that release just lets go of
the memory that your properties
use up, right?

Objective-C can automatically release references, too.
In addition to retain and release, Objective-C has the concept of an
autorelease pool. This is basically an array of objects that the runtime
will call release on after it’s finished processing the current event. To put
something in the autorelease pool, you simply send it the autorelease
message:

 [aString autorelease];

It will still have the same retain count, but after the current event loop
finishes, it will be sent a release. You won’t want to use this all the time
because it’s not nearly as efficient and has some performance overhead. It’s
not a bad thing to use, but it’s better to explicitly retain and release when
you can.

You must release objects you create with alloc, new, copy, or mutableCopy.
If you create an object with alloc, new, copy, or mutableCopy, it will have a retain count of 1
and you’re responsible for sending a release when you’re done with the object. You can also
put the object in the autorelease pool if you want the system to handle sending a release later.

1

Consider everything else to have a retain count of 1 and in the autorelease
pool.
If you get an object by any other means (string formatters, array initializers, etc.) you should
treat the object as having a retain count of 1 and put it in the autorelease pool. This means
that if you want to hang onto that object outside of the method that got the object, you’ll
need to send it a retain (and a corresponding release later).

2

To keep your memory straight, you need to
remember just two things
Memory management can get pretty hairy in larger apps, so Apple has a couple of
rules established to keep track of who’s in charge of releasing and retaining when.

Get it? Memory,

remember?

102 Chapter 3

memory management up close

Memory Management Up Close
- (void)deallo

c {

 [tweetPicker r
elease];

 [activities re
lease];

 [feelings rele
ase];

 [super dea
lloc];

}

Memory management is definitely important on iPhone, but that doesn’t mean it’s
complicated. Once you get the hang of a few key principles, you’ll be able to structure
your app so that it doesn’t leak memory and get you kicked out of the app store.

When you create an object, it starts with a count of 1, and different things you do can
raise and lower the count. When the count reaches 0, the object is released and the
memory is made available.

This is some of the memory
management code that YOU
have already written!

NSString *aString = [[NSString alloc] init];

1

2

1

2

1

[aString retain];

[aString release];

[someArray addObject:aString];

[someArray removeObject:aString];

[aString release];

At first, there
’s no

memory allocated.
...

...when you alloc a
 class,

the reference
 count is

set to 1.

Each retain cal
l adds one

to the count..
.

...and a releas
e call

subtracts one
.

If another object (like this array) needs to hang onto your object, it will retain it....

...and release
its reference

when it’s done
with it.

Once the count
 gets to 0,

the object’s d
ealloc is called

and the memory is freed.

you are here 4 103

objective-c for the iPhone

Determine how many references are left at the end of the chunk of code and if
we have to send it a release for each string.

NSString *first = [[NSString alloc] init];

NSString *second = [[NSString alloc] init];

[someStringArray addObject:second];

NSString *third = [[NSString alloc] init];

[third autorelease];

NSString *fourth = [NSString
stringWithFormat:@”Do not read %@”, @”Swimming
with your iPhone by TuMuch Monee”];

NSMutableArray *newArray = [[NSMutableArray alloc] init];

 NSString *fifth = [[NSString alloc]
initWithFormat:@”Read this instead: %@”, “Financing your
iPhone 4G by Cerius Savar”];

 [newArray addObject:fifth];

 [newArray release];

NSString *sixth = [NSString stringWithString:@”Toughie”];

 NSArray *anotherArray = [NSArray
arrayWithObjects:sixth count:1];

 NSDictionary *newDictionary = [NSDictionary
dictionaryWithObjects:sixth forKeys:@”Toughie”
count:1];

 NSString *ignoreMe = [sixth retain];

Final Reference Count

104 Chapter 3

keeping count

vw Determine how many references are left at the end of the chunk of code and if
we have to send it a release for each string.

NSString *first = [[NSString alloc] init];

NSString *second = [[NSString alloc] init];

[someStringArray addObject:second];

NSString *third = [[NSString alloc] init];

[third autorelease];

NSString *fourth = [NSString
stringWithFormat:@”Do not read %@”, @”Swimming
with your iPhone by TuMuch Monee”];

Final Count

1

2

1

1

Reference count will be 1
because alloc automatically sets
count to 1.

“second” will have a retain count of
2 after this block of code: 1 from
the alloc, 1 from inserting it into the
array. Arrays automatically retain
items added to them.

This still has a retain count of 1
because of the alloc, but is now in
the autorelease pool, meaning it will
be sent a release automatically after
the current event loop has completed.

This will have a retain count of 1,
but will be in the autorelease pool
because we didn’t get it via an alloc,
new, copy, or mutableCopy.

you are here 4 105

objective-c for the iPhone

vw

NSMutableArray *newArray = [[NSMutableArray
alloc] init];

 NSString *fifth = [[NSString alloc]
initWithFormat:@”Read this instead: %@”,
“Financing your iPhone 4G by Cerius Savar”];

 [newArray addObject:fifth];

 [newArray release];

NSString *sixth = [NSString
stringWithString:@”Toughie”];

 NSArray *anotherArray = [NSArray
arrayWithObjects:sixth count:1];

 NSDictionary *newDictionary =
[NSDictionary dictionaryWithObjects:sixth
forKeys:@”Toughie” count:1];

 NSString *ignoreMe = [sixth retain];

1

4

“fifth” will have a retain count of 1:
First it gets a retain count of 1 from
the alloc.
Next it goes to 2 because it’s inserted
into the “newArray”.
Then it goes back to 1 because an array
will send a release to all of its items
when the array is destroyed.

“sixth” starts out with an autoreleased retain
count of 1 from the initial creation (note it
wasn’t from alloc, so it’s autoreleased).
Next, another retain from inserting it into the
array. Note the array wasn’t alloc’ed either, so
it will be autoreleased, too.
Then one more retain from the dicionary, also
not alloc’ed and will be autoreleased.
Finally, an explicit retain...
So, even though “sixth” has a retain count of 4,
we, the developers, only need to send one release
to “sixth” and let everything else clean up with
the autorelease pool.

Determine how many references are left at the end of the chunk of code and if
we have to send it a release for each string.

Final Count

Hey, could we get back
to my app please?

106 Chapter 3

- (void)dealloc {

 [tweetPicker release];

 [activities release];

 [feelings release];

 [notesField release];

 [super dealloc];

magnets solution

Design Magnets Solution (Continued)
Using what you know from adding the picker and the button, match the
magnet with the method or file that you’ll need to edit to add the text field.

Add [notesfield release] 3 to the dealloc in
InstatwitViewController.m.

Create a de
legate and

datasource
for the not

esField

Add an IBAction for
the UITextField

When we’re being freed and ou
r

dealloc is called we need to release

our reference to the te
xt field.

We don’t need an
action or a datasource
for the notes field.

The property will automatically

retain a reference passe
d to it - we

need to release that in
dealloc.

@synthesize tweetPicker, notesField;

Add notesField

to @synthesize
 2 to the top of

InstatwitViewController.m.

Here you synthesize the accessor methods from @property. You can create a new @synthesize line or just add it after a comma on the linthat’s already there.

 I B O u t l e t UIPickerView *tweetPicker;

 IBOutlet UITextField *notesField;
 NSArray* activities;

 NSArray* feelings;

}

@property (nonatomic, retain) UIPickerView* tweetPicker;

@property (nonatomic, retain) UITextField* notesField;

Add an IBOutlet and @property
declaration for the UITextField 1 to InstatwitViewController.h.

InstatwitViewController.h

InstatwitViewController.m

InstatwitViewController.m

you are here 4 107

objective-c for the iPhone

Add UITextField
to the view

 4
using Interface Builder.

Link the UITextField
to the IBOutlet

 5 to the property created in step
#1, using Interface Builder.

To get into this, you’ll need to open up InstatwitViewController.xib and find the text field in
the library. Then drag and drop the text field in between the “InstaTwit” label and the “I’m
.... and feeling ...” labels. You’ll also need to put a label that says “Notes” in front of the text
field.

You will probably need
to move the picker,
labels, and button down
a little.

Right-click on File’s Owner and link from the circle next to “notesField” to the UITextField in the view.

Save it and then...

108 Chapter 3

test drive

Test Drive
Now that everything is saved, go back into Xcode and build and run, and
launch the simulator.

Click here to
write a note to
customize the
tweet....

Hey, we didn’t even
have to do anything
to make the keyboard
show up for the text
field. Cool!

It works!

you are here 4 109

objective-c for the iPhone

Head First: Hello Objective-C! Thanks for coming.

Objective-C: Thanks! It’s great to be here. I’ve
been getting a lot of attention recently with this
whole iPhone thing.

Head First: So you have a pretty strong lineage,
right? Why don’t you tell us a little about yourself ?

Objective-C: Sure. I’m an Object Oriented
language, so I have classes and objects, but I come
from strong C roots. My OO concepts come from
Smalltalk. Really, there’s not much to me.

Head First: What do you mean you come from C
roots?

Objective-C: Well, nearly all of my syntax is just
like C syntax. For loops, types, pointers, etc. You
can easily use other C libraries like SQLite with me.
Things like that.

Head First: But you’re more than just that, right?

Objective-C: Oh yeah, definitely. Most obviously,
I am an OO language, so classes, abstract interfaces
(which I call protocols), inheritance, etc. all work
great.

Head First: So what about memory management?
Malloc and free like C?

Objective-C: Well, malloc and free work just
like they do in C, but I have a really nice memory
management model for objects. I use reference
counting.

Head First: Ah—so you keep track of who’s using
what?

Objective-C: Yup. If you want to keep an

object around, you just tell me you want to retain
a reference to it. Done with it? Just release your
reference. When there aren’t any references left I’ll
clean up the object and free up the memory for you.

Head First: Nice. Any other tricks?

Objective-C: Oh yeah. You know those getter
and setter methods you need to write for other OO
languages to wrap fields in a class? Not here. I can
automatically generate them for you. Not only that,
you can tell me how you want to handle the memory
associated with them. Oh, and one of my favorites:
I can graft new methods onto classes without a
problem. They’re called categories.

Head First: Oh, that’s slick. We’re about out of
time, so just one more question. What’s up with all
those “NSs” all over the place, like NSString and
NSInteger?

Objective-C: Ah—those are all part of the
CocoaTouch framework. I mentioned my strong
lineage earlier; most of the core classes that people
use on iPhone come from CocoaTouch, which
is a port of Cocoa which came from OpenStep,
which came from NeXTStep, and that’s where
the NS comes from. The frameworks are written
in Objective-C, but they’re frameworks, not really
language things. When you write for iPhone, you’ll
be using things like that all of the time. For example,
instead of using char*s for strings, you usually use
NSStrings or NSMutableStrings. We all kind of blur
together.

Head First: This is great information! Thanks
again for coming by, and best of luck with the iPhone!

Objective-C: No problem. Thanks for having me.

Objective-C Exposed
This week’s interview:
Who are you anyway?�

110 Chapter 3

no dumb questions

Q: What happens if I don’t retain an
object I’ll need later?

A: Most likely the object’s retain count
will hit 0 and it will be cleaned up before you
get to use it. This will crash your application.
Now here’s the sad part: it might not crash
your object on the simulator every time. The
simulator has a lot more memory to work
with and behaves differently than a real
iPhone or iPod Touch. Everything might look
great until you put it on your phone to test it.
Then sadness ensues.

Q: What if I release my object too
many times?

A: Basically the same thing. When the
reference count hits 0, the object will be
released and memory will be freed. Sending
that now-freed memory another release
message will almost certainly crash your
application.

Q: What if my project works on the
simulator and dies on the real phone?
Could that be a memory problem?

A: Absolutely. Memory on a real device
is much tighter than on the simulator. We’ll
talk more about debugging these and using
Instruments to track memory usage and
leaks in a later chapter.

Q: How can I check if I’m managing
my memory effectively?

A: The iPhone SDK comes with a
great memory tool called Instruments that
can show you how your memory is being
used, peak memory usage, how fast your
allocating and deallocating it, and possibly
most importantly, if you’re leaking memory.
We’ll talk about it in detail later in the book.

Q: What happens if I set things to nil?

A: Well, it depends on what you’re setting
to nil. If it’s just a local variable, nothing. The
variable is now nil, but the memory for the
object it used to point to is still allocated and
you’ve almost certainly leaked something.
Now, if it’s a property...

Q: Do I have to retain things I want to
set on my properties?

A: No! Well, probably not. That’s what
the “retain” parameter is on the @property
declaration. If you put retain there the
property will automatically send values
retains and releases when the property is
set or cleared. Be careful about clearing
properties in your dealloc, though. If you
have a property with a retain parameter
and it still has a value when your object is
released, then whatever that property is set
to hasn’t been freed. You can either send the
field an explict release in your dealloc or set
the property to nil.

One more quick note: the automatic retain/
release ability of properties only works if you
use the “.” notation. If you explicitly modify
the field that backs the property, there’s
nothing the property can do about it and
can’t retain/release correctly.

Q: Doesn’t Objective-C have garbage
collection like Java or .NET?

A: Actually, on the Mac it does. Apple
didn’t provide garbage collection on iPhone
OS however, so you need to fallback to
reference counting with retain and release.

Q: What about malloc and free? Can I
still use them?

A: Yes, but not for object types. Malloc
and free work fine for basic blocks of
memory as they do in C, but use alloc to
instantiate classes.

Q: What’s with that init call that you
always put after the alloc?

A: Objective-C doesn’t have constructors
like other Object Oriented languages do.
Instead, by convention, you can provide one
or more init methods. You should always call
init on any class you allocate, so you almost
always see them together as [[SomeClass
alloc] init].

Q: How do I know if something retains
my object, like an array or something?

A:Basically you shouldn’t care. Follow
the memory rules that say if you got it from
alloc, new, copy, or mutableCopy, you have
to send it a release. Otherwise, retain/
release it if you ant to use it later. Beyond
that, let the other classes handle their own
memory management.

Q: Can’t we just append the message
to the string?

A: NSStrings are immutable, but we could
with NSMutableString.

you are here 4 111

objective-c for the iPhone

But when Mike’s finished typing...

The textField works great,
but how do I get the
keyboard to go away?

The keyboard is permanent?
Go ahead, play with it and try to get the keyboard to go away.
Return won’t do it, and neither will clicking anywhere else on the
screen. Not so cool.

BE the architect
Your job is to be the architect and plan
how the keyboard needs to behave. Fill
in the pattern diagram below to explain

what needs to happen to
make it go away! View

View Controller

How should the view communicate what has to happen to the user? What should the user see?

What does the view controller need to do to make these view changes happen?

112 Chapter 3

be the architect solution

BE the architect solution
Your job is to be architect and plan how
the keyboard needs to behave. Fill in the
pattern diagram below to explain what

needs to happen to make it
go away! View

View Controller

The user needs to
understand what to do
to make the keyboard
go away, so change the
“return” button to say
“done”.

The view controller
needs to receive the
“done”message and then
make the keyboard go
away.

Let’s start with the view.

Q: Why didn’t we have to do anything to make the keyboard
appear in the first place?

A: When the users indicate they want to interact with
a specific control, iPhoneOS gives that control focus and
sets it to be the “first responder” to events. When certain
controls become the first responder, they trigger the
keyboard to show automatically.

Conventions like using
“done” to let the user
hide the keyboard are
discussed in Apple’s HIG.
There are lots more;
“done” is just one of
them.

This kind of back and forth between the
view and view controller is common and
is going to show up all over the place. A
view controller provides the behavior for
a view.

you are here 4 113

objective-c for the iPhone

 Watch out for the HIG!

Beyond the Text and Placeholder fields,
changing some of the other options may hurt
your usability and make Apple unhappy, so
be careful.

Now, get the keyboard to talk to the view controller...

Customize your UITextField
In Interface Builder, select Mike’s custom field and ⌘ 1 to bring up
the inspector. You can specify an initial value of the text in the field
(Text), text that the field shows in grey if there’s no other text to display
(Placeholder), left, center, or right Alignment, the Borders can be
different, etc. For now you don’t need to add anything for field, so leave
these blank.

Next change the label on the return key
Changing the name of the button in the keyboard (so it’s “done”
instead of the “return”) is another option in the inspector. The big
thing that changing the label on the button brings to the table is that it
clearly communicates to the user what to do to make they keyboard go
away.

Click on the Return Key popup menu and pick Done.

There are other options for the
“return”

button - some of them are obvious (like

“Google”) and others are little more

subtle. Check out Apple’s HIG for when to

use some of the other ones.

By default, Clear When Editing Begins is

checked.That means whenever the users

tap in the textfield, whatever value it

previously had is cleared. It also
means

they couldn’t edit that value if
 they

wanted to.

114 Chapter 3

message passing

Components that use the keyboard ask it to appear...
When users click in the text field, iPhone OS gives that control focus and assigns it as “first
responder” to that click event. A component can get focus a number of ways: the users explicitly
tap on the control, the keyboard is set up so that the Return key moves to the next control they
should fill out, the application sets some control to explicitly become first responder because
of some event, etc. What a component does when it becomes the first responder varies by
component, however; for a UITextField, it asks iPhoneOS to display the keyboard. All this
chatter between the application and components is fundamental to writing an application, and it
all happens through message passing.

Activities
 Array

When one object wants to communicate with
another object, it sends it a message.

[activities objectAtIndex:row]

@”sleeping”

Here we’re sending the objectAtIndex message to the activities array.

And it responds to that message
with the value @”sleeping”.

In Objective-C you send a message to an object and it responds to that message (as opposed to returning
a value from a method). The Objective-C runtime turns those messages into method calls on
objects or classes (in the case of static methods), but get used to thinking about these as messages;
you’ll see things like “the receiver of this message will...” all over Apple’s documentation. Now,
let’s use message passing to get rid of the keyboard when the user is done with it.

...by passing messages to other objects
The idea is that whenever one object (whether that object is your ApplicationDelegate, another
component, or the GPS in the iPhone) wants some other object to do something, it sends it a
message.

you are here 4 115

objective-c for the iPhone

Ask the textField to give up focus
In order to get the keyboard to go away, we need to tell the text field that the user is done
with it. We do this by asking the textfield to resign its first responder status.

Sending messages in Objective-C is easy: you list the receiver of the message, the message
to send, and any arguments you need to pass along.

[notesField resignFirstResponder];

This is the receiver for the message - in our case, the notesField.

This is where you put the actual message. In
our case we have no arguments, so this is all
we need. See the Apple documentation for
details on what messages each component
will respond to.

 You can pass messages to nil with no obvious problems.

Objective-C lets you send messages to nil without complaining. If you’re used
to NullPointerExceptions from other languages, this can make debugging
tricky. Be careful of uninitialized variables or nil values coming back as other nil
values when you debug.

Is that how the View is sending the
View Controller information?

Yes! Our View Controller can respond to a
number of messages like sendButtonTapped
and viewDidLoad.
You’ve been responding to messages all this time. Now here’s the
trick: the textField can send a message when the user taps the
Done button on they keyboard. We just need to tell it that our
ViewController is interested in knowing when that happens.

Surround message passin
g

with square b
rackets.

This is a statement like any other—don’t forget the semicolon.

116 Chapter 3

messages up close

Handling Messages Up Close

@implementation InstatwitViewController

@end

 - (IBAction) sendButtonTapped: (id) sender {

 }
New method code here.

You’ve been handling messages since Chapter 1, but we really haven’t talked about
the syntax to make it work. Method declarations go in your header files and the
implementation goes in the .m. Here are some snippets from our sendButtonTapped
implementation from InstaTwit.

Implementation files (.m) start with @implementation, then the name of the class you’re implementing.

Finally, provide the implementation of the

method declared in our interface.

The “-” means it’s an instance method (whereas a “+” means a static or class method).

You specify the response
type in parenthesis before
the message names.

Next is the name of the
message. The full message name
(with arguments) is called a
selector in Obj-C and tends to
be long and descriptive.

If there are arguments to your message, follow the message name with a colon, then the type and name of the local variable. Additional arguments get names, types, and variable names, too.

The syntax for declaring a message
in a header file is the same as in the
implementation file.

Implementation files all end with @end.

InstatwitViewController.m

you are here 4 117

objective-c for the iPhone

Messages in Objective-C use named arguments
In Objective-C, message names tend to be long and descriptive. This really starts to make sense
when you see arguments tacked on. When you send a message with arguments, the message and
argument names are all specified. Objective-C messages read more like sentences. Let’s look at a
method declaration from UIPickerViewDataSource. This method returns the number of rows for a
given component in a picker view. It’s declared like this:

[pickerDelegate pickerView:somePicker numberOfRowsInComponent:component];

Receiver Message name Second argument
name

value Second argument
value

Q: You keep switching terms back and
forth between methods and messages.
Which is it?

A: Both are correct, depending on
your context. In Objective-C, you send
messages to objects and they respond. The
Objective-C runtime turns your message
into a method call, which returns a value.
So, generally you talk about sending
some receiver a message, but if you’re
implementing what it does in response,
you’re implementing a method.

Q: So about those arguments to
methods ... what’s the deal with the name
before the colon and the one after the
type?

A: In Objective-C you can have a public
name and a local name for arguments. The
public name becomes part of the selector
when someone wants to send that message
to your object. That’s the name before the
colon. The name after the type is the local
variable; this is the name of the variable that
holds the value. In Objective-C they don’t
have to be the same, so you can use a nice

friendly public name for people when they
use your class and a convenient local name
in your code.

One more interesting fact: the public name
is optional. If you don’t provide one, people
just use a colon and the argument value
when sending the message to your object.
Obviously, the argument order is critical.

- (NSInteger)pickerView:(UIPickerView *)pickerView numberOfR
owsInComponent:(NSInteger)component;

Return type Method name First argument
type

Local argument
name

Public name of
second argument

Type of second argument
Local name of second argument

Methods can have internal and external names for arguments; the external name is used when
sending the message to the receiver. So when iPhoneOS wants to send this message to our delegate,
it creates a call like this:

More on selectors in a minute.

118 Chapter 3

Since the sender is the
UITextField, we can send
the resignFirstResponder
right back to it.

- (IBAction) sendButtonTapped: (id) sender;

- (IBAction) textFieldDoneEditing:(id) sender;

@end

message to controller

Use message passing to tell our view
controller when the Done button is pressed
The text field can tell our ViewController when the Done button was
pressed on the keyboard; we just need to tell it what message to send. We
can do this with Interface Builder. You’ll need to declare an action in both
the .h and and implement it in the .m file:

Add the IBAction to InstatwitViewController.h.
Just like we did with the “Tweet it” button, go back into Xcode and add this:

1

Add the method implementation in InstatwitViewController.m.
Now that we have an action that will be called when the Done button is pressed, we just
need to ask the textField to resign its first responder status and it will hide the keyboard.

2

Here’s the new action. The ‘-’ says it’s an

instance method, called textFieldDoneEditing,

and takes one argument. The sender is of type

‘id’ (which means a pointer to something).

The signature for this method (void return type and one argument of type ‘id’) is required for IB actions.Notice how the IBAction is in parenthesis? That’s the response type - which is secretly just #defined to void.

The sender argument will

be the component that
triggered the event. I

n
our case, it will be the
UITextField.

Almost there, we just need to wire it up...

Messages going
here between
UITextField and
the controller.

InstatwitViewController.h

// END TWITTER BLACK MAGIC

}

- (IBAction)textFieldDoneEditing:(id) sender

{

 [sender resignFirstResponder];

}

InstatwitViewController.m

you are here 4 119

objective-c for the iPhone

Connect the UITextField event in Interface Builder
Now the actions are declared, go back into Interface Builder by double
clicking on InstatwitViewController.xib. If you right-click on the
UITextField you’ll bring up the connections.

3

In the list of events that the UITextField can send,
choose the “Did End on Exit” event and connect
it to the File’s Owner’s “textFieldDoneEditing”
action we just created.

Geek Bits

The UITextField has a number of events that it can raise, just like
the round rectangular button. Take a second and check out the
list that’s there. Along with the customizing that you can do in
the Inspector with the field, you can wire up different (or even
multiple!) responses to interaction with the field. Keep it in mind
for your own apps.

120 Chapter 3

no dumb questions

Q: Why did we send the message back
to the sender in our action and not to our
notesField property?

A: Either one would work fine; they’re
both references to the same object. We used
the sender argument because it would work
regardless of whether we had a property that
was a reference to our UITextField.

Q: You mentioned selectors, but I’m
still fuzzy on what they are.

A: Selectors are unique names for
methods when Objective-C translates a
message into an actual method call. It’s
basically the method name and the names
of the arguments separated by colons. For
instance, the code on page 66 is using

the selector pickerView:numberO
fRowsInComponent. You’ll see them
show up again in later chapters when we do
more interface connecting in code. For now,
Interface Builder is handling it for us.

Q: When we send the
resignFirstResponder message to sender,
the sender type is “id”. How does that
work?

A: “id” is an Objective-C type that can
point to any Objective-C object. It’s like
a void* in C++. Since Objective-C is a
dynamically typed language, it’s perfectly
ok with sending messages to an object of
type “id”. It will figure out at runtime whether
or not the object can actually respond to the
message.

Q: What happens if an object can’t
respond to a message?

A: You’ll get an exception. This is the
reason you should use strongly typed
variables whenever possible. However, there
are times when generic typing makes a lot
of sense, such as callback methods when
the sender could be any number of different
objects.

Q: So seriously, brackets for message
passing?

A: Yes. And indexing arrays. We all just
have to deal with it.

 � In Objective-C you send messages
to receivers. The runtime maps
these to method calls.

 � Method declarations go in the
header (.h) file after the closing
brace of an interface.

 � Method implementations go in the
implementation (.m) file between
the @implementation and the @
end.

 � Method arguments are usually
named, and those names are used
when sending a message.

 � Arguments can have an internal
and external name.

 � Use a “-” to indicate an instance
method; use “+” to indicate a static
method.

you are here 4 121

objective-c for the iPhone

Test Drive

Tap the “done”
button...

Do some typing,
go ahead!

It works! The keyboard
goes away and you can play
around with the text field
and add some notes now.

If you have your account info in the code, remember every time you tweet it actually will!

122 Chapter 3

custom note is missing

Something’s still not right
Mike’s ready to try out the custom field and see what happens, but when he puts
in his custom message...

The custom note doesn’t
do anything! It’s not
showing up on Twitter.

Mike
sends a tweet.

No custom info at all...

You can fix this with no
problem now that you’ve
gotten the hang of events
and message passing...

you are here 4 123

objective-c for the iPhone

BE the architect
Your job is to be architect and figure out
how the UITextField and the Tweet button
need to work together using the View -

View Controller model.
View

View Controller

124 Chapter 3

build the tweet

1. Respond to button-tapped message
2. Get the text from the view
3. Update the datasource with the text.

View

View Controller

BE the architect solution
Your job is to be architect and figure out
how the UITextField and the Tweet button
need to work together using the View -

View Controller model.

1. Show typed text
2. Communicate
button push

Here we use the stringWithFormat to create

our message string. Note the %@, which is a

placeholder for a stri
ng.

This is a static
method on NSString

that takes a s
tring format and

replaces the fo
rmat placeholders

 with

the values you
provide as argu

ments.
This string didn’t come from alloc, new, copy, or mutableCopy, so it’ll be autoreleased.

The @ before the quotes means this should be treated as an NSString, not a char*.

Build the tweet with strings
We need to incorporate the note text into our tweet. In order to do that, we’re going to do a little string
manipulation with the core string classes. You’ve already built a message to send to Twitter, but this time we have
more text to include. Before you refactor the code to send the tweet with the new text in it, let’s take a closer look
at what you did in Chapter 2:

NSString* themessage = [NSString stringWithFormat:@”I’m %@ and feeling %@ about it.”,

 [activities objectAtIndex:[tweetPicker selectedRowInComponent:0]],

 [feelings objectAtIndex:[tweetPicker selectedRowInComponent:1]]];

NSLog(themessage);

Now all you need to update this to include the text from the Notes field. Take a look at the magnets on the next
page and get it working.

NSLog prints out whatever NSString you pass
it to the console. End users of your app won’t

see these message.

you are here 4 125

objective-c for the iPhone

- (IBAction) sendButtonTapped: (id) sender {

 NSString* themessage = [NSString stringWithFormat:@”
 I’m %@ and feeling %@ about it.”,

 [activities objectAtIndex:[tweetPicker
selectedRowInComponent:0]],

 [feelings objectAtIndex:[tweetPicker selectedRowInComponent:1]]];

 NSLog(themessage);

Xcode Magnets
You need to modify InstatwitViewController.m file to add the custom field
to the message. Using the information you just learned and the magnets
below, fill in the missing code.

:@””

? notesField.text

%@.

themessage

notesField.text

sender resignFirstR
esponder

[[NSString alloc] i
nit];

[themessage release];

,

notesField.text

126 Chapter 3

magnets solution

- (IBAction) sendButtonTapped: (id) sender {

 NSString* themessage = [NSString stringWithFormat:@”
 I’m %@ and feeling %@ about it.”,

 [activities objectAtIndex:[tweetPicker
selectedRowInComponent:0]],

 [feelings objectAtIndex:[tweetPicker selectedRowInComponent:1]]];

 NSLog(themessage);

Xcode Magnets Solution
You need to modify InstatwitViewController.m file to add the custom field
to the message. Using the information you just learned and the magnets
below, fill in the missing code.

:@””?

notesField.text

%@.

themessage

notesField.text

sender resignFirstR
esponder

,notesField.text

Here’s our new string placeholder for the notes text.

We have to handle the case where the user didn’t enter any
text. If the text field is empty, its text property will be nil.
Here we use the C style ternary operator. If notesField.text
isn’t nil, it will use the value in notesField.text....

...and if it i
s nil, we’ll send an

empty string.

Remember, it has t
o be an NSString, so

we put the @
 before the

quotes.

[themessage release];

[[NSString alloc] i
nit];

The ? is a ternary operator, just like in
Java or C++, where if the expression
is true it returns the first value,
otherwise, it returns the second.

InstatwitViewController.m

you are here 4 127

objective-c for the iPhone

Test Drive
Go ahead and build and run the app with the new text code in it.

Now it has custom
text! w00t!

It’s so great that we can
talk about our feelings...

128 Chapter 3

objective-ccross

Objective-Ccross
Practice some of your new Objective-C terminology.Untitled Puzzle

Header Info 1
Header Info 2

etc...

1

2 3 4

5

6 7

8

9

10

Across
5. The control with focus has _____________ status.
6. This incorporates another file.
7. Unique names for methods after Objective-C translation are

_________.
8. Signals that the compiler will retain the object.
9. Automatic methods.

10. This tells the compiler to skip mutexes.

Down
1. An array of objects that will be released after the current

event.
2. A "+" before a method declaration indicates that it's a

____________.
3. This is sent between objects.
4. _________ management is important for iPhone apps.

you are here 4 129

objective-c for iPhone

Your Objective-C Toolbox

You’ve got Chapter 3 under
your belt and now you’ve added

Objective-C to your toolbox. For
a complete list of tooltips in the book,

go to http://www.headfirstlabs.com/
iphonedev. CH

AP
T

ER
 3

readwrite When you want the property to be modifiable by people. The compiler will
generate a getter and a setter for you. This is the default.

readonly When you don’t want people modifying the property. You can still change
the field value backing the property, but the compiler won’t generate a
setter.

assign When you’re dealing with basic types, like ints, floats, etc. The compiler
just creates a setter with a simple myField = value statement. This is the
default, but not usually what you want.

retain When you’re dealing with object values. The compiler will retain the value
you pass in (we’ll talk more about retaining in a minute) and release the
old value when a new one comes in.

copy When you want to hold onto a copy of some value instead of the value
itself. For example, if you want to hold onto an array and don’t want
people to be able to change its contents after they set it. This sends a
copy message to the value passed in then retains that.

Attribute You want it...

Objective - C
 - Is the languag

e of iPhone apps

 - Is an object o
riented languag

e

 - Has advanced memory management

 - Uses message passing
and dynamic

typing
 - Has inheritance

and interfaces

Memory Management
 - You must release objects you create with alloc, new, copy or mutableCopy
 - Everything else needs to have a retain count of 1 and in the
autorelease pool

130 Chapter 3

objective-ccross solution

Objective-Ccross Solution
Practice some of your new Objective-C terminology.

Untitled Puzzle
Header Info 1
Header Info 2

etc...

A1

U
S2 T M3 M4

F5 I R S T R E S P O N D E R E
A R S M

I6 M P O R T E S7 E L E C T O R S
I L A R
C E G Y
M A R8 E T A I N

@9 P R O P E R T I E S
T E
H P

N10 O N A T O M I C O
D O

L

Across
5. The control with focus has _____________ status.

[FIRSTRESPONDER]
6. This incorporates another file. [IMPORT]
7. Unique names for methods after Objective-C translation are

_________. [SELECTORS]
8. Signals that the compiler will retain the object. [RETAIN]
9. Automatic methods. [@PROPERTIES]

10. This tells the compiler to skip mutexes. [NONATOMIC]

Down
1. An array of objects that will be released after the current

event. [AUTORELEASEPOOL]
2. A "+" before a method declaration indicates that it's a

____________. [STATICMETHOD]
3. This is sent between objects. [MESSAGE]
4. _________ management is important for iPhone apps.

[MEMORY]

this is a new chapter 131

I like my coffee with two
sugars, cream, a sprinkle of
cinnamon, stirred twice, then ...

multiple views4

A table with a view

Most iPhone apps have more than one view.
We’ve written a cool app with one view, but anyone who’s used an iPhone knows that

most apps aren’t like that. Some of the more impressive iPhone apps out there do a great

job of moving through complex information by using multiple views. We’re going to start

with navigation controllers and table views, like the kind you see in your Mail and Contact

apps. Only we’re going to do it with a twist...

132 Chapter 4

mix it up

Look, I don’t have time for posting to Twitter. I need
to know a ton of drink recipes every night. Is there an
app for that?

This chapter is about multiple-view apps. What
views would you need to have for a bartending
app?

Sam, bartender
at the HF
Lounge

you are here 4 133

multiple views

iPhone UI Design Magnets
Using the components shown below, lay out the two
views we’ll be using for the app.

View #1 View #2

Table view

Navigation title bars

Labels

UIScrollView

UITextField with placeholder text

Keyboard

sam needs two views

134 Chapter 4

Sam needs a list of drink names and to be able
to look up what’s in them. He’ll also want to
know how much he needs of each ingredient,
and any instructions - what’s on the rocks,
whether to shake or stir, when to light things
on fire, etc. So for our two views, we’ll put
the drinks in a list (view #1), then when Sam
taps on one we’ll show the details (view #2).

This bar will have buttons, like the back and forward buttons in a web browser

iPhone UI Design
Magnets Solution
Using the components shown below, lay out
the two views we’ll be using for the app.

View #1 View #2

Table view

It will also
show your
app’s title

Labels

UIScrollView

UITextField with placeholder text

We’re not going to use the
keyboard for now - it’s
a reference app, and Sam
just needs to read stuff...

We’ll call it
Drink Mixer

you are here 4 135

multiple views

So, how do these views
fit together?
Before you pick the template for our bartending app, take
a minute to look at how you want the user to interact
with the drink information. We’re going to have a
scrollable list of drink names, and when the user taps on
a row, we’ll show the detailed drink information using
view #2, our detailed view. Once our user has seen
enough, they’re going to want to go back to the drink list.

Drink #1

Title

Title

Name:
Ingredients:

Directions:

Title

Name:
Ingredients:

Directions:

Title

Name:
Ingredients:

Directions:

Drink #1
Drink #1

We need a list of items to work with...

Window-based Application

Tab Bar Application

View-based Application

OpenGL ES Application

Utility Application

Navigation-based Application

Below are the templates available for an app. Which do you think we should
use for DrinkMixer?

We’re going to be
coming

in and out of th
is view a

lot - each time our user

selects a drink.

We’re going to
want some kind of

transition between

these views...

Once our users are
 done with

the detailed inf
ormation,

the Navigation bar giv
es

them a way to get back t
o

the list.

working with hierarchical data

136 Chapter 4

The navigation template pulls multiple views together
For this app, we’re going to use a Navigation-based
project. To get started, go into Xcode and choose the
File→New Project option. Choose the Navigation-
based application and save it as DrinkMixer.proj.
Make sure that “Use Core Data for storage” is not
checked.

The navigation template comes with a lot of
functionality built in:

Just like the name says, a
navigation controller is built
in. It provides back buttons,
title bars, and a view history
that will keep your user
moving through the data
without getting lost.

FirecrackerLemon Drop
Lemon Drop: Citron
vodka, lemon, and
sugar. Add sugar to
the rim of glass,
pour ingredients into
shaker...

Firecracker: Wild
turkey and hot sauce.
Pour ingredients into
a rocks glass filled
with ice.We have hierarchical data to organize. The navigation template helps us to move through the data, starting with a table view.

The Navigation Controller provides transitions
between views with
animations.

Don’t check Core
Data. We’ll use
that later in the
book.

you are here 4 137

multiple views

The navigation template starts with a table view
The navigation template comes with a navigation controller and a root view that the controller
displays on startup. That root view is set up as a table view by default, and that works great for
our app. A table view is typically used for listing items, one of which then can be selected for
more details about that item.

Q: If the navigation template is about
handing lots of views, why does it only
come with one?

A: Most navigation-based applications
start out with a table view and show detailed
views from there. How many detailed
views, what they look like, etc. are very
application-specific, so you have to decide
what views you want and add those views.
The navigation template doesn’t assume
anything beyond the initial table view.

Q: What built in apps on iPhone use
the Navigation control?

A: Contacts and Mail, which are both core
iPhone apps, use this design. It’s a good
idea to get into those apps on your phone to
see how the entire template is implemented.
For a neat twist, take a look at the Messages
(SMS) app. That one uses a navigation
controller but frequently starts in the “detail”
view, showing the last person you sent or
received a message from.

Q: Do I have to use a table view for my
root view?

A: No, it’s just the most common, since it
provides a natural way to show an overview
of a lot of data and have the user drill down
for more information. Table views are very
customizable, too, so some apps that might
not seem like table views really are, like
Notes or the iTunes store, for example.

Navigation
template

The navigation controller provides a navigation bar.

This is where you’ll
find the back
buttons, forward
buttons, and the
title of the view
you’re in.

The table view

The table view provides an easy
way to work with data. It starts
with an empty, scrollable list for
the main view of your application.

138 Chapter 4

add your app title

Test Drive

Navigation bar - we’ll add

directional butto
ns soon.

This is the table
view and will hold
our drink list.

Each line is an empty table cell.

Add a title to the main view right away, and take a look
at what your empty table view will look like. Open up
MainWindow.xib in Interface Builder...

Left click on the navigation
control and hit ⌘ 1 to bring
up the Inspector.

And add the title in
the Inspector, here.

 If you don’t add the title here, you won’t have a back
button later.

Setting the title for the main view of the app means that additional
views will automatically have back buttons to get to the main view.

you are here 4 139

multiple views

With a navigation-based project, the

template includes a MainWindow.xib that

has a single UINavigationController in it.

This controller understands the id
ea of

multiple views, can move between them

with nice animations, and has built-in

support for buttons on the navi
gation

bar.

...a UITableView that is loaded from
the RootViewController.xib. In this
template, the RootViewController is a
subclass of UITableViewController. The
UITableViewController provides some
basic table behavior, like configuring the
datasource and delegate if it’s loaded from
a nib, and providing editing state controls.
We’ll talk about these more as we go.

Navigation controllers and table views are almost always used together.
When you selected the navigation-based project as your template, Xcode
created a different view setup than we’ve used in the past:

In the table
view, this nav
bar is actually
a place-holder
provided by
Interface
builder.

MainWindow.xib

RootViewController.xib

A UINavigationController
starts out with a main view,
which in this template is...

The Table View Up Close

140 Chapter 4

come together, right now

A table is a collection of cells
The UITableView provides a lot of the functionality we need
right away, but it still needs to know what data we’re actually
trying to show and what to do when the user interacts with
that data. This is where the datasource and delegate come in.
A table view is easy to customize and is set up by the template
to talk to the datasource and delegate to see what it needs to
show, how many rows, what table cells to use, etc.

The navigation controller, not the table view, provides the navigation bar. Since we’re in interface builder, this is just a simulated one.

A table can have multiple sections,

and each section can
have a header

and a footer. We only have one

section, so we don’t need either f
or

DrinkMixer.

A table view is made up of

multiple table cells. The table

view will ask how many cells (or

rows) are in each section.

A table can only have o
ne

column, but you can put
whatever you want in that

column by customizing your

table cells.Table views have built-in support for editing their contents, including moving rows around, deleting rows, and adding new ones.

Table views can tell you when your user taps on a cell. It’ll tell you the section and row that was tapped.

Table views try to conserve

memory by reusing cells when

they scroll off the sc
reen.

We’re using the default table view cell, but you can create your own and lay them out any way you want.

Look through some of the apps you have on your device. What are
some of the most customized table views you can find? Are they using
sections? Are they grouped? How did they layout their cells?

you are here 4 141

multiple views

Table Cell Code Up Close

// Customize the appearance of table view cells.
- (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath
:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @”Cell”;

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:CellI
dentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDe
fault reuseIdentifier:CellIdentifier] autorelease];
 }

 // Configure the cell.
cell.textLabel.text = [self.drinks objectAtIndex:indexPath.row];
 return cell;
}

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return 1;
}

// Customize the number of rows in the table view.
- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInte
ger)section {
 return [self.drinks count];
}

Below is an excerpt from our updated RootViewController.m file. This is where we create table cells
and populate them with the drink list information.

Here we customize the text in the
cell with the information for the
specific drink we need to show.

Table cells have identifiers so when you

try to find a cell for reuse, you
 can be

sure you’re grabbing the right ki
nd.

This method is called
when the table view
needs a cell.

The indexPath contains the section
and row number for the needed cell.

Here we check with the table view to

see if there are any reusable cel
ls with

the given cell identifier available
.

If there aren’t any
available for reuse,
we’ll create a new one.

These methods tell the table view
how many sections we have and how
many rows in each section.

populate your table view

142 Chapter 4

It’s time to start displaying some drinks. You’ll need to make
some modifications to both the RootViewController.h and
RootViewController.m files.

Declare the drinks array.
Using syntax similar to what we used for the picker, declare an array called
drinks in RootViewController.h with the necessary properties declaration.

1

Implement and populate the array.
In RootViewController.m, uncomment and expand the viewDidLoad method
to create the array with the drinks from the drink list here.

2

Tell the table how many rows you have.
The auto-generated code needs to be modified to tell the table that it will
have the same number of rows as there are drinks in the array. Modify the
implementation file under this line: // Customize the number of
rows in the table view.

3

Populate the table cells.
Implement the code that we talked about on the previous page in Table
Cell Up Close so that the table gets populated with the items from the
array.

4

Drink List:
Firecracker
Lemon Drop
Mojito

Q: How do cells get into that reusable
list to begin with?

A: The table view handles that. When
cells scroll off the screen (either the top or
the bottom,) the table view will queue up
cells that are no longer needed. When it
asks the datasource for a cell for a particular

row, you can check that queue of cells to see
if there are any available for use.

Q: I don’t understand the cell
identifier... does it have to be “Cell”?

A: No—that’s just the default. When
you do more complex table views, you can
create custom cell types depending on what

data you’re trying to display. You use the cell
identifier to make sure that when you ask
for a reusable cell, the table view gives you
back the type you expect. The identifier can
be anything you want—just make sure you
have a unique name for each unique cell
type you use.

you are here 4 143

multiple views

This is the active view with the table cells that are currently visible.

Datasource

Firecracker

Lemon Drop

Absolut Mixer

Bee Stinger

Cupid’s

Mojito

Miami Vice

Captain

ec
ra
ck
er

Captain

The table
view

takes th
e new

cell and
scrolls

it in...

As the user scrolls, some cells slide off the screen.

The cells that are off the view go into a bucket until iPhone needs memory or the table view can reuse them when the user scrolls.When the table view has to scroll a

new row onto the screen, it a
sks the

datasource for a cell
for that row.

The datasource checks
the cell

bucket to see if ther
e are any

cells available to reuse
. If so, it

just replaces the row’s contents

and returns the row.

If there aren’t any fo
r

reuse, the datasource

creates a new one and
sets its content.

Wait, memory on the iPhone is
a big deal, right? How can we
put in all those drinks?

Each drink gets its own cell... sorta
The UITableView only has to display enough data to fill an iPhone
screen—it doesn’t really matter how much data you might have in
total. The UITableView does this by reusing cells that scrolled off
the screen.

Like everything else on iPhone, the
UITableView has to worry about memory.
So, how does it balance concerns about memory with an
unknown amount of data to display? It breaks things up
into cells.

sharpen your pencil solution

144 Chapter 4

It’s time to start displaying some drinks. You’ll need to make
some modifications to both the RootViewController.h and
RootViewController.m files.

Declare the drinks array.1

@interface RootViewController : UITableViewController {

 NSMutableArray* drinks;
}

@property (nonatomic, retain) NSMutableArray* drinks;
@end

Add the new drinks array.

Declare the
properties for
the drinks array.

@synthesize drinks;

 -
(void)dealloc {

 [drinks release];
 [super dealloc];

}

@end

RootViewController.h

UITableViewController
handles the datasource
and delegate for you,
so you don’t need to
declare them here.

RootViewController.m

you are here 4 145

multiple views

Implement and populate the array.
In RootViewController.m, uncomment and expand the
ViewDidLoad methods.

2

 - (void)viewDidLoad {

 [super viewDidLoad];

 NSMutableArray* tmpArray = [[NSMutableArray
alloc] initWithObjects:@”Firecracker”, @”Lemon Drop”,
@”Mojito”,nil];

 self.drinks = tmpArray;

 [tmpArray release];

 // Uncomment the following line to display an Edit button in
the navigation bar for this view controller.

 // self.navigationItem.rightBarButtonItem = self.
editButtonItem;

}

This will initially be
commented out.

Starter drinks we gave you.

Tell the table how many rows you have.3

Populate the table cells.4

//Customize the number of rows in the table view.

 - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInS
ection:(NSInteger)section {

 return [self.drinks count];

}

This used to say
return: 0.

Now it tells the table view that we
have the same number of rows as the
number of items in the drinks array

// Configure the cell.

cell.textLabel.text = [self.drinks objectAtIndex:indexPath.row];

 return cell;

}
Here we customize the text in the cell with the
information for the specific drink we need to show.

RootViewController.m

146 Chapter 4

a taste of what’s to come

Test Drive
Now you’re ready to go. Save it, build and run,
and you’ll see the three drinks in your app in the
main view.

Try it out - the list

will scroll, too!

Everything looks great. I’ll just
email over our complete list—it’s
40 drinks...

you are here 4 147

multiple views

Q: You mentioned the table view’s
datasource and delegate, but why didn’t I
have to declare anything like we did with
UIPickerView?

A: Great catch. Normally you
would, but the navigation-based
template we used already set this up.
To see what’s happening, look at the
RootViewController.h file. You’ll see that
it is a subclass of UITableViewController,
and that class conforms to the
UITableViewDataSourceProtocol and the
UITableViewDelegateProtocol. If you look in
RootViewController.xib, you’ll see that the
table view’s datasource and delegate are
both set to be our RootViewController. If we
weren’t using a template, you’d have to set
these up yourself (we’ll revisit this in
Chapter 7).

Q: I noticed we used an
NSMutableArray. Is that because we had
to initialize it?

A: No—both NSMutableArray and
NSArray can be initialized with values
when you create them. We’re using an
NSMutableArray because we’re going to
manipulate the contents of this array later.
We’ll get there in a minute.

Q: What’s the nil at the end of the
drink names when we create the drink
array?

A: NSMutableArray’s initializer takes a
variable number of arguments. It uses nil to
know it’s reached the end of the arguments.
The last element in the array will be the
value before the nil—nil won’t be added to
the array.

Q: Tell me again about that @ symbol
before our drink names?

A: The @ symbol is shorthand for
creating an NSString. NSArrays store arrays
of objects, so we need to convert our text
names (char*s) to NSStrings. We do that by
putting an @ in front of the text constant.

Q: When we customized the table
view cells, we used the cell.textLabel. Are
there other labels? What’s the difference
between cell.textLabel and cell.text?

A: Before iPhone 3.0, there was just one
label and set of disclosure indicators in the
default cell, and it was all handled by the
cell itself. You just sent the text you wanted
on the cell.text property. Nearly everyone
wanted a little more information on the table
cells, so in iPhone 3.0, Apple added a few
different styles with different label layouts.
Once they did that, they introduced specific
properties for the different text areas, like
textLabel, detailLabel, etc., and deprecated
the old cell.text property. You shouldn’t
use cell.text in your apps—Apple will likely
remove it at some point in the future. We’ll
talk more about the other labels later in the
chapter.

Q: You mention that we can use
section headers and footers—how do you
specify those?

A: The datasource is responsible for
that information, too. There are optional
methods you can provide that return the title
for section headers and the title for section
footers based on the section number. They
work a lot like our cellForRowAtIndexPath,
except they only return strings.

Q: What’s the difference between
a plain table view and a grouped table
view?

A: The only difference is the appearance.
In a plain table view, like the one we’re
using, all the sections touch each other and
are separated by the section header and
footer if you have them. In a grouped table
view, the table view puts space between the
sections and shows the section header in
bigger letters. Take a look at your contact list,
then select a contact. The first view, where
all of your contacts are listed together and
separated by letters is a plain table view.
The detailed view, where the phone numbers
are separated from email addresses, etc, is
a grouped table view.

148 Chapter 4

what’s in a neon geek?

Rum Runner
Blue DogKey West LemonadeNeapolitanPolo CocktailPurple YummyNeon GeekFlaming NerdLetter BombBookmaker’s LuckBaked AppleDeer HunterMexican BombAftershockBlack Eyed SusanBeetle JuiceTerminatorGingerbread ManLost in SpaceMusic City SunsetCafe JoySandbar Sleeper

Fire
cracker

Lemon Drop

Mojito

Absolut M
ixer

Bee Stin
ger

Cupid’s Cocktail

Stra
wberry Daquiri

Long Island Ic
e Tea

Captain and Coke

Miami V
ice

Boxcar

Cat’s
 Meow

Apple Martin
i

Manhatta
n

Afte
r Dinner Mint

Red Rudolph

Day at th
e Beach

Melon Tree

Just a few more drinks

Get ready to
start typing...

The drink menu at
Head First Lounge has
40 cocktails.

you are here 4 149

multiple views

This sucks. Can’t we just import
the list Sam sent us somehow?

We could, but not the way we’re set up now.
Since the drinks are populated with an array that’s hardcoded
into the implementation file, we can’t import anything.

