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Description 
Threads aren't a new idea: many operating systems and languages support them. But despite 
widespread support, threads tend to be something that everyone talks about, but few use. 
Programming with threads has a reputation for being tricky and nonportable.  

Not so with Java. Java's thread facilities are easy to use, and - like everything else in Java - are 
completely portable between platforms. And that's a good thing, because it's impossible to write 
anything but the simplest applet without encountering threads. If you want to work with Java, you 
have to learn about threads.  

This new edition shows you how to take full advantage of Java's thread facilities: where to use threads 
to increase efficiency, how to use them effectively, and how to avoid common mistakes.  

Java Threads discusses problems like deadlock, race condition, and starvation in detail, helping you 
to write code without hidden bugs. It brings you up to date with the latest changes in the thread 
interface for JDK 1.2.  

The book offers a thorough discussion of the Thread and ThreadGroup classes, the Runnable 
interface, the language's synchronized operator. It explains thread scheduling ends by developing a 
CPUSchedule class, showing you how to implement your own scheduling policy. In addition, Java 
Threads shows you how to extend Java's thread primitives. Other extended examples include classes 
that implement reader/writer locks, general locks, locks at arbitrary scope, and asynchronous I/O. 
This edition also adds extensive examples on thread pools, advanced synchronization technique, like 
condition variables, barriers, and daemon locks. It shows how to work with classes that are not thread 
safe, and pays special attention to threading issues with Swing. A new chapter shows you how to write 
parallel code for multiprocessor machines.  

In short, Java Threads covers everything you need to know about threads, from the simplest 
animation applet to the most complex applications. If you plan to do any serious work in Java, you will 
find this book invaluable. Examples available online. Covers Java 2. 
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Preface 
When Sun Microsystems released the first alpha version of Java™ in the winter of 1995, developers all 
over the world took notice. There were many features of Java that attracted these developers, not the 
least of which were the set of buzzwords Sun used to promote Java: Java was, among other things, 
robust, safe, architecture-neutral, portable, object oriented, simple, and multithreaded. For many 
developers, these last two buzzwords seemed contradictory: how could a language that is 
multithreaded be simple? 

It turns out that Java's threading system is simple, at least relative to other threading systems. This 
simplicity makes Java's threading system easy to learn, so that even developers who are unfamiliar 
with threads can pick up the basics of thread programming with relative ease. But this simplicity 
comes with trade-offs: some of the advanced features that are found in other threading systems are 
not present in Java. However, these features can be built by the Java developer from the simpler 
constructs Java provides. And that's the underlying theme of this book: how to use the threading tools 
in Java to perform the basic tasks of threaded programming, and how to extend them to perform more 
advanced tasks for more complex programs. 

Who Should Read This Book? 

This book is intended for programmers of all levels who need to learn to use threads within Java 
programs. The first few chapters of the book deal with the issues of threaded programming in Java, 
starting at a basic level: no assumption is made that the developer has had any experience in threaded 
programming. As the chapters progress, the material becomes more advanced, in terms of both the 
information presented and the experience of the developer that the material assumes. For developers 
who are new to threaded programming, this sequence should provide a natural progression of the 
topic. 

This progression mimics the development of Java itself as well as the development of books about 
Java. Early Java programs tended to be simple, though effective: an animated image of Duke dancing 
on a web page was a powerful advertisement of Java's potential, but it barely scratched the surface of 
that potential. Similarly, early books about Java tended to be complete overviews of Java with only a 
chapter or two dedicated to Java's threading system. 

This book belongs to the second wave of Java books: because it covers only a single topic, it has the 
luxury of explaining in deeper detail how Java's threads can be used. It's ideally suited to developers 
targeting the second wave of Java programs - more complex programs that fully exploit the power of 
Java's threading system. 

Though the material presented in this book does not assume any prior knowledge of threads, it does 
assume that the reader has a knowledge of other areas of the Java API and can write simple Java 
programs. 

Versions Used in This Book 

Writing a book on Java in the age of Internet time is hard: the sand on which we're standing is 
constantly shifting. But we've drawn a line in that sand, and the line we've drawn is at the JDK™ 2 
from Sun Microsystems. It's likely that versions of Java that postdate Java 2 will contain some 
changes to the threading system not discussed in this version of the book. We will also point out the 
differences between Java 2 and previous versions of Java as we go, so that developers who are using 
earlier releases of Java will also be able to use this book. 

Some vendors that provide Java - either embedded in browsers or as a development system - are 
contemplating releasing extensions to Java that provide additional functionality to Java's threading 
system (in much the same way as the examples we provide in Chapter 5 through Chapter 8 use the 
basic techniques of the Java threaded system to provide additional functionality). Those extensions 
are beyond the scope of this book: we're concerned only with the reference JDK 2 from Sun 
Microsystems. The only time we'll consider platform differences is in reference to an area of the 
reference JDK that differs on Unix platforms and Windows platforms: these platforms contain some 
differences in the scheduling of Java threads, a topic we'll address in Chapter 6. 
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Organization of This Book 

Here's an outline of the book, showing the progression of the material we present. The material in the 
appendixes is generally either too immature to present fully or is mostly of academic interest, 
although it may be useful in rare cases. 

Chapter 1  

This chapter introduces the concept of threads and the terms we use in the book. 

Chapter 2  

This chapter introduces the Java API that allows the programmer to create threads. 

Chapter 3  

This chapter introduces the simple locking mechanism that Java developers can use to 
synchronize access to data and code. 

Chapter 4  

This chapter introduces the other Java mechanism that developers use to synchronize access 
to data and code. 

Chapter 5  

This chapter summarizes the techniques presented in the previous chapters. Unlike the earlier 
chapters, this chapter is solutions oriented: the examples give you an idea of how to put 
together the basic threading techniques that have been presented so far, and provide some 
insight into designing effectively using threads. 

Chapter 6  

This chapter introduces the Java API that controls how threads are scheduled by the virtual 
machine, including a discussion of scheduling differences between different implementations 
of the virtual machine. 

Chapter 7  

This chapter provides examples that extend Java's scheduling model, including techniques to 
provide round-robin scheduling and thread pooling. 

Chapter 8  

This chapter discusses various advanced topics related to data synchronization, including 
designing around deadlock and developing some additional synchronization classes, including 
synchronization methods from other platforms that are not directly available in Java. 

Chapter 9  

This chapter discusses how to design your program to take advantage of a machine with 
multiple processors. 

Chapter 10  

This chapter discusses Java's ThreadGroup class, which allows a developer to control and 
manipulate groups of threads. Java's security mechanism for threads is based on this class 
and is also discussed in this chapter. 

Appendix A  

This appendix presents a few methods of the Java API that are of limited interest: methods 
that deal with the thread's stack and the ThreadDeath class. 

Appendix B  

This appendix presents the details of the exceptions and errors that are used by the threading 
system. 
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Conventions Used in This Book 

Constant width font is used for: 

• Code examples: 

 public void main(String args[]) { 
     System.out.println("Hello, world"); 
 } 

• Method, variable, and parameter names within the text, as well as keywords 

Bold constant width font is used for: 

• Presenting revised code examples as we work through a problem: 

 public void main(String args[]) { 
     System.out.println("Hello, world"); 
 } 

• Highlighting a section of code for discussion within a longer code example 

Italic font is used for URLs and filenames, and to introduce new terms. 

Examples of the programs in this book may be retrieved online from: 

http://www.oreilly.com/catalog/jthreads2  

 
Feedback for Authors 

We've attempted to be complete and accurate throughout this book. Changes in releases of the Java 
specification as well as differing vendor implementations across many platforms and underlying 
operating systems make it impossible to be completely accurate in all cases (not to mention the 
possibility of our having made a mistake somewhere along the line). This book is a work in progress, 
and as Java continues to evolve, so, too, will this book. Please let us know about any errors you find, as 
well as your suggestions for future editions, by writing to: 

O'Reilly & Associates, Inc.  
101 Morris Street  
Sebastopol, CA 95472  
1-800-998-9938 (in the U.S. or Canada)  
1-707-829-0515 (international/local)  
1-707-829-0104 (FAX)  

You can also send us messages electronically. To be put on the mailing list or request a catalog, send 
email to: 

http://safari2.oreilly.com/info@oreilly.com  

To ask technical questions or comment on the book, send email to: 

bookquestions@oreilly.com  

We have a web site for the book, where we'll list examples, errata, and any plans for future editions. 
You can access this page at: 

http://www.oreilly.com/catalog/jthreads2/  

For more information about this book and others, see the O'Reilly web site: 

http://www.oreilly.com/  

The authors welcome your feedback about this book, especially if you spot errors or omissions that we 
have made. You can contact us at scott.oaks@sun.com and henry.wong@sun.com. 

http://www.oreilly.com/catalog/jthreads2
http://safari2.oreilly.com/info@oreilly.com
http://www.oreilly.com/catalog/jthreads2/
http://www.oreilly.com/
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Chapter 1. Introduction to Threading 
This is a book about using threads in the Java programming language and the Java virtual machine. 
The topic of threads is very important in Java - so important that many features of a threaded system 
are built into the Java language itself, while other features of a threaded system are required by the 
Java virtual machine. Threading is an integral part of using Java. 

The concept of threads is not a new one: for some time, many operating systems have had libraries 
that provide the C programmer with a mechanism to create threads. Other languages, such as Ada, 
have support for threads embedded into the language, much as support for threads is built into the 
Java language. Nonetheless, the topic of threads is usually considered a peripheral programming 
topic, one that's only needed in special programming cases. 

With Java, things are different: it is impossible to write any but the simplest Java program without 
introducing the topic of threads. And the popularity of Java ensures that many developers who might 
never have considered learning about threading possibilities in a language like C or C++ need to 
become fluent in threaded programming. 

1.1 Java Terms 

We'll start by defining some terms used throughout this book. Many terms surrounding Java are used 
inconsistently in various sources; we'll endeavor to be consistent in our usage of these terms 
throughout the book. 

Java  

First is the term Java itself. As we know, Java started out as a programming language, and 
many people today think of Java as being simply a programming language. But Java is much 
more than just a programming language: it's also an API specification and a virtual machine 
specification. So when we say Java, we mean the entire Java platform: a programming 
language, an API, and a virtual machine specification that, taken together, define an entire 
programming and runtime environment. Often when we say Java, it's clear from context that 
we're talking specifically about the programming language, or parts of the Java API, or the 
virtual machine. The point to remember is that the threading features we discuss in this book 
derive their properties from all the components of the Java platform taken as a whole. While 
it's possible to take the Java programming language, directly compile it into assembly code, 
and run it outside of the virtual machine, such an executable may not necessarily behave the 
same as the programs we describe in this book. 

Virtual machine, interpreters, and browsers  

The Java virtual machine is another term for the Java interpreter, which is the code that 
ultimately runs Java programs by interpreting the intermediate byte-code format of the Java 
programming language. The Java interpreter actually comes in three popular forms: the 
interpreter for developers (called java) that runs programs via the command line or a file 
manager, the interpreter for end users (called jre ) that is a subset of the developer 
environment and forms the basis of (among other things) the Java plug-in, and the interpreter 
that is built into many popular web browsers such as Netscape Navigator, Internet Explorer, 
HotJava™, and the appletviewer that comes with the Java Developer's Kit. All of these forms 
are simply implementations of the Java virtual machine, and we'll refer to the Java virtual 
machine when our discussion applies to any of them. When we use the term Java interpreter, 
we're talking specifically about the command-line, standalone version of the virtual machine 
(including those virtual machines that perform just-in-time compilation); when we use the 
term Java-enabled browser (or, more simply, browser), we're talking specifically about the 
virtual machine built into web browsers. 

For the most part, virtual machines are indistinguishable - at least in theory. In practice, there 
are a few important differences between implementations of virtual machines, and one of 
those differences comes in the world of threads. This difference is important in relatively few 
circumstances, and we'll discuss it in Chapter 6. 
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Programs, applications, and applets  

This leads us to the terms that we'll use for things written in the Java language. Generically, 
we'll call such entities programs. But there are two types of programs a typical Java 
programmer might write: programs that can be run directly by the Java interpreter and 
programs designed to be run by a Java-enabled browser.[1] Much of the time, the distinction 
between these two types of Java programs is not important, and in those cases, we'll refer to 
them as programs. But in those cases where the distinction is important, we'll use the term 
applets for programs running in the Java-enabled browser and the term applications for 
standalone Java programs. In terms of threads, the distinction between an applet and an 
application manifests itself only in Java's security model; we'll discuss the interaction between 
the security model and Java threads in Chapter 10. 

[1] Though it's possible to write a single Java program so that it can be run both by the interpreter and 
by a browser, the distinction still applies at the time the program is actually run. 

1.2 Thread Overview 

This leaves us only one more term to define: what exactly is a thread? The term thread is shorthand 
for thread of control, and a thread of control is, at its simplest, a section of code executed 
independently of other threads of control within a single program. 

 

Thread of Control 
Thread of control sounds like a complicated technical term, but it's really a simple concept: 
it is the path taken by a program during execution. This determines what code will be 
executed: does the if block get executed, or does the else block? How many times does the 
while loop execute? If we were executing tasks from a "to do" list, much as a computer 
executes an application, what steps we perform and the order in which we perform them is 
our path of execution, the result of our thread of control. 

Having multiple threads of control is like executing tasks from two lists. We are still doing 
the tasks on each "to do" list in the correct order, but when we get bored with the tasks on 
one of the lists, we switch lists with the intention of returning at some future time to the 
first list at the exact point where we left off. 

 
1.2.1 Overview of Multitasking 

We're all familiar with the use of multitasking operating systems to run multiple programs 
simultaneously. Each of these programs has at least one thread within it, so at some level, we're 
already comfortable with the notion of a thread in a single process. The single-threaded process has 
the following properties, which, as it turns out, are shared by all threads in a program with multiple 
threads as well: 

• The process begins execution at a well-known point. In programming languages like C and 
C++ (not to mention Java itself), the thread begins execution at the first statement of the 
function or method called main() . 

• Execution of the statements follows in a completely ordered, predefined sequence for a given 
set of inputs. An individual process is single-minded in this regard: it simply executes the next 
statement in the program. 

• While executing, the process has access to certain data. In Java, there are three types of data a 
process can access: local variables are accessed from the thread's stack, instance variables are 
accessed through object references, and static variables are accessed through class or object 
references. 
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Now consider what happens when you sit at your computer and start two single-threaded programs: a 
text editor, say, and a file manager. You now have two processes running on your computer; each 
process has a single thread with the properties just outlined. Each process does not necessarily know 
about the other process, although, depending on the operating system running on your computer, 
there are several ways in which the processes can send each other various messages. A common 
behavior is that you can drag a file icon from the file manager into the text editor in order to edit the 
file. Each process thus runs independently of the other, although they can cooperate if they so choose. 
The typical multitasking environment is shown in Figure 1.1. 

Figure 1.1. Processes in a multitasking environment 

 
 
From the point of view of the person using the computer, these processes often appear to execute 
simultaneously, although many variables can affect that appearance. These variables depend on the 
operating system: for example, a given operating system may not support multitasking at all, so that 
no two programs appear to execute simultaneously. Or the user may have decided that a particular 
process is more important than other processes and hence should always run, shutting out the other 
processes from running and again affecting the appearance of simultaneity. 

Finally, the data contained within these two processes is, by default, separated: each has its own stack 
for local variables, and each has its own data area for objects and other data elements. Under many 
operating systems, the programmer can make arrangements so that the data objects reside in memory 
that can be shared between the processes, allowing both processes to access them.  

1.2.2 Overview of Multithreading 

All of this leads us to a common analogy: we can think of a thread just as we think of a process, and we 
can consider a program with multiple threads running within a single instance of the Java virtual 
machine just as we consider multiple processes within an operating system, as we show in Figure 1.2. 

Figure 1.2. Multitasking versus threading 
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So it is that within a Java program, multiple threads have these properties: 

• Each thread begins execution at a predefined, well-known location. For one of the threads in 
the program, that location is the main() method; for the rest of the threads, it is a particular 
location the programmer decides on when the code is written. Note that this is true of an 
applet as well, in which case the main() method was executed by the browser itself. 

• Each thread executes code from its starting location in an ordered, predefined (for a given set 
of inputs) sequence. Threads are single-minded in their purpose, always simply executing the 
next statement in the sequence. 

• Each thread executes its code independently of the other threads in the program. If the 
threads choose to cooperate with each other, there are a variety of mechanisms we will explore 
that allow that cooperation. Exploiting those methods of cooperation is the reason why 
programming with threads is such a useful technique, but that cooperation is completely 
optional, much as the user is never required to drag a file from the file manager into the text 
editor. 

• The threads appear to have a certain degree of simultaneous execution. As we'll explore in 
Chapter 6, the degree of simultaneity depends on several factors - programming decisions 
about the relative importance of various threads as well as operating system support for 
various features. The potential for simultaneous execution is the key thing you must keep in 
mind when threading your code. 

• The threads have access to various types of data. At this point, the analogy to multiple 
processes breaks down somewhat, depending on the type of data the Java program is 
attempting to access. 

Each thread is separate, so that local variables in the methods that the thread is executing are 
separate for different threads. These local variables are completely private; there is no way for 
one thread to access the local variables of another thread. If two threads happen to execute the 
same method, each thread gets a separate copy of the local variables of that method. This is 
completely analogous to running two copies of the text editor: each process would have 
separate copies of the local variables. 

Objects and their instance variables, on the other hand, can be shared between threads in a 
Java program, and sharing these objects between threads of a Java program is much easier 
than sharing data objects between processes in most operating systems. In fact, the ability to 
share data objects easily between threads is another reason why programming with threads is 
so useful. But Java threads cannot arbitrarily access each other's data objects: they need 
permission to access the objects, and one thread needs to pass the object reference to the 
other thread. 

Static variables are the big exception to this analogy: they are automatically shared between 
all threads in a Java program. 

Don't panic over this analogy: the fact that you'll be programming with threads in Java doesn't mean 
you'll necessarily be doing the system-level type of programming you'd need to perform if you were 
writing the multitasking operating system responsible for running multiple programs. The Java 
Thread API is designed to be simple and requires little specialized skill for most common tasks.  

1.3 Why Threads? 

The notion of threading is so ingrained in Java that it's almost impossible to write even the simplest 
programs in Java without creating and using threads. And many of the classes in the Java API are 
already threaded, so that often you are using multiple threads without realizing it. 

Historically, threading was first exploited to make certain programs easier to write: if a program can 
be split into separate tasks, it's often easier to program the algorithm as separate tasks or threads. 
Programs that fall into this category are typically specialized and deal with multiple independent 
tasks.  
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The relative rareness of these types of programs makes threading in this category a specialized skill. 
Often, these programs were written as separate processes using operating-system-dependent 
communication tools such as signals and shared memory spaces to communicate between processes. 
This approach increased system complexity. 

The popularity of threading increased when graphical interfaces became the standard for desktop 
computers because the threading system allowed the user to perceive better program performance. 
The introduction of threads into these platforms didn't make the programs any faster, but it did create 
an illusion of faster performance for the user, who now had a dedicated thread to service input or 
display output. 

Recently, there's been a flurry of activity regarding a new use of threaded programs: to exploit the 
growing number of computers that have multiple processors. Programs that require a lot of CPU 
processing are natural candidates for this category, since a calculation that requires one hour on a 
single-processor machine could (at least theoretically) run in half an hour on a two-processor 
machine, or 15 minutes on a four-processor machine. All that is required is that the program be 
written to use multiple threads to perform the calculation. 

While computers with multiple processors have been around for a long time, we're now seeing these 
machines become cheap enough to be very widely available. The advent of less expensive machines 
with multiple processors, and of operating systems that provide programmers with thread libraries to 
exploit those processors, has made threaded programming a hot topic, as developers move to extract 
every benefit from these new machines. Until Java, much of the interest in threading centered around 
using threads to take advantage of multiple processors on a single machine. 

However, threading in Java often has nothing at all to do with multiprocessor machines and their 
capabilities; in fact, the first Java virtual machines were unable to take advantage of multiple 
processors on a machine, and many implementations of the virtual machine still follow that model. 
However, there are also implementations of the virtual machine that do take advantage of the multiple 
processors that the computer may have. A correctly written program running in one of those virtual 
machines on a computer with two processors may indeed take roughly half the time to execute that it 
would take on a computer with a single processor. If you're looking to use Java to have your program 
scale to many processors, that is indeed possible when you use the correct virtual machine. However, 
even if your Java program is destined to be run on a machine with a single CPU, threading is still very 
important. 

The major reason threading is so important in Java is that Java has no concept of asynchronous 
behavior. This means that many of the programming techniques you've become accustomed to using 
in typical programs are not applicable in Java; instead, you must learn a new repertoire of threading 
techniques to handle these cases of asynchronous behavior. 

This is not to say there aren't other times when threads are a handy programming technique in Java; 
certainly it's easy to use Java for a program that implements an algorithm that naturally lends itself to 
threading. And many Java programs implement multiple independent behaviors. The next few 
sections cover some of the circumstances in which Java threads are a required component of the 
program, due to the need for asynchronous behavior or to the elegance that threading lends to the 
problem. 

1.3.1 Nonblocking I/O 

In Java, as in most programming languages, when you try to get input from the user, you execute a 
read() method specifying the user's terminal (System.in in Java). When the program executes the 
read() method, the program will typically wait until the user types at least one character before it 
continues and executes the next statement. This type of I/O is called blocking I/O : the program 
blocks until some data is available to satisfy the read() method. 

This type of behavior is often undesirable. If you're reading data from a network socket, that data is 
often not available when you want to read it: the data may have been delayed in transit over the 
network, or you may be reading from a network server that sends data only periodically. If the 
program blocks when it tries to read from the socket, then it's unable to do anything else until the data 
is actually available.  
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If the program has a user interface that contains a button and the user presses the button while the 
program is executing the read() method, nothing will happen: the program will be unable to process 
the mouse events and execute the event-processing method associated with the button. This can be 
very frustrating for the user, who thinks the program has hung. 

Traditionally, there are three techniques to cope with this situation: 

I/O multiplexing  

Developers often take all input sources and use a system call like select() to notify them 
when data is available from a particular source. This allows input to be handled much like an 
event from the user (in fact, many graphical toolkits use this method transparently to the user, 
who simply registers a callback function that is called whenever data is available from a 
particular source). 

Polling  

Polling allows a developer to test if data is available from a particular source. If data is 
available, the data can be read and processed; if it is not, the program can perform another 
task. Polling can be done either explicitly - with a system call like poll() - or, in some 
systems, by making the read() function return an indication that no data is immediately 
available. 

Signals  

A file descriptor representing an input source can often be set so that an asynchronous signal 
is delivered to the program when data is available on that input source. This signal interrupts 
the program, which processes the data and then returns to whatever task it had been doing. 

In Java, none of these techniques is directly available. There is limited support for polling via the 
available() method of the FilterInputStream class, but this method does not have the rich 
semantics that polling typically has in most operating systems. To compensate for the lack of these 
features, a Java developer must set up a separate thread to read the data. This separate thread can 
block when data isn't available, and the other thread(s) in the Java program can process events from 
the user or perform other tasks. 

While this issue of blocking I/O can conceivably occur with any data source, it occurs most frequently 
with network sockets. If you're used to programming sockets, you've probably used one of these 
techniques to read from a socket, but perhaps not to write to one. Many developers, used to 
programming on a local area network, are vaguely aware that writing to a socket may block, but it's a 
possibility that many of them ignore because it can only happen under certain circumstances, such as 
a backlog in getting data onto the network. This backlog rarely happens on a fast local area network, 
but if you're using Java to program sockets over the Internet, the chances of this backlog happening 
are greatly increased; hence the chance of blocking while attempting to write data onto the network is 
also increased. So in Java, you may need two threads to handle the socket: one to read from the socket 
and one to write to it. 

1.3.2 Alarms and Timers 

Traditional operating systems typically provide some sort of timer or alarm call: the program sets the 
timer and continues processing. When the timer expires, the program receives some sort of 
asynchronous signal that notifies the program of the timer's expiration. 

In Java, the programmer must set up a separate thread to simulate a timer. This thread can sleep for 
the duration of a specified time interval and then notify other threads that the timer has expired. 

1.3.3 Independent Tasks 

A Java program is often called on to perform independent tasks. In the simplest case, a single applet 
may perform two independent animations for a web page. A more complex program would be a 
calculation server that performs calculations on behalf of several clients simultaneously. In either 
case, while it is possible to write a single-threaded program to perform the multiple tasks, it's easier 
and more elegant to place each task in its own thread. 
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The complete answer to the question "Why threads?" really lies in this category. As programmers, 
we're trained to think linearly and often fail to see simultaneous paths that our program might take. 
But there's no reason why processes that we've conventionally thought of in a single-threaded fashion 
need necessarily remain so: when the Save button in a word processor is pressed, we typically have to 
wait a few seconds until we can continue. Worse yet, the word processor may periodically perform an 
autosave, which invariably interrupts the flow of typing and disrupts the thought process. In a 
threaded word processor, the save operation would be in a separate thread so that it didn't interfere 
with the work flow. As you become accustomed to writing programs with multiple threads, you'll 
discover many circumstances in which adding a separate thread will make your algorithms more 
elegant and your programs better to use. 

1.3.4 Parallelizable Algorithms 

With the advent of virtual machines that can use multiple CPUs simultaneously, Java has become a 
useful platform for developing programs that use algorithms that can be parallelized. Any program 
that contains a loop is a candidate for being parallelized; that is, running one iteration of the loop on 
one CPU while another iteration of the loop is simultaneously running on another CPU. Dependencies 
between the data that each iteration of the loop needs may prohibit a particular loop from being 
parallelized, and there may be other reasons why a loop should not be parallelized. But for many 
programs with CPU-intensive loops, parallelizing the loop will greatly speed up the execution of the 
program when it is run on a machine with multiple processors. 

Many languages have compilers that support automatic parallelization of loops; as yet, Java does not. 
But as we'll see in Chapter 9, parallelizing a loop by hand is often not a difficult task. 

1.4 Summary 

The idea of multiple threads of control within a single program may seem like a new and difficult 
concept, but it is not. All programs have at least one thread already, and multiple threads in a single 
program are not radically different from multiple programs within an operating system. 

A Java program can contain many threads, all of which may be created without the explicit knowledge 
of the developer. For now, all you need to consider is that when you write a Java application, there is 
an initial thread that begins its operation by executing the main() method of your application. When 
you write a Java applet, there is a thread that is executing the callback methods (init(), 
actionPerformed(), etc.) of your applet; we speak of this thread as the applet's thread. In either case, 
your program starts with what you can consider as a single thread. If you want to perform I/O 
(particularly if the I/O might block), start a timer, or do any other task in parallel with the initial 
thread, you must start a new thread to perform that task. In the next chapter, we'll examine how to do 
just that. 
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Chapter 2. The Java ThreadingAPI 
In this chapter, we will create our own threads. As we shall see, Java threads are easy to use and well 
integrated with the Java environment. 

2.1 Threading Using the Thread Class 

In the last chapter, we considered threads as separate tasks that execute in parallel. These tasks are 
simply code executed by the thread, and this code is actually part of our program. The code may 
download an image from the server or may play an audio file on the speakers or any other task; 
because it is code, it can be executed by our original thread. To introduce the parallelism we desire, we 
must create a new thread and arrange for the new thread to execute the appropriate code. 

Let's start by looking at the execution of a single thread in the following example: 

public class  
OurClass { 
    public void run() { 
        for (int I = 0; I < 100; I++) { 
            System.out.println("Hello"); 
        } 
    } 
} 

In this example, we have a class called OurClass. The OurClass class has a single public method called 
run() that simply writes a string 100 times to the Java console or to the standard output. If we 
execute this code from an applet as shown here, it runs in the applet's thread: 

import java.applet.Applet; 
 
public class  
OurApplet extends Applet { 
    public void init() { 
        OurClass oc = new OurClass(); 
        oc.run(); 
    } 
} 

If we instantiate an OurClass object and call its run() method, nothing unusual happens. An object is 
created, its run() method is called, and the "Hello" message prints 100 times. Just like other method 
calls, the caller of the run() method waits until the run() method finishes before it continues. If we 
were to graph an execution of the code, it would look like Figure 2.1. 

Figure 2.1. Graphical representation of nonthreaded method execution 
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What if we want the run() method of OurClass to execute in parallel with the init() and other 
methods of the applet? In order to do that, we must modify the OurClass class so that it can be 
executed by a new thread. So the first thing we'll do is make OurClass inherit from the Thread 
(java.lang.Thread) class: 

public class OurClass extends Thread { 
    public void run() { 
        for (int I = 0; I < 100; I++) { 
            System.out.println("Hello"); 
        } 
    } 
} 

If we compile this code and run it with our applet, everything works exactly as before: the applet's 
init() method calls the run() method of the OurClass object and waits for the run() method to 
return before continuing. The fact that this example compiles and runs proves that the Thread class 
exists. This class is our first look into the Java threading API and is the programmatic interface for 
starting and stopping our own threads. But we have not yet created a new thread of control; we have 
simply created a class that has a run() method. To continue, let's modify our applet like this: 

import java.applet.Applet; 
 
public class OurApplet extends Applet { 
    public void init() { 
        OurClass oc = new OurClass(); 
        oc.start(); 
    } 
} 

In this second version of our applet, we have changed only one line: the call to the run() method is 
now a call to the start() method. Compiling and executing this code confirms that it still works and 
appears to the user to run exactly the same way as the previous example. Since the start() method is 
not part of the OurClass class, we can conclude that the implementation of the start() method is part 
of either the Thread class or one of its superclasses. Furthermore, since the applet still accomplishes 
the same task, we can conclude that the start() method causes a call, whether directly or indirectly, 
to the run() method.  

Upon closer examination, this new applet actually behaves differently than the previous version. 
While it is true that the start() method eventually calls the run() method, it does so in another 
thread. The start() method is what actually creates another thread of control; this new thread, after 
dealing with some initialization details, then calls the run() method. After the run() method 
completes, this new thread also deals with the details of terminating the thread. The start() method 
of the original thread returns immediately. Thus, the run() method will be executing in the newly 
formed thread at about the same time the start() method returns in the first thread, as shown in 
Figure 2.2. 

Figure 2.2. Graphical representation of threaded method execution 
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Here are the methods of the Thread class that we've discussed so far: 

Thread()  

Constructs a thread object using default values for all options. 

void run()  

The method that the newly created thread will execute. Developers should override this 
method with the code they want the new thread to run; we'll show the default implementation 
of the run() method a little further on, but it is essentially an empty method. 

void start()  

Creates a new thread and executes the run() method defined in this thread class. 

To review, creating another thread of control is a two-step process. First, we must create the code that 
executes in the new thread by overriding the run() method in our subclass. Then we create the actual 
subclassed object using its constructor (which calls the default constructor of the Thread class in this 
case) and begin execution of its run() method by calling the start() method of the subclass. 
 

run() Versus main() 
In essence, the run() method may be thought of as the main() method of the newly formed 
thread: a new thread begins execution with the run() method in the same way a program 
begins execution with the main() method. 

While the main() method receives its arguments from the argv parameter (which is 
typically set from the command line), the newly created thread must receive its arguments 
programmatically from the originating thread. Hence, parameters can be passed in via the 
constructor, static instance variables, or any other technique designed by the developer. 

 
2.1.1 Animate Applet 

Let's see a more concrete example of creating a new thread. When you want to show an animation in 
your web page, you do so by displaying a series of images (frames) with a time interval between the 
frames. This use of a timer is one of the most common places in Java where a separate thread is 
required: because there are no asynchronous signals in Java, you must set up a separate thread, have 
the thread sleep for a period of time, and then have the thread tell the applet to paint the next frame. 

An implementation of this timer follows: 

import java.awt.*; 
 
public class  
TimerThread extends Thread { 
    Component comp;             // Component that needs repainting 
    int timediff;               // Time between repaints of the component 
    volatile boolean shouldRun; // Set to false to stop thread 
 
    public TimerThread(Component comp, int timediff) { 
        this.comp = comp; 
        this.timediff = timediff; 
        shouldRun = true; 
    } 
 
    public void run() { 
        while (shouldRun) { 
            try { 
                comp.repaint(); 
                sleep(timediff); 
            } catch (Exception e) {} 
        } 
    } 
} 
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In this example, the TimerThread class, just like the OurClass class, inherits from the Thread class and 
overrides the run() method. Its constructor stores the component on which to call the repaint() 
method and the requested time interval between the calls to the repaint() method. 

What we have not seen so far is the call to the sleep() method: 

static void sleep (long milliseconds)  

Puts the currently executing thread to sleep for the specified number of milliseconds. This 
method is static and may be accessed through the Thread class name. 

static void sleep (long milliseconds, int nanoseconds)  

Puts the currently executing thread to sleep for the specified number of milliseconds and 
nanoseconds. This method is static and may be accessed through the Thread class name. 

The sleep() method is part of the Thread class, and it causes the current thread (the thread that 
made the call to the sleep() method) to pause for the specified amount of time in milliseconds. The 
try statement in the code example is needed due to some of the exceptions that are thrown from the 
sleep() method. We'll discuss these exceptions in Appendix B; for now, we'll just discard all 
exceptions. 

The easiest description of the task of the sleep() method is that the caller actually sleeps for the 
specified amount of time. This method is part of the Thread class because of how the method 
accomplishes the task: the current (i.e., calling) thread is placed in a "blocked" state for the specified 
amount of time, much like the state it would be in if the thread were waiting for I/O to occur. See 
Appendix A for a discussion of the volatile keyword. 

 

sleep(long) and sleep(long, int) 
The Thread class provides a version of the sleep() method that allows the developer to 
specify the time in terms of nanoseconds. Unfortunately, most operating systems that 
implement the Java virtual machine do not support a resolution as small as a nanosecond. 
For those platforms, the method simply rounds the number of nanoseconds to the nearest 
millisecond and calls the version of the sleep() method that only specifies milliseconds. In 
fact, most operating systems do not support a resolution of a single millisecond, so that the 
milliseconds are in turn rounded up to the smallest resolution that the platform supports. 

For the developer, we should note that support of nanoseconds may never be available in all 
versions of the Java virtual machine. As a matter of policy, one should not design programs 
that require support of nanoseconds (or even exact timing of milliseconds) in order to 
function correctly. 

 
To return to step 2 of the two-step process: let's take a look at the Animate applet that uses our 
TimerThread class: 

import java.applet.*; 
import java.awt.*; 
 
public class  
Animate extends Applet { 
    int count, lastcount; 
    Image pictures[]; 
    TimerThread timer; 
 
    public void init() { 
        lastcount = 10; count = 0; 
        pictures = new Image[10]; 
        MediaTracker tracker = new MediaTracker(this); 
        for (int a = 0; a < lastcount; a++) { 
            pictures[a] = getImage ( 
                getCodeBase(), new Integer(a).toString()+".jpeg"); 
            tracker.addImage(pictures[a], 0); 
        } 
        tracker.checkAll(true); 
    } 
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    public void start() { 
        timer = new TimerThread(this, 1000); 
        timer.start(); 
    } 
 
    public void stop() { 
        timer.shouldRun = false; 
        timer = null; 
    } 
 
    public void paint(Graphics g) { 
        g.drawImage(pictures[count++], 0, 0, null); 
 
        if (count == lastcount) 
            count = 0;  
    } 
} 

Here we create and start the new thread in the applet's start() method. This new thread is 
responsible only for informing the applet when to redraw the next frame; it is still the applet's thread 
that performs the redraw when the applet's paint() method is called. The init() method in this case 
simply loads the image frames from the server.  

2.1.2 Stopping a Thread 

When the stop() method of the applet is called, we need to stop the timer thread, since we do not 
need repaint() requests when the applet is no longer running. To do this, we relied on the ability to 
set the shouldRun variable of the TimerThread class to notify that class that it should return from its 
run() method. When a thread returns from its run() method, it has completed its execution, so in 
this case we also set the timer instance variable to null to allow that thread object to be garbage 
collected. 

This technique is the preferred method for terminating a thread: threads should always terminate by 
returning from their run() method. It's up to the developer to decide how a thread should know when 
it's time to return from the run() method; setting a flag, as we've done in this case, is typically the 
easiest method to do that. 

Setting a flag means that my thread has to check the flag periodically. Isn't there a cleaner way to 
stop the thread? And isn't there a way to terminate the thread immediately, rather than waiting for 
it to check some flag? Well, yes and no. The Thread class does contain a stop() method that allows 
you to stop a thread immediately: no matter what the thread is doing, it will be terminated. However, 
the stop() method is very dangerous. In Java 2, the stop() method is deprecated; however, the 
reasons that led it to become deprecated actually exist in all versions of Java, so you should avoid 
using the stop() method in any release of Java. We'll discuss the motivation for this in Chapter 6 
after we understand a little more about the details of threaded programming; for now, you'll have to 
accept our word that using the stop() method is a dangerous thing. In addition, calling the stop() 
method will sometimes result in a security exception, as we'll explain in Chapter 10, so you cannot rely 
on it always working. 

 

The start() and stop() Methods of the 
Applet Class 

It is unfortunate that both the Applet and the Thread classes have a start() and a stop() 
method, and that they have the same signature in both classes. This may be a source of 
confusion when implementing or debugging threaded applets. 

These methods serve different purposes and are not directly related to each other. 
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For the record, here is the definition of the stop() method: 

void stop() (deprecated in Java 2)  

Terminates an already running thread. 

What does returning from the run() method (or calling the stop() method) accomplish? As we 
mentioned, when the run() method completes, the thread automatically handles the cleanup process 
and other details of terminating the thread. The stop() method simply provides a way of prematurely 
terminating the run() method. The thread will then, as usual, automatically handle the cleanup 
process and other details of terminating the thread. Details of how the stop() method actually works 
are given in Appendix A.  

2.2 Threading Using the Runnable Interface 

As simple as it is to create another thread of control, there is one problem with the technique we've 
outlined so far. It's caused by the fact that Java classes can inherit their behavior only from a single 
class, which means that inheritance itself can be considered a scarce resource, and is therefore 
"expensive" to the developer. 

In our example, we are threading a simple loop, so this is not much of a concern. However, if we have 
a complete class structure that already has a detailed inheritance tree and want it to run in its own 
thread, we cannot simply make this class structure inherit from the Thread class as we did before. One 
solution would be to create a new class that inherits from Thread and contains references to the 
instances of the classes we need. This level of indirection is an annoyance. 

The Java language deals with this lack of multiple inheritance by using the mechanism known as 
interfaces.[1] This mechanism is supported by the Thread class and simply means that instead of 
inheriting from the Thread class, we can implement the Runnable interface (java.lang.Runnable), 
which is defined as follows: 

[1] It can be argued that interfaces cannot accomplish everything that multiple inheritance can, but that is a debate 
for a different book. 

public interface Runnable { 
     public abstract void run(); 
} 

The Runnable interface contains only one method: the run() method. The Thread class actually 
implements the Runnable interface; hence, when you inherit from the Thread class, your subclass also 
implements the Runnable interface. However, in this case we want to implement the Runnable 
interface without actually inheriting from the Thread class. This is achieved by simply substituting the 
phrase "implements Runnable" for the phrase "extends Thread"; no other changes are necessary in 
step 1 of our thread creation process: 

public class  
OurClass implements Runnable { 
    public void run() { 
        for (int I = 0; I < 100; I++) { 
            System.out.println("Hello, from another thread"); 
        } 
    } 
} 

Step 2 of our thread creation processes has some other changes. Since an instance of the OurClass 
class is no longer a Thread object, it cannot be treated as one. So in order to create a separate thread of 
control, an instance of the Thread class is still needed, but it will be instantiated with a reference to 
our OurClass object. In other words, its usage is slightly more complicated: 

import java.applet.Applet; 
 
public class  
OurApplet extends Applet { 
    public void init() { 
        Runnable ot = new OurClass(); 
        Thread th = new Thread(ot); 
        th.start(); 
    } 
} 
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As before, we have to create an instance of the OurClass class. However, in this new version, we also 
need to create an actual thread object. We create this object by passing our runnable OurClass object 
reference to the constructor of the thread using a new constructor of the Thread class: 

Thread(Runnable target)  

Constructs a new thread object associated with the given Runnable object. 

The new Thread object's start() method is called to begin execution of the new thread of control. 

The reason we need to pass the runnable object to the thread object's constructor is that the thread 
must have some way to get to the run() method we want the thread to execute. Since we are no longer 
overriding the run() method of the Thread class, the default run() method of the Thread class is 
executed; this default run() method looks like this: 

public void run() { 
   if (target != null) { 
       target.run(); 
   } 
} 

Here, target is the runnable object we passed to the thread's constructor. So the thread begins 
execution with the run() method of the Thread class, which immediately calls the run() method of 
our runnable object. 

Interestingly, since we can use the Runnable interface instead of inheriting from the Thread class, we 
can merge the OurClass class into the applet itself. This is a common technique for spinning off a 
separate thread of control for the applet. Since the applet itself is now runnable, instance variables of 
the applet thread and the run() method in this newly spun-off thread are the same: 

import java.applet.Applet; 
 
public class OurApplet extends Applet implements Runnable { 
    public void init() { 
        Thread th = new Thread(this); 
        th.start(); 
    } 
 
    public void run() { 
        for (int I = 0; I < 100; I++) { 
            System.out.println("Hello, from another thread"); 
        } 
    } 
} 

This technique can also be used with our Animate class: 

import java.applet.*; 
import java.awt.*; 
 
public class  
Animate extends Applet implements Runnable { 
    int count, lastcount; 
    Image pictures[]; 
    Thread timer; 
 
    public void init() { 
        lastcount = 10; count = 0; 
        pictures = new Image[10]; 
        MediaTracker tracker = new MediaTracker(this); 
        for (int a = 0; a < lastcount; a++) { 
            pictures[a] = getImage ( 
                getCodeBase(), new Integer(a).toString()+".jpeg"); 
            tracker.addImage(pictures[a], 0); 
        } 
        tracker.checkAll(true); 
    } 
 
    public void start() { 
        if (timer == null) { 
            timer = new Thread(this); 
            timer.start(); 
        } 
    } 
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    public void paint(Graphics g) { 
        g.drawImage(pictures[count++], 0, 0, null); 
        if (count == lastcount) count = 0;  
    } 
 
    public void run() { 
        while (isActive()) { 
            try { 
                repaint(); 
                Thread.sleep(1000); 
            } catch (Exception e) {} 
        } 
        timer = null; 
    }     
} 

After merging the classes, we now have a direct reference to the applet, so we can call the repaint() 
method directly. Because the Animate class is not of the Thread class, its run() method cannot call 
the sleep() method directly. Fortunately, the sleep() method is a static method, so we can still 
access it using the Thread class specifier. 

As can be seen from this example, the threading interface model allows classes that already have fixed 
inheritance structures to be threaded without creating a new class. However, there is still one 
unanswered question: when should you use the Runnable interface and when should you create a new 
subclass of Thread? 

 

The isActive() Method 
We used the isActive() method in the last example instead of stopping the thread 
explicitly. This shows another technique you can use to stop your threads; the benefit of this 
technique is that it allows the run() method to terminate normally rather than through the 
immediate termination caused by the stop() method. This allows the run() method to 
clean up after itself before it terminates. 

The isActive() method is part of the Applet class and determines if an applet is active. By 
definition, an applet is active between the periods of the applet's start() and stop() 
methods. Don't confuse this method with the isAlive() method of the Thread class, which 
we'll discuss later. 

 
Does threading by the Runnable interface solve a problem that cannot be solved through threading 
by inheritance or vice versa? At this point, there do not seem to be any significant differences 
between the two techniques. It is easier to use one technique for certain tasks and the other technique 
for other tasks. For example, our last Animate class saved us the need to have an extra class definition, 
via its use of the Runnable interface in the Applet class. In the earlier example, having a separate 
TimerThread definition may have been both easier to understand and to debug. But these differences 
are relatively minor, and there do not seem to be any tasks that cannot be solved by either technique. 

At this point, we will not worry about the difference between the two techniques. We will use one 
technique or the other based on personal preference and the clarity of the solution. As we develop 
examples throughout this book, we hope that you will learn to use either technique on a case-by-case 
basis. 

This is all there is to writing simple threaded Java programs. We have a class that allows us to define a 
method that will be executed in a separate thread; this thread can be initiated via its start() method, 
and it should stop by returning from its run() method. However, as we have seen in the previous 
chapter, it is not just the ability to have different threads that makes the threaded system a powerful 
tool; it is that these threads can communicate easily with each other by invoking methods on objects 
that are shared between the threads. 
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Inheritance or Interfaces? 
As noted, we will choose threading with inheritance or interfaces based on personal 
preference and the clarity of the solution. However, those of you who are object-oriented 
purists could argue that unless we are enhancing the Thread class, we should not inherit 
from the Thread class. 

Theorists could insert an entire chapter on this issue. Our main concern is for the clarity of 
the code; any other reasons for choosing between threading by inheritance or interfaces are 
beyond the scope of this book. 

 
2.3 The Life Cycle of a Thread 

So far, we have a simple knowledge of working with threads: we know how to use the start() method 
to start a thread, and how to terminate a thread by arranging for its run() method to complete. We'll 
now look at two techniques that provide us more information about the thread during its life cycle. 

2.3.1 The isAlive() Method 

There is a period of time after you call the start() method before the virtual machine can actually 
start the thread. Similarly, when a thread returns from its run() method, there is a period of time 
before the virtual machine can clean up after the thread; and if you use the stop() method, there is an 
even greater period of time before the virtual machine can clean up after the thread. 

This delay occurs because it takes time to start or terminate a thread; therefore, there is a transitional 
period from when a thread is running to when a thread is not running, as shown in Figure 2.3. After 
the run() method returns, there is a short period of time before the thread stops. If we want to know 
if the start() method of the thread has been called - or, more usefully, if the thread has terminated - 
we must use the isAlive() method. This method is used to find out if a thread has actually been 
started and has not yet terminated: 

boolean isAlive()  

Determines if a thread is considered alive. By definition, a thread is considered alive from 
sometime before a thread is actually started to sometime after a thread is actually stopped. 

Figure 2.3. Graphical representation of the states of the thread 
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Let's modify our Animate class to wait until the timer thread stops before finishing: 

import java.applet.*; 
import java.awt.*; 
 
public class  
Animate extends Applet { 
    int count, lastcount; 
    Image pictures[]; 
    TimerThread timer; 
 
    public void init() { 
        lastcount = 10; count = 0; 
        pictures = new Image[10]; 
        MediaTracker tracker = new MediaTracker(this); 
        for (int a = 0; a < lastcount; a++) { 
            pictures[a] = getImage( 
                getCodeBase(), new Integer(a).toString()+".jpeg"); 
            tracker.addImage(pictures[a], 0); 
        } 
        tracker.checkAll(true); 
    } 
 
    public void start() { 
        timer = new TimerThread(this, 1000); 
        timer.start(); 
    } 
 
    public void stop() { 
        timer.shouldRun = false; 
        while (timer.isAlive()) { 
            try { 
                Thread.sleep(100); 
            } catch (InterruptedException e) {} 
 
        } 
        timer = null; 
    } 
 
    public void paint(Graphics g) { 
        g.drawImage(pictures[count++], 0, 0, null); 
 
        if (count == lastcount) count = 0;  
    } 
} 

Just because a thread has been started does not mean it is actually running, nor that it is able to run - 
the thread may be blocked, waiting for I/O, or it may still be in the transitional period of the start() 
method. For this reason, the isAlive() method is more useful in detecting whether a thread has 
stopped running. For example, let's examine the stop() method of this applet. Just like the earlier 
versions, we have a TimerThread object that is started and stopped when the applet is started and 
stopped. In this newer version, the applet's stop() method does more than just stop the 
TimerThread: it also checks to make sure the thread actually has stopped. 

In this example, we don't gain anything by making sure the timer thread has actually stopped. But if 
for some reason we need to deal with common data that is being accessed by two threads, and it is 
critical to make sure the other thread is stopped, we can simply loop and check to make sure the 
thread is no longer alive before continuing.  

There is another circumstance in which a thread can be considered no longer alive: if the stop() 
method is called, the thread will be considered no longer alive a short time later. This is really the 
same case: the isAlive() method can be used to determine if the run() method has completed, 
whether normally or as a result of the stop() method having been called.  

2.3.2 Joining Threads 

The isAlive() method can be thought of as a crude form of communication. We are waiting for 
information: the indication that the other thread has completed. As another example, if we start a 
couple of threads to do a long calculation, we are then free to do other tasks. Assume that sometime 
later we have completed all other secondary tasks and need to deal with the results of the long 
calculation: we need to wait until the calculations are finished before continuing on to process the 
results. 
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We could accomplish this task by using the looping isAlive() technique we've just discussed, but 
there are other techniques in the Java API that are more suited to this task. This act of waiting is 
called a thread join. We are "joining" with the thread that was "forked" off from us earlier when we 
started the thread. So, modifying our last example, we have: 

import java.applet.Applet; 
 
public class Animate extends Applet { 
    ... 
    public void stop() { 
        t.shouldRun = false; 
        try { 
            t.join(); 
        } catch (InterruptedException e) {} 
    } 
} 

The Thread class provides the following join() methods: 

void join()  

Waits for the completion of the specified thread. By definition, join() returns as soon as the 
thread is considered "not alive." This includes the case in which the join() method is called 
on a thread that has not been started. 

void join(long timeout)  

Waits for the completion of the specified thread, but no longer than the timeout specified in 
milliseconds. This timeout value is subject to rounding based on the capabilities of the 
underlying platform. 

void join(long timeout, int nanos)  

Waits for the completion of the specified thread, but no longer than a timeout specified in 
milliseconds and nanoseconds. This timeout value is subject to rounding based on the 
capabilities of the underlying platform. 

When the join() method is called, the current thread will simply wait until the thread it is joining 
with is no longer alive. This can be caused by the thread not having been started, or having been 
stopped by yet another thread, or by the completion of the thread itself. The join() method basically 
accomplishes the same task as the combination of the sleep() and isAlive() methods we used in 
the earlier example. However, by using the join() method, we accomplish the same task with a single 
method call. We also have better control over the timeout interval, and we don't waste CPU cycles by 
polling. 

Another interesting point about both the isAlive() method and the join() method is that we are 
actually not affecting the thread on which we called the method. That thread will run no differently 
whether the join() method is called or not; instead, it is the calling thread that is affected. The 
isAlive() method simply returns the status of a thread, and the join() method simply waits for a 
certain status on the thread. 

 

join(), isAlive(), and the Current Thread 
The concept of a thread calling the isAlive() or the join() method on itself does not 
make sense. There is no reason to check if the current thread is alive since it would not be 
able to do anything about it if it were not alive. As a matter of fact, isAlive() can only 
return true when it checks the status of the thread calling it. If the thread were stopped 
during the isAlive() method, the isAlive() method would not be able to return. So a 
thread that calls the isAlive() method on itself will always receive true as the result. 

The concept of a thread joining itself does not make sense, but let's examine what happens 
when one tries. It turns out that the join() method uses the isAlive() method to 
determine when to return from the join() method. In the current implementation, it also 
does not check to see if the thread is joining itself. In other words, the join() method 
returns when and only when the thread is no longer alive. This will have the effect of 
waiting forever. 
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2.4 Thread Naming 

The next topic we will examine concerns the thread support methods that are used mainly for thread 
"bookkeeping." First, it is possible to assign a String name to the Thread object itself: 

void setName(String name)  

Assigns a name to the Thread instance. 

String getName()  

Gets the name of the Thread instance. 

The Thread class provides a method that allows us to attach a name to the thread object and a method 
that allows us to retrieve the name. The system does not use this string for any specific purpose, 
though the name is printed out by the default implementation of the toString() method of the 
thread. The developer who assigns the name is free to use this string for any purpose desired. For 
example, let's assign a name to our TimerThread class: 

import java.awt.*; 
 
public class  
TimerThread extends Thread { 
    Component comp;                // Component that needs repainting 
    int timediff;                  // Time between repaints of the component 
    volatile boolean shouldRun;    // Set to false to stop thread 
 
    public TimerThread(Component comp, int timediff) { 
        this.comp = comp; 
        this.timediff = timediff; 
        shouldRun = true; 
        setName("TimerThread(" + timediff + " milliseconds)"); 
    } 
 
    public void run() { 
        while (shouldRun) { 
            try { 
                comp.repaint(); 
                sleep(timediff); 
            } catch (Exception e) {} 
        } 
    } 
} 

In this version of the TimerThread class, we assigned a name to the thread. The name that is assigned 
is simply "TimerThread" followed by the number of milliseconds used in this timer thread. If the 
getName() method is later called on this instance, this string value will be returned. 

 

Uses for a Thread Name? 
Using the thread name to store information is not too beneficial. We could just as easily 
have added an instance variable to the Thread class (if we're threading by inheritance) or to 
the Runnable type class (if we're threading by interfaces) and achieved the same results. 
The best use of this name is probably for debugging. With an assigned name, the debugger 
and the toString() method display thread information in terms of a "logical" name 
instead of a number. 

By default, if no name is assigned, the Thread class chooses a unique name. This name is 
generally "Thread-" followed by a unique number. 
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The naming support is also available as a constructor of the Thread class: 

Thread(String name)  

Constructs a thread object with a name that is already assigned. This constructor is used when 
threading by inheritance. 

Thread(Runnable target, String name)  

Constructs a thread object that is associated with the given Runnable object and is created 
with a name that is already assigned. This constructor is used when threading by interfaces. 

Just like the setName() method, setting the name via the thread constructor is simple. One 
constructor is provided for threading by inheritance and another for threading by interfaces. In our 
TimerThread example, since we are setting the name in the constructor, we could just as easily have 
used the thread constructor instead of the setName() method: 

import java.awt.*; 
 
public class TimerThread extends Thread { 
    Component comp;                 // Component that needs repainting 
    int timediff;                   // Time between repaints of the component 
    volatile boolean shouldRun;     // Set to false to stop thread 
 
    public TimerThread(Component comp, int timediff) { 
        super("TimerThread(" + timediff + " milliseconds)"); 
        this.comp = comp; 
        this.timediff = timediff; 
        shouldRun = true; 
    } 
 
    public void run() { 
        while (shouldRun) { 
            try { 
                comp.repaint(); 
                sleep(timediff); 
            } catch (Exception e) {} 
        } 
    } 
} 
 
 

2.5 Thread Access 

Next, we'll look into several methods that show us information about specific threads. 

2.5.1 The Current Thread 

First, we'll examine the currentThread() method: 

static Thread currentThread()  

Gets the Thread object that represents the current thread of execution. The method is static 
and may be called through the Thread class name. 

This is a static method of the Thread class, and it simply returns a Thread object that represents the 
current thread; the current thread is the thread that called the currentThread() method. The object 
returned is the same Thread object first created for the current thread. 

But why is this method important? The Thread object for the current thread may not be saved 
anywhere, and even if it is, it may not be accessible to the called method. For example, let's look at a 
class that performs socket I/O and stores the data it reads into an internal buffer. We'll show the full 
implementation of this class in the next chapter, but for now, we're interested only in its interface: 
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public class  
AsyncReadSocket extends Thread { 
    StringBuffer result; 
 
    public AsyncReadSocket(String host, int port) { 
    // Open a socket to the given host. 
    } 
 
    public void run() { 
    // Read data from a socket into the result string buffer. 
    } 
 
    // Get the string already read from the socket so far. 
    // Only allows "Reader" threads to execute this method. 
    public String getResult() { 
        String reader = Thread.currentThread().getName(); 
        if (reader.startsWith("Reader")) { 
            String retval = result.toString(); 
            result = new StringBuffer(); 
            return retval; 
        } else { 
            return ""; 
        } 
    } 
} 

To retrieve the data that has been read by this class, you must call the getResult() method, but we've 
coded the getResult() method such that only reader threads are allowed actually to retrieve the 
stored data. For our example, we are assuming that reader threads are threads whose names start with 
"Reader." This name could have been assigned by the setName() method earlier or when the threads 
are constructed. To obtain a name, we need simply to call the getName() method. However, since we 
do not have the Thread object reference of the caller, we must call the currentThread() method to 
obtain the reference. In this case, we are using the name of the thread, but we could just as easily have 
used the thread reference for other purposes. Other uses of the thread reference could be priority 
control or thread groups; these and other services are described in upcoming chapters. 

Note that there is a very subtle thing going on here. The getName() method is a method of the Thread 
class, and we might have called it directly in our code. That would return the name of the 
AsyncReadSocket thread itself. Instead, what we're after is the name of the thread that has called the 
getResult() method, which is probably not the AsyncReadSocket thread. Typically, we'd use the 
AsyncReadSocket class like this: 

public class  
TestRead extends Thread { 
    AsyncReadSocket asr; 
    public static void main(String args[]) { 
        AsyncReadSocket asr = new AsyncReadSocket("myhost", 6001); 
        asr.start(); 
        new TestRead(asr).start(); 
    } 
 
    public TestRead(AsyncReadSocket asr) { 
        super("ReaderThread"); 
        this.asr = asr; 
    } 
 
    public void run() { 
        // Do some other processing, and allow asr to read data. 
        System.out.println("Data is " + asr.getResult()); 
    } 
} 

There are three threads of interest to us in this example: the thread that the virtual machine started 
for us that is executing the main() method, the asr thread, and the TestRead thread. Since the 
TestRead thread is executing the getResult() method, it will actually receive the data, as its name 
begins with "Reader." If another thread in this example were to call the getResult() method, it 
would receive merely an empty string. 

This can be a common source of confusion: methods in subclasses of the thread class may be executed 
by the thread object itself, or they may - like the get-Result() method in this example - be executed 
by another thread object. Don't assume that the code in a thread object is only being executed by the 
specific thread that the object represents.  
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2.5.2 Enumerating Threads in the Virtual Machine 

Also provided with the Thread class are methods that allow you to obtain a list of all the threads in the 
program: 

static int enumerate(Thread threadArray[])  

Gets all the thread objects of the program and stores the result into the thread array. The 
value returned is the number of thread objects stored into the array. The method is static and 
may be called through the Thread class name. 

static int activeCount()  

Returns the number of threads in the program. The method is static and may be called 
through the Thread class name. 

This list is retrieved with the enumerate() method. The developer simply needs to create a Thread 
array and pass it as a parameter. The enumerate() method stores the thread references into the array 
and returns the number of thread objects stored; this number is the size of the array parameter or the 
number of threads in the program, whichever is smaller. 

In order to size the array for the enumerate() method, we need to determine the number of threads in 
the program. The activeCount() method can determine the number of threads and size the thread 
array accordingly. For example, we could add a support method to our Animate applet that prints all 
the threads in the applet, as follows: 

import java.applet.*; 
import java.awt.*; 
public class  
Animate extends Applet { 
// Instance variables and methods not shown 
 
    public void printThreads() { 
        Thread ta[] = new Thread[Thread.activeCount()]; 
        int n = Thread.enumerate(ta); 
        for (int i = 0; i < n; i++) { 
            System.out.println("Thread " + i + " is " + 
                    ta[i].getName()); 
        } 
    } 
} 

In this example, we are instantiating a Thread array; the size of the array is determined by the 
activeCount() method of the Thread class. Once we have an active count, we call the enumerate() 
method to obtain references to all the thread objects in our applet. In the rest of the method, we 
simply print the name assigned to each thread by calling the getName() method on the thread 
reference. 

 

Trivia: When Is a Thread Active? 
When is a thread active? At first glance, this seems to be a simple question. Using the 
isAlive() method, a thread is considered alive during the period between the call to the 
start() method and a short time period after the stop() method is called. We might 
consider a thread active if it is alive. 

However, if the definition of an active thread is a thread whose thread reference appears in 
the active count returned by the activeCount() method, we would have a different 
definition of active. A thread reference first appears in the thread array returned by the 
enumerate() method, and is counted by the activeCount() method, when the thread 
object is first constructed and not when the thread is started. 

The thread is removed from the thread array either when the thread is stopped or when the 
run() method has completed. This means that if a thread object is constructed but is not 
started, the thread object will not be removed from the enumeration list, even if the original 
reference to the object is lost. 
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Note that we've been careful in this section to say "all the threads in the program" rather than "all the 
threads in the virtual machine." That's because at the level of the Thread class, the enumerate() 
method shows us only the threads that our program has created, plus (possibly) the main and GUI 
threads of an application or applet that the virtual machine has created for us. It will not show us 
other threads of the virtual machine (e.g., the garbage collection thread), and in an applet, it will not 
show us other threads in other applets. We'll see how to examine all these other threads in Chapter 10.  

2.6 More on Starting, Stopping, and Joining 

Consider this revision to the Animate example: 

import java.applet.Applet; 
 
public class  
Animate extends Applet { 
    TimerThread t; 
    public void start() { 
        if (t == null) 
            t = new TimerThread(this, 500); 
        t.start(); 
    } 
 
    public void stop() { 
        t.shouldRun = false; 
        try { 
            t.join(); 
        } catch (InterruptedException e) {} 
        // t = null; 
     } 
} 

In our last version of the Animate applet (see Section 2.3," earlier in this chapter), the start() 
method of the applet created a new TimerThread object and started it. But what if we had only created 
the TimerThread once? In the example just shown, we once again create a new TimerThread in the 
start() method of the applet; however, since we know the thread will be stopped in the stop() 
method, we try to restart the stopped thread in the start() method. In other words, we create the 
TimerThread only once and use this one thread object to start and stop the animation. By starting and 
stopping a single TimerThread, we do not need to create a new instance of TimerThread every time 
the applet is started, and the garbage collector will not need to clean up the TimerThread instance 
that's left when the applet is stopped and the TimerThread dereferenced. 

But will this work? Unfortunately, the answer is no. It turns out that when a thread is stopped, the 
state of the thread object is set so that it is not restartable. In our case, when we try to restart the 
thread by calling the TimerThread's start() method, nothing happens. The start() method won't 
return an exception condition, but the run() method also won't be called. The isAlive() method also 
won't return true. In other words, never restart a thread. An instance of a thread object should be 
used once and only once. 

 

More Details for Restarting a Thread 
What happens when you try to restart a thread? The answer is that it actually depends on 
when you restart it. When the stop() method is called on a thread (or the thread exits its 
run() method), it actually takes time for the thread to stop. Hence, what happens when the 
start() method is called depends on a race condition . (Race conditions are discussed 
more fully in Chapter 3.) 

If the start() method is called before the stopping thread actually stops, an error 
condition exists, and an exception will be thrown. The same is true if you call start() on a 
thread object that has not been stopped. 

If the start() method is called after the stopping thread has actually stopped, nothing 
happens: the thread object is in a state where it cannot be restarted.  
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Can an already stopped thread be stopped? At first glance, this may seem an odd question. But the 
answer is yes, and the reason is that it avoids a race condition that would occur otherwise. We know 
there are two ways a thread can be stopped, so you could stop a thread that has already exited because 
its run() method terminated normally. If the Thread class did not allow the stop() method to be 
called on a stopped thread, this would require us to check if the thread was still running before we 
stopped it, and we'd have to avoid a race condition in which the run() method could terminate in 
between the time when we checked if the thread was alive and when we called the stop() method. 
This would be a big burden on the Java developer, so, instead, the stop() method can be called on a 
thread that has already stopped. 

What happens when we call the join() method for a thread that was stopped a long time ago? In the 
examples so far, we assumed the usage of the join() method was to wait for a thread to complete or 
to stop. But this assumption is not necessary; if the thread is already stopped, it will return 
immediately. This may seem obvious, but it should be noted that a race condition would have resulted 
if the join() method had required that the thread be alive when the method was first called. 

 

The Stopping Thread and the Garbage 
Collector 

The thread object, like any other object, is a candidate for garbage collection when it gets 
dereferenced. As developers, we should just note that the garbage collector behaves 
correctly with the threading system and not worry about the exact details. However, for 
those of us who are detail-oriented, here is how the garbage collector behaves with the 
threading system. 

In all the examples so far, the garbage collector cannot collect the thread object even when 
the thread has completed or stopped. This is because we still have a reference to the 
TimerThread object after we signal it to stop. To be complete, we should manually 
dereference the thread object. However, this is necessary only to free the memory that 
stores the thread object. The threading system automatically releases any thread-specific 
resources (including those tied to the operating system) after the thread has completed or 
stopped whether or not we dereference the object. 

Dereferencing a thread object for a running thread is also not a problem. The threading 
system keeps references to all threads that are running in the system. This is needed in 
order to support the currentThread() and enumerate() methods of the Thread class. The 
garbage collector will not be able to collect the thread object until the threading system also 
dereferences the object, which won't happen until the thread is no longer alive. 

 
What would be the best way to join() with more than one thread? Let's look at the following code: 

import java.applet.Applet; 
 
public class  
MyJoinApplet extends Applet { 
    Thread t[] = new Thread[30]; 
    public void start() { 
        for (int i=0; i<30; i++) { 
            t[i] = new CalcThread(i); 
            t[i].start(); 
        } 
    } 
 
    public void stop() { 
        for (int i=0; i<30; i++) { 
            try { 
                 t[i].join(); 
            } catch (InterruptedException e) {} 
        } 
    } 
} 
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In this example, we start 30 CalcThread objects. We have not actually defined the CalcThread class, 
but for this example, we assume it is a class that is used to calculate part of a large mathematical 
algorithm. In the applet's stop() method, we execute a loop waiting for all the started threads to be 
finished. Is this the best way to wait for more than one thread? Since it is possible to join() with an 
already stopped thread, it is perfectly okay to join() with a group of threads in a loop, even if the 
threads finish in an order different than the order in which they were started. No matter how we might 
have coded the join() loop, the time to complete the join() will be the time it takes for the last 
thread to finish.  

