

JUMPSTARTING
JavaScript
BUILD A TWITTER BOT AND LED
ALERT SYSTEM WITH NODE.JS AND
RASPBERRY PI

Lynn Beighley

Maker Media, Inc.
San Francisco

Copyright © 2017 Lynn Beighley. All rights reserved.

Published by
Maker Media, Inc.
1700 Montgomery Street, Suite 240
San Francisco, CA 94111

Maker Media books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles (safari-
booksonline.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Publisher: Roger Stewart
Editor: Patrick DiJusto
Copy Editor: Elizabeth Welch, Happenstance Type-O-Rama
Proofreader: Scout Festa, Happenstance Type-O-Rama
Interior Designer and Compositor: Maureen Forys, Happenstance
Type-O-Rama
Cover Designer: Maureen Forys, Happenstance Type-O-Rama

December 2017: First Edition

Revision History for the First Edition

2017-12-13 First Release

See oreilly.com/catalog/errata.csp?isbn=9781680454239 for release details.

Make:, Maker Shed, and Maker Faire are registered trademarks of Maker
Media, Inc. The Maker Media logo is a trademark of Maker Media, Inc.
 Jumpstarting JavaScript and related trade dress are trademarks of Maker
Media, Inc. Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those desig-
nations appear in this book, and Maker Media, Inc. was aware of a trade-
mark claim, the designations have been printed in caps or initial caps. While
the publisher and the author have used good faith efforts to ensure that
the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the
use of or reliance on this work. Use of the information and instructions
contained in this work is at your own risk. If any code samples or other tech-
nology this work contains or describes is subject to open source licenses or
the intellectual property rights of others, it is your responsibility to ensure
that your use thereof complies with such licenses and/or rights.

978-1-68045-423-9

http://oreilly.com/catalog/errata.csp?isbn=9781680454239

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers expert
content in both book and video form from the world’s leading authors in
technology and business. Technology professionals, software developers,
web designers, and business and creative professionals use Safari Books
Online as their primary resource for research, problem solving, learning,
and certification training. Safari Books Online offers a range of plans and
pricing for enterprise, government, education, and individuals. Members
have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly
Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft
Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley &
Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course
Technology, and hundreds more. For more information about Safari Books
Online, please visit us online.

How to Contact Us
Please address comments and questions to the publisher:

Maker Media, Inc.
1700 Montgomery Street, Suite 240
San Francisco, CA 94111

You can send comments and questions to us by email at
 books@ makermedia.com.

Maker Media unites, inspires, informs, and entertains a growing community
of resourceful people who undertake amazing projects in their backyards,
basements, and garages. Maker Media celebrates your right to tweak, hack,
and bend any Technology to your will. The Maker Media audience continues
to be a growing culture and community that believes in bettering ourselves,
our environment, our educational system—our entire world. This is much
more than an audience, it’s a worldwide movement that Maker Media is
leading. We call it the Maker Movement.

To learn more about Make: visit us at makezine.com. You can learn more
about the company at the following websites:

Maker Media: makermedia.com
Maker Faire: makerfaire.com
Maker Shed: makershed.com
Maker Share: makershare.com

http://makezine.com
http://makermedia.com
http://makerfaire.com
http://makershed.com
http://makershare.com

 v

CONTENTS

Preface vi

1 Meet JavaScript and Node.js! 1

Install Node on Mac 2
Install Node on Windows 5
Install Node on Linux 7
Node Is Installed; Now What? 9

2 Getting into JavaScript 13

Strings, Math, and the REPL 13
Functions 16
Using JavaScript Files 17
Make a Web Server 18

3 Creating a Node Twitter Bot on Raspberry Pi 21

Create and Authorize Your Twitter Account 21
Create a Configuration File 24
Create the Twitter Bot 25

4 Flash an LED in Response to a Twitter Event 33

Set Up the LED on Your Raspberry Pi 34
Create the Blink Program 36
Make Your Bot Detect Your Twitter Handle 37
Make Your Bot Blink the LED When Mentioned 39
Node, Pi, and the Internet of Things 40

vi

PREFACE: WHAT IS NODE.JS?