What would work well is a standardized way to read and
import data; then we would be able to quickly get that drink
list loaded.

What can we do? There needs to be a way to
speed up the process.

put your data in a plist

150 Chapter 4

Plists are an easy way to save
and load data
Plist stands for “property list” and it has been around for quite a
while with OS X. In fact, there are a number of plists already in use in
your application. We’ve already worked with the most important plist,
DrinkMixer-Info.plist. This is created by Xcode when you first create
your project, and besides the app icons, it stores things like the main
nib file to load when the application starts, the application version, and
more. Xcode can create and edit these plists like any other file. Click on
DrinkMixer-Info.plist to take a look at what’s inside.

Some of these items are

obvious, like the icon f
ile

and the main nib to load.

Others are less obvious,
but we’ll talk more about
them in later chapters.

you are here 4 151

multiple views

Before you import Sam’s list, let’s create a sample plist that’s the same format. We’ll make sure
we get that working properly, and then pull in Sam’s list.

Create the empty plist.
Go back into Xcode and expand the Resources folder. Right-click on
Resources and select Add → New file, Mac OS X Resource, and
Property List. Call the new list DrinkArray.plist.

1

Format and populate the plist.
Open up the file and change the root type to Array and the item types to
strings. Then you can populate the names for the drinks.

2

Drink List:
Firecracker
Lemon Drop
Mojito

Make sure you pick “Resource”

under Mac OS X—plists aren’t

listed under iPhone Resources.

 - (void)viewDidLoad {

 [super viewDidLoad];

 NSMutableArray* tmpArray = [[NSMutableArray
alloc] initWithObjects:@”Firecracker”, @”Lemon Drop”,
@”Mojito”,nil];

 self.drinks = tmpArray;

 [tmpArray release];

 // Uncomment the following line to display an Edit
button in the navigation bar for this view controller.

 // self.navigationItem.rightBarButtonItem = self.
editButtonItem;

}

Built-in types can save and load
from plists automatically
All of the built-in types we’ve been using, like NSArray
and NSString, can be loaded or saved from plists
automatically. We can take advantage of this and move
our drink list out of our source code.

We’ll move our drink list
out of the source cod

e
here and into a plist
instead...

get your plist working

152 Chapter 4

With the sample list created, we can use it for
testing before we get the big list.

Plists are used in Mac development as well as iPhone development, so they’re listed here.
Click Next and name your
plist DrinkArray.plist.

Change the Root
element type to Array.

Add three test drinks, all Strings.

Create the empty plist.
Go back into Xcode and expand the Resources folder. Right-click on
Resources and select Add → New file, Mac OS X Resource, and
Property List. Call the new list DrinkArray.plist.

1

Format and populate the plist.
Open up the file and change the root type to Array and the item types to
strings. Then you can populate the names for the drinks.

2

you are here 4 153

multiple views

 -(void)viewDidLoad {

 [super viewDidLoad];

 NSString *path = [[NSBundle mainBundle] pathForResource:@”DrinkArray”
ofType:@”plist”];

 NSMutableArray *tmpArray = [[NSMutableArray alloc]
initWithContentsOfFile:path];
 self.drinks = tmpArray;

 [tmpArray release];

 ...

Ask the app bundle for a path to our DrinkArray plist.

Initialize the array using the
contents of the plist.

Test Drive
After you’ve finished up these two things,
go ahead and build and run. It should look
the same, with just the three drinks.

Arrays (and more) have
built-in support for plists
Changing the array initialization code to use the plist is remarkably easy.
Most Cocoa collection types like NSArray ad NSDictionary have built-in
support for serializing to and from a plist. As long as you’re using built-in
types (like other collections, NSStrings, etc.,) you can just ask an array to
initialize itself from a plist.

The only piece missing is telling the array which plist to use. To do that,
we’ll use the project’s resource bundle, which acts as a handle to application-
specific information and files.

Ready Bake
plist

Once this list works, head over to http://www.headfirstlabs/
iphonedev and download the DrinkArray.plist file. It has the
complete list of the drinks from the Head First Lounge. Drop
this in on top of your test plist, rebuild DrinkMixer, and try it out!

RootViewController.m

a full drink list

154 Chapter 4

Test Drive

The whole
list is in
there now!

By moving the drinks out
of the code and into an
external file, you can
change the drink list
without needing to touch a
line of code.

PLists are just one way to save
data on the iPhone - we’ll talk
about others later in the book.PLists work great for built-in types. If you’re going to be using custom types, you probably want to consider another option.

you are here 4 155

multiple views

How are we going to get from the list to the detail
view? And how are we going to display the details?

Now we just need
to get that detail view
all set up, right?

Creating your detail view
will complete the app.
The entire list of drinks is great,
but Sam still needs to know what
goes in them and how to make
them. That information is going
to go in the detail view that we
sketched up earlier.

156 Chapter 4

a familiar pattern

Use a detail view to drill down into data
Earlier, we classified DrinkMixer as a productivity app and we chose
a navigation controller because we have hierarchical data. We have a
great big list of drinks loaded, but what Sam needs now is the detailed
information for each drink: what are the ingredients, how do you mix
them, etc. Now we’ll use that navigation controller to display a more
detailed view of a drink from the list.

The standard pattern for table views is that you show more information
about an item when a user taps on a table cell. We’ll use that to let the
user select a drink then show our detailed view. The detail view follows
the same pattern as our other views:

Datasource

View

View Controller

View Controller

Detail The detail view shows all the
elements that make up a
drink - the ingredients and
how to mix them.Since the detail view

only cares about the
specific drink it’s
showing details for, the
datasource will focus on
one drink.

Just like our ot
her views, the

detail view will have a view

controller. This one will be

responsible for
 filling in the

detail view.

Touch here.

When the user taps on a drink, we’ll display the detail view.

The table view’s controller
(our RootViewController)
will get the touch
information. It will tell the
nav controller to show the
detailed view.

you are here 4 157

multiple views

Back button

Let’s start building...

The back butt
on comes with

the nav cont
roller

UITextField for the drink name
It will be populated with “Name:” and the drink info, so we don’t need a label

UITextView for

the ingredien
ts

UITextView for
the directions

A couple of labels for the bottom two fields

A closer look at the detail view
We sketched out the detail view earlier—but we need to look
more closely at what we’re about to build.

158 Chapter 4

create your detail view

You’ve got the hang of this now. Start building your detail
view by creating the files and code you’ll need, then put it
together in Interface Builder and wire it up. Get to it!

Lay out the new view in Interface Builder.
Use the library to drag and drop the elements that you need
and build the view we sketched out earlier.

Here’s a hint: to reserve the space for the navigation
controller, just bring up the Inspector, and under
Simulated Interface Elements, Top Bar, select
Navigation Controller. That will make sure that you lay
out your view below the navigation bar.

2

Write the code to handle the declarations and
outlets for the new fields.
You’ll need to work in both DetailViewController.h
and DetailViewController.m. Call the new text fields
nameTextField, ingredientsTextView, and directionsTextView.

3

Connect the detail view to the new outlets.
Just like we did for InstaTwit, use Interface Builder to make
the new view work.

4

Back

Create the files you’ll need.
To create the new view, you need a new *.xib file, as
well as the supporting header and implementation files.
The file type is a Cocoa Touch Class type, and it’s a
UIViewController subclass.

1

Make the text fields uneditable.
Using the inspector, find the checkbox that makes the fields
uneditable.

5

you are here 4 159

multiple views

 � Productivity apps work great with
hierarchical data.

 � Navigation controllers are a good
way to manage multiple views.

 � Table views usually go with
navigation controllers.

 � iPhone tables only have one column
but can render custom cells.

 � Tables need a datasource and a
delegate.

 � Multiple views usually mean multiple
*.xib files.

Q:We keep drawing the datasource,
view, and view controller as separate
things, but then we stick them together
into the same class. What’s going on?

A: It’s all about the pattern. In general,
you’ll have a few defined in a nib, a view
controller backing it, and a set of data
it needs to work on. Whether these are
combined into one class or not really
depends on the complexity of your
application. If you’re not using Interface
Builder, you can go completely off the deep
end and have your single class create the
view programmatically. We’ll show more
of that later in the book. Conceptually,
however, you still have a view that’s
calling into the view controller when things
happen. Likewise, you usually have one or
more datasource protocols being realized
somewhere that are providing data to your
view.

Q: Why do we have to move the *.xib
file into the Resources group?

A: You don’t have to, but we recommend

it to help keep your code organized. Different
developers use different groups, things like

“User Interface”, “Business Objects”, “Data
Objects”, etc. Xcode really doesn’t care; it’s
just important that you know how your code
is organized and you can find what you’re
looking for. Reusing a structure that others
will recognize is a good practice so people
can pick up your code quickly and you can
understand their code. We use the templated
defaults in this book.

Q:What are other ways to save data?

A: There are quite a few of them. We’ll
cover the more common ones in this book in
different projects. The one you’re using now,
plists, is the simplest, but it does limit what
you can save and load. That doesn’t make it
bad; if it works for what you need, it’s a fine
solution—it’s just too limited for everything.
There’s a serialization method called
NSCoding that works well for custom objects,
but can make version migration a challenge.
iPhone supports saving and loading to a
database using SQLite. This used to be
the preferred way to go if you have a lot of
data or need to search and access it without
loading it all into memory. However, with

iPhone 3.0, Apple introduced Core Data.
Core Data is a very powerful framework that
provides an OO wrapper on persistence and
has nearly all of the benefits of using SQLite.
It’s definitely not trivial to get started, but it’s
really powerful. We’ll build an app on it later.

Q: Why didn’t you use a label for the
name field?

A: UITextFields allow you to have
placeholder text that appears in the field
when it’s empty. Rather than using up screen
space with a Name label, we chose to use
the placeholder. If the meaning of the text
shown on the screen is obvious to the user,
consider using placeholder text.

Q: So why didn’t we use it for the
ingredients and directions?

A: We could have, but since those contain
multiple lines of text, we wanted to break
them up with labels clearly showing what
they were. Ultimately it’s an aesthetic and
usability decision, not a technical one.

160 Chapter 4

long exercise solution

Make sure that you have the Cocoa Touch Class line selected under iPhone OS.

Select the
UIViewContrller
subclass.

Enable this
checkbox so
the nib is
created, too.

The new file dialog box has lots
of options for making new files. In
our case, we need both the nib and
the supporting files, so we need to
create a new Cocoa Touch Class
with .m and .h files, and the .xib file.

One more thing. Xcode will create
all of your files in one directory.
To keep the files organized in
your Xcode view, move the
DrinkDetailViewController.xib file
into /Resources.

Here’s all the info for the new detail view. After this, you
should have a working (but still empty) detail view.

Create the files you’ll need.
We need a new .xib for the detail
view. To create one from scratch, go
back into Xcode and click on the
File→New File... menu option

1

you are here 4 161

multiple views

Lay out the new view in Interface Builder.2

This came from turning on the

Simulated Interface-Top Bar

option in the View Inspector.

This is the same UITextField

that we used in InstaTwit.

It’s not scrolling.

This is the inspector
for the first TextField.

Put “Name:” in as a
placeholder.

162 Chapter 4

long exercise solution

#import <UIKit/UIKit.h>

@interface DrinkDetailViewController : UIViewController {

 IBOutlet UITextField *nameTextField;

 IBOutlet UITextView *ingredientsTextView;

 IBOutlet UITextView *directionsTextView;

}

@property (nonatomic, retain) UITextField *nameTextField;

@property (nonatomic, retain) UITextView *ingredientsTextView;

@property (nonatomic, retain) UITextView *directionsTextView;
@end

@implementation DrinkDetailViewController

@synthesize nameTextField, ingredientsTextView, directionsTextView;

Write the code to handle the declarations and outlets for
the new fields.

3

Here’s all the info for the new detail view. After this, you
should have a working (but still empty) detail view.

DrinkDetailViewController.h

DrinkDetailViewController.m

you are here 4 163

multiple views

Connect the detail view to the new outlets.
All three outlets, the directionsTextView, the
ingredientsTextView, and the nameTextField need to
be connected to their spot on the new view.

4

 -(void)
dealloc {

 [nameTextField release];

 [ingredientsTextView release];

 [directionsTextView release];

 [super dealloc];

}

@end

DrinkDetailViewController.m

164 Chapter 4

almost there...

Uncheck this
to freeze the
contents of the
UITextViews.

Make the text fields un-editable.
We need to disable both the UITextField and
the two UITextViews to prevent the user from
making changes. Simply click on each field and
toggle the Enabled checkbox to off.

Once those changes are made, the keyboard
issue goes away, because there won’t be one!

5

Test Drive
Build and run your app. You just put in a lot of work,
and it’s a good time to check for errors.

you are here 4 165

multiple views

When your users browse through the drink information, they’re going to need to switch between
our list and detail views. Think about how we do that while keeping the user from getting lost.

 How does the user navigate between views?1

 How can we keep track of what view to show?2

 How does the detail view know what drink to show?3

 How do you get the user back to the table view?4

OK, so I have an
order for a Melon

Tree... but I still don’t
see the drink details.

Touch here

We still need to get that detail view
to load when Sam selects a drink.

166 Chapter 4

keeping track

ndv
When your users browse through the drink information, they’re going to need to switch between
our list and detail views. Think about how we do that and keep the user from getting lost.

 How does the user navigate between views?1

 How can we keep track of what view to show?2

 How does the detail view know what drink to show?3

 How do you get the user back to the table view?4

The user is going to tap on the cell of the drink name

that they want to see.

The navigation controller will keep track with back

buttons and the title of the pane.

That’s based on the table cell that
the user selects.

The navigation controller can supply a back
button that can get us back to the main view.

In the simulator,
Xcode will generate
a back button with
the text that says
“DrinkMixer”.

you are here 4 167

multiple views

A view stack for moving between views
As users move back and forth, you can ask the navigation
controller to display the appropriate view. The navigation
controller keeps track of where the users are and gives them
buttons to go back.

A navigation bar for buttons and a title
The navigation controller interacts with the navigation bar
to display buttons that interact with the view being shown,
along with a title to help the users know where they are.

A navigation toolbar for view-specific buttons
The navigation controller can display a toolbar at the
bottom of the screen that shows custom buttons for its
current view.

The UINavigationController supports a delegate, called the
UINavigationControllerDelegate, that gets told when the controller
is about to switch views, but for DrinkMixer we won’t need this
information. Since the views get told when they’re shown and
hidden, that’s all we need for our app.

Use the navigation controller to switch
between views
Now that we’ve got the table view populated and the detail view built,
it’s time to manage moving between the two views. The navigation-
based template comes preloaded with the functionality we need:

Now we need to get the table
view and nav controller working
together to display the detail view.

stacked views

168 Chapter 4

Drink
Table
View

Add
Drink
View

Delegate

When the delegate method is
called, our RootViewController
(the delegate) needs to create a

nd
push the detail view controller.

Navigation controllers maintain a stack of views
We’ve been dragging the navigation controller along since the beginning of
this project, and now we finally get to put it to use. The navigation controller
maintains a stack of views and displays the one on top. It will also automatically
provide a back button, as well as the cool slide-in and out animations. We’re going
to talk more about the whole navigation controller stack in the next chapter, but
for now, we’re just going to push our new view onto the stack and let the controller
take care of the rest. We just need to figure out how to get that new view.

We’ll use the tap notification in the table view delegate
When a table row is touched, the table view calls tableview:didSelectRowA
tIndexPath: on its delegate. The table passes along an NSIndexPath (just like
cellForRowAtIndexPath) that tells us which row was selected.

Here’s where it gets interesting: our RootViewController is our delegate, so it needs to
hand off control to the view controller for our detail view...

When a row is tapped, tableview:didSelectRowAtIndexPath: indexPath is sent to the delegate.

Once the new view
is created, we’ll
use the navigation
controller to push
the view onto the
screen.

you are here 4 169

multiple views

Instantiate a view controller like any other class
The only piece left to create is the view controller. Instantiating a view controller is no different
than instantiating any other class, with the exception that you can pass in the nib file it should
load its view from:

[[DrinkDetailViewController alloc] initWithNibName:@”DrinkDetailView
Controller” bundle:nil];

Once we’ve created the the detail view controller, we’ll ask the NavigationController to push the
new view controller onto the view stack. Let’s put all of this together by creating the callback
into the delegate and creating the new view controller to push onto the stack:

// Override to support row selection in the table view.

 - (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath
*)indexPath {

 // Navigation logic may go here -- for example, create and push another view
controller.

 DrinkDetailViewController *drinkDetailViewController =
[[DrinkDetailViewController alloc] initWithNibName:@”DrinkDetailViewController”
bundle:nil];

 [self.navigationController pushViewController:drinkDetailViewController
animated:YES];

 [drinkDetailViewController release];
}

#import “RootViewController.h”

#import “DrinkDetailViewController.h”

Since we’re going to create
the new view controller, we
need to include its header.

Here’s the delegate callback - the indexPath
tells us which row (drink) was selected.

Instantiate the controller...

...then push it onto the
navigation stack.

Now that the navigation controller
has the detail controller, we can
release our reference to it. RootViewController.m

Let’s try this out...

170 Chapter 4

the nav controller in action

Test Drive

Try clicking in the text
fields - no keyboard because
they’re not editable!

Tap here to make the
detail view come up.

Now that both views can talk to each other, go ahead
and build and run.

you are here 4 171

multiple views

We’ve outgrown our array
All that’s left is to get the ingredients and
directions in the detail view, and we’ll have a
bartender’s brain. To save you from having to type
in the ingredients and directions, we put together
a new file with all of the extra information. The
problem is we can’t just jam that information into
an array. To add the drink details to this version,
we need a different data model.

Which options below are possible ways to load the drink data?

Which of these options is the best for DrinkMixer? Why?

Create a database with drink information

Use an XML file to hold the drink details

Use dictionaries in our plist to hold the drink details

Create multiple arrays in our plist

So, now we can get to the detail view
from the drink list, but there aren’t
any details in there. We don’t have
that info in our plist, do we?

172 Chapter 4

dictionaries store key-value pairs

Our current drink plist is just a single array
of drink names. That worked great for
populating the table view with just drink
names, but doesn’t help us at all with
drink details. For this plist, instead of an
array of strings, we created an array of
dictionaries. Within each dictionary are
three keys: name, ingredients, and
directions. Each of these have string
values with the corresponding information.
Since NSDictionary adopts the NSCoding
protocol, it can be saved and loaded in plists
just like our basic array from before.

Dictionaries store information
as key-value pairs

Which options below are possible ways to load the drink data?

Create a database with drink information

Use an XML file to hold the drink details

Use dictionaries in our plist to hold the drink details

Create multiple arrays in our plist

Which of these options is the best for DrinkMixer? Why?

We could use a database to store
drink information, but since

nothing else in this app uses the
database, we’d have to do

some work to get DB support added... let’s keep looki
ng.

We already have a plist of strings—switching over to
a plist of dictionaries won’t be much work and gives
us a data structure than can hold the drink info.

This would work too, but has the same hurdle as using a DB. We’re not parsing any XML right now, so we’d have to define the schema, then add parsing code.

This is basically the worst of all the options
- we’d have to make sure multiple arrays line
up to keep a single drink straight.

Since we already have code written that
uses plists, we can change our plist to have an array of dictionaries instead of an array of
strings without a lot of effort. This way we don’t have to introduce SQL or XML into our
project. However, we do lose out on the strong typing and data checking that both SQL and
XML could give us. Since this is a smaller project, we’re going to go with dictionaries.

you are here 4 173

multiple views

Test Drive
Build and run to see the new plist, and watch what happens...

Ready Bake
Code Go back to http://www.headfirstlabs.com/iphonedev and

download DrinksDirections.plst. It has a different name, so
you’ll need to make a couple of quick modifications.

 Open up the new plist in Xcode (again, in the resources directory), and
look at what it comes with—all that data is ready to go!

1

 Go into the code and change the references from DrinkArray to
DrinksDirections.

2

Q: You keep talking about NSCoding. What is that?

A: NSCoding is a protocol that works with the encoding and
decoding of objects. Working with this protocol means dealing
with how an object can be stored on disk or distributed throughout
the device. For more information about NSCoding, see the Apple
documentation.

Q: Where did the back button in the detail view come from?
We didn’t do that...

A: It’s automatic functionality that comes with the navigation
controller. When you added a title for the main view, the navigation
controller kept track of that name as part of the view stack for
navigation, and added a back button with the title in it. So yeah, you
did do that!

174 Chapter 4

uh oh...

Test Drive

That didn’t work at all!

It crashed!

you are here 4 175

multiple views

3 errors and 3 warnings... the errors
have to be fixed. The warnings should be
investigated—and probably fixed, too.

That’s not our problem, though: our code should be
warning and compile-error-free. The good news is that
when an app crashes in the Simulator, it doesn’t go
away completely (like it would on a real device). Xcode
stops the app right before the OS would normally shut
it down. Let’s use that to see what’s going on.

Debugging—the dark side of
iPhone development
Something has gone wrong, but honestly, this is a
pretty normal part of the development process. There
are lots of things that could cause our application to
crash, so we need to figure out what the problem is.

Warnings can help find problems without
debugging
In general, if your application doesn’t build, Xcode won’t
launch it—but that’s not true for warnings. Xcode will
happily compile and run an application with warnings
and your only indication will be a little yellow yield sign
in the bottom right corner of Xcode. Two minutes spent
investigating a warning can save hours of debugging time
later.

Geek Bits
 Some common warning culprits:.

 Now that iPhone OS 3.0 is out, code that uses
deprecated 2.0 properties triggers warnings.

1

 Sending a message to an object that it doesn’t claim
to understand (from a typo or an autocompletion
error) will trigger warnings. Your app will compile,
but will likely end up in a runtime exception when
that code is executed.

2

Time for some debugging...

start with the console

176 Chapter 4

First stop on your debugging
adventure: the console
We need to figure out why our app crashed, and thankfully, Xcode
has a lot of strong debugging capabilities. For now we’re just going
to look at the information it gave us about the crash, but later in
the book we’ll talk about some of the more advanced debugging
features.

Since you ran the program in the simulator, the console should be
up. Here’s what ours looks like:

 If you don’t see the console, we
can get it for you!

If you ran DrinkMixer in a different
mode, or can’t find your console, in

Xcode, go to the Run → Console menu option.

The toolbar contains typical debugging commands, like stopping your application, restarting it, and continuing after hitting a breakpoint.

The console has the information about what happened that caused our application to be shut down. It doesn’t tell us why it happened, though...

The console tells us that our app was shut
down because of an uncaught exception,
and what that exception was.

The console also gives us a stack trace of
where our application was, but there’s a much
better view of that coming up in a second...

you are here 4 177

multiple views

But Xcode doesn’t stop at the command line. It
has a full GUI debugger built right in. Let’s
take a look...

Interact with your application while
it’s running
The console is a very powerful debugging tool. Some of the best
debugging techniques involve well-placed logging messages using
NSLog(...). This information is printed into the console and can
help you diagnose problems quickly. The console isn’t just read-only,
though; it is your window into your running application. We’ll see log
messages displayed in the console, and when your application hits a
breakpoint, you’ll be placed at the console prompt. From there you
can use debugging commands like print, continue, where, up,
and down to inspect the state of your application.

And when it’s about to stop running
In this case, we’re dealing with a nearly dead application, but the idea is the
same. Since DrinkMixer has crashed, Xcode provides you with the basic
information of what went wrong. In our case, an “unrecognized selector” was
sent to an object. Remember that a selector is basically a method call—it
means that some code is trying to invoke methods on an object and those
methods don’t exist.

The console debugger is actually the
open source gdb prompt, so nearly all
gdb commands work here.

The console prompt lets you interact with your application at the command line.

breaking it down

178 Chapter 4

Xcode supports you after your
app breaks, too

So far we’ve used Xcode to write code and compile and launch our
applications. Its usefulness doesn’t stop once we hit the “Build and
Debug” button. First, we can set breakpoints in our code to let us
keep an eye on what’s going on. Simply click in the gutter next to
the line where you want to set a breakpoint. Xcode will put a small
blue arrow next to the line and when your application gets to that
line of code, it will stop and let you poke around using the console.

To set a
breakpoint, just
click here.

This switch indicates whether the
breakpoints are on or not.

When the breakpoints are on, you’ll get this cool can of bug spray icon...

Once your app hit
s a

breakpoint, Xcode will

insert Step Into
, Step

Over, Continue, and

Debugger buttons
to let

you walk through your

code.

Click on the small bug spray icon or press
Shift-⌘-Y to bring up the debugger...

you are here 4 179

multiple views

Since we know that we’re having a problem near the
array, try setting a breakpoint there. Then build and
run and see what happens.

Test Drive

The Xcode debugger shows you the state
of your application
The debugger shows your code and also adds a stack view and a window
to inspect variables and memory. When you click on a stack frame, Xcode
will show you the line of code associated with that frame and set up the
corresponding local variables. There isn’t anything in the debugger window
you couldn’t do with the console, but this provides a nice GUI on top of it.

Here’s the stack from your app at the current breakpoint (or crash...). If you click on a frame, Xcode will show you the corresponding code.

Xcode shows you your app’s
variables (local, global, etc.) in
this view.

Here are the Step and Continue buttons

to let you walk through your code.

loading the array isn’t the problem

180 Chapter 4

Test Drive
When you run it with the breakpoint at the point where you load the array, everything
is OK:

But hit continue and...

To set a
breakpoint, you’ll
need to click in
the gutter, here.

you are here 4 181

multiple views

To be continued...

What the heck is going on?
Our application is crashing, and it’s not at the array loading
code. Open up the debugger and click on the topmost frame
that contains our code. It will show you the line that’s causing
the problem... see what’s wrong?

Here’s our uncaught
exception for the unrecognized selector

again...

182 Chapter 4

multipleviewscross

MultipleViewscross
Take what you’ve learned about the navigation
controller and multiple views to fill in the blanks.

Untitled Puzzle
Header Info 1
Header Info 2

etc...

1

2

3 4

5

6

7

8

9

10

Across
3. The set of views that the nav controller deals with.
6. Dictionaries use __________ to organize data.
8. The screen that gives you output from the app.
9. A template that combines a table view and nav controls.

10. Has cells that need to be customized to work.

Down
1. A more versatile way to manage data beyond an array.
2. DrinkMixer is this type of app.
4. To use a new class you need to ___________ it.
5. The @ symbol is shorthand for creating one of these.
7. A tool in Xcode to help fix broken code.

you are here 4 183

multiple views

Your iPhone Toolbox

You’ve got Chapter 4 under
your belt and now you’ve

added multiple views and
the navigation controller to

your tool-box. For a complete list of
tooltips in the book, go to http://www.
headfirstlabs.com/iphonedev. CH

AP
T

ER
 4Navigation Template:

Comes with a table vie
w and

navigation cont
rol built in.

Is great for a
productivity ap

p.

Is designed to
manage hierarch

ical

data and multiple views.

Has cool animations built in
to

move between views. Tables:
Are a collection of cells.

Come with support for editing
contents, scrolling, and moving
rows.
Can be customized so your cells
look like more than one column.

UITableView:
Controls memory by only

creating the c
ells requested

in the view. Any other cells

are destroyed
if the iPhone

needs the memory for

something else.Plists:
Supported by arrays and Xcode.
A great way to store information.
Are good for handling data, but have some limitations - we’ll cover another option, core data, in a
couple chapters coming up.

Navigation Controller:
Maintains a view stack for moving between views.
Has a navigation bar for buttons and.a title.
Can support custom toolbars at the bottom of the view as needed.

Debugging:
Has a built-in console with
debugging and logging information.
Gives you errors and warnings as
you compile to identify problems.
Has a built-in debugger that allows
you to set breakpoints and step
through the code to find the bug.

184 Chapter 4

multipleviewscross solution

MultipleViewscross Solution
Take what you’ve learned about the navigation controller and
multiple views to fill in the blanks.

Untitled Puzzle
Header Info 1
Header Info 2

etc...

D1

P2 I

R V3 I4 E W S T A C K

N5 O N T

K6 E Y S D S I

S U T O D7

R C A C8 O N S O L E

I T N A B

N9 A V I G A T I O N R U

G V I Y G

I A G

T T10 A B L E V I E W E

Y E R

Across
3. The set of views that the nav controller deals with.

[VIEWSTACK]
6. Dictionaries use __________ to organize data. [KEYS]
8. The screen that gives you output from the app. [CONSOLE]
9. A template that combines a table view and nav controls.

[NAVIGATION]
10. Has cells that need to be customized to work. [TABLEVIEW]

Down
1. A more versatile way to manage data beyond an array.

[DICTIONARY]
2. DrinkMixer is this type of app. [PRODUCTIVITY]
4. To use a new class you need to ___________ it.

[INSTANTIATE]
5. The @ symbol is shorthand for creating one of these.

[NSSRING]
7. A tool in Xcode to help fix broken code. [DEBUGGER]

this is a new chapter 185

plists and modal views5

Refining your app

So you have this almost-working app...
That’s the story of every app! You get some functionality working, decide to add something

else, need to do some refactoring, and respond to some feedback from the App Store.

Developing an app isn’t always ever a linear process, but there’s a lot to be learned in that

process.

This soup would be
even better with the perfect
cocktail, maybe a Neon Geek...

186 Chapter 5

debugging DrinkMixer

Look, I don’t have time for

posting to Twitter. I need to know

a ton of drink recipes every night.

Is there an app for that?

Sam, bartender
at the HF
Lounge

DrinkMixer

DrinkMixer has two
views: a table view of
the list and a detail view about each individual
drink.

It all started with Sam...
Sam wanted an app to make his bartending work
easier. You got one up and rolling pretty quick,
but hit a snag filling in the details for each drink
because of a plist of dictionaries.

When we last left DrinkMixer, it was
in the middle of being debugged...

you are here 4 187

 plists and modal views

DrinkMixer started and ran happily until it hit our breakpoint at
line 20. The debugger stopped our application and displayed the
debugging console. By setting a breakpoint in our code, what we
discovered at the end of Chapter 4 is that before your app got
to the commands to import the file, there was no crash; so far so
good.

Let’s walk through loading our plist and make sure that works by
typing next twice. The first “next” looks up the path to the plist,
the second one actually loads the data. You’ll see buttons similar to these in Xcode, too.

Here’s the
Continue button.

Anatomy of
a Crash

This exception tells you that an unknown selector
(message) is being sent to an NSCFDictionary—
specifically, isEqualToString... so where is it coming from?

Here’s where it stopped at
the breakpoint. We told the
debugger to let DrinkMixer
execute the next two lines.It made it past loading the

plist, so let’s let it continue running...

Loading the plist worked fine; no problems there. The error must be coming after that.
Let’s have the application continue running and see where it fails. Hit the Continue
button (or type continue in the console)... and there’s our exception again. Where is
this actually failing?

188 Chapter 5

CSI iPhone

Use the debugger to investigate the crash
We can reliably get DrinkMixer to crash, and it doesn’t seem to be our
plist loading code. Xcode has suspended our application right before
iPhoneOS shuts it down, so we can use the debugger to see exactly what
it was trying to do before it crashed.

Switch back to the debugger and take a look at the stack in the upper left.
This is the call stack that led to the crash.

Here’s the stack at the time of the crash. The top 5 frames are framework code, but frame 6 is code we wrote...

And here’s the line that caused the problem. See what’s going on yet?

The buttons along the
top of the debugger
function just like the
buttons in the console.

By default the console prompt isn’t shown in the debugger; the debugger is a GUI on top of it.

The red stop sign icon will terminate your application.

Trying to continue now will just keep failing - DrinkMixer has been stopped by iPhoneOS.

you are here 4 189

plists and modal views

Using what you’ve learned so far, figure out what’s going on!

The exception talked about NSCF Dictionary. What dictionary is it talking about? Where is it coming from?

Who’s sending messages to the dictionary? Why did we get an unrecognized selector?

190 Chapter 5

square peg, round hole

We’re trying to stuff a dictionary into a string
Putting a dictionary into the text field of the label, which wants a string,
isn’t going to work. Our previous array was an array of strings, so
that code worked fine. Now that we have an array of dictionaries, we
need to figure out how to get the drink name value (a string) out of it,
and then assign that to the text label. If you take another look at the
DrinkDirections.plist, you’ll see that we have an array of dictionaries —
one for each drink. Dictionaries store their values using keys; they’re just
a collection of key-value pairs. To get a value out, you simply send the
dictionary the objectForKey:@"key" message.

/

 // Configure the cell.
 cell.textLabel.text = [self.drinks objectAtIndex:indexPath.row];
 return cell;
}

Using what you’ve learned so far, figure out what’s going on!

somelabel.text ≠

Dictionary

name = Cupid’s
Cocktail
ingredients =
Cherry liqueur,
peach ...
directions =
Shake ingredients
and strain into...

The exception talked about NSCF Dictionary. What dictionary is it talking about? Where is it coming from?

Who’s sending messages to the dictionary? Why did we get an unrecognized selector?

The dictionaries are coming from the plist! When we load the plist, we now have an array of
dictionaries instead of an array of strings.

Messages are being sent to the dictionary when we try to set the cell’s label text. It’s actually the
label sending it a message (see the next stack frame, its code in UILabel). It’s sending messages as
though the cell label text was a string. But now we’re assigning a dictionary to the label text!

For each drink, we use the

key name for the name of

the drink, ingredi
ents

for ingredients, and s
o on.

Instead of assigning the array value right to the text label, you’ll need to pull out the name value from the appropriate dictionary.

you are here 4 191

plists and modal views

Go ahead and make the changes to your app. After this, it should know
that you’re using an array of dictionaries, not strings—and the detail view
should have a reference to the drink it should display. Finally, the detail
view should populate its fields before it appears on the screen.

Change the way a table cell is configured.
In RootViewController.m, fix the cell’s textLabel.text property to use the
name value from the appropriate dictionary.

1

Add a reference to a drink dictionary in the detail view.
In DrinkDetailViewController.h, add an NSDictionary* field named
drink and the corresponding property declaration.

2

Add drink to the DrinkDetailViewController.m file.
Synthesize and dealloc the new dictionary reference.

3

Don’t forget about the NSDictionary
documentation if you want to know more
about dictionaries.

We’ll update the detail
 view

controller to use the
values in the

new dictionary in a minute...

Update your code to handle a
plist of dictionaries
Armed with the knowledge of how the dictionaries are
put together, we can use this information to populate
the detail view, too. If you give the detail view controller
the dictionary of the selected drink, it can populate the
view’s fields before the view is shown to the user. Datasource

View Controller

View
Detail

Each dictionary has everything we need for a drink. We need to get that dictionary to the datasource of the detail view.

192 Chapter 5

updating for dictionaries

Go through the code and make sure
that you’ve got everything right...

// Configure the cell.

 cell.textLabel.text = [[self.drinks objectAtIndex:indexPath.row]
objectForKey:@”name”];
 return cell;

@interface DrinkDetailViewController : UIViewController {

 NSDictionary *drink;

 IBOutlet UITextField *nameTextField;

 IBOutlet UITextView *ingredientsTextView;

 IBOutlet UITextView *directionsTextView;

}

@property (nonatomic, retain) NSDictionary *drink;

@property (nonatomic, retain) UITextField *nameTextField;

@implementation DrinkDetailViewController

@synthesize drink, nameTextField, ingredientsTextView,
directionsTextView;

 - (void)dealloc {

 [nameTextField release];

 [ingredientsTextView release];

 [directionsTextView release];

 [drink release];
 [super dealloc];

}

@end

Add drink to the
synthesize line.

Release our dictionary
reference here.

Declare the NSDictionary* field
and a property with the usual
nonatomic, retain attributes.

Use objectForKey to get the
name from the dictionary.

RootViewController.m

DrinkDetailViewController.m

DrinkDetailViewController.h

you are here 4 193

plists and modal views

Test Drive
Now that we’ve told DrinkMixer to deal with dictionaries, go ahead and build and run the app.

It’s working again! Now that it’s not
crashing, it’s time to fill in the details.

194 Chapter 5

filling in the drink details

The detail view needs data
Now that you’ve figured out how to deal with
dictionaries, it’s time to fill in the drink details.
But getting the details out of the array of
dictionaries to give to the datasource requires
another step.

View Controller

View Controller

Touch here

Detail

Data-
source

Remember this? We talked
about this being the
structure of the app.

How are we going to get the information from
DrinkDirections.plist into the app?

This is the information in DrinkDirections.plist.

The
datasource
in this case
is the plist.

you are here 4 195

plists and modal views

Organize your dictionary constants to avoid bugs
Since we’re going to need the name, ingredients, and directions keys in
the view controller, we should clean up the code to start using real constants.

Create a new file called DrinkConstants.h (File → New then choose Other
and a blank file). Add constants (#define’s) for name, ingredients, and
directions. Import DrinkConstants.h into DrinkDetailViewController.m
and RootViewController.m. Finally, update the @"name" to the new constant,
NAME_KEY.

1

The view controller needs direct access to the datasource,
and the easiest way to get to that data is going to mean
some quick code refactoring.

Set the detail view controller’s drink property
After you instantiate the detail view controller when a cell is tapped, you need to set
the drink property on the new controller to the selected drink.

2

Add code to the detail view controller to populate the fields
Before the detail view appears, the view controller should use the drink dictionary
to set the contents of the name, ingredients, and directions components.

3

Each dictionary has all the
information we need
Right now we’re just pulling the name of each drink into the app
using the name key. In order to populate the ingredients and
directions, we need to use the other keys. We could just type those
right into our code, but we’re better developers than that, so we’ll
pull them up into constants. The only thing left is getting the proper
dictionary to the detail view controller so it can pull the information
it needs. Go ahead and start setting everything up!

cleaning up with constants

196 Chapter 5

DrinkConstants.h1

DrinkDetailViewController.m and RootViewController.m both need

Then add the constant to display the name:

#import "DrinkConstants.h".

// Configure the cell.

 cell.textLabel.text = [[self.drinks objectAtIndex:indexPath.row]
objectForKey:NAME_KEY];

 return cell;
Change this value from
@“name”.

Here’s all the added code to make the detail view work.

We’re changing the dictionary
keys to constants here...

RootViewController.m

you are here 4 197

plists and modal views

 - (void) viewWillAppear: (BOOL)animated {

 [super viewWillAppear:animated];

 nameTextField.text = [drink objectForKey:NAME_KEY];

 ingredientsTextView.text = [drink
objectForKey:INGREDIENTS_KEY];

 directionsTextView.text = [drink objectForKey:DIRECTIONS_
KEY];

}

Set the detail view controller’s drink property2

Add a method to the detail view controller to populate the fields3

// Override to support row selection in the table view.

 - (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSInd
exPath *)indexPath {

 // Navigation logic may go here -- for example, create and push
another view controller.

DrinkDetailViewController *drinkDetailViewController =
[[DrinkDetailViewController alloc] initWithNibName:@”DrinkDetailViewContro
ller” bundle:nil];

 drinkDetailViewController.drink = [self.drinks
objectAtIndex:indexPath.row];

 [self.navigationController pushViewController:drinkDetailViewController
animated:YES];

 [drinkDetailViewController release];

}

Add this whole line to grab a dictionary from the array.

This whole method is new.

RootViewController.m

DrinkDetailViewController.m

198 Chapter 5

so that’s what’s in a cupid’s cocktail!

Test Drive
Compile and build and run again...

Q: We re-create the detail view every
time someone taps on a drink. Couldn’t I
just reuse that view?

A: For DrinkMixer it really won’t matter
too much; since the view is pretty lightweight,
we won’t suffer too much overhead re-
creating it when a drink is tapped. However,
for best performance you can refactor it to
reuse the same detail view controller and
just change the drink it should be showing
when a row is tapped.

Q: Why did we have to pull out the
dictionary key names into a separate file?

A: Having magic string values in your
code is generally a bad idea—no matter
what programming language or platform
you’re using. By pulling them up into
constants using #define, they are checked
by the compiler. So a typo like @”nme”
instead of @”name” would end up as a
bug at runtime, while mistyping NME_KEY
instead of NAME_KEY would prevent things
from even compiling.

Q: I looked at the NSDictionary
documentation and there’s a
valueForKey: and an objectForKey:.
What’s the difference?

A: Great question. valueForKey: is
used for what’s called key value coding,
which is a specific pattern typically used
in Cocoa Binding. The subtle catch is that
NSDictionary usually just turns a call to
valueForKey: into a call to objectForKey, and
it looks like either one will work. However,
valueForKey actually checks the key you
pass it and has different behavior depending
on your key. That’s almost never what you
want (unless you’re doing Cocoa binding
stuff, of course). The correct method to use
is objectForKey:.

you are here 4 199

plists and modal views

Is that app up on the App Store? Then I can
just download it on my phone and start making
even more tips!

Looks like there’s a market there!
A quick submission to Apple and...

Sam, ready for your
app to make his (and
your) wallet fatter...

200 Chapter 5

a modern-day dear john letter

 From: iTunes Store

 Subject: DrinkMixer app NOT APPROVED

Your app is NOT APPROVED for distribution on the App

Store. It does not conform to Apple’s Human Interface

Guide in your implementation of the table view. The table

views are not using disclosure indicator elements.

Apps that do not conform to the Human Interface Guide

may not be distributed. After fixing your implementation,

resubmit your app for approval.

 We’ll go through the approval
process later.

Later in the book, we’ll take you step by
step through the process of preparing

an app for approval. For now, just worry about how to fix
DrinkMixer!

Time to
investigate
the HIG...

Seriously, this can and will happen if you don’t follow the HIG. It happened to, um, a friend of the authors... twice.

you are here 4 201

plists and modal views

We have a usability problem
We know that the user needs to touch the name of the drink
to see the details about each individual drink, but how is
the user supposed to know that? The HIG has a number of
recommendations for how to deal with drill-down, hierarchical
data. We’re already on the right track using table views but the
HIG has a number of additional recommendations for helping
the user understand how to navigate the app.

It’s time to dive into the HIG and figure out what went wrong.

When should we be using disclosure indicator elements?

View Controller

Touch here

Here is the root view that
users see, the table view.

When the user
taps, the view
controller
hands off
control to
the detailed
view.

The HIG mentions detailed disclosure buttons and disclosure indicators—which should we use? Why?

Table cells have a number of built-in usability
items that help users understand how to use
your app - even if it’s the first time they’ve
run it.

We’re already using the navigation controller’s back button to help the user know how to get back to where they came from...

202 Chapter 5

disclose your intentions

When should we be using disclosure indicator elements?

Table Cells Up Close

So, what exactly is the disclosure indicator element, and where does it go?
Let’s look a little deeper in the HIG:

Big Font Info
small detailed text accessoryType -

common ones are
disclosure indicat

or,

detailed disclosu
re

indicator, and
checkmark.

imageView - used
to show images
associated with a cell.

In the HIG, Chapter 8, the “Configuring a Table View” section, you can pretty quickly find out why
you’re in violation over those disclosure indicators:

“The disclosure indicator element... is necessary if you’re using
the table to present hierarchical information.”

DrinkMixer uses really basic cells, but you can easily customize your cells for
a different app, besides just adding disclosure indicators. Even though the
table only supports one column, you can make it look like more by adding a
thumbnail, for example. You can also adjust the font sizes to open up some
room for each table cell if you need to.

Most really polished apps use some kind of table cell customizing, so keep that
in mind while you’re looking through the API. For now, we just need to add
the disclosure icon to our cells to indicate there’s more information available if
a user taps on them.

textLabel - the main

text area in a c
ell.

detailTextLabel - depending on
what cell style you use, it can show
up in different places, fonts, and
colors.

The disclosure indicator denotes that there is an additional level of information available about an item
when you click it (like drink details); it selects that row and shows the additional data. The button can
do something besides select the row - it can kick off an action. That’s more than we’ll need here, so
we’ll just stick with the disclosure indicator.

The HIG mentions detailed disclosure buttons and disclosure indicators—which should we use? Why?

It’s time to dive into the HIG and figure out what went wrong.

you are here 4 203

plists and modal views

Use a disclosure indicator if your cell
leads to more information
TableViewCells have a lot of built-in functionality—we’re just
scratching the surface. Adding a disclosure indicator is simply a
matter of telling the cell what type of accessory icon it should use.
Take a look at the UITableViewCell documentation for some of
the other options.

Here’s the
constant you
need.

 //
Configure the cell.

 cell.textLabel.text = [[self.drinks objectAtIndex:indexPath.row]
valueForKey:NAME_KEY];

 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 return cell;

}

Just set the accessory type to the Disclosure constant.

There’s just one quick line of
code to set the cell’s accessory
type when we configure the cell:

Test Drive
Go ahead and build and Run....make sure it’s working!

RootViewController.m

204 Chapter 5

ready to resubmit to the App Store

Test Drive
One little line of code fixed all of your App Store approval issues.

There are those
disclosure elements—now
the user knows what to
do!

you are here 4 205

plists and modal views

After resubmitting to the App Store,
DrinkMixer is up on iTunes!

This app is great! I’m
going to use it every night.

 Sales report - DrinkMixer - Week 1

 Overall sales - 400 downloads

 Price - $1.99

 Overall revenue - $796

Wow, just
for one week!

The reviews are coming in...

Remember that Apple

will take a percen
tage

of this...

206 Chapter 5

meanwhile, back in the App Store

Sales were going strong...
But then bad reviews started coming in. What’s
going on?

The
reviews
are bad...

...and sales
are tanking!

They say things like
“DrinkMixer sucks–I
can’t add anything”

Another review:
“I need more
than 40 drinks.” “My bar has some custom

drinks and I don’t want
to keep a separate sheet
of drinks around.”

“I’m going to switch to iDrink -
it’s more expensive, but it lets
me add new drinks and customize
my list.”“I don’t like any of

the drinks on the
list.”

you are here 4 207

plists and modal views

Think about how you originally designed DrinkMixer and the
feedback, and figure out what you’ll do next.

 What would address the users’ concerns?1

 Given the structure of DrinkMixer, how would you refactor the code to fix the problem?2

 Is there an easy way to fix the code? A hard way?3

208 Chapter 5

give the people what they want

Think about how you originally designed DrinkMixer and the
feedback, and figure out what you’ll do next.

The easiest way to fix the problem is to update the app so users can add more drinks
to the list.

We could add a new view that lets users enter their drink information. It could look like
the detail view, but allow them to type in the information they want. We’d have to be
able to save that new information and update the table to show the new drink.

There are lots of hard ways and probably a few good “easy” ways. In general, the
easiest way for us to add this functionality is to reuse as much of what we’ve already
done as possible. We can definitely take advantage of our navigation controller, and
let’s see if we can’t do something useful with our DetailDrinkView too...

How would you go about implementing a view
where users can add drinks to DrinkMixer?

Think about how you originally designed DrinkMixer and the
feedback, and figure out what you’ll do next.

 What would address the users’ concerns?1

 Given the structure of DrinkMixer, how would you refactor the code to fix the problem?2

 Is there an easy way to fix the code? A hard way?3

you are here 4 209

plists and modal views

App Layout Construction

Which interface is better?

Why? (Be specific.)

Why not the other?

Some kind of button in the navigation controller to kick off a new view.

Add a new toolbar with some buttons below the nav controller.

You’d have
room for an
add button and
others, when you
need them.

Option #1 Option #2

Here is the table view for DrinkMixer with two possible
designs. Based on aesthetics, usability, and standard iPhone
App behavior, which one is better for showing the users
where they should add a drink?

210 Chapter 5

built-in buttons

App Layout Construction solution

The navigation controller comes with built-in button support.

Which interface is better?

Why? (Be specific.)

Why not the other?

Option #1.

Because by putting the icon in the nav controller, you don’t take up more space

Option #2 makes the interface a bit more cluttered, and requires more code.

This type of interface is good when you have several new views to add, not just one.

Option #1 Option #2

away from the table view. There’s also built-in support for that button in the nav controller already.

The toolbar will
cover up part of
the table view, too.

Here are two designs. Based on aesthetics, usability, and
standard iPhone App behavior, which one is better for
showing the users where they should add a drink?

you are here 4 211

plists and modal views

Users will be able to tap the + button to add a drink.

Using Xcode, add the button to the Nav controller and
the associated IBActions and IBOutlets.

Open RootViewController.xib in Interface Builder.
Scroll through the library and drag a Bar Button Item to the Main
Window (this will add it to the list after the table view). It won’t show
up on the navigation controller in Interface Builder—we’ll need to add
code so it shows up at runtime.

1

Add the IBAction, IBOutlet, and property declaration for
addButtonItem.
Just like any other button, we’ll have an IBAction for when it gets clicked
and a reference to the button itself—all in RootViewController.h.

2

Add the synthesize, dealloc, and addButtonPressed method
for addButtonItem.
Synthesize the property, release the reference, and implement the
addButtonPressed to log a message when the button is clicked—all in
RootViewController.m

3

Finish up in Interface Builder.
Open up RootViewController.xib again, and link the new Bar Button
Item to the actions and outlets within the Main Window.

Finally, pull up the inspector for the Bar Button Item and change the
Identifier to Add.

4

It won’t show
up because
the navigation
controller in
Interface Builder
is SIMULATED,
not real.

Use navigation controller
buttons for editing
So far we’ve used the navigation controller to move between views.
But if you’ve spent much time with other iPhone apps, you know
it’s capable of much more. Since a UITableView is almost always
embedded in a navigation controller, table editing is usually done
through buttons on the controller itself. Let’s start out by adding
a + button to the navigation controller that will let the users add a
drink when they tap it.

212 Chapter 5

add the button

Using Xcode, add the button to the nav controller and
the associated IBActions and IBOutlets.

Open RootViewController.xib in
Interface Builder.
Scroll through the library and drag a
Bar Button Item to the Main Window
(it will get added to the list).

1

Add the IBAction, IBOutlet,
and property declaration for
addButtonItem.

2

Add the synthesize, dealloc, and addButtonPressed
method for addButtonItem.

3

 @interface RootViewController : UITableViewController {

 NSMutableArray *drinks;

 IBOutlet UIBarButtonItem *addButtonItem;

 }

 @property (nonatomic, retain) NSArray *drinks;

 @property (nonatomic, retain) UIBarButtonItem *addButtonItem;

 - (IBAction) addButtonPressed: (id) sender;

 @end

@synthesize drinks, addButtonItem;

- (IBAction) addButtonPressed: (id)sender {

 NSLog(@”Add button pressed!”);

}

RootViewController.m

RootViewController.h

you are here 4 213

plists and modal views

Finish up in Interface Builder.
Open up RootViewController.xib again, and link the new Bar Button Item to the actions and outlets
within the Main Window, right clicking and using the menus that pop up.

Finally, pull up the inspector for the Bar Button Item and change the Identifier to Add.