Of course, there may be cases where a specific joining mechanism is desired, but this depends on 
details other than the threading system. There is no performance penalty to pay for joining in an order 
that is not the order of completion.  

2.7 Summary 

Here's a list of the methods of the Thread class that we introduced in this chapter: 

Thread()  

Constructs a thread object using default values for all options. 

Thread(Runnable target)  

Constructs a new thread object associated with the given Runnable object. 

Thread(String name)  

Constructs a thread object with a name that is already assigned. This constructor is used when 
threading by inheritance. 

Thread(Runnable target, String name)  

Constructs a thread object that is associated with the given Runnable object and is created 
with a name that is already assigned. This constructor is used when threading by interfaces. 

void run()  

The method that the newly created thread will execute. Developers should override this 
method with the code they want the new thread to run; we'll show the default implementation 
of the run() method a little further on, but it is essentially an empty method. 

void start()  

Creates a new thread and executes the run() method defined in this thread class. 

void stop() (deprecated in Java 2)  

Terminates an already running thread. 

static void sleep (long milliseconds)  

Puts the currently executing thread to sleep for the specified number of milliseconds. This 
method is static and may be accessed through the Thread class name. 

static void sleep (long milliseconds, int nanoseconds)  

Puts the currently executing thread to sleep for the specified number of milliseconds and 
nanoseconds. This method is static and may be accessed through the Thread class name. 

boolean isAlive()  

Determines if a thread is considered alive. By definition, a thread is considered alive from 
sometime before a thread is actually started to sometime after a thread is actually stopped. 

void join()  

Waits for the completion of the specified thread. By definition, join() returns as soon as the 
thread is considered "not alive." This includes the case in which the join() method is called 
on a thread that has not been started. 

void join(long timeout)  

Waits for the completion of the specified thread, but no longer than the timeout specified in 
milliseconds. This timeout value is subject to rounding based on the capabilities of the 
underlying platform. 
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void join(long timeout, int nanos)  

Waits for the completion of the specified thread, but no longer than a timeout specified in 
milliseconds and nanoseconds. This timeout value is subject to rounding based on the 
capabilities of the underlying platform. 

void setName(String name)  

Assigns a name to the Thread instance. 

String getName()  

Gets the name of the Thread instance. 

static Thread currentThread()  

Gets the Thread object that represents the current thread of execution. The method is static 
and may be called through the Thread class name. 

static int enumerate(Thread threadArray[])  

Gets all the thread objects of the program and stores the result into the thread array. The 
value returned is the number of thread objects stored into the array. The method is static and 
may be called through the Thread class name. 

static int activeCount()  

Returns the number of threads in the program. The method is static and may be called 
through the Thread class name. 

In this chapter, we have had our first taste of creating, starting, and stopping threads. This is achieved 
through the methods of the Thread class, which also contains methods that allow us to examine the 
status of threads, the names of threads, and the threads that our program is using. This provides us 
with the basics for writing simple, independent threads. 

However, there are other issues that must be dealt with when it comes to threads: most notably, that 
communication between the individual threads must avoid the race conditions we outlined. This issue 
of communication, or synchronization, will be discussed in the next chapter. 
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Chapter 3. Synchronization Techniques 
In the previous chapter, we covered a lot of ground: we examined how to create and start threads, how 
to arrange for them to terminate, how to name them, how to monitor their life cycles, and so on. In the 
examples of that chapter, however, the threads that we examined were more or less independent: they 
did not need to share any data between them. 

In this chapter, we look at the issue of sharing data between threads. Sharing data between threads is 
often hampered due to what is known as a race condition between the threads attempting to access 
the same data more or less simultaneously. In this chapter, we'll look at the concept of a race 
condition as well as examining a mechanism that solves race conditions. We will see how this 
mechanism can be used not only to coordinate access to data, but also for many problems in which 
synchronization is needed between threads. Before we start, let's introduce a few concepts. 

3.1 A Banking Example 

As an application designer for a major bank, we are assigned to the development team for the 
automated teller machine (ATM). As our first assignment, we are given the task of designing and 
implementing the routine that allows a user to withdraw cash from the ATM. A first and simple 
attempt at an algorithm may be as follows (see Figure 3.1 for the flow chart): 

1. Check to make sure that the user has enough cash in the bank account to allow the withdrawal 
to occur. If the user does not, then go to step 4. 

2. Subtract the amount withdrawn from the user's account. 

3. Dispense the cash from the teller machine to the user. 

4. Print a receipt for the user. 

Figure 3.1. Algorithm flow chart for ATM withdrawal 

 
 
Given this very simple algorithm, an implementation may be as follows: 

public class  
AutomatedTellerMachine extends Teller { 
    public void withdraw(float amount) { 
        Account a = getAccount(); 
        if (a.deduct(amount)) 
            dispense(amount); 
        printReceipt(); 
    } 
} 
  
public class Account { 
 
    private float total; 
    public boolean deduct(float t) { 
        if (t <= total) { 
            total -= t; 
            return true; 
        } 
        return false; 
    } 
} 
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Of course, we are assuming that the Teller class and the getAccount(), dispense(), and 
printReceipt() methods have already been implemented. For our purposes, we are simply 
examining this algorithm at a high level, so these methods will not be implemented here. 

During our testing, we run a few simple and short tests of the routine. These tests involve withdrawing 
some cash. In certain cases, we withdraw a small amount. In other cases, we withdraw a large amount. 
We withdraw with enough cash in the account to cover the transaction, and we withdraw without 
enough cash in the account to cover the transaction. In each case, the code works as desired. Being 
proud of our routine, we send it to a local branch for beta testing. 

As it turns out, it is possible for two people to have access to the same account (e.g., a joint account). 
One day, a husband and wife both decide to empty the same account, and purely by chance, they 
empty the account at the same time. We now have a race condition: if the two users withdraw from the 
bank at the same time, causing the methods to be called at the same time, it is possible for the two 
ATMs to confirm that the account has enough cash and dispense it to both parties. In effect, the two 
users are causing two threads to access the account database at the same time. 

 

Definition: Atomic 
The term atomic is related to the atom, once considered the smallest possible unit of 
matter, unable to be broken into separate parts. When a routine is considered atomic, it 
cannot be interrupted during its execution. This can either be accomplished in hardware or 
simulated in software. In general, atomic instructions are provided in hardware that is used 
to implement atomic routines in software. 

In our case, we define an atomic routine as one that can't be found in an intermediate state. 
In our banking example, if the acts of "checking on the account" and "changing the account 
status" were atomic, it would not be possible for another thread to check on the same 
account until the first thread had finished changing the account status. 

 
There is a race condition because the action of checking the account and changing the account status 
is not atomic. Here we have the husband thread and the wife thread competing for the account: 

1. The husband thread begins to execute the deduct() method. 

2. The husband thread confirms that the amount to deduct is less than or equal to the total in the 
account. 

3. The wife thread begins to execute the deduct() method. 

4. The wife thread confirms that the amount to deduct is less than or equal to the total in the 
account. 

5. The wife thread performs the subtraction statement to deduct the amount, returns true, and 
the ATM dispenses her cash. 

6. The husband thread performs the subtraction statement to deduct the amount, returns true, 
and the ATM dispenses his cash. 



Java Threads, 2nd edition 
 

 page 33

The Java specification provides certain mechanisms that deal specifically with this problem. The Java 
language provides the synchronized keyword; in comparison with other threading systems, this 
keyword allows the programmer access to a resource that is very similar to a mutex lock. For our 
purposes, it simply prevents two or more threads from calling our deduct() method at the same time: 

public class Account { 
 
    private float total; 
    public synchronized boolean deduct(float t) { 
        if (t <= total) { 
            total -= t; 
            return true; 
        } 
        return false; 
    } 
} 

By declaring the method as synchronized, if two users decide to withdraw cash from the ATM at the 
same time, the first user executes the deduct() method while the second user waits until the first user 
completes the deduct() method. Since only one user may execute the deduct() method at a time, the 
race condition is eliminated. 

 

Definition: Mutex Lock 
A mutex lock is also known as a mutually exclusive lock. This type of lock is provided by 
many threading systems as a means of synchronization. Basically, it is only possible for one 
thread to grab a mutex at a time: if two threads try to grab a mutex, only one succeeds. The 
other thread has to wait until the first thread releases the lock; it can then grab the lock and 
continue operation. 

With Java, there is a lock created in every object in the system. When a method is declared 
synchronized, the executing thread must grab the lock assigned to the object before it can 
continue. Upon completion of the method, the mechanism automatically releases the lock. 

 
Under the covers, the concept of synchronization is simple: when a method is declared as 
synchronized, it must have a token, which we call a lock. Once the method has acquired this lock (we 
may also say the lock has been checked out or grabbed ), it executes the method and releases (we may 
also say returns) the lock once the method is finished. No matter how the method returns—including 
via an exception—the lock is released. There is only one lock per object, so if two separate threads try 
to call synchronized methods of the same object, only one can execute the method immediately; the 
other thread has to wait until the first thread releases the lock before it can execute the method. 

3.2 Reading Data Asynchronously 

Let's look at a complete example. One of the primary uses for threads within a Java program is to read 
data asynchronously. In this section, we'll develop a class to read a network socket asynchronously. 

Why is threading important for I/O? Whether you are reading from or writing to a file or network 
socket, a common problem exists, namely, that the action of reading or writing depends on other 
resources. These resources may be other programs; they may be hardware, like the disk or the 
network; they may be the operating system or browser. These resources may become temporarily 
unavailable for a variety of reasons: reading from a network socket may involve waiting until the data 
is available, writing large amounts of data to a file may take a long period of time to complete if the 
disk is busy with other requests, and so on. Unfortunately, the mechanism to check whether these 
resources are available does not exist in the Java API. This is particularly a problem for network 
sockets, where data is likely to take a long time to be transmitted over the network; it is possible for a 
read from a network socket to wait forever. 
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Why Asynchronous I/O? 
The driving force behind asynchronous I/O is to allow the program to continue to do 
something useful while it is waiting for data to arrive. If I/O is not asynchronous and not 
running in a thread separate from the applet thread, we run into the problems we discussed 
in the previous chapter: mouse and keyboard events will be delayed, and the program will 
appear to be unresponsive to the user while the I/O completes. 

 
The InputStream class does contain the available() method. However, not all input streams support 
that method, and on a slow network, writing data to a socket is also likely to take a long time. In 
general, checking for data via the available() method is much less efficient (and much harder to 
program) than creating a new thread to read the data. 

The solution to this problem is to use another thread. Say that we use this new thread in an applet: 
since this new thread is independent of the applet thread, it can block without hanging the applet. Of 
course, this causes a new problem: when this thread finally is able to read the data, this data must be 
returned to the applet thread. Let's take a look at a possible implementation of a generic socket reader 
class that will read the socket from another thread: 

import java.io.*; 
import java.net.*; 
 
public class  
AsyncReadSocket extends Thread { 
    private Socket s; 
    private StringBuffer result; 
 
    public AsyncReadSocket(Socket s) { 
        this.s = s; 
        result = new StringBuffer(); 
    } 
 
    public void run() { 
        DataInputStream is = null; 
        try { 
            is = new DataInputStream(s.getInputStream()); 
        } catch (Exception e) {} 
        while (true) { 
            try { 
                char c = is.readChar(); 
                appendResult(c); 
            } catch (Exception e) {} 
        } 
    } 
 
    // Get the string already read from the socket so far. 
    // This method is used by the Applet thread to obtain the data 
    // in a synchronous manner. 
    public synchronized String getResult() { 
        String retval = result.toString(); 
        result = new StringBuffer(); 
        return retval; 
    } 
 
    // Put new data into the buffer to be returned 
    // by the getResult method. 
    public synchronized void appendResult(char c) { 
        result.append(c); 
    } 
} 
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Here we have a Thread class, AsyncReadSocket, whose run() method reads characters from a socket. 
Whenever it gets any characters, it adds them to the StringBuffer result. If this thread hangs while 
reading the socket, it has no effect on any other threads in the program. An applet can call the 
getResult() method to get any data that has been received by this new thread; if no data is available, 
the getResult() method returns an empty string. And if the applet thread is off doing some other 
tasks, this socket thread simply accumulates the characters for the applet thread. In other words, the 
socket thread stores the data it receives at any time, while the applet thread can call the getResult() 
method at any time without the worry of blocking or losing data. An actual run of the two threads may 
look like the diagram in Figure 3.2. 

Figure 3.2. Possible time/location graph during a sample execution of the applet 

 
 
One of the attractions of threaded programming is that it is simple to write many small, independent 
tasks, and that's just what we've done here. And since these small tasks are contained in one program, 
communication between the tasks (the threads) is as simple as communication between two methods 
in a single program. We just need a common reference somewhere that both threads can access. That 
"somewhere," in this case, is the result instance variable. 

Note that we could not have written this class correctly without using the synchronized keyword to 
protect the socket thread and the applet thread from accessing the result buffer at the same time. 
Otherwise, we would have had a race condition. Specifically, if the getResult() and appendResult() 
methods were not synchronized, we could see this behavior: 

1. The applet thread enters the getResult() method. 

2. The applet thread assigns retval to a new string created from the result StringBuffer. 

3. The socket thread returns from the readChar() method. 

4. The socket thread calls the appendResult() method to append the character to the result 
StringBuffer. 

5. The applet thread assigns result to a new (empty) StringBuffer. 

The data that was appended to the StringBuffer in step 4 is now lost: it wasn't retrieved by the applet 
thread at step 2, and the applet thread discards the old StringBuffer in step 5. Note that there is 
another race condition here: if two separate threads call the getResult() method at the same time, 
they could both get copies of the same data from the StringBuffer, and that data would be processed 
twice. 

When all actions on the result variable are atomic, our race condition problem is solved. We need 
only ensure that the result variable is accessed only in methods that are synchronized. 
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When Is a Race Condition a Problem? 
A race condition occurs when the order of execution of two or more threads may affect 
some variable or outcome in the program. It may turn out that all the different possible 
thread orderings have the same final effect on the application: the effect caused by the race 
condition may be insignificant, and may not even be relevant. For example, a character lost 
in the AsyncReadSocket may not affect the final outcome of the program. Alternately, the 
timing of the threading system may be such that the race condition never manifests itself, 
despite the fact that it exists in the code. 

A race condition is a problem that is waiting to happen. Simple changes in the algorithm 
can cause race conditions to manifest themselves in problematic ways. And, since different 
virtual machines will have different orderings of thread execution, the developer should 
never let a race condition exist even if it is currently not causing a problem on the 
development system.  

 
At this point, we may have introduced more questions than answers. So before we continue, let's try to 
answer some of these questions. 

How does synchronizing two different methods prevent the two threads calling those methods from 
stepping on each other? As stated earlier, synchronizing a method has the effect of serializing access 
to the method. This means that it is not possible to execute the same method in another thread while 
the method is already running. However, the implementation of this mechanism is done by a lock that 
is assigned to the object itself. The reason another thread cannot execute the same method at the same 
time is that the method requires the lock that is already held by the first thread. If two different 
synchronized methods of the same object are called, they also behave in the same fashion because they 
both require the lock of the same object, and it is not possible for both methods to grab the lock at the 
same time. In other words, even if two or more methods are involved, they will never be run in parallel 
in separate threads. This is illustrated in Figure 3.3: when thread 1 and thread 2 attempt to acquire the 
same lock (L1), thread 2 must wait until thread 1 releases the lock before it can continue to execute. 

Figure 3.3. Acquiring and releasing a lock 

 
 
The point to remember here is that the lock is based on a specific object and not on any particular 
method. Assume that we have two AsyncReadSocket objects called a and b that have been created in 
separate threads. One thread executes the a.getResult() method while the other thread executes the 
b.getResult() method. These two methods can execute in parallel because the call to a.get-
Result() grabs the object lock associated with the instance variable a, and the call to b.getResult() 
grabs the object lock associated with the instance variable b. Since the two objects are different 
objects, two different locks are grabbed by the two threads: neither thread has to wait for the other. 
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Why do we need the appendResult() method? Couldn't we simply put that code into the run() method 
and synchronize the run() method? We could do that, but the result would be disastrous. Every lock 
has an associated scope; that is, the amount of code for which the lock is valid. Synchronizing the 
run() method creates a scope that is too large and prevents other methods from being run at all. 
 

Definition: Scope of a Lock 
The scope of a lock is defined as the period of time between when the lock is grabbed and 
released. In our examples so far, we have used only synchronized methods; this means that 
the scope of these locks is the period of time it takes to execute these methods. This is 
referred to as method scope. 

Later in this chapter, we'll examine locks that apply to any block of code inside a method or 
that can be explicitly grabbed and released; these locks have a different scope. We'll 
examine this concept of scope as locks of various types are introduced. 

 
The scope of the run() method is infinite, since the run() method executes an infinite loop. If both 
the run() method and getResult() method are synchronized, they cannot run in parallel in separate 
threads. Since the run() method has the task of opening the network socket and reading all the data 
from the socket until the connection is closed, it would need the object lock until the connection is 
closed. This means that while the connection is open, it would not be possible to execute the 
getResult() method. This is not the desired effect for a class that is supposed to read the data 
asynchronously.  

How does a synchronized method behave in conjunction with a nonsynchronized method? Simply 
put, a synchronized method tries to grab the object lock, and a nonsynchronized method doesn't. This 
means it is possible for many nonsynchronized methods to run in parallel with a synchronized 
method. Only one synchronized method runs at a time. 

Synchronizing a method just means the lock is grabbed when that method executes. It is the 
developer's responsibility to ensure that the correct methods are synchronized. Forgetting to 
synchronize a method can cause a race condition: if we had synchronized only the getResult() 
method of the AsyncReadSocket class and had forgotten to synchronize the appendResult() method, 
we would not have solved the race condition, since any thread could call the appendResult() method 
while the getResult() method was executing.  

3.3 A Class to Perform Synchronization 

Why do we need a new keyword to solve a race condition? Could we reengineer our algorithms so 
that race conditions do not exist? Let's see if we can reengineer the AsyncReadSocket class not to have 
a race condition by using trial and error (obviously not the best programming technique, but one that 
is useful for our purposes). We'll conclude that it is impossible to solve a race condition without direct 
support from the virtual machine, because everything that we might try requires two operations: 
testing and setting variable. Without some process in the virtual machine to ensure that nothing 
happens to the variable after it is tested and before it is set, a race condition can occur. But the 
investigation into a possible way to avoid the race condition will provide us with an important tool for 
our later use—the BusyFlag class. 

At first glance, the easiest way to make sure that the two threads do not try to change the result 
variable, or any buffer at the same time, is to use the concept of a busy flag: if a thread needs to access 
the result variable, it must set the flag to busy. If the flag is already busy, the thread must wait until 
the flag is free, at which point it must set the flag to busy. The thread is then free to access the buffer 
without fear of it being accessed by the other thread. Once the task is completed, the thread must set 
the flag to not busy.  
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Why Have the BusyFlag Class at All? 
Fixing race conditions using the BusyFlag class seems more like an academic exercise at 
this moment: why would you then want to use the BusyFlag class in place of the 
synchronization mechanism? 

For all the cases encountered so far, we wouldn't. In other cases, one of the answers lies in 
the scope of the lock: the synchronization mechanism does not allow us to lock code at 
certain scopes. We will encounter cases where the scope of the lock cannot be solved by the 
synchronized mechanism. In addition, the concepts of the BusyFlag class will be useful to 
implement other mechanisms that we'll be exploring throughout the rest of this book. 

 
Here's a possible implementation of the busy flag:  

public class BusyFlag { 
    protected Thread busyflag = null; 
 
    public void getBusyFlag () { 
        while (busyflag != Thread.currentThread()) { 
            if (busyflag == null) 
                busyflag = Thread.currentThread(); 
            try { 
                Thread.sleep(100); 
            } catch (Exception e) {} 
        } 
    } 
 
    public void freeBusyFlag () { 
        if (busyflag == Thread.currentThread()) { 
            busyflag = null; 
        } 
    } 
} 

This BusyFlag class contains two methods. The method getBusyFlag() sits in a loop until it is able to 
set the busyflag to the current thread. As long as the busyflag is set to another thread, our thread 
waits for 100 milliseconds. As soon as the flag is set to null, our thread sets it to the current thread. 
The other method, freeBusyFlag() , frees the flag by setting it back to null. This implementation 
seems to solve the problem simply and elegantly. But it does not. 

Why do we need to sleep for 100 milliseconds? Because there seems to be no way to detect changes in 
the flag without a polling loop. However, a polling loop that does not sleep() simply wastes CPU 
cycles that can be used by other threads. At the other extreme, it takes a minimum of 100 milliseconds 
to set the busy flag even if no thread is holding the flag in the first place. A possible enhancement that 
addresses this problem may be as simple as making the sleep time a variable, but no matter what we 
configure the time to be, we will be balancing whether we want to be able to set the flag in a decent 
amount of time versus the CPU cycles wasted in a polling loop. 

Why do we sleep for 100 milliseconds even if the flag is not set? This is actually intentional. There is a 
race condition between the check to see if the flag is null and setting the flag. If two threads find that 
the flag is free, they can each set the flag and exit the loop. By calling the sleep() method, we allow 
the two threads to set busyflag before checking it again in the while loop. This way, only the second 
thread that sets the flag can exit the loop, and hence exit the getBusyFlag() method. 



Java Threads, 2nd edition 
 

 page 39

Of course, this is still a problem. As unlikely as it seems, it is still possible that this order of execution 
might occur: 

1. Thread A detects that the busyflag is free. 

2. Thread B detects that the busyflag is free. 

3. Thread B sets the busyflag. 

4. Thread B sleeps for 100 milliseconds. 

5. Thread B wakes up, confirms that it has the busyflag, and exits the loop. 

6. Thread A sets the busyflag, sleeps, wakes up, confirms it has the busyflag, and exits the 
loop. 

This is an extremely unlikely occurrence, but possible nonetheless; hence, this code is not one that 
most programmers are willing to accept. 

We could use the BusyFlag class to replace the synchronized method in our Account class like this: 

public class Account { 
    private float total; 
    private flag = new BusyFlag(); 
 
    public boolean deduct(float t) { 
        boolean succeed = false; 
        flag.getBusyFlag(); 
        if (t <= total) { 
            total -= t; 
            succeed = true; 
        } 
        flag.freeBusyFlag(); 
        return succeed; 
    } 
} 

The vast majority of the time, this BusyFlag class works. However, even if you ran a huge beta test 
across 100 bank ATMs for a period of one year without a single problem, would you be willing to bet 
your career on a AutomatedTeller class that uses our BusyFlag class? 

What if multiple threads set the busyflag at the same moment? Is the act of setting the busyflag 
variable atomic? The Java specification guarantees that setting any variable other than a double or a 
long is atomic, so in this example, it does not matter if multiple threads attempt to set the flag at the 
same moment. In the case where two threads are setting a long or a double, however, it is possible that 
the variable will be set incorrectly: part of the variable will contain the bits set by the first thread and 
the rest of the variable will contain the bits set by the second thread. However, atomicity does not 
insure thread communication; see the discussion of volatile in Appendix A. 

Can we fix our BusyFlag class with the synchronization primitives? The problems that we 
encountered in the BusyFlag class are the same problems the BusyFlag class was meant to solve in the 
first place. This means that we can fix the problems in the BusyFlag class by using the synchronization 
primitives; we could use the BusyFlag class to solve other race conditions without worrying that it 
might break under certain conditions. The implementation (still not optimal) that solves this problem 
follows:  

public class BusyFlag { 
     protected Thread busyflag = null; 
     public void getBusyFlag() { 
          while (tryGetBusyFlag() == false) { 
               try { 
                    Thread.sleep(100); 
               } catch (Exception e) {} 
          } 
     } 
     public synchronized boolean  
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tryGetBusyFlag() { 
          if (busyflag == null) { 
               busyflag = Thread.currentThread(); 
               return true; 
          } 
          return false; 
     } 
 
     public synchronized void  
freeBusyFlag() { 
          if (busyflag == Thread.currentThread()) { 
               busyflag = null; 
          } 
     } 
} 

In this implementation of the BusyFlag class, we introduced a new method called tryGetBusyFlag(). 
It is essentially the same as the getBusyFlag() method except that it does not wait until the flag is 
free. If the flag is free, it sets the flag and returns true. Otherwise it returns false. You'll notice that 
this method is declared as synchronized. This means the system makes sure the thread that makes the 
call to the tryGetBusyFlag() method has grabbed the object lock during the execution of the method. 

The freeBusyFlag() method is also declared as synchronized: the thread that made the method call 
must also grab the object lock before it can continue. Since there is only one object lock for each 
instance of the class, the lock that freeBusyFlag() will try to grab is the same lock 
tryGetBusyFlag() will grab. This means that there will be no race condition between threads trying 
to get the busyflag and the thread that frees the busyflag.  

3.4 The Synchronized Block 

Notice that the original getBusyFlag() method is not declared as synchronized. This is because it's 
not necessary: getBusyFlag() does not try to access the busyflag variable. Instead, it calls the 
tryGetBusyFlag() method, which accesses the busyflag and is, of course, synchronized. Let's take 
another look at the getBusyFlag() method, one that does not call the tryGetBusyFlag() method. 
Instead, this version gets the busyflag directly: 

public synchronized void getBusyFlag() { 
 
     while (true) { 
          if (busyflag == null) { 
               busyflag = Thread.currentThread(); 
               break; 
          } 
          try { 
               Thread.sleep(100); 
          } catch (Exception e) {} 
     } 
} 

Let's assume that we do not want the inefficiency of an extra method call to the tryGetBusyFlag() 
method. In our new version of the getBusyFlag() method, we now access the busyflag directly. The 
getBusyFlag() method simply loops waiting for the flag to be freed, sets the flag, and returns. Since 
we are now accessing the busyflag directly, we must make the method synchronized or we will have a 
race condition. 

Unfortunately, there is a problem when we declare this method to be synchronized. While declaring 
the method synchronized prevents other getBusyFlag() and tryGetBusyFlag() methods from being 
run at the same time (which prevents a race condition), it also prevents the freeBusyFlag() method 
from running. This means that if the flag is busy when getBusyFlag() is called, getBusyFlag() waits 
until the flag is freed. Unfortunately, since the freeBusyFlag() method will not run until the 
getBusyFlag() method frees the object lock, the busyflag will not be freed. This Catch-22 situation 
is termed deadlock. The deadlock in this case is a problem between a lock and a busyflag. More 
commonly, deadlock occurs between two or more locks, but the idea is the same. 
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An Example of Deadlock 
We'll examine the concept of the deadlock in detail later in this chapter and again in 
Chapter 8. But before we continue, let's look at an example. 

Let's assume that we are waiting in line at a bank. I am at the front of the line, waiting to 
withdraw some cash. Let's assume that the bank is out of cash, and I am actually willing to 
wait for some cash to be deposited. Let's also suppose that the bank has only one teller, and 
has a policy of not handling another transaction until the current transaction is finished. 
Since I am still waiting to receive my money, my transaction is not finished. 

Suppose that you are behind me with a million dollars to deposit. Obviously, you cannot 
deposit the money until I am finished, and I will not be finished until you deposit the 
money. This is, of course, a very contrived situation, and simple common sense can resolve 
it. However, this is exactly what is happening in a less contrived way in our BusyFlag class 
example. Furthermore, because this is a subtle problem, we might not have noticed it 
during testing, much the same as the bank, with an ample amount of cash, wouldn't have 
noticed the potential deadlock when it tested its policy. 

 
We have a problem in this implementation of getBusyFlag() because the scope in which we used the 
object lock was too large. All we need to do is hold the lock for the period during which we need to 
change the data (i.e., check and get the busyflag); it doesn't need to be held during the entire 
method. Fortunately, Java also provides us the ability to synchronize a block of code instead of 
synchronizing the entire method. Using this block synchronization mechanism on our getBusyFlag() 
method, we now obtain the following code: 

public void getBusyFlag () { 
    while (true) { 
        synchronized (this) { 
            if (busyflag == null) { 
                busyflag = Thread.currentThread(); 
                break; 
            } 
        } 
        try { 
            Thread.sleep(100); 
        } catch (Exception e) {} 
    } 
} 

In this new implementation of the getBusyFlag() method, we only synchronized the period between 
checking the flag and setting it if it is not busy. This usage is very similar to the synchronized method 
usage, except that the scope during which the lock is held is much smaller. 

Interestingly, this usage not only gives us more precise control over when the object lock is held, but it 
also allows us to select which object's lock to grab. In this case, since we want to grab the same object 
lock as in the tryGetBusyFlag() and freeBusyFlag() methods, we chose this as the object on 
which to obtain the lock. For synchronized methods, the lock that is obtained is the object lock of the 
class in which the method exists; in other words, the this object. 

 

 

 

 

 

 



Java Threads, 2nd edition 
 

 page 42

Object or Reference? 
With the introduction of the synchronized block, we can also choose the object to lock along 
with synchronizing at a block scope. Care must now be taken to distinguish between a 
physical object and an instance variable that refers to an object. 

In our BusyFlag class, we could have used the synchronized block mechanism in the 
getBusyFlag(), tryGetBusyFlag(), and freeBusyFlag() methods. This allows us to pick 
any object as the lock object. 

The busyflag variable would not be a good choice. This variable may change values during 
execution of the three methods, including taking the value of null. Locking on null is an 
exception condition, and locking on different objects defeats the purpose of synchronizing 
in the first place. 

This might be obvious, but since picking inappropriate locks is a common mistake, let us 
reiterate it: 

Synchronization is based on actual objects, not references to objects. 
Multiple variables can refer to the same object, and a variable can change 
its reference to a different object. Hence, when picking an object to use as a 
lock, we must think in terms of physical objects and not references to 
objects. 

As a rule of thumb, don't choose to synchronize a block on an instance variable that changes 
value during the scope of the lock. 

 
3.5 Nested Locks 

Let's examine our BusyFlag class yet again. Suppose we add another method that finds out which 
thread owns the lock. This getBusyFlagOwner() method simply returns the busyflag, which just so 
happens to be the thread object that owns the lock. An implementation is as follows: 

public synchronized Thread getBusyFlagOwner() { 
 
 
 
    return busyflag; 
} 

Furthermore, let's make a modification to the freeBusyFlag() method to use this new 
getBusyFlagOwner() method: 

public synchronized void freeBusyFlag () { 
    if (getBusyFlagOwner() == Thread.currentThread()) { 
        busyflag = null; 
    } 
} 

In this version of the freeBusyFlag() method, we make a call to the getBusyFlagOwner() method to 
see if the current thread is the owner before freeing the busyflag. What is interesting here is that both 
the freeBusyFlag() and the getBusyFlagOwner() methods are synchronized. So what happens? 
Does the thread hang at the getBusyFlagOwner() method while waiting for the freeBusyFlag() 
method to free the object lock? If not, and the getBusyFlagOwner() method is allowed to run, what 
happens when that method completes? Does it free the object lock even though the freeBusyFlag() 
method still needs it? The answer to all these questions is that it all works the way you want it to. 
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Synchronized Method Versus Synchronized 
Block 

It is actually possible to use only the synchronized block mechanism, even when we need to 
synchronize the whole method. For clarity in this book, we will synchronize the whole 
method with the synchronized method mechanism, and use the synchronized block 
mechanism otherwise. We leave it up to the personal preference of the programmer to 
decide when to synchronize on a block of code and when to synchronize the whole method. 

Picking the whole method is the simplest technique, but as we have seen, it is possible to 
have deadlock because the scope is too large. It may also be inefficient to hold a lock for the 
section of code where it is actually not needed. 

Using the synchronized block mechanism may also be a problem if too many locks are 
involved. As we shall see, it is possible to have a deadlock condition if we require too many 
locks to be grabbed. There is also an overhead in grabbing and releasing the lock, so it may 
be inefficient to free a lock just to grab it again a few lines of code later. 

Theorists could probably insert a whole chapter on this issue. Our concern is mainly for the 
clarity of the code, and we decide which mechanism to use on a case-by-case basis. Any 
other reasons for choosing between the two mechanisms are beyond the scope of this book. 

 
A synchronized area (by which we mean a synchronized block or method) does not blindly grab the 
lock when it enters the code section and free the lock when it exits. If the current thread already owns 
the object lock, there is no reason to wait for the lock to be freed or even to grab the lock. Instead the 
code in the synchronized area merely executes. Furthermore, the system is smart enough not to free 
the lock if it did not initially grab it upon entering the synchronized area. This means that the 
freeBusyFlag() method can call the getBusyFlagOwner() method without any problems. 

Unfortunately, our version of the locking mechanism, the BusyFlag class, is not so smart. It hangs 
waiting for the lock that it is currently holding to be freed. To solve this problem, we must 
reimplement the BusyFlag class with a counter. The object now checks to see if it already owns the 
lock and increases the count by one if it does. In the corresponding freeBusyFlag() method, it only 
frees the busyflag if the count is zero. This way a thread within the scope of a BusyFlag lock directly 
or indirectly (through method calls) enters other areas that are locked with the same BusyFlag 
instance. 

Here's an implementation (still suboptimal) of the BusyFlag class with this modification: 

public class BusyFlag { 
 
    protected Thread busyflag = null; 
    protected int busycount = 0; 
 
    public void getBusyFlag() { 
        while (tryGetBusyFlag() == false) { 
            try { 
                Thread.sleep(100); 
            } catch (Exception e) {} 
        } 
    } 
 
    public synchronized boolean tryGetBusyFlag() { 
        if (busyflag == null) { 
            busyflag = Thread.currentThread(); 
            busycount = 1; 
            return true; 
        } 
        if (busyflag == Thread.currentThread()) { 
            busycount++; 
            return true; 
         } 
        return false; 
    } 
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    public synchronized void freeBusyFlag () { 
        if (getBusyFlagOwner() == Thread.currentThread()) { 
            busycount—; 
            if (busycount == 0) 
                busyflag = null; 
        } 
    } 
 
    public synchronized Thread getBusyFlagOwner() { 
        return busyflag; 
    } 
} 

With this new implementation of the BusyFlag class, we can now lock any section of code without 
worrying that we may already own the lock. We can also free the lock without worrying. Both the 
synchronized mechanism and our BusyFlag class can be used as nested locks. (The BusyFlag class is 
now beginning to resemble another synchronization primitive known as a semaphore .)  

3.6 Deadlock 

While it is not too difficult to check if a thread already owns a lock before grabbing it, is it possible to 
prevent deadlock of any kind? Before we try to answer this question, let's look further into just what 
deadlock is. Simplistically, deadlock is when two or more threads are waiting for two or more locks to 
be freed and the circumstances in the program are such that the locks will never be freed. We saw this 
occur earlier, when we made the getBusyFlag() method synchronized. The fact that the 
freeBusyFlag() method was also synchronized made it impossible for the busyflag to be freed until 
the getBusyFlag() method returned. Since the getBusyFlag() method was waiting for the busyflag 
to be freed, it would wait forever. 

That deadlock was caused by an object lock grabbed by the Java synchronization primitive and our 
own implementation of a lock mechanism, the BusyFlag class. Can this deadlock situation also be 
caused only with Java's synchronization primitives? The answer to this question is yes; furthermore, it 
may be difficult to predict deadlock or to detect deadlock when it occurs. Code that runs correctly 
every time during testing may contain potential deadlocks that occur only under certain conditions or 
on certain implementations of the Java virtual machine. To better illustrate this problem, let's 
examine some possible methods that may exist in any database system: 

public void removeUseless(Folder file) { 
 
     synchronized (file) { 
          if (file.isUseless()) { 
               Cabinet directory = file.getCabinet(); 
               synchronized (directory) { 
                    directory.remove(file); 
               } 
          } 
     } 
} 

Suppose, in some database class, we have a method called removeUseless(). This method is called 
during the period when the program needs to clean up the database system. It is passed a folder 
object; this object represents some folder we have in our database system. There is some indication of 
uselessness that is calculated by the isUseless() method of the folder object. In order for us to act on 
the folder, we must make sure that we have the object lock of the folder. If we find that the folder is 
useless, we can simply remove the folder from the cabinet. The cabinet can be found by the 
getCabinet() method, and the folder can be deleted with the remove() method. Just as with the 
folder object, before we can act on the cabinet object, we must obtain its object lock. Now, let's also 
suppose that we have another method, called updateFolders(): 

public void updateFolders(Cabinet dir) { 
 
     synchronized (dir) { 
          for (Folder f = dir.first(); f != null; f = dir.next(f)) { 
               synchronized (f) { 
                    f.update(); 
               } 
          } 
     } 
} 
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This method is passed a cabinet object that represents a cabinet in our database system. In order for 
us to act on this cabinet, we must first obtain its object lock. Let's suppose that the act of updating the 
cabinet is done by cycling through all the folders in the cabinet and calling the update() method on 
the folders. Again, in order for us to update the folders, we must also grab the folder lock. 

None of these methods is extraordinary; they could exist in one form or another in any database 
system. However, let's look at a possible run of this implementation as outlined in Figure 3.4. Assume 
the updateFolders() method is called from thread 1. The method locks the cabinet (L1). Now assume 
the removeUseless() method is called by thread 2. The removeUseless() method locks the folder 
(L2), determines that it is indeed useless, and proceeds to lock the cabinet (L1) in order to remove the 
folder. At this point, thread 2 blocks and waits until the cabinet object lock is freed. 

Figure 3.4. Deadlock in a database system 

 
 
But what happens if the folder on which the removeUseless() method is working is now accessed by 
the updateFolders() method? When the updateFolders() method reaches this folder, it tries to 
grab the object lock for the folder (L2). At this point, the removeUseless() method has the folder lock 
and is waiting for the cabinet lock to be freed; the updateFolders() method holds the cabinet lock 
and is waiting for the folder lock to be freed. This is the classic deadlock situation, and it illustrates the 
problem that deadlock can be easy to program and hard to detect: both methods involved use a 
simple, straightforward algorithm, and there are no obvious signs in the code that deadlock can occur. 
Consider this problem in the light of a large system, where the code may have been developed by two 
engineers with no knowledge of each other's work; even the best program design would not guarantee 
deadlock prevention. 

Can the system somehow resolve this deadlock, just as it was able to avoid the potential deadlock 
when a thread tries to grab the same lock again? Unfortunately, this problem is different. Unlike the 
case of the nested locks, where a single thread is trying to grab a single lock twice, this case involves 
two separate threads trying to grab two different locks. Since a thread owns one of the locks involved, 
it may have made changes that make it impossible for it to free the lock. To be able to fix this problem, 
we can either redesign the program so that it doesn't run into this deadlock condition, or provide a 
way for this deadlock to be avoided programmatically. In either case, it involves some sort of redesign. 
Given the complexity of the original design, this may involve a major overhaul of the database system. 

How could you expect the Java system to resolve this deadlock automatically when even the 
developer may not be able to do so without overhauling the design? The answer is that you can't, and 
it doesn't. We will look at the design issues related to deadlock prevention in Chapter 8.  
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3.7 Return to the Banking Example 

So, we just survived the ATM withdrawal problem. It turns out that this problem occurred so 
infrequently that the total cash involved with the problem transactions was only a few thousand 
dollars. Luckily, the bank kept records that were good enough to recover the cash. While our manager 
did not like the fact that we caused a major panic among the upper-level managers, she was somewhat 
impressed that we were able to track down the problem. While she still does not trust us completely, 
we still have a job and are able to design and enhance different parts of the ATM system. 

The first thing we do is to look at our existing ATM code: we check and double check every piece of 
code for race conditions, using the synchronized mechanisms that we've learned so far to resolve the 
problems. Everything seems to be going well until one day the president of the bank receives a phone 
call from an irate customer. This customer did a balance inquiry at the ATM that showed a balance of 
$300. Immediately, he attempted to withdraw $290, but could not. 

It turns out that in the very short period of time between when the customer checked his balance and 
attempted to withdraw the money, his wife withdrew $100 from another ATM. Even though the 
"correct" thing happened, it turned into a big political problem for the bank when the husband 
threatened to remove his $1 million business account from the bank if the bank "couldn't keep their 
records straight." So the bank established a new policy that only one ATM could operate on an account 
at the same time. 

This means that we need a new lock scope for the account: the ATM class must be able to lock the 
account for the duration of a session with a user. This session could comprise transactions that span 
multiple methods in the ATM class, so the synchronized blocks and synchronized methods that we've 
learned about so far aren't sufficient to solve this problem: we need a lock that spans multiple 
methods. 

Fortunately, we've already developed the BusyFlag class, so we're in position to solve this problem 
with little effort: 

public class  
AutomatedTellerMachine extends Teller { 
    Account a; 
 
    public boolean synchronized login(String name, String password) { 
        if (a != null) 
            throw new IllegalArgumentException("Already logged in"); 
        a = verifyAccount(name, password); 
        if (a == null) 
            return false; 
        a.lock(); 
        return true; 
    } 
  
    public void withdraw(float amount) { 
        if (a.deduct(amount)) 
            dispense(amount); 
        printReceipt(); 
    } 
  
    public void balanceInquiry() { 
        printBalance(a.balance()); 
    } 
  
    public void synchronized logoff() { 
        a.unlock(); 
        a = null; 
    } 
} 
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class Account { 
 
    private float total; 
    private BusyFlag flag = new BusyFlag(); 
  
    public synchronized boolean deduct(float t) { 
        if (t <= total) { 
            total -= t; 
            return true; 
        } 
        else return false; 
    } 
  
    public synchronized float balance() { 
        return total; 
    } 
  
    public void lock() { 
        flag.getBusyFlag(); 
    } 
  
    public void unlock() { 
        flag.freeBusyFlag(); 
    } 
} 

By using a BusyFlag lock, we're now able to lock at a "session" scope by grabbing the busyflag when 
the user logs into the ATM and releasing the busyflag when the user logs off the ATM. Locking at this 
scope cannot be directly achieved with the synchronization primitives within Java. 

Being proud of the BusyFlag class, we now place the code into a class library, where it is accepted by 
the whole development team for the ATM project. Although it is a very simple class, it is also one of 
the most functional and is used in practically every part of the ATM system. However, we'll point out 
now that our current implementation of the BusyFlag class, while correct, is still suboptimal, but we 
can't solve that problem until we learn about the tools in the next chapter. 

3.8 Synchronizing Static Methods  

Throughout this chapter on synchronization, we kept referring to "obtaining the object lock." But 
what about static methods? When a synchronized static method is called, which object are we 
referring to? A static method does not have a concept of the this reference. It is not possible to obtain 
the object lock of an object that does not exist. So how does synchronization of static methods work? 
To answer this question, we will introduce the concept of a class lock. Just as there is an object lock 
that can be obtained for each instance of a class (object), there is a lock that can be obtained for each 
class. We will refer to this as the class lock . In terms of implementation, there is no such thing as a 
class lock, but it is a useful concept to help us understand how this all works. 

When a static synchronized method is called, the program obtains the class lock before calling the 
method. This mechanism is identical to the case in which the method is not static; it is just a different 
lock. The same rule applies: if a synchronized static method calls another synchronized static method 
of the same class, the system is smart enough to support the nesting of class locks. 

But how is the class lock related to the object lock? Apart from the functional relationship between the 
two locks, they are not operationally related at all. These are two distinct locks. The class lock can be 
grabbed and released independently of the object lock. If a nonstatic synchronized method calls a 
static synchronized method, it acquires both locks. Achieving deadlock between these two locks is a 
little difficult (but not impossible) to accomplish since a static method cannot call a nonstatic method 
without an object reference. 
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If a synchronized static method has access to an object reference, can it call synchronized methods of 
that object or use the object to lock a synchronized block? Yes: in this case the program first acquires 
the class lock when it calls the synchronized static method and then acquires the object lock of the 
particular object: 

public class  
MyStatic { 
    public synchronized static void staticMethod(MyStatic obj) { 
        // Class lock acquired 
        obj.nonStaticMethod(); 
 
        synchronized (obj) { 
        // Class and object locks acquired 
        }     
    } 
    public synchronized void nonStaticMethod() { 
        // Object lock acquired 
    } 
} 

Can a nonstatic method grab the static lock without calling a synchronized static method? In other 
words, can a synchronized block apply to the class lock? For example, something like this: 

public class  
ClassExample { 
    synchronized void process() { 
        synchronized (the class lock) { 
        // Code to access static variables of the class 
        } 
    } 
} 

The main reason for a nonstatic method to grab a class lock is to prevent a race condition for variables 
that apply to the class (i.e., static variables). This can be accomplished by calling a static synchronized 
method of the class. If for some reason this is not desired, we can also use the synchronized block 
mechanism on a common static object (using a static instance variable would probably be the best 
technique for storing such a common object). For example, we could use an object stored in a common 
location that can be accessed by all objects of a particular class type: 

public class ClassExample { 
    private static Object lockObject = new Object(); 
    synchronized void process() { 
        synchronized (lockObject) { 
            // Code to access static variables of the class 
        } 
    } 
} 
 
 

The Class Lock and the Class Object 
In this example, we are using the object lock of the Class object as a common lock for the 
class. We are using this object because there is a one-to-one correspondence of class objects 
and classes in the system. We have also mentioned that when a synchronized static method 
is called, the system will grab the class lock. 

It turns out that there is actually no such thing as a class lock. When a synchronized static 
method is called, the system grabs the object lock of the class object that represents the 
class. This means the class lock is the object lock of the corresponding class object. Using 
both static synchronized methods and synchronized blocks that use the class object lock can 
cause confusion.  
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Finally, if creating a new object is not desired, you may also obtain the class object (that is, the 
instance of the java.lang.Class class) that represents the class itself. Objects of this class are used to 
represent classes in the system. For our purposes, we are using this class because there is a one-to-one 
ratio of classes and objects of the Class class that represents the classes. This class object can be 
obtained as follows: 

public class ClassExample { 
    synchronized void process() { 
        synchronized (Class.forName("ClassExample")) { 
            // Code to access static variables of the class 
        } 
    } 
} 

A call to the forName() method of the Class class returns this object. We can then use this class object 
as the locking object via the synchronized block mechanism.  

3.9 Summary 

In this chapter, we introduced the synchronized keyword of the Java language. This keyword allows 
us to synchronize methods and blocks of code. 

We've also developed a synchronization primitive of our own: the BusyFlag, which allows us to lock 
objects across methods and to acquire and release the lock at will based on external events. These 
features are not available with Java's synchronized keyword, but they are useful in many situations. 

This concludes our first look at synchronization. As you can tell, it is one of the most important 
aspects of threaded programming. Without these techniques, we would not be able to share data 
correctly between the threads that we create. While these techniques are good enough for many of the 
programs we will be creating, we introduce other techniques in the next chapter.  
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Chapter 4. Wait and Notify  
In the previous chapter, we took our first look into issues of synchronization. With the 
synchronization tools introduced, we now are able to have our own threads interoperate and safely 
share data with each other. It is possible for threads to share data without any race conditions. 
However, as we shall see, synchronization is more than avoiding race conditions: it includes a thread-
based notification system that we'll examine in this chapter. 

4.1 Back to Work (at the Bank) 

Having just completed a sweep of all the code in the ATM system - synchronizing any potential 
problems using the techniques of Chapter 3 - we have made the system much more robust. Many little 
hiccups that used to occur no longer show up. But most important, our BusyFlag class allows us to 
quickly make the modifications required by our president. The use of the BusyFlag class in this 
situation allows it to be adopted as a corporate standard and used throughout the whole ATM system. 

As far as our manager is concerned, we're heroes - until another problem occurs: it turns out that a 
portion of the ATM system is facing performance problems. This portion of the system was developed 
by a coworker who made extensive use of the BusyFlag class. Since it is our class, we are given the task 
of trying to correct the problem. We start by revisiting the entire BusyFlag class: 

public class BusyFlag { 
 
    protected Thread busyflag = null; 
    protected int busycount = 0; 
 
    public void getBusyFlag() { 
        while (tryGetBusyFlag() == false) { 
            try { 
                Thread.sleep(100); 
            } catch (Exception e) {} 
        } 
    } 
 
    public synchronized boolean tryGetBusyFlag() { 
        if (busyflag == null) { 
            busyflag = Thread.currentThread(); 
            busycount = 1; 
            return true; 
        } 
        if (busyflag == Thread.currentThread()) { 
            busycount++; 
            return true; 
        } 
        return false; 
    } 
 
    public synchronized void freeBusyFlag () { 
        if (getBusyFlagOwner() == Thread.currentThread()) { 
            busycount--; 
            if (busycount == 0) 
                busyflag = null; 
        } 
    } 
 
    public synchronized Thread getBusyFlagOwner() { 
        return busyflag; 
    } 
} 

Upon revisiting the BusyFlag class, we notice the call to the sleep() method. We originally used this 
method to avoid eating up too many CPU cycles. At the time, we considered this an open issue. If the 
getBusyFlag() method sleeps for a long period of time, this might cause the method to wait too long 
and hence cause a performance problem. Conversely, if the method does not sleep enough, it might 
eat up too many CPU cycles and hence cause a performance problem. In either case, this has to be 
fixed: we have to find a way to wait only until the lock is freed. We need the getBusyFlag() method to 
grab the busyflag the moment the flag is freed and yet not eat any CPU cycles in a polling loop. We'll 
solve this problem in the next section. 
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4.2 Wait and Notify 

Just as each object has a lock that can be obtained and released, each object also provides a 
mechanism that allows it to be a waiting area. And just like the lock mechanism, the main reason for 
this mechanism is to aid communication between threads.[1] The idea behind the mechanism is 
actually simple: one thread needs a certain condition to exist and assumes that another thread will 
create that condition. When this other thread creates the condition, it notifies the first thread that has 
been waiting for the condition. This is accomplished with the following methods: 

[1] Under Solaris or POSIX threads, these are often referred to as condition variables ; on Windows 95/NT, they 
are referred to as event variables. 

void wait()  

Waits for a condition to occur. This is a method of the Object class and must be called from 
within a synchronized method or block. 

void notify()  

Notifies a thread that is waiting for a condition that the condition has occurred. This is a 
method of the Object class and must be called from within a synchronized method or block. 

 

wait(), notify(), and the Object Class 
Interestingly enough, just like the synchronized method, the wait and notify mechanism is 
available from every object in the Java system. However, this mechanism is accomplished 
by method invocations, whereas the synchronized mechanism is done by adding a keyword. 

The wait()/notify() mechanism works because these are methods of the Object class. 
Since every object in the Java system inherits directly or indirectly from the Object class, it 
is also an Object and hence has support for this mechanism. 

 
What is the purpose of the wait and notify mechanism, and how does it work? The wait and notify 
mechanism is also a synchronization mechanism; however, it is more of a communication mechanism: 
it allows one thread to communicate to another thread that a particular condition has occurred. The 
wait and notify mechanism does not specify what the specific condition is. 

Can wait and notify be used to replace the synchronized method? Actually, the answer is no. Wait 
and notify does not solve the race condition problem that the synchronized mechanism solves. As a 
matter of fact, wait and notify must be used in conjunction with the synchronized lock to prevent a 
race condition in the wait and notify mechanism itself. 

Let's use this technique to solve the timing problem in the BusyFlag class. In our earlier version, the 
getBusyFlag() method would call tryGetBusyFlag() to obtain the busyflag. If it could not get the 
flag, it would try again 100 milliseconds later. But what we are really doing is waiting for a condition 
(a free busyflag) to occur. So we can apply this mechanism: if we don't have the condition (a free 
busyflag), we wait() for the condition. And when the flag is freed, we notify() a waiting thread 
that the condition now exists. This gives us the final, optimal implementation of the BusyFlag class: 

public class BusyFlag { 
    protected Thread busyflag = null; 
    protected int busycount = 0; 
 
    public synchronized void  
getBusyFlag() { 
        while (tryGetBusyFlag() == false) { 
            try { 
                wait(); 
            } catch (Exception e) {} 
        } 
    } 
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    public synchronized boolean tryGetBusyFlag() { 
        if (busyflag == null) { 
            busyflag = Thread.currentThread(); 
            busycount = 1; 
            return true; 
        } 
        if (busyflag == Thread.currentThread()) { 
            busycount++; 
            return true; 
        } 
        return false; 
    } 
 
    public synchronized void freeBusyFlag() { 
 
        if (getBusyFlagOwner() == Thread.currentThread()) { 
            busycount--; 
            if (busycount == 0) { 
                busyflag = null; 
                notify(); 
            } 
        } 
    } 
 
    public synchronized Thread getBusyFlagOwner() { 
        return busyflag; 
    } 
} 

In this new version of the getBusyFlag() method, the 100-millisecond sleep is removed and replaced 
with a call to the wait() method. This is the wait for the required condition to occur. The 
freeBusyFlag() method now contains a call to the notify() method. This is the notification that the 
required condition has occurred. This new implementation is much better than the old one. We now 
wait() until the busyflag is free - no more and no less - and we no longer waste CPU cycles by 
waking up every 100 milliseconds to test if the busyflag is free. 

 

Wait and Notify and Synchronization 
As noted, the wait and notify mechanism has a race condition that needs to be solved with 
the synchronization lock. Unfortunately, it is not possible to solve the race condition 
without integrating the lock into the wait and notify mechanism. This is why it is 
mandatory for the wait() and notify() methods to hold the locks for the objects for 
which they are waiting or notifying. 

The wait() method releases the lock prior to waiting, and reacquires the lock prior to 
returning from the wait() method. This is done so that no race condition exists. If you 
recall, there is no concept of releasing and reacquiring a lock in the Java API. The wait() 
method is actually tightly integrated with the synchronization lock, using a feature not 
available directly from the synchronization mechanism. In other words, it is not possible for 
us to implement the wait() method purely in Java: it is a native method. 

This integration of the wait and notify and the synchronized method is actually standard. In 
other systems, such as Solaris or POSIX threads, condition variables also require that a 
mutex lock be held for the mechanism to work. 

 
There is another change: the getBusyFlag() method is now synchronized. The getBusyFlag() 
method was not synchronized in our earlier examples because the lock scope would have been too 
large. It would not have been possible for the freeBusyFlag() method to be called while the 
getBusyFlag() method held the lock. However, because of the way in which the wait() method 
works, there is no longer a danger of deadlock. The wait() method will release the lock, which will 
allow other threads to execute the freeBusyFlag() method. Before the wait() method returns, it will 
reacquire the lock, so that to the developer, it appears as if the lock has been held the entire time.  
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What happens when notify() is called and there is no thread waiting? This is a valid situation. Even 
with our BusyFlag class, it is perfectly valid to free the busyflag when there is no other thread waiting 
to get the busyflag. Since the wait and notify mechanism does not know the condition about which it 
is sending notification, it assumes that a notification for which there is no thread waiting is a 
notification that goes unheard. In other words, if notify() is called without another thread waiting, 
then notify() simply returns. 

What are the details of the race condition that exists in wait and notify? In general, a thread that uses 
the wait() method confirms that a condition does not exist (typically by checking a variable) and then 
calls the wait() method. When another thread sets the condition (typically by setting that same 
variable), it then calls the notify() method. A race condition occurs when: 

1. The first thread tests the condition and confirms that it must wait. 

2. The second thread sets the condition. 

3. The second thread calls the notify() method; this goes unheard, since the first thread is not 
yet waiting. 

4. The first thread calls the wait() method. 

How does this potential race condition get resolved? This race condition is resolved by the 
synchronization lock discussed earlier. In order to call wait() or notify(), we must have obtained 
the lock for the object on which we're calling the wait() or notify() method. This is mandatory: the 
methods will not work properly and will generate an exception condition if the lock is not held. 
Furthermore, the wait() method also releases the lock prior to waiting and reacquires the lock prior 
to returning from the wait() method. The developer must use this lock to ensure that checking the 
condition and setting the condition is atomic, which typically means that the condition is held in an 
instance variable within the locked object. 

Is there a race condition during the period that the wait() method releases and reacquires the lock? 
The wait() method is tightly integrated with the lock mechanism. The object lock is not actually freed 
until the waiting thread is already in a state in which it can receive notifications. This would have been 
difficult, if not impossible, to accomplish if we had needed to implement the wait() and notify() 
methods ourselves. For our purposes, this is an implementation detail. It works, and works correctly. 
The system prevents any race conditions from occurring in this mechanism. 

 

Wait and Notify and the Synchronized 
Block 

In all the wait and notify examples so far, we have used synchronized methods. However, 
there is no reason we can't use the synchronized block syntax instead. The only requirement 
is that the object on which we are synchronizing must be the same object on which we call 
the wait() and notify() methods. An example could be as follows: 

public class ExampleBlockLock { 
    private StringBuffer sb = new StringBuffer(); 
    public void getLock() { 
        doSomething(sb); 
        synchronized (sb) { 
            try { 
                sb.wait(); 
            } catch (Exception e) {} 
        } 
    } 
    public void freeLock() { 
        doSomethingElse(sb); 
        synchronized (sb) { 
            sb.notify(); 
        } 
    } 
} 
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Why does the getBusyFlag() method loop to test if the tryGetBusyFlag() method returns false? Isn't 
the flag going to be free when the wait() method returns? No, the flag won't necessarily be free when 
the wait() method returns. The race condition that is solved internally to the wait and notify 
mechanism only prevents the loss of notifications. It does not solve the following case: 

1. The first thread acquires the busyflag. 

2. The second thread calls tryGetBusyFlag(), which returns false. 

3. The second thread executes the wait() method, which frees the synchronization lock. 

4. The first thread enters the freeBusyFlag() method, obtaining the synchronization lock. 

5. The first thread calls the notify() method. 

6. The third thread attempts to call getBusyFlag() and blocks waiting for the synchronization 
lock. 

7. The first thread exits the freeBusyFlag() method, releasing the synchronization lock. 

8. The third thread acquires the synchronization lock and enters the getBusyFlag() method. 
Because the busyflag is free, it obtains the busyflag and exits the getBusyFlag() method, 
releasing the synchronization lock. 

9. The second thread, having received notification, returns from the wait() method, reacquiring 
the synchronization lock along the way. 

10. The second thread calls the tryGetBusyFlag() method again, confirms that the flag is busy, 
and calls the wait() method. 

If we had implemented the getBusyFlag() method without the loop: 

public synchronized void getBusyFlag() { 
    if (tryGetBusyFlag() == false) { 
        try { 
            wait(); 
            tryGetBusyFlag(); 
        } catch (Exception e) {} 
    } 
} 

then in step 10 the second thread would have returned from the getBusyFlag() method even though 
the tryGetBusyFlag() method had not acquired the busyflag. All we know when the wait() 
method returns is that at some point in the past, the condition had been satisfied and another thread 
called the notify() method; we cannot assume that the condition is still satisfied without testing the 
condition again. Hence, we always need to put the call to the wait() method in a loop.  

4.3 wait(), notify(), and notifyAll() 

What happens when there is more than one thread waiting for the notification? Which thread 
actually gets the notification when notify() is called? The answer is that it depends: the Java 
specification doesn't define which thread gets notified. Which thread actually receives the notification 
varies based on several factors, including the implementation of the Java virtual machine and 
scheduling and timing issues during the execution of the program. There is no way to determine, even 
on a single platform, which of multiple threads receives the notification. 

There is another method of the Object class that assists us when multiple threads are waiting for a 
condition: 

void notifyAll()  

Notifies all the threads waiting on the object that the condition has occurred. This is a method 
of the Object class and must be called from within a synchronized method or block. 
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The Object class also provides the notifyAll() method, which helps us in those cases where the 
program cannot be designed to allow any arbitrary thread to receive the notification. This method is 
similar to the notify() method, except that all of the threads that are waiting on the object will be 
notified instead of a single arbitrary thread. Just like the notify() method, the notifyAll() method 
does not let us decide which threads get notification: they all get notified. By having all the threads 
receive notification, it is now possible for us to work out a mechanism for the threads to choose among 
themselves which thread should continue and which thread(s) should call the wait() method again. 

 

Does notifyAll() Really Wake Up All the 
Threads? 

Yes and no. All the waiting threads will wake up, but they still have to reacquire the object 
lock. So the threads will not run in parallel: they must each wait for the object lock to be 
freed. Thus only one thread can run at a time, and only after the thread that called the 
notifyAll() method releases its lock. 

 
Why would you want to wake up all of the threads? There are a few possible reasons, one of which is 
if there is more than one condition to wait for. Since we cannot control which thread gets the 
notification, it is entirely possible that a notification wakes up a thread that is waiting for an entirely 
different condition. By waking up all the waiting threads, we can design the program so that the 
threads decide among themselves which should execute next. 

Another reason is the case where the notification can satisfy multiple waiting threads. Let's examine a 
case where we need such control: 

public class ResourceThrottle { 
 
    private int resourcecount = 0; 
    private int resourcemax = 1; 
 
    public ResourceThrottle (int max) { 
        resourcecount = 0; 
        resourcemax = max; 
    } 
 
    public synchronized void getResource (int numberof) { 
        while (true) { 
            if ((resourcecount + numberof) <= resourcemax) { 
                resourcecount += numberof; 
                break; 
            } 
            try { 
                wait(); 
            } catch (Exception e) {} 
        } 
    } 
 
    public synchronized void freeResource (int numberof) { 
        resourcecount -= numberof; 
        notifyAll(); 
    } 
} 

We are defining a new class called the ResourceThrottle class. This class provides two methods, 
getResource() and freeResource(). Both of these methods take a single parameter that specifies 
how many resources to grab or release. The maximum number of resources available is defined by the 
constructor of the ResourceThrottle class. This class is similar to our BusyFlag class, in that our 
getResource() method would have to wait if the number of requested resources is not available. The 
freeResource() method also has to call the notify() method so that the waiting threads can get 
notification when more resources are available. 
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The difference in this case is that we are calling the notifyAll() method instead of the notify() 
method. There are two reasons for this: 

• It is entirely possible for the system to wake up a thread that needs more resources than are 
available, even with the resources that have just been freed. If we had used the notify() 
method, another thread that could be satisfied with the current amount of resources would 
not get the chance to grab those resources because the system picked the wrong thread to 
wake up. 

• It is possible to satisfy more than one thread with the number of resources we have just freed. 
As an example, if we free ten resources, we can then let four other threads grab three, four, 
one, and two resources, respectively. There is not a one-to-one ratio between the number of 
threads freeing resources and the number of threads grabbing resources. 

By notifying all the threads, we solve these two problems with little work. However, all we have 
accomplished is to simulate a targeted notification scheme. We are not really controlling which 
threads wake up; instead, we are controlling which thread takes control after they all get notification. 
This can be very inefficient if there are many threads waiting to get notification, because many wake 
up only to see that the condition is still unsatisfied, and they must wait again. 

If we really need to control which thread gets the notification, we could also implement an array of 
objects whose sole purpose is to act as a waiting point for threads and who are targets of notification 
of conditions. This means that each thread waits on a different object in the array. By having the 
thread that calls the notify() method decide which thread should receive notification, we remove the 
overhead of many threads waking up only to go back to a wait state moments later. The disadvantage 
of using an array of objects is, of course, that we will lock on different objects. This acquisition of many 
locks could lead to confusion or, even worse, deadlock. It is also more complicated to accomplish; we 
may even have to write a new class just to help with notification targeting: 

public class TargetNotify { 
 
    private Object Targets[] = null; 
 
    public TargetNotify (int numberOfTargets) { 
        Targets = new Object[numberOfTargets]; 
 
        for (int i = 0; i < numberOfTargets; i++) { 
            Targets[i] = new Object(); 
        } 
    } 
 
    public void wait (int targetNumber) { 
        synchronized (Targets[targetNumber]) { 
            try { 
                Targets[targetNumber].wait(); 
            } catch (Exception e) {} 
        } 
    } 
 
    public void notify (int targetNumber) { 
        synchronized (Targets[targetNumber]) { 
            Targets[targetNumber].notify(); 
        } 
    } 
} 

The concept is simple: in our TargetNotify class, we are using an array of objects for the sole purpose 
of using the wait and notify mechanism. Instead of having all the threads wait on the this object, we 
choose an object to wait on. (This is potentially confusing: we are not overriding the wait() method of 
the Object class here since we've provided a unique signature.) Later, when we decide which threads 
should wake up, we can target the notification since the threads are waiting on different objects. 

Whether the efficiency of a targeted notification scheme outweighs the extra complexity is the decision 
of the program designer. In other words, both techniques have their drawbacks, and we leave it up to 
the implementors to decide which mechanism is best.  



Java Threads, 2nd edition 
 

 page 57

4.4 wait() and sleep() 

The Object class also overloads the wait() method to allow it to take a timeout specified in 
milliseconds (though, as we mentioned in Chapter 2, the timeout resolution may not be as precise as 
one millisecond): 

void wait(long timeout)  

Waits for a condition to occur. However, if the notification has not occurred in timeout 
milliseconds, it returns anyway. This is a method of the Object class and must be called from a 
synchronized block or method. 

void wait(long timeout, int nanos)  

Waits for a condition to occur. However, if the notification has not occurred in timeout 
milliseconds and nanos nanoseconds, it returns anyway. This is a method of the Object class 
and must be called from a synchronized block or method. 

These methods are provided to support external events. In cases where we are only concerned with a 
notification arriving, we normally do not use these methods. However, notifications can be dependent 
on external conditions, in which case we are also concerned with when a notification arrives. A 
timeout may be needed in case those conditions do not occur. As an example, we might write a 
program that connects to a stock feed server. The program may be willing to wait 30 seconds to 
connect to the server (that is, to satisfy the condition of being connected); if the connection does not 
occur within 30 seconds, the program may try to contact a backup server. We'd accomplish this by 
calling the wait(30000) method in our program. 