JavaScript is a programming language that web browsers can
run. Browsers like Firefox and Chrome are built with engines that
can understand and execute programs written in the JavaScript
language. Firefox has an engine called SpiderMonkey, and
Chrome’s engine is called V8.

Running JavaScript in a browser limits what you can do with
it. For example, with JavaScript in a browser, you are limited to
interacting with web pages. You can detect errors when people
enter information in a form. You can open browser windows and
alert boxes. But you can’t control anything outside of a browser.

Fortunately, you have another option. When you install and
use the JavaScript extension Node.js, your JavaScript code can
run independently of a web browser. (You’ll often see Node.js sim-
ply called Node, and that’s what we’ll do for the rest of this book.)

Node is the V8 JavaScript engine bundled together with
libraries that handle input/output and networking. This means
that Node lets you use JavaScript outside of a browser to run
shell scripts, manage back-end services, and run directly on
devices.

What You Bring to the Book

 * Basic familiarity with programming concepts

 * Ability to set up and connect a Raspberry Pi

 * Ability to access and use a console

 * Understanding of sudo, directories, and file creation/editing

Meet JavaScript
and Node.js!

This chapter takes you through the steps to install Node on
your Mac, Windows, or Linux OS. Then you’ll check to see that
it’s working.

NOTE As you install Node, you may notice that something
called npm is also being installed. This program is the Node
Package Manager.

Node is really popular, and it has a whole new ecosystem of use-
ful Node-based code packages other developers have created
for you to use. When you want to use one of these packages in
Node, you need an easy way to install and manage them. That’s
what npm does for you—it installs additional Node packages
you want to use.

Follow the instructions for your system; then jump to the last
section, “Node Is Installed; Now What?”

1

Jumpstarting JavaScript2

INSTALL NODE ON MAC

Although you could build Node from the source code, this guide
is all about getting you going quickly. The easy way is to visit the
official Node website, Nodejs.org, and use an automated installer.
Here are the steps involved:

Step 1. Visit nodejs.org/en/download/ and click the Macintosh
Installer button to download the installer (Figure 1.1).

FIGURE 1.1: Nodejs.org download page

Step 2. Find the file you downloaded and double-click it. You’ll
see the installation dialog (Figure 1.2). Click Continue to go
through the installation. Stick with the default settings.

Step 3. When the installation finishes, you’ll see a summary
screen with installation information (Figure 1.3).

http://nodejs.org/en/download/

Meet JavaScript and Node.js! 3

FIGURE 1.2: Node installer

FIGURE 1.3: Node installer summary

Step 4. You need to make sure that /usr/local/bin is in your
PATH environment variable. To do this, open the Terminal.app

Jumpstarting JavaScript4

program—you can find it under /Applications/Utilities. Start
the Terminal program. In the new terminal window, type

echo $PATH

This will return a list of directory paths, separated by colons.
In my case, I get this output:

/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin

You can see that /usr/local/bin is the first thing in my
PATH. If you don’t see it in yours, you’ll need to add it. If you
do see it, skip step 5.

Step 5. Here’s how to add /user/local/bin to your PATH. In
your terminal, type

touch ~/.bash_profile

This creates the file if it doesn’t already exist. Now type

open ~/.bash_profile

This opens the .bash_profile file in TextEdit. In TextEdit, add
the line

PATH=${PATH}:/usr/local/bin

Save the .bash_profile file and quit TextEdit.

You’ll need the changes you made to take effect. To do this,
type this command in the terminal:

source ~/.bash_profile

Step 6. Let’s confirm that we have Node running. Type this
command in your terminal to see the versions you’ve installed:

node --version

Meet JavaScript and Node.js! 5

You’ll see output like this, giving you the version of Node
that you just installed:

v6.11.3

Don’t worry if the version number is different from what you
see here; new releases come out frequently.

After confirming you have the Node program installed and
working, you’re ready to start writing JavaScript. Leave this terminal
open and skip ahead to the section “Node Is Installed; Now What?”