4

- (void)dealloc {

 [drinks release];

 [addButtonItem release];

 [super dealloc];

 }

Test Drive
Go ahead; build and run the app...

self.
navigationItem.rightBarButtonItem = self.addButtonItem;

put this inside of
ViewDidLoad

RootViewController.m

214 Chapter 5

button success

The button shows up in the
view, but now what?

Test Drive
Go ahead; build and run the app...

The button works!
Now you get an
affirmative message in
the console...

you are here 4 215

plists and modal views

What do we need for the user to be able to enter a new
drink? Exactly what fields do you need and how will you
lay them out? How will the view controller work?

The button should create a new view
Our new button works: the action gets called, but really doesn’t do
anything useful yet. We need to give our user a place to enter the
new drink information and we can do that with a new view. Just
like with the detailed view, we can let the navigation controller
handle the transition.

List of drinks

Back and forth tab

Back button

Name:

These are the
ingredients. Like
grenadine, vodka, etc.

These are the directions,
mix, pour over ice, then
layer the rest.

Ingredients:

Directions:

Name of the drik

Pushing the “plus” button needs
to

move you into a new view where you can

enter drink information.

Touching the disclosure indicator
moves you into the filled-out information about that particular drink.

?
AddDrink

ViewController

Root
ViewController

DetailDrink
ViewController

We pulled the view
information out of the view
controller and into the
DetailDrinkViewController nib.

What do we need for the AddViewController’s UI? Where does it go?

216 Chapter 5

reuse your view

Back button

Name:
Ingredients:

Directions:

The add drink view needs
to contain exactly the same
fields as the detail view—it
just needs to be editable.

When you click on
these text fields,
the keyboard will
pop up and let
you enter new
information.

We need a view... but not necessarily
a new view
Our “new drink” view is really just an editable version of our
detailed view. So instead of creating a whole new nib, let’s take
advantage of the fact that the UI (the nib) is separate from our
behavior (the UIView subclass in the .m file), and reuse the detail
view.

Up until now we’ve had a one-to-one pairing between our nibs
and our view controllers. That’s definitely the norm, but our view
controllers are really just normal Objective-C classes. We can use
object-oriented extension mechanisms like inheritance to add the
behavior we want.

AddDrink
ViewController

We need to support different behavior than the detail view controller, though. We’ll need a new view controller.

DrinkDetailViewController.xib

Really, a new view controller
but not a new nib? I thought
they always go together.

Not necessarily.
Remember that a nib is just the XML representation of a view. Using
nibs is a lot easier than trying to lay out your view using code. And since
the nib is just graphical information, you need to put the actual code
somewhere. That’s where the view controller comes in...

you are here 4 217

plists and modal views

The view controller defines the behavior
for the view
From the user’s perspective we’ll have three views: the table view, the
detailed view, and the new drink view. But, since we’re reusing the .xib
to create the “new” view, all we need is a new view controller class that
supports adding a drink. That means there isn’t any Interface Builder
work to do at all!

Back button

Name:

These are the
ingredients. Like
grenadine, vodka, etc.

These are the directions,
mix, pour over ice, then
layer the rest.

Ingredients:

Directions:

Name of the drik

Back button

Name:
Ingredients:

Directions:

DrinkDetailViewController.xib

AddDrinkViewController.mDrinkDetailViewController.m

The nib defines the GUI and
since both views will look the
same, we can reuse it.

The ViewController defines the
behavior for the view - in this
case, populating the fields with
drink information.

When we instantiate the
DrinkDetailViewController, we tell
it to initialize with a specific nib.

?

Here’s the new view we need

to create. It w
ill look the

same, so we can reuse th
e nib.

Separating the UI from behavior
helps you reuse your view.

Reusing both the the nib file and the detail view
controller is also an option... but where could we
run into problems?

keeping track of outlets and actions

218 Chapter 5

A nib file contains the UI
components and connections...
One way we could reuse the nib is to create a new
ViewController and pass it the DrinkDetailViewController.xib
file when we initialize it. There are a few challenges with that,
though. Remember, we don’t just use Interface Builder to lay out
the interface; we use it to wire up the components to the class
that will load the nib.

DetailDrinkViewController
IBOutlet UITextField *nameTextField;

...
- (void) viewWillAppear: (BOOL) animated;
 ...

The view layout information and

connections are sto
red in the nib...

The View Controller has the f
ields

and methods that get w
ired up to

the components in the nib.

...and information about the nib’s File’s Owner
The nib doesn’t actually contain the ViewController class it’s setup up to be
wired to. Instead, it does this through the nib’s File’s Owner. When you pass
the nib to the view controller, it will deserialize the nib and begin making
connections to the outlet names stored in the nib file. This means if we want to
pass that nib into another, new view controller, we need to make sure we have
the same outlets with the same names, the same actions, etc.

 Reusing our nib gets us what we need for this app, but
it’s not for every app out there...

Because of the way DrinkMixer is built, we can just subclass our
detailed view to get what we need. That works great for this app,
but be careful doing this in more complex apps, because your code

can get difficult to maintain. Often, it’s better to just bite the bullet and build a
new view... and sometimes you’ll realize they shouldn’t even look the same.

you are here 4 219

plists and modal views

You can subclass and extend views like
any other class
Instead of reusing just the nib and having to re-create all of the outlets
and actions, we can just subclass the DetailedViewController and add
the behavior we need. Our AddDrinkViewController is the same as a
DetailedViewController; it just has the ability to create and save an entirely
new drink. Everything else—showing the name, showing the description,
etc.—are all exactly the same as the DetailedViewController.

DetailDrinkViewController
IBOutlet UITextField *nameTextField;

...
- (void) viewWillAppear: (BOOL) animated;
 ...

AddDrinkViewController

- (void) viewWillAppear: (BOOL) animated;
 ...

By default, fields in
 Objective-C

are protected, so
we can get to

them in our subclass.

Our AddDrinkViewController

won’t need any new fields (yet)

because it will inherit the

DetailDrinkViewController’s

fields...

...but we will need to change a little behavior, so we’ll need to override a couple of methods.

Back button

Name:
Ingredients:

Directions:

So when we create an
AddDrinkDetailViewController,
it will ask its superclass, the
DetailDrinkViewController, to load
the DetailDrinkViewController.xib.

First, we need to create the new
view controller.

220 Chapter 5

when to reuse

Q: I still don’t get it about the new
view controller without a new nib.

A: There’s nothing in that nib that you
couldn’t create in normal Objective-C by
hand. As you’ve likely discovered with
Interface Builder, nibs are generally a lot
easier to work with than trying to lay out
your view using code, so when you create
a new view, you typically create a nib to go
with it. But really, you could build an entire
application without a single nib.

In our case, we’re going to do something
somewhere in the middle: we’re going
to create a new view but reuse the UI
information from another view.

Q: So why the “Watch it” warning
about reusing the nib? Is this a good idea
or not?

A: Unfortunately, the answer is: it
depends. For DrinkMixer, we can reuse
our DetailDrinkView and its nib since we
want the layouts to look the same and the
DetailDrinkView doesn’t really do anything
specific. However, in a more complex
application, you might run into problems
where you’re constantly fighting between
the two view controllers or you have to
expose so much information to the subclass
that your code becomes unmaintainable.
This isn’t a problem unique to iPhone
development; you always have to be careful
when you start subclassing things.

For our app, subclassing works fine, and
you’ll see it in some of Apple’s example
applications, too (which is part of the reason
we included it here). But it’s equally likely
that in some other application you’ll want
views to be similar, but not quite exactly the
same. In those cases, create a new view
controller and nib.

you are here 4 221

plists and modal views

Get into Xcode and create the AddDrinkViewController files.

Create a new UIViewController subclass named
AddDrinkViewController without a nib using the New → File...
dialog.

Watch the options in the
new file creation...You don’t
want a xib with the view.

Open up the new AddDrinkViewController.h file and change it to inherit
from DetailedDrinkViewController instead of the UIViewController.
Don’t forget to import the DetailedDrinkViewController.h file.

Use Xcode to create a view controller
without a nib
What we’ll do is create a new ViewController in Xcode that
doesn’t have its own nib, and then tweak it to inherit from the
DetailDrinkViewController. This new view will get all of the fields,
behavior (which we’ll change), and the nib we need.

We’ll add the new behavior

we need in a minute...

inherit the drink detail view controller

222 Chapter 5

 #import <UIKit/UIKit.h>

 #import “DrinkDetailViewController.h”

 @interface AddDrinkViewController : DrinkDetailViewController{

 }

 @end

The AddDetailViewController.m file can
stay exactly as it is generated by Xcode.

In the File → New dialog box, you need to create a new
UIViewController subclass files. Be sure to uncheck the
With XIB for user interface box, since we don’t
need that .xib file.

Get into Xcode and create the
AddDrinkViewController files.

By default our view
controller inherited from
UIViewController. Change that to
DrinkDetailViewController here.

In order to use the DetailDrinkViewController, we need to import the header so the compiler knows what we’re talking about.

Q: Wait, why aren’t we just passing
the nib into the AddDrinkViewController?
Why all this subclassing stuff?

A: We could do that, but the problem
is we’re not just dealing with GUI
layout. We have text fields and labels
in there that need to get populated. Our
DetailedDrinkViewController already has
outlets for all of the fields we need, plus it
has the functionality to populate them with
a drink before it’s shown. We’d have to
reimplement that in our new view controller if
we didn’t subclass.

Q: Is this some kind of contrived Head
First example or should I really be paying
attention?

A: You should be paying attention. This
pattern shows up pretty often and a lot of
Apple’s example applications use it. It’s
very common, particularly in table-driven
applications, to have one view that just
displays the data and another to edit it when
the user puts the table in editing mode (we’ll
talk about that more later). Sometimes you
should use totally different views; sometimes
you can reuse one you have.

Q: You mentioned that fields are
protected by default. What if I wanted
private fields in my class?

A: It’s easy—just put @private (or
@public for public fields) in your interface
definition before you declare the fields. If
you don’t put an access specifier there,
Objective-C defaults to protected for fields.

AddDrinkViewController.h

you are here 4 223

plists and modal views

Jim: Now we have an AddDrinkViewController class, so all we
have to do is push it on the stack like we did with the detail view,
right?

Joe: That makes sense—we used the navigation controller to
drill down into the data just by pushing a detailed view on the
stack...

Frank: Adding a new drink to our list is a little different,
though.

Jim: Why?

Frank: Well, adding a new drink is really a sub-task.

Joe: Huh?

Frank: The users are stepping out of the usual browsing drinks
workflow to create a new drink.

Joe: Oh, that’s true. Now they’re typing, not reading and
mixing a drink.

Frank: Right, so for times like this, it’s important to
communicate to the users that they have to complete the task.
Either by finishing the steps or—

Joe: —or by cancelling.

Frank: So, what kind of view is that?

Joe

Jim

Frank

Which of these views better communicates what the user
needs to do? Is one more ambiguous than the other?

modal views are animated

224 Chapter 5

Modal views focus the user on the task at hand...
When users navigate through your app, they are used to seeing views pushed and popped
as they move through the data. However, some tasks are different than the normal drill-
down navigation and we really need to call the users attention to what’s going on. iPhone
does this through modal views. These are normal views from the developer perspective,
but feel different to the user in a few ways:

...like adding or editing items
We’re going to use a modal view when users want to add a new
drink to DrinkMixer. They have to either save the added drink, or
discard (cancel) it, before they can return to the main DrinkMixer
app.

When you push a view onto the stack using pushViewController:animated:, the navigation controller slides the view in from the side (if you said to animate it) and creates a back navigation button in the nav bar.

When you
display a

 modal view
, the vie

w slides

in from the bot
tom and cov

ers the f
ull screen

- includin
g the na

vigation
bar. Users have

 to

deal with the n
ew modal view

 before
they can

continue
 with the a

pplicatio
n.

The modal view is going to cover up the navigation control...

Modal views have to be dismissed - either by saving the changes or cancelling out of the view.

you are here 4 225

plists and modal views

Any view can present a modal view
Up until now we’ve presented new views using our navigation controller.
Things are a little different for modal views: any UIViewController can
show a modal view, then hide it when necessary. To display a modal view on
top of the current view, simply send the current view the presentModal
ViewController:animated: message. Since our RootViewController
is the view controller that needs to show the modal view, we can just send
this message to ourselves, using self, like this:

[self presentModalViewController:addViewController animated:YES];

Update the RootViewController.m file to display our AddDrinkViewController in
a UINavigationController when the + button is tapped.

You’ll need to import the AddDrinkViewController.h so the RootViewController
knows what class you’re talking about.

Change the addButtonPressed:sender: method to create an AddDrinkViewController,
and present it as a modal view. Be careful about your memory management—don’t
leak references to the controllers.

self is the Objective-C keyword
for the object that is currently
executing the method. It’s similar to
this in Java or C++.

If you say NO to animated, then
the view just appears. By saying
YES, we get the smooth slide in
from the bottom.This is the view controller

you want displayed as a modal
view, in our case, the new
AddDrinkViewController.

226 Chapter 5

create your modal view

#import “RootViewController.h”

#import “DrinkConstants.h”

#import “DrinkDetailViewController.h”

#import “AddDrinkViewController.h”

 - (IBAction) addButtonPressed: (id) sender {

 NSLog(@”Add button pressed!”);

 AddDrinkViewController *addDrinkVC = [[AddDrinkViewController alloc] in
itWithNibName:@”DrinkDetailViewController” bundle:nil];

 [self presentModalViewController:addDrinkVC animated:YES];

 [addDrinkVC release];
}

Allocate the AddDrinkViewController just like the

DetailedDrinkViewController - remember, it’s a

subclass. It uses the same nib, too.

Now we just need to show the modal view - since RootViewController is a ViewController, we just call presentModalViewController and iPhone handles the rest.

The RootViewController will retain a reference to the new view controller when we present it. Don’t forget to release the reference to the view controller!

Not much to say here
-

just import the file.

RootViewController.m

Update the RootViewController.m file to display our AddDrinkViewController in
a UINavigationController when the + button is tapped.

RootViewController.m

you are here 4 227

plists and modal views

Test Drive
Now that the add view is fully implemented, build and run the project. Make sure you
try out all of the functionality: scrolling, drilling down to details, and finally adding a
drink. Make sure you try adding a new drink name...

Touch in the
title to bring
up the keyboard
and make sure it
works.

Try clicking
around,
between
fields.

But what about
after you finish
typing?

 If your keyboard isn’t working, your
fields might still not be editable.

Back in Chapter 4, we had you make the fields
uneditable in Interface Builder. If your keyboard
isn’t appearing, try going back into Interface

Builder and checking that the fields are now editable.

228 Chapter 5

sam can’t add his drink

That’s great, but after I type in
the drink, nothing happens! I can’t
get the view to go away, and I can’t
add the drink.

That’s a problem.
Actually, it’s two problems that are related.
The add drink detail view needs to go away
one of two ways: either the user cancels out
or saves the drink. We need to handle both.

you are here 4 229

plists and modal views

How should we lay out the save and cancel
buttons?

Cancel

Save

230 Chapter 5

we need a navigation bar

Our view doesn’t have a navigation bar
To be consistent with the rest of DrinkMixer, we really should put the save and
cancel buttons at the top of the view in a navigation bar. The problem is, we
don’t have one in our modal version of the detail view.

We could add one by hand, but remember we’re sharing the detail drink view
nib, which gets its navigation bar from the navigation controller. Since we’re
showing the add drink view as a modal view, we cover up the navigation bar.

Instead of trying to solve this from within the detail drink view nib, we can
embed our add drink view in a navigation controller of its own, like this:

UINavigationController *addNavCon = [[UINavigationController alloc]
initWithRootViewController:addDrinkVC];

Drink detail view

The detail
view is
pushed on
top of the
table view,
preserving
the nav
controller.

Add drink detail view

A modal view covers the
navigation control.

This will add a nav
controller to wrap the
add drink detail view.

Instead of presenting our addDrinkVC, we present the addNavCon view controller.

you are here 4 231

plists and modal views

 - (IBAction) addButtonPressed: (id) sender {

 NSLog(@”Add button pressed!”);

 AddDrinkViewController *addDrinkVC = [[AddDrinkViewController alloc]
initWithNibName: @”DrinkDetailViewController” bundle:nil];

 UINavigationController *addNavCon = [[UINavigationController alloc] ini
tWithRootViewController:addDrinkVC];

 [self presentModalViewController:addNavCon animated:YES];

 [addDrinkVC release];

 [addNavCon release];

}

Allocate the AddDrinkViewController just like the

DetailedDrinkViewController - remember, it’s a subclass.

It uses the same nib, too.

Allocate the UINavigationController
and pass in our
AddDrinkViewController as its root
view controller. It will retain the
controller, since it needs to display it.

Now we just need to show the modal view - since RootViewController is a ViewController, we just call presentModalViewController, and iPhone handles the rest.

Don’t forget to release references to the AddDrinkViewController and the NavigationController.

Add this!

It works! The modal view
has a nav controller and
your buttons have a home.
Now we just need to create
those buttons...

RootViewController.m

232 Chapter 5

creating ui controls in code

 - (IBAction) save: (id) sender;

 - (IBAction) cancel: (id) sender;

 - (void)viewDidLoad {

 [super viewDidLoad];

 self.navigationItem.leftBarButtonItem = [[[UIBarButtonItem
alloc] initWithBarButtonSystemItem:UIBarButtonSystemItemCancel
target:self action:@selector(cancel:)] autorelease];

 self.navigationItem.rightBarButtonItem = [[[UIBarButtonItem
alloc] initWithBarButtonSystemItem:UIBarButtonSystemItemSave
target:self action:@selector(save:)] autorelease];

These go just before the @end.

Notice our “autorelease” here - normally we alloc a class, assign it to where it needs to go, then release our reference to it. By autoreleasing when we create it we ask Objective-C to handle releasing it for us later. Not quite as efficient as explicitly handling it ourselves, but a little cleaner-looking in the code.

Just like when we made an add button, we’re

going to use the navigation cont
roller’s left and

right buttons for save and canc
el. This time we’ll build the buttons in code.

Create the save and cancel buttons
Since both the save and cancel buttons need to dismiss the modal view, let’s
start by wiring them up to do that. We’ll need some actions, and the buttons
themselves. We’ve covered how to do that in Interface Builder, so we’ll write
them in code this time.

Since we’re using the navigation bar, we get built-in support for left and right-
hand buttons. We just need to create those buttons and assign them to our
leftBarButtonItem and rightBarButtonItem to have them placed where we
want them.

AddDrinkViewController.m

AddDrinkViewController.h

you are here 4 233

plists and modal views

#pragma mark -

#pragma mark Save and Cancel

 - (IBAction) save: (id) sender {

 NSLog(@”Save pressed!”);

 [self dismissModalViewControllerAnimated:YES];

}

 - (IBAction) cancel: (id) sender {

 NSLog(@”Cancel pressed!”);

 [self dismissModalViewControllerAnimated:YES];

}

Start this at the bottom of the file, just before the dealloc.

Write the save and cancel actions
When the user clicks either Save or Cancel, we need to exit the modal
view by asking the view controller that presented the view to dismiss it.
However, to make things easier, we can send the modal view the dismiss
message, and it will automatically forward the message to its parent
view controller. Since the AddDrinkViewController is the modal view
and gets the button call back, we can just send ourselves the dismiss
message and the controller stack will handle it correctly. We need to
send ourselves the dismissModalViewControllerAnimated:
message, like this:

[self dismissModalViewControllerAnimated:YES];

Since we are in the modal view, this dismiss
message will be delegated up to our parent
view controller, which will actually make the
view go away.

Use this code to write out the save and

cancel methods to log which one was called,

then clear the modal view. We’ll tackle

actually saving a new drink once this works.

Now, to see if those buttons work...

AddDrinkViewController.m

234 Chapter 5

your modal view works

Test Drive
The modal view can be dismissed now, and the keyboard works too!

Just like that,
the buttons are
in the detail
view.

 Congratulations,
the modal view is
working!

This chapter, you’ve learned how
to add a view and pass it through
the navigation stack to pop the
view, plus you reused the nib you
already created and wired it up for a

new use! Not only that, but your add view is
modal, and you can dismiss it, too.

you are here 4 235

plists and modal views

Q: Why don’t we need an outlet for the save/cancel button? And what about Interface
Builder?

A: The navigation controller API has support for both left and right buttons; you just need to initialize
them with the buttons you want to use (save and cancel buttons, for instance). After that, all you need
are the matching actions.

So can I add some new drinks yet? I just learned how
to make this cool new one from another bartender and
want to put it in my app.

To be continued...

236 Chapter 5

iPhonedevcross

iPhoneDevcross
Using all the stuff you’ve learned about how to work
with different plists and views, fill in the puzzle...

Untitled Puzzle
Header Info 1
Header Info 2

etc...

1 2

3

4 5 6

7

8 9

10

Across
1. The navigation controller has support for ___________

buttons to fix stuff.
5. Use these to organize names of things.
7. Views can be ____________ and extended like any other

class.
8. You can create ________________ bars in the IB or in code.
9. ______________ is easier when the UI is separated from

the behavior.
10. User _______________ on iTunes stick with the app even

after a new version is released.

Down
2. The HIG requires some kind of _____________ element in a

cell if there is more information availible.
3. An _______________ specifies what a button should look

like.
4. A nib file has UI ___________________.
6. A ____________ view has to be dealt with by the user before

doing anything else.

you are here 4 237

plists and modal views

Your iPhone Toolbox

You’ve got Chapter 5 under
your belt and now you’ve

added plists and modal views
to your toolbox. For a complete list

of tooltips in the book, go to http://www.
headfirstlabs.com/iphonedev.

CH
AP

T
ER

 5

Debugging
If you know where your problem
is likely to be, set the breakpoint
there.
You can use the debugger to step
through the problem area.
If you have no idea where to start,
you can step through the entire
app!

Dictionaries
Are useful ways to expand

the

contents of a
plist.

Need to be prop
erly handled in

side

the app.

iTunes Basics
1. Submitting your app to the store means it HAS TO CONFORM TO THE HIG.

2. Approvals can take weeks, so try and get it right the first time.
3. Once your app is up for sale, the reviews stay with it, even with updates.

Views
Are pushed onto the stack via the
table view or buttons.
Can be subclassed and extended
like any other class.
Modal views force the user to
interact with them before they
can be dismissed.

238 Chapter 5

iPhonedevcross solution

iPhoneDevcross SolutionUntitled Puzzle
Header Info 1
Header Info 2

etc...

E1 D2 I T I N G

I3 I

C4 C5 O N S T A N T S M6

O D C O

M E S7 U B C L A S S E D

P N O A

O T S L

N8 A V I G A T I O N R9 E U S E

E F R

N I R10 E V I E W S

T E

S R

Across
1. The navigation controller has support for ___________

buttons to fix stuff. [EDITING]
5. Use these to organize names of things. [CONSTANTS]
7. Views can be ____________ and extended like any other

class. [SUBCLASSED]
8. You can create ________________ bars in IB or in the code.

[NAVIGATION]
9. ______________ is easier when the UI is separated from

the behavior. [REUSE]
10. User _______________ on iTunes stick with the app even

after a new version is released. [REVIEWS]

Down
2. The HIG requires some kind of _____________ element in a

cell if there is more information availible. [DISCLOSURE]
3. An _______________ specifies what a button should look

like. [INDENTIFIER]
4. A nib file has UI ___________________. [COMPONENTS]
6. A ____________ view has to be dealt with by the user before

doing anything else. [MODAL]

this is a new chapter 239

If these records were on an
iPhone and I could edit them
life would be grand!

saving, editing, and sorting data6

Everyone’s an editor...

Displaying data is nice, but adding and editing information
is what makes an app really hum. DrinkMixer is great—it uses some cell

customization, and works with plist dictionaries to display data. It’s a handy reference

application, and you’ve got a good start on adding new drinks. Now, it’s time to give the

user the ability to modify the data—saving, editing, and sorting—to make it more useful for

everyone. In this chapter we’ll take a look at editing patterns in iPhone apps and how to

guide users with the nav controller.

 240 Chapter 6

sam’s new drink

Sam was
clicking around,
ready to add
his new drink.

We have a problem with our
view, since we can’t get to
some of the fields.

Sam is ready to add a
Red-Headed School Girl...
Sam went to try DrinkMixer with the new add
view, and ran into problems right away.

You can’t see the directions at all, and part of
the ingredients information is covered up.

The directions
field is hidden
under the
keyboard.

A new drink at the Lounge.

Sam, the
bartender

you are here 4 241

saving, editing, and sorting data

...but the keyboard is in the way
We’re back to the keyboard problem we saw earlier with InstaTwit.
When Sam taps on a control, it gets focus (becomes the first
responder) and asks iPhoneOS to show the keyboard. Generally,
that’s a good thing. However...

How did we deal with the keyboard last time? Will that work this time?
What do you want the view to do when the keyboard appears?

When Sam taps in the Drink name field, the keyboard appears like it’s
supposed to—that’s good.

He can even
try to tap

into the In
gredients f

ield

and type in
 some of the

ingredients
... but he r

uns

under the k
eyboard.And the keyboard completely covers the Directions field!

We had a similar problem in InstTwit where the user couldn’t get to the controls under the keyboard.

 242 Chapter 6

scroll view up close

Resigning first responder worked last time. In DrinkMixer it would be fine for the name field, but
what about the directions and the ingredients fields? As soon as they keyboard comes up, they’re
covered.The user has a smaller screen to work with once the keyboard shows up - we need to set up
the view to scroll things in when the user needs them. We can do this with a UIScrollView.

How did we deal with the keyboard last time? Will that work this time?
What do you want the view to do when the keyboard appears?

UIScrollView Up Close

UIScrollView is just like the basic UIView we’ve been using except that it can handle having items (like
buttons, text fields, etc.) that are off the screen and then scroll them into view. The scroll view draws
and manages a scroll bar, panning and zooming, and what part of the content view is displayed. It
does all of this by knowing how big the area it needs to show is (called the contentSize) and how
much space it has to show it in (the frame). UIScrollView can figure out everything else from there.

Content view

Scroll View

Elements
(buttons, etc.)

Remember, in CocoaTouch, components are subclasses of UIView. All a scroll view needs to care
about are the subviews it has to manage. It doesn’t matter if it’s one huge UIImageView that shows a
big image you can pan around, or if it’s lots of text fields, buttons, and labels.

To get a scrollable view, we need to move our components into a UIScrollView instead of a UIView.
Time to get back into Interface Builder...

The scroll view clips the
content view so that only a
portion is visible to the user.

UIScrollView has built-in support for zooming and panning around the content view—you just need to tell it how big the content is.

The components shown to
the user are considered the
content view; the scroll view
acts like a window into that
view.

The content doesn’t have to be just buttons and text fields; UIScrollViews work well with images too.

you are here 4 243

saving, editing, and sorting data

The scroll view will be the
size of the entire view
(minus the nav control)

You’ve got a point.
Remember when we said sometimes
Interface Builder makes things (a lot)
easier? This is one of those times...

All of these
components
need to be
children of
the scroll view.

The scroll view needs to hold these components now.

This is really annoying. You mean we
have to pull all those components
off and then lay out the view again?
Isn’t there an easier way?

We need to wrap our content in a scroll view
We want the user to be able to scroll through our controls when the keyboard
covers some of them up. In order to do that, we need to add a UIScrollView to
our view and then tell it about the controls (the content view) we want it to handle.

 244 Chapter 6

scroll view construction

Easy GUI REConstruction

Highlight all of the widgets (as shown here) in
the detail view, then go to the Layout → Embed
Objects In → Scroll View menu option. Interface
Builder will automatically create a new scrolled
view and stick all the widgets in the same
location on the scrolled view.

Interface Builder will create a UIScrollView just big
enough to hold all of our components. Since we want
the whole view to scroll, grab the corners of the new
UIScrollView and drag them out to the corners of the
screen, right up to the edge of the navigation bar (we
don’t want that to scroll).

Now you have the
same listing of
widgets as before,
but they are
under a scroll view.

Apparently we aren’t the only people to realize after
we’ve built a view that it needs to be scrollable.
Interface Builder has built-in support for taking an
existing view and wrapping it in a UIScrollView.

How will this new scroll view know how much
content needs to be scrolled?

you are here 4 245

saving, editing, and sorting data

The scroll view is the same size as
the screen
Interface Builder created the UIScrollView, but there are a few
finishing touches we must do manually to make this work the way
we want. We need to tell the UIScrollView how big its content
area is so it knows what it will need to scroll. We do that by setting
its contentSize property. You’ll need to add an outlet and
property for the UIScrollView, then wire it up in Interface Builder
so we can get to it.

So how do we figure out how big the contentSize should be?
When the UIScrollView is the same size as our screen, we don’t
have anything outside of the visible area that it needs to worry
about. Since the scroll view is the same size as our UIView that it’s
sitting in, we can grab the size from there, like this:

scrollView.contentSize = self.view.frame.size;

Once you’ve added that line, you’ll have a scroll view that takes up
all of the available space, and it thinks its content view is the same
size.

Once you resize it, the UIScrollView and its contentSize are the same size. We just need to tell that to the scroll view.

Update DrinkDetailViewController.h and DrinkDetailViewController.m to
handle our new UIScrollView.

 Add an attribute named scrollView to DrinkDetailViewController to hold a
reference to the UIScrollView. You’ll need the field declaration and IBOutlet property,
then you will synthesize it in the .m and release it in dealloc.

1

 Wire up the new property to the UIScrollView in Interface Builder by adding a new
Referencing Outlet to the UIScrollView connected to your scrollView property.

2

 Set the initial contentSize for the scrollView in viewDidLoad:. Remember,
we’re telling the scrollView that its content is the same size as the view it’s sitting in.

3

 246 Chapter 6

start scrolling

Update your DrinkDetailViewController.h and
DrinkDetailViewController.m to handle our new UIScrollView.

...
@interface DrinkDetailViewController : UIViewController {

 NSDictionary *drink;

 IBOutlet UITextField *nameTextField;

 IBOutlet UITextView *ingredientsTextView;

 IBOutlet UITextView *directionsTextView;

 IBOutlet UIScrollView* scrollView;
}

@property (nonatomic, retain) UIScrollView* scrollView;
...

 @synthesize scrollView;

- (void)viewDidLoad {

 [super viewDidLoad];
 scrollView.contentSize = self.view.
frame.size;

}

- (void)dealloc {

 [scrollView release];
 [nameField release];
 [ingredientsTextView
release];

...

Clean up our reference in dealloc.

Synthesize the property,
then set the contentSize
in viewDidLoad.

Add a field and a property for
the new scrollView.

 Add an attribute named scrollView to DrinkDetailViewController to hold a
reference to the UIScrollView. You’ll need the field declaration, an IBOutlet property,
synthesize it in the .m and release it in dealloc.

1

DrinkDetailViewController.h

DrinkDetailViewController.m

Set the initial contentSize

you are here 4 247

saving, editing, and sorting data

Test Drive

Tap in the text field
and the keyboard
appears... but nothing’s
scrolling!

Why isn’t it working yet? Think about all the things
that you have going into this view—the scroll view,
the main view, and the keyboard...

 Wire up the new property to the UIScrollView in Interface Builder.2

 248 Chapter 6

keyboard means changes

The keyboard changes the visible area
The problem is the keyboard changes the visible area but the scroll
view has no idea that just happened. The scroll view still thinks it has
the whole screen to display its content, and from its perspective, that’s
plenty of room. We need to tell the scroll view that the visible area is
smaller now that the keyboard is there.

 iPhone tells you about the keyboard,
but doesn’t tinker with your views.

Just because iPhone knows that the keyboard
is there, it doesn’t know how your app wants

to handle it. That’s up to you!

Content view

Scroll view

...but then the keyboard appears

over the scroll view and covers up
a large part of the visible area.

We need to tell the scroll view it
has less space to work with.

In DrinkMixer the content
view is the same size as our
scroll view’s initial size, which
is the whole screen...

you are here 4 249

saving, editing, and sorting data

Wouldn't it be dreamy if iPhone could just
tell the app when the keyboard appears? But
I know it's just a fantasy…

 250 Chapter 6

iPhone notifications

iPhone notifies you about the keyboard
Interacting with the keyboard and the scroll view brings us to a part of
the iPhone OS we haven’t talked about yet, called Notifications. Just
like component events being passed around our application, there are
system-level events, called Notifications, that are being passed by the
iPhone OS. The secret to knowing what’s going on with the keyboard is
tapping into these events.

Event Object Selector
UIKeyboardDidShowNotification DetailDrinkViewController keyboardDidShow

NSNotificationCenter

 Sam taps in the Drink
name field and the
field becomes the first
responder. Now the
iPhone OS needs to show
the keyboard.

1

 The NSNotificationCenter
invokes the target selector
and passes it information
about the object that
triggered the event, along
with event specific details.

4

 The iPhone OS posts a
notification to the default
NSNotificationCenter named
UIKeyboardDidShowNotification.

2

 NSNotificationCenter looks up the
event to see if anyone is registered
to be told when that event happens.
Objects are registered by providing a
selector (method) to call if the event
is triggered.

3

[registeredObject
keyboardDidShow:eventInfo];

you are here 4 251

saving, editing, and sorting data

Then unregister when you’re done
Just like memory management, we need to clean up our registrations from
the notification center when we don’t need them any longer. We’ll register for
events in viewWillAppear: and unregister in viewWillDisappear:.
Unregistering for an event is easy—just ask the notification center to
removeObserver for the object you registered.

Register with the default notification
center for events
The iPhone OS supports more than one NSNotificationCenter, but unless
you have specific needs for your own, you can just use the default system-level
one. You can get a reference to the default one by calling:

[[NSNotificationCenter defaultCenter];

With the notification center, you can register for events by passing the object
you want the notification center to call back to (usually yourself), the method
to call, an event you are interested in (or nil for any event), and, optionally,
the sender you want to listen to (or nil for all senders).

Since we will only register for keyboard events when our window is visible, we don’t care who sends the event.
Create selector from a
method name just like
with actions.

[[NSNotificationCenter defaultCenter] addObserver:self selector:@
selector(keyboardDidShow:) name:UIKeyboardDidShowNotification object:nil];

[[NSNotificationCenter defaultCenter] removeObserver:self];

Since we’re interested in syst
em

notifications, we’ll use the default

notification center.

We want the notification center to
call us (the DetailDrinkViewController)
so we pass self in as the observer.

Make sure you unregister from the same notification center you registered with.
We simply ask the notificati

on center to

remove us from everything we’ve registered

for. If you only want to stop receiving

certain notifications,
you can specify the

notification as well.

Don’t forget the colon
here, because you’re going
to get details about the
notification as an argument.

 252 Chapter 6

notification know-it-all

Head First: Um, this is embarrassing but I’m not
entirely sure I have the right Notification Center
here...

Notification Center: Well, unless you need
something weird, it’s probably me. I’m the guy
everybody goes to by default. Heads up! An app’s
shuttin’ down. Be with you in a second.

Head First: Wow—so you know about every app
that starts and stops?

Notification Center: Yup. I’m the default center;
all the system events go through me. Now, not
everybody is interested in what’s going on, but if they
want to know, I’m the guy to see.

Head First: So when someone wants to know
what’s going on, they tell you what they’re interested
in, right?

Notification Center: Exactly. If somebody wants
to know about somethin’ in the system, they register
with me. They tell me the notification they want me
to watch for, who I should tell when it happens, and,
if they’re really picky, who should have sent it.

Head First: So then you tell them when that
notification happens?

Notification Center: Right—they tell me what
message to send them when I see the notification
they were interested in. I package up the notification
information into a nice object for them and then call
their method. Doesn’t take me long at all; the sender
almost always waits for me to finish telling everyone
what happened before it does anything else.

Interviewer: Almost always?

Notification Center: Well, the sender could
use a notification queue to have me send out the
notifications later, when the sender isn’t busy, but
that’s not typically how it’s done.

Head First: Hmm, this sounds a lot like message
passing. The sender wants to tell somebody that
something happened, you call a method on that
somebody... what’s different?

Notification Center: It’s similar to message
passing, but there are some differences. First, the
senders don’t need to know who to tell. They just
tell me that something happened and I’ll figure
out if anyone cares. Second, there might be lots
of people interested in what’s going on. In normal
message passing the senders would have to tell each
one individually. With notifications they just tell me
once and I’ll make sure everyone knows. Finally, the
receiver of the notification doesn’t need to care who’s
sending the message. If some object wants to know
that the application is shutting down, it doesn’t care
who’s responsible for saying the app’s quitting, the
object just trusts me to make sure they’ll know when
it happens.

Head First: So can anyone send notifications?

Notification Center: Sure. Anybody can ask me
to post a notification and if anyone’s registered to get
it, I’ll let them know.

Head First: How do they know which notifications
to send?

Notification Center: Ah, well that’s up to
the sender. Different frameworks have their own
messages they pass around, you’ll have to check
with the framework to see what they’ll send out. If
you’re going to be posting your own notifications,
you almost certainly don’t want to go blasting out
someone else’s notifications; you should come
up with your own. They’re just strings—and a
dictionary if you want to include some extra info—
nothing fancy.

Head First: I see. Well, this has been great,
Notification Center. Thanks for stopping by!

The notification center exposed
This week’s interview:
Why do you talk so much?�

you are here 4 253

saving, editing, and sorting data

Fill in the blanks and get a plan for the next step!

We need to for the

and events in

We’ll add two that will be called by the

when the notifications are posted.

We’ll adjust the size of the when the keyboard appears and disappears.

We need to for events in

.

.

 254 Chapter 6

sharpen solution

Now you have a plan for what to do next.

Q: I can’t find the list of notifications
that are sent by the iPhone OS. Where are
they listed?

A: There isn’t a central list of all the
notifications that could be sent. Different
classes and frameworks have different
notifications they use. For example, the
UIDevice class offers a set of notifications
to tell you about when the battery is being
charged or what’s happening with the

proximity sensor. Apple’s documentation is
usually pretty clear about what notifications
are available and what they mean. The
keyboard notifications are described in the
UIWindow class documentation.

Q: Why would I want to create my own
notifications?

A: It depends on your application.
Remember, notifications let you decouple
the sender from the receiver. You could use

this in your application to let multiple distinct
views know that something happened in your
application.

For example, let’s say you had a view
that let you add or remove items from
your application and your app has several
different ways to view those things.
Notifications could give you a nice way
to announce to all of the other views that
something has changed without your add/
remove view needing to have a reference to
each of them.

We need to for the

and events in

We’ll add two that will be called by the

when the notifications are posted.

We’ll adjust the size of the when the keyboard appears and disappears.

We need to for events in

register UIKeyboardDidShowNotification

UIKeyboardDidHideNotification viewWillAppear

methods notification center

scroll view

unregister viewWillDisappear

.

.

you are here 4 255

saving, editing, and sorting data

Go ahead and make the changes to your code to register
for the keyboard events. We’ll implement the code to handle
the scroll view shortly.

Add keyboardDidShow and keyboardDidHide methods to the
AddDrinkViewController.
For now, just have them print out an NSLog when they are called. We’ll add
the meat in a second. Both methods should take an NSNotification*,
as they’ll be called by the notification center and will be given notification
information.

1

Register for the UIKeyboardDidShowNotification and
UIKeyboardDidHideNotification in viewWillAppear(...).
You should use the default NSNotificationCenter and register to recieve both
events regardless of who sends them out.

2

Unregister for all events in viewWillDisappear(...).
A stub for this method is included with the template, but it’s commented out by
default. Go ahead and uncomment it and add the code to unregister for events.

3

Add a BOOL to AddDrinkViewController that keeps track of
whether the keyboard is visible or not.
We’ll talk more about this in a minute, but you’re going to need a flag to
keep track of whether the keyboard is already visible. Set it to NO in your
viewWillAppear(...) for now.

4

 256 Chapter 6

exercise solution

vv

 - (void)viewWillAppear: (BOOL)animated {
 [super viewWillAppear:animated];

 NSLog(@”Registering for keyboard events”);
 [[NSNotificationCenter defaultCenter] addObserver:self selector:@
selector(keyboardDidShow:)
 name:UIKeyboardDidShowNotification object:nil];
[[NSNotificationCenter defaultCenter] addObserver:self selector:@
selector(keyboardDidHide:)
 name:UIKeyboardDidHideNotification object:nil];
 // Initially the keyboard is hidden, so reset our variable
 keyboardVisible = NO;
 }

 - (void)viewWillDisappear:(BOOL)animated {
 NSLog(@”Unregistering for keyboard events”);
 [[NSNotificationCenter defaultCenter] removeObserver:self];
 }

 - (void)keyboardDidShow:(NSNotification *)notif {
 NSLog(@”Received UIKeyboardDidShowNotification.”);
}

 - (void)keyboardDidHide:(NSNotification *)notif {
 NSLog(@”Received UIKeyboardDidHideNotification.”);
}

These are both new methods for the keyboard notifications in the implementation file. We’ll get to those in a minute.

If you don’t give it a notification to unregister from, it will remove you from anything you’ve registered for.

We need to keep track of whether the keyboard is
showing or not. More on this in a minute.

Go ahead and make the changes to your code to register
for the keyboard events. We’ll implement the code to handle
the scroll view shortly.

 @interface AddDrinkViewController : DrinkDetailViewController {
 BOOL keyboardVisible;
 }
 - (void)keyboardDidShow: (NSNotification*) notif;
 - (void)keyboardDidHide: (NSNotification*) notif;
}

AddDrinkViewController.h

AddDrinkViewController.h

you are here 4 257

saving, editing, and sorting data

Keyboard events tell you the keyboard
state and size
The whole point of knowing when the keyboard appears or
disappears is to tell the scroll view that the visible area has changed
size. But, how do we know the new size? The iPhone OS sends out the
keyboard notification events (UIKeyboardDidShowNotification and
UIKeyboardDidHideNotification) when the keyboard appears and
disappears and includes with this event all of the information we need.

We need to know how
big the keyboard is so

we can tell the scroll
view the new visible
area.

NSNotification
object

name = UIKeyboardDidShowNotification

object = relevant object or nil

userInfo =

We get the size of the

keyboard from the
notification object.

Each notification
comes with a
notification object.

Notification userInfo objects are dictionaries with notification-specific information in them.

The notification object contains the name of the notification and the object it pertains to (or nil if there’s no related object).

The keyboard size is
in the NSNotification
object.

 Getting the notification is easy, but we get told every
time the keyboard is shown, even if it’s already there.

That’s why we need the BOOL to keep track of whether or not the
keyboard is currently displayed. If the keyboard isn’t visible when we
get the notification, then we need to tell our scroll view its visible size

is smaller. If the keyboard is hidden, we set the scroll view back to full size.

 258 Chapter 6

keyboard magnets

NSDictionary* info = [notif userInfo];

if (keyboardVisible
) {

 NSLog(@”Keyboard
is already visible.

 Ignoring notifica
tion.”);

 return;

}

CGRect viewFrame = self.view.frame;viewFrame.size.height -= keyboardSize.height;

scrollView.frame = viewFrame; keyboardVisible = YES;

NSValue* aValue = [info objec
tForKey:UIKeyboardBoundsUserI

nfoKey];

CGSize keyboardSize = [aValue
 CGRectValue].size;

NSLog(@”Resizing smaller for keyboard”);

Keyboard Code Magnets Part I
Below are the code magnets you’ll need to implement the
keyboardDidShow method. Use the comments in the code
on the right to help you figure out what goes where.

you are here 4 259

saving, editing, and sorting data

 - (void)keyboardDidShow:(NSNotification *)notif {

 // The keyboard wasn’t visible before

 // Get the size of the keyboard.

 // Resize the scroll view to make room for the keyboard

}

AddDrinkViewController.m

 260 Chapter 6

keyboard magnets

NSDictionary* info = [notif userInfo];

if (!keyboardVisibl
e) {

 NSLog(@”Keyboard al
ready hidden. Igno

ring notification.”
);

 return;

}

CGRect viewFrame = self.view.frame;viewFrame.size.height += keyboardSize.height;

scrollView.frame = viewFrame; keyboardVisible = NO;

NSValue* aValue = [info objec
tForKey:UIKeyboardBoundsUserI

nfoKey];

CGSize keyboardSize = [aValue
 CGRectValue].size;

NSLog(@”Resizing bigger with no keyboard”);

Keyboard Code Magnets Part II
Below are the code magnets you’ll need to implement the
keyboardDidHide method. Use the comments in the code on
the right to help you figure out what goes where.

you are here 4 261

saving, editing, and sorting data

 - (void)keyboardDidHide:(NSNotification *)notif {

 // The keyboard was visible

 // Get the size of the keyboard.

 // Reset the height of the scroll view to its original value

}

AddDrinkViewController.m

 262 Chapter 6

keyboard magnets solution

 - (void)keyboardDidShow:(NSNotification *)notif {

 // The keyboard wasn’t visible before

 // Get the size of the keyboard.

 // Resize the scroll view to make room for the keyboard

}

We will get this notification
whenever the user switches text
fields, even if the keyboard is
already showing. So we keep track
of it and bail if it’s a repeat.

NSNotification contains a dictionary with the event details; we pull that out here.

We get the keyboard size from the dictionary...

...then figure out how big the
scroll view really is now (basically
how big our view is, minus the
size of the keyboard).

if (keyboardVisible) {
 NSLog(@”Keyboard is already visible. Ignoring notification.”);

 return;
}

NSLog(@”Resizing smaller for keyboard”);

scrollView.frame = viewFrame;

keyboardVisible = YES;

CGRect viewFrame = self.view.frame;
viewFrame.size.height -= keyboardSize.height;

NSValue* aValue = [info objectForKey:UIKeyboardBoundsUserInfoKey]; CGSize keyboardSize = [aValue CGRectValue].size;

NSDictionary* info = [notif userInfo];

Finally, update the scroll view with the new
size and mark that the keyboard is visible.

Keyboard Code Magnets Solution
Below are the code magnets to work with the keyboard...

AddDrinkViewController.m

you are here 4 263

saving, editing, and sorting data

 - (void)keyboardDidHide:(NSNotification *)notif {

 // The keyboard was visible

 // Get the size of the keyboard.

 // Reset the height of the scroll view to its original value

}

CGRect viewFrame = self.view.frame;
viewFrame.size.height += keyboardSize.height;

if (!keyboardVisible) {
 NSLog(@”Keyboard already hidden. Ignoring notification.”);

 return;
} Ignore this notificatio

n if we

know the keyboard isn’t vi
sible.

Just like before, we pull the

keyboard size from the event...

...and resize the scrol
l view to

the new visible area.

Handling the UIKeyboardDidHideNotification works almost exactly the same way, except
this time the scroll view needs to be expanded by the size of the (now missing) keyboard.

NSDictionary* info = [notif userInfo];

scrollView.frame = viewFrame;

keyboardVisible = NO;

NSValue* aValue = [info objec
tForKey:UIKeyboardBoundsUserI

nfoKey];

CGSize keyboardSize = [aValue
 CGRectValue].size;

NSLog(@”Resizing bigger with no keyboard”);

AddDrinkViewController.m

Keyboard Code Magnets Part II Solution
Below are the code magnets to work with the keyboard...

 264 Chapter 6

scrolling works now

Test Drive
Go ahead and build and run. Once you get into the detail view, you should be able to
scroll the view to the right field, and the messages in the console help you keep track of
what’s going on.

Q: Manipulating that scroll view size is
kind of tricky—how would I have figured
that out without magnets?

A: A great reference for the code
samples and information for programming
apps in general is the iPhone Application
Programming Guide that is available on the
Apple developer website. That has sample
code for common problems like handling the
keyboard events, using the GPS, etc.

Q: Tell me again why we need to keep
track of whether the keyboard is already
visible? Isn’t iPhone doing that?

A: The iPhone OS knows the state of the

keyboard, but it sends keyboard events out
when different controls get focus. So, when
the user taps in the first field, you’ll get a
UIKeyboardWillShowNotification followed
by a UIKeyboardDidShowNotification. When
the user taps into another field, you’ll get
another UIKeyboardDidShowNotification so
you know they keyboard focus has changed,
but you won’t get the keyboard hide event,
since it never actually went away. You need
to keep track of whether you already knew
it was visible so you don’t resize the scroll
view to the wrong size.

Q: The scroll view works, but
depending on what the users pick, they
still have to scroll to the widget?

A: Yes—and that’s not ideal. You can

ask the scroll view to scroll to a particular
spot on the content view if you keep track
of which control has the focus. The iPhone
Application Programming Guide has good
sample code for that.

Q: Do we really need to use the
keyboard size stuff in the notification?
Isn’t it always the same?

A: It’s not always the same! If your
application is landscape. your keyboard is
wider than it is tall. If your app is portrait,
then it’s taller than it is wide. Apple also
makes it clear that they may change the
size of the keyboard if necessary and you
should never assume you know how big it is.
Always get size information directly from the
keyboard notifications.

you are here 4 265

saving, editing, and sorting data

Everything scrolls OK, and I can put a drink in, but
as soon as I get back to the list, it’s gone!

Sam’s drink is missing!
As soon as he leaves the drink detail view. the new
drink no longer shows up in the main list. We need
to figure out how to keep it around longer...

Answer the following and think about
what it means for our app.

What happens to new drinks when the user hits save?

Where do we need to add code?

How are we going to save the new drink?

 266 Chapter 6

create a MutableDictionary

Answer the following and think about
what the answers mean for our app.

What happens to new drinks when the user hits save? We dismiss the view and the drink information

We need to add some code to the save method that actually stores

Since we already store our drinks in dictionaries, we can

is lost.

the values the user entered.

create a new dictionary with the information and add it to the drink array.

Where do we need to add code?

How are we going to save the new drink?

We can create a new dictionary by allocing
it, but we’re going to need to get a reference
to the array from somewhere. Could the
RootViewController help with that?

We need to give the AddDrinkViewController a
reference to the whole drink array.
Creating a new NSMutableDictionary is easy enough, we
can do that by allocing and initializing it. We can set the drink
on the dictionary using thesetObjectForKey:. What’s
going to take a little more work is adding it to the drink array.
We could have the RootViewController pass the new drink in
after we’ve created it...

you are here 4 267

saving, editing, and sorting data

Go back and update the RootViewController and AddDrinkViewController to
support saving new drinks.

Give the AddDrinkController a reference to the master drink array.
You’re going to need to add a field to the class, a property, and then synthesize
it and release the reference in dealloc. Finally, you need to make sure that the
RootViewController passes on a reference to the drink array when it’s setting up the
AddDrinkController.

1

Create and add a new dictionary to the array.
You need to update the save: method to get the drink details from the controls and
store them in a new dictionary. After that, add the dictionary to the master drink
array using addObject:.