We may still add a timeout when we know that a condition will eventually be satisfied so that we can 
accomplish other tasks. For example, let's assume that we needed to do other tasks in our 
getBusyFlag() method: 

public synchronized void getBusyFlag() { 
    while (tryGetBusyFlag() == false) { 
        wait(100); 
        doSomethingElse(); 
    } 
} 

In this version of getBusyFlag(), we wait() for the notification for up to 100 milliseconds. If this 
notification does not arrive within the requested time, we are awakened anyway. This is actually a very 
contrived example: we could have easily created another thread that does something else. 

If we know that the notification will never arrive, what is the difference between wait(long) and 
sleep(long)? Let's say, for example, we do not use the notify() method on an object. Then, in theory, 
there is no reason to wait() on the object. However, the wait(long) method does have an extra 
benefit: it behaves like the sleep(long) method of the Thread class, except that it also releases and 
reacquires a lock. This means that if we are not using the wait and notify mechanism, we can still use 
the wait(long) method as a way of sleeping without holding the lock. For example, suppose we have 
the following class: 

public class WaitExample { 
 
    public synchronized void ProcessLoop() { 
        processOne(); 
        try { 
            wait(1000); 
        } catch (Exception e) {} 
        processTwo(); 
    } 
} 
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The WaitExample class is a simple example of a method that needs to sleep for one second between 
two distinct operations, during which time it must give up the lock. If we had to code the same class 
without using the wait(long) method, it would add extra complexity: 

public class WaitExample { 
    public void ProcessLoop() { 
        synchronized (this) { 
            processOne(); 
        } 
        try { 
            Thread.sleep(1000); 
        } catch (Exception e) {} 
        synchronized (this) { 
            processTwo(); 
        } 
    } 
} 

As we said, this is a simple example: imagine if we had to code the following class without the use of 
the wait(long) method: 

public class WaitExample { 
    public synchronized void ProcessLoop() { 
        processOne(); 
        for (int i=0; i<50; i++) { 
            processTwo(); 
            try { 
                wait(1000); 
            } catch (Exception e) {} 
        } 
    } 
} 

4.5 Thread Interruption 

The wait() method - like the sleep() and join() methods that we examined in Section 2.1 - may 
under certain circumstances throw an InterruptedException. These methods all throw such an 
exception when the thread in which they are executing is interrupted, which occurs when another 
thread calls this method: 

void interrupt() ( Java 1.1 and above only)  

Sends an interruption to the specified thread. If the thread is currently blocked in a thread-
related method (i.e., the sleep(), join(), or wait() methods), the thread moves to an 
unblocked state; otherwise, a boolean flag is simply set to indicate that the thread has been 
interrupted. 
 

Thread Interruption in Java 1.0 
If you happen to have Java 1.0, you'll find that the various interrupt-related methods that 
we're describing in this section do not function: they all simply throw a 
NoSuchMethodError. 

In Java 1.0.2 - and browsers such as Netscape 3.0 and Internet Explorer 3.0 that are based 
on that release - these methods do not work properly. In particular, the interrupt() 
method is not able to interrupt a thread that is sleeping. While you can use the 
isInterrupted() method to determine if the interrupt() method has been called, the 
1.0.2 implementation of these methods does not help you to deal with blocked threads. 

Thread interruption works in Java 1.1 and later releases, but it does not work in many 1.1-
based browsers. For now, we recommend that you use these methods only in Java 
applications or in applets run with the Java plug-in. 
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The effect of the interrupt() method depends on whether the target of the interruption is executing 
a method that might throw an exception based on that interruption. When the thread is executing the 
sleep(), wait(), and join() methods, those methods will throw an InterruptedException. 
Otherwise, a flag is set that the thread can examine to determine that the interrupt() method has 
been called.[2] 

[2] In some virtual machines, there's an additional possibility that we'll examine a little later. 

The interrupt() method is a method of the Thread class, and it is used by one thread to signal 
another thread: it is possible (although it doesn't really make sense) for a thread to interrupt itself. 
The target thread knows it has been interrupted if it is executing a method that will throw an 
InterruptedException. Otherwise, the target thread must use one of these methods to check if it has 
been interrupted: 

static boolean interrupted() ( Java 1.1 and above only)  

Returns a boolean that indicates whether the current thread has been interrupted. This is a 
static method of the Thread class and may be called through the class specifier. This method 
simply returns a flag that is set by the interrupt() method. 

boolean isInterrupted() ( Java 1.1 and above only)  

Returns a boolean that indicates whether the specified thread has been interrupted. This 
method simply returns a flag that is set by the interrupt() method. 

The main difference between these two methods is that the interrupted() method resets the value of 
the flag to false. The isInterrupted() method does not change the value of the flag. Note that the 
interrupted() method is static and operates on the current thread, whereas the isInterrupted() 
method is dynamic and and must be executed on a thread object. 

The point behind these methods is that the internal implementation of the interrupt() method sets 
a value somewhere in the target thread object that indicates that the interrupt() method has been 
called; these methods simply return that flag. 

You can use the interrupt() method to signal a different outcome to a waiting thread. One of the 
common uses of the wait and notify mechanism is in a producer-consumer scenario: one or more 
threads are responsible for producing data (for example, by reading it from some server), and one or 
more threads are responsible for consuming data (for example, by parsing the data). When there is no 
data to consume, consumer threads spend a great deal of time waiting: 

import java.util.*; 
 
public class Consumer extends Thread { 
 
    Vector data; 
    public Consumer(Vector data) { 
        this.data = data; 
    } 
    public void run() { 
          Object o; 
          while (true) { 
                 synchronized(data) { 
                         if (isInterrupted()) 
                              return; 
                         while (data.size() == 0) { 
                                try { 
                                     data.wait(); 
                                } catch (InterruptedException ie) { 
                                       return; 
                                } 
                       } 
                       o = data.elementAt(0); 
                       data.removeElementAt(0); 
                 } 
                 process(o); 
           } 
      } 
 } 
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Rather than stopping a consumer thread by setting a flag that its run() method consults, we now rely 
on another thread to interrupt it. Note that there are two possible outcomes here: if the interrupt 
arrives while the consumer is executing the wait() method, an exception is thrown and the run() 
method returns. However, if the interrupt arrives while the consumer is executing the process() 
method, then the process() method will complete, and the consumer will exit the run() method 
when it next checks the interrupted flag. In order to prevent the interrupt from arriving at any other 
time, we must only send the interrupt from a thread that has synchronized on the data object that was 
passed into the constructor. 

Be aware that the code internal to the Java virtual machine will not set the interrupted flag if the 
thread that is being interrupted is executing the sleep(), wait(), or join() methods. Consider the 
following code: 

boolean done = false; 
synchronized (lock) { 
    while (!done) { 
        try { 
            lock.wait(); 
        } catch (InterruptedException ie) { 
            done = isInterrupted(); 
        } 
    } 
} 

In the catch clause, the variable done will be set to false and the loop will never exit. 

In some circumstances, this may make the interrupt() method less useful in stopping a thread than 
directly setting a boolean flag in the target thread. However, because it will interrupt the sleep() and 
wait() methods, and because of some thread management techniques that we'll learn about in 
Chapter 10, the interrupt() method can be very useful in cases such as this. 

4.5.1 Interrupted I/O 

One area of confusion that surrounds the interrupt() method is in the area of I/O: can the 
interrupt() method affect a thread that is blocked while waiting for I/O? The answer for the time 
being is that it cannot, and you should not rely on its ability to do so. This may change in future 
releases of the virtual machine. 

However, as it turns out, there are some implementations[3] of the virtual machine - most notably, the 
Solaris native-thread implementation - that cause the interrupt() method to interrupt any pending 
I/O. Hence, if a thread that is blocked on the read() method is the target of the interrupt() method, 
the read() method will throw an IOException. The particular IOException that is thrown varies: in 
Java 2, an InterruptedIOException is thrown; in 1.1, other exceptions (e.g., SocketException) are 
thrown. This may also change in future releases of the virtual machine: in the future, Solaris native-
thread implementations may not allow I/O to be interrupted. In some green-thread versions of the 
virtual machine, some I/O methods will throw an InterruptedIOException, and some I/O methods 
will not. Interruptible I/O is not really possible on Windows, so Windows virtual machines do not 
support it. 

[3] These various implementations of the virtual machine are discussed in Chapter 6. 

So, what's a programmer to do? The safest answer is not to rely on the interrupt() method to 
unblock a thread that is waiting for I/O to complete: if you need to unblock such a thread, you should 
close the input or output stream on which the thread is blocked. If interruptible I/O is a generic 
feature added to Java virtual machines in the future, it will likely have a different interface. If you do 
rely on interruptible I/O, be aware that the I/O in question is not restartable: it's impossible to 
determine the state of the I/O and know at which point it should start again. The difficulty of dealing 
with the issue of restarting the I/O that has been interrupted is a prime reason why its 
implementation is inconsistent between virtual machines. 

What if we want to use the interrupt() method more generically - that is, to get a thread to 
terminate, regardless of whether it's blocked on I/O or not? In our last example, we were able to take 
advantage of the fact that the wait() method had thrown an exception to know that there was no 
more data coming.  
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If you want to do the same thing with I/O, you can do something like this:  

import java.util.*; 
import java.io.*; 
import java.net.*; 
 
class StockObservable extends Observable { 
    String lastTick; 
 
    void setTick(String s) { 
        lastTick = s; 
        setChanged(); 
        notifyObservers(); 
    } 
} 
 
public class StockHandler extends Thread { 
    private BufferedReader br; 
    private InputStream is; 
    private Socket sock; 
    private StockObservable stock; 
    private volatile boolean done = false; 
    private Object lock = new Object(); 
 
    class StockHandlerThread extends Thread { 
        public void run() { 
            String s; 
            try { 
                while ((s = br.readLine()) != null) 
                    stock.setTick(s); 
            } catch (IOException ioe) {} 
            done = true; 
            synchronized(lock) { 
                lock.notify(); 
            } 
         } 
    } 
 
    public StockHandler(StockObservable o, String host, int port) 
                    throws IOException, UnknownHostException { 
        sock = new Socket(host, port); 
        is = sock.getInputStream(); 
        stock = o; 
    } 
 
    public void run() { 
 
        br = new BufferedReader(new InputStreamReader(is)); 
        Thread t = new StockHandlerThread(); 
        t.start(); 
        synchronized(lock) { 
            while (!done) { 
                try { 
                    lock.wait(Integer.MAX_VALUE); 
                } catch (InterruptedException ie) { 
                    done = true; 
                    try { 
                        t.interrupt(); 
                        is.close(); 
                        sock.close(); 
                    } catch (IOException ioe) {} 
                } 
            } 
        } 
    } 
} 

We've often mentioned that starting a separate thread to handle I/O is one of the more common uses 
of threads in Java; here's an example of that technique. This class sets up a socket to the stock server, 
reads data from that server, and publishes that data via the given observable object. The read() 
method in such a case would often block, and when it comes time to stop the thread, we have to have 
some way to get the read() method to terminate. This is accomplished by closing the socket from 
which the thread is reading. 
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However, what we've done in this example is to start two threads: one thread that is reading the data, 
and one thread that is waiting for an interrupt to occur (since the timeout is unlikely to occur). When 
the waiting thread is interrupted, it closes the input stream that the reading thread is blocked on, and 
both threads will then exit. This allows us to shut down the thread (and the socket associated with the 
thread) by interrupting the waiting thread: 

Thread t = new StockHandler(...); 
... Do other stuff until we need to shut down the handler ... 
t.interrupt(); 

Now, clearly we could simply have exposed the socket and input stream instance variables so that any 
thread could have closed them directly. We'd rarely choose to do that, however, since it's better to 
encapsulate knowledge like that in the class to which it belongs. Similarly, we could have provided 
another method (e.g., a shutdown() method) that closes the socket and input stream. That sort of 
interface would have saved us a thread: the StockHandler class would read the data in its run() 
method and an external thread could execute its shutdown() method. 

You can make an argument for and against including such a method in the interface for the 
StockHandler; we'll just mention again in passing that some of the thread management techniques 
that we'll look at in Chapter 10 make the interrupt() method a useful choice. 

Finally, note that before we closed the input stream in order to get the stock handler thread t to 
unblock, we also called the interrupt() method on t. The primary reason for that is a bug: in Solaris 
2.6 and earlier releases with a native-thread implementation of the virtual machine, the close() 
method in our example will block until the read() method that is being executed in the other thread 
also blocks. Although this bug is fixed in Solaris 2.7, it doesn't hurt to call the interrupt() method in 
any release so that our example will work on earlier Solaris releases, as well as on green-thread or 
Windows releases. More generally, the stock handler thread might be executing a wait() or sleep() 
method, in which case it would also be necessary to interrupt it.  

4.6 Static Methods (Synchronization Details) 

What about using wait() and notify() in a static method? The wait() and notify() methods are 
nonstatic methods of the Object class. Since static methods cannot call nonstatic methods without an 
object reference, static methods cannot call the wait() and notify() methods directly. But there is 
nothing preventing us from instantiating an object for the sole purpose of using it as a waiting point. 
This is just like the technique we used earlier when we tried to grab an object lock from a static 
method. 

Using an actual object also allows the wait() and notify() methods from static and nonstatic 
methods to interoperate, much like using the synchronized block mechanism on a common object can 
allow static and nonstatic methods to interoperate. The following versions of staticWait() and 
staticNotify() could be called from both static and nonstatic methods: 

public class  
MyStaticClass { 
    static private Object obj = new Object(); 
 
    public static void staticWait() { 
        synchronized (obj) { 
            try { 
                obj.wait(); 
            } catch (Exception e) {} 
        }     
    } 
 
    public static void staticNotify() { 
        synchronized (obj) { 
            obj.notify(); 
        } 
    } 
} 

It's rare for threads that are executing static methods to interoperate with threads that are executing 
nonstatic methods in this manner. Nevertheless, by having a static version of the wait() and 
notify() methods, we allow interoperability to occur. These methods have different names because 
they have the same signatures as the wait() and notify() methods.  
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4.7 Summary 

Here are the methods we introduced in this chapter: 

void wait()  

Waits for a condition to occur. This is a method of the Object class and must be called from 
within a synchronized method or block. 

void wait(long timeout)  

Waits for a condition to occur. However, if the notification has not occurred in timeout 
milliseconds, it returns anyway. This is a method of the Object class and must be called from a 
synchronized block or method. 

void wait(long timeout, int nanos)  

Waits for a condition to occur. However, if the notification has not occurred in timeout 
milliseconds and nanos nanoseconds, it returns anyway. This is a method of the Object class 
and must be called from a synchronized block or method. 

void notify()  

Notifies a thread that is waiting for a condition that the condition has occurred. This is a 
method of the Object class and must be called from within a synchronized method or block. 

void notifyAll()  

Notifies all the threads waiting on the object that the condition has occurred. This is a method 
of the Object class and must be called from within a synchronized method or block. 

void interrupt() (Java 1.1 and above only)  

Sends an interruption to the specified thread. If the thread is currently blocked in a thread-
related method (i.e., the sleep(), join(), or wait() methods), the thread moves to an 
unblocked state; otherwise, a boolean flag is simply set to indicate that the thread has been 
interrupted. 

static boolean interrupted() (Java 1.1 and above only)  

Returns a boolean that indicates whether the current thread has been interrupted. This is a 
static method of the Thread class and may be called through the class specifier. This method 
simply returns a flag that is set by the interrupt() method. 

boolean isInterrupted() (Java 1.1 and above only)  

Returns a boolean that indicates whether the specified thread has been interrupted. This 
method simply returns a flag that is set by the interrupt() method. 

With these methods, we are now able to interoperate between threads in an efficient manner. Instead 
of just providing protection against race conditions, we now have mechanisms that allow threads to 
inform each other about events or conditions without resorting to polling and timeouts. While the wait 
and notify mechanism is the most widely used of the mechanisms in this chapter, we also have the 
ability to interrupt a thread no matter what the thread is doing. 

The two default techniques of synchronizing data and threads within Java - the synchronized keyword 
and the wait and notify methods - provide simple, robust ways for threads to communicate and 
cooperate. Although we will examine some advanced techniques for data synchronization in Chapter 
8, these default techniques are good enough for most Java programs.  
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Chapter 5. Useful Examplesof Java Thread 
Programming 
In the previous chapters, we examined some of the tools necessary to support the synchronization of 
data between threads. With these tools, we now are able to have our own threads interoperate with 
each other, with the system threads, or with the threads started by the standard Java libraries. This is 
possible because the tools allow for a thread to examine and modify shared data in a safe manner 
without race conditions. The ability to handle data safely provides us with the ability to exchange data, 
which, in turn, allows us to accomplish tasks in separate threads safely, which ultimately allows us to 
accomplish our goal. 

In other words, we can now say that threading itself is just an implementation detail of our program. 
Ideally, true threading should feel like just another object that does something. And while threading 
itself is a powerful tool, in the end all you want to accomplish is to play the audio clip or read the data 
socket. 

In this chapter, we examine some of the uses of threads. We will show how threads solve certain 
problems, and discuss the implementation details of these solutions, the threads themselves, and the 
mechanisms that are used to control and synchronize the threads. We will examine threads from the 
perspective of solving problems instead of examining features of the threading system. 

5.1 Data Structures and Containers 

Interestingly, our first set of examples does not require any threads to be created at all. Our first topic 
is the data types that can be used or passed between threads. When you create a data object, you do 
not always know how many threads will access that object: while these data objects may be accessed 
by many threads, they may also only be accessed by a single thread (in which case, synchronization of 
the object is not necessary). To begin, let's examine some operating system mechanisms used to pass 
data between processes. 

In the Unix operating system, the first interprocess communications (IPC) techniques provided were 
message queues, semaphores, and shared memory. While Unix has added many mechanisms, these 
three are still popular and heavily used in many applications. The IPC mechanisms of Java - the 
synchronization lock and the wait and notify mechanism - are specifically for synchronization. Unlike 
the message queue and shared memory, no real data is actually passed between threads: the concern 
is synchronization, not communication.[1] The theory is that communication is easy if synchronization 
tools are available. For now, let's take a look at the message queue and shared memory and see if these 
communication mechanisms are useful for communicating between threads. 

[1] This applies to most threading systems. In Solaris or POSIX threads, the main tools are the mutex lock, reader-
writer locks, semaphores, and conditional variables, none of which actually passes any real data. 

5.1.1 The Message Queue 

We'll start with message queues: 

import java.util.*; 
 
public class  
MsgQueue { 
    Vector queue = new Vector(); 
    public synchronized void send(Object obj) { 
        queue.addElement(obj); 
    } 
 
    public synchronized Object recv() { 
        if (queue.size() == 0) return null; 
 
        Object obj = queue.firstElement(); 
        queue.removeElementAt(0); 
        return obj; 
    } 
} 
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The implementation of the message queue is incredibly simple once we have the proper 
synchronization tools. In the multitasking paradigm, the operating system has to deliver the data that 
is sent into the queue from one application to another, as well as synchronizing the communication 
itself. Since threads share the same address space, data passing is accomplished by using a reference 
to a common data object. Once we are able to synchronize access to this data object, sending and 
receiving data using this message queue is simple. In our version of the message queue, the queue is 
implemented using the Vector class that is implemented in the Java system. We simply need to make 
sure that we can safely add to and remove from this queue; this is accomplished by making sure that 
all accesses to this queue are synchronized. This implementation is so easy that we do not even need a 
MsgQueue class. Instead, we could have used the synchronized block mechanism on the Vector object 
directly, adding and removing the messages directly to and from the Vector. In other words, the 
message queue IPC is as simple to implement as any container class (that is, a class that holds 
collections of objects). 

5.1.2 Shared Memory 

A shared memory implementation may be as follows: 

public class  
ShareMemory extends BusyFlag { 
    byte memory[]; 
    public ShareMemory (int size) { 
        memory = new byte[size]; 
    } 
 
    public synchronized byte[] attach() { 
        getBusyFlag(); 
        return memory; 
    } 
 
    public synchronized void detach() { 
        freeBusyFlag(); 
    } 
} 

Just like the MsgQueue class, the ShareMemory class is also not difficult and may be unnecessary: we 
could just as easily have synchronized on the byte array object directly and we would not have needed 
to implement this class. The only advantage is that since we implemented the ShareMemory class as a 
subclass of the BusyFlag class, we can attach() and detach() from this shared memory at any scope, 
including a scope that is bigger than a single method. 

The real point behind all this is that even though threads are somewhat analogous to processes, we 
have to learn to think about data differently than we would between two processes. To share data 
between processes requires specialized functions that are implemented in the operating system. But 
data in a Java program is always shared between threads. The fact that we don't have to do anything 
special to share this data means that we don't really need IPCs as we know them: instead, we have to 
constantly think threaded. Every time we develop a class, we should be concerned that it may be used 
by many threads simultaneously, whether our program actually contains many threads or not. 

5.1.3 The Circular Linked List 

So what about all the container classes we will develop? The linked list? The B-tree? The graph? Any 
other data structure we care to invent? When we implement one of these classes, should we 
implement it so that it can be accessed by multiple threads in parallel? The answer could be personal 
preference or corporate policy. It is, however, not difficult to make any container class safe for 
multiple threads. And it is arguably better to make it safe and not worry whether sometime in the 
future this container might be used across multiple threads. Let's take a look at a container class most 
of us have implemented at one time or another, the circularly linked list: 

class  
CircularListNode { 
    Object o; 
    CircularListNode next; 
    CircularListNode prev; 
} 
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Just like any other linked list most of us have written, we will use a simple data structure node to store 
the object. We actually don't care what type of object we have in our list, so all we need is a reference 
to the Object class. This allows us to hold any type of object in our container (primitive types, of 
course, will need to be wrapped in their corresponding objects). We will also keep a reference to the 
previous node and to the next node in the circularly linked list. This is an implementation detail; we 
keep two references merely for efficiency in our search: 

public class  
CircularList { 
    private CircularListNode current; 
 
    public synchronized void insert(Object o) { 
        CircularListNode tn = new CircularListNode(); 
        tn.o = o; 
        if (current == null) { 
            tn.next = tn.prev = tn; 
            current = tn; 
        } else {                // Add before current node 
            tn.next = current; 
            tn.prev = current.prev; 
            current.prev.next = tn; 
            current.prev = tn; 
        } 
    } 
 
    public synchronized void delete(Object o) { 
        CircularListNode p = find(o); 
        CircularListNode next = p.next; 
        CircularListNode prev = p.prev; 
        if (p == p.next) {       // Last object on the list 
            current = null; 
            return; 
        } 
        prev.next = next; 
        next.prev = prev; 
        if (current == p) current = next; 
    } 
 
    private CircularListNode find(Object o) { 
        CircularListNode p = current; 
        if (p == null) 
            throw new IllegalArgumentException(); 
        do { 
            if (p.o == o) return p; 
            p = p.next; 
        } while (p != current); 
        throw new IllegalArgumentException(); 
    } 
 
    public synchronized Object locate(Object o) { 
        CircularListNode p = current; 
        do { 
            if (p.o.equals(o)) return p.o; 
            p = p.next; 
        } while (p != current); 
        throw new IllegalArgumentException(); 
    } 
 
    public synchronized Object getNext() { 
        if (current == null) 
            return null; 
        current = current.next; 
        return current.o; 
    } 
} 

The implementation of our CircularList class is probably no different from any circularly linked list 
implementation we may have done before. We simply provide methods to insert() and delete() 
from the circularly linked list; once that list has the objects, we can pass this list to other methods that 
may process the list. This processing is done by simply cycling through the list with the getNext() 
method or by searching for a particular object using the locate() method. 
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How do we make this CircularList class safe for use by multiple threads? It's as simple as declaring 
all the methods as synchronized. By adding the synchronized keyword, we can now use this 
CircularList class safely across different threads simultaneously. In other words, by taking a few 
minutes to make the class safe, we can use this class as a form of interthread communication. With 
enough practice, we should use the synchronization tools without much effort. 

Note that the find() method is not synchronized: as a private method that is called only by 
synchronized methods, there is no reason for it to be synchronized, though it wouldn't have hurt had 
we done so. Note also the subtle difference between the find() and locate() methods: as an internal 
method, the find() method returns objects of CircularListNode; the locate() method returns the 
actual object that was inserted into the list.  

5.1.4 Synchronization and Efficiency 

It can be argued that synchronizing a class just because it might be used by multiple threads is 
inefficient: it takes a certain amount of time to acquire the synchronization lock. This is a trade-off a 
developer must be aware of when designing a large program. 

In this book, we've taken the view that it is easier to solve performance problems when they occur 
than to find bugs caused by a lack of data synchronization. For the most part, the Java API takes this 
view as well: classes such as the Hashtable and Vector class are all correctly synchronized and are safe 
to use in multithreaded programs. 

In Java 2, however, there is a new set of container classes that are implemented with an eye toward 
efficiency rather than being thread safe. These classes are referred to as collection classes ; they all 
extend either the java.util.Collection class or the java.util.Map class. For example, there is a HashMap 
class that provides the same semantics as the Hashtable class, except that the methods of the 
HashMap are not synchronized. Similarly, there is an ArrayList class that provides the same semantics 
as the Vector class, and so on. 

Using these classes directly in your Java 2-based program may provide a small performance benefit. 
That's somewhat debatable, however, since the synchronization code of the reference virtual machine 
was completely overhauled in 1.1.6, with the result that the penalty for obtaining a synchronization 
lock was drastically reduced. So you'd need to make very heavy use of the methods in the classes that 
we're talking about to see any noticeable benefit for most programs. On the other hand, if you use the 
HashMap class without realizing that the same HashMap is being accessed by two threads and that a 
race condition causes an error in your program every 100 days, how much have you benefited from the 
faster code? 

In Chapter 8, we'll show how we can safely use these and other thread-unsafe classes. 

5.2 Simple Synchronization Examples 

In this section, we'll look at two examples that use synchronization to perform complex 
synchronization tasks. 

5.2.1 Barrier 

Of all the different types of thread synchronization tools, the barrier is probably the easiest to 
understand and the least used. When we think of synchronization, our first thought is of a group of 
threads executing part of an overall task followed by a point at which they must synchronize their 
results. The barrier is simply a waiting point where all the threads can synch up either to merge results 
or to move on to the next part of the task. The synchronization techniques that we have discussed up 
to now were concerned with more complicated issues like preventing race conditions, handling data 
transfer and delivery, or signaling between threads. 

Given its simplicity, why has the barrier not been mentioned up to this point? We have actually used 
this technique; however, we have used the Thread class itself to synch up the threads. By using the 
join() method, we have waited for all of the threads to terminate before we merged the results or 
started new threads for the next task. 
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There are a few problems with using the join() method. First, we must constantly create and 
terminate threads. This means that the threads may lose any state that they have stored in their 
previous operation. Second, if we must always create new threads, logical operations cannot be placed 
together: since new threads have to be created for each subtask, the code for each subtask must be 
placed in separate run() methods. It may be easier to code all of the logic as one method - particularly 
if the subtasks are very small: 

public class Barrier { 
    private int threads2Wait4; 
    private InterruptedException iex; 
 
    public Barrier (int nThreads) { 
        threads2Wait4 = nThreads; 
    } 
 
    public synchronized int waitForRest() 
        throws InterruptedException { 
        int threadNum = --threads2Wait4; 
 
        if (iex != null) throw iex; 
        if (threads2Wait4 <= 0) { 
            notifyAll(); 
            return threadNum; 
        } 
        while (threads2Wait4 > 0) { 
            if (iex != null) throw iex; 
            try { 
                wait(); 
            } catch (InterruptedException ex) { 
                iex = ex; 
                notifyAll(); 
            } 
        } 
        return threadNum; 
    } 
 
    public synchronized void freeAll() { 
        iex = new InterruptedException("Barrier Released by freeAll"); 
        notifyAll(); 
    } 
} 

Implementation of the Barrier class with the techniques of the previous chapters is straightforward. 
We simply have each thread that arrives at the barrier call the wait() method, while the last thread to 
arrive at the barrier has the task of notifying all of the waiting threads. If any of the threads receives an 
interruption, all of the threads will receive the same interruption. Another method, freeAll(), is also 
provided to generate an interruption on all of the threads. As an added benefit, a thread number is 
assigned to the threads to help distinguish the waiting threads. The last thread to reach the barrier is 
assigned the value of zero, and any threads that reach the barrier after it has been released are 
assigned a negative value. This indicates an error: if you send five threads through a barrier that is 
designed to synchronize four threads, the fifth thread will receive this negative value. 

This implementation of the barrier is also a single-use implementation. Once the barrier reaches the 
thread limit as specified by the constructor, or an error is generated, the barrier will no longer block 
any threads. Given the simplicity of this implementation, having single-use instances of this class 
should not be a problem. 

Here's an example of how we might use the Barrier class: 

public class ProcessIt implements Runnable { 
 
    String is[]; 
    Barrier bpStart, bp1, bp2, bpEnd; 
 
    public ProcessIt (String sources[]) { 
        is = sources; 
        bpStart = new Barrier(sources.length); 
        bp1 = new Barrier(sources.length); 
        bp2 = new Barrier(sources.length); 
        bpEnd = new Barrier(sources.length); 
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        for (int i=0; i < is.length; i++) { 
            (new Thread(this)).start(); 
        } 
    } 
 
    public void run() { 
        try { 
            int i = bpStart.waitForRest(); 
            doPhaseOne(is[i]); 
            bp1.waitForRest(); 
            doPhaseTwo(is[i]); 
            bp2.waitForRest(); 
            doPhaseThree(is[i]); 
            bpEnd.waitForRest(); 
        } catch (InterruptedException ex) {}; 
    } 
 
    public void doPhaseOne(String ps) { 
    } 
 
    public void doPhaseTwo(String ps) { 
    } 
 
    public void doPhaseThree(String ps) { 
    } 
 
    static public void main(String args[]) { 
        ProcessIt pi = new ProcessIt(args); 
    } 
} 

Using the Barrier class does not mean that we no longer need to create threads. In the ProcessIt class, 
we still need to create threads and implement the run() method; however, we only need to implement 
it once. All three phases of the process are done in the same run() method. The thread simply waits 
for the other threads before starting the next phase. We are also using a barrier to allow the threads to 
start at the same time and to assign them a thread number. 

The flow of execution of this example is shown in Figure 5.1, which also shows how execution would 
proceed if we were using the join() method and creating new threads. There are some subtle 
differences between using a barrier and creating new threads. The first is that the barrier technique 
should not task the threading system as much since it does not destroy and create as many threads, 
which is sometimes an advantage. The second is that using the Barrier class means the application will 
never be single threaded because all the threads are always alive.[2] Using the Barrier class is a one-
phase process, whereas using the Thread class is a two-phase process that requires that we first 
join() the threads - that is, become single threaded - and then create new threads. 

[2] It can be argued that since all but one of the threads is waiting, the system is effectively single threaded. 

Figure 5.1. Comparison of the Barrier class with joining threads 
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The two-phase process, in which a single thread exists between the phases, allows tasks to be executed 
before the new threads are created. This is not possible when we use the Barrier class, since the only 
requirement for the threads to be released is a thread count. Complicated situations where setup and 
cleanup tasks need to be accomplished are a problem. A way to solve this problem is to modify the 
Barrier class to allow the barrier to execute setup code for the next phase. Unfortunately, this removes 
one of the advantages of the Barrier class - the ability to have code in a single location. Instead of 
having the implementation of the phases in separate run() methods, we will have the setup 
implementation for the different phases also protected by the Barrier class. 

Here's how we code this solution without modifying the Barrier class: 

public class ProcessIt implements Runnable { 
    public void run() { 
        try { 
            int i = bpStart.waitForRest(); 
            doPhaseOne(is[i]); 
            if (bp1.waitForRest() == 0) 
 
                doPhaseTwoSetup(); 
 
            bp1b.waitForRest(); 
 
            doPhaseTwo(is[i]); 
            if (bp2.waitForRest() == 0) 
 
                doPhaseThreeSetup(); 
 
            bp2b.waitForRest(); 
 
            doPhaseThree(is[i]); 
            bpEnd.waitForRest(); 
        } catch (InterruptedException ex) {}; 
    } 
} 

In this example, instead of having a single barrier between the phases, we now have two barriers. This 
is done to simulate the two-phase requirements of the cleanup and setup code. Effectively, since only 
one of the threads will execute the code, that portion of the code is single threaded. We are using the 
thread number returned by the barrier to determine which thread will execute code. In practice, there 
are many other techniques for choosing this thread, including making the determination once at the 
beginning or using a thread just to run the setup code. Furthermore, since we are now able to run 
cleanup and setup code, there is no need to declare all of the barriers at the beginning. Barrier 
definition and cleanup may be included in the setup code.  

Barriers are useful for algorithms that have multiple passes. A compiler, for instance, often has passes 
that preprocess the code, parse the code, convert the code to intermediate format, optimize that code, 
and so on. Each of these passes may be implemented with several threads, each of which needs to wait 
between passes for all the other threads to complete their portions of the phase.  

5.2.2 Condition Variables 

Condition variables are a type of synchronization provided by POSIX threads. A condition variable is 
very similar to the Java environment's wait and notify mechanism - in fact, in most cases it is 
functionally identical. The four basic operations of a condition variable - wait(), timed_wait(), 
signal(), and broadcast() - map directly to the methods provided by the Java environment - 
wait(), wait(long), notify(), and notifyAll(). The implementations are also logically identical. 
The wait() operation of a condition variable requires that a mutex lock be held. It will release the lock 
while waiting and reacquire the lock prior to returning to the caller. The signal() function wakes up 
one thread, whereas the broadcast() function wakes up all waiting threads. These functions also 
require that the mutex lock be held during the call. The race conditions of a condition variable are 
solved in the same way as those of the Java environment's wait and notify mechanism. 

There is a subtle difference. In the Java environment, the wait and notify mechanism is highly 
integrated with its associated lock. This makes the mechanism easier to use than its condition variable 
counterpart. Calling the wait() and notify() methods from synchronized sections of code is just a 
natural part of their use. Using condition variables, however, requires that you create a separate 
mutex lock, store that mutex, and eventually destroy the mutex when it is no longer necessary. 
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Unfortunately, Java's convenience comes with a small price. A condition variable and its associated 
mutex lock are separate synchronization entities. It is possible to use the same mutex with two 
different condition variables, to use two different mutexes with the same condition variable, or to use 
any combination of condition variables and mutexes. While the wait and notify mechanism is much 
easier to use and solves the problem for most cases of signal-based synchronization, it is not capable 
of assigning any synchronization lock to any notification object. When you need to signal two different 
notification objects while requiring the same synchronization lock to protect common data, a 
condition variable is more efficient. 

Here is the implementation of the condition variable: 

public class CondVar { 
 
private BusyFlag SyncVar; 
 
    public CondVar() { 
        this(new BusyFlag()); 
    } 
 
    public CondVar(BusyFlag sv) { 
        SyncVar = sv; 
    } 
 
    public void cvWait() throws InterruptedException { 
        cvTimedWait(SyncVar, 0); 
    } 
 
    public void cvWait(BusyFlag sv) throws InterruptedException { 
        cvTimedWait(sv, 0); 
    } 
 
    public void cvTimedWait(int millis) throws InterruptedException { 
        cvTimedWait(SyncVar, millis); 
    } 
 
    public void cvTimedWait(BusyFlag sv, int millis) 
                                throws InterruptedException { 
        int i = 0; 
        InterruptedException errex = null; 
 
        synchronized (this) { 
            // You must own the lock in order to use this method. 
            if (sv.getBusyFlagOwner() != Thread.currentThread()) { 
                throw new IllegalMonitorStateException( 
                                    "current thread not owner"); 
            } 
 
            // Release the lock (completely). 
            while (sv.getBusyFlagOwner() == Thread.currentThread()) { 
                i++; 
                sv.freeBusyFlag(); 
            } 
         
            // Use wait() method.     
            try { 
                if (millis == 0) { 
                    wait(); 
                } else { 
                    wait(millis); 
                } 
            } catch (InterruptedException iex) { 
                errex = iex; 
            } 
        } 
      
        // Obtain the lock (return to original state). 
        for (; i>0; i--) { 
            sv.getBusyFlag(); 
        } 
 
        if (errex != null) throw errex; 
        return; 
    } 
 
    public void cvSignal() { 
        cvSignal(SyncVar); 
    } 
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    public synchronized void cvSignal(BusyFlag sv) { 
        // You must own the lock in order to use this method. 
        if (sv.getBusyFlagOwner() != Thread.currentThread()) { 
            throw new IllegalMonitorStateException( 
                                "current thread not owner"); 
        } 
        notify(); 
    } 
 
    public void cvBroadcast() { 
        cvBroadcast(SyncVar); 
    } 
 
    public synchronized void cvBroadcast(BusyFlag sv) { 
        // You must own the lock in order to use this method. 
        if (sv.getBusyFlagOwner() != Thread.currentThread()) { 
            throw new IllegalMonitorStateException( 
                                "current thread not owner"); 
        } 
        notifyAll(); 
    } 
} 

In this code, we simply reverse engineer the wait and notify mechanism, using the BusyFlag class as 
the synchronization lock instead of the lock that is bound to the object. Signaling between the threads 
is done with Java's wait and notify mechanism. And in order to solve the race condition that exists 
between the BusyFlag class and the CondVar class, we use the standard synchronization mechanism 
and the wait and notify mechanism. 

The cvWait() mechanism is implemented in three sections. First, we must free the BusyFlag lock. 
This is done with the freeBusyFlag() method. Since the BusyFlag class is nestable, we must remove 
all the locks on the busyflag. In order to reacquire the lock at a later time, we have to keep track of 
the number of locks removed. 

The second section simply calls the wait() method to map to Java's internal system. The final task is 
to reacquire the locks that were released earlier. The race condition that exists between the first two 
sections of the cvWait() method is solved by using a synchronized block around both sections. There 
is no need to extend this synchronization to the third section because the signal has already been 
received, and if we receive another signal at this point, that signal should just be ignored by this 
thread (this is analogous to what happens if the wait() method receives two simultaneous 
notifications). 

The cvSignal() and cvBroadcast() methods simply map to the notify() and notifyAll() 
methods. These methods must also be synchronized in order to avoid a race condition with the 
cvWait() method. 

Most of the time, when you use a condition variable instead of Java's wait and notify mechanism, you 
will want to set up two signaling channels (i.e., two variables) that are controlled by a single lock. In 
these cases, you will construct a single BusyFlag and construct all your condition variables using that 
BusyFlag. You will then use the methods of the CondVar class that do not require a BusyFlag 
parameter. For more complex cases, when you need to use different locks for the same variable, you 
will construct the CondVar without a BusyFlag and then pass a BusyFlag to the wait and signal 
methods. 

One common use of the CondVar class is in buffer management. When threads are sending data to a 
buffer, they must stop when the buffer is full. Other threads that are reading data from the buffer must 
wait until data is available in the buffer. Here we have a single lock (associated with the buffer) but 
two conditions: empty and full. Condition variables allow a much cleaner implementation of this 
situation than does the simple wait and notify technique. We'll show an example of this later in this 
chapter.  
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5.3 A Network Server Class  

In the socket networking model, the server side has to read from or write to many sockets that are 
connected to many clients. We already know that by reading data from a socket in a separate thread, 
we solve the problem of hanging while we're waiting for data. Threading on the server side has an 
additional benefit: by having a thread associated with each client, we no longer need to worry about 
other clients within any single thread. This simplifies our server-side programming: we can code our 
classes as if we were handling a single client at a time. 

In this section, we'll develop such a server. But before we dive right in, let us review some networking 
basics. 

Figure 5.2 shows the data connections between several clients and a server. The server-side socket 
setup is implemented in two steps. First, a socket is used for the purpose of listening on a port known 
to the client. The client connects to this port as a means to negotiate a private connection to the server. 

Figure 5.2. Network connections between clients and server 

 
 
Once a data connection has been negotiated, the server and client then communicate through this 
private connection. In general, this process is generic: most programmers are concerned with the data 
sockets (the private connection). Furthermore, the data sockets on the server side are usually self-
contained to a particular client. While it is possible to have different mechanisms that deal with many 
data sockets at the same time, generally the same code is used to deal with each of the data sockets 
independently of the other data sockets. 

Since the setup is generic, we can place it into a generic TCPServer class and not have to implement 
the generic code again. Basically, this TCPServer class creates a ServerSocket and accepts connection 
requests from clients. This is done in a separate thread. Once a connection is made, the server clones 
(makes a copy of) itself so that it may handle the new client connection in a new thread: 

import java.net.*; 
import java.io.*; 
 
public class TCPServer implements Cloneable, Runnable { 
    Thread runner = null; 
    ServerSocket server = null; 
    Socket data = null; 
    volatile boolean shouldStop = false; 
 
    public synchronized void startServer(int port) throws IOException { 
        if (runner == null) { 
            server = new ServerSocket(port); 
            runner = new Thread(this); 
            runner.start(); 
        } 
    } 
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    public synchronized void stopServer() { 
        if (server != null) { 
            shouldStop = true; 
            runner.interrupt(); 
            runner = null; 
            try { 
                server.close(); 
            } catch (IOException ioe) {} 
            server = null; 
        } 
    } 
 
    public void run() { 
        if (server != null) { 
            while (!shouldStop) { 
                try { 
                    Socket datasocket = server.accept(); 
                    TCPServer newSocket = (TCPServer) clone(); 
 
                    newSocket.server = null; 
                    newSocket.data = datasocket; 
                    newSocket.runner = new Thread(newSocket); 
                    newSocket.runner.start(); 
                } catch (Exception e) {} 
            } 
        } else { 
            run(data); 
        } 
    } 
  
    public void run(Socket data) { 
  
    } 
} 

Considering the number of threads started by the TCPServer class, the implementation of the class is 
simple. First, the TCPServer class implements the Runnable interface; we will be creating threads that 
this class will execute. Second, the class is cloneable, so that a copy of this class can be created for each 
connection. And since the copy of the class is also runnable, we can create another thread for each 
client connection. Since the original TCPServer object must operate on the server socket, and the 
clones must operate on the data sockets, the TCPServer class must be written to service both the 
server and data sockets. 

To begin, once a TCPServer object has been instantiated, the startServer() method is called: 

public synchronized void startServer(int port) throws IOException { 
    if (runner == null) { 
        server = new ServerSocket(port); 
        runner = new Thread(this); 
        runner.start(); 
    } 
} 

This method creates a ServerSocket object and a separate thread to handle the ServerSocket object. By 
handling the ServerSocket in another thread, the startServer() method can return immediately, 
and the same program can act as multiple servers. We could have performed this initialization in the 
constructor of the TCPServer class; there's no particular reason why we chose to do this in a separate 
method. 

The stopServer() method is the cleanup method for the TCPServer class: 

public synchronized void stopServer() { 
    if (server != null) { 
        shouldStop = true; 
        runner.interrupt(); 
        runner = null; 
        try { 
            server.close(); 
        } catch (IOException ioe) {} 
        server = null; 
    } 
} 
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This method cleans up what was done in the startServer() method. In this case, we need to 
terminate the thread we started; we do that by setting the flag that will be checked in the run() 
method. In addition, we interrupt that thread, in case the runner thread is hanging in the accept() 
method. Finally, we close() the socket that the thread was working on. 

We also set the runner variable to null to allow the object to be reused: if the runner variable is null, 
the startServer() method can be called later to start another ServerSocket on the same port or on a 
different port. 

Notice that the stopServer() method also checks to see if the server variable is null before trying to 
stop the server. The reason for this is that the TCPServer object will be cloned to handle the data 
sockets. Since this clone handles a data socket, we set the server variable to null in the clone. This 
extra check is done just in case the programmer decides to execute the stopServer() method from 
the clone instance that is handling a data socket. 

The bulk of the logic comes in the run() method:  

public void run() { 
    if (server != null) { 
        while (!shouldStop) { 
            try { 
                Socket datasocket = server.accept(); 
                TCPServer newSocket = (TCPServer) clone(); 
 
                newSocket.server = null; 
                newSocket.data = datasocket; 
                newSocket.runner = new Thread(newSocket); 
                newSocket.runner.start(); 
            } catch (Exception e) {} 
        } 
    } else { 
        run(data); 
    } 
} 

What is interesting about this class is that the run() method contains some conditional code. Since 
the server instance variable is set in the startServer() method, the if statement in the run() 
method always succeeds. Later, we will be cloning this TCPServer object and starting more threads 
using the clone. The conditional code differentiates the clone from the original. 

The handling of the ServerSocket is straightforward. We just need to accept() connections from the 
clients. All the details of binding to the socket and setting up the number of listeners are handled by 
the ServerSocket class itself. Once we have accepted a network connection from a client, we once again 
have a situation that benefits from threading. 

However, in this case, instead of using a different Runnable class, we use the TCPServer class: more 
precisely, we clone our TCPServer object and configure it to run as a runnable object in a newly 
created thread. This is why the TCPServer's run() method checks to see if a ServerSocket object is 
available or not. The reason we cloned our TCPServer object was so we can have private data for each 
thread. By making a copy of the object, we make a copy of the instance variables that can then be set to 
the values needed by the newly created thread. 

All code that handles the ServerSocket is in the while loop of the run() method. The rest of the run() 
method handles the client data socket: 

public void run() { 
    if (server != null) { 
        ... 
    } else { 
        run(data); 
    } 
} 
  
public void run(Socket data) { 
} 
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The newly created thread running with the newly cloned runnable object first calls the run() method; 
for a data socket, the run() method just calls the overloaded run(data) method. As can be seen from 
the code, this run(data) method does absolutely nothing; using the TCPServer class by itself does 
nothing with the data sockets. To have a useful TCPServer, you must extend it: 

import java.net.*; 
import java.io.*; 
 
public class ServerHandler extends TCPServer { 
 
    public void run(Socket data) { 
        try { 
            InputStream is = data.getInputStream(); 
            OutputStream os = data.getOutputStream(); 
 
            // Process the data socket here. 
        } catch (Exception e) {} 
    } 
} 

All we need to do in our subclass is override the run(data) method; we only need to handle one data 
socket in the run(data) method. We do not have to worry about the ServerSocket or any of the other 
data sockets. When the run(data) method is called, it is running in its own thread with its own copy 
of the TCP-Server object. All the details of the ServerSocket and the other data sockets are hidden 
from this instance of the TCPServer class. 

Once we have developed a specific version of the TCPServer class (in this case, the ServerHandler 
class), we create an instance of the class and start the server. An example usage of the ServerHandler 
class is as follows: 

import java.net.*; 
import java.io.*; 
 
public class MyServer { 
 
    public static void main(String args[]) throws Exception { 
        TCPServer serv = new ServerHandler(); 
 
        serv.startServer(300); 
    } 
} 

Using this ServerHandler class is simple. We just need to instantiate a TCPServer object and call its 
startServer() method. Since the ServerHandler object is also a TCPServer object, it behaves just 
like a TCPServer object; the only difference is that each data socket will have code that is specific to 
the ServerHandler class executed on its behalf. 

 

The TCPServer Class and Applets 
In our usage of the TCPServer class, we have implemented a standalone application whose 
purpose is to provide a service. This service is available to clients that are either 
applications or applets (or programs written in any language). 

There are few cases imaginable where an applet should provide a network service. The 
purpose of an applet is to be downloaded to a browser and provide a service to the user. 
This service is on-demand and may be stopped at any time. There is no service that can be 
provided in this temporary environment that is useful to other clients on the network. 

 
What other threading issues, most notably synchronization issues, are we concerned with in our 
TCPServer class? Basically, there are no issues we have not already seen. The startServer() and 
stopServer() methods are synchronized because they examine common instance variables that may 
change. The run() method does not have to be synchronized because the startServer() method is 
written to guarantee that the run() method is called only once. 
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Since all the calls to the run() method in each connection are done in a clone() of the TCPServer 
object, there is no reason to synchronize the data socket threads because they will be changing and 
examining different instances of the TCP-Server class. The separate threads that handle the data 
sockets are not sharing data and hence do not need to be synchronized. And if the ServerHandler class 
needed to share data, then the synchronization that would be done would be in the ServerHandler or 
one of its supporting classes. 

In this example, we used the Runnable interface technique. Could we have derived from the Thread 
class directly instead of using the Runnable interface? Yes, we could have. However, using the 
Runnable interface makes it possible for the TCPServer class to start another thread with a clone of 
itself. Deriving from the Thread class requires a different implementation. This implementation 
probably requires that a new TCPServer class be instantiated instead of simply cloned. 

We are not keeping a reference of the "data socket" thread objects anywhere; is this a problem? It is 
not a problem. As noted earlier, the threading system keeps an internal reference to every active 
thread in the system. As long as the stop() method has not been called on the thread or the run() 
method has not completed, the thread is considered active, and a reference is kept somewhere in the 
threading system. While removing all references to a thread object prevents the TCPServer from 
arranging for this data socket thread to terminate, the garbage collector cannot act on the thread 
object because the thread system still has a reference to it. 

Have you noticed that it is difficult to tell that the ServerHandler class and the MyServer class are 
threaded? This is the goal that we have been trying to achieve. Threads are a tool, and the threading 
system is a service. In the end, the classes we create are designed to accomplish a task. This class, if 
designed correctly, does not need to show what tools it is using. Our ServerHandler class just needs to 
specify code that will handle one data socket, and the MyServer class just needs to start the 
ServerHandler service. All the threading stuff is just implementation detail. This concept shouldn't be 
that surprising: it's one of the benefits of object-oriented programming.  

5.4 The AsyncInputStream Class 

The AsyncReadSocket class we previously developed had a few problems: 

• This class is specific to the network socket. We could also use an asynchronous I/O class for 
files, pipes, or any data stream. Ideally, we should have the ability to allow any data source to 
be asynchronous, not just network sockets. 

There is already a class structure for input from a stream. The top of this hierarchy is the 
InputStream class. Ideally, we should subclass the InputStream class. We can also benefit 
from the nested support of the FilterInputStream class and its subclasses. 

• Unlike the TCPServer class, the AsyncReadSocket class does not do a good job at hiding the 
threading details. 

Do we need to develop a new class for this? Doesn't the InputStream class have a method that 
supports asynchronous I/O? Although barely mentioned during the development of the 
AsyncReadSocket class, the InputStream class has the available() method that returns the number 
of bytes that can be read from the stream without blocking. Although this method sounds useful, it 
does not always suit our purposes because this method returns the number of bytes that have already 
been read and are available for processing. On some operating systems, this may include data that has 
been received at the machine and is being held by the operating system, but that's not universally true 
(though it is true on most common operating systems, including those from Microsoft, Apple, Sun, 
and other Unix vendors). 

Hence, just because the available() method returns does not indicate that a call to the read() 
method will block. Since avoiding calls that block is our primary purpose in developing this class, the 
available() method may not be suitable for our purpose. 

In addition, we can usually benefit somewhat by buffering data within our program rather than 
relying on the data being buffered by the operating system. If we read this data from the operating 
system into our program while the program is otherwise unoccupied (when the user is thinking, for 
example), then the data will be available slightly faster to the program when it attempts to read the 
input stream, since the data has already been moved from the operating system into the program. 
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So what we need is an InputStream class whose available() method reports the correct number of 
bytes that can be actually read without blocking as well as buffering data within the program itself. 
This new class, the AsyncInputStream class, will be implemented just like our AsyncReadSocket class. 
It creates another thread that reads from the input stream. Since reading is done in another thread, 
the read() method is free to block if data is not available. Users of our AsyncInputStream class simply 
believe that we are an InputStream object. As shown in Figure 5.3, we are actually deriving from the 
FilterInputStream class, which is the base class for InputStream classes that contains InputStream 
instances. 

Figure 5.3. The Java InputStream class hierarchy 

 
 
The fact that we start another thread to read the data is an implementation detail. Before we examine 
the policies and other details of our AsyncInputStream class, let's examine the AsyncInputStream 
class itself: 

import java.net.*; 
import java.io.*; 
 
public class AsyncInputStream extends FilterInputStream 
                                implements Runnable { 
    private Thread runner;                // Async reader thread 
    private volatile byte result[];       // Buffer 
    private volatile int reslen;          // Buffer length 
    private volatile boolean EOF;         // End-of-file indicator 
    private volatile IOException IOError; // I/O exceptions 
 
    BusyFlag lock;                    // Data lock 
    CondVar empty, full;              // Signal variables 
 
    protected AsyncInputStream(InputStream in, int bufsize) { 
        super(in); 
 
        lock = new BusyFlag();        // Allocate sync variables. 
        empty = new CondVar(lock); 
        full = new CondVar(lock); 
 
        result = new byte[bufsize];   // Allocate storage area 
        reslen = 0;                   // and initialize variables. 
        EOF = false; 
        IOError = null; 
        runner = new Thread(this);    // Start reader thread. 
        runner.start(); 
    } 
 
    protected AsyncInputStream(InputStream in) { 
        this(in, 1024); 
    } 
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    public int read() throws IOException { 
        try { 
            lock.getBusyFlag(); 
            while (reslen == 0) { 
                try { 
                    if (EOF) return(-1); 
                    if (IOError != null) throw IOError; 
                    empty.cvWait(); 
                } catch (InterruptedException e) {} 
            } 
            return (int) getChar(); 
        } finally { 
            lock.freeBusyFlag(); 
        } 
    } 
 
    public int read(byte b[]) throws IOException { 
        return read(b, 0, b.length); 
    } 
 
    public int read(byte b[], int off, int len) throws IOException { 
        try { 
            lock.getBusyFlag(); 
            while (reslen == 0) { 
                try { 
                    if (EOF) return(-1); 
                    if (IOError != null) throw IOError; 
                    empty.cvWait(); 
                } catch (InterruptedException e) {} 
            } 
 
            int sizeread = Math.min(reslen, len); 
            byte c[] = getChars(sizeread); 
            System.arraycopy(c, 0, b, off, sizeread); 
            return(sizeread); 
        } finally { 
            lock.freeBusyFlag(); 
        } 
    } 
 
    public long skip(long n) throws IOException { 
        try { 
            lock.getBusyFlag(); 
            int sizeskip = Math.min(reslen, (int) n); 
            if (sizeskip > 0) { 
                byte c[] = getChars(sizeskip); 
            } 
            return((long)sizeskip); 
        } finally { 
            lock.freeBusyFlag(); 
        } 
    } 
 
    public int available() throws IOException { 
        return reslen; 
    } 
 
    public void close() throws IOException { 
        try { 
            lock.getBusyFlag(); 
            reslen = 0;                        // Clear buffer. 
            EOF = true;                        // Mark end of file. 
            empty.cvBroadcast();               // Alert all threads. 
            full.cvBroadcast(); 
        } finally { 
            lock.freeBusyFlag(); 
        } 
    } 
 
    public void mark(int readlimit) { 
    } 
 
    public void reset() throws IOException { 
    } 
 
    public boolean markSupported() { 
        return false; 
    } 
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    public void run() { 
        try { 
            while (true) { 
                int c = in.read(); 
                try { 
                    lock.getBusyFlag(); 
                    if ((c == -1) || (EOF)) { 
                        EOF = true;            // Mark end of file. 
                        in.close();            // Close input source. 
                        return;                // End I/O thread. 
                    } else { 
                        putChar((byte)c);      // Store the byte read. 
                    } 
                    if (EOF) { 
                        in.close();            // Close input source. 
                        return;                // End I/O thread. 
                    } 
                } finally { 
                    lock.freeBusyFlag(); 
                } 
            } 
 
        } catch (IOException e) { 
            IOError = e;                       // Store exception. 
            return; 
        } finally { 
            try { 
                lock.getBusyFlag(); 
                empty.cvBroadcast();           // Alert all threads. 
            } finally { 
                lock.freeBusyFlag(); 
            } 
        } 
    } 
 
    private void putChar(byte c) { 
        try { 
            lock.getBusyFlag(); 
            while ((reslen == result.length) && (!EOF)) { 
                try { 
                    full.cvWait(); 
                } catch (InterruptedException ie) {} 
            } 
            if (!EOF) { 
                result[reslen++] = c; 
                empty.cvSignal(); 
            } 
        } finally { 
            lock.freeBusyFlag(); 
        } 
    } 
 
    private byte getChar() { 
        try { 
            lock.getBusyFlag(); 
            byte c = result[0]; 
            System.arraycopy(result, 1, result, 0, --reslen); 
            full.cvSignal(); 
            return c; 
        } finally { 
            lock.freeBusyFlag(); 
        } 
    } 
 
    private byte[] getChars(int chars) { 
        try { 
            lock.getBusyFlag(); 
            byte c[] = new byte[chars]; 
            System.arraycopy(result, 0, c, 0, chars); 
            reslen -= chars; 
            System.arraycopy(result, chars, result, 0, reslen); 
            full.cvSignal(); 
            return c; 
        } finally { 
            lock.freeBusyFlag(); 
        } 
    } 
} 
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For our purposes, we aren't interested in the details of threading the I/O itself; there is no threading 
code in this class that we have not already seen in the Async-ReadSocket class. The new thread simply 
does a blocking read on the InputStream, and methods are provided so that the original thread can get 
the data in a nonblocking manner. The InputStream aspect of this class is interesting, but learning the 
Java data input system is not within the scope of this book. 

Why is the discussion of this class important? And how is this class different from the Async-
ReadSocket class? Although this class accomplishes the asynchronous read in the same fashion as the 
AsyncReadSocket class, it is also a FilterInputStream, and it is the relationship between the threaded 
I/O and the InputStream class that we are concerned with here. Since this class must behave as an 
InputStream, we cannot design the behavior of the class as optimally as if all we had been concerned 
with was communicating with the I/O thread. This is the sort of real-world trade-off that must be 
made when implementing threaded classes. 

In order for the class to function correctly, we need to use practically every synchronization technique 
that we know. Let's start with a look at the instance variables and constructors of the 
AsyncInputStream class: 

public class AsyncInputStream extends FilterInputStream 
                                implements Runnable { 
    private Thread runner;                     // Async reader thread 
    private volatile byte result[];            // Buffer 
    private volatile int reslen;               // Buffer length 
    private volatile boolean EOF;              // End-of-file indicator 
    private volatile IOException IOError;      // I/O Exceptions 
 
    BusyFlag lock;                    // Data lock 
    CondVar empty, full;              // Signal variables 
 
    protected AsyncInputStream(InputStream in, int bufsize) { 
        super(in); 
 
        lock = new BusyFlag();        // Allocate sync variables. 
        empty = new CondVar(lock); 
        full = new CondVar(lock); 
 
        result = new byte[bufsize];   // Allocate storage area 
        reslen = 0;                   // and initialize variables. 
        EOF = false; 
        IOError = null; 
        runner = new Thread(this);    // Start reader thread. 
        runner.start(); 
    } 
 
    protected AsyncInputStream(InputStream in) { 
        this(in, 1024); 
    } 

The first three instance variables, runner, result, and reslen, are the important data of the class. 
runner is the reference to the I/O thread that is started by this class, and result and reslen are the 
data storage and the length that is being passed back from the I/O thread. This is an important 
difference from the AsyncReadSocket class, which did not support the concept of data size: the 
getResult() method of the AsyncReadSocket class did not allow the caller to specify the amount to 
read. Since an InputStream class can read any amount of data, we must keep track of available data in 
the buffers. 

The EOF and IOError instance variables are also used for communication. In order to behave as an 
InputStream class, we must report end-of-file (EOF) conditions and throw exceptions on I/O errors. 
These EOF conditions and I/O exceptions are generated from the InputStream object contained in the 
Async-InputStream class. We must save the EOF condition and catch the I/O exception in the I/O 
thread, and later indicate the EOF condition or throw the exception in the calling thread. If the 
AsyncInputStream class did not have to behave like an InputStream class, we could have designed a 
simpler error reporting system. 

Data in the result buffer is protected by the lock instance variable, and we have associated two 
condition variables with the lock: the empty and full condition variables. This is an instance of the 
buffer management that we discussed with the CondVar class: we can have threads waiting on a single 
lock for two different conditions. 
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The first constructor of the AsyncInputStream class is straightforward. First, we just allocate and 
initialize the buffer and variables we will use to communicate with the I/O thread. Second, we 
instantiate and start() the I/O thread. The other constructor has the same signature as the 
FilterInputStream class, from which we inherit, and uses a default buffer size. By providing this 
constructor, we are behaving like all FilterInputStreams. 

Let's start to look into the details of how data is passed back to the user: 

public int read() throws IOException { 
        try { 
            lock.getBusyFlag(); 
            while (reslen == 0) { 
                try { 
                    if (EOF) return(-1); 
                    if (IOError != null) throw IOError; 
                    empty.cvWait(); 
                } catch (InterruptedException e) {} 
            } 
            return (int) getChar(); 
        } finally { 
            lock.freeBusyFlag(); 
        } 
    } 
     
    private byte getChar() { 
        try { 
            lock.getBusyFlag(); 
            byte c = result[0]; 
            System.arraycopy(result, 1, result, 0, --reslen); 
            full.cvSignal(); 
            return c; 
        } finally { 
            lock.freeBusyFlag(); 
        } 
    } 

In the InputStream class, the read() method reads a single byte from the input data stream. If an 
EOF is detected or an IOException is caught by the I/O thread, it would be placed in the EOF or 
IOError instance variables, respectively. The read() method returns a -1 to report an EOF or throws 
the IOException on behalf of the I/O thread. 

 

The InputStream and the End of File 
Obviously, in the case of the FileInputStream, the end-of-file indicator is reported when a 
read past the EOF is detected. But what does this indicator mean for other data sources? 

The EOF can be caused by a number of reasons, such as the StringBufferInput-Stream 
reporting the end of the string, the ByteArrayInputStream reporting the end of the array, or 
the SocketInputStream reporting the closure of the network connection. 

In any case, we should just use the indicator as the termination of any more data from the 
source and act appropriately. We should not be concerned with what the actual data source 
is. 

 
Also, we check for the EOF and the I/O exception only when there is no more data in the buffer. Since 
the I/O thread is reading ahead, we must delay the EOF indicator or throw the exception in the read() 
method until the user has drained the input from the buffer: the user should see the EOF or exception 
at the same point in the data it actually occurred. The I/O thread stops reading when it receives either 
an EOF or an IOException, so we can safely assume all data in the buffer occurred before either 
condition happened. 
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Finally, in order to protect the result data buffer and the reslen length indicator, we use the lock 
BusyFlag. The getChar() method, which returns the next character, also uses this BusyFlag. You 
might ask why we are only using a single lock to protect four different instance variables. This is a 
design issue; the result and reslen variables are related, and it is unlikely that we would be 
examining or changing one without the other. The EOF and IOError variables are accessed only once 
during the lifetime of the I/O thread. It is wasteful to create a new BusyFlag for this purpose when a 
suitable lock is already available. 

What happens when we do not have data available when a read is requested? The read() method 
must behave correctly if the application calls the method when data is not available. This means that 
the read() method must block under such conditions. In other words, the read() method must do 
what it was designed to avoid in the first place: 

public int read() throws IOException { 
        try { 
            lock.getBusyFlag(); 
            while (reslen == 0) { 
                try { 
                    if (EOF) return(-1); 
                    if (IOError != null) throw IOError; 
                    empty.cvWait(); 
                } catch (InterruptedException e) {} 
            } 
            return (int) getChar(); 
        } finally { 
            lock.freeBusyFlag(); 
        } 
    } 
 
 
 
     
    private void putChar(byte c) { 
        try { 
            lock.getBusyFlag(); 
            while ((reslen == result.length) && (!EOF)) { 
                try { 
                    full.cvWait(); 
                } catch (InterruptedException ie) {} 
            } 
            if (!EOF) { 
                result[reslen++] = c; 
                empty.cvSignal(); 
            } 
        } finally { 
            lock.freeBusyFlag(); 
        } 
    } 

Obviously, the read() method cannot block by reading from the InputStream; the InputStream is 
under the control of the I/O thread and should not be accessed directly by the read() method. In 
order to simulate this blocking, we use the empty condition variable. The read() method simply waits 
for more data to arrive. When data arrives in the I/O thread, a signal is generated when the data is 
placed in the buffer. This is done by calling the cvSignal() method in the putChar() method. As can 
be seen by examining the run() method, the putChar() method is called by the I/O thread to place 
the data it receives in the data buffer: 

public void run() { 
        try { 
            while (true) { 
                int c = in.read(); 
                try { 
                    lock.getBusyFlag(); 
                    if ((c == -1) || (EOF)) { 
                        EOF = true;           // Mark end of file. 
                        in.close();           // Close input source. 
                        return;               // End I/O thread. 
                    } else { 
                        putChar((byte)c);     // Store the byte read. 
                    } 
                    if (EOF) { 
                        in.close();           // Close input source. 
                        return;               // End I/O thread. 
                    } 
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                } finally { 
                    lock.freeBusyFlag(); 
                } 
            } 
        } catch (IOException e) { 
            IOError = e;                      // Store exception. 
            return; 
        } finally { 
            try { 
                lock.getBusyFlag(); 
                empty.cvBroadcast();          // Alert all threads. 
            } finally { 
                lock.freeBusyFlag(); 
            } 
        } 
    } 

The code for the I/O thread is similar to the code in our AsyncReadSocket class. We simply read from 
the InputStream, blocking if necessary. When we receive data, we place it in the buffer using the 
putChar() method. Additionally, if we receive an EOF indicator or catch an IOException, we place 
that information into the appropriate instance variables. To allow all of these actions to take place 
safely with the other threads, we grab the same lock that is used by the read thread: the lock 
BusyFlag. 