INSTALL NODE ON WINDOWS

You’ll start by visiting the official Node website, Nodejs.org, and
getting the automated installer. Here are the steps involved:

Step 1. Visit https://nodejs.org/en/download/ and click the
Windows Installer button to download the installer (Figure 1.4).
Pick the MSI file for either 32 bits or 64 bits, depending on your
computer platform.

FIGURE 1.4: Nodejs.org download page

https://nodejs.org/en/download/

Jumpstarting JavaScript6

Step 2. Find the file you downloaded and double-click it. You may
get a warning dialog asking for permission to install. Click OK.

The installation program opens (Figure 1.5). Click Continue
to go through the installation. Stick with the default settings.

FIGURE 1.5: Node Setup Wizard

Step 3. When the installation finishes, you’ll see a summary
screen with installation information. Let’s confirm that we have
Node running. Click your Start menu, and you should see two
new menu items under Recently Added: Node.js and Node.js
Command Prompt (Figure 1.6).

FIGURE 1.6: Windows Start menu

Meet JavaScript and Node.js! 7

Step 4. Click Node.js Command Prompt to open the prompt.
You’ll see a terminal window open with this line:

Your environment has been set up for using Node.js 6.11.3 (x64)
and npm

Don’t worry if the version number is different from what you
see here; new releases come out frequently.

This confirms that you have the Node program installed and
working. You now have everything you need to start writing
JavaScript. Leave this terminal open and skip ahead to the sec-
tion “Node Is Installed; Now What?”

INSTALL NODE ON LINUX

The easiest way to get going with Linux is to install a prebuilt
binary package from the Nodejs.org website.

NOTE If you’re an experienced Linux user, you may find it
simplest to use the package manager for your particular Linux
distro. You can find a rundown of those at nodejs.org/en/
download/package-manager.

Step 1. Visit https://nodejs.org/en/download/. Download the
32- or 64-bit file with a name like node-v6.11.3-linux-x64.tar.xz
where v6.11.3 is the current version (Figure 1.7). Be sure to save
it in a directory you’ll remember. I’m saving mine to my Downloads
directory.

https://nodejs.org/en/download/

Jumpstarting JavaScript8

FIGURE 1.7: Linux download

Step 2. This archive contains everything you’ll need and is
organized into subdirectories. You can extract it where it needs
to go by using these commands:

~$ cd ~/bin
~$ tar xz ~/Downloads/node-v6.11.3-linux-x64.tar.xz

NOTE If ~/bin does not exist, you’ll need to create it first.

Step 3. Make sure you have your PATH set to find your Node
installation. Edit your .bash_profile file and include that line.
You can do so with this command:

~$ PATH=$PATH:~/bin/node-v6.11.3-linux

Meet JavaScript and Node.js! 9

or by editing your .bash_profile and adding this line:

PATH=${PATH}:/usr/local/bin/node-v6.11.3-linux

Step 4. Use this command to check to see whether Node has
been installed:

node --version

and you should get output with the version number

v6.11.3

Don’t worry if the version number is different from what you
see here; new releases come out frequently.

This confirms that you have the Node program installed and
working. You have everything you need to start writing JavaScript.
Leave this terminal open and continue to the next section.

NODE IS INSTALLED; NOW WHAT?

At this point, you should have Node installed and a terminal or
console window open. (From here on, we’ll just call it the terminal.)

In the next chapter, you’ll write your first program, but let’s
quickly try out the Node REPL.

NOTE The REPL is like a playground where you can try out
JavaScript code. It’s installed along with Node. REPL stands for
Read Eval Print Loop. The REPL gives you a quick and easy way
to test your JavaScript code and fix any mistakes.

Jumpstarting JavaScript10

In your terminal, type node to start the Node REPL:

$ node

Notice that your cursor has changed to a greater than sign (>).
You’re now interacting with the REPL. Let’s output some text:

> console.log('Hello World!');
Hello World!
undefined

If you’re getting an error of some kind, check your punctua-
tion. Make sure you’ve got single quotes around the text and a
semicolon at the very end of your code.