2

 268 Chapter 6

exercise solution

@interface
AddDrinkViewController : DrinkDetailViewController{

 BOOL keyboardVisible;

 NSMutableArray *drinkArray;

 }

@property (nonatomic, retain) NSMutableArray* drinkArray;

- (IBAction) addButtonPressed: (id) sender {

 NSLog(@”Add button pressed!”);

 AddDrinkViewController *addDrinkVC = [[AddDrinkViewController alloc] initWithNi
bName:@”DrinkDetailViewController” bundle:nil];

 UINavigationController *addNavCon = [[UINavigationController alloc] initWithRoo
tViewController:addDrinkVC];

 addDrinkVC.drinkArray = self.drinks;

 [self presentModalViewController:addNavCon animated:YES];

 [addDrinkVC release];

 [addNavCon release];

}

Go back and update the RootViewController and
AddDrinkViewController to support saving new drinks.

We need a reference to
 the

array so we can add a new

drink later.

Give our newly created AddDrinkViewController
a reference to the master drink array for when
the user adds a new drink.

RootViewController.m

AddDrinkViewController.h

you are here 4 269

saving, editing, and sorting data

#import “DrinkConstants.h”

@implementation AddDrinkViewController

@synthesize drinkArray;

 - (IBAction) save: (id) sender {
 NSLog(@”Save pressed!”);

 // Create a new drink dictionary for the new values
 NSMutableDictionary* newDrink = [[NSMutableDictionary alloc] init];
 [newDrink setValue:nameTextField.text forKey:NAME_KEY];
 [newDrink setValue:ingredientsTextView.text forKey:INGREDIENTS_KEY];
 [newDrink setValue:directionsTextView.text forKey:DIRECTIONS_KEY];

 // Add it to the master drink array and release our reference
 [drinkArray addObject:newDrink];
 [newDrink release];

 // Then pop the detailed view

 [self.navigationController dismissModalViewControllerAnimated:YES];

}

- (void)dealloc {

 [drinkArray release];
 [super dealloc];

}

We need the constant key names so
we can populate the new dictionary.

Since we want to add keys and objects, we need to create a mutable dictionary. What problems could you run into later if you created an immutable version?

Use the key constants
to

add the drink inform
ation,

then append it to the

drink array.
Since we alloc’ed it,
we need to release
our reference.

We need to synthesize the
new property.

And release our referen
ce

to the drinkArray when

we clean up.

AddDrinkViewController.m

AddDrinkViewController.m

 270 Chapter 6

five-minute mystery

The Case of the Missing Reservations
Nicole has been a Maitre d’ at Chez Platypus since it opened
nearly 10 years ago. This upscale restaurant has a number of
distinguished customers who like their dining experience to be
just perfect. The VIP guest list hasn’t changed in years and Nicole
knows everyone’s face. She sends them right to their favorite table
when they show up and makes sure everything is just right. She’s

extremely efficient and the restaurant couldn’t do without her...
that is, until her recent, tragic, mistake.

Earlier this month Chez Platypus got a new investor. A
prominent if eccentric Nobel Prize-winning scientist who is

known for his particular tastes. Restaurant management dug up
the dusty VIP list and added the scientist’s name at the bottom,
along with all the detailed instructions for making sure everything
was “just so” when he arrived. They trusted that Nicole would
would take good care of him and didn’t give it another thought.

Last night, their new investor arrived a few minutes before some of
the other VIP guests. Nicole didn’t even notice him. She continued
to move the regular VIPs to their seats and, for all she knew, their
new investor did not even exist.

Five-Minute
Mystery

Why would Nicole ignore such an
important new guest?

Nicole, ready to pamper her VIP guests.

you are here 4 271

saving, editing, and sorting data

Test Drive
That was a lot of code! Run the app and make sure everything is
working. Here’s a drink to add to the list (it’s the new house drink
in the Head First Lounge).

Red-Headed School Girl
 Canadian whiskey
 Cream soda

 Add the whiskey, then the cream soda to a
 shot glass and drink.

Add this to your app.

 272 Chapter 6

test drive

Test Drive
To properly test the app now, click the add button and enter the data for the new drink in the
detail view. When you’re finished, click save.
Now, what happens back in the list view?

But your drink
still isnt’ there!

Save when
you’re done!

you are here 4 273

saving, editing, and sorting data

Something’s wrong. We implemented the save method, created a new
drink, added it to the array... and we’re pretty sure all that code works.
Before we move on, let’s use the debugger and do a quick sanity check.
Uncomment the viewWillAppear in RootViewController.m and set
a breakpoint. Click “Build and Run” to start the application...

Debugging

What did you find?

What’s going on?

Set a breakpoint at viewWillAppear

in the RootViewController.

When the application st
ops

at the breakpoint, ex
pand

self to see how many drinks

are in the drink array
.

After looking at the initial values, go ahead and
continue the application and add a new drink. Check out
the values when the RootViewController stops again.

 274 Chapter 6

exercise solution

Now we’re going to use the debugger to help us
figure out what’s going on.

Debugging

What did you find? The array initially has 40 dictionaries in it; after adding our new drink, it

The tableview isn’t picking up the new drink. We’ve added it to the drink array,
has one more. If we use that console command we can step through them and see that it’s right.

but it’s not getting added to the actual view. It’s like the table view doesn’t know it’s there...
What’s going on?

Notice this time our callstack is
different - we’re coming from the
AddDrinkViewController’s save call.

We have 41 objects in the drink
array now! That’s our new drink, so
we’re adding it to the drink array
correctly.

*If you want to see the name in each dictionary you can use this command in the console:
p (char*)[[[self.drinks objectAtIndex:0] objectForKey:@"

name"] UTF8String]

you are here 4 275

saving, editing, and sorting data

The Case of the Missing Reservations
Solved

Why would Nicole ignore such an important new
guest?

Nicole hasn’t needed to look at the VIP list in
years. She was so concerned that their important
customers feel welcome that she didn’t want to
have to do something as crass as go back and read a
list every time someone arrived. She made a point of
memorizing that list so when they came to the restaurant she
could recognize and seat them immediately. As far as Nicole knew,
there were 10 VIPs on that list and she knew them all.

The problem was that the list was changed and no one told her. All
it would have taken was a simple “heads up” to Nicole that there
was a change to the list and the restaurant’s newest investor wouldn’t
have disappeared... along with his money.

Five-Minute
Mystery

Solved

 276 Chapter 6

table view data changes

The table view doesn’t know its
data has changed
The table view does a number of things to improve
performance as much as possible. As a result, if you just
change values in the datasource without telling it, it won’t
know that something has changed. In our case, we added a
new value to the array used by our datasource but didn’t let
the table view know about it.

You need to ask the table view to
reload its data
Since we’re modifying the underlying data used by the datasource,
the easiest way to refresh the table is to ask it to reload its data. You
do this by sending it the reloadData message. This tells the
tableview to reconstruct everything—how many sections it thinks it
has, the headers and footers of those sections, its data rows, etc.

 - (void)viewWillAppear:(BOOL)animated {
 [super viewWillAppear:animated];
 [self.tableView reloadData];
}

Ask the table view to reload its data right before the RootViewController appears.

Datasource

View Controller

...but nothing ever told the
table view it happened.

The controller modified
the drink array used by
the datasource...

RootViewController.m

you are here 4 277

saving, editing, and sorting data

Test Drive

Red-Headed School Girl
 Canadian whiskey
 Cream soda

 Add the whiskey, then the cream soda to a
 shot glass and drink.

Add this to your app.

Update your RootViewController.m to tell the table view to
refresh its data before the tableview is shown, and let’s try
adding a new drink again.

 278 Chapter 6

saving works!

Test Drive
To properly test the app now, click the add button and enter the data for the new drink in the detail
view. When you’re finished, click save.
Now, what happens back in the list view?

There it is...

Save when
you’re done!

you are here 4 279

saving, editing, and sorting data

Uhh—that drink is
at the end of the list,
not in with the Rs.

Q: Telling the table to reload all its
data seems pretty drastic. Is that really
how I should do it?

A: It’s the simplest way to refresh the
table data, but not necessarily the most
efficient. It depends on what you’re doing to
the table. If you’re modifying the table while
it’s visible, you can call beginUpdates
and endUpdates to tell it you’re about
to make a number of changes and it will
animate those changes for you and let you
avoid a reloadData call. There are
also versions that only reload the specified
rows or for a given section. Which you use
depends on your application, how much you
know about what changed in your data, and
how big your dataset is.

Q: We didn’t add any code to the
cancel button. Don’t we have to do
something there?

A: Nope—the cancel button is coded to
just dismiss the AddDrinkViewController.
This will clean up any memory associated
with the controller and throw away any data
the user entered in the fields. As long as
we don’t manipulate the drink array, we’ve
properly canceled any action the user
started.

Q: Why can’t I see the drink
information in the debugger when I
expand the drinks array and dictionaries?

A: This is one of the disadvantages

of using a generic class like
NSMutableDictionary for storing
our drinks. The debugger knows the class is
a dictionary, but that’s about all it can tell us,
since all of the keys and values are dynamic.
You can get to them through the debugging
console, but that’s not as convenient as
seeing real attributes on classes when you
debug something.

Q: Did we really need to use the
debugger back there? Couldn’t I have just
printed out how many items were in the
array using NSLog?

A: Sure, but then you wouldn’t have been
able to practice debugging again... :-)

Look back at our debugging work. Why is the drink
showing up at the bottom of the table? What do we
need to do?

 280 Chapter 6

sorting arrays

We can sort our array using NSSortDescriptor
In order to get the table view properly sorted, we need to sort our data
array. NSSortDescriptors can do exactly that. You tell descriptors what
to compare by specifying a property, how to compare them with an
optional selector, and then which order to display the information in. In
our case, we’re looking for alphabetical sorting by the name of the drink.

 // Sort the array since we just added a new drink

 NSSortDescriptor *nameSorter = [[NSSortDescriptor alloc]
initWithKey:NAME_KEY ascending:YES selector:@selector(caseInsensitiveCompare
:)];

 [drinkArray sortUsingDescriptors:[NSArray arrayWithObject:nameSorter]];

 [nameSorter release];

Add this in the save method after you add the
data to the array but before the view gets popped off the stack.

The array is out of order, too
Our table view gets its information directly from our drink array.
In fact, we just map the row number into an index in our array
in cellForRowAtIndexPath:.

 // Configure the cell.
 cell.textLabel.text = [[self.drinks objectAtIndex:indexPath.row]
valueForKey:NAME_KEY];

We map the row number right into an index
value for the array. So, row 41 is going to
be whatever we have in the 41st spot in the
array - namely, our new drink.

RootViewController.m

We want the NSSortDescriptor to sort based on drink names.

If we didn’t provide a selector, it does a
case-sensitive comparison, but we want a
case-insensitive one.To do the sort, simply ask the array

to sort itself with our selector.

RootViewController.m

you are here 4 281

saving, editing, and sorting data

Guesswork Cocktail

 Peach schnapps, gin, dry
sherry, passion

 fruit juice, pineapple juic
e and lime juice

 Shake together, strain i
nto a cocktail glass and

 serve.

Test Drive
Add the sorting code to AddDrinkViewController, then
run the app. Let’s add another drink; this one should
end up in the right place.

Great, that new drink is there,
but what about the Red-Headed
Schoolgirl from before? Don’t we need
to deal with saving more permanently?

All our data is lost when we quit...
We’re positive we’re updating the array with our
new drink, but obviously that new array doesn’t
survive quitting and restarting our app.

What do we need to do? When should it happen?

 282 Chapter 6

when to save

Jim: OK, so we should save the array after each new drink is
added, right? That will make sure we always have the right data.

Frank: Not so fast. Keep in mind the whole speed/memory
management thing.

Joe: What’s the problem? It’s just a little array.

Frank: But that means you could be saving out every time you
add a drink.

Jim: Oh, I see, that means we’ll have to go through reading in the
array and saving it back out multiple times. That does seem like a
waste.

Joe: Well then, when are we supposed to do it?

Frank: When we exit! The app will keep the data present until it
closes, then it’s lost without some kind of save.

Jim: How do we do that? How can we tell when the user exits?

Frank: Hmm... what about that applicationWillTerminate
method on our app delegate?

Joe: But the app delegate doesn’t know anything about our drink
list or where to save it...

Frank: Good point. The UIApplicationDelegate says there’s a
notification that goes out too. I bet we could use that...

Frank

Jim

Joe

Q: What notification tells us the
application is quitting?

A: The iPhone OS will send out an
UIApplicationWillTerminateNotification before
your app exits.

Q: Do I need to register to receive it?

A: Yup—just like any other notification.

Q: What if the user hits the home
button or the phone rings or...?

A: Anytime your application exits normally,
either through your code or the user hitting a
button or something else triggers the iPhone
to switch applications (like a phone call
the user decides to answer), you’ll get the
applicationWillTerminate. There’s really only
one case where you won’t...

Q: What happens if my app crashes?

A: Then you’re not going to get the
notification. The data would be lost in this
case. You need to balance how critical
it is to make sure no data is lost with
the performance impact of saving more
frequently. In our case, we’re just going to
save on exit.

you are here 4 283

saving, editing, and sorting data

Use your skills at working with the API and what Jim, Frank,
and Joe were discussing to figure out what to implement
to save the array. Update your RootViewController.m and
RootViewController.h to handle saving.

Register for the UIApplicationWillTerminateNotification.
We know that the applicationWillTerminate: method will be called on the
AppDelegate when the application shuts down, but our RootViewController
really owns all of the data. Have the RootViewController register for the
UIApplicationWillTerminateNotification just like the AddDrinkViewController
did, except add the registration and unregistration code to viewDidLoad and
viewDidUnload, respectively.

2

Add the code to save out the new plist of dictionaries.
Implement the method that will be called when the
UIApplicationWillTerminateNotification is sent to save the plist. We’re going to give
you a little code snippet to use. This code will only work on the simulator, but we’ll
revisit this issue in Chapter 7.

NSString *path = [[NSBundle mainBundle]
 pathForResource:@”DrinkDirections” ofType:@”plist”];

[self.drinks writeToFile:path atomically:YES];

1

 This code will only work in the simulator!

The code used to save the plist will work fine on the simulator, but fail
miserably on a real device. The problem is with file permissions and where
apps are allowed to store data. We’ll talk a lot more about this in Chapter 7,
but for now, go ahead with this version. This is a perfect example of things

working on the simulator but behaving differently on a real device.

 284 Chapter 6

sharpen solution

 - (void)applicationWillTerminate:(NSNotification *)notification {
 NSString *path = [[NSBundle mainBundle]
 pathForResource:@”DrinkDirections” ofType:@”plist”];
 [self.drinks writeToFile:path atomically:YES];
}

Add this to viewDidLoad.

Add this to viewDidUnload.

Don’t forget to declare this in RootViewController.h, too.

Use your skills at working with the API and what Jim, Frank,
and Joe were discussing to figure out what to implement
to save the array. Update your RootViewController.m and
RootViewController.h to handle saving.

// Register for application exiting information so we can save data

[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(applicationWillTerminate:)
 name:UIApplicationWillTerminateNotification object:nil];

// Unregister for notifications

[[NSNotificationCenter defaultCenter] removeObserver:self];

This is the code that’s going to give us problems on
a real device. We’ll run into this again (and fix it) in
the next chapter—bear with us for now....

RootViewController.m

you are here 4 285

saving, editing, and sorting data

 The stop and “Build and Run” in Xcode are NOT the same as the home
key and relaunching the app in the simulator!

When you stop the app using Xcode’s stop button, you are killing the app right then
and there. No termination notifications are sent, no saving is done—it’s just stopped.
Likewise, when you click Build and Debug, Xcode will reinstall the application on

your device before launching it. To test our load and save code, make sure you restart the app by
tapping the icon in the simulator.

Test Drive

Here it is!

Author’s note: we thought about showing the same screenshot twice, but figured that still wouldn’t prove that it saves after hitting the home key and coming back in.

Purple Crayon
 Raspberry liqueur, vodka, and pineapple juice

 Pour the liqueur and vodka over ice and then fill
 with pineapple juice and garnish with a grape.

Make sure when you run
DrinkMixer the second time you
tap on the icon in the simulator;
don’t hit Build and Debug again!

 286 Chapter 6

no dumb questions

Q: So arrays know how to save
themselves... Can I just put any object in
there and have it save to a plist?

A: No —not just any old object.
Arrays load and save using a Cocoa
technique called NSCoding. Any objects
you want to load an save must conform
to the NSCoding protocol, which
includes initWithCoder and
encodeWithCoder method—
basically, load and save. You’d need to
conform to the NSCoding protocol and
provide those methods to be serializable in
and out of an array. However, NSDictionaries
do conform to NSCoding (as do the strings
inside of them), and that’s why we can load
and save so easily.

Q: What is the deal with giving us
code that won’t work on the device?
What happens?

A: Well, to find out what happens, we
encourage you to run it on a real device.
Then think about why it isn’t working the way
you’d expect. We’ll talk a lot more about
this in the next chapter. To give you a hint, it
has to with where we’re trying to save the
data. This is also a real world example of
something working just fine in the simulator
only to behave differently on a real device.
You always need to test on both.

Q: Instead of registering for that
quit notification, couldn’t we have just
updated the AppDelegate to get the drink
array from the RootViewController and
save it in the delegate?

A: Yes, you could. It’s more of a style and
design question than anything else. Right
now the AppDelegate doesn’t know anything
about our plist, our drink array, or even the
RootViewController, for that matter (other
than making it visible). You could argue we’d
be breaking encapsulation if we exposed
what needs to be loaded and saved for each
view up to the AppDelegate. Since we only
need to save a single array, it’s not a big
deal either way, but if you have a number
of views that need to save information or
complex persistence code, it can often be
cleaner to leave it with the class that needs
to know about it rather than lumping it all
into the AppDelegate. Technically speaking,
though, either one would work.

Q: Why did we register and unregister
in the viewDidLoad and viewDidUnload
methods instead of the *Appear
methods?

A: The problem is when and
how often those methods are called.
viewWillAppear is called whenever
the view is about to be shown. That starts
out OK—we’ll get that call before the table
view shows up and we can register. However,

the viewWillDisappear will
be called right before we show the detail
or add drink view controllers (since our
RootViewController is about to be hidden).

If we unregister there we won’t get the
termination notification if the user decides to
quit while looking at the details for a drink.

For example, say the user adds a new
drink, goes back to the RootViewController
then taps on his drink to make sure he
entered it correctly. We show the detailed
view, he’s happy, then he quits the app. Our
RootViewController has unregistered for
the termination notification and the drink is
lost. Instead, we use the load and unload
methods, which are called when the view is
loaded from the nib or unloaded. Since that
view is in use throughout the application,
those won’t be called except at startup and
shutdown.

Q: What’s the deal with hitting “Build
and Run” versus tapping on the icon to
start DrinkMixer the second time?

A: It’s because of how we’re saving the
data. We’ll talk more about it in the next
chapter, but the problem is when you hit

“Build and Debug,” Xcode compiles and
installs the application onto the simulator.
This means it’s replacing the modified drink
plist with the one that we ship with the
application and you lose your drink. Which,
everyone can agree, is very, very sad.

you are here 4 287

saving, editing, and sorting data

That’s great! Now I can add the extra
drinks I need. But there are a couple of
other things that I need to really make this
app work for me.

 Delete drinks that aren’t used to
keep the list small and easy to use.

1

 Edit the ingredients for drinks that
were already in the list.

2

How can we implement these things? Where
in the app do we need to handle this stuff?

 288 Chapter 6

table views supprt editing

Table views have built-in support for
editing and deleting
Good news! The table view comes complete with almost everything we
need for deleting data. This is behavior that acts a bit like implementing a
save or cancel button, and a lot of it comes preloaded.

Editing mode adds an edit button to the navigation control in the main
view, and when it’s pressed, indicators appear to the left of the table cell
that can be selected and deleted like this:

This button will read
“edit”, and then when
pushed it will display the
delete icon and change th

e
button to “done”.

Datasource

View

Delegate

The edit button in the
view tells the user how to
enter editing mode.

The delegate will handle
which mode the table is
in and handle deleting
drinks.

The drinks array will be
modified as needed after
the drinks are deleted.

you are here 4 289

saving, editing, and sorting data

Editing view construction

Using the view below, write what each part of the editing view does.

 290 Chapter 6

editing view construction

Editing view construction solution

Using the view below, write what each part of the editing view does.

The Done button turns
off editing mode and
puts the table back to
normal.

The delete icons let the
user delete a row from
the table.

The + button is
unchanged: it lets us add
a new drink.

When tapping on a row
in edit mode, we should
be able to edit a drink
instead of just displaying
it.

you are here 4 291

saving, editing, and sorting data

The Xcode template comes with a good bit of the code we’ll need, and at this point you’re
pretty familiar with the RootViewController and the table view. We’ll give you some hints
on what to implement next, but let you take it from here.

Add the edit button to the root view.
We need an edit button in the upper left of the navigation bar. The templated code
for the UITableViewController comes with everything we need built-in; it’s just a
matter of uncommenting the line in viewDidLoad.

1

Implement the tableView:commitEditingStyle:forRowAtIndexPath.
Once the table view is in editing mode, we’ll get a call when the user tries to delete
a row either by swiping across the row or tapping the delete indicator. Most of
this method is stubbed out for us too, but you’ll need to add code to update the
datasource with the change. Remember, we’ve been mapping rows to indexes in our
array. Lastly, you don’t need to call reloadData after this change because we ask the
tableView to explicitly remove the row.

2

Update the didSelectRowAtIndexPath to add a drink.
Our AddDrinkViewController has nearly everything we need to be able
to edit an existing drink. Update didSelectRowAtIndexPath to invoke the
AddDrinkViewController instead of the DrinkDetailViewController if we’re in
editing mode.

3

Add the ability to edit a drink in our AddDrinkViewController.
You’ll need to tell the app that it must edit a drink instead of creating a new one, then
have it populate the controls with the existing information, and finally update the
drink on save.

5

Make sure Interface Builder knows it’s editable.
 Check that “Allow Selection While Editing” is checked for the Drinks table view.

4

 292 Chapter 6

exercise solution

// Override to support editing the table view.
- (void)tableView:(UITableView *)tableView commitEditingStyle:(UITableViewCellEdit
ingStyle)editingStyle forRowAtIndexPath:(NSIndexPath *)indexPath {
 if (editingStyle == UITableViewCellEditingStyleDelete) {
 // Delete the row from the data source.
 [self.drinks removeObjectAtIndex:indexPath.row];
 [tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 }
 else if (editingStyle == UITableViewCellEditingStyleInsert) {
 }
}

Add the edit button to the root view.
We need an edit button in the upper left of the navigation bar. The templated
code for the UITableViewController comes with everything we need built-in;
it’s just a matter of uncommenting the line in viewDidLoad.

1

Implement the tableView:commitEditingStyle:forRowAtIndexPath.
Once the table view is in editing mode, we’ll get a call when the user tries to delete a row either by
swiping across the row or tapping the delete indicator. Most of this method is stubbed out for us
too, but you’ll need to add code to update the datasource with the change. Remember, we’ve been
mapping rows to indexes in our array. Lastly, you don’t need to call reloadData after this change
because we ask the tableView to explicitly remove the row.

2

// Uncomment the following line to display an Edit button in the navigation bar
for this view controller.

self.navigationItem.leftBarButtonItem = self.editButtonItem;

In viewDidLoad

The UITableViewController comes with
built-in support for an edit button. All
we need to do is add it to the nav bar.

Use removeObjectAtIndex to
clean up our datasource.

The Xcode template comes with a good bit of the code
we’ll need, and at this point you’re pretty familiar with the
RootViewController and the table view. We’ll give you some
hints on what to implement next, but let you take it from here.

RootViewController.m

RootViewController.m

you are here 4 293

saving, editing, and sorting data

// Override to support row selection in the table view.
- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath *)
indexPath {
 if (!self.editing) {
 DrinkDetailViewController *drinkDetailViewController =
[[DrinkDetailViewController alloc] initWithNibName:@”DrinkDetailViewController”
bundle:nil];
 drinkDetailViewController.drink = [self.drinks objectAtIndex:indexPath.row];
 [self.navigationController pushViewController:drinkDetailViewController
animated:YES];
 [drinkDetailViewController release];
 }
 else {
 AddDrinkViewController *editingDrinkVC = [[AddDrinkViewController
alloc] initWithNibName:@”DrinkDetailViewController” bundle:nil];
 UINavigationController *editingNavCon = [[UINavigationController alloc]
initWithRootViewController:editingDrinkVC];
 editingDrinkVC.drink = [self.drinks objectAtIndex:indexPath.row];
 editingDrinkVC.drinkArray = self.drinks;
 [self.navigationController presentModalViewController:editingNavCon
animated:YES];
 [editingDrinkVC release];
 [editingNavCon release];
 }
}

First we need to check to see if we’re
in editing mode. If not, just display
the normal detail view.

If we are in editing mode, create an
AddDrinkViewController and set the drink to
edit in addition to our drink array. We’ll fix
up the AddDrinkViewController in a minute...

Just the
AddDrink
ViewController
left...

Update the didSelectRowAtIndexPath to add a drink.
Our AddDrinkViewController has nearly everything we need to be able
to edit an existing drink. Update didSelectRowAtIndexPath to invoke the
AddDrinkViewController instead of the DrinkDetailViewController if we’re in
editing mode.

3

Make sure Interface
Builder knows it’s
editable.
Check that “Allow Selection
While Editing” is checked
for the Drinks table view.

4

RootViewController.m

 294 Chapter 6

exercise solution

- (void)viewWillAppear: (BOOL)animated {
 [super viewWillAppear:animated];

 NSLog(@”Registering for keyboard events”);
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(keyboardWillShow:)
 name:UIKeyboardWillShowNotification object:self.view.window];

 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(keyboardWillHide:)
 name:UIKeyboardDidHideNotification object:nil];

 // Initially the keyboard is hidden, so reset our variable
 keyboardVisible = NO;

 if (self.drink != nil) {
 nameTextField.text = [self.drink objectForKey:NAME_KEY];
 ingredientsTextView.text = [self.drink objectForKey:INGREDIENTS_
KEY];
 directionsTextView.text = [self.drink objectForKey:DIRECTIONS_
KEY];
 }
}

Add the ability to edit a drink in our AddDrinkViewController.
You’ll need to tell it that it must edit a drink instead of creating a new one, then have it
populate the controls with the existing information, and finally update the drink on save.

5

If we have a drink set, that means we’re
supposed to edit that drink rather than create
a new one. We’ll need to populate our fields with
the current drink information.

The Xcode template comes with a good bit of the code we’ll need, and at this point you’re pretty
familiar with the RootViewController and the table view. We’ll give you some hints on what to
implement next, but let you take it from here.

AddDrinkViewController.m

you are here 4 295

saving, editing, and sorting data

- (IBAction) save: (id) sender {

 NSLog(@”Save pressed!”);

 if (drink != nil) {

 // We’re working with an existing drink, so let’s remove

 // it from the array to get ready for a new one

 [drinkArray removeObject:drink];

 self.drink = nil; // This will release our reference too

 }

 // Now create a new drink dictionary for the new values

 NSMutableDictionary* newDrink = [[NSMutableDictionary alloc] init];

 [newDrink setValue:nameTextField.text forKey:NAME_KEY];

 [newDrink setValue:ingredientsTextView.text forKey:INGREDIENTS_KEY];

 [newDrink setValue:directionsTextView.text forKey:DIRECTIONS_KEY];

 // Add it to the master drink array and release our reference

 [drinkArray addObject:newDrink];

 [newDrink release];

 // Then sort it since the name might have changed with an existing

 // drink or it’s a completely new one.

 NSSortDescriptor *nameSorter = [[NSSortDescriptor alloc] initWithKey:NAME_KEY
ascending:YES selector:@selector(caseInsensitiveCompare:)];

 [drinkArray sortUsingDescriptors:[NSArray arrayWithObject:nameSorter]];

 [nameSorter release];

 // Then pop the detailed view

 [self.navigationController dismissModalViewControllerAnimated:YES];

}

If there’s a drink set, then we need to update it. We can
either update the existing object or replace it. Since we
need to resort the whole array anyway (in case the drink
name changed), we just remove the old one and re-add it.

AddDrinkViewController.m

 296 Chapter 6

it’s all in there

Test Drive

Resubmit your app
to the store and...

Make the editing changes to your app and give it a shot. You should be able to
remove drinks and fine-tune them all you want. Remember to restart your app
by tapping on the icon, though; otherwise, you’ll lose your changes.

you are here 4 297

saving, editing, and sorting data

Here’s DrinkMixer at #1!
Congratulations!

 298 Chapter 6

navigationcontrollercross

NavigationControllercross
Let’s check your scroll view, nav control, and table
view buzz words!

Untitled Puzzle
Header Info 1
Header Info 2

etc...

1 2 3

4

5

6

7

8

9

Across
1. A field that the user can change is _____________.
2. Arrays load and save using ___________.
5. System-level events that can be passed are called

_____________.
6. Sort data using the _________________.
7. All the sytem events go through the _____________

center.
8. The scroll view won't work without setting the

_____________.
9. viewWillAppear and ____________ are called at different

times.

Down
1. Table views have built-in support for ___________.
3. Keyboard events tell you about the ___________ and size of

the keyboard.
4. The ______________ handles the scroll bar, panning,

zooming, and what content is displayed in the view.

you are here 4 299

saving, editing, and sorting data

Q: I like the automatic editing support
in the table view, but how do I do those
cool “Add New Address” rows that the
iPhone has when you edit a contact?

A: It’s a lot easier than you think.
Basically, when you’re in editing mode you
tell the table view you have one more row
than you actually have in your data. Then, in
cellForRowAtIndexPath, check to see if the
row the table view is asking for is one past
the end. If it is, return a cell that says “Add
New Address” or whatever. Finally, in your
didSelectRowAtIndexPath, check to see if
the selected row is one past your data, and if
so, you know it was the selected row.

Q: We haven’t talked about moving
rows around, but I’ve seen tables do that.
Is it hard?

A: No, the table view part is really easy;
it’s the datasource part that can be tricky. If
you support moving rows around, simply
implement the method tableview:move
RowAtIndexPath:toIndexPath (the tableview
checks to see if you provide this method
before allowing the user to rearrange
cells). The users will see a row handle on
the side of the cells when they’re in editing
mode. When they move a row, you’ll get
a call to your new method that provides
the IndexPath the row started at and the
IndexPath for the new position. It’s your job
to update your datasource to make sure
they stay that way. You can also implement

tableview:canMoveRowAtIndexPath to
only allow the users to move certain rows.
There are even finer-grained controls in
the delegate if you’re interested, such as
preventing the users from moving a cell to a
certain section.

Q: What if I don’t want the users to be
able to delete a row? Can I still support
editing for some of the rows?

A: Absolutely. Just implement tableview:
canEditRowAtIndexPath: and return NO for
the rows you don’t want to be editable.

Q: When we edit a drink, we replace
the object in the array. What if we had
some other view that had a reference to
the original?

A: Great question. The short answer is
you’re going to have a problem, no matter
how you handle it. If some other view has a
reference to the object we removed, that’s
not tragic since the retain count should
still be at least 1; the object won’t get
dealloced when we remove it. However, the
other views obviously won’t see any of the
changes the user made since we’re putting
them in a new dictionary. Even if they had
the old dictionary, they wouldn’t have any
way of knowing the values changed. There
are a few ways you could handle this. One
option is you could change our code to leave
the original object in the array and modify it
in place, then make sure that any other view
you have refreshes itself on viewWillAppear

or something along those lines. Another
option is you could send out a custom
notification that the drink array changed
or that a particular drink was modified.
Interested views can register to receive that
notification.

Q: Aren’t we supposed to be
concerned about efficiency? Isn’t
removing the drink and reading it
inefficient?

A: It’s not the most efficient way since
it requires finding the object in the array
and removing it before reinserting it, but for
the sake of code clarity we decided it was
simpler to show. We’d have to re-sort the
array regardless of which approach we took,
however, since the name of the drink (and
its place alphabetically) could change with
the edit.

Q: We added the edit button on the
left-hand side of the detail view, but what
about a back button? Isn’t that where
they usually go?

A: That’s true. When you get into having
an add button, an edit button, and a back
button, you run into a real estate problem.
The way we solved it was fine, but you’ll
need to make sure that your app flows the
way you need it to when your navigation
controller starts to get crowded.

 300 Chapter 6

navigationcontrollercross solution

NavigationControllercross
Solution
Let’s check your scroll view, nav control, and table view
buzz words!

Untitled Puzzle
Header Info 1
Header Info 2

etc...

E1 D I T A B L E N2 S3 C O D I N G

D T

I S4 A

T N5 O T I F I C A T I O N S

I R E

N6 S S O R T D E S C R I P T O R

G L

D7 E F A U L T

V

C8 O N T E N T S I Z E

E

V9 I E W D I D L O A D

Across
1. A field that the user can change is _____________.

[EDITABLE]
2. Arrays load and save using ___________. [NSCODING]
5. System-level events that can be passed are called

_____________. [NOTIFICATIONS]
6. Sort data using the _________________.

[NSSORTDESCRIPTOR]
7. All the sytem events go through the _____________

center. [DEFAULT]
8. The scroll view won't work without setting the

_____________. [CONTENTSIZE]
9. viewWillAppear and ____________ are called at different

times. [VIEWDIDLOAD]

Down
1. Table views have built-in support for ___________.

[EDITING]
3. Keyboard events tell you about the ___________ and size of

the keyboard. [STATE]
4. The ______________ handles the scroll bar, panning,

zooming, and what content is displayed in the view.
[SCROLLVIEW]

you are here 4 301

saving, editing, and sorting data

Your iPhone Development Toolbox

You’ve got Chapter 6 under your belt
and now you’ve added saving, editing,

and sorting data to your toolbox. For a
complete list of tooltips in the book, go to

http://www.headfirstlabs.com/iphonedev.

CH
AP

T
ER

 6

Scroll View
Acts like a lens to show only the
part of the view you need and
scrolls the rest off the screen.
Needs to be given a contentSize
to work properly.
Can be easily constructed in
Interface Builder

Notifications
Are system-level events that you
can monitor and use in your app.

The default notification center
handles most notifications.

Different frameworks use
different notifications, or you can
create your own.

Sorting
Arrays can be sorted using NSSortDescriptors.

Table View EditingThere’s built-in support for editing a table view.The edit button comes with lots
of functionality, including methods
to delete rows from the table view.

this is a new chapter 303

Here’s what I ‘ve found: we
just can’t be competitive
anymore without an iPhone app!

tab bars and core data7

Bounty hunter apps

Enterprise apps mean managing more data in different ways.
Companies large and small are a significant market for iPhone apps. A small handheld

device with a custom app can be huge for companies that have staff on the go. Most

of these apps are going to manage lots of data, and iPhone 3.x has built in Core Data

support. Working with that and another new controller, the tab bar controller, we’re going

to build an app for justice!

Enterprise

304 Chapter 7

bob’s on the go

HF bounty hunting

Bob the bounty hunter

With my business, I’m out of the office a lot.
I got a new iPhone to take with me, and now I
need an app help me keep track of fugitives.

Bob needs some help.
Bounty hunting is not a desk job; Bob needs lots
of information to pick up fugitives. His iPhone
is ideal to take along on the job and bring all of
his case files with him. Here’s what Bob needs in
his app:

 Bob needs a list of fugitives. He has to keep
track of everyone he’s looking for, along with
people he’s captured.

1

 He also needs a display of the detailed
information about each fugitive, like what
they’re wanted for, where they were last seen,
and how much their bounty is.

3

 He wants to be able to quickly display a list of
just the captured fugitives.

2

you are here 4 305

tab bars and core data

Time for some design work. You have Bob’s
requirements—take them and sketch up what
you think we’ll need for this app.

306 Chapter 7

tab bars easily access multiple views

We’re going to need three views. Using Bob’s
parameters, here’s what we came up with.

Captured

list of names

Fugitives

Fugitives
list of names

Fugitives

Captured

Captured

The quickest way to switch between
different lists is with a tab bar
controller.

 Bob needs a list of fugitives. He keeps
track of everyone he’s looking for or
has captured.

1 Joe wants to be able to quickly display a
list of just the captured fugitives.

2

For each list,
we’ll use a
table view, like
we did with
DrinkMixer.

We’ll keep track of the
fugitive data sorted by name.

With the tab bar controller, the user
can click on the tab at the bottom
of the screen to jump between views.

you are here 4 307

tab bars and core data

Fugitive Name
Fugitive ID#

Bounty:
Fugitives Captured

The detail view for
each fugitive will be
available by clicking on
any name.

The tab bar
controller will still be visible.

This area is for
notes and details
about the fugitive

 Bob wants a display of the
detailed information about each
fugitive.

3

The tab bar controller is another common iPhone
interface. Unlike the navigation controller, there
isn’t really a stack. All of the views are created up
front and easily accessed by clicking the tab, with
each tab being tied to a specific view.

Tab bars are better suited to tasks or data that
are related, but not necessarily hierarchical. The
UITabBarController keeps track of all of the views
and swaps between them based on user input.

Standard iPhone apps that have tab bar controllers
include the phone app, and the iPod.

The tab
bar can
contain
any view
you need.

The tabs themselves can contain text and/or an image.

Tab Bar Up Close

For managing the data we’re
going to use new iPhone 3.x
technology, Core Data. It can

manage a lot of different data
types for your app.

308 Chapter 7

which template?

Choose a template to start iBountyHunter
This time around, we have a lot going on in our app. A navigation controller,
a tab bar, and Core Data, too. Core Data is an optional add-on to many of
the templates, including the basic window-based app. We’re going to start
with the window-based app and add the tab bar and the navigation controller
with interface builder and a little bit of code.

Pick the window-
based application for
this time around

Make sure the core data box is checked.

Wait, I thought we were using
a tab bar controller. There’s a
template for it right there—why
aren’t we using that one?

iBountyHunter is a bit more complicated than
just one template.
If you look back at the views you sketched, we’re also going to
have some navigation controller capabilities and table views. We’d
have to do quite a bit of extra work to get those working in the
tab bar template. With all of that going on, it’s easier to start from
a windows-based app (a basic template) and add to it, rather than
working with a template that doesn’t quite fit our needs.

you are here 4 309

tab bars and core data

Jim

Frank

Joe

Jim: OK, what do we do now? All we have is an empty view.

Joe: Well, we need to add two table views, the tab bar navigation
controller to switch between those views, and the detail view.

Frank: So do we need a bunch of new nib files to handle all
these views and controls?

Jim: Ugh. This basic template gave us nothing!

Joe: It’s not so bad. I like to think of it as a blank slate. Let’s see,
we can start with the tab bar and tab bar controller...

Frank: Right, that will switch between the two table views
for Fugitive and Captured. Those views will each need nav
controllers as well, to get in and out of the detailed view.

Joe: So do we need separate nibs for the tab bar and those two
views? It seems like maybe we could have all those controls in just
one nib, for the tab bar and the two views, since they’re basically
the same.

Jim: Yeah, but we’d still need view controllers, headers, and .m
files for each of those views.

Joe: Yup, they’re the views that need the tables in them. We’d
also need a detail view with it’s own nib and view controller, with
the .h and .m files, right?

Frank: That sounds about right. We can use Interface Builder to
create the tab bar and navigation controllers.

Joe: What do we do about the rest of the stuff ? Add new files in
Xcode?

Frank: That’ll work—like before, we just need to specify that the
nib files are created at the same time, and we should be good to
go.

Jim: I think that all makes sense—it’s a lot to keep track of.

Joe: Well, we’re combining like three different things now, so it’s
definitely going to get more complicated! Maybe it would help to
diagram how this will all fit together?

310 Chapter 7

iBountyHunter bird’s-eye view

Drawing how iBountyHunter works...

iBountyHunter
AppDelegate

FugitiveList -
ViewController

Fugitive
List

View

TabBar
Controller

TabBar
in the
Main

Window

CapturedList -
ViewController

Captured
List

View

FugitiveDetail
ViewController

Fugitive
Detail
View

Contains all
of the Core

Data setup c
ode for

hooking up
to our fugi

tive

data.

Core data
fugitive

data
source

In this case,
it’ll be a
SQLite
database.

We’ll have a single tab b
ar

controller that’s resp
onsible

for flipping between our

two view controllers.

Each of our views will have
a view controller that’s
responsible for fetching
the appropriate data for
that view.

Since the F
ugitive List

and Captured List are

table views, we’ll create

UITableViewController

subclasses. B
ut they

won’t need t
heir own

nib files.

The tab bar controller gives us all of the functionality we need right out of the box, so we don’t need to subclass it.

We’ll use a navigation controller to transition to and from the detail view.

you are here 4 311

tab bars and core data

iBountyHunter To Do List

1. Create view controllers (both .h
and .m

files) for the Fugitive and Captured views

2. Create the tab bar vie
w, and add the

tab bar controller to
 it along with a

reference from the app delegate.

3. Add the nav controller
s for the Fugitive

and Captured views.

4. Build the table views for the Fugitive

and Captured views.

5. Create a detail view with a nib, and a

view controller with .h and .m files.

Joe: That helps a lot. So we only need two nibs, one to handle
the controls for the tab bar switching between Fugitive and
Captured views, and another to handle the detail view.

Frank: I get it. We need to put the table view components
somewhere, and we can either create new nibs for each view and
have the tab controller load them...

Jim: ...or we can just include it all in one nib. Easy!

Frank: Exactly. Since we don’t plan to reuse those table views
anywhere else and they’re not too complicated, we can keep
everything a bit simpler with just one nib.

Jim: And we need view controllers for the two table views,
along with the detail view. They’ll handle gettting the right data,
depending on which view the user is in.

Frank: Plus a navigation controller for the table views to
transition to and from the detail view.

Joe: I think we’re ready to start building!

312 Chapter 7

no dumb questions

Add an icon for your app.
You’re about to whip up a lot of code. Before you dive in, go to
http://www.headfirstlabs.com/iphonedev and download the
iBountyHunter icon (ibountyicon.png) and drop it in your new
project in the /Resources folder. Then open up iBountyHunter-
info.plist in Xcode and type the name of the file in the icon entry.

Icon files need
to be 57 x 57
pixels.

Q: Why are we using a tab bar
controller and a table view?

A: Our Fugitive data is hierarchical and
lends itself well to a table view. The problem
is, we have two table views: the fugitive list
and the captured list. To support two top-
level lists, we chose a tab bar.

Q: Couldn’t you have done something
similar with a toggle switch, like a
UISegmentControl?

A: Yes, we could have. It’s really a UI
design choice. The two lists are really
different lists, not just different ways of
sorting or organizing the same data. It’s
subjective, though.

Q:OK, I’m still a bit confused about
the business with using just one nib for
the tab controller and the two table views.

A: Well, there is a lot going on in this app,
and we could have done this a different way.
We could create two more nibs, each with
a nav controller and a table view in it. Then
we’d tell the tab bar controller to load the
first one as the Fugitive List and the second
one as the Captured List. Rather than do
that, we just put all those controls for the list
in the same nib as the tab bar. Remember,
the nib is just the UI controls, not the
behavior.

Q: Seriously, though—this is a better
approach than just using the Tab Bar
template and adjusting it based on what
we need?

A: That is definitely an option. However,
if we look at using the TabBar template, it
comes with two branches, with one broken
out into a nib to show that you can do it and
the other right in the same nib (to show you
could do that too). So we’d have to change
one, or continue splitting the approach,
which can get ugly pretty quick. We’d
also have to change a ton of the default
configurations, half of which are in another
nib, and half of which are embedded. In the
end, this approach was less complicated and
built on the methods you’ve already learned
thus far.

Do this!

you are here 4 313

tab bars and core data

Create two new classes with .m, and .h. files.
These will be the view controllers for the Fugitive List
and the Captured List. FugitiveListViewController.h
and .m and CapturedListViewController.h and .m both
need to be subclasses of UITableViewController, so select

“UIViewController subclass” and check UITableViewController
subclass.

1

Create your two new classes for the Fugitive and Captured
views in Xcode, and then add your tab bar controller in
Interface Builder.

Add the tab bar controller.
In Interface Builder, open the MainWindow.xib to get started,
and drop the tab bar controller in the view.

2

314 Chapter 7

exercise solution

Create two new classes, each
with .m, and .h files.

1

When you create these, make sure that they are UITableViewController subclasses, and that the “With XIB for user interface” box is NOT checked.

Create your two new classes for the Fugitive and Captured
view controllers in Xcode, and then add your tab bar controller
in Interface Builder.

 You don’t get the UITableViewController
checkbox in Xcode 3.1!

If you’re not using XCode 3.2 (Snow Leopard), you’ll need
to go into both your CapturedListViewController.h and
FugitiveListViewController.h files and change them from

UIViewController to UITableViewController subclasses.

Here’s what your file
listing should look like
once you’re done.

you are here 4 315

tab bars and core data

Add the tab bar controller.2

The window template doesn’t give us a whole
lot out of the box. We’re going to use Interface
Builder to assemble our views and view
controllers the way we want them.

The tab bar
controller comes
with a tab bar and
two built-in view
controllers, but we’re
going to change those
shortly...

The template comes with an empty
UIWindow. It’s the window that our app
delegate will display when it starts.

Drag the tab bar controller from the Library into your
main window listing. This will create your TabController
view:

316 Chapter 7

building the fugitive view

Change the view controller to the
FugitiveListView controller.
Highlight the view controller under the first navigation
controller and use ⌘4 to change the Class to
FugitiveListViewController.

2

Build the fugitive list view
We’re going to focus on the Fugitive List first, but the same steps will apply to
the Captured List when we get to it.

The navigation
controller comes with a default
UIViewController. We don’t want the default; we want it to use our Fugitive List view controller.

Delete those two view controllers and
replace them with navigation controllers.
Since we want all of the functionality that comes with
a nav controller, delete those the view controllers and
drag two new nav controllers in their place from the
Library. Make sure they’re listed underneath the tab
bar controller.

1 Nothing’s changed in
the view—the main
window listing just
reflects what you’ve
updated

you are here 4 317

tab bars and core data

Set the names in the tabbar and navbar.
To change the title for the Fugitive List view controller, double-click
on the title in the nav bar and type “Fugitives”. For the tab, click on
the first item, ⌘1, change the Bar Item Title to “Fugitives”.

4 Click here to change the
view controller title.

Updated nav
controller title
is changed with
the badge item.

Updated bar
item title

What’s next?

Add the table view.
Now that you’ve changed your first navigation controller to use
the FugitiveListViewController, it needs a view. Drag a table view
from the Library over as a child for that view controller.

3

318 Chapter 7

checking things off your list

iBountyHunter To Do List

1. Create view controllers (both .h
and .m

files) for the Fugitive and Captured views

2. Create the tab bar vie
w, and add the

tab bar controller to
 it along with a

reference from the app delegate.

3. Add the nav controller
s for the Fugitive

and Captured views.

4. Build the table views for the Fugitive

and Captured views.

5. Create a detail view with a nib, and a

view controller with .h and .m files.

Remember this from the
conversation earlier?

We haven’t done this
yet. That’s going to
mean some code and IB
work; we’ll come back to
it in a minute.

Just do the same
thing we did earlier
with the Fugitives view.

Next up: the captured view
You’ve just gone through and created the classes for your two table views, and
dropped in a tab controller to switch between the two.

you are here 4 319

tab bars and core data

BE the Developer
Your job is to be developer and finish up the
work in Xcode and Interface Builder to get the
Fugitive and Captured views working with the

tab bar controller. Use the to-do
list from Jim, Frank, and Joe to
figure out what’s left.

It’s up to you to create the
captured view, and then connect
the views up with the tab bar
controller...

320 Chapter 7

be the solution

BE the Developer Solution
Your job is to be the developer and finish up
the work in Xcode and Interface Builder to
get the Fugitive and Captured views working.

You should end up with a
list that looks like this.

@property
(nonatomic, retain) IBOutlet UIWindow *window;

@property (nonatomic, retain) IBOutlet UITabBarController
*tabcontroller;

UIWindow *window;

UITabBarController *tabcontroller;

iBountyHunterAppDelegate.h

Create your captured view.
Follow the same steps from earlier for
creating the Fugitive view.

Then wire up the tab bar controller.
To do this, we need to go back to the AppDelegate.
Right now, there isn’t an outlet to connect the tab bar
controller to anything, so it won’t work. You should be
pretty familiar with how to do this by now. Here’s the
outlet you need for a tab controller:

Almost there...

you are here 4 321

tab bars and core data

@synthesize window;

@synthesize tabcontroller;

[persistentStoreCoordinator
release];

[tabcontroller release];

iBountyHunterAppDelegate.m

Q: We have a lot jammed in our main
window nib. It still seems kinda strange
to me.

A: The nib for iBountyHunter contains five
controllers (the tab bar, two nav controllers,
and our FugitiveListViewController and
CapturedListViewController) and their
associated components. If you’re still
having trouble with the idea, it might help
to open the MainWindow.xib file in Interface
Builder and view it in tree mode. Expanding
the hierarchy shows the structure of our
app. We have a single nib with a tab bar
controller, which internally has two nav
controllers nested underneath it that are
instances of FugitiveListViewController and
CapturedListViewController, respectively.

Q: Can I add icons to the tab bar tabs?

A: Absolutely. The easiest way is to pick
a standard icon using Interface Builder. To
do that, click on the question mark icon on
the tab you want to change, then change
the Identifier in the Inspector. If you want
to use a custom image, set the Identifier to
custom, then select your image in the Image
field (you’ll need to add it to your project, just
like we did with the application icon earlier).
There are a couple of peculiarities with Tab
Bar icons, though: they should be 30x30
and the alpha values in the icon are used to
actually create the image. You can’t specify
colors or anything like that.

Q: How many views can I have in a
tabbar?

A: As many as you want. If you add
more views than can fit across the tab bar
at the bottom, the UITabBarController will
automatically add a “More” item and show

the rest in a table view. By default, the
UITabBarController also includes an Edit
button that lets the user edit which tabs are
on the bottom bar.

Q: Is there anyway of knowing when a
user switches tabs?

A: Yes, there’s a UITabBarDelegate
protocol you can conform to and set as the
tab bar delegate. You’ll be notified when the
users are customizing the bottom bar and
when they change tabs.

Q: Why did we add a reference to the
tab bar controller in the App Delegate?

A: We’ve added the tab bar controller to
the nib, but there’s a little more tweaking
we’re going to have to do to get everything
displaying properly. Go ahead and give it a
Test Drive to see what’s going on...

Here we’ll need to wire up the
App Delegate to the Tab Bar
Controller.