What will happen to all the blocking read threads when an EOF or IOException condition occurs? As 
we mentioned, we are using a condition variable to cause the read() method to behave in a blocking 
manner. However, when an EOF or IOException condition occurs, there can be no more future 
notifications, since no more data will be arriving. To solve this, we must use the cvBroadcast() 
method when these conditions occur. The threads can just wake up in turn, taking the available data 
from the buffer: 

public void run() { 
        try { 
            while (true) { 
                int c = in.read(); 
                try { 
                    lock.getBusyFlag(); 
                    if ((c == -1) || (EOF)) { 
                        EOF = true;           // Mark end of file. 
                        in.close();           // Close input source. 
                        return;               // End I/O thread. 
                    } else { 
                        putChar((byte)c);     // Store the byte read. 
                    } 
                    if (EOF) { 
                        in.close();           // Close input source. 
                        return;               // End I/O thread. 
                    } 
                } finally { 
                    lock.freeBusyFlag(); 
                } 
            } 
        } catch (IOException e) { 
            IOError = e;                      // Store exception. 
            return; 
        } finally { 
            try { 
                lock.getBusyFlag(); 
                empty.cvBroadcast();          // Alert all threads. 
            } finally { 
                lock.freeBusyFlag(); 
            } 
        } 
    } 
     
    public void close() throws IOException { 
        try { 
            lock.getBusyFlag(); 
            reslen = 0;                       // Clear buffer. 
            EOF = true;                       // Mark end of file. 
            empty.cvBroadcast();              // Alert all threads. 
            full.cvBroadcast(); 
        } finally { 
            lock.freeBusyFlag(); 
        } 
    } 
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When no more data is available from the buffer, the remaining threads reading the InputStream 
return the EOF or IOError condition from their read() methods. We also do not have to worry about 
future read() method calls; they simply return the EOF or IOError condition that occurred. 

The implementation of the available() method that works as desired - the method that was the 
reason for our AsyncInputStream class - is actually anticlimactic: 

public int available() throws IOException { 
    return reslen; 
} 

We simply return the number of bytes we have available in the buffer. Since the I/O thread is actually 
reading the InputStream, blocking if necessary, we know that there are usually no more bytes sitting 
on the network that are unaccounted for. There is, however, a maximum amount of data that is held 
by the buffer (which is user configurable), so that it's possible that the buffer could be full and data 
could be held in the network buffers as well. 

Finally, we made three additional design decisions during the development of the AsyncInputStream 
class. While these decisions are important to the AsyncInputStream class, they will not be examined 
here, because they don't pertain to our discussion of threading issues. But to be complete, here is a 
brief overview: 

• The read(byte[]) method, just like the read() method, blocks if data is not available. 
However, if data is available, but not enough to fill the byte array, the read(byte[]) method 
simply reads less than requested, returning the number of bytes actually read. We have 
chosen this implementation due to the design of the AsyncInputStream class: it works 
asynchronously, and this implementation best fulfills that design spirit. 

• The skip() method skips only the number of bytes possible without blocking. This means 
that if the skip() method is called to skip more bytes than are available, it simply skips what 
is available and returns the number of bytes actually skipped. Again, this implementation best 
fulfills the design spirit of the AsyncInputStream class. 

• The mark and reset feature of the AsyncInputStream class is not supported, even if this 
feature is supported in the InputStream class that we contain. There's no real reason why an 
asynchronous stream would support this, and if users really require this feature, they can 
always instantiate a BufferedInputStream object containing our AsyncInputStream object. 
 

The AsyncOutputStream Class? 
One of the main reasons we never implemented an AsyncWriteSocket class is usability. 
With data being buffered at so many places between the two ends of a network connection, 
there is less reason to worry about blocking for a long time during a write() call. However, 
although it's a rare case, it is possible for a write() method to block. 

In the case of an AsyncOutputStream class, there is another complication: I/O exceptions 
that are thrown by the write() method of the contained OutputStream cannot be delivered 
correctly. The call to the AsyncOutputStream's write() method would have long since 
returned. This could be handled by throwing the exception on a later call to the write() 
method or on a call to the close() method. That's not a perfect solution, but it's common 
in cases where data that is written is buffered. 

Those developers who want truly robust programs that write data asynchronously may 
consider implementing their own AsyncOutputStream based on the AsyncInputStream 
we've shown here. 
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Why did we use two condition variables rather than the wait and notify mechanism? We did this for 
efficiency. Here is a case where we have a single data source (the result buffer) that can have two 
conditions: it can be empty, in which case threads attempting to read must wait for data, or it can be 
full, in which case threads attempting to store data into the buffer must wait for it to be partially 
emptied. If we had relied on the wait and notify mechanism, then whenever either condition occurred 
we would have had to call the notifyAll() method, which would have woken up too many threads. 
This would have worked, since all threads recheck the condition when they wake up, but it is not as 
efficient as using the condition variables. 

Instances of the AsyncInputStream class behave like any InputStream object. They can be used in 
cases where an InputStream object is normally used with no changes. While the AsyncInputStream 
class is also a Runnable type, that is just an implementation detail. Users of the AsyncInputStream 
class should not even know that a new thread has been started on their behalf when an 
AsyncInputStream object is instantiated.  

5.5 Using TCPServer with AsyncInputStreams 

Let's modify our ServerHandler class to read requests from clients in an asynchronous manner: 

import java.net.*; 
import java.io.*; 
 
public class ServerHandler extends TCPServer { 
    public void run(Socket data) { 
        try { 
            InputStream is = 
                new AsyncInputStream(data.getInputStream()); 
            OutputStream os = data.getOutputStream(); 
 
            // Process the data socket here.  
        } catch (Exception e) {} 
    } 
} 

With a single line change to our ServerHandler class, we are now reading from the client in an 
asynchronous manner. We also practically doubled the number of threads started to provide this 
service. But from examining the source code, there is no indication that even one thread is started, 
much less two threads per client connected (plus an additional thread to handle the accept() 
method).  

5.6 Summary 

In this chapter, we have taken a look at some real examples of threads in action along with the issues 
of their synchronization. As we started to do in the previous chapter, we are now using threads simply 
as an implementation tool. We have started new threads and communicated between these threads, 
but users of our classes are not concerned with and may not even know that these threads exist. 

We have also examined synchronization issues in cases where we have not started any threads at all. A 
simple item like a container class must be designed with threading in mind. This is because, although 
we may not start any threads, we are already threaded in our program. We must think of threading as 
not only an implementation detail in our classes, but also in all other classes in the system. Threading 
issues like deadlock and race conditions should always be involved in our class designs, whether or not 
we actually use threads in our classes at all. 
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Chapter 6. Java Thread Scheduling 
At this point, we've covered the fundamental aspects of Java's threading system and are able to write 
quite complex programs that exploit Java's threads to complete their tasks. We're now going to move 
into some of the specialized areas of threaded systems. The programming issues and techniques that 
we'll explore in the next few chapters of this book are not issues you'll grapple with every day, but 
when the need arises to have some explicit control over the behavior of your threads, these issues 
become very important. 

To begin, in this chapter we'll look into the topic of thread scheduling. In most Java programs, there 
are more threads than there are CPUs on the machine that is hosting the program. Since each CPU is 
capable of running only one thread at a time, not all threads in your program will be running at any 
given instant. Determining which of the many threads in your program is running at any one time is 
the topic of Java thread scheduling. 

The key to understanding Java thread scheduling is to realize that a CPU is a scarce resource. When 
there are two or more threads that want to run on a single-processor machine, they end up competing 
for the CPU, and it's up to someone - either the programmer, the Java virtual machine, or the 
operating system - to make sure that the CPU is shared between these threads. The same is true 
whenever there are more threads in a program than there are CPUs on the machine hosting the 
program. So the essence of this chapter is how to share CPUs between threads that want to access 
them. 

In the earlier examples, we didn't concern ourselves with this topic because, in those cases, the details 
of thread scheduling weren't important to us. This was because the threads we were concerned with 
didn't normally compete for a CPU: they had specific tasks to do, but the threads themselves were 
usually short-lived or only periodically needed a CPU in order to accomplish their task. Consider the 
thread that is created automatically for you when you call the getImage() method to load an image. 
Most of the time, this thread isn't using a CPU because it's waiting for data to arrive over the network. 
When a burst of data does arrive, this thread quickly processes the data and then goes back and waits 
for more data; since the thread doesn't need a CPU very often, there was never a need to concern 
ourselves with the Java virtual machine's scheduling mechanism. 

The topic of thread scheduling is a difficult one to address because the Java specification does not 
require implementations of the Java virtual machine to schedule threads in a particular manner. 
There are guidelines in the specification that are based on a particular thread's priority, but the 
guidelines are not absolute, and different implementations of the Java virtual machine follow these 
guidelines differently. In addition, some of the methods of the Thread class that are used to affect 
thread scheduling, namely the suspend() and resume() methods, have been deprecated beginning in 
Java 2 (and should really be avoided in all releases of Java). As a result, we cannot absolutely 
guarantee the order of execution of threads across all Java virtual machines. 

The amount of time that we will spend on this topic is out of proportion to its relevance. This is 
surprising to many people, especially those to whom thread programming is a new topic, but the fact 
is that there are only rare times when we need to use the techniques of this chapter to affect the 
scheduling of Java threads. For the most part, we need to worry about how Java threads are scheduled 
only when one or more of the threads is CPU intensive over a relatively long period of time. The 
image-loading threads we mentioned earlier, for example, are CPU intensive, but only for short 
periods of time, and so we are not concerned about how those threads are scheduled. 
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Characterizing Programs 
Computer programs - written in Java or otherwise - are typically categorized in one of three 
ways: 

CPU intensive  

Programs that require many CPU cycles to complete their task. They use the CPU to 
perform mathematical or symbolic calculations (e.g., manipulation of strings or 
images) that require a significant amount of time, but need little or no input from 
the user or from an external data source. 

I/O intensive  

Programs that spend the vast majority of their time waiting for I/O operations to 
complete: reading or writing files to disk, reading or writing data on a network 
socket, or communicating with another program. 

Interactive  

Programs that perform operations in response to user input. When the user 
executes a particular action, the program enters a CPU-intensive or an I/O-
intensive phase before returning to wait for the next command. The TCPServer we 
examined in Chapter 5 belongs to this category, though the interaction comes from 
other (client) programs rather than from user input. 

A single program may go through phases that belong to all these categories. 

 
6.1 An Overview of Thread Scheduling 

We'll start by looking at the basic principles of how threads are scheduled. Any particular virtual 
machine may not follow these principles exactly, but these principles will form the basis for our 
understanding of thread scheduling. 

Let's start by looking at an example with some CPU-intensive threads. What is the output of the 
following program? 

class  
TestThread extends Thread { 
    String id; 
 
    public TestThread(String s) { 
        id = s; 
    } 
 
    public void doCalc(int i) { 
        // Perform complex calculation based on i. 
    } 
 
    public void run() { 
        int i; 
        for (i = 0; i < 10; i++) { 
            doCalc(i); 
            System.out.println(id); 
        } 
    } 
} 
 
public class Test { 
    public static void main(String args[]) { 
        TestThread t1, t2, t3; 
        t1 = new TestThread("Thread 1"); 
        t1.start(); 
        t2 = new TestThread("Thread 2"); 
        t2.start(); 
        t3 = new TestThread("Thread 3"); 
        t3.start(); 
    } 
} 
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Assume that the doCalc() method is computationally expensive, requiring three to five seconds per 
call, and that it makes no calls to any other methods. Clearly, after the program has completed, we'll 
have 10 lines of output that say "Thread 1," 10 lines that say "Thread 2," and 10 lines that say "Thread 
3," but what will the order of those output lines be? 

It's common to assume that these output lines will be in some random order, perhaps something like 
this: 

Thread 1 
Thread 2 
Thread 2 
Thread 3 
Thread 1 
Thread 2 
Thread 3 
Thread 3 

and so on. But it turns out that Java doesn't specify how threads are scheduled - in specific, it doesn't 
require the kind of schedules that would produce random output. It's just as likely that we'll see 10 
lines that say "Thread 1" followed by 10 lines that say "Thread 2" followed by 10 lines that say "Thread 
3." The implication in that case is that our first thread (Thread 1) runs to completion before our 
second thread (Thread 2) ever starts, and that our second thread runs to completion before our third 
thread ever starts. 

To understand what's going on here, we need to explore some of the internal aspects of the Java 
threading mechanism. At a conceptual level, every thread in the Java virtual machine can be in one of 
four states:  

Initial  

A thread object is in the initial state from the period when it is created (that is, when its 
constructor is called) until the start() method of the thread object is called. 

Runnable  

A thread is in the runnable state once its start() method has been called. There are various 
ways in which a thread leaves the runnable state, but the runnable state can be thought of as a 
default state: if a thread isn't in any other state, it's in the runnable state. 

Blocked  

A thread that is blocked is one that cannot be run because it is waiting for some specific event 
to occur. A simple example is the case of a thread that has opened a socket to some remote 
data server and attempts to read data from that server when data is not available. Threads 
that are sleeping or waiting on an object lock are also considered blocked. 

Exiting  

A thread is in the exiting state once its run() method returns or its stop() method has been 
called. 

It's frequently the case that more than one thread in a Java program is in the runnable state. When 
that happens, one thread from the pool of runnable threads will be selected to become the currently 
running thread. All the other threads in the pool of runnable threads remain in the runnable state, 
even though they are actually waiting for a chance to run (that is, to become the currently running 
thread). So the key question is which of the threads from the pool of runnable threads will be selected 
to become the currently running thread. 

It simplifies our discussion for the present to speak of one currently running thread. On a machine 
with multiple processors and certain implementations of the virtual machine, there may be more than 
one currently running thread - perhaps as many currently running threads as the machine has 
processors. The selection of each of those threads for a particular CPU still follows the same principles 
that we're discussing here. 



Java Threads, 2nd edition 
 

 page 90

Java implements what is known as a preemptive, priority-based scheduler among its various threads. 
This means that each thread in a Java program is assigned a certain priority, a positive integer that 
falls within a well-defined range. This priority can be changed only by the programmer. The Java 
virtual machine never changes the priority of a thread, even when a thread changes between any of the 
various states outlined earlier, or even after a thread has been running for a certain period of time. So 
a thread with a priority of 5 will maintain that priority from the time it is created through its various 
changes between the runnable and blocked states until the thread terminates and enters the exiting 
state. 

This priority value is important, because the scheduling principle followed by the Java virtual machine 
is that the currently running thread will be the thread that has the highest priority among all the 
threads that are in the runnable state. That's what we mean when we say that Java implements a 
priority-based scheduler. The Java virtual machine implements this scheduling in a preemptive 
fashion, meaning that when a high-priority thread enters the runnable state, the Java virtual machine 
interrupts (preempts) whatever lower-priority thread is running at the time so that the higher-priority 
thread can become the currently running thread. 

6.1.1 Scheduling Example: Threads of Different Priorities 

An example should make this clearer. Let's look at the following (incomplete) code example: 

public class  
SchedulingExample implements Runnable { 
    public static void main(String args[]) { 
        Thread calcThread = new Thread(this); 
        calcThread.setPriority(4); 
        calcThread.start(); 
 
        AsyncReadSocket reader; 
        reader = new AsyncReadSocket(new Socket(host, port)); 
        reader.setPriority(6); 
        reader.start(); 
 
        doDefault(); 
    } 
 
    public void run() { 
        doCalc(); 
    } 
} 

This Java program has three threads: first, there's the default thread executing the main() method, 
which, after creating the other threads, is going to execute the doDefault() method. Second, there's 
the calculation thread (calcThread) that is going to execute the doCalc() method. And third, there's 
the reader AsyncReadSocket thread (from Chapter 3) that's reading a socket. 

In the following discussion, we assume the threads we created are the only threads in the Java virtual 
machine, but as we already know, there are many other threads that have been created on our behalf. 
For simplicity, we'll ignore those threads, since, for the most part, they'll remain in the blocked state 
and won't affect this discussion. Figure 6.1 shows the transition of the threads in our example between 
their various states. 

We start at time T1 with our single default thread executing the main() method. The initial thread has 
a priority of 5 and is the only active thread in the Java virtual machine. So the default thread is in the 
runnable state and is also the currently running thread. At time T2, the default thread creates the 
calcThread, gives it a priority of 4, and calls its start() method. Now there are two threads in the 
runnable state, but the default thread is still the currently running thread because it has a higher 
priority than calcThread . calcThread is in the runnable state, but it is waiting for the CPU. 

The default thread continues execution: it creates the reader thread, gives it a priority of 6, and then 
calls the thread's start() method. After the default thread calls the reader thread's start() method, 
the reader thread enters the runnable state. Because reader has a higher priority than the default 
thread, reader becomes the currently running thread (at the expense of the default thread, which will 
no longer be running even though it's in the runnable state). These changes in the states of the threads 
are shown at time T3 in the diagram. 
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Figure 6.1. Thread state diagram 

 
 
 Now the reader thread executes the readChar() method on its socket. If no data is available, the 
reader thread enters the blocked state (shown at time T4). When this happens, the default thread 
begins execution from the point at which it was previously interrupted (in fact, the default thread will 
be completely unaware that it had been interrupted). The default thread continues to be the currently 
running thread until data becomes available to satisfy the readChar() method. When this data 
becomes available (at time T5), the Java virtual machine changes the state of the reader thread to the 
runnable state. When the Java virtual machine changes the state, it notices that this thread now has 
the highest priority of all the runnable threads, so it interrupts the default thread and makes the 
reader thread the currently running thread. 

Meanwhile, calcThread has been patiently waiting for its chance to run, and it must continue to wait 
until both the default thread and the reader thread are blocked or have exited (or until some thread 
raises the priority of calcThread). calcThread is in danger of never becoming the currently running 
thread at all, a concept known as CPU starvation. In general, it is the responsibility of Java developers 
to ensure that none of the threads in their Java programs starve; the Java virtual machine never 
adjusts any thread's priority to compensate for that thread's lack of availability to the CPU (though 
some underlying operating systems may do so).  

6.1.2 Scheduling Equal-Priority Threads 

In most Java programs, we'll have multiple threads of the same priority; we need to expand our 
discussion to take this into account. What follows is a description of what happens at a conceptual 
level within the Java virtual machine. Once again, our intent here is to provide an illustration of how 
the thread scheduling within the Java virtual machine works, not to provide a blueprint of how any 
particular Java virtual machine is actually implemented. 

We can conceive that the Java virtual machine keeps track of all the threads in a Java program by 
means of linked lists; every thread in the Java virtual machine is on a list that represents the state of 
that thread. A thread can have any one of eleven priorities, so we conceive of fourteen linked lists: one 
for all threads in the initial state, one for all threads in the blocked state, one for all threads in the 
exiting state, and one for each priority level. The list of threads at a given priority level represents only 
those threads that are currently in the runnable state: a thread in the runnable state at priority 7 will 
be on the priority 7 list, but when the thread blocks, it moves to the blocked linked list. 

For simplicity, we conceive of these threads as being on an ordered list; in reality, they may be held in 
simple pools. Keeping the threads in a linked list implies that there is an order by which the threads 
will be selected to become the currently running thread, and while that is a useful way of thinking 
about the process, it is not necessarily the way an implementation may work. 

Let's revisit our last example and this time change the priority of calcThread so that it is now the 
same as the default thread. If these two threads have the same priority, then our state diagram might 
look like Figure 6.2. Note that in the figure, we now start at time T2, since that's when things become 
interesting. 
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Figure 6.2. Thread state diagram for equal-priority threads 

 
 
The difference now is that the default thread and calcThread have the same priority, so that when the 
reader thread blocks, the Java virtual machine does something different to select the currently 
running thread. In this example, we're concerned with only three of Java's internal lists: the list of 
priority 5 threads (the default thread and calcThread), the list of priority 6 threads (the reader 
thread), and the list of blocked threads. As the Java virtual machine enters time T2, when calcThread 
is started, those lists look like this:[1] 

[1] In these diagrams, the currently running thread is always the last thread on the highest priority, non-empty list: 
that thread was at the head of its list when it was selected to be the currently running thread, at which time it was 
also moved to the end of the list. 

PRIORITY 5:  Default -> calcThread -> NULL 
PRIORITY 6:  NULL 
   BLOCKED:  NULL 

So the Java virtual machine selects the default thread to be the currently running thread since it is at 
the head of the non-empty list that has the highest priority. The Java virtual machine also alters the 
priority 5 list so that as it exits time T2; that list appears as: 

PRIORITY 5:  calcThread -> Default -> NULL 

At time T3, the default thread starts the reader thread, which will preempt the default thread. The 
Java virtual machine's internal lists now look like this: 

PRIORITY 5:  calcThread -> Default -> NULL 
PRIORITY 6:  reader -> NULL 
   BLOCKED:  NULL 

At T4 when the reader thread enters the blocked state, the Java virtual machine searches for a non-
empty priority list and finds one at priority 5; the first thread in that list (calcThread) becomes the 
currently running thread and gets moved to the end of the list. So exiting time T4, the internal lists 
now look like this: 

PRIORITY 5:  Default -> calcThread -> NULL 
PRIORITY 6:  NULL 
   BLOCKED:  reader -> NULL 

And so we continue: every time the reader thread enters the blocked state, the default thread and 
calcThread change positions on the priority 5 list, and they alternate becoming the currently running 
thread. 

In this example, we've posited the notion that when a thread is made the currently runnable thread, it 
is moved to the end of the list. As a result, every time the reader thread blocks, a different thread 
from the priority 5 list will become the currently running thread. While this is by far the most common 
implementation of the Java virtual machine, it is not a requirement: we know of one particular real-
time operating system in which threads that are interrupted are not reordered as they are in this 
discussion. On that implementation (and any like it), the calcThread and reader thread would 
execute alternately and the default thread would starve.  
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6.1.3 Priority Inversion and Inheritance 

In a typical priority-based threading system, something unusual occurs when a thread attempts to 
acquire a lock that is held by a lower-priority thread: because the higher-priority thread becomes 
blocked, it temporarily runs with an effective priority of the lower-priority thread. Say that we have a 
thread with a priority of 8 that wants to acquire a lock that is held by a thread with a priority of 2. 
Because the priority 8 thread is waiting for the priority 2 thread to release the lock, it ends up running 
with an effective priority of 2. This is known as priority inversion. 

Priority inversion is often solved by priority inheritance. With priority inheritance, a thread that holds 
a lock that is wanted by a thread with a higher priority will have its priority temporarily and silently 
raised; its new priority becomes the same as the priority of the thread that it is causing to block. When 
the thread releases the lock, its priority is lowered to its original value. 

Let's look at an example. Say that we have three threads: Thread2, Thread5, and Thread8, which have 
priorities, respectively, of 2, 5, and 8. We'll start at the point where Thread2 is the currently running 
thread, and the other threads are therefore blocked: 

PRIORITY 2:  Thread2 -> NULL 
PRIORITY 5:  NULL 
PRIORITY 8:  NULL 
   BLOCKED:  Thread5 -> Thread8 -> NULL 

At this point in time, Thread2 has obtained a lock, but since no other thread wants the lock, its priority 
is not changed. Now, say that Thread5 unblocks; it will become the currently running thread: 

PRIORITY 2:  Thread2 -> NULL 
PRIORITY 5:  Thread5 -> NULL 
PRIORITY 8:  NULL 
   BLOCKED:  Thread8 -> NULL 

Now, when Thread8 unblocks it will become the currently running thread. If it then attempts to 
acquire the lock held by Thread2, it will again block, but the priority of Thread2 will be adjusted to 8: 

PRIORITY 2:  NULL 
PRIORITY 5:  Thread5 -> NULL 
PRIORITY 8:  Thread2 -> NULL 
   BLOCKED:  Thread8 -> NULL 

So Thread2 will be selected as the currently running thread, even though its programmed priority is 
lower than another runnable thread. When Thread2 releases its lock, its priority will be changed back 
to 2, and Thread8 will unblock (since the lock it was waiting for is no longer held): 

PRIORITY 2:  Thread2 -> NULL 
PRIORITY 5:  Thread5 -> NULL 
PRIORITY 8:  Thread8-> NULL 
   BLOCKED:  NULL 

And, predictably, Thread8 will become the currently running thread. 

The goal of priority inheritance is to allow the high-priority thread to run as soon as possible. If the 
inheritance did not occur in the above example, then Thread8 would have to wait until Thread5 
blocked or exited before Thread2 could run and give up its lock. This would give Thread8 
(temporarily) an equivalent priority of 2. Priority inheritance changes that scenario in favor of the 
higher-priority thread. 

Priority inheritance is a common, but not mandatory, feature of Java virtual machines. 

6.1.4 Round-Robin Scheduling 

In our previous example, there was never a time when the calcThread and the default thread 
switched places on their priority queue without the reader thread intervening. Stated another way, 
the calcThread never preempts the default thread, and vice versa. This is confusing to many people, 
who assume that preemptive means that threads of the same priority will timeslice - that is, that they 
will periodically preempt each other. 
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The case in which threads of the same priority preempt each other is referred to as round-robin 
scheduling and is one of the more contentious aspects of Java thread scheduling. Nothing in the Java 
language specification requires a virtual machine to employ round-robin scheduling, but nothing 
prevents a virtual machine from implementing it either. Because of their ties to the operating system, 
many implementations of the virtual machine do employ round-robin scheduling, but many - 
especially on non-Windows platforms - do not. 

This introduces a level of non-deterministic behavior into our discussion. On a platform that performs 
round-robin scheduling, threads of equal priority will periodically yield to each other. This process 
follows the same ideas we outlined above: the thread is selected to run and moves to the end of its 
priority queue. The presence of round-robin scheduling, however, means that periodically an internal 
timer will go off, which will interrupt the currently running thread and cause the next thread on the 
priority queue to become the currently running thread. But on a platform without round-robin 
scheduling, the currently running thread will continue to run until it blocks or until a higher-priority 
thread is able to run. 

6.1.5 Threading Models 

The absence or presence of priority inheritance or of round-robin scheduling among threads of equal 
priority is only one difference that exists between the scheduling of threads on different 
implementations of the Java virtual machine. These differences exist because the Java language 
specification has very little to say about thread scheduling, and different implementations have 
therefore leveraged the features of the host platform to provide support for Java threads. 

In the very early days of Java, priority-based thread scheduling was thought to be absolute: the 
highest-priority runnable thread would always be the currently running thread. Many Java 
programming books (including the first release of this book) based their discussions of thread 
programming on that premise. The new version of the Java specification, however, says only this 
about thread scheduling: "Threads with higher priority are generally executed in preference to threads 
with lower priority. Such preference is not, however, a guarantee that the highest priority thread will 
always be running, and thread priorities cannot be used to reliably implement mutual exclusion."[2] 

[2] The Java Language Specification, p. 415 (Addison-Wesley, 1996). 

This clarification is an admission of how things work in the real world. Some operating systems 
cannot tell exactly when a blocked thread becomes runnable, and so there may be a small amount of 
time between when a high-priority blocked thread becomes runnable and when it actually becomes 
the currently running thread. In practice, that difference is rarely important, because you can't predict 
absolutely when a thread will become unblocked anyway. If there's a slight delay between when data 
arrives on a socket and when the thread reading the socket is unblocked, your program won't know; it 
will simply assume that the data was delayed slightly longer than it was. Java is not, after all, a real-
time operating system. 

More important, however, is that many implementations of the Java virtual machine now allow Java 
threads to be scheduled directly by the operating system rather than by the virtual machine itself. And 
while operating systems can generally follow the principle of priority-based scheduling that we've 
outlined here, they usually add some additional complexity to thread scheduling that affects the 
simple notion that we've outlined. 

Hence, understanding how Java threads are ultimately scheduled requires an understanding of the 
particular virtual machine involved. There are two basic variations here: 

The green-thread model  

In the green-thread model, the threads are scheduled by the virtual machine itself. That model 
- the original model for Java virtual machines - most closely follows the idealized priority-
based scheduling that we've outlined here. 

The native-thread model  

In this model, the threads are scheduled by the operating system that is hosting the virtual 
machine. Because of the variations in operating systems, this model leads to a number of 
subtle differences in the scheduling of Java threads, although they will all generally follow the 
model that we've discussed here. 
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Later in this chapter, we'll discuss the implementations of these thread models on several platforms 
and the subtle differences between these implementations with respect to thread scheduling.  

6.2 When Scheduling Is Important 

If the details of thread scheduling seem somewhat esoteric, here's the good news: most of the time, all 
the scheduling details in this chapter have no practical impact on your Java program. This is true, in 
general, of threaded programs under any operating system and with any threading library, but it's 
particularly true in the case of Java programs. 

In a Java program, a thread is most often created because the programmer wants to call a method that 
may block - -usually a read() method on a slow InputStream (such as a SocketInputStream), or the 
Thread.sleep() method to emulate a periodic timer, or the wait() method to wait for a particular 
event. As a result, threads in the Java virtual machine tend to oscillate between the blocked and 
runnable states quite often. And as long as every thread in the Java virtual machine blocks 
periodically, they will all get an opportunity to run: each thread becomes the currently running thread, 
blocks, exits the blocked state, is placed on the end of the list for its priority, and moves up through 
the list as other threads go through the same cycle. 

Even in those cases where all the threads in the virtual machine do not periodically block, it's usually 
possible to ignore the issue of scheduling altogether. A Java program usually performs a specific task, 
and often the completion of that task is all that matters. A Java program that is charged with 
calculating and displaying four convolutions of a GIF image has to wait for all four convoluted images 
to be complete before it displays the final image. It's more convenient to program this so that each 
convolution is performed in a separate thread, but it will take the same amount of time to calculate all 
four convolutions whether each thread calculates its image sequentially or whether there's some sort 
of round-robin scheduling among the four threads. When the task of our Java program is divided into 
separate subtasks and each subtask is written as a separate thread, we can often ignore the scheduling 
of those separate threads because, in the end, all we care about is the completed task. 

So when do we care about the scheduling mechanism of these threads? When all of these normal 
cases do not apply; specifically, when: 

• There are one or more CPU-intensive threads in the program 

and either 

• Intermediate results of the calculations are interesting (e.g., if we wanted to see one of the 
four convolved GIF images as soon as possible) 

or 

• The threads are not performing a joint task; they're providing separate tasks that should, in 
fairness, either employ a round-robin scheduling paradigm (e.g., a server program that is 
acting on requests on behalf of several different users) or employ a sequential scheduling 
paradigm (e.g., a server that processes user requests on a first-come, first-served basis). 

We'll look at these cases in more depth as we discuss the various mechanisms to achieve them. 

6.2.1 Round-Robin Scheduling and "Fairness" 

Many developers are surprised to learn that equal-priority Java threads are not automatically 
timesliced by a round-robin scheduler. Part of this surprise stems from the tendency to think of 
threads within a program as equivalent in theory to processes in an operating system: it has long been 
ingrained in our psyches that a timesliced scheduler is the fairest mechanism to deal with multiple 
processes. And, in an interactive user environment, that's usually the case. 

There are, however, occasions when a round-robin scheduler is not the fairest scheduling algorithm 
available and the programmer is required to make sure that no timeslicing of threads occurs. Consider 
the case of a calculation server that accepts connections from multiple clients simultaneously and runs 
each client in a separate thread. This is an elegant server architecture, but the question of the best 
scheduling mechanism to employ with this architecture turns out to be a profound one. 
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Let's take the case of a CalcServer that performs some sort of complex, analytic calculation for each of 
the clients that connects to it; assume that the calculation requires some 5 seconds for each client. 
When five clients connect to the server at roughly the same time, the CalcServer starts five separate 
threads. If those threads are subject to timeslicing, it takes about 25 seconds for all threads to reach 
the end of their calculation, and because the CPU has been equitably shared, each thread reaches the 
end of its individual calculation at this 25-second mark. So each client receives an answer after 25 
seconds. 

If no round-robin scheduling is in effect in our CalcServer, however, then we have a different case: the 
clients still connect at the same time, but one client (somewhat arbitrarily) gets the opportunity to run 
its calculation to conclusion; the first client gets an answer in just 5 seconds instead of 25 seconds. 
Then the second client's calculation begins; the second client gets its answer after 10 seconds have 
passed, and so on. Only the fifth client has to wait the entire 25 seconds for an answer. 

Which of these scheduling modes is the "fairest"? The answer to that depends on what happens during 
the 5 seconds the server calculates on behalf of the client. If the server provides just a single answer to 
the client, clearly the non-timesliced version is "fairest": on average, each client has to wait 15 seconds 
for an answer versus 25 seconds for the timesliced version. If, instead, the server provides five answers 
to the client - one for every second of calculation - then the timesliced version is "fairest": each client 
has one answer after 5 seconds, whereas in the non-timesliced version, the fifth client won't have its 
first answer until 21 seconds have passed. 

In other words, this is once again the "intermediate results" requirement: if intermediate results are 
important to us, a round-robin scheduler provides the fairest results to all the threads. But if all we 
care about is the final answer, a round-robin scheduler on a single-CPU machine is not appropriate: in 
the best of cases, it doesn't provide any benefits, and in cases like our CalcServer calculator, it actually 
decreases throughput in the system. 

This situation becomes more complicated on a system with multiple CPUs. If there are four CPUs 
available to run our five threads, then on a system that does not perform round-robin scheduling, the 
average client will receive an answer after 6 seconds: the first four will receive an answer after 5 
seconds, and the last will receive one after 10 seconds. On the other hand, if round-robin scheduling is 
involved, the average answer will be received in 6.2 seconds. However, the distribution of those 
answers will all be very close to 6.2 seconds: in fact, we can essentially say that each client will get an 
answer in 6.2 seconds. So even though the average calculation time with round-robin scheduling is 
slightly greater, it may be perceived to be fairer. And in this case if all we care about is the final answer 
from all five threads, then round-robin scheduling will be faster: 6.2 seconds versus 10 seconds.  

6.3 Scheduling with Thread Priorities 

Let's delve into the programming that affects thread scheduling; we'll start by examining how to 
manipulate the priority level of Java threads. This is the most useful mechanism available to a Java 
programmer that affects scheduling behavior of threads; often, a few simple adjustments of thread 
priorities is all that's required to make a program behave as desired. 

6.3.1 Priority-Related Calls in the Java API 

In the Java Thread class, there are three static final variables that define the allowable range of thread 
priorities: 

Thread.MIN_PRIORITY  

The minimum priority a thread can have 

Thread.MAX_PRIORITY  

The maximum priority a thread can have 

Thread.NORM_PRIORITY  

The default priority for threads in the Java interpreter 
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Every thread has a priority value that lies somewhere in the range between MIN_PRIORITY (which is 1) 
and MAX_PRIORITY (which is 10). However, not all threads can have a value anywhere within this 
range: each thread belongs to a thread group, and the thread group has a maximum priority (lower 
than or equal to MAX_PRIORITY) that its individual threads cannot exceed. We'll discuss this further in 
Chapter 10, but for now, you should be aware that the maximum thread priority for a thread within an 
applet is typically NORM_PRIORITY + 1. In addition, the virtual machine is allowed to create internal 
threads at a priority of 0, so that there are in effect 11 different priority levels for threads within the 
virtual machine. 

 

Symbolic Thread Priority Values 
The symbolic definition of priority constants is not necessarily useful. Typically, we like to 
think of constant values like these in terms of symbolic names, which allows us to believe 
that their actual values are irrelevant. Using symbolic names also allows us to change the 
variables and have that change reflected throughout our code. 

Unfortunately, that logic doesn't always apply in the case of thread priorities: if we have to 
manipulate the individual priorities of the threads, we sometimes have to know what the 
range of those values actually is. If the range between the minimum and maximum 
priorities were 20, then we could have twenty different threads, each at a different priority. 
But if the range were only 5, our twenty threads would have to share priorities (on average, 
four threads at each priority level). So it's not enough to know that these constants exist; we 
often have to know that, in fact, the minimum Java thread priority is 1, the maximum is 10 
(6 for applets), and the default is 5. 

Virtual machines that use native threads complicate this matter even further, since the 
hosting operating system may not be able to support ten different thread priorities. That 
means that for all practical purposes, threads with different Java priorities may map to 
operating system threads with the same priority. 

 
The default priority of a thread is the priority of the thread that created it. This is often, but not 
always, NORM_PRIORITY (which is 5). 

There are two methods in the Java Thread class that relate to the priority of a thread: 

void setPriority(int priority)  

Sets the priority of the given thread. If priority is outside the allowed range of thread 
priorities, an exception is thrown. However, if the priority is within the allowed range of 
thread priorities but is greater than the maximum priority of the thread's thread group, then 
the priority is silently lowered to match that maximum priority. 

int getPriority()  

Retrieves the priority of the given thread. 

6.3.2 Using the Priority Calls 

Let's look at an example of using these calls. Often, simply setting the priority of each of your threads 
is sufficient to achieve the required scheduling. If you have two threads in your program and one is 
usually blocked, all you need to do is set the priority of the thread that blocks above the priority of the 
other thread, and you'll prevent CPU starvation. We'll illustrate this example with a code fragment 
that is designed to calculate and display fractal images. The calculation of the fractal is very CPU 
intensive but has the advantage that it can be done in sections that can be displayed as each is 
computed. So we'll put the actual calculations into a separate, low-priority thread that calls the 
repaint() method after each section has been calculated. Meanwhile, our applet's initial thread 
spends most of its time blocked, waiting for an event from the user or for a repaint event. 
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Here's the skeleton code for our fractal applet:  

import java.applet.*; 
import java.awt.*; 
 
public class Fractal extends Applet implements Runnable { 
    Thread calcThread; 
    boolean sectionsToCalculate; 
    static int nSections = 10; 
 
    public void start() { 
        Thread current = Thread.currentThread(); 
        calcThread = new Thread(this); 
        calcThread.setPriority(current.getPriority() - 1); 
        calcThread.start(); 
    } 
 
    public void stop() { 
        sectionsToCalculate = false; 
    } 
 
    void doCalc(int i) { 
        // Calculate section i of the fractal. 
    } 
 
    public void run() { 
        for (int i = 0; i < nSections && sectionsToCalculate; i++) { 
            doCalc(i); 
            repaint(); 
        } 
    } 
 
    public void paint(Graphics g) { 
        // Paint the calculated sections. 
    }            
} 

Consider what would happen in this example if we didn't lower the priority of the calculation thread. 
In that case, the applet would run through its init() and start() methods, and we'd be left with two 
threads at NORM_PRIORITY: the applet thread and the calculation thread. The applet thread blocks 
waiting for an event from the windowing system, so the calculation thread is the only runnable thread 
and hence becomes the currently running thread. The calculation thread calculates a section of the 
fractal and calls the repaint() method. This creates the necessary event to unblock the applet thread 
and move the applet thread into the runnable state. 

However, the calculation thread is still in the runnable state, which means that the calculation thread 
remains the currently running thread. The applet thread is added to the end of the NORM_PRIORITY 
list, and if our Java virtual machine does not perform round-robin scheduling, the calculation thread 
will always remain the currently running thread. Thus, as long as there are sections of the fractal to 
calculate, the many calls to the repaint() method have no effect: the applet thread never gets the 
opportunity to become the currently running thread and repaint the screen. 

If, however, we set the priority of the calculation thread lower than the priority of the applet thread, 
then when the calculation thread calls the repaint() method, the applet thread becomes the 
currently running thread since it is now the runnable thread with the highest priority. The applet 
thread executes the paint() method and moves again to the blocked state, allowing the calculation 
thread to become the currently running thread. 

Note that this technique is also important if the user might interact with the applet while the fractal is 
calculating. If the calculation thread is at the same priority as the default applet thread, then the 
applet will not be able to respond to user input while the calculation thread is running. 
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6.3.3 When to Use Simple Priority-Based Calls 

What are the circumstances in which this technique of setting the priority of certain threads is 
appropriate? You'll use this technique when both of the following are true: 

• There is only one CPU-intensive thread (or one thread per CPU on the target machine). 

• Intermediate results are interesting to the user. 

That's clearly the case of the fractal calculation: there's one thread calculating the sections of the 
fractal, and each section is an interesting intermediate result. Mathematical models often benefit from 
the notion of successive refinement. 

Image loading is another area where intermediate results are often important to the user: as parts of 
the image become available, they can be drawn on the screen so that the user sees them "scrolled" 
onto the screen. But remember: in the typical case, the Java program is loading the image over the 
network, which means that the thread reading the image will often block, so that there is no need to 
adjust any thread's priority. But if the Java program is calculating the image from some preloaded 
data set, lowering the priority of that thread is a good idea. 

What if we had more than one CPU-intensive thread? In the case of the fractal, what if we'd set up a 
separate thread to calculate each section of the fractal? This is a programmatically elegant solution, 
but there's a danger here. When you have more than one CPU-intensive thread, you should lower the 
priority of each of the CPU-intensive threads. In that case, as long as each calculation thread is at a 
lower level than the applet thread, you get at least part of the behavior you want. 

This may or may not give you the entire behavior that you want. On platforms that support round-
robin scheduling among threads of equal priority, CPU-intensive threads will compete for the CPU, 
and the individual calculation of each section will take longer than if the calculation of an individual 
section is allowed to run to completion. This means that the user sees the sections of the fractal (that 
is, the intermediate feedback) more slowly than in the case where there is a single calculation thread.  

On the other hand, if your program has as many CPU-intensive threads as the machine that it's 
running on has processors, then by using this technique you'll get the most out of the machine's 
resources and see the intermediate results as quickly as possible. 

6.4 Popular Scheduling Implementations 

We'll now look at how all of this plays out in the implementation of the Java virtual machine on 
several popular platforms. In many ways, this is a section that we'd rather not have needed to write: 
Java is a platform-independent language, and to have to provide platform-specific details of its 
implementations certainly violates that precept. But we stress that there are very few times when these 
details actually matter. 

On the other hand, one of the hallmarks of Java in the real world is that vendors of Java virtual 
machines are allowed to compete over the implementation of those virtual machines: which one is 
faster, which one can run more threads, and so on. As long as the implementation of the virtual 
machine follows the Java language specification and conforms to the Java Compatibility Kit for 
testing, then it is a valid Java virtual machine. Because of the flexibility that the specification allows 
for thread scheduling, all of the implementations we'll discuss are certainly valid Java virtual 
machines (at least in the area of thread scheduling support). 

6.4.1 Green Threads 

The first model that we'll look at is the simplest. In this model, the operating system doesn't know 
anything about threads at all; it is up to the virtual machine to handle all the details of the threading 
API. From the perspective of the operating system, there is a single process and a single thread. 



Java Threads, 2nd edition 
 

 page 100

Each thread in this model is an abstraction within the virtual machine: the virtual machine must hold 
within the thread object all information related to that thread. This includes the thread's stack, a 
program counter that indicates which Java instruction the thread is executing, and other bookkeeping 
information about the thread. The virtual machine functions by loading this information into memory 
and operating on it: it will run the instruction pointed to by the program counter, get the next 
instruction and run that instruction, and so on. 

When it is time for the virtual machine to run another thread, it will do so by saving all of the 
information regarding the state of the current thread and then replacing that information with the 
state of the target thread. The target thread's stack becomes the stack on which the virtual machine is 
operating, and the instruction that the virtual machine will next execute becomes the instruction 
pointed to by the program counter in the target thread. 

Of course, this all happens at a logical level: the implementation of a particular virtual machine may 
be somewhat different. But the salient fact is that the operating system has no idea that the virtual 
machine has switched threads in this manner. As far as the operating system is concerned, the virtual 
machine is just executing arbitrary code; the fact that the code is emulating many different threads is 
unknown outside of the virtual machine. 

This model is known in Java as the green-thread model. There is no particular significance to the term 
green - it does not mean that these threads are somehow unripe (that is, less robust or useful) than 
other thread models. In other circles, these threads are often called user-level threads , because they 
exist only within the user level of the application: no calls into the operating system are required to 
handle any of the thread details. In Solaris 1 (SunOS 4.1.3), this threading model was called lwp , but 
don't confuse that with the Solaris 2 LWP model, which we'll discuss later. 

 

User- and System-Level Threads 
In most modern operating systems, the operating system is logically divided into two 
pieces: user level and system level. The operating system itself - that is, the operating 
system kernel - lies at system level. The kernel is responsible for handling system calls on 
behalf of programs that run at user level. 

When a program running at user level wants to read a file, for example, it must call (or trap) 
into the operating system kernel, which will read the file and return the data to the 
program. This separation has many advantages, not the least of which is that it allows for a 
more robust system: if a program performs an illegal operation, it can be terminated 
without affecting other programs or the kernel itself. Only when the kernel executes an 
illegal operation will the entire machine crash. 

Because of this separation, it is possible to have support for threads at the user level, the 
system level, or at both levels independently. 

 
Because this model does not depend on the operating system to provide any thread-specific 
capabilities, green threads are fairly portable. In fact, the threading model itself is very portable, 
although it does require some code to be written in assembly language: for example, certain parts of 
the code must be able to execute an atomic test-and-set instruction on the CPU. Accessing this 
instruction is usually possible only in assembly code. But while the threading code itself is portable, 
use of green threads complicates other implementation details of the virtual machine: the virtual 
machine must handle all I/O in a nonblocking fashion, for example. This makes the virtual machine 
somewhat harder to write. 
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Still, the green-thread model remains the standard model for the reference implementation of Java, 
simply because it is more portable than the other models that we will discuss. And in fact, porting this 
model to most operating systems is not that daunting a task. It's often assumed that porting Java to 
Windows 3.1 is so difficult because of the lack of thread support in Windows 3.1. In fact, there are 
many user-level thread libraries available for Windows 3.1, and the green-thread library itself can 
easily run on that platform. Other problems, such as the lack of 32-bit support and porting the AWT, 
remain harder to overcome. 

The green-thread model is common on most Unix platforms, although Unix platforms often also 
support a native-thread model. Java-enabled browsers on Unix platforms almost always use a green-
thread model (although the Java plug-in may use either model). 

Because threads in the green-thread model are unknown to the operating system, a Java virtual 
machine that is implemented with green threads can only run a single thread at a time, even on a 
machine that has many CPUs. 

6.4.1.1 Scheduling of green threads 

For the most part, green threads are scheduled exactly as we discussed earlier. In most 
implementations of green threads, there is no notion of round-robin scheduling, so green threads will 
not automatically timeslice. Scheduling is entirely the responsibility of the virtual machine, and the 
virtual machine usually changes the currently running thread only when another thread of higher 
priority becomes runnable (or when the currently running thread blocks). However, this is not a 
requirement of the Java specification, and a green-thread implementation could conceivably include a 
timer to do round-robin scheduling. 

The reference implementation of the green-thread model uses priority inheritance, so that the priority 
of a thread will be temporarily raised if it is holding a lock on which a higher-priority thread is waiting. 

Depending on the operating system, however, green threads may not exhibit a precise scheduling 
behavior: there may be a very small period of time during which a lower-priority thread is running 
even though a higher-priority thread may want to run. 

As an example, consider what happens when a Java thread reads data from a socket that has no data. 
The expectation is that the thread will block - but the virtual machine itself cannot afford to block. 
Hence, the virtual machine must have some way of being notified when data is ready on the socket, 
and only then can it allow the thread to read the data on the socket. In most operating systems, that's 
possible using asynchronous I/O: when data is available on the socket, the virtual machine will receive 
a signal that will interrupt what it is presently doing. In response to the signal, the virtual machine can 
run the thread that wants to read the data. 

In some operating systems, however, there is no facility for asynchronous I/O. In those cases the 
virtual machine must periodically poll the socket to see if data is available. This polling usually 
happens periodically, perhaps every few milliseconds. When data is available, then the virtual 
machine may schedule the thread that wants to read the data. 

Now, say that a high-priority thread is waiting for data from the socket, and meanwhile, a lower-
priority thread is performing some other calculation. If the virtual machine is dependent on polling 
the socket to see when data is ready, then there will be a very small window of time after data arrives 
on the socket and before the virtual machine next polls the socket. During this time, the lower-priority 
thread will still be executing, even though the higher-priority thread should be the one that is 
executing. 

Situations like this almost never affect an actual program - the delay is very slight, and there are many 
other factors that may have influenced the program anyway: what if the pending data had been 
delayed even longer in coming across the network? What if another process on the machine prevented 
the Java application from running for a few microseconds? Java is not a real-time platform, so the 
scheduling anomaly that we've just described is unlikely to have any impact on a Java program. 
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However, be aware that this is one reason why even if one thread in the Java virtual machine causes 
another thread to become unblocked there may be a delay before the higher-priority thread actually 
runs. Say that we run the following code fragment in a low-priority thread:  

public class LockTest { 
    Object someObject = new Object(); 
    class ThreadA extends Thread { 
        ThreadA() { 
            setPriority(Thread.MAX_PRIORITY); 
        } 
        public void run() { 
            synchronized(someObject) { 
                someObject.wait(); 
            } 
            someObject.methodA(); 
        } 
    } 
    class ThreadB extends Thread { 
        ThreadB() { 
            setPriority(Thread.NORM_PRIORITY); 
        } 
        public void run() { 
            synchronized(someObject) { 
                someObject.notify(); 
            } 
            someObject.methodB(); 
        } 
    } 
    static void main(String args[]) { 
        new ThreadA().start(); 
        new ThreadB().start(); 
    } 
} 

In this example, we're starting two threads: ThreadA, which has a priority of 10, and ThreadB, which 
has a priority of 5. Since we start ThreadA first, the expectation is that it will begin its run() method 
and block on the wait() method. Then ThreadB will start and notify ThreadA. In a strict priority 
model, ThreadA will wake up, preempt ThreadB, and execute the methodA() method. Then ThreadB 
will execute the methodB() method. However, we cannot assume that the priority scheduler of the 
green-thread model is strict enough to ensure that the methodA() method will be called before the 
methodB() method is called, even though that will happen in the vast majority of cases.  

6.4.2 Windows Native Threads 

In the native-threading model used on Windows 95 and Windows NT (more generally, on any 32-bit 
Windows operating system), the operating system is fully cognizant of the multiple threads that the 
virtual machine uses, and there is a one-to-one mapping between Java threads and operating system 
threads. Therefore, the scheduling of Java threads is subject to the underlying scheduling of threads 
by the operating system. 

This model is usually simple to understand because every thread can be thought of as a process. The 
operating system scheduler makes no real distinction in this case between a process and a thread: it 
treats each thread like a process. Of course, there are still other differences in the operating system 
between a thread and a process, but not as far as the scheduler is concerned. 

Since there are no popular green-thread implementations of Java virtual machines on Windows 
operating systems, virtually all virtual machines on the Windows platform will use the native 
Windows thread model. Java-enabled browsers typically use this model as well. However, there are 
many vendors of Java virtual machines for Windows, and the specifics of each one may vary. 

Because the operating system knows about threads, Windows native threads tend to be somewhat 
heavyweight. This can limit the number of concurrent threads that can run on the platform, since with 
too many threads, the operating system becomes unresponsive. We'll show a pooling technique in the 
next chapter that helps us work around that problem. 

But this implementation does allow multiple threads to run simultaneously on a machine with 
multiple CPUs. Each CPU - whether one or many - will select a currently running thread according to 
the guidelines that follow. 
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6.4.2.1 Scheduling of Windows native threads 

In the Windows native threads model, the operating system takes an important role in thread 
scheduling. In particular, the operating system schedules threads just like it schedules processes. That 
means that threads are scheduled on a preemptive, priority-based mechanism, just as we'd hope, but 
there are a few complications added to the generic model we described earlier. 

To begin, only seven priorities are recognized by the Windows operating system; these seven priorities 
must map onto the eleven Java thread priorities. Since one of these priorities is typically reserved for 
the internal 0-level Java thread priority, the end result is that the ten programmable Java thread 
priorities must map onto six Windows platform priorities. Different virtual machines will do this 
differently, but one common implementation performs the mapping listed in . 

Java Priority Windows 95/NT Priority 

0 THREAD_PRIORITY_IDLE 

1 (Thread.MIN_PRIORITY) THREAD_PRIORITY_LOWEST 

2 THREAD_PRIORITY_LOWEST 

3 THREAD_PRIORITY_BELOW_NORMAL 

4 THREAD_PRIORITY_BELOW_NORMAL 

5 (Thread.NORM_PRIORITY) THREAD_PRIORITY_NORMAL 

6 THREAD_PRIORITY_ABOVE_NORMAL 

7 THREAD_PRIORITY_ABOVE_NORMAL 

8 THREAD_PRIORITY_HIGHEST 

9 THREAD_PRIORITY_HIGHEST 

10 (Thread.MAX_PRIORITY) THREAD_PRIORITY_TIME_CRITICAL 

On this implementation, having a thread of priority 3 and a thread of priority 4 will be the same as 
having two threads with a priority of 4. 

In addition to seven priority levels, the Windows operating system also has five scheduling classes, 
and a thread in Windows is actually scheduled as a combination of its priority and its scheduling class. 
However, scheduling classes for threads are not easy to change, so they do not factor into a system 
where priorities can be changed dynamically by the programmer. 

A second complication arises on this platform because the priority that a programmer can assign to a 
thread (that is, one of the seven platform-specific priorities) is only one piece of the information that 
the operating system uses to determine the absolute priority of a thread.  
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There are other things that can affect the priority of a thread: 

• Windows native threads are subject to priority inheritance. 

• The actual priority of the thread is based on its programmed (or inverted) priority minus a 
value that indicates how recently the thread has actually run. This value is subject to continual 
adjustment: the more time passes, the closer to zero the value becomes. This primarily 
distinguishes between threads of the same priority, and it leads to round-robin scheduling 
between threads of the same priority. Hence, on Windows platforms, equal-priority threads 
will timeslice: all things being equal, each thread of the same priority will receive 
approximately the same amount of CPU time. 

• On another level, a thread that has not run for a very long time is given a temporary priority 
boost. The value of this boost decays over time as the thread has a chance to run. This 
prevents threads from absolute starvation, while still giving preference to higher-priority 
threads over lower-priority threads. The effect of this priority boost depends on the original 
priority of the thread: when competing against a thread of priority 5, a thread of priority 3 will 
run more often than a thread of priority 1. 

The upshot of all this is that it is very difficult to guarantee explicit ordering of thread execution on 
Windows platforms. However, because the operating system ensures that threads do not starve and 
that equal-priority threads timeslice, this is not usually a problem.  

6.4.3 Solaris Native Threads 

The last threading model that we'll look at is the most complex. At an operating system level, Solaris 
native threads provide a very flexible threading model, but much of that flexibility is lost to the Java 
programmer, since there is no interface in the Java API to exploit it. A Java programmer can use 
native methods to call the underlying thread libraries to get at features that aren't exposed by the Java 
API; while that's something that we generally discourage, we'll have no choice but to follow that path 
under certain circumstances. 

Solaris native threads utilize a two-level model of programming: there are user-level threads, which 
are unknown to the operating system and are scheduled in the same manner as threads in the green-
thread model that we looked at a little earlier. In addition, there are system-level threads (known as 
lightweight processes , or LWPs), which are known to the operating system and are scheduled in a 
manner very similar to the Windows thread model that we just discussed. The interplay between these 
two levels gives Solaris native threads their great flexibility (as well as their complexity). 

The Solaris native-thread model is used by Sun's production version of its virtual machine; beginning 
with Java 2, it is available in Sun's reference version of the virtual machine as well. As of this writing, 
Netscape and Internet Explorer for Solaris (versions 4.0 and earlier) use the green-thread model; it is 
unknown if those browsers will use the native-thread version of the virtual machine in their Java 2-
compatible releases. The HotJava browser can run with either thread model. 

Because the operating system knows about these threads, Java programs using Solaris native threads 
can run multiple threads simultaneously on machines with multiple CPUs. 

6.4.3.1 Scheduling of Solaris native threads 

Scheduling of Solaris native threads is a little complex, but it follows the same principles that we've 
already seen. From the perspective of any particular LWP, the scheduling follows the green-thread 
model. At any point in time, an LWP will run the highest priority thread available. An LWP will not 
perform any timeslicing among the eligible threads: just as in the green-thread model, once an LWP 
selects a thread to run, it will continue to run that thread until a higher-priority thread becomes 
available. There is a difference, however, in how an LWP handles a thread that blocks; we'll look into 
that a little further on. There is a one-to-one mapping between the threads that an LWP can run and 
threads in a Java program; hence, in a Java virtual machine that has a single LWP, scheduling is very 
much like the green-thread model. 
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However, programs written with Solaris native threads typically have multiple LWPs, each of which is 
scheduled by the operating system. Although LWPs themselves have a priority, this priority is 
unknown to the Java programmer and is unaffected by the priority of the thread that the LWP has 
selected to run. Hence, all LWPs in the virtual machine have essentially the same priority, and - just 
like on a Windows platform - this priority is subject to periodic adjustment based on how recently the 
LWP has run. Thus, LWPs will timeslice among themselves. 

Therefore, when an LWP runs, it runs the thread with the highest priority. The LWP eventually loses 
its timeslice, and another LWP runs. This second LWP chooses the remaining thread with the highest 
priority and runs that thread. This process continues throughout the lifetime of the virtual machine. 

Consider the effects of this process in a virtual machine that has created two threads when given two 
LWPs by the operating system. Assume that both threads have a priority of 5. When the first LWP 
comes along, it picks (seemingly arbitrarily) one of the priority 5 threads and starts running it. 
Eventually, the LWP loses its timeslice; the second LWP comes along and picks the remaining priority 
5 thread and begins running that thread. When it loses its timeslice and the first LWP starts running 
again, the first thread is run. And so it goes - the two threads are timesliced, because each LWP is 
being given a timeslice by the operating system. 

Now, say that there are three threads of equal priority and only two LWPs. In this case, the first two 
threads will timeslice, and the third thread will not get to run at all (at least, not until one of the first 
two threads blocks or exits). Again, this is consistent with the scheduling model that we learned about 
earlier: a thread is subject to starvation unless other threads of the same or higher priority will all 
eventually block. An LWP, once it has selected a thread, will run that thread until the thread blocks or 
until a higher-priority thread becomes available. 

So, suppose we have two threads and two LWPs, but this time, one thread has a priority of 5 and one 
has a priority of 4. Interestingly enough, these threads will still timeslice, which means that there will 
be times when the priority 4 thread is running even though the priority 5 thread is not blocked. When 
the first LWP comes along, it selects the priority 5 thread and runs that thread. When the second LWP 
begins to run, it must select a thread; as far as it is concerned, the only available thread is the priority 
4 thread, since the priority 5 thread has already been assigned to an LWP. Hence, this second LWP 
begins running the priority 4 thread, even through the priority 5 thread is not blocked. The two 
threads timeslice in this example. 

We do not mean to imply here that because the priority 5 thread has been running on a particular 
LWP, it is forever bound to that LWP. Such a situation (known as bound threads ) is possible in a 
Solaris program, but most implementations of the Java virtual machine use unbound threads. The 
priority 5 thread may be displaced from its LWP when a higher-priority thread becomes runnable, at 
which point the priority 5 thread goes back into the pool of waiting threads. When the LWP running 
the priority 4 thread runs again, it will then displace the priority 4 thread in favor of the priority 5 
thread because the priority 5 thread is not presently assigned to any LWP. 

The rule of thumb, then, is that N number of LWPs in a Java virtual machine will be running (and 
timeslicing) the N threads with highest priority in the virtual machine (even if those threads have 
unequal priorities). 

Finally, we note that Solaris native threads use priority inheritance. 

6.4.3.2 LWPs in the virtual machine 

How many LWPs does the virtual machine have? The answer varies according to the rules we will lay 
out here. To answer this question, we must delve into the details of the Solaris thread library a little 
more. 

The Solaris thread model follows the Java threading API fairly well. In the thread library itself, there is 
the notion of thread priorities. This means that the actual scheduling of threads onto specific LWPs 
can be handled by the Solaris thread library itself, following the priority-based rules that the virtual 
machine expects. To the programmer, this scheduling is identical to when the virtual machine 
schedules using green threads. 
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The number of LWPs is controlled by the Solaris thread library according to the following guidelines: 

• The virtual machine begins with one LWP. As the virtual machine creates threads, these 
threads all run on this single LWP, which schedules the individual threads on a priority basis - 
the highest thread will be the one that the LWP runs. 

• When the thread makes a system call, it becomes (temporarily) bound to the LWP. A system 
call is any call that must use the kernel to perform work on its behalf. In the Java world, this 
includes reading or writing most streams (except for streams based on strings) and creating 
sockets. A thread that is bound to an LWP is not subject to preemption. 

• If the system call returns immediately, then the LWP continues to execute the thread. But the 
thread at this point becomes unbound, meaning that if a higher-priority thread is created, the 
LWP will start running it instead. 

• If the system call blocks, then the LWP to which it is bound also blocks. If all LWPs become 
blocked and there are threads that are waiting to run, then the operating system will 
automatically create a new LWP, which will select the highest priority thread in the pool of 
waiting threads and run that thread. 

The virtual machine thus never creates new LWPs; that is handled by the operating system and the 
Solaris thread library. That means that the number of LWPs that exist in the Java virtual machine will 
be equal to the number of threads in the Java virtual machine that have ever been simultaneously 
blocked, plus one. In practice, this means that a typical Java application may start with five to seven 
LWPs, since during the initialization of the virtual machine, there may be four to six LWPs that are 
simultaneously blocked. 

There are therefore usually at least two LWPs available to the Java program; the remaining LWPs tend 
to be blocked in the course of executing threads that are internal to the virtual machine itself. Hence, 
you can often rely on two threads of your program to be scheduled onto LWPs and to timeslice 
between them, even if they are not the same priority. 

On a single-processor machine, this number of LWPs is usually sufficient. If it is insufficient - that is, 
if you create threads that block and tie up the existing LWPs - then new LWPs will be created on 
demand. If there are one or more unblocked threads in your Java program, there will always be at 
least one LWP to run those threads. 

On a multiprocessor machine, however, this may not be a sufficient number of LWPs, especially if the 
threads in the Java program are CPU intensive and rarely block. If you have a machine with eight 
CPUs that's behaving as a calculation server and you only have two LWPs available, you will not see 
the scaling that you desire, no matter how many threads you create. In order to get the most benefit 
from this machine, you need at least eight available LWPs - one for each CPU - so that you can run 
eight CPU-intensive threads at the same time. 

In this case, you must call the operating system-specific library in order to tell it that you want eight 
(or however many you desire) LWPs. We'll show an example of how to do that at the end of this 
section, but it involves using a native method to call the thr_setconcurrency() function of the 
Solaris thread library in order to create enough LWPs. Depending on your perspective, this can seem 
either very complicated or very cool. 

This seems rather complicated. Do I really need to bother with it? Probably not. If you have a single-
CPU machine, you definitely won't see a benefit from it - in fact, you'll slightly impede the 
performance of your machine, because you'll have too many LWPs competing for the CPU. If you have 
multiple CPUs, you'll only see a benefit if you have multiple threads that spend a significant amount of 
time executing code without blocking. If you write a chat server, then more LWPs isn't going to help 
you: while you might have a thread for each client attached to the server, those threads spend most of 
their time blocked, waiting for input from the clients. In that case, the thread library will create 
enough LWPs for you: it will create a number sufficient to hold all simultaneously blocked threads, 
and when a thread unblocks, it will already be on an LWP so that it can process its request. 

So you really need to worry about the number of available LWPs only when you write something that 
has multiple CPU-intensive threads. 
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This seems pretty cool, but how do I know how many LWPs I need? This is a hard question to answer. 
Assuming that you have enough threads to demand it, the answer is that you need as many LWPs as 
you have threads that will be blocked simultaneously, plus one LWP for each thread that you want to 
run simultaneously. You'll see the best throughput when the number of running threads is equal to the 
number of CPUs on the machine. If there are any less, there will be idle CPUs that could be doing 
more work. If there are more, the LWPs will compete for CPU time. 

Of course, there may be other things happening on the machine, which may lead you to want fewer 
LWPs than CPUs so that other programs can get a sufficient amount of CPU time. But there's never 
really an advantage to having more LWPs than there are CPUs - even if you have hundreds of threads 
that you want to timeslice, you can accomplish that better by introducing some scheduling techniques 
into your program rather than creating hundreds of LWPs. Despite their name, LWPs still require 
system resources, and they are much more resource-intensive than are threads. A Java virtual 
machine on Solaris can easily handle thousands of threads, but not necessarily thousands of LWPs.  

6.5 Native Scheduling Support 

The Java threading API that we've examined so far is somewhat incomplete for certain advanced 
scheduling uses. For example, there is no way to tell how many CPUs a machine has, or to set the 
number of LWPs that you want your Solaris virtual machine to have, or to set processor affinity masks 
so that certain threads run on certain processors. Unfortunately, the only way to overcome these 
limitations is to introduce native methods calls into your program. 

We'll show just the basic outline of how to do that for certain calls in this section. We'll give a complete 
example, but the full details of Windows threads, Solaris or POSIX threads, and the Java native 
interface ( JNI) are beyond the scope of this book. 