Did You Get Back undefined?
Don’t worry if you did! You’re using a JavaScript function, which
will always return undefined if it doesn’t have a return value
(you’ll learn more about this later). For now, you can just ignore
it. You haven’t made any mistakes.

Now try this very handy .help command:

> .help
.break Sometimes you get stuck, this gets you out
.clear Alias for .break
.exit Exit the repl
.help Show repl options
.load Load JS from a file into the REPL session
.save Save all evaluated commands in this REPL session to a file

NOTE Commands starting with a period are talking to the
REPL interface—they’re not JavaScript code.

Meet JavaScript and Node.js! 11

And let’s close the REPL and get back to the regular com-
mand prompt, using the .exit command:

> .exit

You’ve installed Node, and you know how to start up and quit
the REPL. This means that you’re ready to learn some JavaScript.
Chapter 2 awaits.

Getting into
JavaScript

You played with the REPL at the end of the last chapter. Now
you’ll begin learning JavaScript by writing code both in the REPL
and into saved JavaScript files.

STRINGS, MATH, AND THE REPL

You’ve already used the REPL (also called the Node shell). If it
isn’t open, go ahead and launch it. In Windows, open a command
prompt or click the Node.js Command Prompt that you installed
in your Start menu. On Mac or Linux, open a terminal.

Type node to start the REPL. Remember, you’re in the shell
when the prompt changes to >.

The REPL is handy as you learn JavaScript. You can test
pieces of your JavaScript code before saving them to a file. When
you make an error in the REPL, you’ll get immediate feedback.

2

Jumpstarting JavaScript14

When You See…
Try entering this incomplete command:

> console.log(

Instead of an error message, you’ll see this:

...

This ellipsis means that the REPL is waiting for you to type more
code to finish the command. If you get the ellipsis but you’re not
sure why, you can break out of it by typing the REPL command
.break.

Let’s try making a deliberate mistake so you can see the feed-
back you get from the REPL.

Try this broken line of code:

> console.log(It's broken)

Although there are several things wrong with this code, you’ll
get only one message at a time. Here’s the first error:

console.log(It's broken);
 ^^^^^^^^^^^
SyntaxError: Invalid or unexpected token

Let’s fix the first problem. If you look at the carets under the
text It's broken, you’ll see they start right under the single quote.

In JavaScript, anytime you use a string of text, you need to put
it in quotes. Otherwise, the REPL thinks those words are code.
So now try this:

> console.log('It's broken');

Argh! You get a hanging ellipsis.

console.log('It's broken');
...

Getting into JavaScript 15

This time the REPL finds the beginning of the string, but it
thinks the second quote is closing your text. It’s looking for a
parenthesis to end the command.

This is tricky. We want to use a quote in our string, but we
need quotes around our string. The simple way to fix it is to use
double quotes around the whole string so you can use the single
quote in the string.

Both single and double quotes can be used around strings
of text:

> console.log("It's broken");
It's broken
undefined

(Remember, you can ignore the undefined!)
You can put more than a single string of text in the parenthe-

ses of the console.log function. Try these commands:

> console.log('Hello'+'world');

This command combines the two strings and outputs the sin-
gle string Helloworld. If you want a space between the two words,
you can use any of these three arguments in the parentheses;
they’ll all work.

'Hello '+'world'
'Hello'+' world'
'Hello'+' '+'world'

You won’t always be using strings, though—you’ll be using
lots of numbers and variables. Here’s a quick look at some of your
options; try them out.

> console.log(42);
> console.log(5 + 4);
> console.log(5 * 4);

Numbers don’t use quotes; the REPL recognizes them. And
you can do math operations on them.

Jumpstarting JavaScript16

FUNCTIONS

You’ve used your first built-in function, console.log. This simple
function prints out whatever string or other value you put in
parentheses.

Now let’s write a function! A function is basically code that
can be reused. There’s more to it than that, but you’ll start with
something simple. Try typing in the following function. (Don’t
type the ellipsis; it indicates that the REPL is waiting for more
code that you can enter on the next line. Press Enter/Return and
use multiple lines.)