322 Chapter 7

test drive

Test Drive

Ugh! Nothing! Why isn’t the tab bar
controller (or anything else) being displayed?

You’ve just done a lot of work on your app—new view controllers, new nav controllers, table
views—all from scratch. Build and run to make sure that everything’s working.

you are here 4 323

tab bars and core data

Figure out what’s going on. Look at what we
did earlier in Interface Builder and see if you
can figure out where we went wrong...

Open MainWindow.xib to get started.
The template we started with is an empty window, but the listing isn’t.

Add the tab bar controller.
Since it will be responsible for working with the two views, that’s where
we’ll start.

The tab bar controller
comes with a tab bar
and two built-in view
controllers, but they’re
not going to last.

1

2

324 Chapter 7

UI components are subviews

The problem is that the
tab bar is a top-level
element in the nib. The
AppDelegate has the
UIWindow as its window,
so the delegate will
display that window. But
the UIWindow doesn’t
contain anything—it has
no subviews.
We need to embed the
tab bar controller into
the UIWindow.

- (void)applicationDidFinishLaunching:(UIApplication *)application {

 // Override point for customization after app launch

 [window addSubview:tabcontroller.view];

 [window makeKeyAndVisible];

}

We need to make the tab bar a subview
of the UIWindow. You can do this in the
ApplicationDidFinishLau

nching

method.

Figure out what’s going on. Look at what we
did earlier in Interface Builder and see if you
can figure out where we went wrong...

Open MainWindow.xib to get started.
The template we started with is an empty window, but the listing isn’t.

Add the tab bar controller.
Since it will be responsible for working with the two views, that’s where
we’ll start.

The tab bar controller
comes with a tab bar
and two built-in view
controllers, but we’re
going to change those
shortly.

1

2

A view’s contents are actually subviews
All of the UI components we’ve used are subclasses of UIView. By
dropping them into a view we’ve made them subviews of some bigger,
container view. We need to do the same thing with our tab bar; however,
the problem is that we can’t get to the UIWindow’s view in Interface
Builder. We’ll need to do this in code.

Anything you do in Interface Builder can also be done in code.

iBountyHunterAppDelegate.m

you are here 4 325

tab bars and core data

We’re close. There are a few more connections we need to put
together in Interface Builder to wrap it up.
The table views also need to be connected to both view controllers, as
well as outlets from the App Delegate to both the fugitive controller
and the captured controller.

For both table views, the delegates and datasources need to be connected to their parent view controller.

Test Drive

326 Chapter 7

tab bar in action

Test Drive

It’s time to see everything working. Build and run and
you can see both tab views working with tables.

Remember that icon we
installed earlier? Go ahead
and hit the home key to
check it out.

you are here 4 327

tab bars and core data

After a quick meeting with Bob...

Looks great so far. Here’s my
list of fugitives. Right now it’s
pretty old school—just a typed
list from the court.

Managing Bob’s data is
the next step.
Now that the app is up and
running, you need to fill in the
blanks. The list is pretty simple
right now, so we can make the
data into any form we want and
then import it.

Name: Jim SmileyID #
Description:

Bounty:

How should we represent the data?

328 Chapter 7

picking data storage

Jim

Frank

Joe

Frank: I was thinking—I’m not sure a plist is such a good idea
this time.

Jim: Why not? We used it for DrinkMixer, and it worked fine.

Frank: Well, this list could get pretty big—remember, the list of
fugitives is going to be ongoing: the ones that Bob is trying to catch
and those that he already has.

Joe: So?

Frank: So... a big list means lots of memory.

Joe: Oh, that’s right—and the plist loaded the entire thing every
time.

Frank: Exactly.

Jim: What about that Core Data thing, that’s supposed to handle
large amounts of data, right?

Frank: That’s the new 3.x data framework. That would probably
work.

Jim: Why use that and not just a database? Doesn’t iPhone have
SQLite support?

Frank: It does, but I’m not a SQL expert, and Core Data can
support all kinds of data, including SQL, but you don’t have to talk
to it directly.

Joe: I thought you said we weren’t using SQLite?

Frank: We are, but we’ll use Core Data to access it.

Joe: How does that work?

Frank: Core Data handles all of the dirty work for us, we just
need to tell it what data we want to load and save...

What are some other limitations with how we stored
data in plists and dictionaries with DrinkMixer?

you are here 4 329

tab bars and core data

Core Data lets you focus on your app
Loading and saving data, particularly lots of data, is a major part of most
applications. We’ve already spent a lot of time working with plists and
moving objects in and out of arrays. But what if you wanted to sort that
data in a bunch of different ways, or only see fugitives worth more than
$1,000,000, or handle 100,000 fugitives? Writing code to handle that
kind of persistence gets really old, really quickly. Enter Core Data...

Fugitive

Core Data works with objects. You define what your classes (called Entities) look like.

Core Data handles the loading and saving code necessary...
...and can store them in a number of different formats, like in a database or simple binary file.

But wait, there’s more!
Core Data makes loading and saving your data a snap, but it
doesn’t stop there. It’s a mature framework that Apple brought
over from Mac OS X to the iPhone in version 3.0 and gives you:

The ability to load and save your objects
Core Data automatically loads and saves your objects based
on Entity descriptions. It can even handle relationships
between objects, migrating between versions of your data,
required and optional fields, and field validation.

Different ways to store your data
Core Data hides how your data is actually stored from
your application. You could read and write to a SQLite
database or a custom binary file by simply telling Core
Data how you want it to save your stuff.

Memory management with undo and redo
Core Data can be extremely efficient about managing
objects in memory and tracking changes to objects.
You can use it for undo and redo, paging through huge
databases of information, and more.

But before we do any of
that, we need to tell Core
Data about our objects...

330 Chapter 7

core data population

Dictionary

name = Cupid’s
Cocktail
ingredients =
Cherry liqueur,
peach ...
directions =
Shake ingredients
and strain into...

nameTextField.text = [drink objectForKey:NAME_KEY];

ingredientsTextView.text = [drink objectForKey:INGREDIENTS_KEY];

directionsTextView.text = [drink objectForKey:DIRECTIONS_KEY];

Core Data needs to know what to load
We need Core Data to load and save the fugitive information and we
need to populate our detailed view. If you think back to DrinkMixer,
we used dictionaries to hold our drink information and accessed them
with keys, like this:

Fugitive Name
Fugitive ID#

Bounty:
Fugitives Captured

Use Core
Data to
populate this.

Fugitive

DrinkMixer used
dictionaries to store
drink information. It
worked, but was pretty
primitive.

The problem with dictionaries and plists was that we had to store
all of our data using basic types and get to this data with dictionary
keys. We could have easily had a bug if we put the wrong type in the
Dictionary or used the wrong key and caused lots of problems later.
What we really want is to use normal Objective-C classes and objects
where we can declare properties for the fields, use real data types, etc.
That’s exactly what Core Data lets us do.

Fugitive
NSString *name
NSDecimalNumber bounty
int fugitiveID
NSString *desc

We want to use strongly typed data, have properties to get to that data, and use the usual Object Oriented goodness of validating the data.

Core Data works with
entities and properties
to give us the OO
benefits we want.

We need to define our types...
Not only can Core Data give us the OO-based
view of our data that we want, it can even define
our data graphically. There’s one snag though—
out of the box, Core Data supports a specific set
of data types, so we need to define our entity using
the types it offers...

Dictionaries worked
for DrinkMixer, but
don’t provide any
kind of type safety
or encapsulation of
our data. Time for
something better...

These are the types we’d
use if we were writing this
class in Objective -C.

you are here 4 331

tab bars and core data

Core Data TypeField for the Detail View

Match each field we need to implement for the data view to it’s Core
Data type.

Name

Description

Bounty

Fugitive ID#

Int32

String

Decimal

A fixed-point decimal number

Date and Time information

A 32 bit integer

Equivalent to
an NSString
attribute

Boolean

Date

A BOOL value
(YES or NO)

332 Chapter 7

what’s your type?

Field for the Detail View

Match each field we need to implement for the data view to it’s Core
Data type.

Name

Description

Bounty

Fugitive ID#

SOlUTion

Int32

String

Decimal

This is represented as an NSDecimalNumber in Obj-C.

This is represented as an NSDate in Obj-C.

This will be
represented as an
NSNumber in Obj-C.

Equivalent to
an NSString
attribute

Boolean

Date

A BOOL value
(YES or NO)

We used a fixed-point
decimal for Bounty because
it’s a dollar value and we
don’t want rounding errors.

Core Data Type

you are here 4 333

tab bars and core data

Let’s go ahead and create our Fugitive entity...

Core Data describes entities with a
Managed Object Model
Entities controlled by Core Data are called Managed Objects. The
way you capture your entity descriptions (properties, relationships,
type information, etc.) for Core Data is through a Managed Object
Model. Core Data looks at that Managed Object Model at runtime
to figure out how to load and save data from its persistence store
(e.g., a database). The Xcode template we used comes with an empty
Managed Object Model to get us started.

Fugitive

The Managed Object Model describes the objects we’re going to ask for or try to save.
It also contains all of the information Core Data needs to read and write this data from storage.

Our template comes with an

empty Managed Object Model

in the Resources gr
oup called

iBountyHunter.xcdat
amodel. Click

on that to
 get this v

iew.

By default, our object model is empty; we’ll need to define the Fugitive entity.

The template is set up so that Core Data will try to load all of the Managed Object Models defined in your application at startup. We’ll only need this one.

Technically you can create a
Managed Object Model in code
or by hand, but the Xcode tools
make it much, much easier.

334 Chapter 7

fugitive description

Build your Fugitive entity
We need to create a Fugitive entity in our Managed Object
Model. Since our Fugitive doesn’t have any relationships
to other classes, we just need to add properties. Open up
iBountyHunter.xcdatamodel in the Resources group to
create the Fugitive data type.

A data model
is called an

“Entity”

 To add the Fugitive entity, click
the “plus” button here, and
change the name to “Fugitive”.

1

 Once the entity exists, you can
add attributes to the data model,
using a plus button again.

2

Each data field is an “attribute.”

 Use these fields
to edit the name
and type of the
property. You
should use
your normal
property naming
convention when
naming these.

3

This diagram is automatically generated to give you a visual representation of the data being managed.

The property editor lets you enter contraints for your properties too, min, max, whether it’s required, etc. We’re not going to use these just yet...

If we had multiple
entities you’d see the
others here too, along
with their relationships.

you are here 4 335

tab bars and core data

Managed object Model Construction

Finish building the Fugitive entity in the Managed Object
Model based on the Fugitive information we want to store.
Remember, Core Data Types won’t match our Objective-C
types exactly. Make sure you name your properties the
same as we have in the Fugitive diagram shown below.

Fugitive
NSString *name
NSDecimalNumber bounty
int fugitiveID
NSString *desc

Make sure you use the same property names as we did.

These are the O
bjective-C

types we want to use,

you’ll need to p
ick the

right Core Data types

when you build t
he entity.

You should unc
heck

“Optional” for ea
ch of

the properties
 you add -

we want them all to be

required.

336 Chapter 7

construction solution

Managed object model Construction solution

Finish building the Fugitive entity in the Managed Object Model based on the Fugitive
information we want to store. Remember, Core Data Types won’t match our Objective-C types
exactly. Make sure you name your properties the same as we used in the Fugitive diagram.

Make sure that the “optional”
box is unchecked for all of
the properties.

 Make sure your object model matches ours exactly!

When you’re writing your own apps, there are lots of ways
to set up your data model, but since we’re going to give you
a database for iBountyHunter, your model must match ours
exactly!

Check that you used
the same types for your
properties as we did.

Your Fugitive entity should
have four properties and
no relationships.

you are here 4 337

tab bars and core data

Q: Why did you use an
NSDecimalNumber for the bounty? Why
not a float or a double?

A: We’re going to store a currency value
in the bounty field, so we want precision
with the decimal part of the figure. Floats
and Doubles are approximations, so you
tend to get things like $9.999999998
instead of $10.00 when using them for
currency calculations. Our choice of
NSDecimalNumber for the bounty has
nothing to do with Core Data and everything
to do with what we’re trying to store.

Q: What are the transient and indexed
checkboxes for in Xcode when you create
properties?

A: The transient checkbox indicates
that Core Data doesn’t need to load or
save that property. Transient properties are
typically used to hold values that you only
want to calculate once for performance or
convenience reasons, but can be calculated
based on the other data you save in the
Entity. If you use transient properties, you
typically implement a method named
awakeFromFetch: that is called right
after Core Data loads your Entity. In that
method you can calculate the values of your
transient properties and set them.

The indexed checkbox tells Core Data
it should try and create an index on that
property. Core Data can use indexes to

speed up searching for items, so if you
have a property that you use to look up your
entities (customer IDs, account numbers,
etc.), you can ask Core Data to index them
for faster searching. Indexes take up space
and can slow down inserting new data into
the store, so only use them when they can
actually improve search performance.

Q: I’ve seen constants declared with
k’s in front of them. Are they different
somehow?

A: Nope. It’s just a naming convention. C
and C++ programmers tend to use all caps,
while Apple tends to use the lowercase “k”
instead.

Q: What if I need to use a type that
Core Data doesn’t support?

A: The easiest way is obviously to try
and make your data work with one of the
built-in types. If that doesn’t work, you create
custom types and implement methods to
help Core Data load and save those values.
Finally, you could stick your data into a
binary type (binary data or BLOB) and write
some code to encode and decode it at
runtime.

Q: What other types of persistance
does Core Data support?

A: Core Data supports three types of
persistence stores on the iPhone: Binary
files, SQLite DBs, and in-memory. The

SQLite store is the most useful and what
we’re using for iBountyHunter. It’s also
the default. Binary files are nice because
they’re atomic, meaning either everything
is successfully stored at once or nothing
is. The problem with them is that in order to
be atomic, the iPhone has to read and write
the whole file whenever something changes.
They’re not used too often on the iPhone.
The in-memory persistence store is a type of
store that isn’t actually ever saved on disk,
but lets you use all of the searching, sorting,
and undo-redo capabilities that Core Data
offers with data you keep in-memory.

Q: What SQL datatypes/table
structures does Core Data use when it
writes to a SQLite database?

A: The short answer is you don’t need to
know. Even though it’s writing to a SQLite
database the format, types, and structures
are not part of the public API and could
potentially be changed by Apple. You’re
supposed to treat the SQLite database as
a blackbox and only access it through Core
Data.

Q: So this is a nice GUI and all,
but I don’t see what this gets us over
dictionaries yet. It seems like a lot of
work.

A: We had to tell Core Data what kind
of information we’re working with. Now that
we’ve done that, we can start putting it to
work.

338 Chapter 7

core data manages objects

Managed Object Context

Persistent Store
Coordinator

Persistent Object Store

Core Data Up Close

Core Data is about managing objects
So far we’ve talked about how to describe our objects
to Core Data, but not how we’re actually going to do
anything with them. In order to do that, we need to a
take a quick look inside Core Data.

Inside of Core Data is a stack of three critical pieces:
the Managed Object Context, the Persistent Store
Coordinator, and the Persistent Object Store.

The Managed Object Context is where the magic happens. This class keeps track of all of the Entities (Managed Objects) our application has in memory. When you need Core Data to load an object, you ask the Managed Object Context for it...

...and if it doesn’t have it in memory, it asks the Persistent Store Coordinator to try and find it.
The Persistent S

tore

Coordinator’s jo
b is to keep

track of Persi
stent Object

Stores. The Stores actu
ally

know how to read and w
rite

the data.

There are different kinds of
Persistent Object Stores for each
type of persistence the Core Data
supports. Our Persistent Object Store

is a SQLite store.

All of these components
know how to handle our
data because of the
Managed Object Model.

you are here 4 339

tab bars and core data

The Xcode template we used set up the Core Data stack for us,
but we still need to figure out how to talk to the Managed Object
Context. Given what you know about Core Data so far, how would
you go about asking the framework to load and save data for you?

Use SQLite commands

Write custom save and load code to update the data

Use Core Data to generate classes to do the work for you

So, if we want to load or save anything using
Core Data, we need to talk to the Managed
Object Context...

Exactly!
The question is how do we get data in and
out of it...?

340 Chapter 7

use core data classes

Use SQLite commands

 � Core Data is a persistence framework that
offers loading, saving, versioning and undo-redo.

 � Core Data can be built on top of SQLite
databases, binary files, or temporary memory.

 � The Managed Object Model defines the Entities
we’re going to ask Core Data to work with.

 � The Managed Object Context is our entry point
to our data. It keeps track of active Managed
Objects.

 � The Persistent Object Store is part of the Core
Data stack that handles reading and writing our
data.

We’re using a SQLite store, but Core

Data supports other kinds of stor
es.

Everything about how it uses SQLite

is hidden from you. Trying to access it

with straight SQL would be dangerous.

This has two problems: first, you still

don’t know how the data is actually

stored (or even the type of stor
e

being used), and second, one of
the

big reasons we’re using Core Data is to

avoid writing this kind of code.

This is what we’re after! Because of our

Managed Object Model Core Data knows

everything it needs to know to create

classes for us and do all of the
loading

and saving, we just need to ask it.

Use Core Data to generate classes to do the work for you

Write custom save and load code to update the data

The Xcode template we used set up the Core Data stack for us,
but we still need to figure out how to talk to the Managed Object
Context. Given what you know about Core Data so far, how would
you go about asking the framework to load and save data for you?

you are here 4 341

tab bars and core data

Whip up a Fugitive class without
writing a line
Xcode can create a Fugitive class from our Managed Object
Model that we can use like any other class.

Select the iBountyHunter.xcdatamodel and
click on the Fugitive Entity
You need to have a Core Data entity selected before
you ask Xcode to generate a class for you.

1

Create a new Managed Object Class...
Select File→New File... There will be a new type
of file that you can add, the Managed Object
Class. Select this file and click Next.

2

...based on the Fugitive Entity
You will be asked which entity you want to create
and you should select Fugitive. Click Finish.

3

And generate the .h and .m
Click Finish and you should have a Fugitive.h
and a Fugitive.m added to your project. Go
ahead and drag these up to the Classes group.

4

Now when you create a
Cocoa Touch Class you should have an option to create a Managed Object Class.

Make sure you select “Cocoa Touch Class” under iPhone OS.

This window will
show you the
Entities available..
We only have
one, so pick the
Fugitive.

342 Chapter 7

generated fugitive class

#import <CoreData/CoreData.h>

@interface Fugitive : NSManagedObject
{

}

@property (nonatomic, retain) NSDecimalNumber * bounty;

@property (nonatomic, retain) NSString * name;

@property (nonatomic, retain) NSString * desc;

@property (nonatomic, retain) NSNumber * fugitiveID;

@end

Our generated Fugitive class matches
our Managed Object Model
Xcode created two new files from our Fugitive entity: a Fugitive.h
header file and a Fugitive.m implementation file. Open up both files
and let’s take a look at what was created.

Fugitive.h

The new Fugitive class inherits
from NSManagedObject - it
is a Managed Object.

The class has the properties
we’d expect, but no fields in
the class?!?!

NSManagedObject handles storage and memory for
generated properties
The generated Fugitive class has properties for name, description, etc., but no fields
in the class. The Core Data framework (and NSManagedObject in particular) are
responsible for handling the memory associated with those properties. You can
override this if you want, but in most cases this does exactly what you need.

The Core Data types we selected in our

Managed Object Model have been mapped

to appropriate Objective-C types.

Things get even
more interesting
in Fugitive.m...

you are here 4 343

tab bars and core data

There’s no code in there either...
but I’m guessing that I’m not going
to need to worry about that?

#import “Fugitive.h”

@implementation Fugitive

@dynamic bounty;

@dynamic name;

@dynamic desc;

@dynamic fugtiveID;

@endRight! The Core Data framework
takes care of it.
The Fugitive.m class is nearly empty, and
instead of synthesizing the properties, they’re
declared with a new directive, @dynamic.

Fugitive.m

NSManagedObject also implements the properties
The new @dynamic directive tells the compiler not to worry about the getter and setter
methods necessary for the properties. They need to come from somewhere, though, or else
code is going to crash at runtime when someone tries to access those properties. This is
where NSManagedObject steps in again. Because NSManagedObject handles the memory
for the fields backing the properties, it also provides runtime implementations for the getter
and setter methods. By having NSManagedObject implement those methods, you get a
number of other neat benefits:

The implementation
of the Fugitive class
is almost completely
empty!

 The NSManagedObject knows when properties are changed, can
validate new data, and can notify other classes when changes happen.

 NSManagedObject can be lazy about fetching property information
until someone asks for it. For example, it does this with relationships to
other objects.

 NSManagedObject can keep track of changes to properties and
provide undo-redo support.

You get all of
this without
writing a line of
code!

Now it’s just a matter of asking Core Data to load a Fugitive...

344 Chapter 7

NSFetchRequests

Ask the Managed Object Context to fetch
data using your NSFetchRequest
All that’s left is to ask the Managed Object Context to
actually execute your NSFetchRequest. That means we’ll
need a reference to a Managed Object Context. Fortunately,
the template set up one for us in the App Delegate. We can
get to it like this:

Use an NSFetchRequest to
describe your search
In order to tell the Managed Object Context what we’re
looking for, we need to create an NSFetchRequest. The
NSFetchRequest describes what kind of objects we want
to fetch, any conditions we want when it fetches them (like
bounty > 1,000), and how Core Data should sort the results
when it gives them back.

NSFetchRequest Predicate

Entity Info

Sort Descriptor

An NSFetchRequest describes the search we want Core Data to execute for us.

You tell the re
quest what type

of data to loo
k for by pickin

g

an entity from
 our managed

object model.

You can provide a predicate
that describes conditions
the entities must meet.
We want them all, so no
predicate for us.

The sort descrip
tor tells

Core Data how you want the

data sorted be
fore it sends

it back. These are just li
ke

the sort descr
iptors we used

in DrinkMixer.

iBountyHunterAppDelegate *appDelegate =

 (iBountyHunterAppDelegate*)[[UIApplication sharedApplication] delegate];

NSManagedObjectContext *managedObjectContext =

 appDelegate.managedObjectContext;

you are here 4 345

tab bars and core data

 NSFetchRequest *request = [[NSFetchRequest alloc] init];

 NSEntityDescription *entity = [NSEntityDescription
entityForName:@”Fugitive” inManagedObjectContext:managedObjectContext];
 [request setEntity:entity];

 NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]
initWithKey:@”name” ascending:YES];

 NSArray *sortDescriptors = [[NSArray alloc]
initWithObjects:sortDescriptor, nil];

 [request setSortDescriptors:sortDescriptors];

 [sortDescriptors release];

 [sortDescriptor release];

 NSError *error;

 NSMutableArray *mutableFetchResults = [[managedObjectContext
executeFetchRequest:request error:&error] mutableCopy];

 if (mutableFetchResults == nil) {

 // Might want to do something more serious...

 NSLog(@”Can’t load the Fugitive data!”);

 }

 [mutableFetchResults release];

 [request release];

Now, where do we put all of this code? And
where are we going to store the results? What
about actually displaying the fetched data?

We specify the entity
by name, a Fugitive.

We want the Fugitives
sorted alphabetically
by name.

All that’s left is to ask our Managed
Object Context to go ahead and
execute our fetch request. We’ll ask it
to give us back the results in an array
and clean up our references.

346 Chapter 7

brain barbell solution

Let’s get all of these pieces into the app.

Now, where do we put all of this code? And
where are we going to store the results? What
about actually displaying the fetched data?

SOlU
Tion

Since Bob is going to want to see his list as soon as his view shows up, the fetching
code needs to go into viewWillAppear in FugitiveViewController.m.
As for storing the results, we’ll get back an array, but we release it right away. We
need to keep a reference to that array in our view controller.
In order to actually show this data, we’re going to need to implement the
cellForRowAtIndexPath to pull the data from the array.

Implement the fetch code inside viewWillAppear.
Take what we learned on the previous couple of pages and get the
fetch working. You’ll need to get the Managed Object Context from
the delegate, create the fetch, then execute it. Remember to update
the code to actually hang onto the results by assigning them to the
array we just created.

3

Create the mutable array to hold the fetched items.
Create an array in the FugitiveViewController called items to
hold the results of the fetch. Don’t forget to synthesize the property
and clean up memory.

1

Import the appropriate headers into
FugitiveViewController.m.
Make sure that you #import headers for the App Delegate and
the Fugitive classes into FugitiveListViewController.m.

2

you are here 4 347

tab bars and core data

Table Cell Magnets
Use the code snippets below to customize the table
cells for the fugitive list.

 (UITableView *)tableView {

 return 1;

}

// Customize the number of rows in the table view.

 - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:
(NSInteger)section {

}

// Customize the appearance of table view cells.

 - (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:

(NSIndexPath *)indexPath {

 UITableViewCell *cell =
CellIdentifier];

 if (cell == nil) {

 cell = [[[UITableViewCell alloc] initWithStyle:
 autorelease];

 }

 // Set up the cell...

}

#pragma mark table view methods - (NSInteger) numberOfSectionsInTableView:

return [items count];

static NSString *CellIdentifier = @”Cell”;

tableView dequeueReusableCellWithIdentifier:

UITableViewCellStyleDefault reuseIdentifier:CellIdentifier]

= [items objectAtIndex:indexPath.row];

cell.textLabel.text

= fugitive.name;

return cell;

Fugitive *fugitive

348 Chapter 7

sharpen solution

It’s a lot of code to implement, but when you’re done, Core Data
will be fetching the data you need for the fugitive list.

Create the mutable array to hold the fetched items.1

#import <UIKit/UIKit.h>

@interface FugitiveListViewController : UITableViewController {

 NSMutableArray *items;
}

@property(nonatomic, retain) NSMutableArray *items;

@end

FugitiveListViewController.h

#import “FugitiveListViewController.h”

#import “iBountyHunterAppDelegate.h”

#import “Fugitive.h”
@implementation FugitiveListViewController

@synthesize items;

- (void)dealloc {

 [items release];
 [super dealloc];

}

Import the appropriate headers into
FugitiveViewController.m.

22

FugitiveListViewController.m

you are here 4 349

tab bars and core data

- (void) viewWillAppear:(BOOL)animated {

 [super viewWillAppear:animated];
 iBountyHunterAppDelegate *appDelegate =
(iBountyHunterAppDelegate*)[[UIApplication sharedApplication] delegate];
 NSManagedObjectContext *managedObjectContext = appDelegate.
managedObjectContext;
 NSFetchRequest *request = [[NSFetchRequest alloc] init];
 NSEntityDescription *entity = [NSEntityDescription
entityForName:@”Fugitive” inManagedObjectContext:managedObjectContext];
 [request setEntity:entity];

 NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]
initWithKey:@”name” ascending:YES];
 NSArray *sortDescriptors = [[NSArray alloc]
initWithObjects:sortDescriptor, nil];
 [request setSortDescriptors:sortDescriptors];
 [sortDescriptors release];
 [sortDescriptor release];

 NSError *error;
 NSMutableArray *mutableFetchResults = [[managedObjectContext
executeFetchRequest:request error:&error] mutableCopy];
 if (mutableFetchResults == nil) {
 // Handle the error.
 }

 self.items = mutableFetchResults;
 [mutableFetchResults release];
 [request release];
}

Implement the fetch code inside viewWillAppear.3

FugitiveListViewController.m

350 Chapter 7

magnets solution

Table Cell Magnets Solution
Use the code snippets below to customize the table
cells for the fugitive list.

#pragma mark Table view methods

 - (NSInteger)numberOfSectionsInTableView: (UITableView *)tableView {

 return 1;

}

// Customize the number of rows in the table view.

 - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:
(NSInteger)section {

 return [items count];

}

// Customize the appearance of table view cells.

 - (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:

(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @”Cell”;

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:
CellIdentifier];

 if (cell == nil) {

 cell = [[[UITableViewCell alloc] initWithStyle:
UITableViewCellStyleDefault reuseIdentifier:CellIdentifier] autorelease];

 }

 // Set up the cell...

 Fugitive *fugitive = [items objectAtIndex:indexPath.row];

 cell.textLabel.text = fugitive.name;

 return cell;

}

#pragma mark table view methods

- (NSInteger) numberOfSectionsInTableView:

return [items count];

static NSString *CellIdentifier = @”Cell”;

tableView dequeueReusableCellWithIdentifier:

UITableViewCellStyleDefault reuseIdentifier:CellIdentifier]

= [items objectAtIndex:indexPath.row];

cell.textLabel.text = fugitive.name;

return cell;

Fugitive *fugitive

Do this!
To completely wire up your table view, in Interface Builder make sure
that the table view in the Fugitive List has its datasource as the
FugtiveListViewController.

Here’s Core Data at work. The data is
stored in normal Objective-C Fugitive
objects. No more magic dictionary keys here...

you are here 4 351

tab bars and core data

Describes the search you want to execute on
your data. Includes type of information you
want back, any conditions the data must meet,
and how the results should be sorted.

A Objective-C version of a Core Data entity.
Subclasses of this represent data you want to
load and save through Core Data. Provides the
support for monitoring changes, lazy loading,
and data validation.

Responsible for keeping track of managed
objects active in the application. All your fetch
and save requests go through this.

Describes entities in your application, including
type information, data constraints, and
relationships between the entities.

Captures how data should be sorted in a generic
way. You specify the field the data should be
sorted by and how it should be sorted.

Managed Object Model

NSManagedObject

Managed Object Context

NSFetchRequest

NSSortDescriptor

Match each Core Data concept to what it does.

352 Chapter 7

who does what solution

Describes the search you want to execute on
your data. Includes type of information you
want back, any conditions the data must meet,
and how the results should be sorted.

A Objective-C version of a Core Data entity.
Subclasses of this represent data you want to
load and save through Core Data. Provides the
support for monitoring changes, lazy loading,
and data validation.

Responsible for keeping track of managed
objects active in the application. All your fetch
and save requests go through this.

Describes entities in your application including
type information, data constraints, and
relationships between the entities.

Captures how data should be sorted in a generic
way. You specify the field the data should be
sorted by and how it should be sorted.

Managed Object Model

NSManagedObject

Managed Object Context

NSFetchRequest

NSSortDescriptor

Match each Core Data concept to what it does.

SOlUTion

you are here 4 353

tab bars and core data

Here’s a URL for the data I’m
getting. Turns out I can do that
instead of getting that paper list
from the court...

How do we tell Core Data to load
from this file?

You’ll need to download your
copy of the fugitive list.
Browse over to http://www.headfirstlabs.com/
iphonedev and download iBountyHunter.sqlite.
Right-click on the iBountyHunter project
and select Add→Existing Files..., and
make sure it is copied into the project.

354 Chapter 7

databases are resources

Add the database as a resource
We have all of this code already in place to load data—it came
with the Core Data template. But how do we get from there to
actually loading the database?

Fugitive

Back to the Core Data stack
Remember the Core Data stack we talked about earlier? We’ve gotten
everything in place with the Managed Object Context, and now we’re
interested in where the data is actually coming from. Just like with the
Managed Object Context, the template set up the rest of the stack for us.

Managed Object Context

Persistent Store
Coordinator

Persistent Object Store

The template set up the stack for us and
we only have one Persistent Object Store
so we can leave the Coordinator as is.

The Persistent Object Store is the
one responsible for actually reading
and writing the raw data. That’s
where we need to look.

We’ve handled the object model, the Managed Object Context, and the Fugitive Class.
Now we need to look at
the other end. We need
to connect Core Data to
our Fugitive Database.

Let’s take a look at the template code in the App Delegate...

you are here 4 355

tab bars and core data

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator {
 if (persistentStoreCoordinator != nil) {
 return persistentStoreCoordinator;
 }

 NSURL *storeUrl = [NSURL fileURLWithPath: [[self
applicationDocumentsDirectory] stringByAppendingPathComponent:
@”iBountyHunter.sqlite”]];
 NSError *error = nil;
 persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc] i
nitWithManagedObjectModel:[self managedObjectModel]];

 if (![persistentStoreCoordinator addPersistentStoreWithType:NSSQLite
StoreType configuration:nil URL:storeUrl options:nil error:&error]) {

 NSLog(@”Unresolved error %@, %@”, error, [error userInfo]);

 abort();

 }

 return persistentStoreCoordinator;

}

Test Drive
iBountyHunterAppDelegate.m

Now that the database is in place, and the Persistent Object
Store can be used as-is, go ahead and run the app.

The template sets things up for a SQLite DB
The Core Data template set up the Persistent Store Coordinator to use a
SQLite database named after our project. As long as the database is named
iBountyHunter.sqlite, then Core Data should be ready to go.

The template code adds a Persistent
Object Store to the coordinator
configured with the NSSQLiteStoreType.

The template sets things up to use a DB named the same as your project.

356 Chapter 7

test drive solution

Test Drive

Where is the data?

you are here 4 357

tab bars and core data

We added the database to the project.
The code looks right. This all worked with
DrinkMixer. What’s the deal??

Core Data is looking somewhere else.
Our problem is with how Core Data looks for the
database. Well, it’s actually a little more complicated
than that.

iPhone Apps are read-only
Back in DrinkMixer, we loaded our
application data from a plist using the
application bundle. This worked great and our data
loaded without a problem. But remember how we talked about how
this would only work in the simulator? It’s time to sort that out. As part
of iPhone security, applications are installed on the device read-only.
You can get to any resources bundled with your application, but you
can’t modify them. The Core Data template assumes you’re going
to want to read and write to your database, so it doesn’t even bother
checking the application bundle.

NSURL *storeUrl = [NSURL fileURLWithPath: [[self
applicationDocumentsDirectory] stringByAppendingPathComponent:
@”iBountyHunter.sqlite”]];

 This code will only work in the simulator!!The code used to save the plist will work fine on the simulator but fail

miserably on a real device. The problem is with file permissions and where

apps are allowed to store data. We’ll talk a lot more about this in Chapter 7,

but for now, go ahead with this version. This is a perfect example of things

working on the simulator only to find the device actually behaves differently.

iBountyHunterAppDelegate.m

The Core Data template looks in the

application documents directory for the

database, not the applicat
ion bundle.

We need to take a closer look at how
those directories are set up...

358 Chapter 7

iPhone app structure

The iPhone’s application structure defines
where you can read and write
For security and stability reasons, the iPhone OS locks down the filesystem
pretty tight. When an application is installed, the iPhone OS creates
a directory under /User/Applications on the device using a unique
identifier. The application is installed into that directory, and a standard
directory structure is created for the app.

Each application gets installed into its own
directory. This directory name is a universally
unique ID (UUID) and the app isn’t told what it is.

The app itself is stored in a directory named
iBountyHunter.app. Its resources, plists, the
actual binary, etc. are all stored here. This
directory is read-only to the application.

The Documents and Library directories are
read-write for the application and also backed
up by iTunes when the user syncs their device.
This is where user data needs to go.

The tmp directory is read-write too,
but it isn’t backed up during a sync.
This data could be deleted at any time.

Use the Documents directory to store user data
Since most Core Data applications want to read and write data, the template
sets up our Core Data stack to read and write from the Documents directory.
An application can figure out where its local directories are by using the
NSSearchPathForDirectoriesInDomains, just like the template does in the App Delegate:

- (NSString *)applicationDocumentsDirectory {

 return [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
 NSUserDomainMask, YES) lastObject];

}

Application Home

Documents

iBountyHunter.app

Library

Preferences

Caches

tmp

you are here 4 359

tab bars and core data

Copy the database to the correct place
When the application first starts, we need to check to see if there’s a
copy of the database in our Documents directory. If there is, we don’t
want to mess with it. If not, we need to copy one there.

-(void)createEditableCopyOfDatabaseIfNeeded {

 // First, test for existence - we don’t want to wipe out a user’s DB
 NSFileManager *fileManager = [NSFileManager defaultManager];
 NSString *documentsDirectory = [self applicationDocumentsDirectory];
 NSString *writableDBPath = [documentsDirectory stringByAppendingPathCompo
nent:@”iBountyHunter.sqlite”];

 BOOL dbexists = [fileManager fileExistsAtPath:writableDBPath];
 if (!dbexists) {
 // The writable database does not exist, so copy the default to the
 appropriate location.
 NSString *defaultDBPath = [[[NSBundle mainBundle] resourcePath] stringByA
ppendingPathComponent:@”iBountyHunter.sqlite”];

 NSError *error;
 BOOL success = [fileManager copyItemAtPath:defaultDBPath
toPath:writableDBPath error:&error];
 if (!success) {
 NSAssert1(0, @”Failed to create writable database file with message
‘%@’.”, [error localizedDescription]);
 }
 }
}

iBountyHunterAppDelegate.m

Do this!
Now that the app knows how to copy the database, you need
to uninstall the old version of your app to delete the empty
database that Core Data created earlier. When you build and
run again, our new code will copy the correct DB into place.

Here we grab the master DB from our
application bundle; this is the read-only copy.

Copy it from the read-only to
the writable directory.

You’ll need to delcare
this method in
iBountyHunterAppDelegate.h.

- (void)applicationDidFinishLaunching:
(UIApplication *)application {

 [self createEditableCopyOfDatabaseIfNeeded];

}

360 Chapter 7

that’s a lot of perps

Test Drive

All the data
is in there!

Now that the app knows where to find the
database, it should load.

you are here 4 361

tab bars and core data

Q: Why didn’t we have to do all of
this directory stuff with the plist in
DrinkMixer?

A: We only ran DrinkMixer in the
simulator, and the simulator doesn’t enforce
the directory permissions like the real device
does. We’d basically have the same problem
with DrinkMixer on a device. The reason this
was so obvious with iBountyHunter is that
Core Data is configured to look in the correct
place for a writeable database, namely the
application’s Documents directory.

Q: How do I get paths to the other
application directories?

A: Just use
NSSearchPathForDirectoriesInDomains
but with different NSSearchPathDirectory
constants. Most of them you won’t ever
need; NSDocumentsDirectory is the most
common. You should never assume you
know what the directory structure is or how
to navigate it; always look up the specific
directory you want.

Q: So what happens to the data when
someone uninstalls my application?

A: When an application is removed from
a device, the entire application directory is
removed, so data, caches, preferences, etc.,
are all deleted.

Q: The whole Predicate thing with
NSFetchRequest seems pretty important.
Are we going to talk about that any more?

A: Yes! We’ll come back to that in Chapter 8.

Q: So is there always just one
Managed Object Context in an
application?

A: No, there can be multiple if you want
them. For most apps, one is sufficient,
but if you want to separate a set of edits
or migrate data from one data source to
another you can create and configure as
many Managed Object Contexts as you
need.

Q: I don’t really see the benefit of the
Persistent Store Coordinator. What does
it do?

A:Our application only uses one
Persistent Object Store, but Core Data

supports multiple stores. For example, you
could have a customer information coming
from one database but product information
coming from another. You can configure two
separate persistent object stores and let the
persistent store coordinator sort out which
one is used based on the database attached.

Q: How about object models? Can we
have more than one of those?

A: Yup—in fact we’re going to take a look
at that in Chapter 8.

Q: Do I always have to get my
NSManagedObjects from the Managed
Object Context? What if I want to create a
new one?

A: No, new ones have to be added
to the context—however, you can’t just
alloc and init them. You need to create
them from their entity description, like this:
[NSEntityDescription insertNewObjectForEnt
ityForName:@”Fugitive” inManagedObjectCo
ntext:managedObjectContext];

That will return a new Fugitive instance and
after that you can use it like normal.

362 Chapter 7

building the detail view

Now we need to build the
detail view, right?

Exactly.
We have the database loading with
detailed information, but the user can’t
see it yet. Now, we just needto build out
the detail view to display that information
as well.

iBountyHunter To Do List

1. Create view controllers (both .h
and .m

files) for the Fugitive and Captured views.

2. Create the tab bar vie
w, and add the

tab bar controller to
 it along with a

reference from the app delegate.

3. Add the nav controller
s for the Fugitive

and Captured views.

4. Build the table views for the Fugitive

and Captured views.

5. Create a detail view with a nib, and a

view controller with .h and .m files.

You’re almost done
with your list!

And you definitely
know how to do this...

you are here 4 363

tab bars and core data

Building the detail view isn’t anything new for you—so get to it! Here is
what you’re working with from our earlier sketch for the detail view.

Fugitive Name
Fugitive ID#

Bounty:
Fugitives Captured

The detail view for each fugitive will
be available by clicking on any name.

This area is for notes and
details about the fugitive.

The value of the
bounty will be here.

Create a new view controller and nib called the FugitiveDetailViewController.

Lay out the nib using Interface Builder to have the fields we need.

Then update the new view controller to have outlets for the fields we’ll need to set and a
reference to the Fugitive it’s displaying.

All of the fields should be read-
only since we don’t want users
tweaking the bounties.

Fugitive Name, ID, Bounty, and the Bounty value should all be labels.

The Fugitive Detail should be a UITextView. That will automatically handle scrolling long content.

364 Chapter 7

long exercise solution

When you create
the new class files,
you’ll have the .m,
.h, and .xib files.

Make sure
you move the DetailController.xib file into
the /Resources folder.

The files that you need for the new view are:
FugitiveDetailViewController.h, FugitiveDetailViewController.m, and
FugitiveDetailViewController.xib.
To create them, just select File → New and check the box that says
“With XIB for User Interface”. After that, you’ll need to move the .xib file
into /Resources within Xcode.

Go through and check the code, outlets,
declarations, and dealloc.

you are here 4 365

tab bars and core data

 @class Fugitive;

 @interface FugitiveDetailViewController : UIViewController {

 Fugitive *fugitive;

 UILabel *fugitiveNameLabel;

 UILabel *fugitiveIdLabel;

 UITextView *fugitiveDescriptionView;

 UILabel *fugitiveBountyLabel;
 }

 @property (nonatomic, retain) Fugitive *fugitive;

 @property (nonatomic, retain) IBOutlet UILabel *fugitiveNameLabel;

 @property (nonatomic, retain) IBOutlet UILabel *fugitiveIdLabel;

 @property (nonatomic, retain) IBOutlet UITextView *fugitiveDescriptionView;

 @property (nonatomic, retain) IBOutlet UILabel *fugitiveBountyLabel;
 @end

#import “FugitiveDetailViewController.h”

 #import “Fugitive.h”

 @implementation FugitiveDetailViewController

 @synthesize fugitive, fugitiveNameLabel, fugitiveIdLabel,
fugitiveDescriptionView, fugitiveBountyLabel;

 - (void)dealloc {

 [fugitive release];

 [fugitiveNameLabel release];

 [fugitiveIdLabel release];

 [fugitiveDescriptionView release];

 [fugitiveBountyLabel release];
 [super dealloc];

 }

@end

FugitiveDetailViewController.h

FugitiveDetailViewController.m

366 Chapter 7

long exercise solution

Now build the view in Interface Builder.

Here’s the final listing
of the components of
the detail view.

Make sure that
all of the added
elements are children
of the main view.

Use the inspector to change the
default values of each of these
elements to “Fugitive Name”,
“Fugitive ID”, etc. Make sure you hook

all these up...

you are here 4 367

tab bars and core data

These are both
labels, but change
the font of the
ID # to 12 pt.

“Bounty” is a separate
label from the value.

The TextView needs
to be upsized to
240 x 155 using
the inspector.

To get the simulated navigation bar, in the Inspector set the top bar, simulated interface element to “Navigation Bar”.

368 Chapter 7

geek bits

Geek Bits

We’re going to add some spit and polish to
this view. It’s fine the way it is, but here’s
some iPhone coolness to add.

Add a rounded
rectangular button,
right on top of the
UITextView.

We’ll make this button function as a
border. To do that, you need to do
two things:

 Double-click on the
rounded rectangular button,
then go to the Layout
→ Send to Back menu
option.

1

 With the button still
selected, use the inspector
to uncheck the enabled
box (under content).

2

you are here 4 369

tab bars and core data

Now, just populate the detail view from the Fugitive
List. You know how to do this from what we did earlier
with DrinkMixer.

The other files need to know that the detail view exists.
In some implementation file, you’ll need to #import
FugitiveDetailViewController.h.

1

You should be able to
figure out which one.

The detail view needs to get called.
In that same implementation file, the table view needs some selection
code. It’ll be similar to the code that we used in DrinkMixer.

2

The fields need to be populated with the data.
The detail view code needs to populate the existing fields with the data
from the fields that were set up with the Fugitive.h and Fugitive.m
classes and the Core Data code. In viewWillAppear:

3

fugitiveNameLabel.text = fugitive.name;

fugitiveIdLabel.text = [fugitive.fugitiveID stringValue];

These are just a couple of
examples but should give
you all the hints you’ll need.

Wire it up.
Go back into IB and link your table view to its delegate.

4

370 Chapter 7

populate the detail view

Now, just populate the detail view. You know
enough from before to do this.

The other files need to know that the
detail view exists.
In some implementation file, you’ll need to
#import FugitiveDetailViewController.h

1

The detail view needs to get called.
In that same implementation file, the table view
needs some selection code. It’ll be similar to the
code that we used in DrinkMixer.

2

- (void)
tableView:(UITableView*)tableView didSelectRowAtIndexPath: (NSIndexPath
*)indexPath {

 FugitiveDetailViewController *fugitiveDetailViewController
= [[FugitiveDetailViewController alloc] initWithNibName:
@”FugitiveDetailViewController” bundle:nil];

 fugitiveDetailViewController.fugitive = [self.items
objectAtIndex:indexPath.row];

 [self.navigationController pushViewController:
fugitiveDetailViewController animated:YES];

 [fugitiveDetailViewController release];

}

FugitiveListViewController.m

Just add this to the top of the
FugitiveListViewController.m file.

Here we tell
the detail view
controller which
fugitive it should
display.

you are here 4 371

tab bars and core data

The fields need to be populated with the data.3

#import “FugitiveDetailViewController.h”

#import “Fugitive.h”

@implementation FugitiveDetailViewController

@synthesize fugitive, fugitiveNameLabel, fugitiveIdLabel,
fugitiveDescriptionView, fugitiveBountyLabel;

-(void) viewWillAppear:(BOOL)animated {

 [super viewWillAppear:animated];

 fugitiveNameLabel.text = fugitive.name;

 fugitiveIdLabel.text = [fugitive.fugitiveID stringValue];

 fugitiveDescriptionView.text = fugitive.desc;

 fugitiveBountyLabel.text = [fugitive.bounty stringValue];

}

Adding the stringValue on the end of these two declarations handles the fact that they were not strings, but NSNumber and NSDecimalNumbers.

We’re going to be accessing fields in the Fugitive class. We need to tell the compiler about it.

Wire it up.
In IB, the table view under the Fugitive List View Controller needs to
have its delegate linked to that View Controller.

4
FugitiveDetailViewController.m

372 Chapter 7

test drive

Test Drive
After populating the detail view, you can see
the information about each fugitive.

Now an
entry can be selected in the view.

The detail view is fully populated.

The labels
have been
replaced
with values
from the
database.

The back button is working thanks to
the nav control.

It all works!

you are here 4 373

tab bars and core data

It works great! Having all that
information with me makes it much
easier to catch outlaws. I should be
able to almost double my business

with this app!

Great!
After a couple of weeks, Bob is back
with a new request...

That really worked! I’ve
caught a ton of people already!
How can I keep track of who
I’ve caught?

To be continued...

374 Chapter 7

coredatacross

CoreDatacross
There’s a lot of terminology with Core Data; let’s
make sure you remember it!

Untitled Puzzle
Header Info 1
Header Info 2

etc...

1

2 3

4 5

6

7

8 9

10

11

Across
2. Each app has a ____________ directory.
5. NS______Descriptor captures how data should be sorted.
6. In the middle of the Core Data stack is the Persistent Store

_________.
7. The ______________ template is pretty basic.
8. ___________ can manage different types of data.

10. The managed object __________ is the top of the Core
Data stack.

11. NSFetch__________ describes a search.

Down
1. The Persistent Object Store is at the ___________ of the

Core Data stack.
3. Core Data has ______ and redo.
4. The __________ controller is good for switching views.
9. The managed ______________ model describes entities.

you are here 4 375

tab bars and core data

Tab Bars
Each tab means a separate vie

w.

Tabs work well with tasks that are

not hierarchical.

Your Core Data Toolbox

You’ve got Chapter 7 under
your belt and now you’ve

added Core Data to your tool-
box. For a complete list of tooltips in

the book, go to http://www.headfirstlabs.
com/iphonedev. CH

AP
T

ER
 7

Core Data
Provides a stack that manages the
data so you don’t have to.

Can manage different types of
data.
Great for memory management
and tracking changes.

The Data Model
Works with entities that have
properties called attributes.

Can be edited directly in Xcode.

Has several different data types.

 � Core Data is a persistence framework that
offers loading, saving, versioning and undo-redo.

 � Core Data can be built on top of SQLite
databases, binary files, or temporary memory.

 � The Managed Object Model defines the Entities
we’re going to ask Core Data to work with.

 � The Managed Object Context is our entry point
to our data. It keeps track of active Managed
Objects.

 � The Managed Object Context is part of the Core
Data stack that handles reading and writing our
data.

376 Chapter 7

coredatacross solution

CoreDatacross Solution
So, did you remember all those words?

Untitled Puzzle
Header Info 1
Header Info 2

etc...

B1

O

D2 O C U3 M E N T S

N T

T4 D S5 O R T

C6 O O R D I N A T O R M

B

W7 I N D O W S B A S E D

A

C8 O9 R E D A T A

B

J

E

C10 O N T E X T

R11 E Q U E S T

Across
2. Each app has a ____________ directory. [DOCUMENTS]
5. NS______Descriptor captures how data should be sorted.

[SORT]
6. In the middle of the Core Data stack is the Persistent Store

_________. [COORDINATOR]
7. The ______________ template is pretty basic.

[WINDOWSBASED]
8. ___________ can manage different types of data.

[COREDATA]
10. The managed object __________ is the top of the Core

Data stack. [CONTEXT]
11. NSFetch__________ describes a search. [REQUEST]

Down
1. The Persistent Object Store is at the ___________ of the

Core Data stack. [BOTTOM]
3. Core Data has ______ and redo. [UNDO]
4. The __________ controller is good for switching views.

[TABBAR]
9. The managed ______________ model describes entities.

[OBJECT]

this is a new chapter 377

How about this one? I just can’t
seem to decide which outfit to
wear...

migrating and optimizing with core data8

Things are changing

We have a great app in the works.
iBountyHunter successfully loads the data that Bob needs and lets him view the fugitives

in an easy way. But what about when the data has to change? Bob wants some new

functionality, and what does that do to the data model? In this chapter you’ll learn how

to handle changes to your data model and how to take advantage of more Core Data

features.

378 Chapter 8

bob wants to get paid

Bob needs documentation

To get paid, I need
to be able to show who
was captured when...