We'll start with a class that allows us to perform three operations: getting the number of CPUs on the 
machine and getting and setting the number of threads that we want the virtual machine to be able to 
run concurrently: 

public class CPUSupport { 
    static boolean loaded = false; 
    static { 
        try { 
            System.loadLibrary("CPUSupportWin"); 
            loaded = true; 
        } catch (Error e) { 
            try { 
            System.loadLibrary("CPUSupportSolaris"); 
                loaded = true; 
            } catch (Error err) { 
                System.err.println( 
                        "Warning: No platform library for CPUSupport"); 
            } 
        } 
    } 
 
    private static native int getConcurrencyN(); 
    private static native void setConcurrencyN(int i); 
    private static native int getNumProcessorsN(); 
 
    public static int getConcurrency() { 
        if (!loaded) 
            // Assume green threads. 
            return 1; 
        return getConcurrencyN(); 
    } 
 
    public static void setConcurrency(int n) { 
        if (loaded) 
            setConcurrencyN(n); 
    } 
 
    public static int getNumProcessors() { 
        if (!loaded) 
            // Assume green threads. 
            return 1; 
        return getNumProcessorsN(); 
    } 
} 
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We've designed this class so that it will work on all platforms; if there is no platform-specific native 
library available, we'll assume the green-thread model. Of course, this can be easily adapted to include 
support for other operating systems if desired. Now all we need to do is to write the specific native 
library for the platforms that we want to support. 

6.5.1 Implementing CPUSupport on Windows 

Here's the code that implements the native library for Windows: 

#include <jni.h> 
#include <windows.h> 
 
JNIEXPORT jint JNICALL Java_CPUSupport_getNumProcessorsN 
                        (JNIEnv *env, jobject cls) 
{ 
    static DWORD numCPU = 0; 
    SYSTEM_INFO process_info; 
 
    if (numCPU == 0) { 
        GetSystemInfo(&process_info); 
        numCPU = process_info.dwNumberOfProcessors; 
    } 
    return numCPU; 
} 
 
JNIEXPORT void JNICALL Java_CPUSupport_setConcurrencyN 
                        (JNIEnv *env, jobject cls, jint kthreads) 
{ 
    // For Windows the concurrency is always infinity. 
    return; 
} 
 
JNIEXPORT jint JNICALL Java_CPUSupport_getConcurrencyN 
                        (JNIEnv *env, jobject cls) 
{ 
    // For Windows the concurrency is always infinity, but 
    // we will return the number of processors instead. 
    return Java_CPUSupport_getNumProcessorsN(env, cls); 
} 

To obtain the number of CPUs on Windows, we simply use the operating system's GetSystemInfo() 
function and extract the desired information. However, we're not able to affect the concurrency of 
threads on Windows: each Java thread is assigned to its own Windows thread. This leads to an 
effective concurrency of infinity (given an infinite amount of memory and CPU speed). So we return 
the number of processors instead, which gives us an idea of how many threads can run 
simultaneously. 

To compile this code with the Microsoft C/C++ 5.0 compiler, execute this command: 

cl -Ic:\java\include -Ic:\java\include\win32 -LD CPUSupportWin.c 

You'll need to substitute the appropriate directory path for c:\java depending upon where your JDK is 
installed. The resulting DLL file (CPUSupportWin.dll ) must be located in the PATH environment for 
the virtual machine to find it. 

6.5.2 Implementing CPUSupport on Solaris 

Here's the code required to support the CPUSupport class on Solaris: 

#include <jni.h> 
#include <thread.h> 
 
JNIEXPORT jint JNICALL Java_CPUSupport_getConcurrencyN 
            (JNIEnv * env, jobject class) 
{ 
    return thr_getconcurrency(); 
} 
 
JNIEXPORT void JNICALL Java_CPUSupport_setConcurrencyN 
            (JNIEnv * env, jobject class, jint n) 
{ 
    thr_setconcurrency(n); 
} 
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JNIEXPORT jint JNICALL Java_CPUSupport_getNumProcessorsN 
            (JNIEnv * env, jobject class) 
{ 
    int num_threads; 
    num_threads = sysconf(_SC_NPROCESSORS_ONLN); 
    return num_threads; 
} 

Again, the implementation is predictably simple because it maps to operating system function calls. In 
this case, the getConcurrency() method will return the current number of LWPs, and the 
setConcurrency() method will set the current number of LWPs. 

To compile this library with the Sun Workshop 4.2 C compiler, execute this command: 

cc -I/usr/java/include -I/usr/java/include/solaris -mt -G -o \ 
libCPUSupportSolaris.so CPUSupportSolaris.c 

If your JDK is installed in a place other than /usr/java, change that pathname accordingly. Once the 
library is compiled, you must add it to your LD_LIBRARY_PATH environment in order for the virtual 
machine to find it.  

6.6 Other Thread-Scheduling Methods 

There are other methods in the Thread class that affect scheduling. As we'll see, these remaining 
methods are not always the most useful techniques with respect to Java scheduling because of the 
complications that arise in the various native-thread scheduling models and their use of timesliced 
scheduling. In addition, two of these methods have been deprecated in Java 2 and should not be used 
in any version of Java. But we'll complete our look at the API relating to thread scheduling in this 
section. 

6.6.1 The suspend() and resume() Methods 

There are two methods that can directly affect the state of a thread: 

void suspend() (deprecated in Java 2)  

Prevents a thread from running for an indefinite amount of time. 

void resume() (deprecated in Java 2)  

Allows a thread to run after being suspended. 

The suspend() method moves a particular thread from the runnable state into the blocked state. In 
this case, the thread isn't blocked waiting for a particular resource, it's blocked waiting for some 
thread to resume it. The resume() method moves the thread from the blocked state to the runnable 
state. 

In the section Section 6.1," earlier in this chapter, we posited the existence of four thread states. 
Actually, the suspended state is different from the blocked state, even though there is no real 
conceptual difference between them. Strictly speaking, the suspend() method moves a thread to the 
suspended state from whatever state the thread was previously in - including a blocked thread, which 
can be suspended just like any other thread. Similarly, the resume() method moves the thread from 
the suspended state to whatever state the thread was in before it was suspended - so a thread that has 
been resumed may still be blocked. But this is a subtle difference, and we'll persist in treating the 
blocked and suspended states as identical. 

A common guideline is to use the suspend() and resume() methods to control the threads within an 
applet. This is a good idea: when the applet is not active, you don't want its threads to continue to run. 
Using this guideline, let's revise our fractal applet as follows:  

import java.applet.Applet; 
import java.awt.*; 
 
public class Fractal extends Applet implements Runnable { 
    Thread t; 
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    public void start() { 
        if (t == null) { 
            t = new Thread(this); 
            t.setPriority(Thread.currentThread().getPriority() - 1); 
            t.start(); 
        } 
        else t.resume(); 
    } 
 
    public void stop() { 
        t.suspend(); 
    } 
 
    public void run() { 
        // Do calculations, occasionally calling repaint(). 
    } 
 
    public void paint(Graphics g) { 
        // Paint the completed sections of the fractal. 
    } 
} 

This example is better than our first fractal code: in the first case, when the user revisited the page 
with the fractal applet, the fractal calculation would have had to begin at its very beginning and 
redisplay all those results to the user as they were recalculated. Now, the applet can save the 
information of the fractal and simply pick up the calculation from the point at which the user 
interrupted it. 

6.6.1.1 Alternatives to the suspend() and resume() methods 

Despite the common use of the suspend() and resume() methods in this and other cases, there's a 
danger lurking in the code that has caused those methods to become deprecated. This danger exists in 
all releases of the Java virtual machine, however, so even though these methods are not deprecated in 
Java 1.0 or 1.1, you should not feel comfortable about using them in those earlier releases. In fact, the 
suspend() and resume() methods should never actually be used. The reasoning that we're about to 
outline applies to the stop() method as well, which has been deprecated beginning with Java 2 and 
should also be avoided in earlier releases. 

The problem with using the suspend() method is that it can conceivably lead to cases of lock 
starvation - including cases where the starvation shuts down the entire virtual machine. If a thread is 
suspended while it is holding a lock, that lock remains held by the suspended thread. As long as that 
thread is suspended, no other thread can obtain the lock in question. Depending on the lock in 
question, all threads may eventually end up blocked, waiting for the lock. 

You may think that with careful programming you can avoid this situation, by never suspending a 
thread that holds a lock. However, there are many locks internal to the Java API and the virtual 
machine itself that you don't know about, so you can never ensure that a thread that you want to 
suspend does not hold any locks. Worse yet, consider what happens if a thread is suspended while it is 
in the middle of allocating an object from the heap. The suspended thread may hold a lock that 
protects the heap itself, meaning that no other thread will be able to allocate any object. Clearly, this is 
a bad situation. 

This is not an insurmountable problem; it would be possible to implement the virtual machine in such 
a way that a thread could not be suspended while it held a lock, or at least not while it held certain 
internal locks within the virtual machine. But Java virtual machines are not typically written like that, 
and the specification certainly does not require it. Hence, the suspend() method was deprecated 
instead. There is no danger in the resume() method itself, but since the resume() method is useful 
only with the suspend() method, it too has been deprecated. 

A similar situation occurs with the stop() method. In this case, the danger is not that the lock will be 
held indefinitely - in fact, the lock will be released when the thread stops (details of this procedure are 
given in Appendix A). The danger here is that a complex data structure may be left in an unstable 
state: if the thread that is being stopped is in the midst of updating a linked list, for example, the links 
in the list will be left in an inconsistent state. The reason we needed to obtain a lock on the list in the 
first place was to ensure that the list would not be found by another thread in an inconsistent state; if 
we were able to interrupt a thread in the middle of this operation, we would lose the benefit of its 
obtaining the lock. So the stop() method has been deprecated as well. 
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The outcome of this is that no thread should suspend or stop another thread: a thread should only 
stop itself (by returning from its run() method) or suspend itself (by calling the wait() method). It 
may do this in response to a flag set by another thread, or by any other method that you may devise. 

In earlier chapters, we showed what to do instead of calling the stop() method. Here's a similar 
technique that we can use to avoid calling the suspend() method: 

import java.applet.Applet; 
import java.awt.*; 
 
public class Fractal extends Applet implements Runnable { 
    Thread t; 
    volatile boolean shouldRun = false; 
    Object runLock = new Object(); 
    int nSections; 
 
    public void start() { 
        if (t == null) { 
            shouldRun = true;     
            t = new Thread(this); 
            t.setPriority(Thread.currentThread().getPriority() - 1); 
            t.start(); 
        } 
        else { 
            synchronized(runLock) { 
                shouldRun = true; 
                runLock.notify(); 
            } 
        } 
    } 
 
    public void stop() { 
        shouldRun = false; 
    } 
 
    void doCalc(int i) { 
        // Calculate the ith section of the fractal. 
    } 
 
    public void run() { 
        for (int i = 0; i < nSections; i++) { 
            doCalc(i); 
            repaint(); 
            synchronized(runLock) { 
                while (shouldRun == false) 
                    try { 
                        runLock.wait(); 
                    } catch (InterruptedException ie) {} 
            } 
        } 
    } 
 
    public void paint(Graphics g) { 
        // Paint the completed sections of the fractal. 
    } 
} 

The start() method of the applet is still responsible for creating and starting the calculation thread; 
in addition, it now sets the shouldRun flag to true so that the calculation thread can test to see that it 
should calculate sections. When the run() method checks this flag and it is false, the run() method 
waits for the flag to be true. This waiting has the same effect as suspending the calculation thread. 
Similarly, the notification provided by the start() method has the same effect as resuming the 
calculation thread. 

Suspending the thread is now a two-step process: the applet's stop() method sets a flag and the 
calculation thread's run() method tests that flag. Hence, there will be a period of time in this case 
when the applet is still calculating fractal sections even though the applet is no longer visible to the 
user. In general, there will always be a period of time using this technique between when you want the 
thread to stop or suspend and when the thread actually checks the flag telling it whether it should 
suspend itself. But this is a safer way than using the suspend() method (and, of course, there's no 
guarantee that the suspend() method will appear in future versions of the Java platform). 
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Why isn't access to the shouldRun flag synchronized in the applet's stop() method? Remember that 
setting or testing a boolean variable is already an atomic operation, so there is no need to synchronize 
the stop() method since it only needs to perform a single atomic operation. The other methods 
synchronize their sections because they are performing more than one operation on the shouldRun 
flag; in addition, they must hold a lock before they can call the wait() or notify() methods.  

6.6.2 The yield() Method 

A final method available for affecting which thread is the currently running thread is the yield() 
method, which is useful because it allows threads of the same priority to be run: 

static void yield()  

Yields the current thread, allowing another thread of the same priority to be run by the Java 
virtual machine. 

There are a few points worth noting about the yield() method. First, notice that it is a static method, 
and as such, only affects the currently running thread, as in the following code fragment: 

public class  
YieldApplet extends Applet implements Runnable { 
    Thread t; 
    public void init() {   
        t = new Thread(this); 
    } 
 
    public void paint(Graphics g) { 
        t.yield(); 
    } 
} 

When the applet thread executes the paint() method and calls the yield() method, it is the applet 
thread itself that yields, and not the calculation thread t, even though we used the object t to call the 
yield() method. 

What actually happens when a thread yields? In terms of the state of the thread, nothing happens: 
the thread remains in the runnable state. But logically, the thread is moved to the end of its priority 
queue, so the Java virtual machine picks a new thread to be the currently running thread, using the 
same rules it always has. Clearly, there are no threads that are higher in priority than the thread that 
has just yielded, so the new currently running thread is selected among all the threads that have the 
same priority as the thread that has just yielded. If there are no other threads in that group, the 
yield() method has no effect: the yielding thread is immediately selected again as the currently 
running thread. In this respect, calling the yield() method is equivalent to calling sleep(0). 

If there are other threads with the same priority as the yielding thread, then one of those other threads 
becomes the currently running thread. Thus, yielding is an appropriate technique provided you know 
that there are multiple threads of the same priority. However, there is no guarantee which thread will 
be selected: the thread that yields may still be the next one selected by the scheduler, even if there are 
other threads available at the same priority. 

Let's revisit our fractal example and see how it looks when we use the yield() method instead of 
priority calls: 

import java.applet.Applet; 
import java.awt.*; 
 
public class Fractal extends Applet implements Runnable { 
    Thread t; 
    volatile boolean shouldRun = false; 
    Object runLock = new Object(); 
    int nSections; 
 
    public void start() { 
        if (t == null) { 
            shouldRun = true;     
            t = new Thread(this); 
            t.start(); 
        } 



Java Threads, 2nd edition 
 

 page 113

        else { 
            synchronized(runLock) { 
                shouldRun = true; 
                runLock.notify(); 
            } 
        } 
    } 
 
    public void stop() { 
        shouldRun = false; 
    } 
 
    void doCalc(int i) { 
        // Calculate the ith section of the fractal. 
    } 
 
    public void run() { 
        for (int i = 0; i < nSections; i++) { 
            doCalc(i); 
            repaint(); 
            Thread.yield(); 
            synchronized(runLock) { 
                while (shouldRun == false) 
                    try { 
                        runLock.wait(); 
                    } catch (InterruptedException ie) {} 
            } 
        } 
    } 
 
    public void paint(Graphics g) { 
        // Paint the completed sections of the fractal. 
    } 
} 

In this example, we are no longer setting the priority of the calculation thread to be lower than the 
other threads in the applet. Now when our calculation thread has results, it merely yields. The applet 
thread is in the runnable state; it was moved to that state when the calculation thread called the 
repaint() method. So the Java virtual machine chooses the applet thread to be the currently running 
thread, the applet repaints itself, the applet thread blocks, and the calculation thread again becomes 
the currently running thread and calculates the next section of the fractal. 

This example suffers from a few problems. First, because the applet thread is at the same priority as 
the calculation thread, the user is unable to interact with the applet until the calculation thread yields. 
If, for example, the user selects a checkbox in the GUI, the program may not take appropriate action 
until the calculation thread yields. On platforms with native-thread scheduling, that usually will not 
happen, since the applet thread and the calculation thread will timeslice, but it can be a big problem 
on green-thread implementations. 

Second, there is a race condition in this example - and in all examples that rely on the yield() 
method. This race condition only occurs if we're on a native-thread platform that timeslices between 
threads of the same priority, and like most race conditions, it occurs very rarely. In our previous code 
example, immediately after the calculation thread yields, it may be time for the operating system to 
schedule another thread (or LWP). This means that the calculation thread may be the next thread to 
run, even though it has just yielded. The good news in this case is that the program continues to 
execute, and the sections of the fractal get painted next time the calculation thread yields (or the next 
time the operating system schedules the applet thread). 

In the worst case, then, a thread that yields may still be the next thread to run. However, that scenario 
can only apply when the operating system is scheduling the threads and the threads are timeslicing, in 
which case there was probably no need to use the yield() method at all. As long as a program treats 
the yield() method as a hint to the Java virtual machine that now might be a good time to change the 
currently running thread, a program that relies on the yield() method will run on green-thread 
implementations of the virtual machine (where the yield() method will always have the desired 
effect) as well as on native-thread implementations.  
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6.6.2.1 Yielding versus priority-based scheduling 

When you need to have some control over thread scheduling, the question of which mechanism to use 
- calling the yield() method or adjusting individual thread priorities - tends to be somewhat 
subjective, since both methods have a similar effect on the threads. As is clear from the example we 
have used throughout this discussion, we prefer using the priority-based methods to control thread 
scheduling. These methods offer the most flexibility to the Java developer. 

We rarely find the yield() method to be useful. This may come as a surprise to thread programmers 
on systems where the yield() method is the most direct one for affecting thread scheduling. But 
because of the indeterminate nature of scheduling among threads of the same priority on native-
thread Java implementations, the effect of the yield() method cannot be guaranteed: a thread that 
yields may immediately be rescheduled when the operating system timeslices threads. On the other 
hand, if your threads yield often enough, this rare race condition won't matter in the long run, and 
using the yield() method can be an effective way to schedule your threads. The yield() method is 
also simpler to understand than the priority-based methods, which puts it in great favor with some 
developers.  

6.6.3 Daemon Threads 

The last thing that we'll address in conjunction with thread scheduling is the issue of daemon threads. 
There are two types of threads in the Java system: daemon threads and user threads. The implication 
of these names is that daemon threads are those threads created internally by the Java API and that 
user threads are those you create yourself, but this is not the case. Any thread can be a daemon thread 
or a user thread. All threads are created initially as user threads, so all the threads we've looked at so 
far have been user threads. 

Some threads that are created by the virtual machine on your behalf are daemon threads. A daemon 
thread is identical to a user thread in almost every way: it has a priority, it has the same methods, and 
it goes through the same states. In terms of scheduling, daemon threads are handled just like user 
threads: neither type of thread is scheduled in favor of the other. During the execution of your 
program, a daemon thread behaves just like a user thread. 

The only time the Java virtual machine checks to see if particular threads are daemon threads is after 
a user thread has exited. When a user thread exits, the Java virtual machine checks to see if there are 
any remaining user threads left. If there are user threads remaining, then the Java virtual machine, 
using the rules we've discussed, schedules the next thread (user or daemon). If, however, there are 
only daemon threads remaining, then the Java virtual machine will exit and the program will 
terminate. Daemon threads only live to serve user threads; if there are no more user threads, there is 
nothing to serve and no reason to continue. 

The canonical daemon thread in the reference implementation of the Java virtual machine is the 
garbage collection thread (on other implementations, the garbage collector need not be a separate 
thread). The garbage collector runs from time to time and frees those Java objects that no longer have 
valid references, which is why the Java programmer doesn't need to worry about memory 
management. So the garbage collector is a useful thread. If we don't have any other threads running, 
however, there's nothing for the garbage collector to do: after all, garbage is not spontaneously 
created, at least not inside a Java program. So if the garbage collector is the only thread left running in 
the Java virtual machine, then clearly there's no more work for it to do, and the Java virtual machine 
can exit. Hence, the garbage collector is marked as a daemon thread. 

There are two methods in the Thread class that deal with daemon threads: 

void setDaemon(boolean on)  

Sets the thread to be a daemon thread (if on is true) or to be a user thread (if on is false). 

boolean isDaemon()  

Returns true if the thread is a daemon thread and false if it is a user thread. 
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The setDaemon() method can be called only after the thread object has been created and before the 
thread has been started. While the thread is running, you cannot cause a user thread to become a 
daemon thread (or vice versa); attempting to do so will generate an exception. To be completely 
correct, an exception is generated any time the thread is alive and the setDaemon() method is called - 
even if setDaemon(true) is called on a thread that is already a daemon thread. 

By default, a thread is a user thread if it was created by a user thread; it is a daemon thread if it was 
created by a daemon thread. The setDaemon() method is needed only if one thread creates another 
thread that should have a different daemon status. 

Unfortunately, the line between a user thread and a daemon thread may not be that clear. While it is 
true that a daemon thread is used to service a user thread, the time it takes to accomplish the service 
may be longer than the lifespan of the user thread that made the request. Furthermore, there may be 
critical sections of code that should not be interrupted by the exiting of the virtual machine. For 
example, a thread whose purpose is to back up data does not have a use if there are no user threads 
that can process the data. However, during this backup of data to a database, the database may not be 
in a state that can allow the program to exit. Although this backup thread should still be a daemon 
thread, since it is of no use to the program without the threads that process the data, we may have to 
declare this thread as a user thread in order to protect the integrity of the database. 

Ideally, the solution is to allow the thread to change its state between a user thread and daemon 
thread at any time. Since this is not allowed by the Java API, we can instead implement a lock that can 
be used to protect daemon threads. An implementation of the DaemonLock class is as follows: 

public class DaemonLock implements Runnable { 
    private int lockCount = 0; 
 
    public synchronized void acquire() { 
        if (lockCount++ == 0) { 
            Thread t = new Thread(this); 
            t.setDaemon(false); 
            t.start(); 
        } 
    } 
 
    public synchronized void release() { 
        if (--lockCount == 0) { 
            notify(); 
        }  
    } 
 
    public synchronized void run() { 
        while (lockCount != 0) { 
            try { 
                wait(); 
            } catch (InterruptedException ex) {}; 
        } 
    } 
} 

Implementation of the DaemonLock class is simple: we protect daemon threads by ensuring that a 
user thread exists. As long as there is a user thread, the virtual machine will not exit, which will allow 
the daemon threads to finish the critical section of code. Once the critical section is completed, the 
daemon thread can release the daemon lock, which will terminate the user thread. If there are no 
other user threads in the program at that time, the program will exit. The difference, however, is that 
it will exit outside of the critical section of code. 

We'll see an example use of this class in Chapter 7.  
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6.7 Summary 

Here are the methods of the Thread class that we introduced in this chapter: 

void setPriority(int priority)  

Sets the priority of the given thread. If priority is outside the allowed range of thread 
priorities, an exception is thrown. However, if the priority is within the allowed range of 
thread priorities but greater than the maximum priority of the thread's thread group, then the 
priority is silently lowered to match that maximum priority. 

int getPriority()  

Retrieves the priority of the given thread. 

void suspend() (deprecated in Java 2)  

Prevents a thread from running for an indefinite amount of time. 

void resume() (deprecated in Java 2)  

Allows a thread to run after being suspended. 

static void yield()  

Yields the current thread, allowing another thread of the same priority to be run by the Java 
virtual machine. 

void setDaemon(boolean on)  

Sets the thread to be a daemon thread (if on is true) or to be a user thread (if on is false). 

We've spent a lot of time in this chapter discussing the priority and scheduling of threads. Scheduling 
is one of the gray areas of Java programming because actual scheduling models are not defined by the 
Java specification, which means that scheduling behavior may vary from platform to platform. The 
reason for this is Java's quest for simplicity: since the scheduling model of a program rarely affects the 
ultimate outcome or usefulness of that program, Java leaves the added complexity of explicit 
scheduling to the developer in those cases where the scheduling is important. 

Accordingly, implementations of the Java virtual machine differ in the way they handle thread 
scheduling. The simplest model - the green-thread model - follows a rather strict priority-based 
scheduling algorithm; models that are implemented on top of operating-system-specific thread 
libraries follow the basic precepts of that algorithm, but they each take into account other factors 
when deciding which thread to run. 

In the next chapter, we'll take a look at some scheduling techniques based on simple priority-based 
scheduling. 
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Chapter 7. Java Thread Scheduling Examples 
The thread methods that we looked at in the last chapter are great when you have a fixed number of 
well-known threads and can analyze the behavior of the threads in advance. The priority-based 
scheduling methods also were most useful when there were intermediate results in which the user 
might be interested. But there are times when you have independent threads that need a round-robin 
timesliced behavior regardless of the platform on which they 're running. There are also times when 
it's convenient to create multiple threads, but you want to prevent the round-robin timesliced 
behavior you'd get on some platforms. And, because some platforms cannot handle large numbers of 
threads, there are cases when you want to limit the number of threads that your program uses. 

We'll look at these issues in this chapter, and we'll provide four examples of how general-purpose 
scheduling can be achieved in a Java program. We start with the notion of a thread pool : a pool of a 
limited number of threads that can each run multiple objects in succession. A thread pool is useful for 
programs that may require more threads than can reasonably fit within a particular virtual machine. 

Next, we move on to describe two round-robin-based schedulers: a very simple scheduler (most 
suitable for green-thread implementations) and a more generalized scheduler that is suitable for both 
ensuring and preventing round-robin scheduling. We present this scheduler for two reasons: 

• There are limited times when such a scheduler is needed. 

• The development of such a scheduler illustrates the issues you need to consider when 
programming with many arbitrary threads. 

Finally, we will present a job scheduler. This scheduler is suitable for cases where it is important that a 
job is executed at a particular time. 

7.1 Thread Pools 

First, we'll look at a thread pool example. The idea behind the ThreadPool class is to set up a number 
of threads that can sit idle, waiting for work that they can perform. The rationale here is not, as you 
might expect, to pre-allocate the threads to save time: the overhead of starting a thread on many 
platforms is not really any less significant than the overhead of having a thread wait for work. 

Instead, this class is designed to limit the number of threads that our program is using in an effort to 
utilize the resources of the machine more effectively. For example, the Java API uses this technique to 
limit the number of threads that are used to load images. If you set up a MediaTracker object, the Java 
API allocates four threads and retrieves images registered in the MediaTracker object four at a time. 
This limits the load that the program places on the server supplying the images as well as the 
bandwidth that the program will require in order to load the images. 

This technique is often used in calculation servers. If your calculation server receives many 
simultaneous requests, you may consider it inefficient to set up a different thread for each request. If 
the server is running on a native-thread platform that's performing some round-robin scheduling, the 
requests have to compete for scarce CPU resources among themselves. It's often better in these cases 
to allow only as many simultaneous requests as there are processors on the machine (or even fewer if 
the machine is performing other work). On platforms that cannot handle large numbers of 
simultaneous threads, this technique is also useful to limit the number of threads that are active 
within a program. 
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Here's an implementation of a thread pool class: 

import java.util.*; 
 
public class ThreadPool { 
 
    class ThreadPoolRequest { 
        Runnable target; 
        Object lock; 
 
        ThreadPoolRequest(Runnable t, Object l) { 
            target = t; 
            lock = l; 
        } 
    } 
 
    class ThreadPoolThread extends Thread { 
        ThreadPool parent; 
        volatile boolean shouldRun = true; 
 
        ThreadPoolThread(ThreadPool parent, int i) { 
            super("ThreadPoolThread " + i); 
            this.parent = parent; 
        } 
 
        public void run() { 
 
            ThreadPoolRequest obj = null; 
            while (shouldRun) { 
                try { 
                    parent.cvFlag.getBusyFlag(); 
                    while (obj == null && shouldRun) { 
                        try { 
                            obj = (ThreadPoolRequest) 
                                    parent.objects.elementAt(0); 
                            parent.objects.removeElementAt(0); 
                        } catch (ArrayIndexOutOfBoundsException aiobe) { 
                            obj = null; 
                        } catch (ClassCastException cce) { 
                            System.err.println("Unexpected data"); 
                            obj = null; 
                        } 
                        if (obj == null) { 
                            try { 
                                parent.cvAvailable.cvWait(); 
                            } catch (InterruptedException ie) { 
                                return; 
                            } 
                        } 
                    } 
                } finally { 
                    parent.cvFlag.freeBusyFlag(); 
                } 
                if (!shouldRun) 
                    return; 
                obj.target.run(); 
                try { 
                    parent.cvFlag.getBusyFlag(); 
                    nObjects--; 
                    if (nObjects == 0) 
                        parent.cvEmpty.cvSignal(); 
                } finally { 
                    parent.cvFlag.freeBusyFlag(); 
                } 
                if (obj.lock != null) { 
                    synchronized(obj.lock) { 
                        obj.lock.notify(); 
                    } 
                } 
                obj = null; 
            } 
        } 
    } 
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    Vector objects; 
    int nObjects = 0; 
    CondVar cvAvailable, cvEmpty; 
    BusyFlag cvFlag; 
    ThreadPoolThread poolThreads[]; 
    boolean terminated = false; 
 
    public ThreadPool(int n) { 
        cvFlag = new BusyFlag(); 
        cvAvailable = new CondVar(cvFlag); 
        cvEmpty = new CondVar(cvFlag); 
        objects = new Vector(); 
        poolThreads = new ThreadPoolThread[n]; 
        for (int i = 0; i < n; i++) { 
            poolThreads[i] = new ThreadPoolThread(this, i); 
            poolThreads[i].start(); 
        } 
    } 
 
    private void add(Runnable target, Object lock) { 
 
        try { 
            cvFlag.getBusyFlag(); 
            if (terminated) 
                throw new 
                    IllegalStateException("Thread pool has shut down"); 
            objects.addElement(new ThreadPoolRequest(target, lock)); 
            nObjects++; 
            cvAvailable.cvSignal(); 
        } finally { 
            cvFlag.freeBusyFlag(); 
        } 
    } 
 
    public void addRequest(Runnable target) { 
 
        add(target, null); 
    } 
 
    public void addRequestAndWait(Runnable target) 
 
                            throws InterruptedException { 
        Object lock = new Object(); 
        synchronized(lock) { 
            add(target, lock); 
            lock.wait(); 
        } 
    } 
 
    public void waitForAll(boolean terminate) 
                            throws InterruptedException { 
        try { 
            cvFlag.getBusyFlag(); 
            while (nObjects != 0) 
                cvEmpty.cvWait(); 
            if (terminate) { 
                for (int i = 0; i < poolThreads.length; i++) 
                    poolThreads[i].shouldRun = false; 
                cvAvailable.cvBroadcast(); 
                terminated = true; 
            } 
        } finally { 
            cvFlag.freeBusyFlag(); 
        } 
    } 
 
    public void waitForAll() throws InterruptedException { 
        waitForAll(false); 
    } 
} 



Java Threads, 2nd edition 
 

 page 120

The inner class in this example performs most of the work. Each thread waits for work; when it is 
signaled, it simply pulls the first object from the vector and executes that object. When execution of 
that object is finished, the thread must notify the lock associated with the object (if any) so that the 
addRequest-AndWait() method will know when to return; the thread must also notify the thread 
pool itself so that the waitForAll() method will check to see if it is time for it to return. 

As a result, there are three waiting points in this code: 

• Some request objects have an associated lock object (the Object created in the 
addRequestAndWait() method). The addRequestAndWait() method uses the standard wait 
and notify technique to wait on this object; it receives notification after the run() method has 
been executed by one of the ThreadPoolThread objects. 

• A condition variable cvAvailable is associated with the cvBusyFlag. This condition is used 
to signal that work is available to be performed. Whenever the nObjects variable is 
incremented, work is available, so the add() method signals a thread that a new object is 
available. Similarly, when there are no objects in the vector to be processed, the 
ThreadPoolThreads wait on that condition variable. 

• A condition variable cvEmpty is also associated with the cvBusyFlag. This condition is used to 
signal that all pending work has been completed - that is, that the nObjects variable has 
reached zero. The waitForAll() method waits for this condition, which is signaled by a 
ThreadPoolThread when it sets nObjects to zero. 

We use condition variables for the last two cases because they share the same lock (the cvBusyFlag, 
which protects access to nObjects) even though they have different values for their condition. If we 
had used the standard wait and notify mechanism to signal threads that are interested in the value of 
nObjects, then we could not have controlled notification as well: whenever nObjects was set to zero, 
we'd have to notify all ThreadPoolThreads as well as notifying the thread that is executing the 
waitForAll() method. 

Meanwhile, the ThreadPool class itself provides only a way to create the pool (which also sets the 
number of threads in the pool), to add objects to the pool, and to wait for all objects in the pool to 
finish. There's an unsurprising similarity here to the MediaTracker class; it's a simple extension to this 
class to add an ID to each object in the vector to mimic MediaTracker's interface more closely. In 
addition, the addRequestAndWait() method is similar to a technique that is used in the Java™ 
Foundation Classes ( JFC) to allow arbitrary threads to operate with the JFC, even though those 
classes are not thread safe. We'll talk about that a little more in Chapter 8. 

Note that objects that are to be run by the thread pool are expected to implement the Runnable 
interface. This is a potential source of confusion, since we usually use the Runnable interface to 
identify an object that is to be run within its own thread (and the Thread class itself implements the 
Runnable interface). It would be an error to create a thread object, add it to a thread pool with the 
addRequest() method, and then start the thread object explicitly - in this case, we expect the thread 
pool to run the object. But this interface seems to us to be cleaner than creating a new class or 
interface that would be used solely in this example. This interface also allows us to take existing code 
that uses threads and run those threads via a thread pool instead. 

Interestingly enough, there is no way to shut down a thread pool automatically. If the thread pool 
object were to go out of scope, it would never be garbage collected: the thread pool thread objects (like 
all thread objects) are held in an internal data structure within the virtual machine, so they will not be 
garbage collected until they exit. And because they have a reference to the thread pool itself, the 
thread pool cannot be garbage collected until the thread pool threads are garbage collected. So we 
have to have some way of signaling the thread pool to exit: we do that by passing a true parameter to 
the waitForAll() method. Then, when the thread pool has run all of its jobs, the waitForAll() 
method arranges for the thread pool threads to terminate and marks the thread pool so that no more 
jobs can be added to it. The thread pool threads will then exit, and the thread pool can then be garbage 
collected. 
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Let's see an example of how to use the thread pool. Since we want to use the thread pool to limit the 
number of simultaneous threads, we'll use it in conjunction with the CPUSupport class that we 
developed in Chapter 6 so that the number of threads in the pool is equal to the number of CPUs on 
the machine. We'll use our TCPServer class as the basis for the entire example: 

import java.io.*; 
import java.net.*; 
 
public class TCPCalcServer extends TCPServer { 
    class CalcObject implements Runnable { 
        OutputStream os; 
        InputStream is; 
 
        CalcObject(InputStream is, OutputStream os) { 
            this.os = os; 
            this.is = is; 
        } 
 
        public void run() { 
            // Perform calculation. 
        } 
    } 
 
    ThreadPool pool; 
 
    TCPCalcServer() { 
        int numThreads = CPUSupport.getNumProcessors(); 
        CPUSupport.setConcurrency(numThreads + 5); 
        pool = new ThreadPool(numThreads); 
    } 
 
    public static void main(String args[]) { 
        try { 
            new TCPCalcServer().startServer(3535); 
        } catch (IOException ioe) { 
            // Error processing omitted. 
        } 
    } 
 
    public void run(Socket data) { 
        try { 
            pool.addRequest(new CalcObject(data.getInputStream(), 
                                    data.getOutputStream())); 
        } catch (IOException ioe) { 
            // Error processing omitted. 
        } 
    } 
} 

Remember that the real work of the TCPServer class is done in the run(data) method. In this case, 
we simply set up a new calculation object and add that object to the pool. We've shown a sample 
implementation of the skeleton of the calculation object as well, although we've left out the actual 
calculation. Once again, though, note that the CalcObject class implements the Runnable interface 
without being related to any specific thread. 

Isn't the run(data) method already being run in a separate thread? Doesn't that conflict with our 
original goal of limiting the number of threads in the program? Our original goal was to limit the 
number of simultaneous threads that are active in the program. As this server is written, the thread 
that is created to call the run(data) method is very short-lived. So even though we still create a new 
thread for each client connection, the number of threads at any point in time is still fairly small. If you 
wanted to, you could rewrite the TCPServer class (rather than subclassing it), but this example should 
scale well. 

Since this server is a calculation server, we need to set the number of LWPs for a Solaris system to 
ensure that we're taking advantage of all the CPUs available. We do that by setting the concurrency 
equal to the number of CPUs (adding 5 to account for I/O-bound threads in the virtual machine). And 
on all platforms, we set the number of threads in the pool to be the same as the number of CPUs so 
that we get the most effective use of the machine.  
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7.2 Round-Robin Scheduling 

Our next examples show two ways of performing round-robin scheduling. These techniques are 
mostly useful for programs that will execute on a green-thread implementation of the Java virtual 
machine, since native-thread implementations all perform some sort of round-robin scheduling 
already. If you don't know which implementation your program will eventually run on, you may want 
to use one of these techniques to ensure round-robin scheduling, even if the underlying 
implementation is performing it for you: these techniques are not in conflict with native-thread 
implementations, though they do not necessarily provide a benefit on those platforms. 

Remember that at issue here is the behavior of a Java program that contains one or more CPU-
intensive threads. A Java program could have hundreds of threads that may only periodically need 
access to the CPU and otherwise spend most of their life in the blocked state: in that case, there isn't 
likely to be much competition for the CPU, and each thread gets an opportunity to run whenever it has 
work to do. We only face the problem of CPU starvation when there is at least one CPU-intensive 
thread that may potentially prevent all other threads from running. 

If we have only a single CPU-intensive thread, there is no need for a complicated scheduling 
mechanism: all we need to do is lower the priority of the CPU-intensive thread below the priority of 
the other threads in our Java program. This allows the other threads to run whenever they have work 
to do, while the CPU-intensive thread continues to execute whenever the remaining threads are 
blocked. We'll build on this principle in our scheduler class: our CPU-intensive threads will all have a 
lower priority than threads that are mostly blocked. 

We'll look at two schedulers in this section. The basic principle behind each scheduler is that each 
thread under its control is given a fixed amount of time during which it runs. When the specified time 
period elapses, another thread runs; this process proceeds indefinitely. 

7.2.1 A Simple Round-Robin Scheduler 

How do we go about creating a round-robin scheduler? Clearly, we need to begin with some sort of 
periodic timer; every time the timer goes off, we can make a different thread become the currently 
running thread. What do we need to do to make this happen? 

The simplistic answer to this question is: nothing. That is, our simple scheduler is simply a high-
priority timer that periodically wakes up only to go back to sleep immediately. This creates, in effect, a 
timer-based scheduling event: each time the timer thread wakes up, it becomes the currently running 
thread, which also adjusts the list of threads at the priority of the previously running thread:  

public class SimpleScheduler extends Thread { 
    int timeslice; 
 
    public SimpleScheduler(int t) { 
        timeslice = t; 
        setPriority(Thread.MAX_PRIORITY); 
        setDaemon(true); 
    } 
 
    public void run() { 
        while (true) 
            try { 
                sleep(timeslice); 
            } catch (Exception e) {} 
    } 
} 
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We'll use this class in the example from the beginning of Chapter 6 so that we can illustrate its 
behavior:  

class TestThread extends Thread { 
    String id; 
 
    public TestThread(String s) { 
        id = s; 
    } 
 
    public void doCalc(int i) { 
    } 
    public void run() { 
        int i; 
        for (i = 0; i < 10; i++) { 
            doCalc(i); 
            System.out.println(id); 
        } 
    } 
} 
 
public class Test { 
 
    public static void main(String args[]) { 
        new SimpleScheduler(100).start(); 
        TestThread t1, t2, t3; 
        t1 = new TestThread("Thread 1"); 
        t1.start(); 
        t2 = new TestThread("Thread 2"); 
        t2.start(); 
        t3 = new TestThread("Thread 3"); 
        t3.start(); 
    } 
} 

In this program there are three threads (t1, t2, and t3) at the Java default priority of NORM_PRIORITY, 
and the SimpleScheduler thread that runs at a priority of MAX_PRIORITY. The SimpleScheduler thread 
is normally blocked, so the list of threads starts out in this state: 

PRIORITY 5:  t2 -> t3 -> t1 -> NULL 
  BLOCKED:  SimpleScheduler -> NULL 

At this point, t1 is the currently running thread, and we'll start to see output lines that say "Thread 1." 
When SimpleScheduler wakes up, it moves to the runnable state and, because it is the highest priority 
thread in the Java virtual machine, it becomes the currently running thread: 

PRIORITY 5:  t2 -> t3 -> t1 -> NULL 
PRIORITY 10:  SimpleScheduler -> NULL 

SimpleScheduler immediately executes the sleep() method, moving it back to the blocked state; the 
Java virtual machine then selects the next thread in the list (t2) as the currently running thread and 
moves it to the end of the list: 

PRIORITY 5:  t3 -> t1 -> t2 -> NULL 
  BLOCKED:  SimpleScheduler -> NULL 

As this continues, each thread in the list of threads at priority 5 becomes the currently running thread 
in turn. 

This scheduler requires that the virtual machine reorder the threads on a priority list whenever one of 
them is selected to run. As we mentioned in the last chapter, this is almost universally the case, but it 
is not a requirement of the Java specification, and we know of one real-time operating system on 
which this scheduling mechanism does not work.  

Note that this mechanism still works for native-thread implementations. On a Windows 
implementation, the effect is that the currently running thread changes more often than specified by 
the sleep value within the SimpleScheduler, since the operating system will sometimes change the 
currently running thread while the scheduler is sleeping. On a Solaris implementation, the reordering 
of the threads will be dependent on the number of LWPs, but the interruption is sufficient to cause a 
single LWP to schedule another thread, which achieves the desired effect.  
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7.2.2 A More Complete Scheduler 

Now we'll look into building a more complete scheduler that will schedule our threads in a round-
robin fashion. We can also use it to limit round-robin scheduling on native-thread platforms that 
timeslice as their default behavior; this limiting is achieved simply by using a very large value as the 
timeslice that the scheduler gives to a particular thread. However, since there are circumstances on 
native-thread platforms where the highest priority thread is not necessarily the currently running 
thread, we cannot completely prevent some sort of round-robin scheduling on those platforms: the 
best we can do is to use this scheduler to bias the operating system to favor one particular thread. 

The example we outline in this section assumes that there is a single CPU. If you need to use this 
technique on a machine with multiple CPUs, you will need to adjust the scheduler so that it creates N 
currently running threads rather than one currently running thread (where N is the number of 
processors on the machine). As written, this technique will work on machines with multiple 
processors - that is, it will prevent any CPU starvation - but it will have less of an effect on the overall 
scheduling of the threads. 

We'll start building this scheduler by establishing threads at three priority levels: 

Level 6  

The scheduler itself is a separate thread running at level 6. This allows it to run in favor of the 
default threads created by the Java virtual machine and APIs and in favor of any threads the 
scheduler is controlling. This thread spends most of its time sleeping (i.e., blocked), so it 
doesn't usually become the currently running thread. 

Level 4  

The scheduler selects one thread from all the threads it is controlling and assigns that thread a 
priority value of 4. Most of the time, this is the nonblocked thread with the highest priority in 
the Java virtual machine, so it is the thread favored to become the currently running thread. 

Level 2  

All remaining threads under control of our scheduler run at priority level 2. Since there is 
always a thread running at level 4, these threads usually do not run at this priority; they 
remain at this priority until they are selected by our scheduler to have a priority level of 4, at 
which time they become favored to be the currently running thread. 

The idea behind the scheduler is that the programmer assigns certain threads to be under control of 
the scheduler. The scheduler selects one and only one of these threads and assigns it a priority of 4, 
while the rest of the threads have a priority of 2. The priority 4 thread is the currently running thread; 
from time to time, the scheduler itself wakes up and selects a different thread as the single priority 4 
thread. On green-thread platforms, the priority 4 thread will always be selected as the currently 
running thread; on native-thread platforms, it will usually be selected as the currently running thread. 

For all the threads in this scheduling system - the scheduler thread itself plus any threads the 
programmer designates to be controlled by our scheduler - it is clear that no CPU starvation will 
occur: the scheduler thread will always run when it needs to, and as long as that thread correctly 
adjusts the priorities of the remaining threads under its control, all other threads will get their 
opportunity to become the currently running thread. 

In order to keep track of all the threads, we'll use the CircularList we developed in Chapter 5. This 
class gives us the queueing behavior we need to keep track of the threads under the control of our 
scheduler: we can add threads to the list with its insert() method, remove them with its delete() 
method, and, more important, go through the list by repeatedly calling its getNext() method. 
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Here's the first pass at our scheduler:  

public class CPUScheduler extends Thread { 
    private int timeslice;            // # of milliseconds thread should run 
    private CircularList threads;     // All the threads we're scheduling 
 
    public volatile boolean shouldRun = false; // Exit when this is set 
 
    public CPUScheduler(int t) { 
        threads = new CircularList(); 
        timeslice = t; 
    } 
 
    public void addThread(Thread t) { 
        threads.insert(t); 
        t.setPriority(2); 
    } 
 
    public void removeThread(Thread t) { 
        t.setPriority(5); 
        threads.delete(t); 
    } 
 
    public void run() { 
        Thread current; 
        setPriority(6); 
        while (shouldRun) { 
            current = (Thread) threads.getNext(); 
            if (current == null) 
                return; 
            current.setPriority(4); 
            try { 
                Thread.sleep(timeslice); 
            } catch (InterruptedException ie) {}; 
            current.setPriority(2); 
        } 
    } 
} 

Although there are some necessary adjustments that we'll add to this scheduler throughout the rest of 
this chapter, this code is the essence of the scheduler. The refinements that we'll add are important in 
terms of making the class robust and thread safe, but they don't add to the basic functionality: we 
want to understand the functionality before we look at some of the subtle issues involved in this class. 

The programmer uses two methods to interface with the scheduler: addThread(), which adds a 
thread to the list of thread objects under control of the scheduler, and removeThread(), which 
removes a thread object from that list.[1] 

[1] There's a subtle error here, in that when the thread is removed from the scheduler, we assign it the default 
thread priority rather than the priority it had when it was added to the scheduler. The correct practice would be to 
save the thread's priority in the call to the addThread() method and then restore that priority in the 
removeThread() method; we'll leave that implementation to the reader. 

Given this interface, we can use the CPUScheduler class in the ThreadTest class we introduced at the 
beginning of this section: 

class  
TestThread extends Thread { 
    String id; 
 
    public TestThread(String s) { 
        id = s; 
    } 
 
    public void doCalc(int i) { 
    } 
 
    public void run() { 
        int i; 
        for (i = 0; i < 10; i++) { 
            doCalc(i); 
            System.out.println(id); 
        } 
    } 
} 
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public class Test { 
 
    public static void main(String args[]) { 
        CPUScheduler c = new CPUScheduler(100); 
        TestThread t1, t2, t3; 
        t1 = new TestThread("Thread 1"); 
        t2 = new TestThread("Thread 2"); 
        t3 = new TestThread("Thread 3"); 
        c.addThread(t1); 
        c.addThread(t2); 
        c.addThread(t3); 
        t1.start(); 
        t2.start(); 
        t3.start(); 
        c.start(); 
    } 
} 

When our program calls c.start(), the CPUScheduler's run() method gets called; it is this run() 
method that actually manipulates all the threads to create the timesliced, round-robin scheduling. At 
its base level, the logic for our scheduler is simple: it loops forever, going through all the threads in our 
circular list of threads and adjusting their priorities as it goes. In between, it sleeps for timeslice 
milliseconds. The current thread runs for that many milliseconds before the scheduler wakes up 
again and readjusts the thread's priority. When there are no threads left to schedule - which would 
happen if the programmer had called removeThread() on all the threads previously added - the 
CPUScheduler exits by returning from the run() method. 

Let's examine how the four threads in our program - threads t1, t2, t3, and the CPUScheduler thread 
- will behave now. After we call the c.start() method, the threads in the program are in this state: 

PRIORITY 2:  t1 -> t2 -> t3 -> NULL 
PRIORITY 6:  CPUScheduler -> NULL 

As the highest priority thread in the program, the CPUScheduler thread is the currently running 
thread. It starts executing the run() method, where the first thing it does is change the priority of 
thread t1 to 4: 

PRIORITY 2:  t2 -> t3 -> NULL 
PRIORITY 4:  t1 -> NULL 
PRIORITY 6:  CPUScheduler -> NULL 

The CPUScheduler, still the currently running thread, now sleeps, placing it into the blocked state. 
This causes t1 to become the currently running thread: 

PRIORITY 2:  t2 -> t3 -> NULL 
PRIORITY 4:  t1 -> NULL 
   BLOCKED:  CPUScheduler -> NULL 

When the CPUScheduler thread wakes up, it changes the priority of t1 back to 2 and the priority of t2 
to 4: 

PRIORITY 2:  t3 -> t1 -> NULL 
PRIORITY 4:  t2 -> NULL 
PRIORITY 6:  CPUScheduler -> NULL 

And so the cycle continues. 

7.2.2.1 Adjustment 1: Synchronizing data within the CPUScheduler 

Now that we have the base logic of the CPUScheduler written correctly, we need to make sure the 
CPUScheduler class is itself thread safe and that we haven't introduced any race conditions into the 
scheduler by having incorrectly synchronized data. We'll go through this process in a series of stages 
because the example illustrates the necessary steps that you must take in designing any class to work 
with multiple threads. 

At first glance, there don't appear to be any variables that need synchronization: the only instance 
variable that needs to be protected is the variable threads, and all changes to the threads variable 
occur via methods of the CircularList class that are already synchronized. But what would happen if 
you called the remove-Thread() method and removed the thread that the CPUScheduler has marked 
as the current thread? It would be an error for the CPUScheduler to change the priority of this thread 
once it has been removed from the threads list, so the removeThread() method must somehow 
inform the CPUScheduler that the current thread has been removed. 
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This means that the variable current must become an instance variable so that both the run() and 
removeThread() methods can access it. We can then synchronize access to that variable. Here's the 
new CPUScheduler class: 

public class CPUScheduler extends Thread { 
    ... 
    private Thread current; 
    public void removeThread(t) { 
        t.setPriority(5); 
        threads.delete(t); 
        synchronized(this) { 
            if (current == t) 
                current = null; 
        } 
    } 
    ... 
    public void run() { 
        ... 
        try { 
            Thread.sleep(timeslice); 
        } catch (InterruptedException ie) {}; 
        synchronized(this) { 
            if (current != null) 
                current.setPriority(2); 
        } 
    } 
} 

Alternatively, we could make the run() and removeThread() methods themselves synchronized: 

public synchronized void run() { 
        ... 
    } 
 
    public synchronized void removeThread(Thread t) { 
        ... 
    } 

As we've seen, making the run() method synchronized is typically a bad idea, so we'll reject this idea 
for now, but we'll be revisiting this decision soon. 

7.2.2.2 Adjustment 2: Making CPUScheduler thread safe 

We've synchronized all the variables of our CPUScheduler, but we're still not protected from threads 
that exit while they are under our control. 

In particular, the run() method changes the priority of a thread, which is a valid operation only if a 
thread is in the runnable state. What happens if the thread that we've assigned to level 4 exits its 
run() method while our CPUScheduler is sleeping? When the CPUScheduler wakes up, it tries to set 
the priority of that thread, which is now in the exiting state, to 2 - an operation that generates an 
exception. Similarly, if the thread that is running decides to call the stop() method of one of the 
priority 2 threads in the CPUScheduler's list, then the next time the CPUScheduler selects that thread 
and sets its priority, we'll get an exception. 

So we need to place all the calls to the setPriority() method inside a try/catch clause in order to 
be alerted to these types of situations. This means we must modify our code everywhere we call the 
setPriority() method: 

public void removeThread(Thread t) { 
        try { 
            t.setPriority(5); 
        } catch(Exception e) {} 
        threads.delete(t); 
        synchronized(this) { 
            if (current == t) 
                current = null; 
        } 
    } 
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    public void run() { 
        while (shouldRun) { 
            ... 
            try { 
                current.setPriority(4); 
            } catch (Exception e) { 
                removeThread(current); 
            } 
            ... 
            synchronized(this) { 
                if (current != null) 
                    try { 
                        current.setPriority(2); 
                    } catch (Exception e) { 
                        removeThread(current); 
                    } 
            } 
            ... 
        } 
    } 

Note that in in the run() method, when the exception is thrown we need to remove the thread from 
the list of threads we're interested in, which means that we must also use the catch clause in the 
removeThread() method.  

7.2.2.3 Adjustment 3: More thread-safe modifications 

We've made the methods of the CPUScheduler thread-safe, but what about the class itself? What if 
two threads try to create a CPUScheduler? This would be very confusing: we'd end up with two 
scheduling threads that would compete with each other to schedule other threads. So we need to allow 
only one instance of the class to be instantiated. We'll do this by creating a static variable in the class 
and testing it to make sure that an instance of the CPUScheduler class doesn't already exist. Because 
we can't make the constructor itself synchronized, we'll also need to introduce a synchronized method 
to access this static variable. Thus the constructor and related code for the class now look like this: 

public class CPUScheduler extends Thread { 
    private static boolean initialized = false; 
    private synchronized static boolean isInitialized() { 
        if (initialized) 
            return true; 
        initialized = true; 
        return false; 
    } 
 
    public CPUScheduler(int t) { 
        if (isInitialized()) 
            throw new SecurityException("Already initialized"); 
        threads = new CircularList(); 
        timeslice = t; 
    } 
} 

7.2.2.4 Adjustment 4: Devising an exit mechanism 

If all the threads under its control exit, the CPUScheduler itself exits. In a program where the tasks are 
well defined at the beginning of execution - like the TestThread class we've looked at so far - that 
might be fine. But what if we wanted to add the CPUScheduler to our TCPServer? As presently 
written, the CPUScheduler wouldn't work for that case: as soon as no clients were connected to the 
TCPServer, the CPUScheduler would exit, and any further clients that connected to the server would 
not be timesliced. 

Instead, we need to make the CPUScheduler a daemon thread and adjust the logic of its run() 
method. This should make sense: the CPUScheduler is only useful when there are other threads in the 
program that it can schedule. In the TCP-Server case, there will always be at least one other thread in 
the program: the listener thread of the TCPServer. That listener thread creates other threads for the 
CPUScheduler to manipulate as clients connect to the server.  
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The implementation of our timesliced TCPServer to perform calculations looks like this:  

import java.net.*; 
import java.io.*; 
 
public class CalcServer { 
    public static void main(String args[]) { 
        CalcRequest r = new CalcRequest(); 
        try { 
            r.startServer(3535); 
        } catch (Exception e) { 
            System.out.println("Unable to start server"); 
        } 
    } 
} 
 
class  
CalcRequest extends TCPServer { 
    CPUScheduler scheduler; 
    CalcRequest() { 
        scheduler = new CPUScheduler(100); 
        scheduler.start(); 
    } 
 
    void doCalc(Socket s) { 
    } 
 
    public void run(Socket s) { 
        scheduler.addThread(Thread.currentThread()); 
        doCalc(s); 
    } 
} 

Every time the run() method of the CalcRequest class is called, it is called in a new thread, so we need 
to add that thread to the CPUScheduler that was created in the constructor of the class. As long as the 
CPUScheduler doesn't exit when there are no threads to schedule (which now means simply that no 
client is currently connected), we'll have a timesliced calculation server. During an active session of 
our CalcServer, we'll have these threads: 

One listener thread  

The thread that waits for connections and creates the client threads. 

Zero or more client threads  

These threads execute the calculation on behalf of a connected client. 

CPUScheduler thread  

The daemon thread performing the scheduling. 

We can gracefully shut down the CalcServer by setting the shouldRun flag of the server to false; 
eventually the client threads complete their calculation and exit. When all the client threads have 
exited, only the daemon CPUScheduler thread remains in the program, and the program terminates.  

We need to change the CPUScheduler so that instead of returning when there are no threads to be 
scheduled, it simply waits for more threads. Here's the entire code for the modified CPUScheduler 
class (we'll show the entire class here, since at this point, we have a complete implementation): 

public class CPUScheduler extends Thread { 
    private CircularList threads; 
    private Thread current; 
    private int timeslice; 
    private static boolean initialized = false; 
    private boolean needThreads; 
 
    private static synchronized boolean isInitialized() { 
        if (initialized) 
            return true; 
        initialized = true; 
        return false; 
    } 
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    public CPUScheduler(int t) { 
        if (isInitialized()) 
            throw new SecurityException("Already initialized"); 
        threads = new CircularList(); 
        timeslice = t; 
        setDaemon(true); 
    } 
 
    public synchronized void addThread(Thread t) { 
        t.setPriority(2); 
        threads.insert(t); 
        if (needThreads) { 
            needThreads = false; 
            notify(); 
        } 
    } 
 
    public void removeThread(Thread t) { 
        threads.delete(t); 
        synchronized(this) { 
            if (t == current) 
                current = null; 
        } 
    } 
 
    public synchronized void run() { 
        setPriority(6); 
        while (true) { 
            current = (Thread) threads.getNext(); 
            while (current == null) { 
                needThreads = true; 
                try { 
                    wait(); 
                } catch (Exception e) {} 
                current = (Thread) threads.getNext(); 
            } 
            try { 
                current.setPriority(4); 
            } catch (Exception e) { 
                removeThread(current); 
                continue; 
            } 
            try { 
                wait(timeslice); 
            } catch (InterruptedException ie) {}; 
            if (current != null) { 
                try { 
                    current.setPriority(2); 
                } catch (Exception e) { 
                    removeThread(current); 
                } 
            } 
        } 
    } 
} 

In the constructor, we've set the thread to be a daemon thread - the point of this adjustment. Note that 
we also changed the run() method so that when we try to retrieve a thread from the list, we loop until 
one is available. If no thread is in the list, we wait until one is available, which requires that we add a 
flag to the addThread() method to signify whether it should notify the CPUScheduler thread that a 
thread has been added. 

In addition, note that we've changed the run() method itself to a synchronized method and replaced 
the call to the sleep() method with a call to the wait() method. This is one example of the exception 
to the general rule that the run() method should not be synchronized: since we actually spend more 
time waiting in this method than executing code, its quite okay to synchronize the run() method, 
since it will release the lock whenever it waits for something to happen. 
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7.2.2.5 Adjustment 5: Non-CPU-intensive threads 

What happens in our scheduler if the currently running thread blocks? Let's see what would happen 
to our TestThread program if the currently running thread suddenly entered the blocked state. We'd 
start out with the threads in a state like this: 

PRIORITY 2:  t3 -> t1 -> NULL 
PRIORITY 4:  t2 -> NULL 
   BLOCKED:  CPUScheduler -> NULL 

Thread t2 is the currently running thread, executing its calculations while the CPUScheduler is 
sleeping. If t2 now enters the blocked state for some reason, we end up with threads in this state: 

PRIORITY 2:  t3 -> t1 -> NULL 
PRIORITY 4:  NULL 
   BLOCKED:  t2 -> CPUScheduler -> NULL 

This means that t3 becomes the currently running thread, even though it's at priority 2. When the 
CPUScheduler wakes up, it resets the priority of t2 to 2, sets the priority of t3 to 4, and goes back to 
sleep, leaving our threads in this state: 

PRIORITY 2:  t1 -> NULL 
PRIORITY 4:  t3 -> NULL 
   BLOCKED:  t2 -> CPUScheduler -> NULL 

Everything is okay again, but at some point it will be t2's turn to be priority 4. Since the 
CPUScheduler has no way of determining that t2 is blocked, it sets the priority of t2 to 4. The Java 
scheduler again selects one of the threads at priority 2 to be the currently running thread. 

Our code was correct: the threads involved all got some timeslice in which to run. But there was a 
short period of time during which the CPUScheduler slept, the priority 4 thread blocked, and a 
priority 2 thread became the currently running thread. In effect, this priority 2 thread stole some CPU 
time; it could do this because there was a time gap between when the priority 4 thread blocked and the 
priority 6 thread woke up. 

It's probably not a crisis that this happened, since once the CPUScheduler woke up, we got back to the 
thread state we wanted. We could have prevented this CPU stealing from happening if somehow we 
knew when the priority 4 thread had blocked. However, on a native-thread platform, we cannot 
prevent a lower-priority thread from running at some point anyway, which is really just a variation of 
the behavior that we're discussing here. So solving this problem is not something that we'll be able to 
do in an absolute sense. 

It is conceivable that on a green-thread platform, we could create a new thread within the 
CPUScheduler class at priority 3. When the priority 4 thread blocks, this priority 3 thread would 
become the currently running thread; this priority 3 thread could inform the priority 6 thread that it 
should wake up and perform some scheduling. Note that on a native-thread platform this does not 
work: the priority 3 thread might still run even if the priority 4 thread has not blocked, and on a 
Windows platform, priority 3 and 4 share the same underlying operating system priority. Altering the 
priority levels of the threads to avoid this overlap - by, for example, running the scheduler at priority 8 
and the target thread at priority 6 - is a possibility, but we've seen that putting a CPU-intensive thread 
above the default priority level (especially the level at which the system GUI thread runs) is not always 
a good idea. And this does not prevent the priority 3 thread from running when the target thread is 
not blocked. 

Even on a green-thread platform, this problem is impossible to solve in the general case. If all the 
threads to be scheduled were to block, then the priority 3 thread would continually run, consuming a 
lot of CPU resources but performing no real work. In the first edition of this book, we showed how to 
overcome that problem by suspending the priority 3 thread, but now the suspend() method has been 
deprecated, so that solution is no longer an option. And since the benefit provided by such a solution 
would be very marginal, we're not too worried that such a solution does not exist.  

The moral of the story is what we've said all along: Java's scheduling mechanisms give you some 
control over how threads are scheduled, but that control is never absolute.  
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7.3 Job Scheduling 

We'll conclude our examples with an examination of job scheduling. Unlike round-robin scheduling, 
job scheduling is not related to thread starvation prevention or fairness. The concept of job scheduling 
is more closely related to when a runnable object is executed than to how a runnable object is run. 

There are many applications of job scheduling. We could have a word processor application that needs 
to save work every five minutes to prevent data loss. We could have a backup program that needs to do 
an incremental backup every day; this same program may also need to do a full backup once a week. 
In our Animate applet (see Chapter 2), we needed to generate a repaint request every second. At the 
time, we accomplished that by having the timer thread schedule itself by calling the sleep() method 
repeatedly. In that example, the scheduling of the repaint request was simple to implement, and we 
only had this single repeated job to schedule. 

For more complex scheduling of jobs, or for programs that have countless jobs that need to be 
scheduled, having a dedicated job scheduler may be easier than implementing the scheduling of every 
job in the program. Furthermore, in the case of the timer thread, we needed to create a thread just to 
handle the job. If many jobs are required, a job scheduler may be preferred over having many threads 
that schedule themselves. This dedicated job scheduler can run all the jobs in its own thread, or it can 
assign the jobs to a thread pool to better use the thread resources of the underlying platform. 

Here's an implementation of a job scheduler class:  

import java.util.*; 
 
public class JobScheduler implements Runnable { 
    final public static int ONCE = 1; 
    final public static int FOREVER = -1; 
    final public static long HOURLY = (long)60*60*1000; 
    final public static long DAILY = 24*HOURLY; 
    final public static long WEEKLY = 7*DAILY; 
    final public static long MONTHLY = -1; 
    final public static long YEARLY = -2; 
 
    private class JobNode { 
        public Runnable job; 
        public Date executeAt; 
        public long interval; 
        public int count; 
    } 
    private ThreadPool tp; 
    private DaemonLock dlock = new DaemonLock(); 
    private Vector jobs = new Vector(100); 
 
    public JobScheduler(int poolSize) { 
        tp = (poolSize > 0) ? new ThreadPool(poolSize) : null; 
        Thread js = new Thread(this); 
        js.setDaemon(true); 
        js.start(); 
    } 
 
    private synchronized void addJob(JobNode job) { 
        dlock.acquire(); 
        jobs.addElement(job); 
        notify(); 
    } 
 
    private synchronized void deleteJob(Runnable job) { 
        for (int i=0; i < jobs.size(); i++) { 
            if (((JobNode) jobs.elementAt(i)).job == job) { 
                jobs.removeElementAt(i); 
                dlock.release(); 
                break; 
            } 
        } 
    } 
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    private JobNode updateJobNode(JobNode jn) { 
        Calendar cal = Calendar.getInstance(); 
        cal.setTime(jn.executeAt); 
        if (jn.interval == MONTHLY) { 
                // There is a minor bug (see java.util.calendar). 
                cal.add(Calendar.MONTH, 1); 
                jn.executeAt = cal.getTime(); 
        } else if (jn.interval == YEARLY) { 
                cal.add(Calendar.YEAR, 1); 
                jn.executeAt = cal.getTime(); 
        } else { 
                jn.executeAt = 
                        new Date(jn.executeAt.getTime() + jn.interval); 
        } 
        jn.count = (jn.count == FOREVER) ? FOREVER : jn.count - 1; 
        return (jn.count != 0) ? jn : null; 
    } 
 
    private synchronized long runJobs() { 
        long minDiff = Long.MAX_VALUE; 
        long now = System.currentTimeMillis(); 
 
        for (int i=0; i < jobs.size();) { 
            JobNode jn = (JobNode) jobs.elementAt(i); 
            if (jn.executeAt.getTime() <= now) { 
                if (tp != null) { 
                    tp.addRequest(jn.job); 
                } else { 
                    Thread jt = new Thread(jn.job); 
                    jt.setDaemon(false); 
                    jt.start(); 
                } 
                if (updateJobNode(jn) == null) { 
                    jobs.removeElementAt(i); 
                    dlock.release(); 
                } 
            } else { 
                long diff = jn.executeAt.getTime() - now; 
                minDiff = Math.min(diff, minDiff); 
                i++; 
            } 
        } 
        return minDiff; 
    } 
 
    public synchronized void run() { 
        while (true) { 
            long waitTime = runJobs(); 
            try { 
                wait(waitTime); 
            } catch (Exception e) {}; 
        } 
    } 
 
    public void execute(Runnable job) { 
        executeIn(job, (long)0); 
    } 
 
    public void executeIn(Runnable job, long millis) { 
        executeInAndRepeat(job, millis, 1000, ONCE); 
 
    } 
    public void executeInAndRepeat(Runnable job, 
                                   long millis, long repeat) { 
        executeInAndRepeat(job, millis, repeat, FOREVER); 
 
    } 
    public void executeInAndRepeat(Runnable job, long millis, 
                                   long repeat, int count) { 
        Date when = new Date(System.currentTimeMillis() + millis); 
        executeAtAndRepeat(job, when, repeat, count); 
    } 
 
    public void executeAt(Runnable job, Date when) { 
        executeAtAndRepeat(job, when, 1000, ONCE); 
    } 
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    public void executeAtAndRepeat(Runnable job, Date when, 
                                   long repeat) { 
        executeAtAndRepeat(job, when, repeat, FOREVER);  
    } 
 
    public void executeAtAndRepeat(Runnable job, Date when, 
                                   long repeat, int count) { 
        JobNode jn = new JobNode(); 
        jn.job = job; 
        jn.executeAt = when; 
        jn.interval = repeat; 
        jn.count = count; 
        addJob(jn); 
    } 
 
    public void cancel(Runnable job) { 
        deleteJob(job); 
    } 
} 

Surprisingly, the implementation of a job scheduler is fairly simple: we just need to iterate over the 
requested jobs (the elements of the jobs vector) and either add the jobs that need to be executed to a 
thread pool for processing or start a new thread to execute the job. In addition, we need to find the 
time for the job that is due to run next, and wait for this time to occur. This entire process is then 
repeated. 