> function countPets(){
var dogs = 2; var cats = 1;
var total = dogs + cats; return (total);
... }

Here’s what is going on in this function:

function countPets(){

This line starts with the JavaScript keyword function so the
REPL knows a function is coming.

countPets() is the name of the function. Everything in the
function goes inside curly braces.

Next are two lines beginning with the JavaScript keyword var.
It’s short for variable, and the lines are saying that the variable
dogs is equal to 2 and the variable cats is equal to 1.

The next line says that the variable total contains the sum of
dogs and cats.

The keyword return instructs the function to send back the
value of total after the function finishes.

To use the function, type this command:

> countPets();

You’ll get back the sum of dogs and cats: 3.

Getting into JavaScript 17

Let’s make the function a little more reusable. Take a look at
this code and see if you can guess what’s going on.

> function countPets(dogs, cats){
... var total = dogs + cats;
... return (total);
... }

Now try it!

> countPets(5, 3);

In this function, you’re passing in values that the function can
use. Being able to add different values to the same code is part
of what makes functions so useful!

You’ve now had a taste of JavaScript code. Unfortunately, as
soon as you end this REPL session, your functions will not be
saved. It’s time to move out of the REPL and put your code into
.js files so you can start simple and build on them.

USING JAVASCRIPT FILES

The REPL is great for testing, but you need to be able to save
and reuse your code. You’ll need a text editor so you can write
and edit your JavaScript code and save it into a file.

Start by creating a text file called fromfile.js. Put this code
in your file and save it to a location you’ll remember:

console.log('These words are from my .js file!');

In your terminal, navigate to the same directory where your
fromfile.js was saved and type this command on your command
line (not in the REPL!):

$ node fromfile.js

Node will execute the code in your file and you’ll see the
output on your screen.

Jumpstarting JavaScript18

MAKE A WEB SERVER

Now that you can save .js files, you can start exploring the real
power of Node. Without Node, you can write JavaScript code
that would run only on an existing web server. But Node frees you
from those browsers and lets you create your own web server!

It’s easy to create a little web server with Node. Begin by
creating a file called easyserver.js and save this code in it:

var http = require('http');
var server = http.createServer(function(req, res) {
 res.writeHead('I created this server!');
 res.end();
}
);
server.listen(8080);

Now try running your server. I’ll explain this code after you try
it. In your terminal, visit the command line in the directory where
you saved the file. Type

$ node easyserver.js

The terminal will seem to hang, but that’s fine—it means your
server is running!

Open a browser and visit the URL localhost:8080. You should
see the line I created this server! (Figure 2.1).

FIGURE 2.1: A web page with output from your web server

After you visit the web page, press Ctrl-C in your terminal to
end the program.

Getting into JavaScript 19

Let’s take a closer look at what’s going on in this code. I don’t
expect you to understand it right now. I’ve added comments to
the original code. Just try to get the gist of it!

var http = require('http');
var server = http.createServer(function(req, res) {
 //send response to client
 res.writeHead('I created this server!');
 // finish the response
 res.end();
});
//the web server is listening on port 8080
server.listen(8080);

Node is doing most of the work for you with built-in code. The
very first line is calling the http module, which, behind the scenes,
has the code to turn your running program into a web server.
The require keyword is giving the new variable http access to
a whole lot of saved Node code and functions that can create a
web server.

In the second line, the code is calling a function called
 createServer. Whenever anyone connects to your web server,
the code in that function will be executed.

The last line tells the server you created to start listening for
incoming requests on a particular port (in this case, 8080).

Comments in Your Code
The double slashes you saw in the last code example let you
add comments to your code. Node ignores any words following
the //. Comments are great for helping you remember what
you did in your code.

In the next chapter, you’ll begin using JavaScript to build a
Twitter bot!

Creating a Node
Twitter Bot on
Raspberry Pi

You’ve written your first JavaScript program. Next, you’ll
learn how to create a Twitter bot with Node that can run on any
machine that has Node installed, including your Raspberry Pi.