Bob needs to record
more information.
Bob has to keep track of his
work so he can be paid. That
means that we need somewhere
to store the day and time of a
capture and then use that to
build the captured view...

Remember that captured view we built in the last chapter?

How are we going to update
iBountyHunter to handle the
new information?

you are here 4 379

migrating and optimizing with core data

We need to figure out how to update iBountyHunter
to handle this new data. Look at each piece of our
application and write what, if anything, needs to change.

Views

View Controllers

Managed
Object
Model

SQLite
Database

Where do we start?

380 Chapter 8

start with the new data

We need to figure out how to update iBountyHunter
to handle this new data. Look at each piece of our
application and write what, if anything, needs to change.

View Controllers

Managed
Object
Model

SQLite
Database

Where do we start?

- A spot to mark
fugitives as caught.
- Show the date and
time of capture.
- Populate the captured
list.

- Fill in the date and
time of capture data.
- Display only the
captured fugitives in
the captured view.

- Add a captured flag
to fugitives.
- Add the captured
time for the fugitive.
- Add the captured
date for the fugitive.

- Add information
about the changes to
the data for display in
the app.

Since nearly everything depends on the new data
we need to add, let’s get that in our object model
first; then we can update the rest.

Views

you are here 4 381

migrating and optimizing with core data

Everything stems from our object
model
From what we figured out in the exercise, the Fugitive entity
needs a few more fields: the date and time, and something to
indicate whether or not the fugitive has been captured. The
database is built from the data model, so we can just update
the data model to add the information we need. The Core
Data date type includes both a date and time, so we only
need two more properties on our Fugitive entity:

Update the data model with the new
captured fields.

captured captdate
- Boolean
- NOT Optional

- NO by default

- Date
- Optional

Since all fugitives
will be either
captured or not,
it needs to exist
for all of them.

Since this field will only exist for the captured fugitives, it’s optional.

Use the data model editor to update the model with the two new fields.

After you update the model, you’ll need to delete the two old fugitive
class files and generate new ones with the new fields included.

This provides
both the date
and the time.

382 Chapter 8

your updated model

#import <CoreData/CoreData.h>

@interface Fugitive : NSManagedObject

{

}

@property (nonatomic, retain) NSDecimalNumber * bounty;

@property (nonatomic, retain) NSNumber * captured;

@property (nonatomic, retain) NSNumber * fugitiveID;

@property (nonatomic, retain) NSDate * captdate;
@property (nonatomic, retain) NSString * name;

@property (nonatomic, retain) NSString * desc;

@end

Use the data model editor to update the model with the two new fields.

After you update the model, you’ll need to delete the two old fugitive
class files and generate new ones with the new fields included.

Here’s the
updated
entity

Make sure that your
attributes match
ours.

captdate

- Date
- Optional

Use the tools that Xcode comes with to
quickly make those changes.

captured
- Boolean
- NOT Optional

- NO by default

These two fields
are the new
generated classes.

Fugitive.h

you are here 4 383

migrating and optimizing with core data

#import “Fugitive.h”

@implementation Fugitive

@dynamic bounty;

@dynamic captured;

@dynamic fugitiveID;

@dynamic captdate;
@dynamic name;

@dynamic desc;

@end

Fugitive.m

Test Drive

Why did the app crash?

Once you’ve made the changes, go ahead
and run iBountyHunter.

The new fields have been
added as dynamic properties,
just like the earlier ones.

It crashed!

384 Chapter 8

data needs updating

The data hasn’t been updated
If you take a close look at the console report of the crash,
you can figure out what’s wrong...

It’s complaining that our data
model isn’t compatible with
the one that created the
database.

This error seems to
be coming from Core
Data.

The data model is different
than what was used to actually
write the data.

Our original Fugitive entity
only had four attributes...

... but the current Fugitive entity has two extra: our captured data and captured flag.
Core Data caught a mismatch between our
DB and our model
We created this problem when we added new fields to the
Fugitive entity. Our initial fugitive database was created
with the old model, and Core Data has no idea where to
get those new fields from. Rather than risk data corruption,
it aborted our application with an error. That’s good, but
we still need to figure out how to fix it.

you are here 4 385

migrating and optimizing with core data

Data migration is a common problem
Realizing you need to add new data or changing the way you store old
data is a pretty common problem in application development. But just
because it’s common doesn’t mean it’s easy. Core Data works hard to
make sure it doesn’t corrupt or lose any data, so we’re going to have to
tell it what to do with our new Fugitive entity.

Right now, we have the old
data and the new data model.
How can we get the new data?

Managed Object Context

Persistent Store
Coordinator

Persistent Object Store

Our problem is that the

Managed Object Context is

looking to get ou
r new Fugitive

entity from the Persistent

Object Store...

...so the Persiste
nt Object Store look

s at

a computed hash value
 of the entity i

t’s

trying to retriev
e and compares that with

the hash value of
 the entity in it

s DB...

...but the DB was created with the old Fugitive, so it
has the old hash value. The Persistent Object Store fails
to load the data, saying it can’t load what’s in that
database into the new entity.

This hash is calcul
ated

automatically by the C
ore Data

framework based on att
ribute

names, types, and re
lationships.

386 Chapter 8

two data models

Delete
these 2
fields.

Then GO BACK and CHECK that it’s
working again! It will save lots of
time and trouble later.

Our two models need different versions
It’s easy enough to change the data model by hand, but Core Data
needs to be able to work with both the old and new data. We need to
give Core Data access to both, but tell them they’re different versions
of the same model. Even more importantly, we need to tell Core Data
which one we consider our current version.

We need to migrate the old data into
the new model
We made the changes to the data model, but we need everything up
and down the Core Data stack to be able to deal with those changes. In
order to do that, we need to migrate the data.

To migrate anything, you need to go from somewhere to somewhere.
Core Data needs to have both of these data models to make data
migration work for the entire stack. We need a new approach to
changing the data model, besides just changing the old one. Let’s undo
what we did earlier so we can load the data from the database again.

New data model
iBountyHunter 2.xcdatamodel

Old data model
iBountyHunter .xcdatamodel

This is what we started
with, and the Persistent
Object Store is expecting this data model.

The Persistent Object Store needs to know that this is what we consider our current version.

Data model Demolition

In order for our data model to have a starting point
and an ending point, we need to go back into
iBountyHunter.xcdatamodel and remove the two
new fields—for now.

you are here 4 387

migrating and optimizing with core data

Highlight iBountyHunter.xcdatamodel.
Then go to the Design → Data Model → Add Model Version menu option.
That will generate a new directory called iBountyHunter.xcdatamodeld. Under that
directory, there will be two copies of the data model.

1

Set the current version.
Inside the iBountyHunter.xcmodeld directory, select iBountyHunter 2.xcdatamodel,
which will be our new version. Go to the Design → Data Model → Set Current
Version menu option.

2

Here’s what the
final file listing
will look like.

How does the app
map between the
two versions?

Xcode makes it easy to version the data
model
Fortunately, it’s pretty easy to create a new version of your data model
using Xcode:

Update the new data model.
Select iBountyHunter 2.xcdatamodel and re-edit the data model to add back in the
captdate and captured fields as we did before. Now the old version is preserved and
the changes are where they belong.

3

Normally, you’d also need to delete and regenerate the
Fugitive class, but since we made the same changes to

the new file, the generated class would be the same.

Geek Bits

388 Chapter 8

data migration

Jim: Ugh. I guess we need to write a bunch of migration
code or something.

Joe: Why?

Jim: I assume we’re going to have to tell Core Data how to
get from the old version of the data to the new one, right?

Frank: Well, actually, I think we can do it automatically.

Jim: What?

Frank: Core Data has a feature that allows you to tell the
app about both models and it can migrate the data for you.

Jim: Nice! When does the data actually get migrated?

Frank: Runtime, when the Persistent Object Store sees that
the data is in the old format. That means that we’ll just need
some code to tell iBountyHunter to actually do the migration.

Joe: OK, so it looks like some of that code is auto-generated,
and some of it needs to be added.

Jim: This is great; so we can just change whatever we want?

Frank: There are certain data changes that Core Data
can handle automatically, like adding new attributes. More
complex changes to the data need to be handled manually.

Joe: Yeah, it says here that we can do automatic migration if
we’re adding attributes, or changing the optional status of an
attribute.

Jim: What about renaming?

Frank: Renaming gets tricky—sometimes you can and
sometimes you can’t.

Joe: So, how can we migrate the data we have?

Frank

Joe

Jim

you are here 4 389

migrating and optimizing with core data

Core Data can “lightly” migrate data
Lightweight data migration is a powerful Core Data tool that allows you to cleanly
update your underlying data to match a new data model without needing a mapping
model. It only works with basic data changes: adding new attributes, changing a
required attribute to an optional one, or making an optional attribute required with a
default value. It can also handle limited renaming of attributes, but that gets trickier.

Automatic data migration happens at runtime, which means that your app needs to
know that it’s going to happen so that the data can be migrated. You’ll do that in the
AppDelegate:

Test Drive

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator {

 if (persistentStoreCoordinator != nil) {

 return persistentStoreCoordinator;

 }

 NSURL *storeUrl = [NSURL fileURLWithPath: [[self applicationDocumentsDirectory]
stringByAppendingPathComponent: @”iBountyHunter.sqlite”]];

 NSError *error = nil;

 persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc] initWithManagedOb
jectModel:[self managedObjectModel]];

 NSDictionary *options = [NSDictionary dictionaryWithObjectsAndKeys:

 [NSNumber numberWithBool:YES], NSMigratePersistentStoresAutomaticallyOption,
 [NSNumber numberWithBool:YES], NSInferMappingModelAutomaticallyOption, nil];

 if (![persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
configuration:nil URL:storeUrl options:options error:&error])

iBountyHunterAppDelegate.m

After adding the code to the app delegate, Build and Debug...

Remember, by default Core Data will load all
of the object models in your app bundle. That
means it will see both the old version and the
current version of our model.

All we need to do to enable
lightweight migration is turn
it on.

We changed this from nil: options to pass the
options to the persistentStoreCoordiator.

If you run into issues here, try
Build->Clean first, then Build and
Debug. Strangely, Xcode doesn’t
always properly recompile the first
time you version your model, but
cleaning should fix it.

390 Chapter 8

test drive

Test Drive

Awesome! It’s working with a
whole new data model.

you are here 4 391

migrating and optimizing with core data

Head First: Hi Persistent Object Store, mind if I
call you POS for short?

Persistent Object Store: I’d rather you didn’t.
Just “Store” is fine.

Head First: OK, Store, so I understand you’re part
of the Core Data stack?

Store: Yep—one of the most important parts,
actually. It’s my job to read and write your actual
data.

Head First: Right, you’re the guy who translates
into a bunch of different formats.

Store: Exactly. When you use Core Data, you
don’t really need to know if your data is going into a
simple file or a sophisticated database. You just ask
me to read and write a bunch of data and I handle it.

Head First: That’s convenient. I understand you
can be pretty particular, though. I hear you don’t
take well to change.

Store: I don’t think you’re getting the whole picture.
See, it’s my job to make sure your data is loaded and
saved exactly right.

Head First: I get that, but still, small changes are
OK, right?

Store: Sure—I just need to make sure you really
want me to do them. You need to tell me what
data I’m looking at and then tell me how you want
me to return it to you. Tell me it’s OK to infer the
differences and do the mapping and I’ll take care of
the rest.

Head First: So do you actually migrate the data or
just translate it when you load it?

Store: Oh, I actually migrate the data. Now, here’s
where things get cool. Simple stores like the binary
file ones just create a new file with the migrated data.
But if I’m using a SQLite DB, I can usually do the
migration right in place. Don’t need to load the data
and the whole migration is nearly instant.

Head First: Nice! I thought lightweight migration
was kind of a noob’s migration.

Store: Oh no, if you can let me do the migration
through lightweight migration, that’s definitely the
way to go. Now if you need to do something more
complicated, like splitting an old attribute into two
new ones or change the type of something, you’ll
need to help me out.

Head First: And people do that through code?

Store: Sort of. Basically, you need to give me one
more model, a mapping model. That tells me how
to move your data from the old format to the new
format.

Head First: Hmm, OK, makes sense. I guess this
applies to renaming variables too?

Store: Actually, most of the time I can handle that
too, as long as you tell me what the old name was. If
you look at the details of an attribute in your object
model, you can give me the old name of an attribute.
If it’s there, and I have to do a migration, I can
handle renaming too.

Head First: Wow, you’re not nearly as boring as I
thought...

Store: Thanks, I guess.

The Persistent Object Store Exposed
This week’s interview:
Do you really have any
staying power?�

392 Chapter 8

no dumb migration questions

Q: How may versions of a data model
can I have?

A: As many as you need. Once you start
adding versions, you’ll need to keep track
of your current version so that Managed
Object Model knows what you want when
you ask for an entity. By keeping all of the
old versions around, Core Data can migrate
from any prior version to the current one.

Q: When is renaming something OK
for a lightweight migration? When isn’t it?

A: You can rename variables as long
as you don’t change the type. If you
rename them, click on the little wrench
on the attribute properties in Xcode and
specify the renaming identifier to be the old
attribute. Core Data will handle the migration
automatically from there.

Q: Can I use migration to get data
I have in some other format into Core
Data?

A: No. Migration (lightweight or
otherwise) only works with existing Core

Data. If you have legacy data you want
moved into Core Data, you’ll need to do
that yourself. Typically, you just read the
legacy data with your own code, create a
new NSManagedObject to hold it, populate
the new object, and save it using Core
Data. It’s not pretty, but it works. There are
a couple other approaches you can look
at if you have large amounts of data to
migrate or streaming data (for example, from
a network feed). Take a look at the Apple
Documentation on Efficiently Importing Data
with Core Data for more details.

Q: Does it make a difference if I use
lightweight migration or migrate data
myself?

A: Use lightweight migration if you can.
It won’t work for all cases, but, if it can be
done, Core Data can optimize the migration
if you’re using a SQLite store. Migration
time can be really, really small when done
through lightweight migration.

Q: What do I do if I can’t use
lightweight migration?

A: You’ll need to create a mapping model.
You can do that in Xcode by selecting

Design→Mapping Model, then picking
the two models you want to map between.
You’ll need to select your source entities
and attributes, then select the destination
entities and attributes. You can enter custom
expressions to do data conversions if you
need to. To find out more information on
mapping models, check out the Apple
Documentation on Core Data Migration.

Q: Xcode lets me enter a hash
modifier in the Versioning Settings for an
attribute. What are those for?

A: Core Data computes a hash for
entities using attribute information so it can
determine if the model has changed since
the data store was created. However, it’s
possible that you need to change the way
your data is stored without actually changing
the data model. For example, let’s say you
always stored your time values in seconds,
but then decided you needed to store
milliseconds instead. You can continue to
store the value as an integer but use the
version hash modifier to let Core Data know
that you want two models to be considered
different versions and apply your migration
code at runtime.

 � Lightweight automatic migration
needs both versions of the data
model before it will work.

 � Automatic migration can change a
SQLite database without loading the
data.

 � Migration of data happens at
runtime.

 � You can use lightweight migration
to add variables, make a required
variable optional, make an optional
one required with default, and to do
some renaming.

you are here 4 393

migrating and optimizing with core data

View Controllers

Managed
Object
Model

SQLite
Database

- A spot to mark
fugitives as caught.

- Show the date and
time of capture.

- Populate the captured
list.

- Fill in the date and
time of capture data.

- Display only the
captured fugitives in
the captured view.

- Add the captured
flag to fugitives.

- Add the captured
time for the fugitive.

- Add the captured
date for the fugitive.

- Add information
about the changes to
the data for display in
the app.

Views

These are both done!

What kind of changes do we need to make
to the UI to add the capture information?

394 Chapter 8

bob should keep his day job

Bob has some design input

I want all of this captured info on
the detail view. Here, I sketched
up some ideas.

Captured? Y/N

Capture Date & Time
:

SaveCancel

I was thinking
I could just type in Y
or N when I capture a
guy? Then fill in the date
and time below.

But Bob’s sketch
has some problems...

you are here 4 395

migrating and optimizing with core data

Bob’s view needs some improving. As an experienced
iPhone developer, you can probably come up with
some better UI designs. Time for you to help him out.

 Can Bob’s view actually work with the app as it’s currently written? (Circle one)1

 If not, why not? 2

 To properly implement this view, you need to know what data is editable. What
data can the user edit and what is the best way to handle that input?

3

 Sketch up your plan for the final detail view:3

Don’t forget about
the tab bar controller
down here.

Yes No

396 Chapter 8

a better interface

Now that you’ve thought through the design implications,
what should the detail view look like?

 Can Bob’s view actually work as is with the app as written? (Circle one)1

 If not, why not? 2

 To properly implement this view, you need to know what data is editable.
What data can the user edit and what is the best way to handle input?

3

 Sketch up your plan for the final detail view:3

Don’t forget about
the tab bar controller
down here.

Yes No

We already have a “back” button where Bob wants to put a cancel button.
Asking the user to input the “Y” or “N” and type the date and time is not a great UI.

The only data that will need to
change is the captured field and the captured date and time. Since captured is a boolean,

a switch or some kind of control will work better than typing. Since Bob will hit the control when he

captures the bad guy, we can just get the current date and time from iPhone and save even more typing.

Save

We might need this
later - we’ll have
to see....

A segmented control will work
great here. That will mean
NO typing required to input
the data.

Captured?

Capture
Date &
Time:

?

Label with date & time info.
populated by the time from
when the yes/no is toggled.

Date, time,
info

These two fields will
be labels, like before.

you are here 4 397

migrating and optimizing with core data

Make the additions you need to the detail view
to include the additional fields.

Open up FugitiveDetailViewController.xib in Interface
Builder.
Go ahead and add the visual elements you need: the three labels, and
the segmented control. You’ll need to add a simulated tab bar to make
sure that everything will fit. Don’t worry about the save button for now.

1

In FugitiveDetailViewController.m (and .h), add properties
and initialization code.
Now that all of those interface elements exist, give them the back end in
Xcode, but don’t worry about linking them just yet...

2

398 Chapter 8

exercise solution

Open up FugitiveDetailViewController.xib in Interface Builder. 1

In FugitiveDetailViewController.m (and .h), add properties
and initialization code.

22

UISegmentedControl *capturedToggle;

UILabel *capturedDateLabel;

@property (nonatomic, retain) IBOutlet UISegmentedControl
*capturedToggle;

@property (nonatomic, retain) IBOutlet UILabel
*capturedDateLabel;

FugitiveDetailViewController. h

Add this inside the @interface.

Add this with the other @
properties.

Here are the additions to the view,
and the code to support them.

This is the label that will hold the captured date and time, but it’s empty unless the switch is toggled to yes.

The segmented control
needs to be configured
(it says first/second
by default).

Toggle this selection
to get to the other
half of the control.

Make sure “Segment 0 - Yes”
is selected and both segments
are enabled. We’ll need this in a
minute.

you are here 4 399

migrating and optimizing with core data

FugitiveDetailViewController.m

-(void) viewWillAppear:(BOOL)animated {

 [super viewWillAppear:animated];

 fugitiveNameLabel.text = fugitive.name;

 fugitiveIdLabel.text = [fugitive.fugitiveID stringValue];

 fugitiveDescriptionView.text = fugitive.desc;

 fugitiveBountyLabel.text = [fugitive.bounty stringValue];

 capturedDateLabel.text = [fugitive.captdate description];

 capturedToggle.selectedSegmentIndex = [fugitive.captured
boolValue] ? 0 : 1;

}

Convert the date to a label for the description.

Set the selectedSegmentIndex based on whether they are captured: 0 = YES, 1 = NO.

@synthesize fugitive, fugitiveNameLabel, fugitiveIdLabel,
fugitiveDescriptionView, fugitiveBountyLabel, capturedDateLabel,
capturedToggle;

- (void)dealloc {

 [fugitive release];

 [fugitiveNameLabel release];

 [fugitiveIdLabel release];

 [fugitiveDescriptionView release];

 [fugitiveBountyLabel release];

 [capturedDateLabel release];

 [capturedToggle release];
 [super dealloc];

}

Test Drive
Build and debug to make
sure the interface is working.

FugitiveDetailViewController.m

400 Chapter 8

test drive

Test Drive

Q: Why didn’t we use the switch instead of
the segmented control?

A: Because there’s no Apple-sanctioned way
to change the text of the switch. By default, the
options are On and Off, which won’t work for us.

Q: Why didn’t we use a check box for the
captured field?

A: It turns out that the check box isn’t a
standard control. It’s certainly surprising, since you
see them so often in iPhone apps.

They can be done, however, by creating a custom
button with three images (an empty box, a
selected box, and a checked box), and switching
between them.

All the view
elements look good!
Now we just need
to implement their
behaviors...

you are here 4 401

migrating and optimizing with core data

Toggle Code Magnets
Now that we have the controls laid out the way we want
them, we need to actually give them some behavior. Use the
magnets below to implement the method that will handle the
segmented control switching. Then everything will be ready
for linking to the segmented control in Interface Builder.

- (IBAction) capturedToggleChanged: (id) sender

 if () {

 *now = [NSDate

 = now;

 fugitive.captured = [NSNumber numberWithBool:YES];

 }

 else {

 = nil;

 fugitive.captured = [NSNumber numberWithBool:NO];

 }

 capturedDateLabel.text = [];

}

capturedToggle.selectedSegmentIndex
NSDate

date];

x == 0)

fugitive.captdate
fugitive.captdate

fugitive.captdate description NSDate
x == 1

text

402 Chapter 8

toggle code magnets solution

- (IBAction) capturedToggleChanged: (id) sender

 if (capturedToggle.selectedSegmentIndex == 0) {

 NSDate *now = [NSDate date];

 fugitive.captdate = now;

 fugitive.captured = [NSNumber numberWithBool:YES];

 }

 else {

 fugitive.captdate = nil;

 fugitive.captured = [NSNumber numberWithBool:NO];

 }

 capturedDateLabel.text = [fugitive.captdate description];

}

Toggle Code Magnets Solution
Now that we have the controls laid out the way we want
them, we need to actually give them some behavior. Use the
magnets below to implement the method that will handle the
segmented control switching. Then everything will be ready for
linking to the segmented control in Interface Builder.

capturedToggle.selectedSegmentIndex

NSDate date];

== 0)

fugitive.captdate

This will only be called if the value actually changed, so if the selected index is now 0, the fugitive wasn’t captured prior to this call.

NSDate

fugitive.captdate

fugitive.captdate description

x == 1

text

- (IBAction) capturedToggleChanged:
(id) sender;

Add the code above to
FugtiveDetailViewController.m and don’t forget
the corresponding declaration in the .h file:

Finally, link the capturedToggle
outlet for the segmented control to File’s
Owner in Interface Builder and link the
valuechanged event from the segmented
control to the capturedToggleChanged
action in the Files’s Owner.

Do this!

This will return an NSDate set to
the current date and time.

Core Data stores booleans as
NSNumbers, so we need to convert
our boolean YES/NO values to
NSNumbers to update the fugitive.

Remember, segment 0 is YES on our control.

If the fugitive isn’t captured, clear the
old capture date if there was one.

This will return a text
representation of an NSDate.

These were
extras...

you are here 4 403

migrating and optimizing with core data

Test Drive
Now that all of that work is done, you should have a
functioning detail view. Give it a try...

The view looks great and the
segmented control is set to No,
just like it should be.

If you toggle the
segmented control,
the date and time
are filled in.

It’s working! Spend some time moving around in and out of
the table view, mark a fugitive as captured, and then come
back into that same fugitive. Go ahead, quit the app and
check again, we dare you. What’s going on?

404 Chapter 8

saving with managed object context

Wait a minute. The data is still there if I go
back to the table view—it’s even still there if
I completely exit the app and come back in the
simulator. It’s saved? How did that happen?

Core Data handles saving, too!
Checking that Core Data box when you created
the app did more for you than you realized—it
enabled saving as well.

- (void)applicationWillTerminate:(UIApplication *)
application {

 NSError *error = nil;

 if (managedObjectContext != nil) {

 if ([managedObjectContext hasChanges] &&
![managedObjectContext save:&error])

...

This code from
iBountyHunterAppDelegate.m
is checking for changes as you
exit the app.

The Managed Object Context saves new or changed items
We’ve used the managed object context to load our Fugitives, but it is also responsible
for coordinating saving your data, too. Remember how NSManagedObject can keep
track of changes to entities? The Managed Object Context can take advantage of this
information to tell if you if there are any changes in the objects it’s managing. Similarly,
if you create a new instance of an NSManagedObject, you need to tell it which
Managed Object Context it belongs to and that Managed Object Context knows it has
new entities to keep track of. The Core Data template takes advantage of this during
application exit to see if the Managed Object Context has any new or changed data. If
it does, the application simply asks the context to save them.

you are here 4 405

migrating and optimizing with core data

Q: You said if I create new instances
of NSManagedObjects I need to tell them
which Managed Object Context they
belong to. How do I do that?

A: It’s part of the EntityDescription we
mentioned in Chapter 7. If you want to create
a new instance of an NSManagedObject,
you just do this: [NSEntityDescription inse
rtNewObjectForEntityForName:@”Fugitive”
inManagedObjectContext:managedObject
Context];. The Managed Object Context is
provided right from the start.

Q: What’s the “&error” that’s being
passed to the save call?

A: Most Core Data load/save operations
point to an NSError in case something goes
wrong. The “&” in Objective-C behaves
just like it does in C or C++ and returns the

“address of” the item. We declare a pointer
to an NSError then pass the address of
that pointer into the save method in case
something happens. If the save call fails,
Core Data will populate that error argument
with more detailed information.

Q: Speaking of errors, what should I
do if this comes back with an error?

A: That’s really application-specific.
Depending on when you detect the problem,
you can warn the user and try to recover;
other times there’s not too much you can
do. For example, if the error happens during
the applicationWillTerminate method, there’s
not much you can do other than tell the user
the save failed and possibly stash the data
somewhere else.

Q:Should I only ever call save in
applicationWillTerminate?

A: No, not at all. The Core Data template
set it up this way for convenience, but you
should save whenever it’s appropriate in
your application. In fact, if you’re using a
SQLite database backend for your data,
saves are significantly faster than when we
were working with plists in DrinkMixer. You
should consider saving additions or changes
to the data as soon as possible after they
are made to try and avoid any kind of data
loss.

Q: You said Core Data could do data
validation; where does that fit into all of
this?

A: At a minimum, Core Data will
validate objects before they’re stored in the

Persistent Store. So, it’s possible that you
could get a validation error when you try to
save your changes if you have invalid data
in one of your managed objects. To avoid
such late notice, you should validate your
NSManagedObjects as close to the time
of change as possible. You can explicitly
validate a new NSManagedObject like this:
[fugitive validateForInsert:&error]. Similarly,
there are methods for validating updates and
deletes. You can call these methods at any
time to verify that the NSManagedObject is
valid against constraints you put in the data
model. If it’s not, you can notify the user and
ask them to correct the problem.

Q: What if I don’t want to save the
changes in the Managed Object Context?
Can I reset it?

A:It’s easier than that—just send it
the rollback: message. When a
Managed Object Context is told to rollback
it will discard any newly inserted objects,
any deletions, and any unsaved changes
to existing objects. You can think of the
Managed Object Context as managing
transactions—changes to entities, including
insertion and deletions, are either committed
with a save: message or abandoned
with a rollback: message.

406 Chapter 8

bob’s demo

A quick demo with Bob
After seeing the detailed view and all the captured stuff,
Bob’s thrilled, but has one quick comment:

This is definitely way easier
than what I came up with.
But, um, where is that list of

captured people?

After all that, we
forgot to populate the
captured list!

you are here 4 407

migrating and optimizing with core data

OK, I know how to populate the table cells and
stuff—but how can I only pick captured guys?

We can use Core Data to
filter our results.
We already have capture information in
our Fugitive data; we just need to use it
to get the captured list. We need a way
to tell Core Data we only want Fugitives
where the captured flag is true.

Where is a natural place to put
this kind of filtering?

408 Chapter 8

predicates in Xcode

Use predicates for filtering
data
In database languages all over the world, predicates are
used to scope a search to only find data that matches
certain criteria. Remember the NSFetchRequest we
talked about in Chapter 7? We’ve used the Entity
Information and Sort Descriptor but haven’t needed
the predicate support... until now.

SELECT * FROM FUGITIVES WHERE captured = 1 ORDER BY name ASC
This is the sort clause for a SQL command.

NSFetchRequest Predicate

Entity Info

Sort Descriptor

An NSFetchRequest describes the search we want Core Data to execute for us.

Entity Information tells Core
Data the type of the data we’re
searching for (and want back).
For us, this is a Fugitive class.

Here’s the piece we haven’t used
before. The predicate captures
conditions the data must match.
If it doesn’t match, it doesn’t get
returned with the results.

We used the Sort Decriptor
to order the data
alphabetically in the results.

Here’s the SQL predicate...
This is similar to our Entity info.. Not exactly the same, but close.

NSFetchRequest concepts are nearly
identical to SQL
The three major concepts in an NSFetchRequest are
nearly identical to the expressions in standard SQL:

All we need to do is provide the predicate information
to our NSFetchRequest and Core Data handles the
rest. We can use an NSPredicate for that...

SQL is a language
used for managing
databases.

you are here 4 409

migrating and optimizing with core data

Time to populate the captured view! There’s some work
to get the captured view updated to where the fugitive
view is, and then a tweak to display what we need.

Set some captured fugitives.
Build and run the old version of the app and toggle a
handful of the fugitives to captured before making any
changes. You’ll need that for testing.

1

Get the captured view to match the fugitive view.
Where we left off in Chapter 7, we hadn’t yet done the work to
populate the captured list. Since we’re just going to be filtering
the data that’s in the fugitive list, the easiest way is to start with
the entire list and then add the filtering code. Don’t forget the
tableview datasource and delegate methods.

2

Add the predicate code.
Update your NSFetchRequest to use an NSPredicate so
it only finds captured fugitives. This needs to go into the
viewWillAppear method in the CapturedViewController.m.

3

We need to set a predicate on our NSFetchRequest
NSPredicate is a deceptively simple class that lets us express logical constraints on our NSFetchRequest.
You use entity and attribute names along with comparison operators to express your constraint information.
You can create a basic NSPredicate with a string format syntax similar to NSString, like this:

NSPredicate *predicate = [NSPredicate predicateWithFormat:@”captured == YES”];
[request setPredicate:predicate];

But NSPredicates don’t stop with simple attribute comparisons. Apple provides several subclasses like
NSComparisonPredicate, NSCompoundPredicate, and NSExpression as well as a complex
grammar for wildcard matching, object graph traversal, and more. For iBountyHunter, a simple attribute
condition is all we need to get Bob’s view working.

410 Chapter 8

updating the captured view

v
You should recognize the code from Chapter 7 to get the captured
view working, and then the predicate code to get the filtered data.

@interface CapturedListViewController : UITableViewController {

 NSMutableArray *items;
}

@property (nonatomic, retain) NSMutableArray *items;

@end

CapturedListViewController.h

#import “CapturedListViewController.h”

#import “iBountyHunterAppDelegate.h”

#import “Fugitive.h”

#import “FugitiveDetailViewController.h”

@implementation CapturedListViewController

@synthesize items;

CapturedListViewController.m

Set some captured fugitives.1

Update the captured view to match the fugitive view.2

You can handle this one - any
5 that you want!

you are here 4 411

migrating and optimizing with core data

v

- (void)viewWillAppear: (BOOL) animated {

 [super viewWillAppear:animated];

 iBountyHunterAppDelegate *appDelegate = (iBountyHunterAppDelegate*)
[[UIApplication sharedApplication] delegate];

 NSManagedObjectContext *managedObjectContext = appDelegate.
managedObjectContext;

 NSFetchRequest *request = [[NSFetchRequest alloc] init];

 NSEntityDescription *entity = [NSEntityDescription
entityForName:@”Fugitive” inManagedObjectContext:managedObjectContext];

 [request setEntity:entity];

 NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]
initWithKey:@”name” ascending:YES];

 NSArray *sortDescriptors = [[NSArray alloc]
initWithObjects:sortDescriptor, nil];

 [request setSortDescriptors:sortDescriptors];

 [sortDescriptors release];

 [sortDescriptor release];

 NSError *error;

 NSMutableArray *mutableFetchResults = [[managedObjectContext
executeFetchRequest:request error:&error] mutableCopy];

 if (mutableFetchResults == nil) {

 // Handle the error.

 }

 self.items = mutableFetchResults;

 [mutableFetchResults release];

 [request release];

}

This code is exactly
the same code that
we used for the
FugitiveListViewController.

CapturedListViewController.m

412 Chapter 8

exercise solution

#pragma mark Table view methods

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {

 return 1;

}

// Customize the number of rows in the table view.

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NS
Integer)section {

 return [items count];

}

// Customize the appearance of table view cells.

- (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndex
Path:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @”Cell”;

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifie
r:CellIdentifier];

 if (cell == nil) {

 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyle
Default reuseIdentifier:CellIdentifier] autorelease];

 }

 // Set up the cell...

 Fugitive *fugitive = [items objectAtIndex:indexPath.row];

 cell.textLabel.text = fugitive.name;

 return cell;

}

You should recognize the code from Chapter 7 to get the captured
view working, and then the predicate code to get the filtered data.

CapturedListViewController.m

Get the captured view to match the fugitive view (continued).2

you are here 4 413

migrating and optimizing with core data

Add the predicate code. 3

NSPredicate *predicate = [NSPredicate predicateWithFormat:@”captured ==
YES”];

[request setPredicate:predicate];

Put this in viewWillAppear just after
[request setEntity:entity];.

- (void)tableView:(UITableView*)tableView didSelectRowAtIndexPath:(NSI
ndexPath *)indexPath {

 FugitiveDetailViewController *fugitiveDetailViewController =
[[FugitiveDetailViewController alloc] initWithNibName:@”FugitiveDetail
ViewController” bundle:nil];

 fugitiveDetailViewController.fugitive = [self.items
objectAtIndex:indexPath.row];

 [self.navigationController pushViewController:fugitiveDetailVie
wController animated:YES];

 [fugitiveDetailViewController release];

}

- (void)dealloc {

 [items release];

 [super dealloc];

@end

Test Drive

CapturedListViewController.m

Go ahead and fire it up—the captured
view should be ready to go!

CapturedListViewController.m

414 Chapter 8

test drive

Test Drive

It works! These are the four
fugitives we marked as captured.

you are here 4 415

migrating and optimizing with core data

What problems would we introduce if we moved
the fetching code to viewDidLoad? What else
could we do to improve performance?

Hang on—you said we should be careful with
memory and performance and blah blah... Now we
have two arrays of fugitives and we reload them
every time the view appears. It seems pretty
dumb. What if we moved this code to viewDidLoad

so it’s only done once per view?

True, we can make this a lot more
efficient.
But not by moving it to viewDidLoad. If we move the
code there, we’re going to end up with two new problems.
We need another solution...

416 Chapter 8

results handling

Table views and NSFetchedResultsControllers
are made for each other
Since UITableViews are such a common component
and frequently deal with large amounts of data, there’s
a special Core Data class designed to support them. The
NSFetchedResultsController works together with the
Managed Object Context and your NSFetchRequest to give
you some pretty impressive abilities:

Core Data controller classes provide efficient
results handling
The code for both the FugitiveListViewController and the
CapturedListViewController is in viewWillAppear. The problem is
that viewWillAppear gets called every time the view is shown, which means
we’re reloading all of the fugitives and all of the captured fugitives every time,
regardless of whether anything’s changed.

We could move the code to viewDidLoad, but that only gets called when the
views are loaded from their nibs. That causes two problems. First, if we mark
a fugitive as captured, the Captured List won’t reflect that since it only loads
its data once. The second problem is that viewDidLoad gets called before our
applicationDidFinishLaunching, which means the views will try to get
their data before the app delegate gets a chance to copy the master database in
place. What we need is a better way to manage our fetched data.

Very efficient memory usage
The NSFetchedResultsController works with the NSFetchRequest and
the ManagedObjectModel to minimize how much data is actually in
memory. For example, even if we have 10,000 fugitives to deal with,
the NSFetchedResultsController will try to keep only the ones the
UITableView needs to display in memory, probably closer to 10 or 15.

High performance UITableView support
UITableView needs to know how many sections there are, how many rows
there are in each section, etc. NSFetchedResultsController has built-in
support for figuring that information out quickly, without needing to load
all of the data.

Built-in monitoring for data changes
We’ve already talked about how the Managed Object Context knows
when data is modified. NSFetchedResultsController can take advantage of
that to let you (well, its delegate) know when data that matches your fetch
results is modified.

you are here 4 417

migrating and optimizing with core data

Time for some high-efficiency streamlining
We need to do a little refactoring to get NSFetchedResultsController
in there, but when it’s done, Bob could give us a database of 100,000
fugitives and iBountyHunter wouldn’t blink. We’re going to do this for the
CapturedListViewController, but the same refactoring will apply to the
FugitiveListViewController too.

First, we need to replace our items array with an instance of an
NSFetchedResultsController, like this:

@interface CapturedListViewController : UITableViewController
<NSFetchedResultsControllerDelegate> {

 NSFetchedResultsController *resultsController;
}

@property (nonatomic, retain) NSFetchedResultsController
*resultsController;
@end

@implementation CapturedListViewController

@synthesize resultsController;

CapturedListViewController.h

CapturedListViewController.m

- (void)dealloc {

 [resultsController release];
 [super dealloc];

}

@end

Delete the reference to the items array here and release the new view controller.

Remove the items array and its property.
We won’t need those any longer.

Next we need to change the
search to use the controller...

We want the
controller to tell us
when data changes -
we need to conform to
its delegate protocol.

418 Chapter 8

use the controller

- (void) viewWillAppear:(BOOL)animated {

 [super viewWillAppear:animated];

 if (self.resultsController != nil) {
 return;
 }
 iBountyHunterAppDelegate *appDelegate = (iBountyHunterAppDelegate*)
[[UIApplication sharedApplication] delegate];
 NSManagedObjectContext *managedObjectContext = appDelegate.
managedObjectContext;
 NSFetchRequest *request = [[NSFetchRequest alloc] init];
 NSEntityDescription *entity = [NSEntityDescription entityForName:@”Fugitive”
inManagedObjectContext:managedObjectContext];
 [request setEntity:entity];

 NSPredicate *predicate = [NSPredicate predicateWithFormat:@”captured ==
YES”];
 [request setPredicate:predicate];

 NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]
initWithKey:@”name” ascending:YES];
 NSArray *sortDescriptors = [[NSArray alloc] initWithObjects:sortDescriptor,
nil];
 [request setSortDescriptors:sortDescriptors];
 [sortDescriptors release];
 [sortDescriptor release];

 NSFetchedResultsController *fetchedResultsController =
[[NSFetchedResultsController alloc] initWithFetchRequest:request
 managedObjectContext:managedObjectContext sectionNameKeyPath:nil
 cacheName:@”captured_list.cache”];
 fetchedResultsController.delegate = self;
 NSError *error;
 BOOL success = [fetchedResultsController performFetch:&error];
 if (!success) {
 // Handle the error.
 }

 self.resultsController = fetchedResultsController;
 [request release];

 [self.tableView reloadData];

Since the NSFetchedResultsController can tell

us when data changes, we only need to actually

fetch once. If we’ve already done this (the view

is being shown again), we can just bail.

Create and initialize the
NSFetchedResultsController with our fetch

request and the Managed Object Controller.

We’re going to be the delegate so
we’re told when data changes.

Now instead of asking the Managed
Object Model to perform the fetch,
we ask the controller. Tuck the controller

away so we can get
the data out.

Refactor viewWillAppear to use the controller

Tell the table view our
data has changed.

CapturedListViewController.m

you are here 4 419

migrating and optimizing with core data

We’ve given you the code to set up the
NSFetchedResultsController. Now you need to
update the tableview delegate and datasource
methods to use the controller instead of the view.

Refactor numberOfSectionsInTableView and
numberOfRowsInSection to use the controller.
NSFetchedResultsController has a sections property
that is an array of NSFetchedResultsSectionInfo
objects. Use those to figure out how many sections there are and
how many rows in each section.

1

Refactor cellForRowAtIndexPath and
didSelectRowAtIndexPath to use the controller.
NSFetchedResultsController makes it easy to
implement these methods using its objectAtIndexPath method.

2

Hmm, so if we get rid of the array
of Fugitives, then we’re going to have to
reimplement the datasource and delegate
methods too, right? My guess is we’re going
to use the NSFetchedResultsController
there as well?

Yes.
The NSFetchedResultsController gives us everything we
need to access the fetched data. In fact, it can do it a lot
more efficiently.

420 Chapter 8

sharpen solution

Here is the final code for CapturedListViewController.m
table methods.

#pragma mark Table view methods

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {

 return [[self.resultsController sections] count];

}

// Customize the number of rows in the table view.

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)
section {

 return [[[self.resultsController sections] objectAtIndex:section]
numberOfObjects];

}

// Customize the appearance of table view cells.

- (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NS
IndexPath *)indexPath {

 static NSString *CellIdentifier = @”Cell”;

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:CellIden
tifier];

 if (cell == nil) {

 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:CellIdentifier] autorelease];

 }

// Set up the cell...

 Fugitive *fugitive = [self.resultsController
objectAtIndexPath:indexPath];

 cell.textLabel.text = fugitive.name;

 return cell;
}

For the number of sections we can just return
the count of the sections in the controller.

You could have also done this using an id that conforms
to the NSFetchedResultsSectionInfo protocol.

Nothing fancy here - just get the
Fugitive at the given indexPath.

CapturedListViewController.m

you are here 4 421

migrating and optimizing with core data

- (void)tableView:(UITableView*)tableView didSelectRowAtIndexPath:(NSIndexPath *)
indexPath {

 FugitiveDetailViewController *fugitiveDetailViewController =
[[FugitiveDetailViewController alloc] initWithNibName:@”FugitiveDetailViewControl
ler” bundle:nil];

fugitiveDetailViewController.fugitive = [self.resultsController
objectAtIndexPath:indexPath];

[self.navigationController pushViewController:fugitiveDetailViewControlle
r animated:YES];

[fugitiveDetailViewController release];

One more lookup for the indexPath to
get the Fugitive, and we’re all set.

Test Drive
Go ahead and run iBountyHunter to make sure the changes didn’t break
anything. The views should be loading just like they were... sort of. Do some
quick testing—if you mark a fugitive as captured, does he switch lists? What if
you exit and come back into the app using the home key?

CapturedListViewController.m

422 Chapter 8

test drive

Test Drive
Now that you’re using the controller instead of just a predicate, the
behavior of the app should be the same. But people are showing up
in the captured list even when they’re not marked as captured!

Why aren’t fugitives properly changing lists
when you change their captured status?

you are here 4 423

migrating and optimizing with core data

We need to refresh the data
The fugitives aren’t properly changing lists when you change
their status because we’re not refreshing the data every time
the captured list view is displayed. We need to set up the
NSFetchedResultsController to let us know when things have
changed so we can update the table.

- (void)controllerDidChangeContent:(NSFetchedResultsController *)controller
{

 [self.tableView reloadData];

}

You can add this anywhere in the CapturedListViewController.m file.
The table view will completely reload
the data when it detects a change.

Implement the controllerDidChangeContent
method that we listed above, and make sure
everything’s working.

Test Drive

NSFetchedResultsController can check for changes

Now that we’ve set up the app to work with the NSFetchedResultsController
instead of just an array, we can leverage the methods embedded with the
controller to help us. The view controller has built-in support for monitoring
the data for changes through a delegate. We had set ourselves up as that
delegate but never implemented the code to handle data changing.

Having the view completely reload when it detects a change can become
cumbersome if you are dealing with a large amount of data; however, the
FetchedResultsController delegate also has support built-in for notifying
you of the specific cell that is changed, and you can modify just that. Check
Apple’s documentation for more details.

424 Chapter 8

test drive

Test Drive
Do the same thing you did last time, build and run, and
then change the status of one of the fugitives to pull
him dynamically out of the captured list.

Start with 5 captured
fugitives... ...remove one from the list... ...and he’s immediately gone!

It works!

you are here 4 425

migrating and optimizing with core data

This is awesome! The advantage I’m going
to have over the competition is great, and
having all that information with me means
that I’ll be making way fewer trips back to
the police station. Thanks!

There’s nothing like a
satisfied customer!

426 Chapter 8

no dumb questions

Q: Where can I find the full syntax for
NSPredicate?

A: NSPredicate has a pretty complex
syntax available for expressing constraints
on your data. There’s a simple summary
available in the NSPredicate class
documentation but Apple has an entire
document available to help you write
advanced predicates.

Q: It seems like it would be pretty
easy to make a mistake typing predicate
syntax into code like that. Isn’t that sort
of like embedding SQL?

A: Yes, and Xcode can offer a lot of help
here. Instead of embedding your predicates
in code, you can build them graphically
using Xcode’s data modeller, just like we did
with the Managed Object Model. To build
a predicate graphically, select an entity in
Xcode, then click on the plus as though you
were adding an attribute. Select “Add Fetch
Request” to create a new fetch request and
click Edit Predicate to bring up the graphical
editor. You can name your fetch requests
whatever you like. You’ll need to retrieve
them in code like this:

NSFetchRequest *fetchRequest

= [managedObjectModel
fetchRequestFromTemplateWithName:
@”capturedFugitives” substitutionVariables:[
NSDictionary dictionaryWithObject:capturedF
lag forKey:@”captured”]];

Then just use that fetch request instead
of one created in code. You can also use
Xcode’s builder to assemble a predicate,
then just cut and paste that into your code if
you’d prefer to keep them there.

Q: Reloading the whole table when
data changes seem pretty inefficient.
Aren’t we trying to optimize things?

A: Yes it is, and yes, we are. There are
a number of delegate methods you can
implement to get finer-grained information
about what’s happening with the Managed
Object Context. With that information, you
can find out if you just need to update a
specific table view cell, insert a cell, or
remove a cell. We took the easier route
and just asked the table view to reload
completely.

Q: What’s with that cache value we
gave to the results controller?

A: The results controller will use that file
name to cache information like the number
of items, number of sections, etc. It will keep
an eye on the data store and regenerate
the cache if something changes. You can
also forcibly ask it to remove a cache, but in
general you shouldn’t need to.

Q: Our results controller only has one
section. How do I get it to split things into
multiple sections?

A: Just provide an attribute name
for the sectionNameKeyPath. The
NSFetchedResultsController will group your
results using that attribute and return each
grouping as a section. You can get really
sophisticated and create a transient property
if you want to group them by something
you’re not actually storing in the database
and calculate the value using a custom
getter added to your object model.

 � NSFetchRequest can take an
NSPredicate to filter data based on
logical conditions.

 � You can express NSPredicate
conditions in code or using Xcode’s
predicate builder.

 � NSFetchedResultsController
provides highly efficient memory
management and change
monitoring for UITableViews

 � Be careful about what you put in
viewWillAppear, as it will be called
every time your view is shown.

you are here 4 427

migrating and optimizing with core data

DataMigrationcross
We have some new data lingo to try out, so flex those
verbal skills...

Untitled Puzzle
Header Info 1
Header Info 2

etc...

1

2 3

4

5 6

7

8

9 10

Across
2. viewDidLoad and view_______________ both load views,

but with different frequency.
5. The _________ is responsible for reading and writing data.
7. Automatic migration is called _______________ data

migration.
8. To update the data, we need to ____________ it.
9. The FetchedResultsController is good at ____________

management.
10. NSFetchResultsController can ___________ for changes.

Down
1. _____________ concepts are similar to NSFetchResults

concepts.
3. ______________ are used for filtering data.
4. The new model is the current ____________.
6. The Managed Object Context saves new or _____________

items.

428 Chapter 8

datamigrationcross solution

DataMigrationcross Solution
We have some new data lingo to try out, so flex those
verbal skills...

Untitled Puzzle
Header Info 1
Header Info 2

etc...

S1

Q

W2 I L L A P3 P E A R

R

V4 E

S5 T O R E D C6

R L7 I G H T W E I G H T

S C A

M8 I G R A T E N

O T G

N M9 E M O R Y C10 H E C K

S D

Across
2. viewDidLoad and view_______________ both load views,

but with different frequency. [WILLAPPEAR]
5. The _________ is responsible for reading and writing data.

[STORE]
7. Automatic migration is called _______________ data

migration. [LIGHTWEIGHT]
8. To update the data, we need to ____________ it.

[MIGRATE]
9. The FetchedResultsController is good at ____________

management. [MEMORY]
10. NSFetchResultsController can ___________ for changes.

[CHECK]

Down
1. _____________ concepts are similar to NSFetchResults

concepts. [SQL]
3. ______________ are used for filtering data. [PREDICATES]
4. The new model is the current ____________. [VERSION]
6. The Managed Object Context saves new or _____________

items. [CHANGED]

you are here 4 429

migrating and optimizing with core data

Your Data Toolbox

You’ve got Chapter 8 under
your belt and now you’ve

added migrating and optimizing
data to your toolbox. For a complete

list of tooltips in the book, go to http://
www.headfirstlabs.com/iphonedev. CH

AP
T

ER
 8

Data Migration
Core data can use lightweight
migration to automatically make
database changes.

Versioning is used to keep track of
the data migrations.

Lightweight migration can be used
to add attributes or changing
optional status.

Persistent Obj Store
Actually reads and writes the data.
Does data migration, sometimes without actually needing to load the data.
Uses mapping models if the changes are too much for lightweight migration.

Saving
The Managed Object Context
handles saving new or changed
items.

Filtering Data
Predicates are used for filtering results data.

The predicate needs to be set on the NSFetchRequest.

NSFetch- ResultsControllersMaximizes memory efficiency.Has high-performance UITableView
support.

Built-in support for monitoring
data changes.

430 Chapter 8

bob’s not done yet...

Hey wait... I think
I’m gonna need
pictures, too!

It’s a good thing
iPhone comes with
a camera...

this is a new chapter 431

I can take a perfectly fine
picture with this. I don’t
need a fancy iPhone...

camera, map kit, and core location9

Proof in the real world

The iPhone knows where it is and what it sees.
As any iPhone user knows, the iPhone goes way beyond just managing data: it can also

take pictures, figure out your location, and put that information together for use in your

app. The beauty about incorporating these features is that just by tapping into the tools

that the iPhone gives you, suddenly you can import pictures, locations, and maps without

much coding at all.

432 Chapter 9

bob needs a picture

For Bob, payment requires proof!
Bob is working hard on getting as many fugitives off the
street as he can, but to get paid he has to document his
captures.

I need a picture of the
arrest when it happens, and since my

phone has a camera, I was thinking you
might be able to help out...