For completeness, we've added a little complexity in our JobScheduler class. In addition to accepting a 
runnable object that can be executed and a time at which to perform the job, we also accept a count of 
the number of times the job is to be performed and the time to wait between executions of the job. 
Hence, after a job is executed, we need to calculate whether another execution is necessary and when 
to perform this execution. 

In our JobScheduler class, this is all handled by a single thread that calls the runJobs() method. The 
task of deciding whether the job needs to be executed again is done by the updateJobNode() method; 
adding jobs to and deleting jobs from the requested jobs vector is accomplished by the addJob() and 
deleteJob() methods, respectively. Most of the logic for the JobScheduler class is actually the 
implementation of the many options and methods in the interface provided for the programmer. 

There are eight methods provided to the programmer in our JobScheduler class: 

public void execute(Runnable job)  

Used for jobs that are executed once; simply runs the job. 

public void executeIn(Runnable job, long millis)  

Used for jobs that are executed once; runs the job after the specified number of milliseconds 
have elapsed. 

public void executeAt(Runnable job, Date when)  

Used for jobs that are executed once; runs the job at the time specified. 

public void executeInAndRepeat(Runnable job, long millis, long repeat)  
public void executeInAndRepeat(Runnable job, long millis, long repeat, int count)  

Used for repeating jobs. These methods run the job after the number of milliseconds specified 
by the millis parameter has elapsed. Then they run the job again after the number of 
milliseconds specified by the repeat parameter has elapsed. This process is repeated as 
specified by the count parameter. If no count is specified, the job will be repeated forever. 

The constants HOURLY, DAILY, WEEKLY, MONTHLY, and YEARLY may also be passed as the 
repeat parameter. The HOURLY, DAILY, and WEEKLY parameters are provided for convenience. 
However, the MONTHLY and YEARLY parameters are processed differently by the job scheduler 
since the scheduler has to take into account the different number of days in the month and the 
leap year. 



Java Threads, 2nd edition 
 

 page 135

public void executeAtAndRepeat(Runnable job, Date when, long repeat)  
public void executeAtAndRepeat(Runnable job, Date when, long repeat, int count)  

Used for repeating jobs. These methods run the job at the time specified, then run the job 
again after the specified number of milliseconds has elapsed. This process is repeated as 
specified by the count parameter. If no count is specified, the job will be repeated forever. 

These methods also support the HOURLY, DAILY, WEEKLY, MONTHLY, and YEARLY constants. 

public void cancel(Runnable job)  

Cancels the specified job. No error is generated if the job is not in the requested jobs vector, 
since it is possible that the job has executed and been removed from the vector before the 
cancel() method is called. If the same job is placed on the list more than once, this method 
will remove the first job that it finds on the list. 

As rich as this set of methods is, it can be considered weak by those who have used job schedulers 
provided by some operating systems. In those systems, developers can specify criteria such as day of 
the week, day of the month, week of the year, and so on. 

Criteria for jobs are often defined this way. We do not think of a backup as running on a particular day 
and time, but on a particular day of the week (e.g., every Sunday at 2:00 A.M.). Paychecks are issued 
on the 1st and 15th day of the month. Vacation time-shares are assigned by the week in the year. With 
design requirements that are modeled from the real world, the job scheduler may have to be modified 
to support these requirements. 

The task of enhancing the job scheduler for these cases is left as an exercise for the reader. However, 
this is not very difficult to accomplish, given the availability of the Calendar class. For example, with 
this class, we can easily develop the enhancement for executing a job at a certain day of the week, 
starting from a particular day: 

public void executeAtNextDOW(Runnable job, Date when, int DOW) { 
    Calendar target = Calendar.getInstance(); 
    target.setTime(when); 
    while (target.get(Calendar.DAY_OF_WEEK) != DOW) 
        target.add(Calendar.DATE, 1); 
    executeAt(job, target.getTime()); 
} 

With this enhancement, we can now execute a job on Sunday like this: 

executeAtNextDOW(job, new Date(), Calendar.SUNDAY); 

Should the job scheduler be implemented by using a daemon thread? At first glance, this seems like a 
good choice. After all, if there are no user threads, then there are no jobs to be scheduled. The problem 
is that there may be jobs on the vector that are already scheduled and are waiting to be executed. Since 
these jobs do not schedule themselves, there are no threads assigned to them while they wait on the 
vector. It is therefore possible for all user threads to exit while there are still jobs to be scheduled. In 
this situation, if the job scheduler was configured as a daemon thread, it would exit with jobs still 
waiting to be executed. 

By using the DaemonLock class that we developed in Chapter 6, we can do a little better: we can make 
the job scheduler a daemon thread, and we can ensure that it will exit only when there are no more 
jobs to schedule and there are no other user threads running. All we need to do is acquire the daemon 
lock when jobs are added to the scheduler, and release the daemon lock when jobs are removed from 
the scheduler. This only works when the job scheduler is constructed without a thread pool (that is, 
when each job will be run in a new thread), since the thread pool threads are not daemon threads.  
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7.4 Summary 

We've shown four scheduling techniques in the chapter. The most useful of these is the notion of 
thread pools: a set of threads that sit idle until work is available for them. A thread pool is very useful 
in limiting the number of threads that are active within the virtual machine while making the best use 
of the host machine's CPU resources. 

We've also shown two techniques that can be used to perform (or limit) round-robin scheduling. 
Neither of these techniques is completely satisfactory: the SimpleScheduler is not guaranteed to work 
on all platforms, even though it works on the vast majority of them, and the CPUScheduler may show 
some anomalous behavior when threads under its control block. Nonetheless, for CPU-intensive 
threads, these techniques are very useful when you need to influence the scheduling behavior that the 
Java virtual machine and its host operating system provide for you. 

Finally, we've shown how to perform batch-oriented job scheduling without requiring multiple timer 
threads for each job. While this is a useful mechanism in its own right, it also shows how many of the 
other techniques that we've already developed can be applied to writing thread utilities.  
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Chapter 8. Advanced Synchronization Topics 
In this chapter, we will look into some of the more advanced issues related to data synchronization. 
When you write a Java program that makes use of several threads, issues related to data 
synchronization are those most likely to create difficulties in the design of the program, and errors in 
data synchronization are often the most difficult to detect, since they depend on events happening in a 
specific order. Often an error in data synchronization can be masked in the code by timing 
dependencies. You may notice some sort of data corruption in a normal run of your program, but 
when you run the program in a debugger or add some debugging statements to the code, the timing of 
the program is completely changed, and the data corruption no longer occurs. 

8.1 Synchronization Terms 

Programmers with a background in a particular threading system generally tend to use terms specific 
to that system to refer to some of the concepts we discuss in this chapter, and programmers without a 
background in certain threading systems will not necessarily understand the terms we choose to use. 
So here's a comparison of particular terms you may be familiar with and how they relate to the terms 
in this chapter: 

Barrier  

A barrier is a rendezvous point for multiple threads: all threads must arrive at the barrier 
before any of them are permitted to proceed past the barrier. Java has no barrier class, but we 
implemented one in Chapter 5. 

Condition variable  

A condition variable is not actually a lock: it is a variable associated with a lock. Condition 
variables are often used in the context of data synchronization. Condition variables generally 
have an API that achieves the same functionality as Java's wait and notify mechanism; in that 
mechanism, the condition variable is actually the object the lock is protecting. We 
implemented a condition variable in Chapter 5. 

Critical section  

A critical section is the same as a synchronized method or block. Critical sections do not nest 
like synchronized methods or blocks. 

Event variables  

Event variables are the same as condition variables. 

Lock  

This term refers to the access granted to a particular thread that has entered a synchronized 
method or a synchronized block. We say that a thread that has entered such a method or block 
has acquired the lock. As we discussed in Chapter 3, this lock is associated with either a 
particular instance of an object or a particular class. 

Monitor  

A generic synchronization term used inconsistently between threading systems. In some 
systems, a monitor is simply a lock; in others, a monitor is similar to the wait and notify 
mechanism. 

Mutex  

Another term for a lock. Mutexes do not nest like synchronized methods or blocks and 
generally can be used across processes at the operating-system level. 

Reader-writer locks  

A lock that can be acquired by multiple threads simultaneously as long as the threads agree to 
only read from the shared data, or that can be acquired by a single thread that wants to write 
to the shared data. Java has no reader-writer locks, but we'll develop a reader-writer lock class 
later in this chapter. 
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Semaphores  

Semaphores are used inconsistently in computer systems. Many developers use semaphores 
to lock objects in the same way Java locks are used; this usage makes them equivalent to 
mutexes. A more sophisticated use of semaphores is to take advantage of the counter 
associated with them to nest acquisition to the critical section of the code; Java locks are 
exactly equivalent to semaphores in this usage. Semaphores are also used to gain access to 
resources other than code; the example of acquiring resources that we showed in the 
ResourceThrottle class in Chapter 4 implements this type of semaphore behavior. 

8.2 Preventing Deadlock 

Deadlock between threads competing for the same set of locks is the hardest problem to solve in any 
threaded program. It's a hard enough problem, in fact, that we will not solve it - or even attempt to 
solve it. Instead, we'll try to offer a good understanding of deadlock and some guidelines on how to 
prevent it. Preventing deadlock is completely the responsibility of the Java developer - the Java virtual 
machine will not do deadlock prevention or deadlock detection on your behalf. 

We'll look at deadlock in conjunction with the following code, which emulates how a kitchen might 
operate. When a cook wants to make cookies, she grabs the measuring cup to measure ingredients into 
the bowl; when a cook wants to make an omelette, he grabs a bowl, beats some eggs, and then 
measures out the eggs for each individual omelette. This is the order a typical cook uses to make these 
items, and as long as we have only one cook, everything is fine with these procedures. If we have two 
cooks, however, and one wants to make cookies while the other wants to make omelettes, we have a 
deadlock situation: the omelette maker needs the measuring cup to measure out the eggs that are in 
the mixing bowl; the cookie maker needs the bowl to put in the flour that is in the measuring cup:[1] 

[1] Obviously, the code examples in this section are not complete examples. In addition to lacking all the methods 
and classes to which we refer, we're missing some other useful methods as well. For example, our class does not 
include a recipe for soup, since a multithreaded recipe would spoil the broth. 

public class  
Kitchen { 
    static MeasuringCup theCup; 
    static Bowl theBowl; 
 
    public void makeCookie() { 
 
        synchronized(theCup) { 
            theCup.measureOut(1, theFlour); 
            synchronized(theBowl) { 
                theBowl.putIngredients(theCup); 
                theBowl.mix(); 
            } 
        } 
    } 
 
    public void makeOmelette() { 
 
        synchronized(theBowl) { 
            Eggs e[] = getBrokenEggs(); 
            theBowl.putIngredients(e); 
            theBowl.mix(); 
            synchronized(theCup) { 
                theCup.measureOut(theBowl); 
            } 
        } 
    } 
} 

Like previous examples of deadlock we've seen, this example is simple, but more complicated 
conditions of deadlock follow the same principles outlined here: they're harder to detect, but nothing 
more is involved than two or more threads attempting to acquire each other's locks. 

Deadlock is difficult to detect because it can involve many classes that call each other's synchronized 
sections (that is, synchronized methods or synchronized blocks) in an order that isn't apparently 
obvious. Say we have 26 classes, A to Z, and that the synchronized methods of class A call those of 
class B, those of class B call class C, and so on, until those of class Z call those of class A. This leads us 
into the same sort of deadlock situation that we had between our makeCookie() and makeOmelette() 
methods, but it's unlikely that a programmer examining the source code would detect that deadlock. 
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Nonetheless, a close examination of the source code is the only option presently available to determine 
if deadlock is a possibility. Java virtual machines do not detect deadlock at runtime, and while it is 
possible to develop tools that examine the source code to detect potential deadlock situations, no such 
tools exist yet for Java. 

The simplest way to avoid deadlock is to follow the rule that a synchronized method should never call 
a synchronized method. That's a good rule, often advocated, but it's not the ideal rule for two reasons: 

• It's impractical: many useful Java methods are synchronized, and you'll want to call them 
from your synchronized method. As an example, we've called the addElement() method of 
Java's Vector class from several of our synchronized methods. 

• It's overkill: if the synchronized method you're going to call does not in turn call another 
synchronized method, there's no way that deadlock can occur (which is why we always got 
away with calling the addElement() method from a synchronized method; the addElement() 
method makes no further synchronization calls). Generically, the synchronized method can 
call other synchronized methods in ways we'll explore later. 

Nonetheless, if you can manage to obey this rule, there will be no deadlock in your program. 

Another often-used technique to avoid deadlock is to lock some higher-order object that is related to 
the many lower-order objects we'll need to use: in our example, that means locking the kitchen instead 
of locking the individual utensils as we use them. This makes our methods synchronized as follows: 

public class Kitchen { 
    public synchronized void makeCookie() { ... } 
    public synchronized void makeOmelette() { ... } 
} 

Of course, we don't need to lock everything. We could create a BusyFlag for the measuring cup and 
bowl combination and just acquire that lock whenever we needed one or the other utensil. We also 
could make it a programmatic rule that to use either the measuring cup or mixing bowl, you must 
acquire the lock only for the mixing bowl. All these variations of locking multiple objects suffer from 
the same lock granularity problem that we're about to discuss. 

The problem with this technique is that it often leads to situations where the locking granularity is not 
ideal. By synchronizing the methods of the Kitchen class, we are essentially preventing more than one 
cook from using the kitchen at a time; the purpose of having multiple threads is to allow more than 
one cook to use the kitchen. If we've done our program design correctly, there was probably a reason 
why we attempted to acquire multiple locks rather than a single global lock. Solving deadlock issues by 
violating this design becomes somewhat counterproductive. 

The most practical rule to avoid deadlock is to make sure that locks are always acquired in the same 
order. In the case of our deadlock example, this would mean making sure that the mixing bowl lock is 
always acquired before the measuring cup lock (or vice versa, as long as we're consistent). This implies 
the need for a lock hierarchy among classes. The lock hierarchy is unrelated to the Java class 
hierarchy: it is a hierarchy of objects rather than of classes. Furthermore, the hierarchy of the locks is 
unrelated to the hierarchy of the classes: the MeasuringCup and Bowl classes are probably sibling 
classes in the class hierarchy, but in the lock hierarchy, we must place one object above the other. The 
lock hierarchy is a queue rather than a tree: each object in the hierarchy must have one and only one 
parent object (as in the Java class hierarchy), but it must have one and only one descendant as well. 

If you're developing a complex program in Java, it's a good idea to develop a lock hierarchy when you 
develop your class hierarchy; sample hierarchies are shown in Figure 8.1. But since there is no 
mechanism to enforce the lock hierarchy, it's up to your good programming practices to make sure 
that the lock hierarchy is followed. 



Java Threads, 2nd edition 
 

 page 140

We can use this rule to prevent deadlock in our kitchen by requiring that all methods acquire the bowl 
before the measuring cup even if they intend to use the measuring cup first. We'd rewrite the 
makeCookie() method like this: 

public void makeCookie() { 
 
    synchronized(theBowl) { 
        synchronized(theCup) { 
            theCup.measureOut(1, theFlour); 
            theBowl.putIngredients(theCup); 
            theBowl.mix(); 
        } 
    } 
} 

Following this lock acquisition hierarchy is the best way to guarantee that deadlock will not occur in 
your Java program when you use the standard synchronization techniques of the Java language. 

Figure 8.1. Class and lock hierarchies 

 
 
What about the BusyFlag class that we've developed; could that be useful in preventing deadlock? 
The answer is yes, to a point. Using the BusyFlag class adds a certain complexity to a Java program, 
and it introduces the possibility of a new kind of deadlock that standard Java synchronization 
techniques don't allow. But the BusyFlag class also allows us to build more complicated deadlock 
recovery into our program, which may be useful in certain circumstances. 

The feature in the BusyFlag class that helps us avoid deadlock is the tryGet-BusyFlag() method. In 
standard Java synchronization calls, there is no such concept as testing the acquisition of a lock: 
standard Java threads attempt to acquire the lock and block until the lock is acquired. The BusyFlag 
class allows us to see if we can acquire the lock and also attempts some sort of recovery if the flag is 
busy. 

Let's rewrite our kitchen example to use the BusyFlag: 

public class  
Kitchen { 
    static MeasuringCup theCup; 
    static Bowl theBowl; 
    static BusyFlag theCupFlag, theBowlFlag; 
 
    public void makeCookie() { 
        theCupFlag.getBusyFlag(); 
        theCup.measureOut(1, theFlour); 
        theBowlFlag.getBusyFlag(); 
        theBowl.putIngredients(theCup); 
        theBowl.mix(); 
        theBowlFlag.freeBusyFlag(); 
        theCupFlag.freeBusyFlag(); 
    } 
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    public void makeOmelette() { 
 
        theBowlFlag.getBusyFlag(); 
        Eggs e[] = getBrokenEggs(); 
        theBowl.putIngredients(e); 
        theBowl.mix(); 
        theCupFlag.getBusyFlag(); 
        theCup.measureOut(theBowl); 
        theCupFlag.freeBusyFlag(); 
        theBowlFlag.freeBusyFlag(); 
    } 
} 

So far we've just substituted the BusyFlag class for Java's standard synchronized blocks, with the 
effect that we can still have deadlock. But we could go further and rewrite the makeCookie() method 
like this: 

public void makeCookie() { 
    theCupFlag.getBusyFlag(); 
    theCup.measureOut(1, theFlour); 
    if (theBowlFlag.tryGetBusyFlag()) { 
        theBowl.putIngredients(theCup); 
        theBowl.mix(); 
        theBowlFlag.freeBusyFlag(); 
    } 
    else { 
        // ... Do something else ... 
    } 
    theCupFlag.freeBusyFlag(); 
} 

Here we've prevented deadlock by testing to see if the bowl's BusyFlag is free as we grab it. If the flag 
is free, we'll grab the lock and continue to make our cookies. Even if, at this point, another cook thread 
comes along to make an omelette, we won't have deadlock, because that thread blocks until we've 
released the locks for both the bowl and the cup. 

Whether or not we've achieved anything by preventing deadlock depends on what logic we could put 
into the else clause of the makeCookie() method. Perhaps there is another bowl we could use in the 
else clause, but that doesn't do us any good: what if that bowl is being used by a cook thread 
executing the makeTrifle() method? The logic in the else statement must do one of two things: it 
must do either something that requires no utensils to be locked or something that allows the 
measuring cup's BusyFlag to be released. If we have a square of waxed paper available, we could put 
the flour onto the waxed paper and then wait for the bowl: 

public void makeCookie() { 
    theCupFlag.getBusyFlag(); 
    theCup.measureOut(1, theFlour); 
    if (theBowlFlag.tryGetBusyFlag()) { 
        theBowl.putIngredients(theCup); 
        theBowl.mix(); 
        theBowlFlag.freeBusyFlag(); 
        theCupFlag.freeBusyFlag(); 
    } 
    else { 
        WaxedPaper thePaper = new WaxedPaper(); 
        thePaper.emptyOnto(theCup); 
        theCupFlag.freeBusyFlag(); 
        theBowlFlag.getBusyFlag(); 
        theBowl.putIngredients(thePaper); 
        theBowl.mix(); 
        theBowlFlag.freeBusyFlag(); 
    } 
} 
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This type of logic would not have been possible with the synchronized keyword since we cannot 
release the lock at will. To use Java's synchronized keyword, we would always have had to use waxed 
paper: 

public void makeCookie() { 
    WaxedPaper thePaper = new WaxedPaper(); 
    synchronized(theCup) { 
        theCup.measureOut(1, theFlour); 
        thePaper.emptyOnto(theCup); 
    } 
 
    synchronized(theBowl) { 
        theBowl.putIngredients(thePaper); 
        theBowl.mix(); 
    } 
} 

The code using the synchronized keyword is certainly cleaner, easier to understand, and easier to 
maintain. But in a world where waxed paper is a rare commodity, the BusyFlag code has the 
advantage of not using scarce resources unless it is necessary to do so. In real-world programs, the 
scarce resource might be a slow but always available implementation of a particular algorithm, a very 
memory-intensive operation, or something similar. 

Using the BusyFlag is also more complex than the technique of using the lock hierarchy. But here 
again, there is an advantage to the BusyFlag code: there is a larger degree of parallelism in the 
BusyFlag example than in the ordered lock acquisition example. In the BusyFlag example, one cook 
thread could be measuring the flour at the same time another cook thread is whisking the eggs for the 
omelette, whereas in the ordered lock acquisition example, the omelette maker must wait to whisk the 
eggs until the cookie maker has released both utensils.  

You must decide whether these types of benefits outweigh the added complexity of the code when you 
design your Java program. If you start by creating a lock hierarchy, you'll have simpler code at the 
possible expense of the loss of some parallelism. We think that it's easier to write the simpler code first 
and then address the parallelism problems if they become a performance bottleneck.  

8.2.1 Another Type of Deadlock 

In our last example of the kitchen with the BusyFlag, we introduced the possibility of another type of 
deadlock that could not have occurred had we used only Java's synchronized keyword. At issue is 
what happens if a thread should die unexpectedly when it is holding a lock. 

Let's simplify our example somewhat by changing the class so that it has only a single synchronized 
method. The class definition would look something like this: 

public class Kitchen { 
    public synchronized void makeCookie() { ... } 
} 

Now we have two cook threads, one that is executing the makeCookie() method and another that is 
blocked attempting to enter the makeCookie() method. Under normal circumstances, the first thread 
completes the makeCookie() method and exits the method, at which time the second thread has the 
opportunity to enter the makeCookie() method and make its own cookies. 

What happens instead if the first thread encounters a runtime exception and terminates? Under 
many threading systems, this leads to a type of deadlock, because the thread that terminates does not 
automatically release the locks it held. Under those systems, the second thread would wait forever 
trying to make its batch of cookies because it can't acquire the lock. In Java, however, locks are always 
given up when the thread leaves the scope of the synchronized block, even if it leaves that scope due to 
an exception. So in Java, this type of deadlock never occurs. 

But if we use the BusyFlag class instead of Java's synchronized keyword, we've introduced the 
possibility of this type of deadlock. In this case, our methods look like this: 

public void makeCookie() { 
    flag.getBusyFlag(); 
    // ... Do some work ... 
    flag.freeBusyFlag(); 
} 
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If in the process of doing some work we encounter a runtime exception, the BusyFlag will never be 
freed. This means that our second cook thread would never be able to make its batch of cookies. Note 
that this problem applies only to runtime exceptions, since Java requires you to catch all other types of 
exceptions. Often a runtime exception is a catastrophic error that you can't recover from anyway, so it 
may not matter if you didn't release the BusyFlag, but we wouldn't make that assumption. 

There is a way around this: we can use Java's finally clause to make sure the BusyFlag is freed no 
matter what happens during the execution of our method. To use the BusyFlag so that it has the same 
lock semantics as the synchronized keyword, you need to do something like this: 

public void makeCookie() { 
    try { 
        flag.getBusyFlag(); 
        // ... Do some work ... 
    } finally { 
        flag.freeBusyFlag(); 
    } 
} 

Now our BusyFlag behaves the same as if we'd used the synchronized keyword. Clearly, in the 
examples we've used in this chapter, we can always arrange our try/finally clauses so that the locks 
are released even when an exception is encountered. But in other examples we've seen, this is not 
always possible. One technique that is possible with the BusyFlag class is to release the lock in a 
method other than the one in which the lock was acquired. If you use that technique, you have to be 
aware that this new type of deadlock is still possible. 

By the way, the fact that Java's synchronized keyword does not allow this type of deadlock is not 
necessarily a good thing. When a thread encounters a runtime exception while it is holding a lock, 
there's the possibility - indeed, the expectation - that it will leave the data it was manipulating in an 
inconsistent state. If another thread is then able to acquire the lock, it may encounter this inconsistent 
data and proceed erroneously. In our example, if the first thread was in the middle of making 
chocolate-chip cookies when the runtime exception occurred, it would have left a bunch of ingredients 
in the bowl. Under normal circumstances, the makeCookie() method would have cleaned out the 
bowl, but when the exception occurred, that didn't happen. So now our second thread comes along 
attempting to make oatmeal-raisin cookies; the end result is chocolate-chip-oatmeal-raisin cookies. 

We could put the logic that cleans the bowl into the finally clause in an attempt to prevent this 
problem, but what happens if that method throws an exception? Given Java's semantics, this problem 
is impossible to solve. In fact, it's exactly this problem that led to the deprecation of the stop() 
method: the stop() method works by throwing an exception, which has the potential to leave key 
resources in the Java virtual machine in an inconsistent state. 

Hence, we cannot solve this problem completely. In many cases, it's better to use the BusyFlag and 
risk deadlock if a thread exits unexpectedly than to allow a second thread to use that inconsistent data. 
Consider a stock trading system in which a thread is in the process of updating the current price 
information when it encounters the runtime exception: if another thread accesses the incorrect 
current price and a trade is made on the wrong price, the exposure of the firm executing that trade 
could be in the millions of dollars. In cases like this, it's really better to use some sort of back-end 
database that has transactional integrity built into it so that you're protected against an unexpected 
thread termination. The logic to solve this problem is standard in every database package that 
implements a two-phase commit. You could write such logic into your Java program directly, but it's 
difficult to get right. 

8.3 Lock Starvation 

Whenever multiple threads compete for a scarce resource, there's a danger of starvation. Earlier we 
discussed this concept in the context of CPU starvation: with a bad choice of scheduling options, some 
threads never had the opportunity to become the currently running thread and suffered from CPU 
starvation. 
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A similar situation is theoretically possible when it comes to locks granted by the synchronized 
keyword. Lock starvation occurs when a particular thread attempts to acquire a lock and never 
succeeds because another thread is already holding the lock. Clearly, this can occur on a simple basis if 
one thread acquires the lock and never releases it: all other threads that attempt to acquire the lock 
will never succeed and will starve. But lock starvation can be more subtle than that: if there are six 
threads competing for the same lock, it's possible that each of five threads will hold the lock for only 
20% of the time, thus starving out the sixth thread. 

Like CPU starvation, lock starvation is not something most threaded Java programs need to consider. 
If our Java program is producing a result in a finite period of time, then eventually all threads in the 
program will acquire the lock, if only because all the other threads in the program have exited. But 
also like CPU starvation, lock starvation includes the question of fairness: there are certain times 
when we want to make sure that threads acquire locks in a reasonable order, so that one thread won't 
necessarily have to wait for all other threads to exit before it has its chance to acquire a lock. 

Consider the case of two threads that are competing for a lock. Assume that thread A acquires the 
object lock on a fairly periodic basis, as shown in Figure 8.2. 

Figure 8.2. Call graph of synchronized methods; thread A repeatedly calls a 
synchronized method 

 
 
Also assume that the two threads are operating under a timeslicing scheduler that selects a new thread 
every 500 milliseconds. Here's what happens at the various points on the graph: 

T0  

At time T0, both thread A and thread B are in the runnable state, and thread A is the currently 
running thread. 

T1  

Thread A is still the currently running thread, and it acquires the object lock when it enters 
the synchronized block. 

T2  

A timeslice occurs; this causes thread B to become the currently running thread. 

T3  

Very soon after becoming the currently running thread, thread B attempts to enter the 
synchronized block. This causes thread B to enter the blocked state, which in turn causes 
thread A to become the currently running thread. Thread A continues executing in the 
synchronized block. 

T4  

Thread A exits the synchronized block. This causes thread B to enter the runnable state but 
does not affect the timeslicing of the scheduler, so thread A continues to be the currently 
running thread. 
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T5  

Thread A once again enters the synchronized block and acquires the lock. Thread B remains in 
the runnable state. 

T6  

Thread B once again becomes the currently running thread. It immediately tries to enter the 
synchronized block, but the lock for the synchronized block is once again held by thread A, so 
thread B immediately enters the blocked state. Thread A is left to become the currently 
running thread again, and we are now at the same state we were in at time T3. 

It's possible for this cycle to continue forever, so that even though thread B is often in the runnable 
state, it can never acquire the lock and actually do useful work. 

Clearly this example is a pathological case: the timeslicing must occur only during those time periods 
when thread A holds the lock for the synchronized block. With two threads, that's extremely unlikely 
and generally indicates that thread A is holding the lock almost continuously. With several threads, 
however, it's not out of the question that one thread may find that every time it is scheduled, another 
thread already holds the lock the first wants. 

The common pitfall that creates lock starvation is to implement code similar to the following:  

public class MyThread extends Thread { 
    public void run() { 
        while (true) { 
            synchronized(someObject) { 
                // ... Do some calculations ... 
            } 
        } 
    } 
} 
 
public class Test { 
 
    public static void main(String args[]) { 
        MyThread t1, t2; 
        t1 = new MyThread(); 
        t2 = new MyThread(); 
        t1.start(); 
        t2.start(); 
    } 
} 

At first glance, we might expect this code to work just fine, thinking that when thread t1 exits the 
synchronized block, thread t2 then immediately gets the lock on someObject and the two threads 
continue alternating the acquisition of the lock. But as we've seen, that is not the case: unless the 
timeslicing occurs during the short interval between the end of the synchronized block (when the lock 
is released) and the beginning of the next iteration of the loop (when the lock is reacquired), thread t2 
will never acquire the someObject lock and will never become the currently running thread. Adding a 
call to the yield() method will solve this simple case, but it is not a general solution. 

There are two points to take away from this: 

Acquisition of locks does not queue  

When a thread attempts to acquire a lock, it does not check to see if another thread is already 
attempting to acquire the lock (or, more precisely, if another thread has tried to acquire the 
lock and blocked because it was already held). In pseudocode, the process looks like this: 

while (lock is held) 
    wait for a while 
acquire lock 

For threads of equal priority, there's nothing in this process that prevents a lock from being 
granted to one thread even if another thread is waiting. 

Releasing a lock does not affect thread scheduling  

When a lock is released, any threads that were blocked waiting for that lock are moved from 
the blocked state into the runnable state. However, no actual scheduling occurs, so none of the 
threads that have just moved into the runnable state becomes the currently running thread; 
the thread that has just released the lock remains the currently running thread (again, 
assuming that all threads had the same priority). 
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Nonetheless, lock starvation remains, as might be guessed from our example, something that occurs 
only in rare circumstances. In fact, each of the following circumstances must be present for lock 
starvation to occur: 

Multiple threads are competing for the same lock  

This lock becomes the scarce resource for which some threads may starve. 

There must be a period of time during which there is not enough CPU time to accommodate 
all the threads. At least two threads must always be in the runnable state during this time 
period, or a thread that holds the lock must enter the blocked state while it still holds the lock 
(which is generally a bad thing). 

If there is adequate CPU time to satisfy all threads, and no thread blocks while holding the 
lock, then a thread that wants to acquire the lock must at some point actually acquire the lock, 
if only because it's the only thread in the runnable state. 

The results that occur during this period of contention must be interesting to us  

If, for example, we're calculating a big matrix, there's probably a point in time at the 
beginning of our calculation during which multiple threads are competing for the same lock 
and the CPU. But since all we care about is the final result of this calculation, it doesn't matter 
to us that some threads are temporarily starved for the lock: we'll still get the final answer in 
the same amount of time. 

As in the case of CPU starvation, we're only concerned about lock starvation if there's a period 
of time during which it matters that the lock be given out fairly. 

These threads must all have the same priority  

In the example we discussed earlier, if thread B has a higher priority than thread A, consider 
what would happen at time T4. When thread B moves from the blocked state to the runnable 
state because thread A has released the lock, thread B becomes the currently running thread 
by virtue of its priority. 

Of course, if thread A has a higher priority than thread B, thread B would still never get the 
opportunity to become the currently running thread, but in that case, thread B would be 
subject to CPU starvation rather than lock starvation. 

These threads must be under control of a round-robin scheduler  

If the equal-priority threads are not under control of a round-robin scheduler, they are again 
subject to CPU starvation rather than lock starvation. Note also that this round-robin 
scheduler must not adjust the priorities of the threads, or the previous rule might be violated. 
Threads that are under control of the SimpleScheduler in Chapter 7 are subject to lock 
starvation, as are native threads. 

All of the properties of lock starvation stem from the fact that a thread attempting to acquire a lock 
checks only to see if another thread already holds the lock, and not if another thread is already waiting 
for the lock. So if we're in one of those rare situations where lock starvation can occur, we need to 
develop a lock that has a queue associated with it so that the lock is given out fairly to every thread 
that wants to acquire the lock. 

This is a simple class to write: we can use the Vector class to implement the queue, and then we need 
only write methods to allow classes to acquire and release the lock. The getBusyFlag() method 
places requests on the queue, and the freeBusyFlag() method notifies the next thread on the queue 
that the lock is now available. 
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Our QueuedBusyFlag class then looks like this: 

import java.util.Vector; 
 
 
public class QueuedBusyFlag extends BusyFlag { 
    protected Vector waiters; 
 
    public QueuedBusyFlag() { 
        waiters = new Vector(); 
    } 
 
    public synchronized void  
getBusyFlag() { 
        Thread me = Thread.currentThread(); 
        if (me == busyflag) { 
            busycount++; 
            return; 
        } 
        waiters.addElement(me); 
        while ((Thread) waiters.elementAt(0) != me) { 
            try { 
                wait(); 
            } catch (Exception e) {} 
        } 
        busyflag = me; 
        busycount = 0; 
    } 
 
    public synchronized void freeBusyflag() { 
 
        if (Thread.currentThread() != busyflag) 
            throw new IllegalArgumentException( 
                                    "QueuedBusyflag not held"); 
        if (busycount == 0) { 
            waiters.removeElementAt(0); 
            notifyAll(); 
            busyflag = null; 
        } 
        else busycount--; 
    } 
 
    public synchronized boolean tryGetBusyflag() { 
 
        if (waiters.size() != 0 && busyflag != Thread.currentThread()) 
            return false; 
        getBusyFlag(); 
        return true; 
    } 
} 

Although QueuedBusyFlag shares the same interface as the BusyFlag class, we've had to reimplement 
a number of methods. When a thread attempts to acquire a lock, it enters the getBusyFlag() method 
and puts itself into the waiters vector. It then waits until it is the first element in the waiters vector. 
Similarly, when a thread releases the lock, it removes itself from the waiters vector and notifies the 
other threads waiting on the vector that they should check to see if they are now first in line. 

This implementation is a little inefficient, in that it relies on the notifyAll() method to wake up the 
threads waiting to acquire the lock. If there are 30 threads waiting for the lock, all 30 threads will be 
wakened, even though only one thread will acquire the lock and the other 29 threads will just call the 
wait() method again. So you only want to use this technique in those special cases when you know 
that lock starvation will be a problem. We could develop a more efficient implementation by using the 
targeted notification technique we discussed in Chapter 4; we leave that as an exercise for the reader. 
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Since it is a BusyFlag, we can use this new class in a predictable fashion: 

public class  
DBAccess { 
    private QueuedBusyFlag lock; 
 
    public DBAccess() {  
        lock = new QueuedBusyFlag();  
    } 
    public Object read() { 
        Object o; 
        try { 
            lock.getBusyFlag(); 
            o = someMethodThatReturnsData(); 
            return o; 
        } finally { 
            lock.freeBusyFlag(); 
        } 
    } 
 
    public void write(Object o) { 
        try { 
            lock.getBusyFlag(); 
            someMethodThatSendsData(o); 
        } finally { 
            lock.freeBusyFlag(); 
        } 
    } 

There are no surprises to this code: the only difference between running code like this and running 
code with a standard BusyFlag is that the requests to the database in this case will be granted 
sequentially, whereas if we used a standard BusyFlag, the requests would be granted in a somewhat 
random order (depending on the underlying platform). 

8.3.1 Reader-Writer Locks 

Sometimes you need to read information from an object in an operation that might take a fairly long 
period of time. You'll need to lock the object so that the information you read is consistent, but you 
don't necessarily need to prevent another thread from also reading data from the object at the same 
time: as long as all the threads are only reading the data, there's no reason why they shouldn't read the 
data in parallel, since this doesn't affect the data each thread is reading. 

In fact, the only time we need data locking is when the data is being changed; that is, when the data is 
being written. The change to the data introduces the possibility that a thread reading the data sees the 
data in an inconsistent state. Until now, we've been content to have a lock that allowed only a single 
thread to access that data whether the thread is reading or writing the data, based on the theory that 
the lock is only held for a short period of time. 

If the lock needs to be held for a long period of time, it makes sense to consider the possibility of 
allowing multiple threads to read the data simultaneously so that these threads don't need to compete 
against each other to acquire the lock. Of course, we must still allow only a single thread to write the 
data, and we must make sure that none of the threads that were reading the data are still active while 
our single writer thread is changing the internal state of the data. 

Consider the case of a binary tree that contains some sort of information that is designed to be 
searched quite often by multiple threads. Depending on the amount of information contained in the 
binary tree, searching for a particular entry may require a long period of time. The interface for such a 
binary tree might look like this: 

public class  
BTree { 
    public synchronized boolean find(Object o) { 
        // Perform time-consuming search, returning the object if 
        // found or null if the object is not found 
    } 
 
    public synchronized void insert(Object o) { 
        // Perform a time-consuming insert 
    } 
} 
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The problem here is that if two threads call the find() method at the same time, one of them blocks 
while it waits to acquire the lock; this thread remains blocked for a long time while the first thread 
continues to perform its search. If these two threads are operating in a timesliced environment, they 
won't be able to timeslice since they're competing for the same single lock; if they're running on a 
machine with multiple CPUs, they won't both be able to execute at the same time on separate CPUs. If 
this binary tree is part of a server that is to be accessed by multiple clients, we'd really like the threads 
calling the find() method to operate in parallel. 

This is where the reader-writer lock comes in. If we have a lock that allows multiple threads to read a 
data structure simultaneously, we could use an interface that looks like this: 

public class BTree { 
    RWLock lock; 
    public boolean find(Object o) { 
        try { 
            lock.lockRead(); 
            // Perform time-consuming search, returning the object 
            // if found or null if the object is not found. 
            return answer; 
        } finally { 
            lock.unlock(); 
        } 
    } 
 
    public void insert(Object o) { 
        try { 
            lock.lockWrite(); 
            // Perform a time-consuming insert. 
        } finally { 
            lock.unlock(); 
        } 
    } 
} 

We now have the capability of allowing multiple threads to read the binary tree simultaneously, even 
though the binary tree still can be updated only by a single thread. 

The bad news is that the Java API does not provide anything like reader-writer locks; the good news is 
that writing your own reader-writer lock is not difficult. We'll now look at a simple implementation of 
a reader-writer lock: 

import java.util.*; 
 
class  
RWNode { 
    static final int READER = 0; 
    static final int WRITER = 1; 
    Thread t; 
    int state; 
    int nAcquires; 
    RWNode(Thread t, int state) { 
        this.t = t; 
        this.state = state; 
        nAcquires = 0; 
    } 
} 
 
public class  
RWLock { 
    private Vector waiters; 
 
    private int firstWriter() { 
        Enumeration e; 
        int index; 
        for (index = 0, e = waiters.elements(); 
                                e.hasMoreElements(); index++) { 
            RWNode node = (RWNode) e.nextElement(); 
            if (node.state == RWNode.WRITER) 
                return index; 
        } 
        return Integer.MAX_VALUE; 
    } 
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    private int getIndex(Thread t) { 
        Enumeration e; 
        int index; 
        for (index = 0, e = waiters.elements(); 
                                e.hasMoreElements(); index++) { 
            RWNode node = (RWNode) e.nextElement(); 
            if (node.t == t) 
                return index; 
        } 
        return -1; 
    } 
 
    public RWLock() { 
        waiters = new Vector(); 
    } 
 
    public synchronized void lockRead() { 
        RWNode node; 
        Thread me = Thread.currentThread(); 
        int index = getIndex(me); 
        if (index == -1) { 
            node = new RWNode(me, RWNode.READER); 
            waiters.addElement(node); 
        } 
        else node = (RWNode) waiters.elementAt(index); 
        while (getIndex(me) > firstWriter()) { 
            try { 
                wait(); 
            } catch (Exception e) {} 
        } 
        node.nAcquires++; 
    } 
    public synchronized void lockWrite() { 
        RWNode node; 
        Thread me = Thread.currentThread(); 
        int index = getIndex(me); 
        if (index == -1) { 
            node = new RWNode(me, RWNode.WRITER); 
            waiters.addElement(node); 
        } 
        else { 
            node = (RWNode) waiters.elementAt(index); 
            if (node.state == RWNode.READER) 
                throw new IllegalArgumentException("Upgrade lock"); 
            node.state = RWNode.WRITER; 
        } 
        while (getIndex(me) != 0) { 
            try { 
                wait(); 
            } catch (Exception e) {} 
        } 
        node.nAcquires++; 
    } 
 
    public synchronized void unlock() { 
        RWNode node; 
        Thread me = Thread.currentThread(); 
        int index; 
        index = getIndex(me); 
        if (index  > firstWriter()) 
            throw new IllegalArgumentException("Lock not held"); 
        node = (RWNode) waiters.elementAt(index); 
        node.nAcquires--; 
        if (node.nAcquires == 0) { 
            waiters.removeElementAt(index); 
            notifyAll(); 
        } 
    } 
} 

The interface to the reader-writer lock is very simple: there's a method lockRead() to acquire the 
read lock, a method lockWrite() to acquire the write lock, and a method unlock() to release the lock 
(only a single unlock() method is required, for reasons we'll explore in a moment). Just as in our 
QueuedBusyFlag class, threads attempting to acquire the lock are held in the waiters vector until 
they are first in line for the lock, but the definition of first in line has changed somewhat. 
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A Reader-Writer Lock Is a Single Lock 
You might be tempted to think of the reader-writer lock as two separate but related locks: a 
lock to read and a lock to write. You might be led to think this because of our vocabulary: 
we consistently refer to a reader lock and a writer lock as if there were two separate locks 
involved in this process. On a logical level, that's true, and we'll continue to use that 
vocabulary, but we're actually implementing a single lock. 

 
Because we need to keep track of how each thread wants to acquire the lock - whether it wants to 
acquire the read lock or the write lock - we need to create a class to encapsulate the information of the 
thread that made the request and the type of request it made. This is the RWNode class; our waiters 
queue now holds elements of type RWNode instead of the Thread elements that were present in the 
QueuedBusyFlag class. 

The acquisition of the read lock is the same as the logic of the QueuedBusyFlag class except for the 
new definition of first in line. First in line for the read lock means that no other node ahead of us in 
the waiters queue wants to acquire the write lock. If the nodes that are ahead of us in the waiters 
queue want only to acquire the read lock, then we can go ahead and acquire the lock. Otherwise, we 
must wait until we are in position zero. 

The acquisition of the write lock is stricter: we must be in position for the lock in order to acquire it, 
just as was required in our QueuedBusyFlag class. 

The logic to keep track of the number of times a particular thread has acquired a lock has undergone a 
slight change. In the QueuedBusyFlag class, we were able to keep track of this number as a single 
instance variable. Since the read lock can be acquired by multiple threads simultaneously, we can no 
longer use a simple instance variable; we must associate the nAcquires count with each particular 
thread. This explains the new logic in both acquisition methods that checks to see if there is already a 
node associated with the calling thread. 

Our reader-writer lock class does not have the notion of "upgrading" a lock; that is, if you hold the 
reader lock, you cannot acquire the writer lock. You must explicitly release the reader lock before you 
attempt to acquire the writer lock, or you will receive an IllegalArgumentException. If an upgrade 
feature were provided, the class itself would also have to release the reader lock before acquiring the 
writer lock. A true upgrade is not possible. 

Finally, our reader-writer lock class contains some helper methods to search the waiters queue for 
the first node in the queue that represents a thread attempting to acquire the write lock 
(firstWriter()) and to find the index in the queue of the node associated with the calling thread 
(getIndex()). We can't use the Vector class indexOf() method for this purpose because we'd have to 
pass the indexOf() method an object of type RWNode, but all we have is a thread. 

Figure 8.3 shows the state of the waiters queue through several attempts at lock acquisition. Threads 
that have acquired the lock have a white background, whereas threads that are waiting to acquire the 
lock have a shaded background; each box notes whether the thread in question is attempting to 
acquire the read or the write lock. 

At point 1, thread T1 has acquired the read lock. Since it is the only thread in the waiters queue, the 
getIndex() method returns while the firstWriter() method returns MAX_VALUE. Since the index 
was less than the first writer, the lock is granted. At point 2, thread T2 has requested (and been 
granted) the read lock based on the same logic. Here's a point at which two threads simultaneously 
have the read lock. 

At point 3, thread T3 attempts to acquire the write lock. Because the index of T3 in the queue is 2, it 
cannot grab the lock and instead executes the wait() method inside the lockWrite() method. Then 
at point 4, thread T1 releases the read lock. The unlock() method calls notifyAll(), which wakes up 
T3, but because T3's index in the queue is now 1, it again executes the wait() method. 
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Figure 8.3. Reader-writer lock queue 

 
 
At point 5, thread T1 again attempts to acquire the read lock, but this time, because its index in the 
queue (2) is greater than the index of the first writer (1), it does not immediately get the lock and 
instead executes the wait() method inside the lockRead() method. We might be tempted at this 
point to allow T1 to acquire the read lock since T2 already has the read lock and we generally allow 
multiple simultaneous acquisitions of the read lock. But if we implement that logic, we will starve the 
threads attempting to acquire the write lock: we could have multiple threads acquiring the read lock, 
and even though they might individually give up the lock frequently, one of them could always prevent 
a thread from acquiring the write lock. That's the rationale for always putting the requesting thread 
into the waiters queue and then testing its index against other threads in the queue, as happens again 
at point 6. 

At point 7, thread T2 releases the read lock, notifying all other threads that the lock is free. Because T3 
is a writer lock with an index of 0, the lockWrite() method gives it the lock while the other threads in 
the lockRead() method execute wait(). 

Finally, at point 8, thread T3 releases the lock. This time when the two remaining threads are notified 
that the lock is free, they are both able to acquire it, as their indices are less than MAX_VALUE (the 
integer returned when there are no threads attempting to acquire the write lock). Once again we have 
multiple threads that have simultaneous access to the read lock. This is also a case where the 
notifyAll() method makes it easy to wake up multiple threads at once.  

8.3.2 Priority-Inverting Locks 

The last example that we'll look at in this section is the starvation that is associated with priority 
inversion. On the virtual machines that we've looked at, priority inversion is solved by priority 
inheritance. 

But what if we need to use the BusyFlag class to lock at a large scope in our program? How does 
priority inheritance affect our BusyFlag class? Not surprisingly, it does not have any affect on the 
behavior of this class, because we are only simulating a lock, and are using Java's synchronization 
locks only to protect against the race conditions that occur within this task. Once a BusyFlag is 
acquired and the getBusyFlag() method exits, the synchronization lock protecting the 
getBusyFlag() method is released. As far as the Java virtual machine is concerned, no 
synchronization locks are held at this point. 

A low-priority thread that holds a BusyFlag will never have its priority adjusted by the virtual machine 
if a high-priority flag attempts to acquire the same BusyFlag: because they never attempt to execute 
the same synchronized method at the same time, the virtual machine is unaware that they are 
competing with each other at all. 
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We can easily implement a version of the BusyFlag class that has support for priority inheritance: 

public class  
PriorityBusyFlag extends BusyFlag { 
    protected int currentPriority; 
 
    public synchronized void getBusyFlag() { 
        while (tryGetBusyFlag() == false) { 
            Thread prevOwner = getBusyFlagOwner(); 
            try { 
                int curP = Thread.currentThread().getPriority(); 
                if (curP > prevOwner.getPriority()) { 
                    prevOwner.setPriority(curP); 
                } 
                wait(); 
            } catch (Exception e) {} 
        } 
    } 
 
    public synchronized boolean tryGetBusyFlag() { 
        boolean succeed = super.tryGetBusyFlag(); 
        if (succeed) 
            currentPriority = Thread.currentThread().getPriority(); 
        return succeed; 
    } 
 
    public synchronized void freeBusyFlag() { 
        if (getBusyFlagOwner() == Thread.currentThread()) { 
            super.freeBusyFlag(); 
            if (getBusyFlagOwner() == null) { 
                Thread.currentThread().setPriority(currentPriority); 
                notifyAll(); 
            } 
        } 
    } 
} 

Usage of the PriorityBusyFlag class is similar to usage of the BusyFlag class. The two differences are 
that the requesting thread will raise the priority of the thread that already owns the BusyFlag if the 
priority of the requesting thread is higher than the priority of the owning thread, and the original 
priority of the thread will be restored when the BusyFlag is freed. 

This behavior is functionally identical to native-threading systems that support priority inheritance. 
However, in a virtual machine, these details are handled internally. The best that we can do is to use 
the PriorityBusyFlag class in a cooperative manner by using the setPriority() method. If another 
thread also changes the priority of threads, or the threads themselves are changing their priority, this 
cooperative technique will not work.  

8.4 Thread-Unsafe Classes 

In a perfect world, we would not have to write this section: in that world, every class that you used 
would be correctly synchronized for use by multiple threads running simultaneously, and you would 
be free from considering synchronization issues whenever you used someone else's Java classes. 

Welcome to the real world. In this world, there are often times when you need to use classes that are 
thread unsafe - classes that lack the correct synchronization to be used by multiple threads. Just 
because we acknowledge that these circumstances exist does not mean that you are absolved from 
producing thread-safe classes in your own work: we urge you to make this a better world and correctly 
synchronize all of your own classes. 

In this section, we'll examine two techniques that allow you to deal with classes that are not thread 
safe. 

8.4.1 Explicit Synchronization 

Since its inception, Java has had certain classes that are collection classes: the Hashtable class, the 
Vector class, and others provide aggregates of objects. These classes all have the advantage that they 
are thread safe: their methods contain the necessary synchronization such that two threads that 
simultaneously insert objects into a vector, for example, will do so without corrupting the internal 
state of the vector. 
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Java 2 formalized the notion of a collection by introducing a number of collection classes; these are 
classes that implement either the Collection or the Map interface. There are a number of these classes: 
the HashMap and ArrayList classes, for example, provide similar semantics to the original Hashtable 
and Vector classes. But there is a big difference: most of the new collection classes are not thread safe. 

In fact, there is no rule about these classes: while most of them are not thread safe, some of them are 
(such as the original Hashtable class, which implements the Map interface). And most of the thread-
unsafe classes have the capability of providing a thread-safe implementation, so that when you deal 
with an object that is only identified by a generic type (such as Map), you are unsure as to whether the 
object in question is thread safe. 

 

Synchronized Collections 
As an aside, we'll mention that the Collection class has several methods - 
synchronizedCollection(), synchronizedMap(), synchronizedList(), and 
synchronizedSet() - that turn a thread-unsafe collection object into a thread-safe 
collection object. The techniques that we're discussing here apply only to the unsafe 
versions of collections; we're really just using the collection classes to illustrate our larger 
point. 

 
This all places a big burden on the developer, who must now figure out whether a particular Map 
object is thread safe, and, if not, must then ensure that the object is used correctly when multiple 
threads are present. The easiest way to do this is simply to explicitly synchronize all access to the 
object:  

import java.util.*; 
 
public class ArrayTest { 
    private ArrayList al; 
 
    public ArrayTest() { 
        al = new ArrayList(); 
    } 
 
    public void  
addItems(Object first, Object second) { 
        synchronized(al) { 
            al.add(first); 
            al.add(second); 
        } 
    } 
 
    public Object get(int index) { 
        synchronized(al) { 
            return al.get(index); 
        } 
    } 
} 

All accesses to the array list in this example are synchronized; now multiple threads can call the 
addItems() and get() methods of the ArrayTest without damaging the internal state of the array list. 

Note that we've made the array list itself private. In order for this technique to work, we have to 
ensure that no one inadvertently uses the array list without synchronizing it, and the simplest way to 
do that is to hide the actual array list within the object that uses it. That way, we only have to worry 
about accesses to the array list from within our ArrayTest class. 

The addItems() method shows one advantage of providing the collection classes as they are: we can 
add multiple items to the collection within a single synchronization block. This is more efficient than 
synchronizing the add() method of the ArrayList class. In our test class, we need only obtain the 
synchronization lock once; in the traditional Vector class, we'd have to obtain the synchronization lock 
twice. This efficiency comes at a high price, however: if you forget to synchronize the map correctly, 
you'll end up with a nasty race condition that will be very hard to track down. Which side you land on 
in this debate is a matter of personal preference. 
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This technique can be used with any thread-unsafe class provided that all accesses to the thread-
unsafe objects are synchronized as we've shown. There are some thread-unsafe classes (such as the 
JFC [Swing] classes, which we'll look at later) for which this technique will not work, since those 
classes internally call other thread-unsafe classes and do not synchronize access internally to those 
unsafe objects. But for unsafe data structure classes, explicit synchronization is the technique to use. 

8.4.1.1 Explicit synchronization and native code 

You must use explicit synchronization when you need to call a native library that is not thread safe. 
This may be a frequent occurrence, since developers who use C or other programming languages often 
do not consider that their libraries may be used in a threaded environment. 

However, there is a slight difference in this case. We cannot simply synchronize at the object level (as 
we did in the previous example), because every object is sharing the same native code: there is only 
one instance of the shared native library that is loaded into the virtual machine. Hence, we must 
synchronize at the class level, so that every object that uses the native library will share the same lock. 

It's simple to perform this task: 

public class  
AccessNative { 
    static { 
        System.loadLibrary("myLibrary"); 
    } 
    public static synchronized native void function1(); 
    public static synchronized native void function2(); 
    ... 
} 

Here we simply make each method that calls into the native library both static and synchronized. This 
ensures that only one thread in the virtual machine can enter the native methods at any point in time, 
since they all would have to acquire the single lock associated with the AccessNative class. 

There is one caveat here: if another class also loads the myLibrary library, threads executing objects of 
that class will be able to call into the same native library code concurrent with the threads executing 
methods of the AccessNative class. 

This technique is similar to one that was used by the JDBC-ODBC bridge: in early versions of the 
bridge, it was assumed that the underlying ODBC drivers were not thread safe, and so the bridge 
serialized access to the native library. This greatly reduced the utility of the bridge, however, since 
threads could not concurrently access the database - which is a problem for most database 
applications, where threads that access the database are often blocked waiting for I/O. 

In Java 2, versions of the JDBC-ODBC bridge now assume that the underlying ODBC driver is thread 
safe. If you have a thread-unsafe ODBC driver, it is your responsibility to make sure that access to the 
driver is synchronized correctly. This is easily achieved using a modification of the first technique that 
we examined: simply make sure that any access to the Connection object of the driver is synchronized. 
In this case, however, since you are dealing with native code, you must also ensure that only one 
Connection object that uses the ODBC driver is present within the virtual machine.  

8.4.2 Single-Thread Access 

The other technique to use with thread-unsafe classes is to ensure that only one thread ever accesses 
those classes. This is generally a harder task, but it has the advantage that it always works, no matter 
what those classes might do internally. This technique must be used whenever threads are present in a 
program that uses the Java Foundation Classes for its GUI. We'll first show you how to interact with 
the JFC specifically, and then generalize how that technique might be used with other classes 
(particularly with classes that you develop). 
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8.4.2.1 Using the Java Foundation Classes 

The Java Foundation Classes are the largest set of classes in the Java platform, and they also bear the 
distinction of being one of the few sets of classes that are not thread safe. Hence, whenever these 
classes are used, we must take care that we access JFC objects only from one thread; in particular, we 
must ensure that we access JFC objects only from the event-dispatching thread of the virtual machine. 
This is the thread that executes any of the listener methods (such as actionPerformed()) in response 
to events from the user. 

All JFC objects are thread unsafe, which means that if we have our own thread that wants to invoke a 
method on such an object, it cannot do so directly. A thread that attempts to read the value of a slider, 
for example, cannot do so directly, since as it is reading the value of the slider, the user might be 
simultaneously changing the value of the slider. Since access to the slider is not synchronized, both 
threads might access the internal slider code at the same time, corrupting the internal state of the 
slider and causing an error. Hence, our own thread must arrange for the event-dispatching thread of 
the virtual machine to read the value of the slider and pass that data back to the thread. 

This example also illustrates why the previous technique of explicitly synchronizing access to objects 
will not work for JFC: our thread could synchronize access to the slider, but the event-processing 
thread does not synchronize its internal access. Remember that locks are cooperative; if all threads do 
not attempt to acquire the lock, then race conditions can still occur. 

So the requirement to interact safely with Swing components is to access them only from the event-
dispatching thread; since that effectively makes access to those components single-threaded, there will 
be no race conditions. JFC contains many methods that are executed by the event-dispatching thread: 

• Methods of the listener interfaces in the java.awt.event package when those methods are 
called from the event-dispatching thread 

• invokeAndWait() 

• invokeLater() 

• repaint() 

We'll look at each of these in turn. 

8.4.2.2 The event-dispatching thread and event-related method 

First, let's delve into what we mean by the event-dispatching thread. When the Java virtual machine 
begins execution, it starts an initial thread. Later, when the first AWT-related class (including a JFC 
class) is instantiated, the GUI toolkit inside of the JVM is initialized. Depending on the underlying 
operating system, this creates one or more additional threads that are responsible for interacting with 
the native windowing system. 

Regardless of the number of threads created, one of these threads is known as the event-dispatching 
thread. This thread is responsible for getting events from the user; when the user types a character, 
the event-dispatcher thread receives this event from the underlying windowing system. When the user 
moves the mouse or presses a mouse button, the event-dispatching thread receives that event as well. 
When it receives an event, it begins the process of dispatching that event: it figures out which AWT 
component the event occurred on and calls the event methods that are registered on that component. 

So any method that is called in response to one of these events will be called in the event-dispatching 
thread. In normal circumstances, any of the event-related methods - actionPerformed(), 
focusGained(), itemStateChanged(), and any other method that is part of one of the listener 
interfaces in the java.awt.event package - will be called by the event-dispatching thread. 
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That's good news, since it means that most of the code that needs to access Swing components will 
already be called in the event-dispatching thread. So for most GUI code, you do not need to use one of 
the other methods in our list: you only need to use the invokeAndWait() or invokeLater() methods 
if you want to access Swing components from a thread other than the event-dispatching thread. In 
other words, if you add your own thread to a Swing-based program and that additional thread directly 
accesses a Swing component, you need to use either the invokeAndWait() or invokeLater() 
methods. Otherwise, you just write your event-related methods as you normally would. 

There are two subtle points to make about event dispatching. The first is that methods of the JApplet 
class that seem to be event-related are not called in the event-dispatching thread. In particular, the 
start() and stop() methods of the JApplet class are called by another thread in the program, and 
you should not directly access any Swing components in these methods. This warning technically 
applies to the init() method as well. Since the init() method typically does make Swing calls (e.g., 
to the add() method), that might seem like an ominous development. However, browsers are 
responsible for calling the init() method only once, and for calling it in a manner in which the Swing 
classes can be used safely. If you write your own application that uses an instance of a JApplet within 
it, you must take care to do the same thing: do not call the show() method of any JFrame before you 
call the init() method of the JApplet class (or use the invokeAndWait() method to ensure that the 
init() method is itself run in the event-dispatching thread). And, of course, if your program calls the 
init() method, it should take care to ensure that it does so from the event-dispatching thread. 

The second point is more complicated, and it stems from the fact that it is possible to call an event-
related method from a thread other than the event-dispatching thread. Let's say that you have a 
thread in which a socket is reading data from a data feed; the socket gets an I/O error, and now you 
want to shut down the program. You might be tempted in this case to call the same 
actionPerformed() method that is called in response to the user selecting the button labeled "Close" 
- after all, that method has the necessary logic to shut the program down, and you wouldn't want to 
rewrite that logic. So in this case, the actionPerformed() method can be called by two different 
threads: the event-dispatching thread (in response to a user event) and the socket-reading thread (in 
response to an I/O error). To accommodate both threads, you must make access to any Swing 
components in the actionPerformed() method safe by using one of the invoke methods that we'll 
discuss next. 

The point is that there's nothing inherent within the actionPerformed() method (or any other event-
related method) that makes it safe to manipulate Swing components: either the method is being 
executed by the event-dispatching thread itself (safe), or it is being executed by another thread (not 
safe). The thread context determines whether or not it is safe to directly manipulate a Swing 
component, not the method itself. 

 

Which invokeAndWait() Method? 
In Java 2, the EventQueue class introduces three new static methods: 
isEventDispatchThread(), invokeLater(), and invokeAndWait(). These methods are 
functionally identical to their counterparts in the SwingUtilities class. You may use either 
one depending upon your preference; using the methods of the SwingUtilities class will 
keep your program compatible with Java 1.1. 

 
8.4.2.3 The invokeAndWait() method 

The easiest way to ensure that access to Swing components occurs in the event-dispatching thread is 
to use the invokeAndWait() method. When a thread executes the invokeAndWait() method, it asks 
the event-dispatching thread to execute certain code, and the thread blocks until that code has been 
executed. 
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Let's see an example of this. The invokeAndWait() method is often used when a thread needs to get 
the value of certain items within the GUI. In the following code, we use the invokeAndWait() method 
to get the value of the slider: 

import javax.swing.*; 
import java.awt.*; 
 
public class  
SwingTest extends JApplet { 
    JSlider slider; 
    int val; 
 
    class SwingCalcThread extends Thread { 
        public void run() { 
            Runnable getVal = new Runnable() { 
                public void run() { 
                    val = slider.getValue(); 
                } 
            }; 
 
            for (int i = 0; i < 10; i++) { 
                try { 
                    Thread.sleep(2000); 
                    SwingUtilities.invokeAndWait(getVal); 
                    System.out.println("Value is " + val); 
                } catch (Exception e) {} 
            } 
        } 
    } 
             
    public void init() { 
        slider = new JSlider(); 
        getContentPane().setLayout(new BorderLayout()); 
        getContentPane().add("North", slider); 
    } 
 
    public void start() { 
        new SwingCalcThread().start(); 
    } 
} 

While simply the skeleton of a real program, this applet puts up a slider and then starts a secondary 
thread to perform a calculation. Let's look at how execution of this applet will proceed: 

1. The applet will initialize itself (via the init() method), creating a GUI with a single element 
(a slider). 

2. In the applet's start() method, a calculation thread is spawned. 

3. The calculation thread will then begin executing (okay, it's just sleeping, but it could be doing 
something useful here). Periodically, the calculation thread needs to obtain the current setting 
of the slider. It does this by creating a runnable object (the getVal instance variable) and 
passing that object to the invokeAndWait() method. The calculation thread then blocks until 
the invokeAndWait() method returns. 

4. Meanwhile, the invokeAndWait() method itself has arranged for the run() method of the 
get object to be invoked in the event-dispatching thread of the GUI. When that run() method 
is invoked, the value of the slider is stored into the val instance variable. 

5. Once the run() method of the getVal object has returned, the invokeAndWait() method will 
return and the calculation thread can continue its next iteration. 

There's a further complication here, however: you cannot call the invokeAndWait() method from the 
event-dispatching thread itself; doing so will cause an error to be thrown. If you want to execute the 
same code from an event callback method and from a user thread - e.g., the socket example we 
described a little earlier - then you cannot simply put all references to Swing components inside of a 
call to the invokeAndWait() method in the actionPerformed() method; you must instead use the 
SwingUtilities.isEventDispatchThread() method to see if you're in the event dispatch method 
and code the actionPerformed() method accordingly.  
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A skeleton of this example would look like this: 

public class TestSwing extends JApplet implements ActionListener { 
    class ReaderThread extends Thread { 
        public void run() { 
            try { 
                //... read the socket, process the data ... 
            } catch (IOException ioe) { 
                actionPerformed(null); 
            } 
        } 
    } 
    public void init() { 
        JButton jb = new JButton("Close"); 
        getContentPane().add(jb); 
        jb.addActionListener(this); 
    } 
    public void actionPerformed(ActionEvent ae) { 
        class doClose implements Runnable { 
            public void run() { 
                //... access Swing components here ... 
                //... This code would normally be the body ... 
                //... of the actionPerformed method ... 
            } 
        }; 
        doClose dc = new doClose(); 
        if (SwingUtilities.isEventDispatchThread()) 
            dc.run(); 
        else { 
            try { 
                SwingUtilities.invokeAndWait(dc); 
            } catch (Exception e) {} 
        } 
    } 
} 

This restriction does not apply to the invokeLater() method. 