That should be easy enough.
Bob wants a picture of his catch and he’s
going to need it to be pretty big—so let’s
go ahead and put it on its own view.

Those pictures will be great for
advertising, not to mention that it will
speed up payment!

you are here 4 433

camera, map kit, and core location

Here’s what the app looks like so far. Where
and how should we add photo support?

Your ideas go here.

434 Chapter 9

a detail view worth flipping over

i Flip over.

Caught photo.

. Here’s what we came up with for the photo view.
It’s similar to the way most utility apps work.

Flip over for the detail view!
It’s about time we used some real animation in our app.
Since we’ll only want the photo after drilling down through
to the detail view (what Bob will use to find his fugitive), it
makes sense to stick it on the back of the detail view.

This is a really common interface for the utility apps on the
iPhone. Typically, there will be two views, one with an info
button on it, and another that is revealed by flipping over
when the info button is clicked. Our app isn’t a utility app,
but we can steal the idea to give a nice baseball-card look to
our fugitive detail view.

The flipping is just another transition that comes with
UIKit. We’re going to want a modal view for that last view.

Done
Done button to
flip the picture
back over.

Space is getting
a bit tight down
here. If we shrink
up the space for
the description,
we can move the
capture info up
and leave room for
the new button.

You’ll need to
shrink this up
a bit. This is the

bottom of
the image.

Author’s note: These are hints
for the next exercise, so pay
attention!

you are here 4 435

camera, map kit, and core location

Enough planning and hints. Build the view
and get it implemented!

Start with the FugitiveDetailViewControler updates.
The detail view needs a new info button, and an action to trigger the
new flip view. The info button is just a regular button with the Info Dark
type.

1

Use a custom animation to show the new view when the
info button is pressed.
You already know how to present a modal view, but this time we want
to do it with a custom animation. The animation you want to use is the
UIModalTransitionStyleFlipHorizontal. Take a look at the
UIViewController documentation if you’re stuck on how to use it.

2

Build the new CapturedPhotoViewController.
That’s going to mean a view with a UIImageView and a Done button.
Don’t forget the action to tie in with the button and dismiss the view.

3

Don’t forget to connect the button
and the IBAction in Interface Builder!

Don’t worry about an IBOutlet for the
UIImageView yet,; we’ll get to that in a second.

436 Chapter 9

long exercise solution

v

This one is a whole bunch of functionality that you added
without much help! Here’s what we came up with:

Start with the FugitiveDetailViewController updates.1

- (IBAction)showInfoButtonPressed: (id) sender {

 CapturedPhotoViewController *controller =
 [[CapturedPhotoViewController alloc] initWithNibName:
 @”CapturedPhotoViewController” bundle:nil];

 controller.modalTransitionStyle =
 UIModalTransitionStyleFlipHorizontal;

 [self presentModalViewController:controller animated:YES];

 [controller release];

}

#import “CapturedPhotoViewController.h”

Use a custom animation to show the new view
when the info button is pressed.

2

- (IBAction) showInfoButtonPressed: (id) sender;
@end

Add the action to respond to the button press.

FugitiveDetailViewController.h

FugitiveDetailViewController.m

Instantiate the view controller and open up the flip view nib.

FugitiveDetailViewController.m

you are here 4 437

camera, map kit, and core location

v

Build the new CapturedPhotoViewController. 3

@interface CapturedPhotoViewController : UIViewController {

}

- (IBAction) doneButtonPressed: (id) sender;

@end

- (IBAction) doneButtonPressed: (id) sender {

 [self dismissModalViewControllerAnimated:YES];

}

The info button is just a UIButton
configured in the inspector as an “info dark”
type. Make sure you have the simluated tab
bar in here too, so it doesn’t get hidden!

CapturedPhotoViewController.h

CapturedPhotoViewController.m

When the done button is pressed, we want the view to go away.

Declare the View Controller and the
action for the button.

Wire this up to File’s Owner, at
the top of the dialog.

438 Chapter 9

long exercise solution

You can get this
UIImageView right from
the library

Don’t forget the button!

Build the new CapturedPhotoViewController (continued). 3

This one is a whole bunch of functionality that you added
without much help! Here’s what we came up with:

you are here 4 439

camera, map kit, and core location

Test Drive
Run the app and see the cool animation working!

Tapping this info button will flip the view.

This is the image
view - it’s empty,
but not for
long...

The UIImage will be stored in the

The and the need to be again so this will work.

The has to know about the image and where to display it.

The image has to come from the or the

Now the views and animations are all working properly,
what about the image itself? Think about the data model
when you fill in the blanks below.

440 Chapter 9

sharpen solution

The UIImage will be stored in the

The and the need to be again so this will work.

The has to know about the image and where to display it.

The image has to come from the or the

Now the views and animations are all working properly,
what about the image itself? Think about the data
model when you fill in the blanks below.

database

database data model migrated

CapturedPhotoViewController

camera photo library

Do this!
You’ve migrated the database before, and you’re going to
need to do it again. Just so it’s handled and out of the way,
get into Xcode and do another database migration.

Highlight iBountyHunter 2.xcdatamodel.
Then go to the Design → Data Model → Add Model Version
menu option. You will have iBountyHunter 3.xcdatamodel in the
iBountyHunter.xcdatamodel directory.

1

Set the current version.
Inside the iBountyHunter.xcdatamodeld directory, select
iBountyHunter 3.xcdatamodel, which will be our new version. Go
to the Design → Data Model → Set Current Version menu
option.

2

Add the new field to the new data model and generate
the new Fugitive class.
For the image, we’ll need a new attribute called “image” that is a
binary data type. Then delete the old Fugitive.h and Fugitive.m
files and generate new ones via the New menu option.

3
Check out Chapter 7 if you’re still fuzzy on how to do this.

you are here 4 441

camera, map kit, and core location

The way to the camera...
...is through the UIImagePickerController. Why? Because our real
mission here is to pick an image. The iPhone implements image
selection through a picker that allows you to get your image from
different places, like the camera or the photo library.

The UIImagePickerController class has a lot of built-in
functionality, plus it’s modal, so once you implement it, a lot of
things start happening without any additional code in your app:

UIImage
The view for the image picker is already written and will automatically be used when you present the controller.

If it received an image, our view controller needs to update its fugitive with the image that will be persisted the next time save is called.

The UIImagePickerController tells its delegate (our CapturedPhotoViewController) when it has an image, or if the user cancelled. The delegate gets an image the same way regardless of whether it came from the Photo Library or was just taken with the camera.

Now it’s just a
matter of some
syntax...

UIImage
Picker

Controller
View

UIImagePicker
Controller

Captured
Photo
View

CapturedPhoto
ViewController

Our CapturedPhotoViewController will

create a UIImagePickerController, then

present it as a modal view.

442 Chapter 9

ready bake code

Ready Bake
Code

- (void) viewWillAppear:(BOOL)animated {

 [super viewWillAppear:animated];

 self.fugitiveImage.image = [[[UIImage alloc]
 initWithData:fugitive.image] autorelease];

}

 - (IBAction) takePictureButton: (id) sender {

 NSLog(@”Taking a picture.”);

 UIImagePickerController* picker =
 [[UIImagePickerController alloc] init];

 picker.sourceType = UIImagePickerControllerSourceTypePhotoLibrary |
 UIImagePickerControllerSourceTypeCamera;

 picker.delegate = self;

 picker.allowsEditing = YES;

 [self presentModalViewController:picker animated:YES];

}

- (void)imagePickerController:(UIImagePickerController *)picker

 didFinishPickingImage:(UIImage *)image

 editingInfo:(NSDictionary *)editingInfo

{

 self.fugitive.image = UIImagePNGRepresentation(image);

 [self dismissModalViewControllerAnimated:YES];

 [picker release];

}

Here is some code you’ll need to tie the image picker together.
This code goes in our CapturedPhotoViewController as part of
the next exercise.

When the view appears, we’re
going to allocate the image in
the database to the view if
there is one.

The picker is displayed asynchronously.

Remove the picker interface and release the picker object.

This allows the users to edit the photo they are choosing.

Once the image is chosen, this
gets called.

CapturedPhotoViewController
hints

you are here 4 443

camera, map kit, and core location

Time to get some images! Using the code for the image
picker that we gave you, as well as some of your
Objective-C skills, and let’s get the images going.

Import the Fugitive header file and declare a property
for the fugitive.
The CapturedPhotoViewController needs to know what fugitive it’s
working with. Add a Fugitive field and property named “fugitive” to
the CapturedPhotoViewController.

1

Add the “Take picture button”.
Using Interface Builder, you’ll need to create a button that covers the
entire UIImageView and is then set behind it. Don’t forget to connect it
to your takePictureButton action.

4

Add the code for the UIImagePickerController in the
takePictureButton action.
Use the code that we gave you to finish up the UIImagePickerController.
You’ll need to say our CapturedPhotoViewController conforms to the
UIImagePickerControllerDelegate and UINavigationControllerDelegate
protocols in order to make it the delegate.

3

Change the FugitiveDetailViewController’s
showInfoButtonPressed method to set the fugitive.
You’ll need to pass the fugitive information along to the
CapturedPhotoViewController when it’s created and before it’s pushed.

5

After you create th
e button,

just select it and u
se the

Layout → Send to Back

menu option.

Store the image when it’s selected and update the
UIImageView.
You need to set the image information on the fugitive when the picker
gives us an image, then make sure the UIImageView is updated when
the view is shown. You’ll need an outlet for the UIImageView; then
link it in Interface Builder.

2

444 Chapter 9

exercise solution

#import “Fugitive.h”

@interface CapturedPhotoViewController : UIViewController
<UINavigationControllerDelegate, UIImagePickerControllerDelegate> {

 UIImageView *fugitiveImage;

 Fugitive* fugitive;
}

@property (nonatomic, retain) IBOutlet UIImageView *fugitiveImage;

@property (nonatomic, retain) Fugitive *fugitive;

- (IBAction) doneButtonPressed: (id) sender;

- (IBAction) takePictureButton: (id) sender;

@end

#import “Fugitive.h”

@implementation CapturedPhotoViewController

@synthesize fugitiveImage, fugitive;

- (void) viewWillAppear:(BOOL)animated {

 [super viewWillAppear:animated];

 self.fugitiveImage.image = [[[UIImage alloc]
 initWithData:fugitive.image] autorelease];

}

CapturedPhotoViewController.h

CapturedPhotoViewController.m

 Import the Fugitive header file and
declare a property for the fugitive.

1

Here’s all of the pieces put together to implement the button...

Store the image when it’s
selected and update the
UIImageView.

2

We’ll need an outlet so we can update the UIImageView
with the selected image.

you are here 4 445

camera, map kit, and core location

- (IBAction) takePictureButton: (id) sender {
 NSLog(@”Taking a picture.”);
 UIImagePickerController* picker =
 [[UIImagePickerController alloc] init];

 picker.sourceType = UIImagePickerControllerSourceTypePhotoLibrary |
 UIImagePickerControllerSourceTypeCamera;

 picker.delegate = self;

 picker.allowsEditing = YES;

 [self presentModalViewController:picker animated:YES];
}

- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingImage:(UIImage *)image
 editingInfo:(NSDictionary *)editingInfo

{
 self.fugitive.image = UIImagePNGRepresentation(image);

 [self dismissModalViewControllerAnimated:YES];

 [picker release];
}

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker

{
 [self dismissModalViewControllerAnimated:YES];

 [picker release];
}

- (void)dealloc {

 [fugitive release];

 [fugitiveImage release];
 [super dealloc];
}
@end

We set the delegate
 to be us so

that we’re notified when an image is

selected (or the us
er hits cancel).

Then we present the picker and
wait to see what happens...

Since Core Data wants to store binary data, we need
to get the raw image information out of the UIImage.
We convert it to a PNG representation for that.

You need to remember to
release the picker controller
once you’ve gotten the image.

...and we don’t release the picker controller
until we get the image callbacks.

Add the code for the UIImagePickerController
in the takePictureButton action.

3

Logging the method here will let
us see that it gets called in the
debugger.

CapturedPhotoViewController.m

446 Chapter 9

exercise solution

Add the “Take picture button”.4

This is a little tough to make out, but the button is behind the UIImageView.

Change the default text to
“Tap here to add a photo”;
since it’s behind the picture,
you’ll only see it if there’s no
image.

Here’s all of the pieces put together to implement the button...

Change the FugitiveDetailViewController’s
showInfoButtonPressed method to set the fugitive.

5

- (IBAction)showInfoButtonPressed: (id) sender {
 CapturedPhotoViewController *controller =
 [[CapturedPhotoViewController alloc] initWithNibName:
 @”CapturedPhotoViewController” bundle:nil];
 controller.fugitive = self.fugitive;
 controller.modalTransitionStyle =
 UIModalTransitionStyleFlipHorizontal;
 [self presentModalViewController:controller animated:YES];

 [controller release];
}

We just need to set the fugitive on
the new property we added to the
CapturedPhotoViewController.

FugitiveDetailViewController.m

you are here 4 447

camera, map kit, and core location

Test Drive

Agh! It crashed!

What’s wrong? Think outside the simulator here...

What does this mean?

Build and run to see your new picture view in action.

448 Chapter 9

the iPod Touch is different

The simulator doesn’t have
a camera!

Right! And neither does an
iPod Touch.
The simulator is reacting to the fact
that you are asking for the camera and
it doesn’t have one. But more than the
simulator not having the camera, the
iPod touch doesn’t either.

Who cares? Apple.

The iPhone isn’t the only device using apps
One of the things that Apple requires when you release
an app is that it can work on all devices that can run apps,
which for now includes the iPod Touch and the iPhone.
Part of the approval process for apps is that they are
checked for compatibility with the iPod Touch.

All this means that you need to be aware of when your
app may be straying into areas where an iPhone behaves
differently than the iPod Touch.

Author’s note:
We don’t have insider information or
anything; we’re just assuming that as time
goes on this list will grow.

How many
differences are
there, really?

you are here 4 449

camera, map kit, and core location

Pool Puzzle
Your job is to take items from the pool and

place them into the list for the iPhone or
iPod Touch. You may not use the same
item more than once, and you won’t need
to use all the items listed. Your goal is to
make a complete list of the functionality
for the iPhone and iPod Touch.

Note: each thing from
the pool can only be
used once!

iPhoneiPod Touch

Cell phone

Run apps

iPod

Wi-Fi

Camera External speaker

Video viewing

Cell phone

Limited location
GPS

AccelerometerRun apps

iPod

Wi-Fi

Camera Video viewing

Accelerometer

External speaker

Video recording
Video recording

Magnetometer
Magnetometer

450 Chapter 9

pool puzzle solution

Pool Puzzle Solution
Your job is to take functionality from the pool

and place them into the list for the iPhone
or iPod Touch. You may not use the same
item more than once, and you won’t need
to use all the items listed. Your goal is to
make a complete list of the functionality
for iPhone and iPod Touch.

Note: each thing from
the pool can only be
used once!

iPhoneiPod Touch

Cell phone

Run apps

iPod

Wi-Fi

Camera External speaker

Video viewing

Cell phone

Limited location GPS

Accelerometer

Run apps

iPod

Wi-Fi

Camera

Video viewing

Accelerometer

External speaker

You can get some
info about location
from Wi-Fi.

You may have noticed some random stuff on this list—who would’ve thought about the speaker?

 This list will
change.

Apple is always
coming out with new
devices and updating

capabilities. You need to check!

This one can
be an issue.

Video recording

Video recording

Only on the
3GS

Magnetometer

Magnetometer

you are here 4 451

camera, map kit, and core location

There’s a method for checking
With all of these little things that can be different between
devices, pretty much every time you go to use something from the
device, you need to check and see if it’s there. For the camera, the
UIImagePickerController has a method to check.

[UIImagePickerController
 isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera]

Since we’re getting the info from
a source, we need to check and see
if the source you want is there.

So what happens when the user taps the “Take
a photo” button? You check for the camera, then
what? What’s the user flow?

In our case, we have another option: the photo library. If there’s no
camera, we can get an image from there instead.

452 Chapter 9

action sheets

Prompt the user with action sheets
Action sheets slide up from the bottom of the page and give the user options
to proceed. It’s similar to a modal view because the user has to address the
action sheet before they can move on to anything else. Action sheets are really
straightforward to use: they take strings for their buttons and have built-in
animations for appearing and disappearing. Our code for the action sheet has
some standard stuff included:

Go back to the image view.

What happens with each
of these buttons? Go to the camera, take a picture, and then come back and

put your new image into the Fugitive. Once you hand off to
UIImagePickerControllerSourceTypeCamera,
it’ll handle the rest.

Go to the photo library, pick an image, and then come
back and stuff that image into the Fugitive. Here, the
UIImagePickerControllerSourceTypePhotoLibrary
handles the rest.

UIActionSheet *photoSourceSheet =
 [[UIActionSheet alloc] initWithTitle:
 @”Select Fugitive Picture”

 delegate:self cancelButtonTitle:@”Cancel”
 destructiveButtonTitle:nil

 otherButtonTitles:@”Take New Photo”, @”Choose
 Existing Photo”, nil, nil];

 [photoSourceSheet showInView:self.view];

 [photoSourceSheet release];

We’ll use action sheets to let the user pick the
image source
We know that our options are to use the camera, use the photo
library, or cancel, so we’ll need to implement the behavior for
each option.

First, allocate the action sheet, and pass it a title.
All action sheets need a cancel
button, so you can dismiss it,
just like modal views.

Action sheets frequently have a “Yes, I know this will delete all of my stuff. Please do it” button, which is the destructive button.

This button would get
highlighted in red. We
don’t have one.Declare the other two

buttons and you’re done.

Unlike the
UIImagePickerController, we
release the action sheet
immediately.

you are here 4 453

camera, map kit, and core location

Implement the action sheet! There’s a lot here to think
about since we’re changing the flow of the app a bit.

Modify the takePictureButton action to include the
action sheet.
iBountyHunter needs to check for the camera, and if there is
one, the user gets to pick whether to use the camera or an existing
picture. If not, the app should just go straight into the photo
library.

1

Implement the delegate methods for the action sheet.
Here’s enough to get you started. Think about the options for case 1
and the default, and make sure you release the picker and present the
view. Also don’t forget to declare the UIActionSheetDelegate
in the header file.

2

Make your code readable!
We divvied up the implementation code into three #pragmas: the
takePictureButton code, the UIImagePickerController code, and the
action sheet delegate methods.

3

This is where the
action sheet comes in.

- (void)actionSheet:(UIActionSheet *)actionSheet
 didDismissWithButtonIndex:(NSInteger)buttonIndex {

 UIImagePickerController* picker =
 [[UIImagePickerController alloc] init];

 picker.delegate = self;

 picker.allowsEditing = YES;

 switch (buttonIndex) {

 case 0:

 NSLog(@”User wants to take a new picture.”);

 picker.sourceType =
 UIImagePickerControllerSourceTypeCamera;

 break;

454 Chapter 9

sharpen solution

Modify the takePictureButton action to include the action
sheet.

1

The action sheet should be ready to go and
your app has a good user flow now...

- (IBAction) takePictureButton: (id) sender {

 NSLog(@”Taking a picture.”);

 if ([UIImagePickerController

 isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera]) {

 NSLog(
 @”This device has a camera, ask the user what they want to
do.”);

 UIActionSheet *photoSourceSheet =

 [[UIActionSheet alloc] initWithTitle:@”Select Fugitive Picture”

 delegate:self cancelButtonTitle:@”Cancel”
 destructiveButtonTitle:nil

 otherButtonTitles:@”Take New Photo”, @”Choose Existing Photo”,
 nil, nil];

 [photoSourceSheet showInView:self.view];

 [photoSourceSheet release];

 }

 else { // No camera, probably a touch
 NSLog(@”No camera available on the device. Defaulting to library.”);

 UIImagePickerController* picker = [[UIImagePickerController alloc] init];

 picker.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;

 picker.delegate = self;

 picker.allowsEditing = YES;

 [self presentModalViewController:picker animated:YES];

 }

}

Change this to SourceTypePhotoLibary if
you want to see the action sheet working on the
simulator.

CapturedPhotoViewController.m

you are here 4 455

camera, map kit, and core location

Implement the delegate methods for the action sheet.2

@interface CapturedPhotoViewController :
 UIViewController <UINavigationControllerDelegate,
 UIImagePickerControllerDelegate, UIActionSheetDelegate>

- (void) actionSheet:(UIActionSheet
*)actionSheet didDismissWithButtonIndex:(NSInteger)buttonIndex {

 UIImagePickerController* picker =
 [[UIImagePickerController alloc] init];

 picker.delegate = self;

 picker.allowsEditing = YES;

 switch (buttonIndex) {

 case 0:
 NSLog(@”User wants to take a new picture.”);

 picker.sourceType =
 UIImagePickerControllerSourceTypeCamera;

 break;

 case 1:
 NSLog(@”User wants to use an existing picture.”);

 picker.sourceType =
 UIImagePickerControllerSourceTypePhotoLibrary;

 break;

 default:
 // They picked cancel

 [picker release];

 return;

 }

 [self presentModalViewController:picker animated:YES];

}

CapturedPhoto
ViewController.m

CapturedPhotoViewController.h

Does it work?

456 Chapter 9

test drive

Test Drive
Fire up iBountyHunter and drill down through a fugitive to the point of taking a picture.
If you’ve used the SourceTypePhotoLibrary in the takePictureButton
code, you’ll get everything to work and see the action sheet.

The action sheet pops up, and
once you select choose the
existing photo...

...you get launched into the photo library and you can select a photo.

It might be time to register with Apple’s Developer Program. If you do,
you can install the app on your actual iPhone and test it yourself. Check
out the appendix at the end of the book to help you walk through the
provisioning process to make it work.

Geek Bits

you are here 4 457

camera, map kit, and core location

Q: Doesn’t iPhone 3GS support video
now? How do I get to that?

A: It’s another media type you can access
when you use the UIImagePickerController.
By default, it uses still images, which is what
we want for iBountyHunter.

Q: What about the whole augmented
reality thing with the camera? Can I do
something like that?

A: Yes. You can give the
UIImagePickerController a custom overlay
view to use if it invokes the camera. There
are still limitations on what you can actually
do in the camera view, but you can overlay it
with your own information if you want.

Q: What’s with the allowEditing
thing we turned on in the
UIImagePickerController?

A: The picker controller has built-in
support for cropping and zooming images

if you want to use it. The allowEditing flag
controls whether or not the users get a
chance to move and resize their image
before it’s sent to the delegate. If you enable
it, and the user tweaks the image, you’ll be
given editing information in the callback.

Q: Do we really have to worry about
the iPod Touch?

A: Yes. When you submit your application
to Apple for inclusion in the iTunes App Store,
you specify the devices your application
works with. If you say it works, Apple will
test it on both types of devices. They also
run tests where your application cannot get
network access to ensure you handle that
properly as well. Think defensively. Apple is
going to test your application in a variety of
scenarios.

Q: Is there any way to test the camera
in the simulator?

A: No. What we’ve done is about as
close as you can get, which is to implement

the code for the camera and test it with the
photo library. You’ve learned a lot so far, and
lots of the functionality that you’re moving
into has outgrown the simulator. GPS
functionality, the accelerometer, speaker
capabilities, all of these things can’t be
tested at the simulator, and to really test
them, you’ll need to install them on your
iPhone.

Q: What’s the deal with Apple’s
Developer Program again?

A: In order to install an app on your
device or to submit an app to the App
Store, you need to be a registered iPhone
developer with Apple. The fee currently is
$99. Even if you want to just install an app
for your own personal use, you’ll need to be
registered.

Look at the appendix for more detailed
directions of how installing an app on your
phone actually works.

Let’s show
it to Bob...

458 Chapter 9

location is important

Bob needs the where, in addition to
the when
You’ve given Bob a way to record the proof he captured
someone with a photo, and an easy way to note when it
happened, but what about the where?

Cool—I love the
pictures—but I need
location info about the
grab, too.

Bob has a jurisdiction problem.
There are rules about where Bob can nab
criminals, so he needs to keep track of where
the capture occurred.

The easiest way for Bob to keep track of
these things is by recording the latitude and
longitude of the capture.

you are here 4 459

camera, map kit, and core location

How are two new fields going to affect the app? Use
this space to show where, and on what view, the
latitude and longitude info will end up.

Sketch her
e

What needs to happen to the data model and the data itself?

460 Chapter 9

sharpen solution

Here’s what we came up with for the new
view and the data changes:

The database needs to be updated: we’re going to be getting a latitude and longitude
value in degrees. To hold them in the database, they’ll need to be broken up into two new
attributes for the Fugitive class: latitude and longitude.

Location: Lat., Long. Since we’re running low
on space in the view,
we’re going to list the
latitude and longitude
together.

This will just be a label.

What needs to happen to the data model and the data itself?

you are here 4 461

camera, map kit, and core location

location Construction

Get into it and get the app ready for the capture coordinates:

Implement the new fields in the view for the location
label and the latitude and longitude fields.

Migrate the database again and produce the new Fugitive
class with the latitude and longitude fields. We called them capturedlat and capturedlon and made them type “Double”.

462 Chapter 9

location construction

location Construction

Get into it and get the app ready for the capture coordinates:

Implement the new fields in the view for the location
label and the latitude and longitude fields.

We’ve added the
Lat Lon field here.

The values will be
added here when
the fugitive is
captured.

Create the outlet for the
capturedLatLong label. We’ll
fill it in soon.

UILabel *capturedLatLon;

@property (nonatomic, retain)
 IBOutlet UILabel *capturedLatLon;

@synthesize capturedLatLon;

capturedLatLon.text = [NSString stringWithFormat:
 @”%.3f, %.3f”, [fugitive.capturedLat doubleValue],
 [fugitive.capturedLon doubleValue]];

[capturedLatLon release];

FugitiveDetailViewController.h

FugitiveDetailViewController.m

you are here 4 463

camera, map kit, and core location

Migrate the database again and produce the new Fugitive
class with the latitude and longitude fields.

The new fields, capturedLat
and catpuredLon, are both of
type “Double”.

We’re up to iBountyHunter
4.xcdatamodel.

OK so I’d bet you can get
that from the GPS on the
iPhone, but didn’t you just
warn us that the iPod Touch
doesn’t have that?

That’s true, but you’ve got
options.
You may remember back in that pool
puzzle we said something about the
iPod Touch being able to handle limited
location. The iPhone (and iPod Touch)
have more than one way to get at where
you are in the world.

464 Chapter 9

core location

Core Location can find you in a few ways
GPS is the first thought most people come up with, but the first generation
iPhone didn’t have GPS, and neither does the iPod Touch. That doesn’t
mean that you’re out of options. There area actually three ways available for
the iPhone to determine your location: GPS, cell tower triangulation, and
Wi-Fi Positioning Service.

GPS is the most accurate, followed by cell towers and Wi-Fi. iPhones can use
two or three of these, while the iPod Touch can only use Wi-Fi, but it beats
nothing. Core Location actually decides which method to use based on what’s
available to the device and what kind of accuracy you’re after. That means
none of that checking for source stuff; the iPhone OS will handle it.

Core Location relies on the LocationManager

To use Core Location, you simply need to create a location manager and ask
it to start sending updates. It can provide position, altitude, and orientation,
depending upon the device’s capabilities. In order for it to send you this info,
you need to provide it with a delegate as well as your required accuracy. The
CLLocationManager will notify you when positions are available or if there’s
an error. You’ll want to make sure you’re also properly handing when you don’t
get a position from the location manager. Even if the device supports it, the users
get asked before you collect location information, and can say “No” to having their
position recorded (either intentionally or by accident).

self.locationManager = [[CLLocationManager alloc] init];

self.locationManager.desiredAccuracy = kCLLocationAccuracyNearestTenMeters;

self.locationManager.delegate = self;

[self.locationManager startUpdatingLocation];

Allocate the CLLocation Manager You’ll need to pass in the
accuracy. 10 meters is fine
for Bob.

Once the locationManager has the position, it will start
sending it back to the delegate for you to use.

Where should we implement this code in
our app?

you are here 4 465

camera, map kit, and core location

I guess we’re going to need a
new header file for those Core
Location constants?

Yes, and a new framework.
To keep the size of your app small, Apple
breaks apart functionality into libraries.
As you start adding new functionality, like
Core Location, you’ll need to start adding
frameworks. Since the Core Location
framework isn’t included by default, we
need to go add it.

466 Chapter 9

core location framework

Add a new framework
So far we’ve been spoiled and have used default frameworks, or they’ve
been imported with the template. Now that we’re branching out, it’s
time to add the Core Location framework to the app.

Highlight the frameworks folder and right-click to
navigate to the Add → Existing Frameworks...
option. Then select “Core Location” and Add.

The new framework
will be listed here.

#import <UIKit/UIKi
t.h>

#import <CoreLocatio
n/CoreLocation.h>

#import “Fugitive.h
”

@interface Fugitive
DetailViewControlle

r : UIViewControlle
r

<CLLocationManagerDe
legate> {

 CLLocationManager *l
ocationManager;

}

@property (nonatomic
, retain) CLLocation

Manager *locationMan
ager;

Then update the header file
We still need to declare ourselves as conforming to the
CLLocationManagerDelegate protocol and add our property.

Include the new CoreLocation framework.

We’re working through the delegate, so that needs
 to be there.

Declare the CLLocationManager so we can use it and

synthesize it in FugitiveDetailViewController.m.

FugitiveDetail
ViewController.h

you are here 4 467

camera, map kit, and core location

 Core Location inhales batteries.

Making frequent calls from your app to find locations will
quickly drain batteries, since it turns on the GPS/cellular/
Wi-Fi receiver. That’ll lead to upset users and cranky
iTunes reviews. Keep it to a minimum!

BE the developer
Your job is to be the developer and figure
out where you’re going to implement Core
Location into our user flow. Assume that

Bob needs the location and
date and time to mark a
capture.

 What method will be used to kick off Core Location in the detail view?1

 What happens when the location is returned to the view controller?2

 What happens if Core Location can’t get anything or the user disables it?3

 When will you shut down Core Location?4

 What about other devices?5

468 Chapter 9

- (IBAction) capturedToggleChanged: (id) sender {

 NSLog(@”Toggling the captured toggle.”);

 if (capturedToggle.selectedSegmentIndex == 0) {

 NSLog(@”Dude got captured.”);

 NSDate *now = [NSDate date];

 fugitive.captdate = now;

 fugitive.captured = [NSNumber numberWithBool:YES];

 CLLocation *curPos = self.locationManager.location;

 fugitive.capturedLat =
 [NSNumber numberWithDouble:curPos.coordinate.latitude];

 fugitive.capturedLon =
 [NSNumber numberWithDouble:curPos.coordinate.longitude];
 }

 else {
 fugitive.captdate = nil;
 fugitive.captured = [NSNumber numberWithBool:NO];
 fugitive.capturedLat = nil;
 fugitive.capturedLon = nil;
 }

 capturedDateLabel.text = [fugitive.captdate description];

 capturedLatLon.text = [NSString stringWithFormat:@”%.3f, %.3f”,
 [fugitive.capturedLat doubleValue],
 [fugitive.capturedLon doubleValue]];
}

be the developer

BE the developer
Your job is to be the developer and figure
out where you’re going to implement Core
Location into our user flow. Assume that

Bob needs the location and
date and time to mark a
capture.

 What method will be used to kick off
Core Location in the detail view?

1

 What happens when the location is returned to the view controller?2

Put the code to initialize Core
Location in the viewWillAppear for the
detail view.

We’ll know the location manager can get the current position. If the user marks the fugitive as
captured, we need to get the current position from the location manager and update the fugitive.

We don’t need the continually
updating locations, so we’ll ask
the location manager for its last
location when the user toggles
the captured control.

Remember, since Core Data uses objects for

everything, we’re actually storing NSNumbers

in the fugitive. We need to get the double

value, then format it for the label.

FugitiveDetailViewController.m

you are here 4 469

camera, map kit, and core location

- (void)locationManager:(CLLocationManager *)manager

 didUpdateToLocation:(CLLocation *)newLocation

 fromLocation:(CLLocation *)oldLocation {

 NSLog(@”Core location claims to have a position.”);

 capturedToggle.enabled = YES;

}

- (void)locationManager:(CLLocationManager *)manager

 didFailWithError:(NSError *)error {

 NSLog(@”Core location says no-go on the position info.”);

 capturedToggle.enabled = NO;

}

 When will you shut down Core Location?4

 What about other devices?5

Since Bob needs the location info when he marks a fugitive as captured, we’ll
need to disable the captured switch if we can’t get anything.

We’ll shut it down when we leave the detail view.

We’re good. All we do is tell Core Location the accuracy we want and it deals with the
rest. So, the iPod Touch can get just the best data it can, and we’ll get that.

Do this!
Implement all this code and
then take it for a spin...

 What happens if Core Location can’t get anything or the user disables it?3

Since the segmented controller really doesn’t have a nice
disabled look, you might want to consider using a UIAlertView
to warn the user that they can’t mark anyone as captured.

FugitiveDetailViewController.m

-(void) viewWillDisappear:(BOOL)animated {

 [super viewWillDisappear:animated];

 NSLog(@”Shutting down core location...”);

 [self.locationManager stopUpdatingLocation];

 self.locationManager = nil;

}

FugitiveDetailViewController.m

470 Chapter 9

no dumb core location questions

Q: We start and stop Core Location in viewWillAppear and
viewWillDisappear. Is that normal?

A: It’s normal to start and stop Core Location as you need it. It
uses a fair amount of power while it’s running, so it’s best to shut
it down if you don’t need it. This gets a little tricky because Core
Location can require some time to get its initial position information.
To try and make that a little smoother for the user, we enable it as
soon as the view appears to give it a head start before the user
needs the location.

Q: Is there any way to speed up that initial position?

A: Core Location will try to cache previous position information
so it can give you something as quickly as possible. Because of
this, if you’re really concerned about accuracy, you should check the
timestamp sent along with the position information to make sure the
position is recent enough for your needs.

Q: Does location accuracy impact things like startup time or
battery usage?

A: Absolutely. The more accurate a position you ask for, the more
battery Core Location will consume and it will potentially take longer
to figure out. Lower fidelity information tends to come to you faster.
Use whatever accuracy you need for your application, but be aware
of the implications of high resolution information.

Q: Is there a way to just wait for Core Location to have a
position rather than having it call back to the delegate like that?

A: No. Core Location, like a lot of other frameworks in iPhone
OS, calls back asynchronously as data is available. Network access
generally works this way as well. You need to make sure you keep
your users informed of what’s going on in the application and what
they can and can’t do at the moment. For example, we disable the
Captured button if there’s no position information available. Other
options display a wait indicator (like a spinning gear) or display
position status with a disabled indicator like an icon, button, or label.

you are here 4 471

camera, map kit, and core location

Test Drive
Implementing Core Location really wasn’t that hard, but making it work in the user
flow required a bit more work. Now that it’s all done, you should be up and running...

To operate the app here, Bob will
navigate into the detail view, which
will kick off the Core Location
manager.

Once a position is returned, the
captured button is enabled and the
fields are populated.

It’s working! Bob
should be psyched...

If you add capturedToggle.enabled
= NO; to the viewWillAppear, then
the user can’t engage the control
before Core Location starts
returning updates.

472 Chapter 9

bob gets visual

Just latitude and longitude
won’t work for Bob

That’s great for my forms and
everything, but I’m more of a
visual person...

It’s an iPhone. A map
would really be more
appropriate.
What’s the point of all the network
connectivity and fancy graphics if
we just show a text field? With just a
little bit of code and the iPhone OS
Map Kit, we’ve got something a lot
more appealing in the works.

you are here 4 473

camera, map kit, and core location

Map Kit is new with iPhone 3.0
With the latest major iPhone update, Apple opened up the API
for the maps that are used on the iPhone. The data for the maps
comes from Google maps, including satellite imagery.

There’s lots of customization that you can do with the maps, such
as how wide an area they show, what view they start with, and
pins and annotations.

Logistically, using Map Kit is a lot like Core Location: you’ll
need a new framework and will have to #import <MapKit/
MapKit.h> in the header file.

How can we put
that to work?

MKMapView is a control that pulls map information from Google Maps. You
can configure it for the
normal road display, satellite imagery, or a hybrid, like you see here.

Map Kit comes with built-in
support for pushpins at specified
locations, called annotations.

Depending on the
information you
want to show on the
map, you can create
your own Views for
annotations and
show anything you
want, like pictures,
formatted text, etc.

 Map Kit requires a network connection.

Since Map Kit pulls imagery information from Google,
you’ll need to have a network connection for it to be useful.
That’s not a problem for the simulator (assuming your
Mac is online) but it could be an issue for the iPod Touch

and even the iPhone, depending on the location. Map Kit handles this
gracefully, but it’s something to be aware of.

474 Chapter 9

map custom setup

- (void) viewWillAppear:(BOOL)animated {

 [super viewWillAppear:animated];

 self.fugitiveImage.image =
 [[[UIImage alloc] initWithData:fugitive.image] autorelease];

 if ([fugitive.captured boolValue] == YES) {

 CLLocationCoordinate2D mapCenter;

 mapCenter.latitude = [fugitive.capturedLat doubleValue];

 mapCenter.longitude = [fugitive.capturedLon doubleValue];

 MKCoordinateSpan mapSpan;

 mapSpan.latitudeDelta = 0.005;

 mapSpan.longitudeDelta = 0.005;

 MKCoordinateRegion mapRegion;

 mapRegion.center = mapCenter;

 mapRegion.span = mapSpan;

 self.fugitiveMapView.region = mapRegion;

 self.fugitiveMapView.mapType = MKMapTypeHybrid;

 }

}

A little custom setup for the map
Like Core Location, it’s not a lot of work to get basic Map Kit
support going in iBountyHunter. We’ll update viewWillAppear in
the CapturedPhotoViewController to display the capture location
on a hybrid (satellite plus road information) map.

Here we’ll pass in the value of the lat and lon where the fugitive was captured.
These values
allow us to
configure the
size of the
default map
shown.

We pull all of this
information together to initialize the map.

The size of the map is in
degrees. We want the map
to be pretty zoomed in.

Here we’re setting the map to our view.

There are a few map types; hybrid is both satellite and road information.

CapturedPhotoViewController.m

you are here 4 475

camera, map kit, and core location

Implement the map to show the area where
the fugitive was captured.

Add the Map Kit framework and the #import.
Add the framework just like we did with Core Location. While
you’re at it, make sure that you do the #import in the detail view
to include the Map Kit header.

1

Configure the photo view to show the map.
Rather than adding a whole new view, go ahead and add the map
to the CapturedPhotoView with the image. Resize the image
and the button then drag an MKMapView to the bottom half of
the view.

2
Resize the image
and the button...

...and use the
bottom of the
view for the
MKMapView.Add the outlets and code for the MKMapView.

Now that you have all the support stuff in place, go ahead and
add the outlets and the actual Map Kit code we gave you to make
the map work. Make sure you wire up the outlet in Interface
Builder.

3

Q: What’s the difference between Core Location and Map Kit?

A: Map Kit is about displaying a map, position-sensitive
information, and, user interface. Core Location is about getting
you information about where you are. You can drag and drop a
map onto your view in Interface Builder; you pass it some values
and it just works.

Core Location, on the other hand, returns values to the delegate and
you need to decide what to do with them. We’re going to take that
information from Core Location and give it to Map Kit to show us a
map of the capture location, for example.

Q: Where do all these frameworks come from? What if I want
one that’s not on the list?

A: The frameworks are included as part of the SDK. The actual
path to the frameworks varies by version and what platform you’re
developing for. For example, the Map Kit framework we’re using is
here: /Developer/Platforms/iPhoneOS.platform/Developer/SDKs/
iPhoneOS3.1.sdk/System/Library/Frameworks/MapKit.framework.
In general, you should be able to add frameworks using the “Add
Existing Framework” and not need to worry about a specific location,
but if a framework isn’t listed or you’re adding a custom one, you can
point Xcode to the actual path.

476 Chapter 9

exercise solution

Add the Map Kit framework and the #import.1

Configure the photo view to show the map.2

#import <MapKit/MapKit.h>

 @class Fugitive;

 @interface CapturedPhotoViewController :
 UIViewController <UINavigationControllerDelegate,
 UIImagePickerControllerDelegate, UIActionSheetDelegate> {

 MKMapView *fugitiveMapView;

 }

 @property (nonatomic, retain)
 IBOutlet MKMapView *fugitiveMapView;

Add the outlets and code
for the Map Kit.

3

Here’s the Map Kit
framework...

Implement the map to show the area where the fugitive was captured.

CapturedPhoto
ViewController.h

you are here 4 477

camera, map kit, and core location

Add the outlets and code for the MKMapView. 3

@synthesize fugitiveImage, fugitive, fugitiveMapView;

- (void)dealloc {

 [fugitive release];

 [fugitiveImage release];

 [fugitiveMapView release];

 [super dealloc];

}

@end

Add all the code from p. 474 to customize the map.

Test Drive
Go ahead and build and run the app. You’ll need to make sure that you mark a fugitive
as captured, and that the lat/lon field fills in, then flip over the view to look at the map. To
try out the zooming on the map you’d use the “pinching” motion on a real device. In the
simulator, hold down option and then click.

CapturedPhotoViewController.m

478 Chapter 9

test drive

Test Drive
To try out the zooming on the map, the “pinching” motion in
real life, in the simulator, hold down option and then click.

Excellent! Now all we need
is a pin to show where the
capture happened.

You can click
in the map and
move it around.

Since you’re in the simulator,
the location will be Cupertino,
CA, no matter where you are.

you are here 4 479

camera, map kit, and core location

#import <MapKit/MapKit.h>

@interface Fugitive : NSManagedObject <MKAnnotation>

{

}

#pragma mark -

#pragma mark MapKit Annotation Protocol

@property (nonatomic, readonly)
CLLocationCoordinate2D coordinate;

- (NSString *) title;

- (NSString *) subtitle;
@end

Annotations require a little more work
Annotations are the little flags that come up when you see a point of interest,
represented by a pin. The catch? Incorporating annotations means conforming to the
Map Kit annotation protocol. Map Kit uses an annotation protocol so that you can
use your existing classes and provide them directly to Map Kit. The downside is that
means we need to add code to our Fugitive class.

finesse

Do this!

For an application that you
expect to have to do more data
migration, you should implement a
separate class conforming to the
protocol that has a reference to
its Fugitive (composition) rather
than adding code to the Fugitive
class directly.

(CLLocationCoordinate2D) coordinate {

 CLLocationCoordinate2D captureCoord;

 captureCoord.latitude =
 [self.capturedLat doubleValue];

 captureCoord.longitude =
 [self.capturedLon doubleValue];

 return captureCoord;

}

- (NSString *) title {

 return self.name;

}

- (NSString *) subtitle {

 return self.desc;

}
@end

[self.fugitiveMapView addAnnotation:fugitive];

Add this at the end
of the viewWillAppear in
CapturedPhotoViewController.m.

Fugitive.h

Fugitive.m

The protocol requires us to have a coordinate property, a title, and a subtitle. Instead of synthesizing that coordinate property, we’ll implement it ourselves and just return the fugitive’s position, name, etc.

480 Chapter 9

iBountyHunter works!

Test Drive
iBountyHunter

That’s it! Everything should be working now.You may not have
noticed as you’ve been working through all this code, but this
app is huge and awesome!

you are here 4 481

camera, map kit, and core location

This invokes the camera,
which you can see on your
phone, not the simulator.

This is the
new map
annotation
code you
added.

482 Chapter 9

bob approves

That app is awesome. We’re
going to have a beautiful
future together...

Justice prevails!

you are here 4 483

camera, map kit, and core location

AddingFunctionalitycross
One last time to flex the right side of your brain...

Untitled Puzzle
Header Info 1
Header Info 2

etc...

1

2

3

4

5 6

7 8

9

10

Across
2. UIImagePickerController gets images from the __________

and the library.
4. The ______ animation comes with UIKit.
6. The info circle is just a configured _______________.
7. Additional _______________ are needed for MapKit and

Core Location.
9. Your app must be able to work on the ____________ , too.

10. __________ sheets are a good way to get a user to pick an
option.

Down
1. The camera cannot be tested in the ____________.
3. The iPhone isn't the only __________ that uses apps.
5. Besides GPS and cell towers, _____________ can be used

to determine location.
8. ____________ doesn't work without a Net connection.

484 Chapter 9

addingfunctionalitycross solution

AddingFunctionalitycross
olution

One last time to flex the right side of your brain...

Untitled Puzzle
Header Info 1
Header Info 2

etc...

S1

I

C2 A M E R A

D3 U

E F4 L I P

V A

W5 U6 I B U T T O N

I C O

F7 R A M8 E W O R K S

I A

I9 P O D T O U C H

K

A10 C T I O N

T

Across
2. UIImagePickerController gets images from the __________

and the library. [CAMERA]
4. The ______ animation comes with UIKit. [FLIP]
6. The info circle is just a configured _______________.

[UIBUTTON]
7. Additional _______________ are needed for MapKit and

Core Location. [FRAMEWORKS]
9. Your app must be able to work on the ____________ , too.

[IPODTOUCH]
10. __________ sheets are a good way to get a user to pick an

option. [ACTION]

Down
1. The camera cannot be tested in the ____________.

[SIMULATOR]
3. The iPhone isn't the only __________ that uses apps. [DEVICE]
5. Besides GPS and cell towers, _____________ can be used

to determine location. [WIFI]
8. ____________ doesn't work without a Net connection.

[MAPKIT]

S

you are here 4 485

camera, map kit, and core location

Your extras Toolbox

You’ve got Chapter 9 under
your belt and now you’ve

added the camera, Core
Location, and Map Kit to your tool-

box. For a complete list of tooltips in
the book, go to http://www.headfirstlabs.
com/iphonedev. CH

AP
T

ER
 9

Flip Animation
Comes with UIKit..

Is the typical interface for utility
apps on iPhone.
Is usually implemented as a modal
view.

Camera
Is accessed through the UIImagePickerController.
Is not on all devices and you need to handle that.
Allows you to select and edit an image for use in your app directly from your library.

486 Chapter 9

the end... sort of

We’re sad to see you leave, but there’s nothing like taking what you’ve just

learned and putting it to use. You’re just beginning your iPhone journey, and we’ve put the

control in your hands. Check out the Appendix after this to find out how to get your brilliant

iPhone app up and running in the iTunes App Store. We’re dying to hear how things go,

so drop us a line at the Head First Labs site, http://www.headfirstlabs.com/iphonedev,

and let us know how iPhone development is paying off for YOU!

It’s been great having you here!

this is a new chapter 487

leftoversi

Ever feel like something’s missing?� We know what you mean...
Just when you thought you were done, there’s more. We couldn’t leave you without a few

extra details, things we just couldn’t fit into the rest of the book. At least, not if you want to

be able to carry this book around without a metallic case and castor wheels on the bottom.

So take a peek and see what you (still) might be missing out on.

The top 6 things
(we didn’t cover)

488 Appendix i

internationalization and localization

#1. Internationalization and Localization
The iPhone and iPod Touch are sold in over 80 countries and support 30 languages
out of the box. Depending on your application, you should consider supporting
multiple languages and cultures. Internationalization is the process of identifying the
parts of your application that are culture or language-specific and building your app
in a way that supports multiple locales. Some of the things you should look at are:

 Nib files (views, labels, button text, etc.)

 Location or culture-specific icons and images such as flags or text

 Included or online help and documentation

 Static text in your application

Once you’ve identified the culture or language-specific parts of your application,
the next step is to localize them. The iPhone OS has strong support for localizing
resources and separates the localizable resources from the rest of the application
so you can easily use a localization team or outsource the effort all together.

Up until now our resources have been included in our application in the .app
directory. Once you start localizing resources, Xcode creates an lproj directory
for each localization (locale) you add and moves the locale specific resources there.
For example, if you provide both English and French translations of your nibs,
then you will have an en.lproj (or English.lproj) and fr.lproj directories in your
application.

Localizing nibs
Xcode and Interface Builder have built-in support for localizing nibs. Before you
start translating anything, you need to ask Xcode to create the locale-specific
directories.

You can change your language
and locale on iPhone by going
into Settings→General→
International.

Right-click on the nib
you want to

localize and click
 “Get Info”.

you are here 4 489

leftovers

Next click on “Make File Localizable.” Xcode will
turn your nib entry in the project list into a group
with each localization listed beneath it. Xcode copies
your original nib into your default localization.

The next dialog you’ll see allows you to add
additional localizations. Select the General tab and
click “Add Localization.” In the dialog that appears,
you should enter the country code of the localization
you wish to add. In our example, we’re adding fr for
French.

Click on the “Make File Localizable” to ask Xcode to create the locale-based directory structure that organizes your resources.

This is the “Get
Info” dialog for
a nib, but use
this approach
to localize any
generic resource
like icons or
images.

The Add Localization button asks you for the new localization name. Use two or three character country codes found in Apple’s documentation. Do not use the values in the drop down list.

490 Appendix i

localizing strings

Now all you need to do to localize the nib is to double-click on the language
you want to localize and translate any text. Remember that depending on the
language, you may need to adjust layout as well.

For large projects, there is a command-line tool you can use called ibtool
that you can use to extract all string values from a nib into an external file, then
merge translations back into the nib later. This allows for bulk extraction and
translation, but you need to be particularly careful about layout issues as you’re
not visually inspecting each nib. Once a nib has been translated, you can have
Interface Builder mark it as locked to prevent any accidental changes to the text
or layout that could impact your translations. See Apple’s documentation on
bundles and nib localization for more information.

Localizing string resources
In addition to nib text, text in your application that you intend on showing
the user needs to be localized as well. For example, the Action Sheet used in
iBountyHunter offers the user the option to take a photo, choose an existing
one, or cancel. That button text is generated programmatically and needs to be
translated appropriately.

For this type of text, called string resources, the iPhone OS uses strings files.
You’ll generally have one of these files for each language you support. Each file
contains a description of what the string is trying to communicate, the default
language version of the string, and the translated version. Like this:

 /* Confirms a really bad decision. */
 “All In” = “All In”;

 /* Cancels the dialog */
 “Cancel” = “Cancel”;

 /* Title for the important alert view */
 “This is important!” = “This is important!”;

 /* Warns the user about impending badness. */
 “This will empty your bank account. Are you sure?” = “This will empty
 your bank account. Are you sure?”;

Each string resource ca
n have a description

that helps the transla
tors understand the

context of the string
.