8.4.2.4 The invokeLater() method 

The invokeLater() method is similar to the invokeAndWait() method except that it does not block. 
Because it does not wait for the target object's run() method to complete, this method is 
inappropriate for those instances when you need to retrieve data from JFC objects. However, this 
method can be used to set data within a JFC object: 

import javax.swing.*; 
import java.awt.*; 
 
public class  
SwingTest extends JApplet { 
    JSlider slider; 
    JLabel label; 
    int val; 
 
    class SwingCalcThread extends Thread { 
        public void run() { 
            Runnable getVal = new Runnable() { 
                public void run() { 
                    val = slider.getValue(); 
                } 
            }; 
            Runnable setVal = new Runnable() { 
                public void run() { 
                    label.setText("Last calc is " + val); 
                } 
            }; 
 
            for (int i = 0; i < 10; i++) { 
                try { 
                    Thread.sleep(2000); 
                    SwingUtilities.invokeAndWait(getVal); 
                    SwingUtilities.invokeLater(setVal); 
                } catch (Exception e) {} 
            } 
        } 
    } 
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    public void init() { 
        slider = new JSlider(); 
        label = new JLabel("Last calc is 0"); 
        getContentPane().setLayout(new BorderLayout()); 
        getContentPane().add("North", slider); 
        getContentPane().add("Center", label); 
    } 
 
    public void start() { 
        new SwingCalcThread().start(); 
    } 
} 

In this case, there's no reason why the calculation thread needs to wait until the data in the label is 
actually set; it merely schedules the operation and then continues to calculate. There are 
circumstances in which this is inappropriate. In this example, the new value of the label will not be 
reflected immediately when the invokeLater() method is called. As a result, the threads may be 
scheduled such that one iteration of the intermediate feedback is lost to the user. But in general, the 
invokeLater() method is useful when the thread that invokes it does not care about the results of the 
run() method. 

8.4.2.5 The repaint() method 

The repaint() method is also a thread-safe method, even within the JFC. Hence, any thread can at 
any time call the repaint() method of a particular component. This is very useful, since a variety of 
Java applications depend on periodic repainting behavior. 

The reason this works is that the repaint() method itself doesn't really accomplish a great deal: it 
merely arranges for the paint() method to be called by the event-dispatching thread. Hence, an 
applet can have a thread that stores data into the instance variables of the applet and then calls the 
applet's repaint() method; when the applet next paints itself, it will use the new data. 

There are other techniques for dealing with threads and the JFC. There is a timer class within the JFC 
that hides the details of the invokeLater() method for you; you pass an ActionListener object to the 
timer and it arranges for the actionPerformed() method of that object to be called from the event-
dispatching thread every time the timer fires. 

Additionally, there is a SwingWorker class on Sun's web site that performs the opposite of the 
principles that we've shown here: it dispatches a new target thread and provides a way for code within 
the event-dispatching thread to poll the target thread for its results. In our opinion, this is backwards: 
how will the event-dispatching thread know when it should check for output from the worker thread? 
Still, if you're interested, check out Sun's web site for more details. 

How unsafe are the Swing classes, anyway? In the examples we've just shown, we've essentially set 
and retrieved an integer - the value - from the JSlider class. Since reading or writing an integer is 
guaranteed to be an atomic action in Java, is it really necessary to use the invoke methods? There are 
probably cases where the answer is no, but those cases cannot be clearly described. So it's really safer 
to use the invoke methods to execute all Swing methods from a thread other than the event-
dispatching thread. Even in our example where we seem to be performing a simple assignment, 
there's a lot going on that we're not aware of: the getValue() method has to call the getModel() 
method, and a new model may be in the middle of being installed. That may be okay, or it may cause 
the getModel() method to return a null object reference, which would cause a runtime exception; 
without a very careful examination of the Swing code, it's tough to be sure. And it's impossible to know 
what future implementations might be. It's far better just to use the invoke methods as we've shown. 

8.4.2.6 Other thread-unsafe classes 

The implementation of the invokeAndWait() method (as well as the other similar methods we've just 
examined) provides us with a clue on how to deal with other unsafe classes for which simple external 
synchronization is insufficient. We need to implement a similar mechanism for these classes. 
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This is typically done by establishing a queue somewhere that one thread - and only one thread - is 
responsible for acting on. The invokeAndWait() method itself is based on the fact that there is an 
existing event queue within the virtual machine: it simply creates some new events, posts them to the 
queue, and waits for the event-dispatching thread to process them (the invokeLater() method 
returns without waiting). The event-dispatching thread is then responsible for executing the run() 
method of the object passed to the invokeAndWait() method. Interestingly enough, the 
invokeAndWait() method does not create a new thread, nor does it cause one to be created: the 
run() method is executed by an existing thread (the event-dispatching thread), just as we did in 
Chapter 7 with our thread pool example. 

This similarity tells us how to ensure that only a single thread accesses our unsafe classes: place all 
access to those classes within objects executing in a thread pool and initialize the thread pool to 
contain only a single thread. Now we can use the addRequest() and addRequestAndWait() methods 
of the thread pool just as we used the invokeLater() and invokeAndWait() methods earlier.  

8.5 Summary 

The strong integration of locks into the Java language and API is very useful for programming with 
Java threads. Nonetheless, despite their strength, Java's locking mechanisms are not suitable for every 
type of synchronization you might need for more complex Java programs. Fortunately, the built-in 
synchronization techniques provide good building blocks to create the more complicated, more 
intelligent locks you need in special situations. 

Like other parts of Java, its built-in locking mechanism is designed to be simple in order to reduce 
errors in your Java programs. And, like other parts of Java, this simplicity is enough to carry you 
through all but the most complex programming situations. You should use the built-in techniques 
unless you really need the more complex behavior of the mechanisms described in this chapter. 

Finally, for those times when you are faced with other code that is not thread safe, Java's locking 
facilities offer the ability to use that code safely within a multithreaded program, either by explicitly 
locking such code or by ensuring that such code is only ever executed within a single thread. 
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Chapter 9. Parallelizing for Multiprocessor 
Machines  
So far in this book, we've examined threading as a programming technique that allows us to simplify 
programming: we have used threading to achieve asynchronous behavior or to perform independent 
tasks. Although we discussed how threads are scheduled on machines with multiple processors, by 
and large the techniques that we've shown so far are not affected by a machine with multiple 
processors, nor do they exploit the number of processors on a machine to make the program run 
faster. 

Multithreaded applications have a special bond with multiprocessor systems. The separation of 
threads provides a clear and simple separation for the multiprocessor machine. Since the operating 
system can place different threads on different processors, the application will run faster. 

In this chapter, we'll look at how to parallelize Java programs so that they will run faster on a machine 
with multiple CPUs. The processes that we'll examine are beneficial not only to newly developed Java 
programs, but also to existing Java programs that have a CPU-intensive loop, allowing us to improve 
the performance of those programs on a multiprocessor system. 

How does the Java threading system behave in a multiprocessor system? There are no conceptual 
differences between a program running on a machine with one processor and a machine with two or 
more processors; the threads behave exactly the same in either case. However, as we discussed in 
Chapter 6, the key difference between a multiprocessor and a single-processor system is that there 
may be one currently running thread for each CPU on the host platform. The impact of this is that 
when our Java program runs on a machine with multiple processors, the following assumptions 
become very important: 

• We can no longer assume that a currently running thread has the highest priority. A higher-
priority thread may be running on a different processor. 

• We can no longer assume that a low-priority thread will not run. There may be enough 
processors to give it execution time. 

• We can no longer assume that threads of different priorities will not be running at the same 
time. 

• We can no longer assume that certain race conditions can be ignored because it is 
"unreasonable" for a particular case to occur. Race conditions in a multiprocessor system are 
real, whereas race conditions in a single-processor system are more dependent on the 
scheduling engine of the Java virtual machine. 

The point to understand here is that these assumptions were never guaranteed in the first place. 
However, on a single-processor machine (especially under the green-thread model), violation of these 
assumptions was rare. On a multiprocessor system, these assumptions are violated quite often. 

9.1 Parallelizing a Single-Threaded Program 

Without redesigning a program, the best area to parallelize - that is, the area in which to introduce 
multiple threads to increase the program's performance - is where the application is CPU bound. After 
all, there is no reason to bring in more processors if the first processor cannot stay busy. In many of 
the cases where the process is CPU bound - that is, the process is using all of the computer processors' 
cycles, while not using the disks or the network at full capacity - the speed of the application can 
increase with the addition of more processors. The process could be involved in a long mathematical 
calculation or, more likely, in large iterations of shorter mathematical calculations. Furthermore, 
these calculations probably involve a large control loop or even a large number of loops inside loops.  
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These are the types of common algorithms that we will examine here. Consider the following 
calculation: 

public class SinTable { 
 
    private float lookupValues[] = null; 
 
    public synchronized float[] getValues() { 
        if (lookupValues == null) { 
            lookupValues = new float [360 * 100]; 
            for (int i = 0; i < (360*100); i++) { 
                float sinValue = (float)Math.sin( 
                                    (i % 360)*Math.PI/180.0); 
                lookupValues[i] = sinValue * (float)i / 180.0f; 
            }     
        }     
        return lookupValues; 
    } 
} 

We'll use this code as the basis of our example for the rest of this chapter. A single thread, and hence a 
single processor, will execute the loop as specified in the code and store the results in the 
lookupValues array. Assuming that the calculation of the sinValue variable is time-consuming, the 
whole loop may take a long time to execute. For some cases, this is acceptable. However, on a twelve-
processor computer without any other application running, only one CPU will be working while the 
other eleven would be sitting idle. Considering the cost of a twelve-way machine, this is not 
acceptable. 

Before we get started, let's define some terminology.[1] The variable sinValue has a few special 
properties. Obviously, it exists only during the duration of the loop. It is a temporary variable used to 
aid the calculation of the lookup table. It does not carry a value in one iteration of the loop that is used 
in another iteration of the loop, and the value of the variable is reassigned in the next iteration. We 
will define sinValue as a loop-private variable, that is, a variable that is initialized, calculated, and 
used entirely in a single iteration of the loop. 

[1] The terminology that we will be using in this section is somewhat based on the autothreading MP C compiler 
available for the Solaris operating system. 

Examining further, we can state that the index variable i is also a loop-private variable: it is also used 
completely in an iteration of the loop. It can be considered as a special type of loop-private variable. 
Since it is never changed in the iteration and is directly tied to the iteration index, we can actually treat 
it as a constant during the iteration of a loop. However, for now, simply considering it as a loop-
private variable is good enough. 

We may try to break the parts of this loop among many threads as follows: 

public class SinTable implements Runnable { 
    private class SinTableRange { 
        public int start, end; 
    } 
 
    private float lookupValues[]; 
    private Thread lookupThreads[]; 
    private int startLoop, endLoop, curLoop, numThreads; 
  
    public SinTable() { 
        lookupValues = new float [360 * 100]; 
        lookupThreads = new Thread[12]; 
        startLoop = curLoop = 0; 
        endLoop = (360 * 100); 
        numThreads = 12; 
    } 
  
    private synchronized SinTableRange loopGetRange() { 
        if (curLoop >= endLoop) 
            return null; 
        SinTableRange ret = new SinTableRange(); 
        ret.start = curLoop; 
        curLoop += (endLoop-startLoop)/numThreads+1; 
        ret.end = (curLoop<endLoop)?curLoop:endLoop; 
        return ret; 
    } 
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    private void loopDoRange(int start, int end) { 
        for (int i = start; i < end; i += 1) { 
            float sinValue = (float)Math.sin((i % 360)*Math.PI/180.0); 
            lookupValues[i] = sinValue * (float)i / 180.0f; 
        } 
    } 
  
    public void run() { 
        SinTableRange str; 
        while ((str = loopGetRange()) != null) { 
            loopDoRange(str.start, str.end); 
        } 
    } 
  
    public float[] getValues() { 
        for (int i = 0; i < numThreads; i++) { 
            lookupThreads[i] = new Thread(this); 
            lookupThreads[i].start(); 
        } 
        for (int i = 0; i < numThreads; i++) { 
            try { 
                lookupThreads[i].join(); 
            } catch (InterruptedException iex) {} 
        } 
        return lookupValues; 
    } 
} 

The code in this new version is functionally the same as the previous version, albeit with many 
modifications to its logic. First, instead of a loop that does the calculation, we now have a loop that 
starts off 12 (numThreads) different worker threads and provides each worker thread with different 
parts of the mathematical loop to calculate. The original mathematical calculation is moved to a new 
method, loopDoRange(). In this method, the loop has been modified to work on only part of the 
lookup table instead of the whole table. Each different thread is responsible for calculating only its 
portion of the table. Each thread must call the loopGetRange() method to determine which portion 
they must calculate. The original thread that started the 12 worker threads then simply waits for all 12 
worker threads to finish. Since the long calculation is now accomplished by 12 threads instead of by a 
single thread, it is now possible for a multiprocessor-based operating system to place the different 
threads on different processors. 

The calculation works for a number of reasons. First, the loop index variable i and the sinValue 
variable, which were originally classified as loop private, are now stack variables in each worker 
thread. The loopDoRange() method uses different copies of these two variables in each thread 
executing the loop. This means that each of the 12 worker threads has its own copy of these variables 
while completing its portion of the calculation. 

Second, although the lookupTable array is not loop private, the individual members of the array can 
be considered loop private. Each individual member of the array is only accessed in a particular 
iteration. There is no race condition because each iteration affects one and only one member of the 
array, and although the different worker threads handle many iterations of the loop, no single 
iteration is handled by more than one thread. 

The only synchronization we need is in the assignment of the different ranges. To prevent the worker 
threads from stepping on each other during this assignment, the loopGetRange() method is 
synchronized. In this example, since the loop is partitioned only in 12 ranges, the execution time for 
this method is insignificant when compared with the loop calculation itself. 

The code for this new version is more complicated than our first version. This new code now has to 
start and track 12 separate threads. The worker threads had to be modified to handle parts of the loop 
whose ranges they have to determine. Although there is very little synchronization in this case, we 
could easily have had a complicated requirement for synchronization depending on the algorithm 
used in the mathematical calculation. 
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Given the complexity we introduced to handle this simple loop, it may become too hard to handle 
more complex loops. To help with this complexity, we'll move all the logic related to loop management 
into a separate class. We can then implement the loop by simply using the services provided by this 
class: 

public class  
LoopHandler implements Runnable { 
    protected class LoopRange { 
        public int start, end; 
    } 
    protected Thread lookupThreads[]; 
    protected int startLoop, endLoop, curLoop, numThreads; 
 
    public LoopHandler(int start, int end, int threads) { 
        startLoop = curLoop = start; 
        endLoop = end; 
        numThreads = threads; 
        lookupThreads = new Thread[numThreads]; 
    } 
 
    protected synchronized LoopRange loopGetRange() { 
        if (curLoop >= endLoop) 
            return null; 
        LoopRange ret = new LoopRange(); 
        ret.start = curLoop; 
        curLoop += (endLoop-startLoop)/numThreads+1; 
        ret.end = (curLoop<endLoop) ? curLoop : endLoop; 
        return ret; 
    } 
 
    public void loopDoRange(int start, int end) { 
    } 
 
    public void loopProcess() { 
        for (int i = 0; i < numThreads; i++) { 
            lookupThreads[i] = new Thread(this); 
            lookupThreads[i].start(); 
        } 
        for (int i = 0; i < numThreads; i++) { 
            try { 
                lookupThreads[i].join(); 
            } catch (InterruptedException iex) {} 
        } 
    } 
  
    public void run() { 
        LoopRange str; 
        while ((str = loopGetRange()) != null) { 
            loopDoRange(str.start, str.end); 
        } 
    } 
} 

In our new LoopHandler class, we have implemented the logic that we applied on our SinTable class. 
The logic of creating, tracking, and joining back with the original thread has been moved to the newly 
created loopProcess() method. The logic of determining the ranges and processing the loop - 
originally coded in the run() and loopGetRange() methods of the SinTable class - remains nearly 
unchanged. The loop handler has also been modified to handle more generic loops and has a 
constructor that will assign the start of the loop, the end of the loop, and the number of threads. Just 
as in our earlier example, the algorithm will call the loopDoRange() method to handle the processing. 
However, in this case, the LoopHandler class has an empty implementation for this method. 
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Now our implementation of the SinTable class is much simpler: 

public class SinTable extends LoopHandler { 
    private float lookupValues[]; 
 
    public SinTable() { 
        super(0, 360*100, 12); 
        lookupValues = new float [360 * 100]; 
    } 
 
    public void loopDoRange(int start, int end) { 
        for (int i = start; i < end; i++) { 
            float sinValue = (float)Math.sin((i % 360)*Math.PI/180.0); 
            lookupValues[i] = sinValue * (float)i / 180.0f; 
        } 
    }     
 
    public float[] getValues() { 
        loopProcess(); 
        return lookupValues; 
    } 
} 

In this case, we simply need to configure the ranges needed by the loop handler, provide the logic of 
the loop in the loopDoRange() method, and call the loopProcess() method to process the loop in a 
multithreaded fashion. While this is still more complicated than the first SinTable class 
implementation, it is now much more manageable and less complex than the previous 
implementation. 

9.1.1 Loop Scheduling and Load Balancing 

We define the process of distributing the iterations of the loop to the individual threads as loop 
scheduling. In our LoopHandler class, this is handled by the loop-GetRange() method. To maximize 
processor usage, we should distribute the work to the threads as evenly as possible, with the least 
amount of overhead in determining this distribution. This is defined as load balancing. 

Here are the basic loop-scheduling types at our disposal: 

Static or chunk scheduling  

Under static scheduling, each thread is assigned an equal number of iterations that depends 
on the number of threads available. If there are 1000 iterations in the loop that are to be 
distributed and 10 threads that are assigned to the task, then each thread will be assigned 100 
iterations of the loop. This is the algorithm that is used by the LoopHandler class. The 
algorithm also adds 1 to the size to make sure that the distribution is rounded up. Otherwise, 
there might be an iteration left over and a worker thread would have to perform that single 
iteration after already performing the original chunk. 

The problem with this algorithm is that it assumes that each iteration of the loop takes the 
same amount of time. If this is not true, then one of the threads will take more time than the 
other threads to complete. Since all the work is divided up at the beginning of the loop, the 
other threads will be idle while the final iterations are completed by the last remaining thread. 

Self-scheduling  

In self-scheduling, each worker thread grabs a small chunk of the iterations to execute. After 
completion of its assigned range, it grabs another small chunk. If there are 1000 iterations in 
the loop that are to be distributed and 10 threads are assigned to the task, then each worker 
thread will work on a small chunk - say 20 - until all 1000 iterations are completed. 

As with static scheduling, the different worker threads may not complete at the same time. 
However, since the chunks are small in the self-scheduling model, the idle time of the threads 
at the end of the process is also small. To make this idle time even smaller, we can make the 
individual chunks smaller. However, there is an overhead in obtaining the ranges to execute; 
this overhead will increase as the chunks get smaller. 
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Here's an implementation of this model: 

public class  
SelfLoopHandler extends LoopHandler { 
    protected int groupSize; 
 
    public SelfLoopHandler(int start, int end, int size, int threads) { 
        super(start, end, threads); 
        groupSize = size; 
    } 
    protected synchronized LoopRange loopGetRange() { 
        if (curLoop >= endLoop) 
            return null; 
        LoopRange ret = new LoopRange(); 
        ret.start = curLoop; 
        curLoop += groupSize; 
        ret.end = (curLoop<endLoop)?curLoop:endLoop; 
        return ret; 
    } 
} 

Implementation of a self-scheduling loop handler is straightforward. Our current 
LoopHandler class already has the logic of working until the loop has been completed. We 
simply need to modify the constructor to handle the chunk size requested, and modify the 
loopGetRange() method to return this fixed chunk size. In our implementation of the self-
scheduler, we simply subclass from the original loop handler and implement only the changes. 

Guided self-scheduling  

Guided self-scheduling is a compromise between the static scheduler and the self-scheduler. 
In the beginning, the guided scheduler grabs a large number of iterations of the loop, which 
becomes progressively smaller near the end of the loop. There is also a minimum chunk size 
that the guided self-scheduler uses. Thus, it basically behaves like a static scheduler that 
slowly becomes a self-scheduler. 

If 1000 iterations in the loop are to be distributed and 10 threads are assigned to the task, 
then the first worker thread gets one-tenth of the work - 100 iterations. The second thread 
gets one-tenth of the remaining work - 90 iterations. This slowly gets smaller and smaller 
until the minimum - say 10 - is assigned; the minimum is assigned until all 1000 iterations are 
completed. 

This algorithm seems to have the fewest problems. Unlike the self-scheduler, the extra 
overhead only appears at the end of the loop. And unless the individual iterations have 
drastically different execution periods from the longer-term iterations at the beginning, it 
doesn't have the problems that the static scheduler has. 

Here's how to implement guided self-scheduling: 

public class GuidedLoopHandler extends LoopHandler { 
    protected int minSize; 
 
    public GuidedLoopHandler(int start, int end, int min, int threads){ 
        super(start, end, threads); 
        minSize = min; 
    } 
    protected synchronized LoopRange loopGetRange() { 
        if (curLoop >= endLoop) 
            return null; 
        LoopRange ret = new LoopRange(); 
        ret.start = curLoop; 
        int sizeLoop = (endLoop-curLoop)/numThreads; 
        curLoop += (sizeLoop>minSize)?sizeLoop:minSize; 
        ret.end = (curLoop<endLoop)?curLoop:endLoop; 
        return ret; 
    } 
} 

Implementation of a guided self-scheduling loop handler is also straightforward. We simply 
need to modify the constructor to handle the minimum size required, and modify the 
loopGetRange() method to return a portion of the remaining loop. In our implementation of 
the guided self-scheduler, we also subclass the original loop handler and implement only the 
changes. 
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User-defined scheduler  

The implementation of the self-scheduler and the guided self-scheduler is simple for a reason: 
it was designed to be so. The original loop handler was designed to be subclassed so that the 
scheduler algorithm could be modified. As good as the implementation of the guided self-
scheduler may be, it is still designed for a generic loop. There will be cases where each of the 
different schedulers will work better than others. However, if enough information concerning 
the loop is known, and the effort is large enough, it may justify the implementation of yet 
another scheduler. This entails figuring out the appropriate logic and coding a new 
loopGetRange() method. 

Here's how our original example can be modified to use one of the scheduling techniques we've just 
seen: 

public class SinTable extends GuidedLoopHandler { 
 
    private float lookupValues[]; 
 
    public SinTable() { 
        super(0, 360*100, 100, 12); 
        lookupValues = new float [360 * 100]; 
    } 
 
    public void loopDoRange(int start, int end) { 
        for (int i = start; i < end; i++) { 
            float sinValue = (float)Math.sin((i % 360)*Math.PI/180.0); 
            lookupValues[i] = sinValue * (float)i / 180.0f; 
        } 
    }     
 
    public float[] getValues() { 
        loopProcess(); 
        return lookupValues; 
    } 
} 

To use the guided self-scheduler algorithm in our SinTable class, we simply subclass from the 
GuidedLoopHandler class and modify our constructor to pass the minimum chunk size. We could also 
have written the GuidedLoopHandler class to have an overloaded constructor that picks a default 
minimum. This would allow it to have a constructor with the same signature as the static loop handler. 
 

Auto-Parallelizing Compilers 
The terminology used in this chapter is based on the terminology used by the auto-
parallelizing MP C compiler for the Solaris platform. Automatic parallelization is the same 
technique that we are describing in this chapter, but it is accomplished by the compiler 
instead of by the programmer. While auto- parallelization has been available for other 
languages, such as FORTRAN, for a long time, it is relatively new for the C language. This is 
due to the aliasing problems with the C language: with pointers and other aliasing issues, it 
is very difficult to classify the variables or the loop itself. Even with the current 
implementation, #pragmas are needed to help the compiler classify variables used in the 
loop. 

In this regard, Java is closer to FORTRAN than to C. All variable references are tracked (for 
garbage collection), pointer arithmetic is not allowed, and variable types are enforced. 
There are fewer aliasing problems in Java than in C. This means that it should be much 
easier to develop an auto-parallelizing compiler for Java than it is for C. Until one exists, 
however, you need to apply these techniques by hand, as we've done in this chapter. 
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9.1.2 Variable Classifications 

In the implementation of the SinTable class, we classified the variables used in the original 
nonthreaded loop as loop-private variables, but other variable classifications exist. The reason for 
classifying variables at all is that different types of variables require different types of handling within 
and between threads, because many loops have a data dependency that occurs between different 
iterations. By classifying the variables, we are able to correctly update and modify them without any 
race conditions. Different types of variable classifications can be determined by their usage, and these 
classifications will determine how they are to be implemented or treated in the multithreaded loop 
handler. 

9.1.2.1 Loop-private variables 

As mentioned, a loop-private variable is a variable that does not pass its value from one iteration of 
the loop to another iteration of the loop. It can actually be a variable that is declared in the loop itself, 
and it can also be an instance or publicly accessed variable that is accessed by only one iteration of the 
loop. This was the case with the lookupValues array variable, where each member of the array was 
only accessed by one iteration of the loop. Although the whole array was not loop private to any 
iteration, specific members were loop private to specific iterations. 

As shown with the SinTable class, treatment of loop-private variables is often done with a local copy of 
the variable in each thread. Since each thread has a copy, no interference between the threads is 
possible. In the case of the lookupValues array, there is an understanding that the threads will 
respect the privacy of the other threads by only accessing their loop-private portions of the array. 

9.1.2.2 Read-only variables 

Read-only variables are variables that do not change in value during the duration of the loop. They can 
be true constants or simply variables that have been initialized and will not change until after the loop 
has been processed. 

No special treatment of read-only variables is necessary. The worker threads do not need to have their 
own copies of the variables, and access to them does not require synchronization of any type. 

9.1.2.3 Storeback variables 

Storeback variables are basically loop-private variables that are needed after the loop has been 
completed. For example, say that the processing of the lookupValues array required some extra work 
to be done after the loop was finished: 

public float[] getValues() { 
    if (lookupValues == null) { 
        float sinValue = 0; 
        lookupValues = new float [360 * 100]; 
        for (int i = 0; i < (360*100); i++) { 
            sinValue = (float)Math.sin((i % 360)*Math.PI/180.0); 
            lookupValues[i] = sinValue * (float)i / 180.0f; 
        } 
        lookupValues[0] += sinValue; 
    }     
    return lookupValues; 
} 

In this slightly modified version of the SinTable loop, both the sinValue variable and the individual 
members of the lookupValues array are still loop-private variables. There is no data dependency 
between these two variables in different iterations of the loop. However, in this case the sinValue 
variable is also a storeback variable. Since the variable is important after the loop has completed, it 
must be set to the value as if the loop had run in the correct order. The members of the lookupValues 
array were always considered as storeback variables, but since no individual copies were kept, there 
was little need to make this extra distinction. 
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Here's how we can handle the storeback variable: 

public class SinTable extends GuidedLoopHandler { 
    private float lookupValues[]; 
    private float sinValue; 
  
    public SinTable() { 
        super(0, 360*100, 100, 12); 
        lookupValues = new float [360 * 100]; 
    } 
  
    public void loopDoRange(int start, int end) { 
        float sinValue = 0; 
        for (int i = start; i < end; i++) { 
            sinValue = (float)Math.sin((i % 360)*Math.PI/180.0); 
            lookupValues[i] = sinValue * (float)i / 180.0f; 
        } 
        if (end == endLoop) 
            this.sinValue = sinValue; 
    } 
  
    public float[] getValues() { 
        loopProcess(); 
        lookupValues[0] += sinValue; 
        return lookupValues; 
    } 
} 

The sinValue variable is still treated as a loop-private variable. However, since this variable is really a 
storeback variable, we need to store the "last" value of this variable. Since the algorithm is now 
executed in a multithreaded manner, the last iteration is not necessarily the last value assigned to the 
variable by a thread. 

A thread must check that it has executed the last chunk of the loop before copying the value of its 
loop-private copy to the global copy. Also note that no synchronization is necessary. Since only the last 
iteration will be copied, only one thread will be executing the code, and no race condition is possible. 

9.1.2.4 Reduction variables 

Obviously, it is not possible to make every variable a loop-private variable, since there are cases where 
there are real data dependencies between different iterations of the loop. Because of these data 
dependencies, different threads executing different iterations might interfere with each other during 
execution. We will define these types of variables as shared variables , since they are shared between 
iterations of the loop. 

Shared variables have many problems. The first is the race conditions that exist when different 
threads access the variable simultaneously. The second is that the value of a variable may depend on 
the order in which it is processed. In the first case, we can simply use synchronization techniques to 
prevent the race conditions from existing. The second case poses a much greater problem. 

However, what if the order did not matter? We would be able to process the loop in any order and 
would simply have to synchronize access to the shared variable. For example, let us assume that we 
also need to calculate the sum of our SinTable: 

public float[] getValues() { 
    for (int i = 0; i < (360*100); i++) { 
        sinValue = (float)Math.sin((i % 360)*Math.PI/180.0); 
        lookupValues[i] = sinValue * (float)i / 180.0f; 
        sumValue += lookupValues[i]; 
    } 
    return lookupValues; 
  } 

In this case, the sumValue variable is clearly not a loop-private variable. The value of sumValue is 
passed from one iteration to another, and the correct result requires this dependency to exist. 
However, the sumValue variable is only useful after the loop has completed. The iterations simply add 
to the running total - subtotals or other order-based requirements are not necessary. Furthermore, 
addition itself is order independent: it is possible to add a bunch of numbers in any order, and the 
final result will be the same. 
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Sometimes, Order Does Matter 
In the examples of this section, we assume that we can perform the addition in any order 
that we like. Since addition is associative, this is supposed to work. 

On a computer, however, addition is not necessarily associative. Because of the internal 
mechanism that the computer uses to store numbers of infinite precision in a fixed number 
of bits, some rounding error occurs in every mathematical calculation. Normally, these 
errors are small enough that we don't need to worry about them, and they often cancel each 
other out. But there are many cases where the propagation of this error will lead to vastly 
different results when the order of the operations is changed. 

If you're performing sensitive numerical analysis, then be aware that the tricks of this 
section may lead to unacceptable error propagation and incorrect answers. 

 
The sumValue variable is a reduction variable. It must still be shared among the threads, but since 
order does not matter, this sharing only requires synchronization to prevent race conditions: 

public class SinTable extends GuidedLoopHandler { 
    private float lookupValues[]; 
    public float sumValue; 
 
    public SinTable() { 
        super(0, 360*100, 100, 12); 
        lookupValues = new float [360 * 100]; 
    } 
 
    public void loopDoRange(int start, int end) { 
        float sinValue = 0; 
        for (int i = start; i < end; i++) { 
            sinValue = (float)Math.sin((i % 360)*Math.PI/180.0); 
            lookupValues[i] = sinValue * (float)i / 180.0f; 
            synchronized (this) { 
                sumValue += lookupValues[i]; 
            }     
        }     
    }     
 
    public float[] getValues() { 
        loopProcess(); 
        return lookupValues; 
    } 
} 

Race conditions in this example are prevented by using the synchronization lock of the SinTable 
instance. If we have many reduction variables that are not dependent on each other and we cannot 
store them all at the same time, it might be a better idea to have separate synchronization locks - or 
BusyFlags - for each reduction variable. 

Furthermore, we are synchronizing with each iteration of the loop. This is not very efficient. It is 
better to assign the value to loop-private variables and only synchronize the final summed value of the 
range to the reduction variable. By doing this, we are removing most of the need for synchronization, 
which can drastically add to the parallelization of the threads: 

public class SinTable extends GuidedLoopHandler { 
    private float lookupValues[]; 
    public float sumValue; 
 
    public SinTable() { 
        super(0, 360*100, 100, 12); 
        lookupValues = new float [360 * 100]; 
    } 
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    public void loopDoRange(int start, int end) { 
        float sinValue = 0.0f; 
        float sumValue = 0.0f; 
        for (int i = start; i < end; i++) { 
            sinValue = (float)Math.sin((i % 360)*Math.PI/180.0); 
            lookupValues[i] = sinValue * (float)i / 180.0f; 
            sumValue += lookupValues[i]; 
        } 
        synchronized (this) { 
            this.sumValue += sumValue; 
        } 
    } 
 
    public float[] getValues() { 
        loopProcess(); 
        System.out.println(sumValue); 
        return lookupValues; 
    } 
} 

In this new example, we are doing a two-stage reduction of the values. We are reducing the value of 
each iteration to the local copy of the sumValue variable, and then we are reducing this local copy to 
the actual reduction variable. Since the local copy of the sumValue variable is loop private, 
synchronization is not necessary. Synchronization is still necessary when adding to the reduction 
variable. However, this is now done once per range instead of once per iteration. 

Finally, all reduction variables are storeback variables. There is no need to have special storeback 
handling logic for reduction variables.  

9.1.2.5 Shared variables 

Originally, all variables in the loop are shared variables, since all variables can be accessed by all the 
threads that are executing the loop. As we parallelize the loop, we can quickly classify the shared 
variables that are also read-only variables. We can also reclassify those variables that are loop-private 
variables. Of the remaining shared variables, it may be possible either to convert them to loop-private 
variables or to classify them as reduction variables. 

Unfortunately, there will be cases where a shared variable cannot be classified as anything but a 
shared variable. This is where our technique fails to work. As much as we would like to convert any 
loop to run in a multithreaded environment, not all algorithms can be redesigned to run in a parallel 
environment. 

The other problem with shared variables is the side effect. For example, if we needed to save each of 
the subtotals of the sumValue variable, it could not be treated as a reduction variable since the changes 
in the variable are also important. If we had to print the subtotals during the loop, not only would the 
intermediate results be out of order, but the intermediate results would be different. 

When variable classification is not enough for parallelization, we have other techniques that can help. 
They may not solve every case, but with experience, more and more loops can be converted to run in a 
multithreaded environment.  

9.1.3 Loop Analysis and Transformations 

To assist our parallelizing techniques, we can analyze the algorithms of the loop itself instead of just 
analyzing the variables in the loop. In the majority of the cases, there is very little that we can do 
without redesigning the algorithm, but there are a few situations where we can quickly modify the 
code without a complete redesign. By implementing simple transformations on the original code, we 
may be able to use the techniques discussed so far to thread the loop. 
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9.1.3.1 Loop distribution 

In many cases, only a small portion of a large complex loop contains code that must be executed 
sequentially. It may be possible to separate the large complex loop into two separate loops. Once the 
complex loop is separated into two loops - one loop containing the code that can be parallelized, the 
other containing the sequential code - we can then parallelize a portion of the original loop. We may 
even be able to run the sequential loop in parallel with the loop that can be threaded. 

Returning to our SinTable example, let's assume that we need not only a total but also a running 
subtotal of the table that is to be generated: 

public float[] getValues() { 
    for (int i = 0; i < (360*100); i++) { 
        sinValue = (float)Math.sin((i % 360)*Math.PI/180.0); 
        lookupValues[i] = sinValue * (float)i / 180.0f; 
        if (i == 0) { 
            sumValues[0] = lookupValues[0]; 
        } else { 
            sumValues[i] = lookupValues[i] + lookupValues[i-1]; 
        } 
    } 
    return lookupValues; 
} 

The sumValues array variable is definitely a shared variable. The members of the sumValues variable 
are also shared in that some of them are accessed by two different threads. Furthermore, the order 
matters. It is not possible for one thread to start a chunk before the thread that is working on the 
previous chunk is finished. 

We can solve that problem like this: 

public class SinTable extends GuidedLoopHandler { 
    private float lookupValues[]; 
    public float sumValues[]; 
 
    public SinTable() { 
        super(0, 360*100, 100, 12); 
        lookupValues = new float [360 * 100]; 
        sumValues = new float [360 * 100]; 
    } 
 
    public void loopDoRange(int start, int end) { 
        float sinValue = 0.0f; 
        for (int i = start; i < end; i++) { 
            sinValue = (float)Math.sin((i % 360)*Math.PI/180.0); 
            lookupValues[i] = sinValue * (float)i / 180.0f; 
        } 
    }     
 
    public float[] getValues() { 
        loopProcess(); 
        sumValues[0] = lookupValues[0]; 
        for (int i = 1; i < (360*100); i++) { 
            sumValues[i] = lookupValues[i] + lookupValues[i-1]; 
        } 
        return lookupValues; 
    } 
} 

While it is not possible to parallelize the running subtotal without drastically changing the algorithm, 
we can quickly convert the loop into two separate loops. The first loop contains the threadable code, 
and the second processes the subtotal. Once this is accomplished, we can then thread the first loop 
without changing the second. In the new SinTable class, we have moved the running subtotal code to a 
separate loop. This separate loop runs on a single thread, and only after the first loop is processed. 

Some comparisons should be taken when using this technique. Since a large portion of the loop may 
be running single threaded, the performance gain may not justify the effort involved. In most cases, 
calculations of the subtotal are small considering the effort of the main calculation, and the 
performance penalty may be small in comparison.  
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9.1.3.2 Loop isolation 

Many applications do not contain a single large loop. Even if a particular loop is determined to be 
unparallelizable, there may be other loops in the application. Even if these other loops also cannot be 
parallelized, we may be able to run each separate loop in a different thread. 

Although the many loops may be very complex, with large data dependencies between iterations, there 
may be few data dependencies between the different loops. It may be possible to isolate the individual 
loops themselves and run them each in a separate thread. With this technique, load balancing is no 
longer possible. After all, if the application contains four major loops and you were able to isolate 
them all, it is still impossible to distribute these four loops among twelve processors. 

9.1.3.3 Loop interchange 

Multilayered loops are a prime cause of CPU-bound applications that run for a large period of time. 
This could be loops that are directly inside of other loops or, more likely, loops that call methods that 
contain loops. This scenario is so common that we will examine inner-loop threading later in this 
chapter. For now, there is a simple case to look for: 

public float[][] getValues() { 
    for (int i = 0; i < 360; i++) { 
        lookupValues[0][i] = 0; 
    } 
    for (int j = 1; j < 1000; j++) { 
        for (int i = 0; i < 360; i++) { 
            float sinValue = (float)Math.sin((i % 360)*Math.PI/180.0); 
            lookupValues[j][i] = sinValue * (float)i / 180.0f; 
            lookupValues[j][i] += lookupValues[j-1][i]*(float)j/180.0f; 
        }   
    } 
    return lookupValues; 
  } 

For multilayered loops, it is generally more profitable to thread the outer loop instead of the inner 
one. It is not necessary to thread both the inner and outer loop because threading either one should 
use all the processors. If the outer loop is threaded, threading the inner loop will not provide any 
further speedup since there are no more processors to run the extra threads (and vice versa). The 
reason we prefer to thread the outer loop is that there is an overhead in creating, destroying, and 
synchronizing among the many threads. By threading the outer loop, we create and destroy the 
threads once and only synchronize at a coarse level - less synchronization should be necessary. 

In this new version of the table calculation, we are now working on a two-dimensional table. There are 
three loops used during this calculation. However, the first loop is merely setting the first row of 
values to zero. The next two loops are actually a pair of multilayered loops. The algorithm is looping 
the processing from row to row, executing the inner loop that is processing the values to be stored in 
the different columns. 

The problem in this case is that there is a data dependency between the rows themselves. Because the 
calculation at any row is dependent on the calculation of the previous row, the members of any 
column in the lookupValues array cannot be considered loop private - or made loop private. The 
inner loop can be parallelized with no problems since there are no data dependencies between the 
iterations. The only requirement is that the inner loop must assume that the outer loop ran in the 
correct order; this requirement is fine since we are not threading the outer loop. 

However, we can also rewrite our original code as follows: 

public float[][] getValues() { 
    for (int i = 0; i < 360; i++) { 
        lookupValues[0][i] = 0; 
    } 
    for (int i = 0; i < 360; i++) { 
        for (int j = 1; j < 1000; j++) { 
            float sinValue = (float)Math.sin((i % 360)*Math.PI/180.0); 
            lookupValues[j][i] = sinValue * (float)i / 180.0f; 
            lookupValues[j][i] += lookupValues[j-1][i]*(float)j/180.0f; 
        }   
    } 
    return lookupValues; 
} 
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In this example, the loops are interchanged. Instead of working from row to row, we can work from 
column to column. The inner loop can then process the data from row to row. By interchanging the 
loops, the inner loop is now no longer threadable, since there is data dependency between the 
members of the columns in the lookupValues array. However, the outer loop is now threadable. Once 
the outer loop has been threaded, there will no longer be a reason to thread the inner loop. Since it is 
more profitable to thread an outer loop than an inner loop, this simple change prior to multithreading 
gives us a better return on our development time investment. 

Unfortunately, although loops within loops are common, this example may not be. There is generally 
setup code for an inner loop, and there may be multiple loops that are run sequentially within the 
outer loop, or the inner loop may be inside another method that is called from the outer loop. And the 
data dependencies may be such that a loop interchange will not solve the problem. 

Having an inner loop that is threadable in an outer loop that is not threadable is common. We will be 
examining inner-loop threading in more detail later in this chapter. 

9.1.3.4 Loop reimplementation 

As you may have noticed, the loop handler that we have developed is fairly restrictive. It only applies 
to for loops, the range of the loop must be known prior to execution, it only works with integers as its 
index, and it has an interval of only 1 between iterations. While some of these restrictions are caused 
by the fact that we have not implemented support for certain features in the loop handler, the main 
cause is that it is difficult, if not impossible, to implement an algorithm that can handle all generic 
loops. 

If all else fails during loop transformation, programming experience is still very useful. A while loop 
or a do loop may be converted to a for loop. The start and end iterations may be calculated prior to 
loop execution. Code may be moved from or into a loop, or between loops, to allow other loop 
transformations to occur. Code changes can also cause variable classifications to change. A shared 
variable may be reclassified as loop private or as a reduction variable because of how it is used in a 
loop. 

Unfortunately, success is never guaranteed. The goal is to balance the effort of development with the 
acceleration that may be gained. It may take days to implement a change that can only achieve 
another one or two percent acceleration. After all, if unlimited effort were allowed, we would redesign 
the whole application from scratch.  

9.2 Inner-Loop Threading 

The issues that we have discussed so far do not change when the loops are nested: if you apply the 
techniques only to the inner loop, they will work. However, there are some other, very subtle issues 
that may apply to inner loops. Let's return to our two dimensional SinTable. As mentioned, a loop 
interchange should allow the outer loop to be threaded. However, instead of the loop transformation, 
let's try to thread the inner loop: 

public float[][] getValues() { 
    for (int i = 0; i < 360; i++) { 
        lookupValues[0][i] = 0; 
    } 
    for (int j = 1; j < 1000; j++) { 
        for (int i = 0; i < 360; i++) { 
            float sinValue = (float)Math.sin((i % 360)*Math.PI/180.0); 
            lookupValues[j][i] = sinValue * (float)i / 180.0f; 
            lookupValues[j][i] += lookupValues[j-1][i]*(float)j/180.0f; 
        }   
    } 
    return lookupValues; 
} 

The first variable that we will classify is the outer-loop index variable, j. We must classify this variable 
since it is used inside the inner loop. In this case, j is classified as a read-only variable. At first glance, 
this does not make sense: how could an index variable be read-only? We must only look at the scope 
that we are attempting to thread. During the execution of the inner loop, the variable has a single 
value that does not change throughout the entire execution of the loop. 
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While the lookupValues array variable is a shared variable, the elements can be classified as loop 
private. Since each iteration of the loop accesses a different member of the array based on the loop 
index and the read-only variable j, its members may be considered loop private. The members of the 
lookupValues array are also considered as storeback variables. However, since we will not be creating 
a local copy of these variables, there is no need to store the variables back. 

The last two variables - sinValue and i - are simply classified as loop-private variables, and separate 
copies are created for each thread. Neither of these variables is used after the loop has completed, so 
storeback handling is not necessary. 

Choosing the loop scheduler is done by examining the algorithm inside the inner loop itself. In this 
case, there is nothing that should cause any iteration to execute longer than any other iteration. 
Choosing the default - static or chunk - scheduler is probably best. However, there should be no harm 
in choosing either the self- or guided self-scheduler. 

Once these tasks are completed, threading the loop is done by using the loop handler as usual. 
However, there is a slight complication: compared with the outer loop, the inner loop will be executed 
many more times. This means a thread creation and destruction overhead is executed many more 
times. Furthermore, the loop handler is designed as a "one use" object. A new loop handler will have 
to be created for each iteration of the outer loop. Although using the loop handler will work without 
any problems, the overhead may be more significant than for threading a higher-level loop. 

We can partially overcome this complication as follows: 

public class PoolLoopHandler 
 implements Runnable { 
    protected class LoopRange { 
        public int start, end; 
    } 
    protected ThreadPool poolThreads; 
    protected int startLoop, endLoop, curLoop, numThreads; 
 
    public PoolLoopHandler(int start, int end, int threads) { 
        numThreads = threads; 
        poolThreads = new ThreadPool(numThreads); 
        setRange(start, end); 
    } 
    public synchronized void setRange(int start, int end) { 
        startLoop = start; 
        endLoop = end; 
        reset(); 
    } 
    public synchronized void reset() { 
        curLoop = startLoop; 
    } 
    protected synchronized LoopRange loopGetRange() { 
        if (curLoop >= endLoop) 
            return null; 
        LoopRange ret = new LoopRange(); 
        ret.start = curLoop; 
        curLoop += (endLoop-startLoop)/numThreads+1; 
        ret.end = (curLoop<endLoop)?curLoop:endLoop; 
        return ret; 
    } 
    public void loopDoRange(int start, int end) { 
    } 
    public void loopProcess() { 
        reset(); 
        for (int i = 0; i < numThreads; i++) { 
            poolThreads.addRequest(this); 
        } 
        try { 
                poolThreads.waitForAll(); 
        } catch (InterruptedException iex) {} 
    } 
    public void run() { 
        LoopRange str; 
        while ((str = loopGetRange()) != null) { 
            loopDoRange(str.start, str.end); 
        } 
    } 
} 
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The fact that our original LoopHandler class can be used only once was merely a design flaw. The loop 
index can never be set back to the start of the loop, nor can the range of the loop be changed. To fix 
this, we simply add two new methods, reset() and setRange(), that will reset the index back to the 
start of the loop and specify new ranges for the loop. To avoid many thread creations and destructions, 
we will use the ThreadPool class that we implemented in Chapter 7. Instead of creating threads in the 
loopProcess() method, this method will now assign the tasks to the threads in a thread pool. We can 
then simply wait for all the threads in the pool to complete their assigned tasks. This all helps 
somewhat, but the synchronization that we have introduced into the calculation will have an effect on 
the ultimate acceleration of our program. 

 

A Warning About Inner Loops 
Prior to threading any loop, we should always examine that loop. There is no reason to 
thread the loop if the loop executes in a very short period of time. For these cases, the 
overhead in the setup and takedown of the threaded loop may be greater than any speed 
gained from threading the loop. 

When moving from the outer loop to the inner loop, we must examine the inner loop. Just 
because the outer loop is a candidate for threading does not mean the inner loop is a 
candidate for threading. If the number of iterations in the outer loop is many times higher 
than the inner loop, the inner loop may execute only for a short period of time. There could 
also be method calls in the outer loop, and not in the inner loop that is taking a long period 
of time to execute. 

 
We can implement other scheduling models in the pool handler quite easily: 

public class PoolSelfLoopHandler 
 extends PoolLoopHandler { 
    private int groupSize; 
 
    public PoolSelfLoopHandler(int start, int end, 
                                   int size, int threads) { 
        super(start, end, threads); 
        setSize(size); 
    } 
 
    public synchronized void setSize(int size) { 
        groupSize = size; 
        reset(); 
    } 
 
    protected synchronized LoopRange loopGetRange() { 
        if (curLoop >= endLoop) 
            return null; 
        LoopRange ret = new LoopRange(); 
        ret.start = curLoop; 
        curLoop += groupSize; 
        ret.end = (curLoop<endLoop)?curLoop:endLoop; 
        return ret; 
    } 
} 

What's interesting here is the similarity to our original SelfLoopHandler class. However, to be more 
configurable, we have modified the handler to allow the extra parameters, such as the chunk size, to 
be changed. 
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Here's how we use our new handler:  

public class SinTable extends PoolLoopHandler { 
    private float lookupValues[][]; 
    private int j; 
 
    public SinTable() { 
        super(0, 360, 12); 
        lookupValues = new float[1000][]; 
        for (int j = 0; j < 1000; j++) { 
            lookupValues[j] = new float[360]; 
        } 
    }     
 
    public void loopDoRange(int start, int end) { 
        float sinValue = 0.0f; 
        for (int i = start; i < end; i++) { 
            sinValue = (float)Math.sin((i % 360)*Math.PI/180.0); 
            lookupValues[j][i] = sinValue * (float)i / 180.0f; 
            lookupValues[j][i] += lookupValues[j-1][i]*(float)j/180.0f; 
        } 
    }     
 
    public float[][] getValues() { 
        for (int i = 0; i < 360; i++) { 
            lookupValues[0][i] = 0; 
        } 
        for (j = 1; j < 1000; j++) { 
            loopProcess(); 
        } 
        return lookupValues; 
    } 
} 

To implement the SinTable class, we place the code from the inner loop in the loopDoRange() method 
and then call the loopProcess() method to process the inner loop. Since the j index variable is a 
read-only shared variable, it is now an instance variable of the SinTable class. 

Having a loop handler that can be used more than once is also very important. If we were using the 
earlier version of the loop handler, we would have had to create a new instance of the loop handler for 
each inner loop that we executed. This means that the code for the outer loop and the inner loop could 
not have been in the same class. Furthermore, we would have had to pass a reference to the j variable 
and lookupValues array to each instance, since these are shared between the different inner loop 
handlers.  

9.3 Loop Printing 

The task of sending a string to a file or the display is an I/O-bound task. Using multithreaded 
techniques on a loop of output does not make sense. Since the operation is I/O-bound, the threads will 
spend most of their time waiting, and there is little difference in having one processor or twelve 
processors available to run waiting threads. Furthermore, the order of the output is important. Data 
that is written to a file or the display will eventually be read by a person or another application. The 
output must look the same whether the calculation is done as a single-threaded or multithreaded 
application. 

However, what if the printing portion of the loop is small when compared with the mathematical 
calculation? If enough of the loop is CPU intensive, it might be silly to abandon an attempt at 
parallelizing the loop just because it contains a println() method call. The only problem that needs 
to be solved is the ordering of the output. This can be done by a two-step printing process. Instead of 
printing directly to the display or file, the application can print to a virtual, memory-based display 
along with an index that is used to order the output. When the processing of the loop has completed, 
the output can then be sent to the display or file, using the index information to ensure that the data is 
sent in the correct order. 
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Let's reexamine our SinTable loop:  

public synchronized float[] getValues() { 
    if (lookupValues == null) { 
        for (int i = 0; i < (360*100); i++) { 
            float sinValue = (float)Math.sin((i % 360)*Math.PI/180.0); 
            lookupValues[i] = sinValue * (float)i / 180.0f; 
            System.out.println(" " + i + "    " + lookupValues[i]); 
        } 
    }   
    return lookupValues; 
} 

In this new version of the getValues() method, we are also printing the table to standard output. 
Obviously, this is a simple example that can be transformed with a loop distribution to two separate 
loops. But let us assume that the printing process is highly integrated into the algorithm and the loop 
transformation is not possible. 

To solve this problem, we'll use this class: 

import java.util.*; 
import java.io.*; 
 
public class LoopPrinter { 
    private Vector pStorage[]; 
    private int growSize; 
 
    public LoopPrinter(int initSize, int growSize) { 
        pStorage = new Vector[initSize]; 
        this.growSize = growSize; 
    } 
 
    public LoopPrinter() { 
        this(100, 0); 
    } 
 
    private synchronized void enlargeStorage(int minSize) { 
        int oldSize = pStorage.length; 
        if (oldSize < minSize) { 
            int newSize = (growSize > 0) ? 
                oldSize + growSize : 2 * oldSize; 
            if (newSize < minSize) { 
                newSize = minSize; 
            }     
            Vector newVec[] = new Vector[newSize]; 
            System.arraycopy(pStorage, 0, newVec, 0, oldSize); 
            pStorage = newVec; 
        } 
    } 
  
    public synchronized void print(int index, Object obj) { 
        if (index >= pStorage.length) { 
            enlargeStorage(index+1); 
        } 
        if (pStorage[index] == null) { 
            pStorage[index] = new Vector(); 
        } 
        pStorage[index].addElement(obj.toString()); 
    } 
  
    public synchronized void println(int index, Object obj) { 
        print(index, obj); 
        print(index, "\n"); 
    } 
  
    public synchronized void send2stream(PrintStream ps) { 
        for (int i = 0; i < pStorage.length; i++) { 
            if (pStorage[i] != null) { 
                Enumeration e = pStorage[i].elements(); 
                while (e.hasMoreElements()) { 
                    ps.print(e.nextElement()); 
                } 
            }     
        } 
    } 
} 
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Implementation of a loop printer is done with a two-dimensional vector. The first dimension is used to 
separate the output. This output index could be related to the index of the actual loop, or to a chunk of 
the loop, or it could even be a combination of multiple loop indices. In any case, an output index 
should not be assigned to more than one thread, since the ordering inside an indexed vector is based 
on it. The second dimension holds the strings that will be sent to the output. Since the indices have 
already ordered the strings to be printed, this dimension is just used to store the many strings that will 
be sent to this index.[2] 

[2] Technically, we could have done the same thing with a single-dimensional array of string buffers. 

Printing an object to the virtual display is done with the print() and println() methods. Along with 
the object to be printed, the application must supply an index as a reference of the printing order. 
These methods simply store a reference to the strings so that they may be printed at a later time. The 
second phase of the printing process is done by the send2stream() method. Once the loop has 
completed, a call to this method will print the result to the output specified. 

Here's how to use the LoopPrinter class: 

public class SinTable extends GuidedLoopHandler { 
 
    private float lookupValues[]; 
    private LoopPrinter lp; 
 
    public SinTable() { 
        super(0, 360*100, 100, 12); 
        lookupValues = new float [360 * 100]; 
        lp = new LoopPrinter(360*100, 0); 
    } 
 
    public void loopDoRange(int start, int end) { 
        for (int i = start; i < end; i++) { 
            float sinValue = (float)Math.sin((i % 360)*Math.PI/180.0); 
            lookupValues[i] = sinValue * (float)i / 180.0f; 
            lp.println(i, " " + i + " " + lookupValues[i]); 
        } 
    }     
 
    public float[] getValues() { 
        loopProcess(); 
        lp.send2stream(System.out); 
        return lookupValues; 
    } 
} 

The loop printer is created prior to the loop, all printing that was previously sent to a file or the display 
is sent to the loop printer, and the send2stream() method is called upon completion of the loop. 
Since the loop printer will send all the information to one target, multiple loop printers will have to be 
created if the loop prints to different streams. 

Also note that we constructed the loop printer with the index size as its initial size. The loop printer is 
written to expand to any size, so this extra definition is not necessary. We want to avoid expanding the 
size because this operation not only requires the method to be synchronized, but also, depending on 
the size, will take some time to execute. The print() and println() methods must also be 
synchronized. This serves two purposes: First, it allows the array size to be increased without a race 
condition. Second, it allows the methods to work - although the print order is no longer guaranteed - if 
an index is assigned to two threads. If the loop printer were modified so as not to allow the array to be 
enlarged, and if it were assumed that developers would not assign two threads to the same index, 
synchronization at this level would no longer be necessary.  

9.4 Multiprocessor Scaling 

Scaling is a term that is sometimes overused. It can apply to how many applications a computer can 
execute simultaneously, how many disks can be written to simultaneously, or how many cream cheese 
bagel orders can be processed by the local bagel shop's crew. When the output cannot be increased no 
matter how many resources are added, this limit is generally the value used to specify what something 
scales to. If the oven cannot produce more bagels per hour, it does not matter how many people are 
added to the assembly line: the rate of bagels cannot exceed the rate produced by the oven. The scaling 
limit can also be controlled by many other factors, such as the rate that the cream cheese can be 
produced, the size of the refrigerators, or even by the suppliers for the bagel shop. 
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In this chapter, when we refer to the scalability of a multithreaded application, we are referring to the 
limit on the number of processors we can add and still obtain an acceleration. Adding more than this 
limit will not make the application run faster. Obviously, how an application scales depends on many 
factors: the operating system, the Java virtual machine implementation, the browser or application 
server, and the Java application itself. The best an application can scale will be based on the scalability 
limits of all of these factors. 

For perfect CPU-bound programs in a perfect world, we could expect perfect scaling: adding a second 
CPU would halve the amount of time that it takes the program to run, adding another CPU would 
reduce the time by another third, and so on. Even for the loop-based programs we've examined in this 
chapter, however, the amount of scaling that we will see is also limited by these important constraints: 

Setup time  

A certain amount of time is required to execute the code outside of the loop that is being 
parallelized. This amount of time is independent of the number of threads and processors that 
are available, because only a single thread will execute that code. 

New synchronization requirements  

In parallelizing the loops of this chapter, we've introduced some additional bookkeeping code, 
some of which is synchronized. Because obtaining a synchronization lock is expensive, this 
increases the time required to execute the code. 

Serialization of methods  

Some methods in our parallelized code must run sequentially because they are synchronized. 
Contention for the lock associated with these methods will also affect the scalability of our 
parallelized programs. 

 

The Effect of the Virtual Machine 
One of the factors that can affect the scalability of a particular program is the 
implementation of the virtual machine itself. Obtaining a synchronization lock, for 
instance, takes a certain amount of time, and the code in the virtual machine that actually 
implements the synchronization is often synchronized itself. Hence, two threads attempting 
to obtain different synchronization locks may still compete for a resource within the virtual 
machine. And there are other examples where the virtual machine or operating system will 
affect the scalability of a program. 

The results that we present in this chapter are based on the 1.1.6 production release of the 
Solaris 2.6 VM from Sun Microsystems. Other virtual machines and operating systems will 
show different results: in fact, the 1.2 beta production release for Solaris shows much better 
scaling results than we've presented here, primarily due to increased efficiencies in 
obtaining synchronization locks (which is very important, given that the loopGetRange() 
method is synchronized). These results are likely to be obtained once the Java 2 Solaris 
production release is available as well. 

 
If we view the setup time, synchronization time, and time required to execute the serialized methods 
as a percentage of the total running time, the remaining time is the amount of code that is parallelized. 
The maximum amount of scaling that we'll see is given by Amdahl's law: 

 

Here, S is the scaling we'll see, assuming that F % of code is parallelized over N processors. If 95% of 
the code is parallelized and we have eight processors available, the code will run in 16.8% of the 
original time required (.05 + .95/8). However, when we introduce code to calculate loop ranges (or 
any other code), we've actually increased the amount of serialized code, so F could potentially be a 
negative number. In that case, our parallelized code will take longer to run than our original code. 
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So what sort of scaling can we expect from the techniques of this chapter? In order to answer this 
question, we will test several implementations of our sample double loop: 

public float[][] getValues() { 
    for (int i = 0; i < 360; i++) { 
        lookupValues[0][i] = 0; 
    } 
    for (int j = 1; j < 1000; j++) { 
        for (int i = 0; i < 360; i++) { 
            float sinValue = (float)Math.sin((i % 360)*Math.PI/180.0); 
            lookupValues[j][i] = sinValue * (float)i / 180.0f; 
            lookupValues[j][i] += lookupValues[j-1][i]*(float)j/180.0f; 
        }   
    } 
    return lookupValues; 
} 

To make testing easier, we will use the following class and interface to build a system by which we may 
test various loop handlers. Since we're working with CPU-intensive threads, we've included the 
Solaris-specific code to set the number of LWPs, but this code will run on any operating system: 

public interface ScaleTester { 
 
    public void init(int nRows, int nCols, int nThreads); 
    public float[][] doCalc(); 
} 
 
import java.util.*; 
import java.text.*; 
import java.io.*; 
 
public class ScaleTest { 
    private int nIter = 200; 
    private int nRows = 2000; 
    private int nCols = 200; 
    private int nThreads = 8; 
    Class target; 
 
    ScaleTest(int nIter, int nRows, int nCols, int nThreads, 
                String className) { 
        this.nIter = nIter; 
        this.nRows = nRows; 
        this.nCols = nCols; 
        this.nThreads = nThreads; 
        try { 
            target = Class.forName(className); 
        } catch (ClassNotFoundException cnfe) { 
            System.out.println(cnfe); 
            System.exit(-1); 
        } 
    } 
    void chart() { 
        long sumTime = 0; 
        long startLoop = System.currentTimeMillis(); 
        try { 
            ScaleTester st = (ScaleTester) target.newInstance(); 
            for (int i = 0; i < nIter; i++) { 
                st.init(nRows, nCols, nThreads); 
                long then = System.currentTimeMillis(); 
                float ans[][] = st.doCalc(); 
                long now = System.currentTimeMillis(); 
                sumTime += (now - then); 
            } 
        } catch (Exception e) { 
            e.printStackTrace(); 
            System.exit(-1); 
        } 
        long endLoop = System.currentTimeMillis(); 
        long calcTime = endLoop - startLoop; 
        System.err.println("Loop time " + sumTime + 
                            " (" + ((sumTime * 100) / calcTime) + "%)"); 
        System.err.println("Calculation time  " + calcTime); 
    } 
    public static void main(String args[]) { 
        if (args.length != 5) { 
            System.out.println( 
    "Usage: java ScaleTester nIter nRows nCols nThreads className"); 
            System.exit(-1); 
        } 
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        ScaleTest sc = new ScaleTest(Integer.parseInt(args[0]), 
                                     Integer.parseInt(args[1]), 
                                     Integer.parseInt(args[2]), 
                                     Integer.parseInt(args[3]), 
                                     args[4]); 
        CPUSupport.setConcurrency(Integer.parseInt(args[3]) + 5); 
        sc.chart(); 
    } 
} 

When we use the ScaleTest class, we get two numbers: the number of milliseconds required to run the 
entire program (including initialization, which is single-threaded) and the number of milliseconds 
required to run just the loop calculation. We can then compare these numbers to determine the 
scalability of various implementations of our loop handling classes. 

As a baseline, we'll take the measurement of this class: 

public class Basic implements ScaleTester { 
 
    private float lookupValues[][]; 
    int nCols, nRows; 
 
    public void init(int nRows, int nCols, int nThreads) { 
        this.nCols = nCols; 
        this.nRows = nRows; 
        lookupValues = new float[nRows][]; 
        for (int j = 0; j < nRows; j++) { 
            lookupValues[j] = new float[nCols]; 
        } 
    } 
 
    public float[][] doCalc() { 
        for (int i = 0; i < nCols; i++) { 
            lookupValues[0][i] = 0; 
        } 
        for (int j = 1; j < nRows; j++) { 
            for (int i = 0; i < nCols; i++) { 
                float sinValue = 
                                (float)Math.sin((i % 360)*Math.PI/180.0); 
                lookupValues[j][i] = sinValue * (float)i / 180.0f; 
                lookupValues[j][i] += 
                                lookupValues[j-1][i]*(float)j/180.0f; 
            } 
        } 
        return lookupValues; 
    } 
} 

This class contains no threading; it is the way that we would normally implement the basic calculation 
we're interested in testing. One of the implementations that we'll compare this class against is the 
following loop handler class: 

public class  
GuidedLoopInterchanged implements ScaleTester { 
    private float lookupValues[][]; 
    private int nRows, nCols, nThreads; 
 
    private class GuidedLoopInterchangedHandler 
                                    extends GuidedLoopHandler { 
        GuidedLoopInterchangedHandler(int nc, int nt) { 
            super(0, nc, 10, nt); 
        } 
 
        public void loopDoRange(int start, int end) { 
            for (int i = start; i < end; i++) { 
                lookupValues[0][i] = 0; 
            } 
            for (int i = start; i < end; i++) { 
                for (int j = 1; j < nRows; j++) { 
                    float sinValue = 
                                (float)Math.sin((i % 360)*Math.PI/180.0); 
                    lookupValues[j][i] = sinValue * (float)i / 180.0f; 
                    lookupValues[j][i] += 
                                lookupValues[j-1][i]*(float)j/180.0f; 
                }   
            } 
        } 
    } 
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    public void init(int nRows, int nCols, int nThreads) { 
        this.nRows = nRows; 
        this.nCols = nCols; 
        this.nThreads = nThreads; 
        lookupValues = new float[nRows][]; 
        for (int j = 0; j < nRows; j++) { 
            lookupValues[j] = new float[nCols]; 
        } 
    } 
    public float[][] doCalc() { 
        GuidedLoopInterchangedHandler loop = 
                    new GuidedLoopInterchangedHandler(nCols, nThreads); 
        loop.loopProcess(); 
        return lookupValues; 
    } 
} 

This class uses our simple loop handler to process the loop; notice, however, that we've interchanged 
the loops in order to make the outer loop threadable. 

Table 9.1 lists the results of the ScaleTest program when run with different implementations of the 
interchanged loop: we've used chunk, self-scheduled, and guided self-scheduling loop handlers in 
conjunction with the code we showed earlier. These tests were run on a machine with eight CPUs, 
using an iteration count of 200. We've normalized the running time for the baseline run to be 100 so 
that other numbers can be viewed as a percentage: the best that we do is run in 20.6% of the time 
required for the original run. The first number in each cell represents a run with 500 rows and 1000 
columns, and the second number represents a run with 1000 rows and 500 columns. 

Table 9.1, Scalability of Simple Loop Handlers 

 Number of Threads Total Time Loop Time 

Basic 1 100/100 96/96 

Chunk scheduling 1 124.6/123.4 120.8/119.7 

 2 64.5/63.1 61.2/59.3 

 4 34.7/35.3 31.5/31.8 

 8 23.7/23.0 20.3/19.3 

 12 24.0/24.0 20.6/20.2 

Self-scheduling 1 129.7/127.6 125.8/123.8 

 2 71.9/70.3 69.0/66.8 

 4 39.3/39.6 36.1/36.1 

 8 23.1/24.1 19.8/20.5 

 12 22.7/23.5 19.2/19.8 

Guided self-scheduling 1 124.7/122.5 120.9/118.9 

 2 64.0/63.6 60.8/60.5 

 4 34.4/34.2 31.3/30.8 

 8 20.6/21.8 17.3/18.1 

 12 22.3/23.1 18.9/19.1 
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There are a few conclusions that we can draw from this table: 

• The overhead of setting up the thread and loop handling class itself is significant: it requires 
22% to 29% more time to execute that code when only a single thread is available. So we 
would never use this technique on a machine with only one CPU. 

• The scaling of the loop calculation itself is good. Since the original loop accounted for 96% of 
the code, with eight CPUs the best that we can hope for (using Amdahl's law) is 16.8%. We've 
achieved 20.6%, which implies that 90% of the code is now parallelized: the 6% difference is 
accounted for by the serialized calls to the loopGetRange() method and by the fact that each 
thread is probably not doing exactly the same amount of work. 

• Going past eight threads - that is, the number of CPUs available - yields a penalty. This is 
partially because we now have threads competing for a CPU, but it is also because of the 
synchronization around the additional calls to the loopGetRange() method. 

• The guided self-scheduler is the best choice in this example. This is not surprising: 
calculations based on sine values do not always require the same amount of time, so the chunk 
scheduler can be penalized by having one particular thread that requires too much time. That 
contributes to a loss of scaling, since the threads do not end up performing equal amounts of 
work. 

All in all, though, we've achieved very good scalability.  

What effect does a storeback variable have in our testing? We can rewrite our tests so that every time 
we calculate a lookup value, we add that value to a sumValue instance variable. Using the reduction 
technique we showed earlier, the modified test generates the numbers given in Table 9.2. 

Table 9.2, Scalability of Loop Handlers with Storeback Variables 

 Number of Threads Total Time Loop Time 

Basic 1 100/100 97/96 

Chunk scheduling 1 123.3/121.9 119.6/118.3 

 2 64.1/62.7 61.5/59.5 

 4 36.4/35.2 33.4/32.0 

 8 22.5/22.7 19.3/19.3 

 12 24.1/23.7 20.9/20.1 

Guided self-scheduling 1 123.3/121.6 119.6/117.9 

 2 64.6/63.2 62.0/60.0 

 4 36.0/34.3 33.1/31.2 

 8 20.2/21.5 17.1/18.0 

 12 22.1/22.3 19.0/18.7 

Because there's only one storeback variable, the effect on the scaling is minor. In fact, in some cases 
we did better because the baseline now takes longer to execute. However, the effect of many storeback 
variables could potentially aggregate into something more noticeable. 
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What if we had threaded only the inner loop? This question is very interesting, since it demonstrates 
the effect of synchronization overhead versus the amount of savings we obtain if the inner loop is 
small. Rewriting our first test (with no storeback variable) so that no loop interchange is performed 
and the inner loop is threaded instead produces the results in Table 9.3. 

Table 9.3, Scalability of Inner Loop Handlers 

 Number of Threads Total Time Loop Time 

Basic 1 100/100 97/96 

Guided self-scheduling 1 138.0/159.7 133.8/155.0 

 2 82.2/138.3 77.2/131.4 

 4 66.7/164.1 60.0/154.2 

 8 104.3/515.3 92.8/499.9 

 12 1318.9/4466.3 1292.5/4421.7 

So what has happened here? First, we've slightly modified our test parameters: the first number was 
produced with a run of 100 rows and 5000 columns, and the second number was produced with a run 
of 500 rows and 1000 columns. In the first case, we've achieved some scalability to a point of four 
CPUs, which allows us to run inner loops of about 250 calculations per CPU. By the time we get to 
eight CPUs, however, the inner loop has only 125 calculations, and the additional overhead of 
repeatedly calling the synchronized loopGetRange() method has overcome any advantage we 
received by running the small loops in parallel. Things get drastically worse as we add additional 
threads. 

In the second case, the inner loop is so small that we end up calling the loopGet-Range() method so 
many times that there is never any scalability. In the best case (with two threads), we've added the 
equivalent of 43% more code than we've parallelized. 

As we mentioned, threading of small loops - and particularly of small inner loops - is not necessarily 
worthwhile. 

Finally, what if we add code to the loop that prints out the result of some calculations? We can still 
thread such a case using the LoopPrinter class that we developed earlier. However, remember that we 
ended our section on the LoopPrinter class with a discussion that would enable us to remove the 
synchronization from the LoopPrinter class. Because in this particular test we always know the size of 
the output array and we can ensure that the same index is not used by two different threads, we can 
rewrite the LoopPrinter class like this: 

import java.util.*; 
import java.io.*; 
 
// Non-thread-safe version of a loop printer 
public class LoopPrinter { 
    private Vector pStorage[]; 
 
    public LoopPrinter(int size) { 
        pStorage = new Vector[size]; 
    } 
 
    public void print(int index, Object obj) { 
        if (pStorage[index] == null) { 
            pStorage[index] = new Vector(); 
        } 
        pStorage[index].addElement(obj.toString()); 
    } 
 
    public void println(int index, Object obj) { 
        print(index, obj); 
        print(index, "\n"); 
    } 
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    public void send2stream(PrintStream ps) { 
        for (int i = 0; i < pStorage.length; i++) { 
            if (pStorage[i] != null) { 
                Enumeration e = pStorage[i].elements(); 
                while (e.hasMoreElements()) { 
                    ps.print(e.nextElement()); 
                } 
            } 
        } 
    } 
} 

With this new version of the loop printer, there is no longer any synchronized code, and hence it 
should have fewer problems scaling. However, with all the calls to the Vector class, even this version of 
our loop printer adds a significant amount of overhead to our multithreaded program. In addition, it 
still takes longer to add strings to these vectors and then dump them out than to simply call the 
System.out.println() method. However, the difference between our thread-safe and our thread-
unsafe versions of this class is important. Table 9.4 lists the results that we obtained for both cases. 

Table 9.4, Scalability of the LoopPrinter Classes 

 Number of Threads Total Time Loop Time 

Basic 1 100/100 96/98 

Thread-safe loop printer 1 125.4/126.0 116.7/119.7 

 2 79.0/97.8 70.3/91.9 

 4 55.5/82.5 47.2/76.7 

 8 46.6/84.2 38.2/78.3 

 12 48.2/86.9 39.5/80.0 

Thread-unsafe loop printer 1 125.1/121.0 116.3/111.3 

 2 77.9/92.7 69.4/85.3 

 4 55.3/79.0 47.0/67.1 

 8 45.6/78.2 37.0/64.9 

 12 47.7/78.2 39.1/64.9 

The first set of numbers in this table results from running 200 iterations with 200 rows and 1000 
columns and printing out every 100th row. The second set of results shows what happens when we 
print out every 20th row instead. By the time that we print out every 20th row, the amount of extra 
code prevents any reasonable scaling at all. This is clearly a case where careful design and use of an 
unsynchronized class can have a big benefit. 

We realize that this technique is at odds with our previous admonishments to produce thread-safe 
code. We still recommend that you always start with threadsafe code. In cases like this, however, when 
you take the extra care necessary to ensure that you use the thread-unsafe code correctly, the scaling 
benefits may outweigh the extra effort required to code carefully enough to prevent any race 
conditions.  
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9.5 Summary 

In this chapter, we examined techniques that allow us to utilize multiprocessor machines so that our 
Java programs will run faster on those machines. We examined loops - the most common source of 
CPU-intensive code - and developed classes that allow these loops to run in a multithreaded fashion. 
Along the way, we have classified variables, used various scheduling algorithms, and applied simple 
loop transformations to achieve this parallelization. 

The goals here are to write fast programs from the start, to increase the performance of old algorithms 
without redesigning them from scratch, and to provide a rich set of options that can be used for cases 
where high performance is required.  
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Chapter 10. Thread Groups 
In this chapter, we will discuss Java's ThreadGroup class, which, as the name implies, is a class that 
handles groups of threads. Thread groups are useful for two reasons: they allow you to manipulate 
many threads by calling a single method, and they provide the basis that Java's security mechanism 
uses to interact with threads. In Java 1.0, the actual use of thread groups was really limited to writers 
of Java applications: within an applet, virtually no operations on thread groups were possible, due in 
part to security restrictions (but also due in part to bugs in the API). This has changed in later releases 
of Java, so that thread groups may be used in any Java program. 

10.1 Thread Group Concepts 

Say that you're writing a server using the TCPServer class we developed in Chapter 5. Each client that 
connects to the server runs as a separate thread. Now say that for each client, the server is going to 
create many other threads: perhaps a timer thread, a separate thread to read data coming from the 
client, another to write data to the client, and maybe some threads for a calculation algorithm. Well, 
you get the idea: the server has a lot of threads it needs to manage. 

This is where the ThreadGroup class comes into play. Thread groups allow you to modify many 
threads with one call - making it easier to control your threads and making it less likely that you'll 
forget one. 

Although we haven't yet mentioned thread groups, they've been around all along: all threads in the 
Java virtual machine belong to a thread group. Every thread you create automatically belongs to a 
default thread group the Java virtual machine sets up on your behalf. So all the threads that we've 
looked at so far belong to this existing thread group. 

Thread groups are more than just arbitrary groupings of threads, however; they are related to each 
other. Every thread group (with the obvious exception of the first thread group) has a parent thread 
group, so the groups exist in a tree hierarchy. The root of this tree is known as the system thread 
group . 

You can create your own thread groups as well; each thread group is the child of an existing thread 
group. In the TCPServer example we discussed earlier, the thread hierarchy might appear as shown in 
Figure 10.1. 

Figure 10.1. A thread group hierarchy 

 
 
We'll end up with at least one thread group for each connected client; note that the thread groups have 
the option of creating other thread groups underneath them. Also note that the threads themselves are 
interspersed among the groups in the entire hierarchy: a thread group contains threads as well as 
(possibly) other thread groups. 
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10.2 Creating Thread Groups 

There are two constructors that create new thread groups: 

ThreadGroup(String name)  

Creates a thread group with the given name. 

ThreadGroup(ThreadGroup parent, String name)  

Creates a thread group that descends from the given parent and has the given name. 

In the case of the first constructor, the new thread group is a child of the current thread's thread 
group; in the second case, the new thread group is inserted into the thread group hierarchy with the 
given thread group as its parent. (Though it's probably bad design to do so, by default a thread group 
can be inserted anywhere in a Java application's thread group hierarchy.) In Java 1.0, only Java 
applications were allowed to create thread groups; this restriction no longer applies. 

Each of these constructors creates an empty thread group - a thread group with no threads. There is 
no method to move a thread into a particular group; a thread is placed into a group only when the 
thread object is created. As this restriction implies, there are some additional constructors for the 
Thread class that specify the thread group to which the thread should belong: 

Thread(ThreadGroup group, String name)  

Constructs a new thread that belongs to the given thread group and has the given name. 

Thread(ThreadGroup group, Runnable target)  

Constructs a new thread that belongs to the given thread group and runs the given target 
object. 

Thread(ThreadGroup group, Runnable target, String name)  

Constructs a new thread that belongs to the given thread group, runs the given target object, 
and has the given name. 

Note that there is no constructor that takes just a ThreadGroup as a parameter, which seems to be an 
oversight. In the constructors we learned about in Chapter 2, the thread becomes a member of the 
same thread group to which the current thread belongs. 

Similarly, there is no method by which a thread can be deleted from a thread group: a thread is a 
member of its thread group for the duration of its life. However, when the thread terminates, it is 
removed automatically from the thread group. 

We can use these constructors to modify the TCPServer class so that each client is placed in a separate 
thread group as well as being run in a separate thread. Doing so is simple: we need only create the 
thread group immediately before creating the client thread, so that when the client thread is started, it 
is a member of the new thread group: 

import java.net.*; 
import java.io.*; 
 
public class  
TCPServer implements Cloneable, Runnable { 
    Thread runner = null; 
    ServerSocket server = null; 
    Socket data = null; 
    volatile boolean shouldStop = false; 
    ThreadGroup group = null; 
    int groupNo = 0; 
 
    public synchronized void startServer(int port) throws IOException { 
        if (runner == null) { 
            server = new ServerSocket(port); 
            runner = new Thread(this); 
            runner.start(); 
        } 
    } 
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    public synchronized void stopServer() { 
        if (server != null) { 
            shouldStop = true; 
            runner.interrupt(); 
            runner = null; 
            try { 
                server.close(); 
            } catch (IOException ioe) {} 
            server = null; 
        } 
    } 
 
    public void run() { 
        if (server != null) { 
            while (!shouldStop) { 
                try { 
                    Socket datasocket = server.accept(); 
                    TCPServer newSocket = (TCPServer) clone(); 
 
                    newSocket.server = null; 
                    newSocket.data = datasocket; 
                    newSocket.group = 
                        new ThreadGroup("Client Group " + groupNo++); 
                    newSocket.runner = 
                        new Thread(newSocket.group, newSocket); 
                    newSocket.runner.start(); 
                } catch (Exception e) {} 
            } 
        } else { 
            run(data); 
        } 
    } 
  
    public void run(Socket data) { 
    } 
} 

Remember that the TCPServer is subclassed in order to provide functionality for the client; in the next 
section, we'll look at how this thread group makes it easier to program the code that handles the client. 

10.3 Thread Group Methods 

Other than some deprecated methods that we'll examine in the next section, the methods of the 
ThreadGroup class are mostly informative. We'll examine all the methods of the ThreadGroup class in 
this section. 

10.3.1 Finding Thread Groups 

There are often times when you'd like to call one of the thread group methods but don't necessarily 
have a thread group object. The Thread class has a method that returns a reference to the thread 
group of a thread object: 

ThreadGroup getThreadGroup()  

Returns the ThreadGroup reference of a thread, for example: 

// Find the thread group of the current thread. 
ThreadGroup tg = Thread.currentThread().getThreadGroup(); 

You can also retrieve the parent thread group of an existing thread group with the getParent() 
method of the ThreadGroup class: 

ThreadGroup getParent()  

Returns the ThreadGroup reference of the parent of a thread group. 

Finally, you can test whether a particular thread group is an ancestor of another thread group with the 
parentOf() method of the ThreadGroup class: 

boolean parentOf(ThreadGroup g)  

Returns true if the group g is an ancestor of a thread group. 
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Note that the parentOf() method is badly named; it returns true if the group g is the same as the 
calling thread group, or the parent of the thread group, or the grandparent of the thread group, and so 
on up the thread group hierarchy. 

10.3.2 Enumerating Thread Groups 

The next set of methods we'll explore allows you to retrieve a list of all threads in a thread group. 
Enumeration of threads is really the responsibility of the ThreadGroup class: although the Thread 
class also contains methods that enumerate threads, those methods simply call their counterpart 
methods of the ThreadGroup class. 

There are two basic methods in the ThreadGroup class that return a list of threads: 

int enumerate(Thread list[])  

Fills in the list array with a reference to all threads in this thread group and all threads that 
are in groups that descend from this thread group. 

int enumerate(Thread list[], boolean recurse)  

Fills in the list array with a reference to all threads in this thread group and, if recurse is 
true, all threads that are in groups that descend from this thread group. 

These calls fill in the input parameter list with a thread reference for each appropriate thread and 
return the count of threads that were inserted into the array. The appropriateness of a thread depends 
on the recurse parameter: if recurse is true, all threads of the given thread group are returned as 
well as all threads that are in thread groups that descend from the current thread group. Not 
surprisingly, calling the enumerate() method with recurse set to false returns only those threads 
that are actually members of the current thread group. 

Calling the enumerate() method with recurse set to true on the system thread group returns all the 
threads in the virtual machine. You can find the system thread group by using the getParent() 
method we just examined (subject, of course, to the security model that may be in place). 

Since arrays in Java are of a fixed size, the size of the list parameter must be determined before the 
enumerate() method is called (or you may not get a complete list). To find the correct size for the 
list array, use the activeCount() method: 

int activeCount()  

Returns the number of active threads in this and all descending thread groups. 

There is no recursion option available with this method; the activeCount() method always returns 
the count of all threads in the current and in all descending thread groups. 

The following code fragment shows how to use these methods to display the threads in the current 
thread group. Changing the parameter in the enumerate() method displays the threads in this and all 
descending groups: 

ThreadGroup tg = Thread.currentThread().getThreadGroup(); 
int n = tg.activeCount(); 
Thread list[] = new Thread[n]; 
int count = tg.enumerate(list, false); 
System.out.println("Threads in thread group " + tg); 
for (int i = 0; i < count; i++) 
    System.out.println(list[i]); 

You can also request an enumeration of ThreadGroup objects rather than Thread objects via the 
enumerate() method with these signatures: 

int enumerate(ThreadGroup list[])  

Retrieves all thread group references that are descendants of the given thread group. This 
method operates recursively on the thread group hierarchy. 

int enumerate(ThreadGroup list[], boolean recurse)  

Retrieves all thread group references that are immediate descendants of the given thread 
group and, if recurse is true, all descendants of the current thread group. 
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These methods are conceptually equivalent to the methods that we've just discussed. To determine the 
size of the list parameter, use the activeGroupCount() method: 

int activeGroupCount()  

Returns the number of thread group descendants (at any level) of the given thread group. 

Recall that the Thread class also had an enumerate() method. The Thread class's enumerate() 
method always searches recursively; it is really shorthand for: 

Thread.currentThread().getThreadGroup().enumerate(list, true); 

Similarly, the Thread class's activeCount() method is really shorthand for: 

Thread.currentThread().getThreadGroup().activeCount(); 

Finally, there is a method useful only for debugging: 

void list()  

Sends a list of all the threads in the current thread group to standard out.  

10.3.3 Thread Group Priority Calls 

Java thread groups carry with them the notion of a maximum priority. This maximum priority 
interacts with the priority methods of the Thread class: the priority of a thread cannot be set higher 
than the maximum priority of the thread group to which it belongs. By default, the maximum priority 
of a thread group is the same as the maximum priority of its parent thread group. As you might have 
guessed, the maximum priority of the system thread group is 10 (Thread.MAX_PRIORITY ). The 
maximum priority of the applet thread group - the group to which all threads in an applet belong - is 
only 6. 

There are two methods that handle a thread group's priority: 

void setMaxPriority(int priority)  

Sets the maximum priority for the thread group. 

int getMaxPriority()  

Retrieves the maximum priority for the thread group. 

In the reference release of the Java virtual machine, the maximum priority of a thread group is 
enforced silently: if the thread group to which your thread belongs has a maximum priority of 6 and 
you attempt to raise your thread's priority to 8, your thread is silently given a priority of 6. In some 
browsers (and in Java 1.0), if you attempt to set an individual thread's priority higher than the 
maximum priority of the thread group, a SecurityException will be thrown. 

Once the maximum priority of a thread group has been lowered, it cannot be raised. 

These values are only checked when a thread's priority is actually changed. Thus, if you have a thread 
group with a maximum priority of 10 that contains a thread with a priority of 8, changing the thread 
group's maximum priority to 6 doesn't affect that thread: it continues to have a priority of 8 until that 
thread's set-Priority() method is called. However, the maximum priority of any nested thread 
groups is changed immediately: any thread groups that are contained within the target thread group 
will have their maximum priority lowered to the requested value. This change is propagated 
recursively throughout the thread group hierarchy. 

10.3.4 Destroying Thread Groups 

A thread group can be destroyed with the destroy() method: 

void destroy()  

Cleans up the thread group and removes it from the thread group hierarchy. 

The destroy() method is of limited use: it can only be called if there are no threads presently in the 
thread group. The destroy() method operates recursively, so it destroys not only the target thread 
group but all thread groups that descend from the target thread group. If any of these thread groups 
have active threads within them, the destroy() method generates an IllegalThreadState-Exception. 
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You can test to see if the destroy() method has been called on a particular thread group by using this 
method: 

boolean isDestroyed() ( Java 1.1 and above only)  

Returns a flag indicating whether the thread group has been destroyed. 

This may seem somewhat confusing: if the thread group has been destroyed, how can we execute a 
method on it? The answer is that the destroy() method only removes the thread group from the 
thread group hierarchy; the actual thread group object will not be garbage collected until there are no 
valid references to it. 

10.3.5 Daemon Thread Groups 

The ThreadGroup class has the notion of a daemon thread group, which is similar to the notion of a 
daemon thread. The two are unrelated, however: daemon threads can belong to non-daemon thread 
groups, and a daemon thread group can contain non-daemon threads. The benefit of a daemon thread 
group is that it is destroyed automatically once all the threads it contains have exited and all the 
groups that it contains have been destroyed. Unlike a thread, a thread group's daemon status can be 
changed at any time: 

void setDaemon(boolean on)  

Changes the daemon status of the thread group. 

boolean isDaemon()  

Returns true if the thread group is a daemon group. 

We should stress that a daemon thread group is destroyed only if all threads in the group have actually 
exited: if there are only daemon threads in a daemon thread group, the daemon thread group is not 
destroyed unless the daemon threads it contains are stopped first. This is because daemon threads 
serve user threads throughout the virtual machine, not just the user threads of a particular thread 
group. 

Of course, the benefit of daemon threads in the first place is that the programmer never bothers to 
stop them explicitly. Thus, while the concept of a daemon thread group that automatically exits when 
it contains only daemon threads may be attractive, it does not work that way. 

10.3.6 Miscellaneous Methods 

There are three remaining methods of the ThreadGroup class that we will mention here for 
completeness: 

String getName()  

Returns the name of the thread group. 

void uncaughtException(Thread t, Throwable e)  

This method is called when a thread exits due to an uncaught exception; its default behavior is 
to print the stack trace of the thread to System.err. We'll say more about this method in 
Appendix A. 

boolean allowThreadSuspension(boolean b) ( Java 1.1 only)  

Sets the vmAllowSuspension flag of the thread group, returning the old value. When the 
virtual machine runs low on memory, some implementations of the virtual machine will seek 
to obtain memory by suspending threads in thread groups for which the vmAllowSuspension 
flag is set to true. 

However, since the suspend() method itself is deprecated in Version 2, the virtual machine 
can no longer suspend threads within a group that is marked to allow thread suspension, so 
this method is not terribly useful. 
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10.4 Manipulating Thread Groups 

One of the really useful ideas behind a thread group is the ability to manipulate all of its threads at 
once. There are four methods in the ThreadGroup class that allow us to do just that; however, since 
three of them are now deprecated, this idea is not as useful as it once was: 

void suspend() (deprecated in Java 2)  

Suspends all threads that descend from this thread group. 

void resume() (deprecated in Java 2)  

Resumes all threads that descend from this thread group. 

void stop() (deprecated in Java 2)  

Stops all threads that descend from this thread group. 

void interrupt() ( Java 2 and above only)  

Interrupts all threads that descend from this thread group. 

These methods all function in the same way as their counterparts in the Thread class, but they affect 
all threads in the thread group as well as all threads that are contained in the thread groups that 
descend from this group. In other words, these methods operate recursively on all groups that descend 
from the specified group. In the case of our TCPServer thread group hierarchy, this means that if, for 
example, we interrupted the Client1 thread group, we interrupt all threads in that group as well as the 
I/O threads in the Client1-created thread group.[1] 

[1] We know you're anxious to try it yourself, but yes, if you suspend the system thread group in a Java application, 
every thread in the virtual machine will be suspended, effectively hanging the virtual machine. The same is not 
true of Java applets due to the security restrictions we discuss later. 

We can use these calls to save some programming when we create the subclass of our TCPServer. In 
our ServerHandler subclass, we left out the processing that is performed on behalf of the client. This 
time, we'll assume that the server reads a set of commands from the client and runs each command in 
a separate thread; this allows the client to send commands asynchronously, without waiting for the 
server to finish the previous command. By placing all these threads in one group, we're able to modify 
all the threads running on behalf of the client in one call via the thread group mechanism. 

In this example, we're using this mechanism to handle the case where the client closes the connection: 
with one call, we can interrupt all threads running on behalf of this client (this assumes that the 
threads will periodically check their interrupted state and exit if that state is true, as we showed in our 
example in Chapter 4). 

We'll also set up another thread group, to which we'll add all the client threads that we create. The end 
result will be that we'll have these thread groups: 

• The thread group of the TCPServer, containing the thread that is listening for client requests. 

• A thread group for each client, containing the thread that is communicating with the client. 
This is the thread group that was set up in our TCPServer example earlier. 

• A calculation thread group of the client, containing all the threads that are performing 
calculations on behalf of the client. This is the thread group we will create in the following 
code. 

This is a useful technique: it's better to have a thread outside of the thread group actually manipulate 
the thread group. This is not an absolute requirement: you could, for example, interrupt the thread 
group to which you belong. 
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Here's our modified ServerHandler class with this additional thread group logic: 

import java.net.*; 
import java.io.*; 
 
class  
CalculateThread extends Thread { 
    OutputStream os; 
    CalculateThread(ThreadGroup tg, OutputStream os) { 
        super(tg, "Client Calculate Thread"); 
        this.os = os; 
    } 
    public void run() { 
        // Do the calculation, sending results to the OutputStream os. 
        // Make sure to check the isInterrupted() flag often. 
    } 
} 
 
public class ServerHandler extends TCPServer { 
    public static final int INTERRUPT = 0; 
    public static final int CALCULATE = 1; 
    ThreadGroup tg; 
    public volatile boolean shouldRun; 
 
    private int getCommand(InputStream is) { 
        // Read the command data from input stream and return the 
        // command. 
    } 
 
    public void run(Socket data) { 
        tg = new ThreadGroup("Client Thread Group"); 
        try { 
            InputStream is = data.getInputStream(); 
            OutputStream os = data.getOutputStream(); 
            while (shouldRun) { 
                switch(getCommand(is)) { 
                    case INTERRUPT: 
                        tg.interrupt(); 
                        break; 
                    case CALCULATE: 
                        new CalculateThread(tg, os).start(); 
                        break; 
                } 
            } 
        } catch (Exception e) { 
            tg.interrupt(); 
        } 
    } 
 
    public static void main(String args[]) throws Exception { 
        TCPServer serv = new ServerHandler(); 
        serv.startServer(300); 
    } 
} 

 
10.5 Thread Groups, Threads, and Security 

The various restrictions on applets that we've mentioned in this chapter are a product of Java's 
security mechanism. There are security mechanisms at several points in Java: in the language itself, in 
the virtual machine, and built into the Java API. As far as threads are concerned, only the security 
mechanisms of the API come into consideration, and we'll examine how those mechanisms affect both 
threads and thread groups in this section. The enforcement of security is a prime reason behind the 
ThreadGroup class. 

Java's thread security is enforced by the SecurityManager class; security policies in a Java program 
are established when an instance of this class is instantiated and installed in the virtual machine. 
When certain operations are attempted on threads or thread groups, the API consults the security 
manager to determine if those operations are permitted. Prior to Java 2, there was no security 
manager in a Java application unless you wrote and installed one yourself; this is the reason that all 
the operations we've discussed are legal in Java applications. In a Java applet, there is typically a 
security manager in place that enforces particular restrictions. 
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Browsers and Security Managers 
When you write a Java applet, you're not given the opportunity to do anything with the 
security manager: the security manager is instantiated and installed by the browser itself 
and, once installed, cannot be changed. 

But the Java specification does not specify what policies the security manager should 
enforce. Instead, the security policies at this level are a product of the particular browser. 
Different browsers may implement different levels of security: for example, the Netscape 
browser does not permit Java applets to read any files from the user's local disk, but Sun's 
HotJava browser allows the user to specify a list of directories in which the applet can read 
files. 

The rule of thumb here is that the author of any Java application ultimately determines 
what security policy is in place; in the case of a browser, the author of the browser is the 
author of the application. Hence, different browsers can and do have different security 
models and policies. 

 
In Java 2, there is still typically a security manager in place that enforces restrictions on applets, but 
there is also a new way to launch an application such that the application may be subject to a default 
security manager. Of course, applications may still install their own security manager (or run without 
a security manager) by launching themselves in the traditional way. 

There is one method in the SecurityManager class that handles security policies for the Thread class 
and one that handles security policies for the ThreadGroup class. These methods have the same name 
but different signatures: 

void checkAccess(Thread t)  

Checks if the current thread is allowed to modify the state of the thread t. 

void checkAccess(ThreadGroup tg)  

Checks if the current thread group is allowed to modify the state of the thread group tg. 

Like all methods in the SecurityManager class, these methods throw a SecurityException if they 
determine that performing the operation would violate the security policy. As an example, here's the 
code that the interrupt() method of the Thread class implements (this is actually a conflation of 
code contained in the Thread class): 

public void interrupt() { 
    SecurityManager s = System.getSecurityManager(); 
    if (s != null) 
        s.checkAccess(this);    // this is Thread.currentThread(); 
    interrupt0(); 
} 

This is the canonical behavior for thread security: the checkAccess() method is called, which 
generates a runtime exception if thread policy is violated by the operation. Assuming that no 
exception is thrown, an internal method is called that actually performs the logic of the method. 

Because there is only one method in the SecurityManager class that's available to the Thread class and 
only one method that is available to the ThreadGroup class, a thread security policy is an all-or-
nothing proposition. If the security manager determines that a particular thread is prevented from 
interrupting other threads, that thread is also prevented from setting the priority of other threads. 
However, the security manager can (and usually does) take into account contextual information about 
the thread - including its thread group - in order to determine the policy for the thread.  
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Security and the checkAccess() Method 
Both the Thread and ThreadGroup classes have an internal method named 
checkAccess(); this method, by default, calls the security manager's checkAccess() 
method, passing either the thread or the thread group object. 

The checkAccess() method within the Thread and ThreadGroup classes is public, so you 
can call it directly from any thread or thread group object if you want to check what security 
policy is in place. 

The checkAccess() method within the ThreadGroup class is final; it may not be 
overridden. The checkAccess() method within the Thread class, however, is not final, 
meaning that you could override it and effectively change the security policy for your 
particular thread (but remember that this would only affect your thread class, and not other 
threads within the system).  

 
Note that this group of methods includes all methods that create or otherwise change the state of a 
particular thread or thread group, but does not include any method that provides thread information 
(such as the enumerate() methods or the getPriority() method). Hence, no matter what security 
manager may have been installed by the application, any thread is able to examine all other threads in 
the virtual machine; threads are only (possibly) prohibited from changing each other's state. 

Thread Methods ThreadGroup Methods 

Thread() [all signatures] ThreadGroup() [all signatures] 

stop() [both signatures] stop() 

suspend() suspend() 

resume() resume() 

interrupt() interrupt() 

setPriority(int priority) setMaxPriority() 

setDaemon(boolean on) setDaemon() 

setName(String s) destroy() 

Since the controls established by the security manager are completely at the discretion of the author of 
the Java application or Java-enabled browser, it is impossible to predict exactly what operations a 
thread might be able to perform. However, we'll list some of the best-known cases here: 

Java 1.0.2 and 1.1 applications  

By default, applications in these releases have no security manager at all, and all threads are 
permitted to perform any operation on any other thread. This is not the case, of course, if the 
author of the application decides to install a security manager. 

Java 1.0.2-based browsers  

This category includes the 1.0.2 appletviewer, Internet Explorer 3.0, and Netscape 3.0. In 
these browsers, each applet is created within its own thread group. An applet is allowed to 
create a thread within its own thread group, and although an applet is allowed to create 
another thread group, it may not actually add threads into that thread group. Hence, Applet 1 
in Figure 10.2 would be able to create subgroups 1 and 2, but not threads C and D. The fact 
that applets cannot add threads to any other thread group makes the ability to create a thread 
group useless in this case. 
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Figure 10.2. Possible threads in a Java-enabled browser 

 
 
Within the thread hierarchy, applet threads are allowed to modify any other thread group and any 
other thread as well, including threads in unrelated applets (e.g., thread A could modify thread B). 

Java 1.1-based browsers  

This category includes the 1.1 appletviewer, Internet Explorer 4.0, and Netscape 4.0. Although 
these browsers share a common reference base, there are differences in how they implement 
thread security. In the case of the appletviewer, each applet in these browsers is given a 
unique thread group, and the applet may create other thread groups that are installed into the 
thread group hierarchy under the applet's thread group. In Figure 10.2, the browser would 
have created the applet 1 thread group, and the applet itself is allowed to create subgroups 1 
and 2. The shaded box delineates the thread groups that belong to applet 1. 

Any thread within the shaded box in Figure 10.2 is able to access any other thread within that 
box. Hence, thread A can manipulate threads C and D, and thread C can also manipulate its 
parent thread (thread A) as well as threads in any sibling thread groups (thread D). However, 
applet threads are not allowed to access the system or main threads, nor are they allowed to 
access any threads outside of their own set of thread groups (thread C cannot access thread 
E). In Netscape, however, applet threads are allowed to access threads of their parent (i.e., the 
main thread group). Oddly enough, however, applets are able to access and manipulate any 
thread group, including the system and main thread groups. 

In Internet Explorer 4.0, this basic idea of thread security is slightly modified. To begin, IE 
4.0 does not allow an applet to call the getParent() method in order to find out about the 
system and main thread groups. This is a change to the core API, which, as we mentioned 
earlier, does not make such a security check. So an applet thread in IE 4.0 can manipulate any 
thread or thread group that it can access, but that access is restricted to the applet itself (e.g., 
the shaded box in Figure 10.2). 

In Netscape 4.0, applets are still not allowed to create threads within thread groups other than 
the default thread group created by the browser for the applet. In addition, the enumerate() 
method in Netscape 4.0 does not retrieve the correct set of threads for thread groups other 
than the applet's thread group, so tracking down other threads outside the applet is 
impossible. 
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Java 2 applications  

By default, Java 2 applications function the same way as 1.0.2- and 1.1-based applications: 
there is no security manager, and any thread is allowed to access any other thread. 

If a Java 2 application is started with the -Djava.security.manager option, however, a 
default security manager is installed for it. In this security manager, permission to access 
another thread is strictly based on the thread hierarchy: any thread can manipulate any other 
thread that is below it in the hierarchy. Sibling threads may not manipulate each other, and a 
child thread may not manipulate its parent threads. 

Java 2 also allows this default security manager to be configured via a series of policy files; 
normally these policy files include the files ${JAVAHOME}/lib/security/java.policy and 
${HOME}/.java.policy. The policy files used by an application contain a mapping between 
the URLs where the application may obtain code and the permissions that the code loaded 
from those URLs should be granted. Hence, code loaded from a particular URL may be 
granted a permission of: 

permission java.security.AllPermission 

or a permission of: 

permission java.security.RuntimePermission "thread" 

Code that is granted one of these permissions will be able to access any other thread in the 
virtual machine. 

In addition, in Java 2, the stop() method of the Thread class now performs an additional 
security check. In order to be able to call the stop() method on any thread, the URL from 
which the code was loaded must have been given a permission of: 

permission java.lang.RuntimePermission "stopThread" 

By default, this permission is granted to all code, but it's possible for an end user or system 
administrator to change the policy file so that the stop() method cannot be called arbitrarily. 

Java 2-based browsers  

As of this writing, there are no Java 2-based browsers available, so it is unclear what thread 
security policies they might adopt. The Java 2 appletviewer policy, however, follows the same 
policy as the 1.1 appletviewer. That policy, too, may be additionally configured through the 
policy files, so that code loaded from certain URLs may be given permission to access any 
thread in the virtual machine.  

10.6 Summary 

Here are the methods of the ThreadGroup class that we introduced in this chapter: 

ThreadGroup(String name)  

Creates a thread group with the given name. 

ThreadGroup(ThreadGroup parent, String name)  

Creates a thread group that descends from the given parent and has the given name. 

void suspend() (deprecated in Java 2)  

Suspends all threads that descend from this thread group. 

void resume() (deprecated in Java 2)  

Resumes all threads that descend from this thread group. 

void stop() (deprecated in Java 2)  

Stops all threads that descend from this thread group. 

void destroy()  

Cleans up the thread group and removes it from the thread group hierarchy. 

void interrupt() ( Java 2 and above only)  

Interrupts all threads that descend from this thread group. 
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ThreadGroup getParent()  

Returns the ThreadGroup reference of the parent of a thread group. 

boolean parentOf(ThreadGroup g)  

Returns true if the group g is an ancestor of a thread group. 

int enumerate(Thread list[])  

Fills in the list array with a reference to all threads in this thread group and all threads that 
are in groups that descend from this thread group. 

int enumerate(Thread list[], boolean recurse)  

Fills in the list array with a reference to all threads in this thread group and, if recurse is 
true, all threads that are in groups that descend from this thread group. 

int activeCount()  

Returns the number of active threads in this and all descending thread groups. 

int enumerate(ThreadGroup list[])  

Retrieves all thread group references that are descendants of the given thread group. This 
method operates recursively on the thread group hierarchy. 

int enumerate(ThreadGroup list[], boolean recurse)  

Retrieves all thread group references that are immediate descendants of the given thread 
group and, if recurse is true, all descendants of the current thread group. 

int enumerate(ThreadGroup list[])  

Retrieves all thread group references that are descendants of the given thread group. This 
method operates recursively on the thread group hierarchy. 

int enumerate(ThreadGroup list[], boolean recurse)  

Retrieves all thread group references that are immediate descendants of the given thread 
group and, if recurse is true, all descendants of the current thread group. 

int activeGroupCount()  

Returns the number of thread group descendants (at any level) of the given thread group. 

void setMaxPriority(int priority)  

Sets the maximum priority for the thread group. 

int getMaxPriority()  

Retrieves the maximum priority for the thread group. 

void setDaemon(boolean on)  

Changes the daemon status of the thread group. 

boolean isDaemon()  

Returns true if the thread group is a daemon group. 

boolean isDestroyed() ( Java 1.1 and above only)  

Returns a flag indicating whether the thread group has been destroyed. 

String getName()  

Returns the name of the thread group. 

void list()  

Sends a list of all the threads in the current thread group to standard out. 

boolean allowThreadSuspension(boolean b) ( Java 1.1 only)  

Sets the vmAllowSuspension flag of the thread group, returning the old value. When the 
virtual machine runs low on memory, some implementations of the virtual machine will seek 
to obtain memory by suspending threads in thread groups for which the vmAllowSuspension 
flag is set to true. 
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void uncaughtException(Thread t, Throwable e)  

This method is called when a thread exits due to an uncaught exception; its default behavior is 
to print the stack trace of the thread to System.err. 

In addition, we introduced these new methods of the Thread class: 

Thread(ThreadGroup group, String name)  

Constructs a new thread that belongs to the given thread group and has the given name. 

Thread(ThreadGroup group, Runnable target)  

Constructs a new thread that belongs to the given thread group and runs the given target 
object. 

Thread(ThreadGroup group, Runnable target, String name)  

Constructs a new thread that belongs to the given thread group, runs the given target object, 
and has the given name. 

ThreadGroup getThreadGroup()  

Returns the ThreadGroup reference of a thread. 

Finally, we introduced these methods of the SecurityManager class that operate on threads: 

void checkAccess(Thread t)  

Checks if the current thread is allowed to modify the state of the thread t. 

void checkAccess(ThreadGroup tg)  

Checks if the current thread group is allowed to modify the state of the thread group tg. 

In this chapter, we filled in the final piece of Java's thread mechanism: a way to group threads 
together and operate on all threads within the group. Additionally, the ThreadGroup class forms a 
thread hierarchy on which security policies for Java's thread mechanism are based. 

Like the other topics in the last few chapters, the ThreadGroup class is not one that is needed by the 
majority of programs; it's a special-use class for cases in which you need additional control over 
groups of threads. The ThreadGroup class is the last of the special-use mechanisms you need in order 
to complete your understanding of using threads in Java. Although we present some informative 
miscellaneous topics in the appendixes, the information we've presented in the body of this book 
should allow you to write productive and, if need be, very complex threaded programs in Java.  
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Appendix A. Miscellaneous Topics 
Throughout this book, we have examined the various parts of the threading system. This examination 
was based on various examples and issues that commonly occur during program development. 
However, there were certain rather obscure issues that fell through the cracks; these are the topics we 
will examine in this appendix. 

A.1 Thread Stack Information 

The Thread class provides these methods to supply the programmer with information about the 
thread's stack: 

int countStackFrames() (deprecated in Java 2)  

Returns the number of stack frames in the specified thread. The thread must be suspended in 
order for this method to work. This is a method of the Thread class and does not count the 
frames that are from native methods. Since the thread must be suspended, it is not possible to 
obtain the count for the current thread directly. 

static void dumpStack()  

Prints the stack trace of the current thread to System.err. This is a static method of the 
Thread class and may be accessed with the Thread specifier. Only the stack trace of the 
currently running thread may be obtained. 

Interestingly, we might conclude from these two methods that we can both count the number of stack 
frames and actually print the stack frames out. However, these two methods cannot be used together. 
Since the thread needs to be suspended in order to count the stack frames, it is not possible to count 
the frames of the current thread, and the dumpStack() method can only print the stack information of 
the current thread. 

The information printed by the dumpStack() method is the same information provided by the 
printStackTrace() method of the Throwable class. The dumpStack() method is just a convenience 
method; it actually instantiates an Exception object and calls the printStackTrace() method. 

A.2 General Thread Information 

To print thread or thread group information, use the following methods: 

String toString()  

Returns a string that describes the Thread object. Originally a method of the Object class, it is 
overridden by the Thread class to provide the name of the thread, the priority of the thread, 
and the name of the thread group to which the thread belongs. 

String toString()  

Returns a string that describes the ThreadGroup object. Originally a method of the Object 
class, it is overridden by the ThreadGroup class to provide the name of the thread group and 
the maximum priority of the group. 

The toString() method is overridden by the thread classes to allow a sensible conversion of the 
object into a string. Hence, the following code: 

Thread t = new TimerThread(this, 500); 
    System.out.println(t); 

yields the following output: 

Thread[TimerThread-500,6,group applet-TimerApplet] 
void list()  

Prints the current layout of the thread group hierarchy, starting with the thread group on 
which the method is invoked. This is a method of the ThreadGroup class and simply prints the 
information to System.out. This method operates recursively on the thread group. 
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The information that is printed by the list() method is the information returned by the toString() 
methods. A sample list() of an applet may be as follows: 

java.lang.ThreadGroup[name=system,maxpri=10] 
    Thread[clock handler,11,system] 
    Thread[Idle thread,0,system] 
    Thread[Async Garbage Collector,1,system] 
    Thread[Finalizer thread,1,system] 
    java.lang.ThreadGroup[name=main,maxpri=10] 
        Thread[main,5,main] 
        Thread[AWT-Input,5,main] 
        Thread[AWT-Motif,5,main] 
        Thread[Screen Updater,4,main] 
        AppletThreadGroup[name=group applet-Ticker,maxpri=6] 
            Thread[thread applet-Ticker,6,group applet-Ticker] 
            Thread[SUNW stock reader,5,group applet-Ticker] 
            Thread[APPL stock reader,5,group applet-Ticker] 
            Thread[NINI stock reader,5,group applet-Ticker] 
            Thread[JRA stock reader,5,group applet-Ticker] 
            Thread[ticker timer thread,4,group applet-Ticker] 

 

A.3 Default Exception Handler 

We examined the start() method to the extent of saying that "the start() method indirectly calls 
the run() method," but let's examine exactly what happens. The start() method does start another 
thread of control, but the run() method is not the "main" routine for this new thread. There are other 
bookkeeping details that must be taken care of first. The thread must be set up in the Java virtual 
machine before the run() method can execute. This process is shown in Figure A.1. 

Figure A.1. Flowchart of the main thread 

 
 
All uncaught exception conditions are handled by code outside of the run() method before the thread 
terminates. It is this exception handling that we will examine here. 

Why is this exception handler interesting to us? The default exception handler is a Java method; it 
can be overridden. This means that it is possible for an application to write a new default exception 
handler. This method looks like this: 

void uncaughtException(Thread t, Throwable o)  

The default exception handler method, which is called as a final handler to take care of any 
exceptions not caught by the thread in the run() method. This is a method of the 
ThreadGroup class. 
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The default exception handler is a method of the ThreadGroup class. It is called only when an 
exception is thrown from the run() method. The thread is technically completed when the run() 
method returns, even though the exception handler is still running in the thread. 

But just what is done by the default exception handler? Practically nothing. The only task 
accomplished by the default exception handler is to print out the stack trace recorded by the 
Throwable object. This is the stack trace of the thread that threw the object in the first place. (The only 
exception to this is if the throwable object is a ThreadDeath object, in which case nothing happens. 
We'll discuss that situation next.) 

Let's return to the banking example from Chapter 3. We know that any uncaught exception in our 
ATM system is unacceptable, so we must handle every exception. But certain problems, like the ATM 
running out of money, may be encountered in more than one location in our algorithm. Handling the 
out-of -money condition in the default exception handler may be the best solution. 

Let's examine a possible implementation of our default exception handler: 

public class ATMOutOfMoneyException extends RuntimeException { 
    public ATMOutOfMoneyException() { 
        super(); 
    } 
    public ATMOutOfMoneyException(String s) { 
        super(s); 
    } 
} 
public class ATMThreadGroup extends ThreadGroup { 
    public ATMThreadGroup(String name) { 
        super(name); 
    } 
    public void uncaughtException(Thread t, Throwable e) { 
        if (e instanceof ATMOutOfMoneyException) { 
            AlertAdminstrator(e); 
        } else { 
            super.uncaughtException(t, e); 
        } 
    } 
} 

You can implement a default exception handler by overriding the uncaughtException() method. 
This requires that you subclass the ThreadGroup class, instantiate an instance of that subclass, and 
create all your threads so that they belong to that instance. The method is passed an instance of the 
Thread class that threw the object, along with the actual object that was thrown. In our case, we are 
only concerned with the out-of-money condition. Every other object that is thrown is passed to the 
original default handler.  

A.4 The ThreadDeath Class 

The ThreadDeath class is a special Throwable class that is used to stop a thread. This class extends the 
Error class and hence should not be caught by the program. In theory, there is no reason to catch and 
handle any Throwable object that is not an object of the Exception class, and that usually applies to 
the ThreadDeath class as well. 

How does throwing an object actually stop a thread? As we mentioned, the thread cleans up after 
itself when the run() method completes. Of course, there are two ways for the run() method to 
complete: it can complete on its own by simply returning, or it can throw or fail to catch an exception 
(including an Error or Throwable object). 

By default, if the run() method throws an exception, the thread prints an error message, along with 
the stack trace of the exception. However, a special case is made for the ThreadDeath object. If a 
ThreadDeath object is thrown from the run() method, the uncaughtException() method simply 
returns. 

The ThreadDeath object is normally used only in conjunction with the stop() method. When you call 
the stop() method on a particular thread, a ThreadDeath object is created and then thrown by the 
target thread. Since the stop() method is deprecated, the utility of this technique is minimal. 
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Is it possible to catch the ThreadDeath object? It is possible to catch any Throwable object; however, it 
is not advisable to use this technique to prevent the death of the thread. After all, if we did not want 
the thread to die, why was the stop() method called? And what about other threads that expect the 
target thread to stop? The thread that has called the target thread's stop() method might then 
attempt to join the target thread; if you catch ThreadDeath, the join will never complete. 

One possible use of this technique is to handle cleanup conditions when the thread is being stopped. 
In this case, we would catch the ThreadDeath object, execute the cleanup code, and then rethrow the 
object. However, even in this case it is hard to justify catching the ThreadDeath object; we could 
accomplish the same thing by using the finally clause. The finally clause is always executed, 
though, and you may conceivably only want the code to be executed if the thread is stopped. 

It's interesting to note that the ThreadDeath class is what caused the stop() method to become 
deprecated in the first place: if the exception is thrown in the middle of a synchronized method or 
block, the thread will immediately return from that method, (possibly) leaving the critical data of the 
object in an inconsistent state. You could judiciously catch the ThreadDeath exception and clean up 
your code correctly to make the stop() method safer, but that will only protect your own code, not the 
code in critical sections of the virtual machine or the code within the Java API itself. 

However, the ThreadDeath class may be useful in one limited circumstance as a replacement for the 
stop() method. Say that a thread encounters an error and wants to terminate itself, but the error is 
not egregious enough that it wants the user to see the error. One way to do this is for the thread simply 
to return from its run() method, but it may be difficult for the thread to unwind all of its methods in 
order to do that. A second way is for the thread to call the stop() method on itself. And a final way is 
for the thread to throw a ThreadDeath error. This will unwind the thread's stack and cause the thread 
to exit its run() method, but since the ThreadDeath error is handled by the virtual machine in the 
special manner, the end user will be unaware that the thread has exited: there will be no stack trace 
printed to the Java console. 

Even so, a thread that wants to terminate itself cannot simply throw a ThreadDeath object willy-nilly: 
the thread must throw this object only when it is sure that it has not left any data in a possibly 
inconsistent state (e.g., when it is not presently holding any locks). If you've programmed your thread 
very carefully and are sure that the thread has left all data in a consistent state, it is safe to throw the 
ThreadDeath object to make your thread exit immediately. This is really the same thing as calling the 
stop() method on yourself: the only difference is that the compiler will complain if you call the 
stop() method (even if a thread calls it on itself when it knows it is safe to do so), whereas the 
compiler won't complain about throwing a ThreadDeath object. Still, you have to be very careful only 
to do this when it's absolutely safe to do so. 

A.4.1 Inheriting from the ThreadDeath Class 

The ThreadDeath object is used in conjunction with a new stop() method: 

void stop(Throwable o) (deprecated in Java 2)  

Terminates an already running thread. The thread is stopped by throwing the specified object. 

The stop() method is overloaded with a signature that allows the developer to unwind the stack with 
any Throwable object. Until now, there was little reason to stop the thread with any object but a 
ThreadDeath object. But we can now override the default exception handler; if we wanted a thread to 
die due to a particular reason and handle the special reason, we might create a new Throwable type 
and handler as follows: 

public class ATMThreadDeath extends ThreadDeath { 
    public int reason; 
    public ATMThreadDeath(int reason) { 
        this.reason = reason; 
    } 
} 
public class ATMThreadGroup extends ThreadGroup { 
    public ATMThreadGroup(String name) { 
        super(name); 
    } 
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    public void uncaughtException(Thread t, Throwable e) { 
        if (e instanceof ATMThreadDeath) { 
            HandleSpecialExit(e); 
        } 
        super.uncaughtException(t, e); 
    } 
} 

Assuming that there are special exit-handling conditions that need to be taken care of, we can create a 
new version of the ThreadDeath class that contains the reason for the death. Given this new version of 
the ThreadDeath class, we can then create a special handler to take care of the exit conditions. Of 
course, we must now use the other stop() method to send our ATMThreadDeath object: 

runner.stop(new ATMThreadDeath(3)); 

Can we use the stop() method to deliver a generic exception to another thread? It will work, but it is 
not advisable. There are many reasons against doing so. Depending on the exception and when the 
stop() method is called, we might throw an exception that violates the semantics of the throws 
keyword. The compiler requires that you handle exceptions it knows will be thrown, but the compiler 
will not, in this case, know about the generic exception you are causing the other thread to throw. If 
you execute the code: 

runner.stop(new IOException()); 

the runner thread may be executing code that is not prepared to handle an IOException. This is 
confusing at best. 

We could list more reasons against using this technique, but that will not stop certain developers from 
using this technique as a signal delivery system.[A] Simply put, stop() was not designed as a signal 
delivery system, and using it as such may yield unexpected or platform-specific results.  

[A] Or from using the exception system as a callback mechanism. 

A.4.2 More on Thread Destruction 

By calling the stop() method and using the exception mechanism to exit the run() method, we 
caused the run() method to exit prematurely and, hence, allowed the thread to terminate. We could 
also have killed the thread using the destroy() method, which, in turn, terminates the execution of 
the run() method. The difference is the way the run() method exits: the first case allows the run() 
method to terminate, and hence kills the thread. The second mechanism kills the threads, which 
terminates the run() method. 

By allowing the run() method to terminate, the stack for the thread is allowed to unwind. This means 
that the finally clauses are all allowed to execute as the stack is unwound. This allows a better state 
to exist in the program when the thread terminates; it also allows synchronization locks to be released 
as the stack is unwound. Because of these benefits, the thread is always allowed to unwind rather than 
just to terminate. Of course, the problem is that since the thread death exception may be thrown at 
any time, there may not be a finally clause to execute, which again leads us to the problem that 
requires the stop() method to be deprecated. 

In order to be complete in our discussion, we'll now examine the destroy() method, which allows the 
thread to be destroyed without unwinding the stack. This method would be used as a last resort: 

void destroy() (not implemented)  

Destroys a thread immediately. This method of the Thread class does not perform any cleanup 
code, and any locks that are locked prior to this method call will remain locked. 

Why would you want to not clean up after a thread? There should be no case where you do not want 
to clean up after a thread. However, there may be cases where the cleanup code may not work. For 
example, with the wait and notify mechanism, it may not be possible to immediately unwind the stack 
due to an unavailable lock: a thread that is stopped while it is executing the wait() method may not 
terminate for quite a while. If the thread deadlocks while trying to reacquire the lock, then the thread 
will never exit. A waiting period to unwind may not be acceptable. 

However, we should regard this as a bug in the program and fix the code rather than leave possibly 
unreleased locks. As it stands now, it doesn't really matter: the destroy() method is not actually 
implemented in the reference JDK and simply throws a NoSuchMethodError. 
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A.5 The Volatile Keyword 

As we mentioned in Chapter 3, the act of setting the value of a variable (except for a long or a double) 
is atomic. That means there is generally no need to synchronize access simply to set or read the value 
of a variable. 

However, Java's memory model is more complex than that statement indicates. Threads are allowed 
to hold the values of variables in local memory (e.g. in a machine register). In that case, when one 
thread changes the value of a variable, another thread may not see the changed value. This is 
particularly true in loops that are controlled by a variable (like the shouldRun variable that we use to 
terminate threads): the looping thread may have already loaded the value of the variable into a 
register and will not necessarily notice when another thread sets that variable to false. 

There are many ways to deal with this situation. You can synchronize on the object that contains the 
control variable - or better yet, you can provide accessor methods for the control variable (such as we 
do with the busyflag variable in our BusyFlag class). Or you can mark the variable as volatile, 
which means that every time the variable is used, it must be read from main memory. 

In versions of the VM through 1.2, the actual implementation of Java's memory model made this a 
moot point: variables were always read from main memory. But as VMs become more sophisticated, 
they will introduce new memory models and optimizations, and observing this rule will be 
increasingly important. 
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Appendix B. Exceptions and Errors 
So far we have discussed the Thread class and its related classes with little attention to error 
conditions. One of the reasons for this is the lack of actual error conditions, because the threading 
system does not depend on external hardware. Classes that deal with the disk or network have to 
handle all possible error conditions that exist due to the failure of the hardware. Databases or the 
windowing system need an error system, which allows the programmer better control over the 
interaction between application, data structures, and user. 

But what is necessary to deal with threading? Threading is a processor resource. Starting another 
thread means simply setting up data structures that allow the processor to run code and that configure 
the processor to switch between the different threads. As we discussed in Chapter 6, threading may 
involve the operating system; it may involve more than one processor. But in any case, the only 
hardware involved is the processor(s) and possibly additional memory. The synchronization system 
also only involves memory: there is not much that can go wrong when there is little hardware 
involved. We can get processor or memory errors, but these errors generally affect the entire virtual 
machine and not an individual thread. 

The only errors that we need to be concerned with, then, are programmer errors. It is possible for the 
programmer accidentally to configure the threads incorrectly or to use threads or the synchronization 
mechanism incorrectly. 

How are error conditions reported? As with any other classes provided with the Java system, the 
thread classes use the concept of throwing exceptions and errors. Let's examine some of the 
exceptions and errors that are thrown from the threading system. 

B.1 InterruptedException 

The InterruptedException is probably the most common exception condition we have encountered in 
this book. It indicates that the method has returned earlier than expected. While we have chosen to 
catch and ignore these exceptions in most of our examples, we didn't have to: depending on the 
program, it may be possible to handle the exception condition. (The solution may be as simple as 
calling the method again.) 

Let's examine the interrupted exception conditions that we have encountered in this book: 

The join() method  

The Thread class provides the join() method, which allows a thread to wait for another 
thread to finish or be terminated (see Chapter 2). If this exception is thrown, it simply means 
that the other thread may not have finished. The join() method is also overloaded with two 
other method signatures that allow the program to specify a timeout. If the exception is 
thrown with these methods, it means that neither the termination of the other thread nor the 
timeout condition has been satisfied. 

The sleep() method  

The Thread class provides the sleep() method, which allows a thread to wait a specified time 
period (see Chapter 2). When this exception is thrown, it simply means that the sleep() 
method has slept for less than the specified amount of time. 

The wait() method  

The Object class provides the wait() method, which allows a thread to wait for a notification 
condition (see Chapter 4). When this exception is thrown, it means that the wait() method 
has not received the notification. The wait() method is also overloaded with two other 
method signatures that allow the program to specify a timeout. If the exception is thrown with 
these methods, it means that neither the notification nor the timeout condition has been 
satisfied. 

An InterruptedException is generated via the interrupt() method of the Thread class. 
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B.2 InterruptedIOException 

Some methods of various I/O classes will throw an InterruptedIOException in response to the 
interrupt() method: if the target thread was blocked on an I/O operation, then the 
InterruptedIOException will be thrown. On green-thread implementations, this is implemented 
incompletely: some I/O methods are interruptible and some are not. This feature is not implemented 
at all on Windows. On Solaris native-thread virtual machines, this is implemented somewhat 
inconsistently: in Java 1.1, some operations will throw a standard exception (e.g., SocketException), 
and in Java 2 they will throw an InterruptedIOException. 

In the future, this implementation will be consistent, but it is unclear what direction that will take, and 
it's possible that this exception will be deprecated. In the meantime, developers who need to interrupt 
I/O should close the stream on which the I/O is being performed, and interrupted I/O should not be 
considered restartable, even on platforms that support it. 

B.3 NoSuchMethodError 

When the Thread class was designed, certain methods were not immediately supported. To avoid 
changing the interface to the Thread class, most of these methods were simply written to throw the 
NoSuchMethodError. As more functionality has been added, fewer of these methods now throw this 
error condition. As of this writing, the only method that throws this error object is the destroy() 
method of the Thread class (see Appendix A). 

 

Exceptions or Errors 
What is the difference between an error and an exception? As far as the virtual machine is 
concerned, there is little difference between the two: they are simply objects that are 
thrown to report a condition. It is possible to catch an Error object just like an Exception 
object. In practice however, the usage of the two types of conditions is different. 

Error conditions are faults in the Java virtual machine. In general, they are a sign of a 
problem that cannot be solved by the program. This can be caused by an out-of-memory 
condition, stack overflow, or problems in loading or resolving the classes in the program. 
The reason they are separated is to allow a catch-all of general exceptions. A program may 
catch all exception conditions by catching the Exception object, but a program should have 
little reason to catch an Error object. 

 
B.4 RuntimeException 

The RuntimeException is not thrown directly by any of the methods in the thread classes; it is simply 
a base class that specifies a special group of exceptions. Runtime exceptions are considered so basic 
that it would be too tedious to check for every possible runtime exception that could be thrown 
(another reason is that these exceptions are generally bugs in the program). Unlike other exceptions, 
the compiler does not require that you handle a RuntimeException. 

All of the following exceptions are runtime exceptions. 
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B.4.1 IllegalThreadStateException 

The IllegalThreadStateException is thrown by the thread classes when the thread is not in a state 
where it is possible to fulfill the request. This is caused by an illegal request made by the program and 
generally indicates a bug in the program. The following are the possible cases in the thread system 
where the IllegalThreadStateException is thrown: 

The start() method  

The Thread class provides the start() method, which starts a new thread (see Chapter 2). As 
we mentioned, a thread should be started only once. However, if a program calls the start() 
method of an already running thread, the IllegalThreadStateException is thrown. 

The setDaemon() method  

The Thread class provides the setDaemon() method, which specifies whether the thread is a 
daemon thread (see Chapter 6). As we mentioned, the daemon status of a thread must be set 
before the thread is started. If the setDaemon() method is called when the thread is already 
running, the IllegalThreadStateException is thrown. 

The countStackFrames() method  

The Thread class provides the countStackFrames() method, which determines how deep in 
the call stack the thread is currently executing (see Appendix A). A thread must be suspended 
in order for this count to take place. If the thread is not suspended when this method is called, 
the Illegal-ThreadStateException is thrown. 

The destroy() method  

The ThreadGroup class provides the destroy() method to allow the thread group to be 
destroyed (see Chapter 10). A ThreadGroup instance can only be destroyed when the group 
does not contain any threads and does not contain any groups that contain threads. If the 
destroy() method is called on a group that contains threads or is already destroyed, the 
IllegalThreadStateException is thrown. 

The Thread constructors  

The Thread class contains certain constructors that allow the thread to be placed into a 
specific thread group (see Chapter 10). The thread group that is passed to these constructors 
must not have been destroyed; if the constructor is passed a thread group that has been 
destroyed, the IllegalThreadStateException is thrown. 

B.4.2 IllegalArgumentException 

It is possible to call methods of the thread classes with incorrect parameters. When this is done, an 
IllegalArgumentException is thrown. Only one method related to the Thread classes throws the 
exception: 

The setPriority() method  

The Thread class provides the setPriority() method, which controls the priority assigned to 
the thread (see Chapter 6). The priority that is assigned must fall between the system 
minimum and maximum priorities. If the priority requested is not within this range, an 
IllegalArgumentException is thrown. (The setPriority() method may also throw a security 
exception; see the section Section B.4.5," later in this appendix.) 

The IllegalThreadStateException is actually a subclass of the IllegalArgument-Exception class; if you 
attempt to catch objects of type IllegalArgumentException, you will also catch objects of type 
IllegalThreadStateException. 
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B.4.3 IllegalMonitorStateException 

The IllegalMonitorStateException is thrown by the Thread system when an operation on a wait 
monitor is attempted and the state of the monitor is not valid for the operation to take place. 
Currently, the only operation that involves this exception is the wait and notify mechanism; grabbing 
or releasing the lock itself is not a method call and hence cannot throw an exception. 

The wait() method  

The Object class provides the wait() method, which allows a thread to wait for a notification 
condition (see Chapter 4). The wait() method must be called while the synchronization lock 
for the object is held. The wait() method is also overloaded with two other method signatures 
that allow the program to specify a timeout. If any of these methods is called without owning 
the synchronization lock, the IllegalMonitorStateException is thrown. 

The notify() and notifyAll() methods  

The Object class provides the notify() method, which allows a thread to send a notification 
signal to any threads waiting (see Chapter 4). The notify() method must be called while the 
synchronization lock for the object is held. The Object class also provides the notifyAll() 
method, which wakes up all the waiting threads. If either of these methods is called without 
owning the synchronization lock, the IllegalMonitorStateException is thrown. 

B.4.4 NullPointerException 

The thread classes throw this exception in the following cases: 

The stop() method  

The Thread class provides a version of the stop() method that allows the user to specify the 
object used to stop the thread (see Appendix A). Normally, programs do not use this method; 
however, if a program does use this method and passes a null object to stop a thread, the 
NullPointerException is thrown. 

The ThreadGroup constructor  

The ThreadGroup class provides a version of its constructor that allows the application to 
specify the parent group (see Chapter 10). If null is specified for the parent group, the 
NullPointerException is thrown. 

In addition, the NullPointerException can be thrown by the Java virtual machine itself while it is 
executing code within the thread classes. 

B.4.5 SecurityException 

Most methods of the Thread and ThreadGroup classes can throw a Security- Exception. The 
SecurityException can be thrown by the following methods: 

The checkAccess() method  

The Thread class provides the checkAccess() method, which simply calls the security 
manager to determine if the thread can be accessed by the current thread group (see Chapter 
10). A SecurityException is thrown if access is not permitted. For a complete list of methods 
that call the checkAccess() method, see Figure 10.1. 

The checkAccess() method  

The ThreadGroup class provides the checkAccess() method, which simply calls the security 
manager to determine if the thread group can be accessed by the current thread group (see 
Chapter 10). A SecurityException is thrown if access is not permitted. For a complete list of 
methods that call the checkAccess() method, see Figure 10.1. 

The setPriority() method  

The Thread class provides the setPriority() method, which sets the scheduling priority of 
the thread. The priority requested must be less than the maximum priority of the thread 
group to which the thread belongs. If the priority is greater than this maximum priority, a 
SecurityException may be thrown (see Chapter 10). 
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The stop() method  

The stop() method of the Thread class may throw a security exception under Java 2 and later 
releases if the stopThread permission has not been granted to the code that is calling the 
stop() method (see Chapter 10). 

B.4.6 Arbitrary Exceptions 

Arbitrary runtime exceptions may be thrown by the following method: 

The run() method  

The run() method of the Thread class executes user-specific code and, hence, can throw any 
runtime exception the user code does not catch. Exceptions that the run() method throws are 
caught in the manner we describe in Appendix A.  
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