Then each string has the original
string and its translation.

you are here 4 491

leftovers

If you’ve used the NSLocalizedString macros in your code, you can generate your strings file
by simply running the genstrings command at the command line, like this:

genstrings -o English.lproj *.m */*.m

You’ll want to run this for each translation you support. This will create a file named
Localized.strings in the specified locale directory that you can give out to translators. You’ll
need to add that strings file to your Xcode project like any other resource, but once it’s there,
the iPhone OS will look in the appropriate strings file at runtime based on the language the
users select for their device.

The iPhone OS provides robust localization capabilities,
including currency, time, and date presentation support; we’ve
just scratched the surface. Apple provides several documents
on internationalization and localization, including the
Introduction to Internationalization Programming
Topics document in the Xcode documentation, to help you with
more complex scenarios.

 The iPhone OS caches
resources!

If you’ve installed your app
before doing translations,
it’s likely that the iPhone OS

has cached resources so that even after
adding translations, you won’t see them
until you uninstall and reinstall your app!

Generating your strings file
You could create your strings file by hand, but a much simpler way is to have Xcode generate it for
you. Xcode does this by looking for the localization macros that load the translated text. To support
localized strings, you should use one of the NSLocalizedString macros, like this:

 - (IBAction) pushMePressed: (id) sender {
 UIAlertView *alertView = [[UIAlertView alloc]
 initWithTitle:NSLocalizedString(@”This is important!”,
 @”Title for the important alert view”)
 message:NSLocalizedString(@”This will empty your bank account. Are you sure?”,
 @”Warns the user about impending badness.”)
 delegate:nil
 cancelButtonTitle:NSLocalizedString(@”Cancel”, @”Cancels the dialog”)
 otherButtonTitles:NSLocalizedString(@”All In”,
 @”Confirms a really bad decision.”),
 nil];
 [alertView show];
 }

The first argument to NSLocalizedString is
used as a key into the translations file. This is
usually the default language for the string

.

The second argument is the comment to be shown with the string in the strings file.

492 Appendix i

UIWebView

#2. UIWebView
The iPhone OS comes with a powerful control called UIWebView that uses Web Kit to handle web
content. It’s basically the Safari browser in a box. You can use this control to load external URLs
like a normal browser or to load local content for displaying documentation written in HTML.
Despite how powerful it is, it’s one of the simplest controls to use.

To create a UIWebView, simply drop one onto your view in Interface Builder and set up an outlet
for it in the view controller.

Simply drag the UIWebView control

onto your view to get access to a

powerful browser component.

Using UIWebView
UIWebView is extremely easy to work with. To load a URL, you simply send it the loadRequest:
message with the URL you want it to load, like this:

 NSURL *url = [NSURL URLWithString:@”http://www.headfirstlabs.com”];
 NSURLRequest *request = [NSURLRequest requestWithURL:url];
 webView.scalesPageToFit = YES;
 [webView loadRequest:request];

Initialize an NSURL with the
actual URL we want.

We want the whole page shown initially,
so we enable scalesPageToFit.

you are here 4 493

leftovers

UIWebView properties
Once you’ve loaded a URL, you can then use the loading property to find out if UIWebView is
currently trying to load a URL. To stop it, simply send it the stopLoading message. To control
how the page is shown, you have a few options. You can turn off the detectsPhoneNumbers
property to tell it to ignore phone numbers in the page its displaying (otherwise it turns them into
hyperlinks to the phone application). By default, UIWebView will render the page full size. However,
you can enable the scalesPageToFit property to have it scale the URL’s content to fit the
screen. If this property is enabled, users can use the usual pinch gesture to zoom and pan around
the contents.

UIWebView has built-in support for navigation history as well. It will set its canGoBack and
canGoForward properties based on whether there are pages in its forward or back history. Typically
you use those to enable or disable forward and back buttons if you want navigation support.
UIWebView knows what the history looks like, so you can simply send it the goBack: or goFoward:
mesages and it will handle the rest.

Loading generated content
You can also use UIWebView to load locally generated content (such as displaying HTML help files
or reports) by asking it to load an HTML string, like this:

The UIWebView supports a delegate, too
If you want to know more about what’s going on with the UIWebView, you can
conform to the UIWebViewDelegate protocol and set the delegate on your web
view. The delegate protocol lets you get notified when loading starts and stops
as well as gives you an opportunity to inspect links before they are followed. If a
UIWebView has a delegate, it will send the delegate the webView:should
StartLoadWithRequest:navigationType: message when the user taps
on a link before actually following it. You can return NO if the web view shouldn’t
follow the URL.

 NSString *html = @”<html><body><h1>Look what I can do!</h1></body></html>”;
 [webView loadHTMLString:html baseURL:[NSURL URLWithString:@”file:///.”]];

494 Appendix i

device orientation

#3. Device orientation and view rotation
On the surface, the iPhone OS makes handling screen rotation simple. The iPhone and iPod
Touch each contain an accelerometer that lets the device detect orientation. When you build an
application using UIKit, the iPhone OS asks the active view controller if it can handle rotating.
The iPhone OS supports the following orientations:

Interface Orientation Constant Description
UIInterfaceOrientationPortrait The typical orientation with the home

button at the bottom. By default this
is the only orientation view controllers
support.

UIInterfaceOrientationPortraitUpsideDown Like the portrait orientation but with
the home button at the top of the
device.

UIInterfaceOrientationLandscapeLeft The device is held on its side with the
home button on the right.

UIInterfaceOrientationLandscapeRight The device is held on its side with the
home button on the left.

The view controller tells the iPhone OS what orientations it supports
When the iPhone OS detects that the device has rotated to one of those views, it calls
shouldAutorotateToInterfaceOrientation: on the active view controller and passes
in the new orientation. If your view can handle the given orientation, it simply returns YES. If not,
it returns NO. If you don’t explicitly implement this method, the default implementation returns
NO for all rotations except UIInterfaceOrientationPortrait.

When the iPhone OS needs to rotate to a new orientation, it will notify the view controller by
sending it the willRotateToInterfaceOrientation: message with the duration that it will animate
the transition. You can use this method to disable buttons or timers or anything else that could
cause a problem while the view is changing. Once the animation is complete, you’ll receive the
didRotateFromInterfaceOrientation: message, where you can reenable everything.

The iPhone simulator supports rotations so you can test your application in each orientation. To
rotate the simulator you can either use Hardware→Rotate Right (or Left) or ⌘→ (or Left).

you are here 4 495

leftovers

Handling view rotations
The easiest way to handle view rotations is to take advantage of UIKit’s ability to autosize your controls.
To do this, select a control then bring up the inspector on the Ruler page (⌘3). From here, you can select
autosizing anchors, basically edges of the control that will be anchored in place. By configuring the
autosizing information, you can have UIKit automatically resize the control when the view size changes.

The I-beam shapes on the edges indicate how the control is anchored to the view.

The lines inside the box indicate which directions the control is allow to resize. A dashed line indicates the control cannot change sizes in that direction. A solid line means UIKit can resize the control if the view changes shape.

This window animates what would happen to the control as the view changes shape.

Interface Builder lets you rotate the view you’re working on and see the autosizing at design time.

When the simulator rotates, the view
controller is told; the iPhone OS animates
the transition, then the autosizing kicks in,
and the button spans the whole phone.

But sometimes
autosizing just
doesn’t cut it...

496 Appendix i

rotating different views

Handling rotation with two different views
Depending on your application, your view may be sufficiently complex that autosizing just
doesn’t get you what you want for the rotated view. Alternatively, some applications present a
totally different perspective to the user in landscape mode than in portrait mode.

The built-in Stocks
application shows two
different views depending
on the orientation of the
device - it’s more than
just autosizing controls.

To support multiple views, you’ll need to either define multiple UIViews in your nib or create
separate nibs. Then, when your view controller is notified of the rotation, you can change your
self.view to the appropriate view depending on the target orientation.

 You can only have one object
for any given IBOutlet!

If you have similar controls (but in
different positions or altered styles)
in your views, you’ll need separate

outlets for each control.

you are here 4 497

leftovers

#4. View animations
If you’ve spent any time with an iPhone or iPod Touch you know that smooth transitions and
graceful animations define the user experience. In the applications we’ve built so far, we’ve only
touched on a few basic animations (like the flip animation used in iBountyHunter). However,
everything from adding and removing table rows to sliding controls around the screen can be
animated.

Animating table view updates
If you’re going to add or remove multiple rows in a table view, you can ask it to provide a smooth
animation (as well as a more efficient handling of updating the table view itself) by sending it the
beginUpdates message before you start manipulating the data, then an endUpdates when you’re
finished, like this:

 [self.tableView beginUpdates];
 [self.tableView insertRowsAtIndexPaths:insertIndexPaths
 withRowAnimation:UITableViewRowAnimationRight];

 [self.tableView deleteRowsAtIndexPaths:deleteIndexPaths
 withRowAnimation:UITableViewRowAnimationFade];

 [self.tableView endUpdates];

When inserting multiple rows you can
use the insertRowsAtIndexPaths to
tell the tableView the new indexPaths
you want to add. The tableView will
immediately ask the datasource and
delegate for cell information for
those new rows and, if you specify
the animation information, they’ll
smoothly slide in to the table.The beginUpdates and endUpdates tell the tableView that you’re

about to make multiple changes so it won’t actually animate
anything until it gets the endUpdates call; then everything (the
insertions and deletions) will be animated at once.

Animating view and control changes
Similar to table views, UIViews have built-in support for smoothly animating changes to several of
their properties. You simply need to tell the view that you want it to animate a change by sending it the
beginAnimations message, describe the end point of the change, then ask it to start the transition by sending
it the commitAnimations message. The following UIView properties can be animated automatically:

UIView property Description
frame The physical rectangle that describes the view - the view’s origin

and size - in the superview’s coordinate system.
bounds The origin and size of the view in local coordinates.
centerpoint The center of the view in the superview’s coordinates.
transform Any transformations (rotations, translations, etc.) applied to the

view.
alpha The transparency of the view.

498 Appendix i

accelerometer

#5. Accelerometer
One of the most versatile pieces of hardware in the iPhone and iPod Touch is the
accelerometer. The accelerometer allows the device to detect acceleration and the pull of
gravity along three axes. With just a few lines of code, you can tell whether the device is right-
side up, upside down, laying flat on a table, etc. You can even detect how quickly the device is
changing direction.

All you need is the UIAccelerometer
Getting orientation information from your device is straightforward. There’s a shared
UIAccelerometer instance you can access. Like many other iPhone OS classes, the
UAccelerometer has a delegate protocol, UIAccelerometerDelegate, that declares a single
method for receiving acceleration information. The class you want to receive that acceleration
information should conform to the UIAccelerometerDelegate protocol and implement
didAccelerate: method:

- (void)accelerometer:(UIAccelerometer *)accelerometer
didAccelerate:(UIAcceleration *)acceleration;

To receive acceleration information you simply need to tell the accelerometer about the
delegate and how frequently to send acceleration information, like this:

You’ll receive a refere
nce to

the accelerometer along with

an instance of a UIAcceleration

class, which contains the act
ual

acceleration information.

 self.accelerometer = [UIAccelerometer sharedAccelerometer];
 self.accelerometer.delegate = self;
 self.accelerometer.updateInterval = 0.5f;

 - (void)accelerometer:(UIAccelerometer *)accelerometer
 didAccelerate:(UIAcceleration *)acceleration {
 self.xOutput.text = [NSString stringWithFormat:@”%.4f”, acceleration.x];
 self.yOutput.text = [NSString stringWithFormat:@”%.4f”, acceleration.y];
 self.zOutput.text = [NSString stringWithFormat:@”%.4f”, acceleration.z];
 }

Get the shared
accelerometer...

...then configure the delegate and an
update rate in seconds. We’re asking for
two updates a second.

Each UIAcceleration object contains acceleration information along the x, y, and z axes and
a timestamp that the data was collected. In a simple example, you can update labels with the
acceleration information, like this:

you are here 4 499

leftovers

-X

+Y

+Z

-Y

+X

Understanding the device acceleration
First, the bad news. The simulator doesn’t simulate the accelerometer at all.
You’ll get no information back, regardless of how much you shake your Mac.
You’ll need to install the application on a real device to get actual accelerometer
information back. But once you do...

The accelerometer returns acceleration along a particular axis. If the device is held still, the pull of gravity is defined as 1.0 along some axis.

Held upright, you’ll get nearly -1.0 along the Y axis (the acceleration.y value will be just about -1).

Hold the device in land
scape

orientation with the home button

to the left and you’ll
 get an x

value of +1.

The Z axis runs through the display of the phone, with positive Z pointing out of the front of the display. Place the device face up on the table and your Z axis value will be -1.

If you shake the phon
e you can get

an acceleration value
greater than

1.To detect a shake (t
o clear the

screen for example) you can watch

for an acceleration va
lue greater

than “normal”. It’s not hard to g
et an

acceleration value abo
ve 1, but above,

say, 1.5 requires some effort.

If you’re building a typical view-based application, UIKit hides a lot of the
need for the accelerometer by letting you know about orientation changes
and automatically providing undo/redo when the user shakes the phone. The
accelerometer is most useful for custom-drawn applications like games (steering or
balance) and utility applications (levels).

500 Appendix i

gaming info

Multitouch
You probably noticed that we only used one of the possible events
that can be triggered for a button in our apps, the touch up inside
event. The iPhone is capable of detecting up to five finger touches
at a time and can interpret how each of those fingers are interacting
with the screen with several different types of events.

In addition to touches, the iPhone can detect swipes and gestures
that can be configured as well. By defining the length and direction
of a swipe, you can create lots of different ways to interact with
your application.

Pinching is a custom gesture that Apple uses in many of its default
applications, most notably Safari, to zoom in and out of a view. It
is just registering for a two-finger touch and keeping track of the
change in the distance between them: if it increases, zoom out, if it
decreases, zoom in.

Using these events means that you can create custom interfaces,
not just touching buttons, for your user. Working with multitouch
means that your view needs to be configured to be a multitouch
view, and then you need code to work with each different type of
event that you’re interested in leveraging.

Working with these events requires working with the responder chain (see the UIResponder class
reference) and the UIEvents class reference.

#6. A word or two about gaming...
iPhone games are a huge market and get played a lot, but they are also pretty advanced applications.
It’s outside of the scope of our book to get into those applications—which can use multitouch
interactions, Quartz and OpenGL graphics, and peer to peer networking—but here we’ll give you a
quick pass at the technologies that you can use and where to find more information about them.

These are all
of the button
events than can
be triggered.

you are here 4 501

leftovers

Quartz and OpenGL
Quartz and OpenGL are the two ways to create graphics on the iPhone and they are both big
enough to be books on their own, but here’s a small sample of what you’d be dealing with.

Quartz
Quartz is the simpler of the two, allowing you to draw in two dimensions directly into the view.
The drawing code uses the Core Graphics Framework and renders directly into the
view. It follows a painter’s model, which means that the order of commands is important.
The first thing drawn will be covered up with a subsequent drawing in the same location.
Quartz can handle shading, color, and interfacing with other image and video types.

The Quartz 2D Programming Guide in the developer documentation has a lot of
information to help get you started.

OpenGL
OpenGL can work in two or three-dimensional graphics and is significantly more complex,
but that means that you have more flexibility to work with. It is a well-established, cross
platform library that has been implemented for mobile devices with OpenGL ES, and is used
through the OpenGL ES Framework.

You can use it to draw lines, polygons, and objects, and animate them as well. A good place to
get started is with the OpenGL ES Programming Guide for iPhone OS in the developer
documentation.

Game Kit
New with the iPhone OS 3, the GameKit framework allows you to use both peer to peer
networking and voice over bluetooth to facilitate interaction with other devices within game
play. This functionality does not exist for the first generation iPhone, iPod Touch, or the
simulator alone.

Similar to the image picker, there is a GKPeerPickerController that provides a
standard interface for finding other devices running your application and establishing a
connection. After that connection is established, you can transmit data or voice between
devices.

A good place to get started is with the GameKit Programming Guide to leverage this new
functionality in your app.

Ed note: Now there’s
a fine idea...

this is a new chapter 503

It’s time to take this thing out
for a spin, don’t you think?

preparing an app for distributionii

Get ready for the App Store

You want to get your app in the App Store, right?�
So far, we’ve basically worked with apps in the simulator, which is fine. But to get things

to the next level, you’ll need to install an app on an actual iPhone or iPod Touch before

applying to get it in the App Store. And the only way to do that is to register with Apple as

a developer. Even then, it’s not just a matter of clicking a button in Xcode to get an app

you wrote on your personal device. To do that, it’s time to talk with Apple.

504 Appendix ii

get your development certificate

Keychain on
your Mac

Apple Developer’s Portal

Generate a
Certificate Signing
Request (CSR) in
Keychain.

Submit the CSR to Apple for approval

Apple approves the
request and generates the certificate. Then it gets posted on the Portal for download.

Download the Development
Certificate and store it in
Keychain.

Apple has rules
We’ve talked about the HIG, and how stringent Apple can be through the
approval process—they’re protecting their platform. Part of that is keeping
track of what goes on your own iPhone, even when it’s stuff you’ve written
yourself.

Here we’re going to give you an overview of how you can get an app onto
your device, and then, in turn, ready for submission. We can’t get into the
nitty gritty of the full process—for that you need to be a member of the
iPhone Development Program and pay the $99 fee.

Start at the Apple Developer Portal
The Developer Portal, where you first downloaded the SDK, is also your hub for managing all the
parts of electronic signatures that you’ll need to get an app up and running on your iPhone.

First get your Development Certificate
Getting through the process to go from having your app in Xcode to installing it on an iPhone or
iPod Touch for testing means that you need a Development Certificate and a Provisioning Profile.
This certificate is signed by you and Apple to register you as a developer. It creates a public and a
private key, and the private key is stored on the keychain app on your Mac. Here’s how getting that
certificate works.

The Certificate is stored in Keychain and
identifies YOU. Xcode will use it to sign the
apps you build to install on a device.

The iPhone Development Guide in the Xcode documentation has some more good information that you can look at before you join the Development Program.

you are here 4 505

preparing an app for distribution

Xcode on
your Mac

Apple Developer’s Portal

iPhone or
iPod Touch for testing.

The Provisioning Profile pulls it all together
Now that you have a Development Certificate in place, to complete the process you
need a Provisioning Profile. That electronic document ties the app (through an iPhone
application ID), the developer, and the certificate together for installation onto the
device.

 You can’t get a
Provisioning
Profile without
a Development
Certificate.

To start, you need to enter your Device ID into the Developer’s Portal to request a Provisioning Profile.

Apple will issue a Provisioning Profile
that you’ll need to download to the
Organizer in Xcode.

In Xcode, you’ll use the
Organizer to keep all of your
devices and profiles straight.

In the Organizer, you’ll attach the Profile to your device.

Finally, when you compile your app in Xcode,
you’ll be able to select your iPhone as the
location for the build, rather than the simulator.

506 Appendix ii

stay organized

Keep track in the Organizer
The Organizer is a tool that comes with Xcode that we haven’t been able
to talk much about, but it is key for keeping all of this electronic paperwork
straight. In Xcode, go to the Window → Organizer menu option.

If you have your iPhone plugged
in, you’ll get a similar display.

Here you’ll be able
to get to your
Provisioning Profiles.

You can also take
screenshots through the
Organizer.

In here, you’ll be able to configure your
device for development. The Organizer
will make sure that you have a valid
software version for development, and if
not, help you choose one that works.

A few final tips...
This quick overview gives you an idea of how the process works, but you need
to get into the Developer Program to learn all the details. Our goal here was
just to help you see the big picture of the process.

A couple of things to be aware of. First, when you’re developing as part of
a team, the team admin has to be involved in many of these steps. Second,
you need to go through this process to install anything on your device,
regardless of whether you plan to release it to the world or not.

And finally, what about the app store? Once you’ve joined the Developer
Program, and the application has been tested, then you can submit it for
approval.

This Identifier is required for a Provisioning
Profile and is unique to each device.

More InformationAfter you’ve joined the Developer Program, get into the Developer’s Portal and look for the iPhone Development Program User Guide.

It has a lot of good information to get you through the process.

this is the index 507

Index

Symbols
& (ampersand), indicating address reference, 405

<> (angle brackets), enclosing protocols, 94

* (asterisk), preceding pointer types, 94

@ (at-sign) symbol, for NSStrings, 30, 147

: (colon), in named arguments, 117

- (minus sign), preceding instance methods, 95, 116

+ (plus sign), preceding static or class methods, 95, 116

[] (square brackets), enclosing message passing, 115

A
accelerometer, 17, 498–499

accessors
auto-generated, 95, 96, 99–100, 109
multithread safety and, 98

action methods
connecting events to, 24–25
writing code for, 18–20

action sheets, 452–455

aesthetics, importance of, 43. See also iPhone apps, designing

ampersand (&), indicating address reference, 405

angle brackets (<>), enclosing protocols, 94

animations
flip animations, 434–438, 485
view animations, 497

API documentation, 56

app layout, sketching, 40–43
for DrinkMixer app example, 135
for iBountyHunter app example, 306–307, 309–311,

363, 434, 460
for iDecide app example, 7
for InstaTwit app example, 41–43

App Store, submitting apps to, 2, 199–200, 237, 504–506

app templates. See templates

Apple Developer’s Program, registering with, 456, 457, 504

Application Programming Guide, 44

application resources, 5, 11, 12, 35, 159

apps. See desktop apps; iPhone apps; mobile apps

arrays, 64
of dictionaries, 171–172, 189–192, 194–197
mutable, 110, 144–145, 147
of strings, 149–153

assign property attribute, 98, 100, 129

asterisk (*), preceding pointer types, 94

atomic keyword, 98

at-sign (@) symbol, for NSStrings, 30, 147

autorelease pool, 101

B
bartending app example. See DrinkMixer app example

Boolean data type, 332

borders, using buttons as, 368

bounty hunter app example. See iBountyHunter app
example

508 Index

the index

brackets ([]), enclosing message passing, 115

breakpoints, 178–181, 187

buttons
adding to navigation controller, 209–213
adding to view, 16
code for, adding, 18–20
connecting to code, 24–25, 72–74
HIG guidelines for, 47
using as borders, 368

C
C language

compared to Objective-C, 109
support for, 9

C++ language, 9

call stack, 188

camera, 485. See also photos
devices supporting, 448–451
inability to test with Simulator, 17, 457

categories in Objective-C, 109

cell tower triangulation, 464. See also Core Location

check boxes, 400

classes, defining in header file, 93–95

Classes files, 12

Cocoa Touch framework, 14, 15, 30, 52–53, 109

code. See also iPhone apps
debugging. See debugging
developing. See Xcode
testing. See testing apps

colon (:), in named arguments, 117

console for debugging, 176

continue command, 187

Control-Datasource-Delegate pattern, 59

controls. See UI controls

copy property attribute, 98, 129

Core Data, 329–332, 338, 352, 375
adding as project resource, 354–355, 357–359
attributes, adding, 381–384
classes, creating from entities, 341–343
components of, 338
constants, 337
custom types, 337
data storage options for, 329
data types for, 330–332
data validation by, 405
entities, creating, 334–336
fetching data, 344–352
filtering data, 407–413, 429
indexed properties, 337
loading and storing data, 339–340
Managed Object Context, 338, 344–345, 352, 361,

375, 404
Managed Object Model, 333–336, 342–343, 352,

361, 375
mapping model, 392
memory management, 329, 416
migrating data, 385–389, 391, 392, 429
performance considerations, 415–421, 423
as persistence framework, 340, 375
persistence types supported, 337
Persistent Object Store, 338, 354, 391, 429
Persistent Store Coordinator, 338, 354–355, 361
saving data, 404, 405
SQLLite database used with, 337
transient properties, 337
versioning data model for, 387, 392

Core Location, 464–470, 475

costs
for Apple Developer’s Program, 457
of iPhone apps, 2
usage fees, 4

CPU, availability of, 4

you are here 4 509

the index

D
datasource, 58–59, 63–67, 87. See also Core Data;

datasource under specific example apps

Date data type, 332

debugging, 175–181, 183, 237
breakpoints for, 178–181, 187
call stack, viewing, 188
commands for, 177
console for, 176
continue command, 187
DrinkMixer app example, 175–181, 183, 187–190,

273–274
next command, 187
walking through code, 187

Decimal data type, 332

decision app example. See iDecide app example

delegate, 58–59, 63–64, 68–69, 87

desktop apps, differences from mobile apps, 3–4

Detail View, Xcode, 12

detail views
for DrinkMixer app example, 155–164, 169, 198,

215–222
for iBountyHunter app example, 362–371, 394–402,

434–438, 460–470, 472–477, 479

developer, registering with Apple as, 456, 457, 504

Development Certificate, 504

device orientation, 494–496

dictionaries, 237
arrays of, 171–172, 189–192, 194–197
key names in separate file for, 198
saving, 286
valueForKey compared to objectForKey, 198

disclosure indicators, 200–203

display. See screen

Documents directory, 358–359, 361

DrinkMixer app example
Add button, 209–213
Cancel button, 229, 232–233, 235, 279
datasource

creating, 147
users adding data to, 207–226, 265–269

debugging, 175–181, 183, 187–190, 273–274
delegate, 147
detail view, 155–164, 169, 198, 215–222
disclosure indicators, 200–203
Edit button, 288, 291, 292, 299
keyboard for adding data, 227, 240–243, 248–264
modal view, 224–226, 230–233
navigation controller

adding Add button to, 209–213
back button in, 138, 173
creating, 136–137
for modal view, 230–233
switching between views, 167–168

notifications
for app quitting, 282–284, 286
for keyboard displaying, 250–264

plist of dictionaries for detail view data, 171–172,
189–192, 194–197

plist of strings for table view data, 149–153
plists, saving when app quits, 282–284
project, creating, 136–137
requirements for, 132–135
Save button, 229, 232–233, 235
scroll view for adding data, 242–247, 257–263,

265–269
sketch for, 135
submitting to App Store, 199–200, 205
switching between views, 165–169
table view, 140–143, 187

cell labels for, 147
code for, customizing, 141–145
created by navigation template, 137, 139
disclosure indicators in, 200–203
notifying of new data, 276, 279
resorting, 280

510 Index

the index

DrinkMixer app example, continued
template for, 136–137
title, adding, 138
user reviews of, 206
users adding data, 207–227, 240–250, 257–263,

265–269
users editing and deleting data, 288–295, 299

E
Editor Pane, Xcode, 12

@end keyword, 116

enterprise apps, requirements for, 303. See also
iBountyHunter app example

errors. See debugging

events, 18
connecting methods to, 24–25
listing for items in views, 23, 24

example iPhone apps. See DrinkMixer app example;
iBountyHunter app; iDecide app example;
InstaTwit app example

F
fees. See costs

fetching data, 344–352

File’s Owner, 30, 54

filtering data, 407–413, 429

first responder, controls as, 112, 114, 115

flip animations, 434–438, 485

Frameworks files, 11, 12

free method, 110

fugitives app example. See iBountyHunter app example

G
GameKit, 501

gaming, 500–501. See also Immersive Apps

garbage collection, not supported, 99, 110. See also
memory management

getter methods. See accessors

GPS, 17, 464. See also Core Location

H
header (.h) files, 11, 92–95

compared to protocols, 70
declaring methods in, 18–20
including into other header files, 94

hierarchical information, Productivity Apps used for,
44–46

HIG (Human Interface Guide), 44–47, 200–203

I
IBAction, 18–20, 25–27. See also action methods

iBountyHunter app example
action sheets for image source, 452–455
captured photo view controller, 435–438
captured table view, 310, 312, 320–321
captured table view controller, 310, 313–315
datasource, 327–332

adding captured data to, 380–389, 406–413
adding captured photo to, 439–440
adding to resources, 354–355, 357–359
downloading database for, 353
fetching data from, 344–352
filtering, 407–413
Fugitive entity in, 334–336, 341–343
loading data into, 339–340
sorting data from, 344–345, 352

you are here 4 511

the index

detail view
adding capture location to, 460–470
adding captured fields to, 394–402
adding location map to, 472–477, 479
creating, 362–371
flipping over for photo, 434–438

directory structure for, 358, 361
fugitive table view, 310, 312, 317
fugitive table view controller, 310, 313–315, 316
icons

for app, 312
for tab bar, 321

image picker controller, 441–446, 451, 457
info button, 434–437
installing on iPhone, 456
main window nib, contents of, 312, 321
navigation controller, 308, 316
performance enhancements, 415–421, 423
project, creating, 308
requirements for, 304–307, 378–380, 432–434,

458–460
sketches and diagrams for, 306–307, 309–311, 363,

434, 460
tab bar controller, 307, 312, 375

creating, 313–315, 320–321
embedding in UIWindow, 324
icons for, 321
notifications for changing tabs, 321
number of views in, 321

template for, 308

IBOutlet, 19–20, 25–27, 75–79, 94

icons for applications, 54
for iBountyHunter app, 312
size requirements for, 312

id type, 120

IDE, Xcode. See Xcode

iDecide app example
button, adding, 16
button code, adding, 18–20
button label, adding, 16

connecting code to controls, 23–25
project, creating, 10
requirements for, 6
sketch for, 7
template for, 10
view, building, 14–16

image picker controller, 441–446, 451, 457

images. See photos

Immersive Apps, 44–46

implementation (.m) files. See View Controllers

@implementation keyword, 116

#import keyword, 93–94, 222

init methods, 110

input. See user input

instance methods, minus sign (-) indicating, 95

InstaTwit app example
button, adding, 49, 72–74
datasource, 64–67
delegate, creating, 64, 68–69
labels, adding, 49
picker, adding, 49
picker data

adding, 55–57
extracting, 75–79

project, creating, 48
requirements for, 38–40, 90–91
sketch for, 41–43
talking to Twitter, 81–82, 124–126
template for, 48
text field for custom input, 91–92, 96, 106–107,

111–115, 118–119
view, building, 48–50

Instruments, 110

Int32 data type, 332

Interface Builder, 14–15, 23–25, 30, 35

@interface keyword, 94

interface orientation, 494–496

512 Index

the index

interfaces, defining in header file, 93–95

internationalization, 488–491

Internet access, availability of, 4

iPhone
differences from iPod Touch, 448–451
differences from Simulator, 17
models of, differences between, 9
testing apps on, 17, 504–506

iPhone Application Programming Guide, 44

iPhone apps, 37
compatibility with other mobile devices, 9
components of, 5. See also View Controllers; views
debugging. See debugging
designing, 44–47, 54
development considerations for, 9
directory structure for, 358, 361
examples of. See DrinkMixer app example; iBoun-

tyHunter app example; iDecide app example;
InstaTwit app example

giving to friends, 9
icons for, 54
one running at a time, 4
purpose of, 3
quitting, notification for, 282–284, 286
sketching GUI for. See sketching app layout
submitting to App Store, 237, 504–506
templates for. See templates
testing. See testing apps
types of, 44–46
uninstalling, files removed when, 361

iPhone HIG. See HIG (Human Interface Guide)

iPod Touch
differences from iPhone, 448–451
requirements of App Store for, 457

K
keyboard

covering other fields, 240–243, 248–250
disappearing when control gives up focus, 115
displayed for specific controls, 108, 111–114, 227
notifications sent when displayed, 250–254
notifications sent when done, 118–119

L
labels, 16, 23, 49

languages, programming, 9

languages, translating. See internationalization

layout, sketching. See app layout, sketching

libraries, in Frameworks, 12

Library, Interface Builder, 14

localization, 488–491

location information, sources of. See Core Location

M
.m (implementation) files. See View Controllers

Main window, Interface Builder, 14, 23

MainWindow.xib, 52

malloc method, 110

Managed Object Context, 338, 344–345, 352, 361,
375, 404

Managed Object Model, 333–336, 342–343, 352,
361, 375

Map Kit, 472–477, 479

you are here 4 513

the index

memory
availability of, 4
inability to test with Simulator, 17

memory management, 129
auto-generated accessors handling, 99–100
checking usage with Instruments, 110
for Core Data, 329, 416
garbage collection not supported on iPhone, 99, 110
problems with, reasons for, 110
for properties, 110
reference counts for objects, 99, 101, 102, 109
releasing objects, when and how to, 101, 110
for table views, 143

messages
compared to methods, 117
compared to notifications, 252
list of, in Apple documentation, 115
objects unable to respond to, 120
passing between objects, 114–120
passing to nil, 115
receiver of, 115, 120

metadata, 5

methods. See also accessors; action methods
compared to messages, 117
defining in header file, 95, 120
grafting onto existing classes (categories), 109
implementing in .m file, 116, 120
named arguments in, 117, 120
selectors for, 120

migrating data, 385–389, 391, 392, 429

minus sign (-), preceding instance methods, 95, 116

missing reservations mystery, 270, 275

mobile apps, 3–4, 9

modal views, 224–226, 237

multiple inheritance, Objective-C not supporting, 94

multithread safety, accessors and, 98

multitouch, 500

mutable arrays, 110, 144–145, 147

mutable strings, 110

N
Navigation-based Application, 136–137, 183

adding Add button to, 209–213
back button in, 138, 173
built-in apps using, 137
for modal view, 230–233
switching between multiple views, 167–168
table view as default root view for, 137, 139
title for, adding, 138

next command, 187

nibs (.xib files), 11, 15, 17, 30, 54. See also views

nonatomic keyword, 98, 99

notifications, 250–252
for app quitting, 282–284, 286
for changing tabs, 321
compared to messages, 252
creating, 254
for keyboard, 250–264
registering with default notification center,

251, 255–256, 286
sent by iPhone, list of, 254

NSArray class. See arrays

NSCoding protocol, 173, 286

NSDate class, 332

NSDecimalNumber class, 332, 337

NSDictionary class. See dictionaries

NSError class, 405

NSFetchedResultsController class, 416–421, 423,
426, 429

NSFetchRequest class, 344–345, 352, 408–413, 429

514 Index

the index

NSLog method, 124, 177

NSManagedObject class, 342–343, 352, 405

NSMutableArray class, 144–145, 147

NSMutableString class, 110

NSNotificationCenter class. See notifications

NSNumber class, 332

NSPredicate class. See predicates

NSSortDescriptor class, 280, 352

NSString class. See strings

O
Objective-C language, 9, 109, 129

compared to C language, 109
multiple inheritance not supported by, 94

OpenGL ES Application, 501

Organizer tool, 506

orientation of device, 494–496

Other Sources files, 12

P
performance

for Core Data, 415–421, 423
inability to test with Simulator, 17

persistence framework, 340, 375

Persistent Object Store, 338, 354, 391, 429

Persistent Store Coordinator, 338, 354–355, 361

photos, 485. See also camera
action sheets for image source, 452–455
displaying on flip side of detail view, 434–438
image picker controller for, 441–446, 451, 457
in Resources, 11
storage for, 439–440

pickers, 56. See also image picker controller
adding to view, 49
components in, 56, 70, 87
data for, adding, 55–57
datasource for, 58–60, 63–67
delegate for, 58–60, 63–64, 68–69
extracting values from, 75–79
HIG guidelines for, 47
rows in, 56, 70, 87

pictures. See photos

plists, 183
array of dictionaries, 171–172, 189–192, 194–197
array of strings, 149–153
saving when app quits, 282–284

plus sign (+), preceding static or class methods, 95, 116

pointer types, asterisk (*) indicating, 94

predicates, 407–413, 426

@private keyword, 94, 222

Productivity Apps, 44–46

programming languages for iPhone, 9

projects, 10–11
creating, 10, 48, 136–137, 308
templates for. See templates

properties
defining in header file, 95
naming differently than field name, 98
retaining and releasing automatically, 110

property attributes, 96–98, 129

@property keyword, 95, 96

property lists. See plists

protocols, 63–66, 70, 87, 94

Provisioning Profile, 504–505

@public keyword, 94, 222

you are here 4 515

the index

Q
Quartz, 501

R
read and write permissions for data, 358

readonly property attribute, 98, 129

readwrite property attribute, 96, 98, 129

reference counting, 99, 101, 102, 109

references, listing for items in views, 23, 24

release method?, 99, 101, 106, 110

reloadData message, 276

reservations mystery, 270, 275

resources, caching of, 491

Resources files, 5, 11, 12, 35, 159

retain count. See reference counting

retain method?, 99, 110

retain property attribute, 98, 99, 129

root view, 11, 52–53

rotation of view, 494–496

S
screen

capabilities of, 4
resolution of, 7
rotation of, 494–496

scroll views, 242–247, 257–263, 265–269

SDK, 8. See also Instruments; Interface Builder; Simulator;
Xcode

segmented controls, 396, 398–402

selectors, 120

setter methods. See accessors

Settings page, 43

Simulator, 30
app crashing on real iPhone but not in Simulator, 110
differences from real iPhone, 17
limitations of, 17, 457
testing apps in, 13, 16–17

sketching app layout, 40–43
for DrinkMixer app example, 135
for iBountyHunter app example, 306–307, 309–311,

363, 434, 460
for iDecide app example, 7
for InstaTwit app example, 41–43

SQLLite database, 337

square brackets ([]), enclosing message passing, 115

stack, debugger. See call stack

static methods, plus sign (+) indicating, 95

status bar, 7

String data type, 332

strings, 30, 124–126, 332
arrays of, 149–153
localizing, 490–491
mutable, 110

switches, 400

@synthesize keyword, 77, 96, 98

T
tab bar controller, 307, 312, 375

creating, 313–315, 320–321
embedding in UIWindow, 324
icons for, 321
notifications for changing tabs, 321
number of views in, 321

table views
for DrinkMixer app example, 140–143, 183

cell labels for, 147
code for, customizing, 141–145
created by Navigation-based Application, 137, 139
deleting rows, 288–295, 299
deleting rows, not allowing, 299
disclosure indicators in, 200–203
editing rows, 288–295, 299
grouped table views, 147
memory management for, 143
moving rows in, 299
reloading after data added, 276, 279
resorting, 280
section headers and footers for, 147

for iBountyHunter app example
captured table view, 310, 312, 320–321
captured table view controller, 310, 313–315
fugitive table view, 310, 312, 317
fugitive table view controller, 310, 313–315, 316

resorting, 280

templates, 10–11
for DrinkMixer app example, 136–137
files in, 11, 12. See also Resources files
for iBountyHunter app example, 308
for iDecide app example, 10
for InstaTwit app example, 48
Navigation-based Application. See Navigation-based

Application
OpenGL ES Application, 501
View-based Application, 10, 48
Window-based Application, 308

testing apps
on iPhone, 17, 504–506
in Simulator, 13, 16–17. See also debugging

text fields
for custom input in InstaTwit, 92, 96, 106–107
customizing, 113
events for, 119
keyboard displayed for. See keyboard
placeholder text for, 159
un-editable, specifying, 164

text strings. See strings

thread safety, 98

TouchUpInside event, 24–25

translations. See localization

troubleshooting. See also debugging
app crashing on real iPhone but not in Simulator, 110
messages passed to nil, 115
translations not working because of cached resources,

491

Twitter, talking to from iPhone app, 40, 81–82, 124–126

Twitter app example. See InstaTwit app example

U
UI controls. See also specific controls

events triggered by. See events
as first responder, 112, 114, 115
having focus, 112, 114

UIAccelerometer, 498–499

UIApplicationMain, 52

UIImage class. See photos

UINavigationController class. See Navigation-based
Application

UIPickerView class. See pickers

UIScrollView class. See scroll views

UITableViewController class. See table views

UITextField class. See text fields

UIWebView, 492–493

usability, 43. See also iPhone apps, designing

usage fees, 4

user input, 4. See also keyboard
adding data, 207–227, 240–250, 257–263, 265–269
editing and deleting data, 288–295, 299

Utility Apps, 44–46

516 Index

V
variables. See also IBOutlet

versioning data model, 387, 392

video, image picker controller for, 457

view animations, 497

View Controllers (.m files), 5
adding code to, 18–20
adding to reuse existing view, 215–222
as File’s Owner, 30

view rotation, 494–496

View-based Application, 10, 48

viewDidLoad method, 415–416

views, 5, 35, 237. See also detail views; table views
building, 14–16, 48–50
hierarchical view of, 23
in Interface Builder, 14
items in, listing events and references for, 23, 24
modal views, 224–226, 230–233, 237
nibs (.xib files) for, 11, 15, 17, 30, 54
reusing with new View Controller, 215–222
root view, 11, 52–53
scroll views, 242–247, 257–263, 265–269
sketching. See sketching app layout
subclassing, 219–220, 222
switching between multiple views, 165–169
when not to reuse, 218

viewWillAppear method, 416, 418, 426

W
warnings, 175

Web Kit, 492–493

website resources
fugitive list for iBountyHunter app, 353
iPhone HIG, 44
iPhone SDK, 8
Twitter, 81

Wi-Fi Positioning Service, 464. See also Core Location

Window-based Application, 308

write permissions for data, 358

X
Xcode, 12–13, 30, 35

API documentation, accessing, 56
benefits of, 9
editors in, 13
features in 3.2 but not in 3.1, 314
Organizer tool, 506
preparing apps for sale with, 13
templates in. See templates

.xib files (nibs). See views

XML, nibs as, 15

V

you are here 4 517

	Table of Contents
	1. getting started: Going mobile
	2. iPhone app patterns: Hello @twitter!
	3. objective-c for the iPhone: Twitter needs variety
	4. multiple views: A table with a view
	5. plists and modal views: Refining your app
	6. saving, editing, and sorting data: Everyone's an editor...
	7. tab bars and core data: Enterprise apps
	8. migrating and optimizing with core data: Things are changing
	9. camera, map kit, and core location: Proof in the real world
	appendix i, leftovers: The top 6 things (we didn't cover)
	appendix ii, preparing your app for distribution: Get ready for the App Store

	how to use this book: Intro
	Who is this book for?
	Who should probably back away from this book?

	We know what you’re thinking.
	And we know what your brain is thinking.
	Metacognition: thinking about thinking
	Here’s what WE did:
	Here’s what YOU can do to bend your brain into submission
	Read me
	System requirements
	The technical review team
	Acknowledgments
	Safari® Books Online

	1. getting started: Going mobile
	There’s a lot of buzz and a lot of money tied up inthe App Store...
	Mobile applications aren’t just ported desktop apps
	iPhone apps are not small desktop apps

	Anatomy of an iPhone app
	First we have one or more views...
	...then the code that makes the views work...
	...and any other resources, all packaged intoyour application.

	Mike can’t make a decision
	Make a good first impression
	It all starts with the iPhone SDK
	Xcode includes app templates to help you get started
	Xcode is the hub of your iPhone project...
	Build your interface using... Interface Builder
	Add the button to your view
	The iPhone Simulator lets you test your app on your Mac
	What happened?
	Unless the UI components are hooked up to the code, nothing is going to happen.

	Use Interface Builder to connect UI controls to code
	Interface Builder lists which events a component can trigger
	Elements dispatch events when things happen to them
	Connect your events to methods
	iPhonecross
	iPhonecross Solution
	Your iPhone Toolbox

	2. iPhone app patterns: Hello @twitter!
	First we need to figure out what Mike (really) wants
	App design rules—the iPhone HIG
	Application types

	HIG guidelines for pickers and buttons
	Create a new View-based project for InstaTwit
	Start with the view layout

	The life of a root view
	First, get the data from Mike
	Use pickers when you want controlled input
	When in doubt, check out Apple’s API documentation

	Fill the picker rows with Mike’s data
	Pickers get their data from a datasource...
	...and tell their delegates when something happens.

	There’s a pattern for that
	Controls have their own specific datasources and delegates

	Protocols tell you what methods (messages) you need to implement
	First, declare that the controller conforms to both protocols
	Next, add Mike’s activities and feelings to the implementation file

	The datasource protocol has two required methods
	Connect the datasource just like actions and outlets
	There’s just one method for the delegate protocol
	The button needs to be connected to an event
	Without an action, your button won’t work!
	Add the IBOutlet and property to our view controller
	Connect the picker to our outlet
	Use our picker reference to pull the selected values
	iPhonecross
	iPhonecross Solution
	Your iPhone Toolbox

	3. objective-c for the iPhone: Twitter needs variety
	Renee is catching on....
	Make room for custom input
	Header files describe the interface to your class
	Auto-generated accessors also handle memory management
	Objective-C can automatically release references, too.
	To keep your memory straight, you need to remember just two things
	But when Mike’s finished typing...
	Customize your UITextField
	Next change the label on the return key

	Components that use the keyboard ask it to appear...
	...by passing messages to other objects

	Ask the textField to give up focus
	Messages in Objective-C use named arguments
	Use message passing to tell our viewcontroller when the Done button is pressed
	Something’s still not right
	Build the tweet with strings
	Objective-Ccross
	Your Objective-C Toolbox
	Objective-Ccross Solution

	4. multiple views: A table with a view
	So, how do these views fit together?
	The navigation template pulls multiple views together
	The navigation template starts with a table view
	A table is a collection of cells
	Each drink gets its own cell... sorta
	Just a few more drinks
	Plists are an easy way to save and load data
	Built-in types can save and load from plists automatically
	Arrays (and more) have built-in support for plists
	Use a detail view to drill down into data
	A closer look at the detail view
	Use the navigation controller to switch between views
	Navigation controllers maintain a stack of views
	We’ll use the tap notification in the table view delegate

	Instantiate a view controller like any other class
	Dictionaries store informationas key-value pairs
	Debugging—the dark side of iPhone development
	Warnings can help find problems without debugging

	First stop on your debugging adventure: the console
	Interact with your application while it’s running
	And when it’s about to stop running

	Xcode supports you after your app breaks, too
	The Xcode debugger shows you the state of your application
	What the heck is going on?
	MultipleViewscross
	Your iPhone Toolbox
	MultipleViewscross Solution

	5. plists and modal views: Refining your app
	It all started with Sam...
	Use the debugger to investigate the crash
	We’re trying to stuff a dictionary into a string
	Update your code to handle a plist of dictionaries
	The detail view needs data
	Each dictionary has all the information we need
	We have a usability problem
	Use a disclosure indicator if your cell leads to more information
	Sales were going strong...
	Use navigation controller buttons for editing
	The button should create a new view
	We need a view... but not necessarily a new view
	The view controller defines the behavior for the view
	A nib file contains the UI components and connections...
	...and information about the nib’s File’s Owner

	You can subclass and extend views like any other class
	Use Xcode to create a view controller without a nib
	Modal views focus the user on the task at hand...
	...like adding or editing items

	Any view can present a modal view
	Our view doesn’t have a navigation bar
	Create the save and cancel buttons
	Write the save and cancel actions
	iPhoneDevcross
	Your iPhone Toolbox
	iPhoneDevcross Solution

	6. saving, editing, and sorting data: Everyone’s an editor...
	Sam is ready to add a Red-Headed School Girl...
	...but the keyboard is in the way
	We need to wrap our content in a scroll view
	The scroll view is the same size as the screen
	The keyboard changes the visible area
	iPhone notifies you about the keyboard
	Register with the default notification center for events
	Then unregister when you’re done

	Keyboard events tell you the keyboard state and size
	The table view doesn’t know its data has changed
	You need to ask the table view to reload its data
	The array is out of order, too
	We can sort our array using NSSortDescriptor

	Table views have built-in support for editing and deleting
	NavigationControllercross
	NavigationControllercross Solution
	Your iPhone Development Toolbox

	7. tab bars and core data: Enterprise apps
	HF bounty hunting
	Choose a template to start iBountyHunter
	Drawing how iBountyHunter works...
	Build the fugitive list view
	Next up: the captured view
	After a quick meeting with Bob...
	Core Data lets you focus on your app
	But wait, there’s more!

	Core Data needs to know what to load
	We need to define our types...

	Core Data describes entities with a Managed Object Model
	Build your Fugitive entity
	Whip up a Fugitive class without writing a line
	Our generated Fugitive class matches our Managed Object Model
	NSManagedObject handles storage and memory for generated properties
	NSManagedObject also implements the properties

	Use an NSFetchRequest to describe your search
	Ask the Managed Object Context to fetch data using your NSFetchRequest

	Add the database as a resource
	Back to the Core Data stack

	The template sets things up for a SQLite DB
	iPhone Apps are read-only

	The iPhone’s application structure defines where you can read and write
	Use the Documents directory to store user data

	Copy the database to the correct place
	CoreDatacross
	Your Core Data Toolbox
	CoreDatacross Solution

	8. migrating and optimizing with core data: Things are changing
	Bob needs documentation
	Everything stems from our object model
	The data hasn’t been updated
	Core Data caught a mismatch between our DB and our model

	Data migration is a common problem
	We need to migrate the old data into the new model
	Our two models need different versions

	Xcode makes it easy to version the data model
	Core Data can “lightly” migrate data
	Bob has some design input
	The Managed Object Context saves new or changed items
	A quick demo with Bob
	Use predicates for filtering data
	NSFetchRequest concepts are nearly identical to SQL

	We need to set a predicate on our NSFetchRequest
	Core Data controller classes provide efficient results handling
	Table views and NSFetchedResultsControllers are made for each other

	Time for some high-efficiency streamlining
	Refactor viewWillAppear to use the controller
	We need to refresh the data
	NSFetchedResultsController can check for changes

	DataMigrationcross
	DataMigrationcross Solution
	Your Data Toolbox

	9: camera, map kit, and core location: Proof in the real world
	For Bob, payment requires proof!
	Flip over for the detail view!
	The way to the camera...
	The iPhone isn’t the only device using apps
	There’s a method for checking
	Prompt the user with action sheets
	We’ll use action sheets to let the user pick the image source

	Bob needs the where, in addition to the when
	Core Location can find you in a few ways
	Core Location relies on the LocationManager
	Add a new framework
	Then update the header file

	Just latitude and longitude won’t work for Bob
	Map Kit is new with iPhone 3.0
	A little custom setup for the map
	Annotations require a little more finesse
	AddingFunctionalitycross
	AddingFunctionalitycross Solution
	Your extras Toolbox
	It’s been great having you here!

	i. leftovers: The top 6 things (we didn’t cover)
	#1. Internationalization and Localization
	Localizing nibs
	Localizing string resources
	Generating your strings file

	#2. UIWebView
	Using UIWebView
	UIWebView properties
	Loading generated content
	The UIWebView supports a delegate, too

	#3. Device orientation and view rotation
	The view controller tells the iPhone OS what orientations it supports
	Handling view rotations
	Handling rotation with two different views

	#4. View animations
	Animating table view updates
	Animating view and control changes

	#5. Accelerometer
	All you need is the UIAccelerometer
	Understanding the device acceleration

	#6. A word or two about gaming...
	Multitouch
	Quartz and OpenGL
	Quartz
	OpenGL
	Game Kit

	ii. preparing an app for distribution: Get ready for the App Store
	Apple has rules
	Start at the Apple Developer Portal
	First get your Development Certificate

	The Provisioning Profile pulls it all together
	Keep track in the Organizer
	A few final tips...

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