By now, you should already have Node installed on your sys-
tem. This chapter will take you through the steps you need to
set up and authorize a Twitter account, connect that account to
a JavaScript program, and use the twit nmp module in your pro-
gram to do most of the work.

CREATE AND AUTHORIZE YOUR
TWITTER ACCOUNT

If you don’t have a Twitter account for your bot, create one at
Twitter.com.

3

Jumpstarting JavaScript22

Do You Use Gmail?
Twitter accounts are based off unique email addresses. If you
don’t have a spare email address but you use Gmail, you can
save the hassle of creating a new email address with a handy
trick. Gmail lets you add a plus sign and a few letters to your
address.

For example, if your Gmail address is jane-doe@gmail.com, you can
create other email addresses like janedoe+twitterbot@gmail.com
or janedoe+catbot@gmail.com.

Twitter will think this is a new address, but Gmail will place
everything sent to that address into your existing inbox.

One interesting side effect: It’s relatively easy to set up a Gmail
filter to label all messages sent to that address as “Twitterbot
Email” or something similar. That way, you can see at a glance
which emails have been sent to your bot.

Step 1. Log into the Twitter account you’ll be using for your bot.

Step 2. Visit apps.twitter.com and click the Create New App
button.

Step 3. You’ll be presented with a form to fill out (Figure 3.1).
Complete all the fields. You can enter any website you wish,
and make sure you type a URL in the callback field. Don’t worry
too much about what you enter in the fields now; you can
change the contents at any time.

Step 4. Click the Developer Agreement check box and click
Create Your Twitter Application.

Step 5. You’ll now see a summary page. Click the Keys And
Access Tokens tab (Figure 3.2). The keys on this page connect

Creating a Node Twitter Bot on Raspberry Pi 23

your Twitter app to the Node bot program you’ll create later in
this chapter.

FIGURE 3.1: Creating a new Twitter app form

FIGURE 3.2: Keys And Access Tokens page

Jumpstarting JavaScript24

Step 6. Scroll to the bottom of this page and click the Create
My Access Token button. This page now displays an access
token and access token secret (Figure 3.3). Leave this page
open. Next up, you’ll create a file in your terminal and copy and
paste info from this page into it.

FIGURE 3.3: Keys for your Twitter application

In the next section, you’ll set up a directory, initialize it, and
create a configuration file with the keys and tokens on this page.

CREATE A CONFIGURATION FILE

Open your terminal on the device where you installed Node.
Create a new directory where you can keep all your new Twitter

bot files. I’ll call mine newtwitbot. Navigate to your new directory:

pi@raspberrypi:~ $ mkdir newtwitbot
pi@raspberrypi:~ $ cd newtwitbot
pi@raspberrypi:~/newtwitbot $

Creating a Node Twitter Bot on Raspberry Pi 25

Our Twitter bot will use two files: config.js and index.js. Cre-
ate them now with the touch command:

pi@raspberrypi:~/newtwitbot $ touch
config.js index.js
pi@raspberrypi:~/newtwitbot $ ls
config.js index.js

We need to edit the config.js file with the Twitter keys for
your app. Using the editor of your choice (I use nano), edit your
config.js file as shown here. Substitute your keys in place of the
xxxxx values:

//config.js
/* TWITTER APP CONFIGURATION
 consumer_key
 consumer_secret
 access_token
 access_token_secret
 */
module.exports = {
 consumer_key: 'xxxxx',
 consumer_secret: 'xxxxx',
 access_token: 'xxxxx',
 access_token_secret: 'xxxxx'
}

Now, the Twitter bot’s configuration is complete. These four
values will be unique for each Twitter application you create.

CREATE THE TWITTER BOT

Do you remember the npm application you installed along with
Node? This handy application lets you reuse code other people
have previously written.

There’s already a Twitter code library called twit. We can
import this library with npm and then use functions to make com-
munication with Twitter much easier.

To install this library, use this command:

pi@raspberrypi:~/newtwitbot $ npm install --save twit

Jumpstarting JavaScript26

You’ll see this output:

npm notice created a lockfile as package-lock.json. You should
commit this file.
npm WARN newtwitbot@0.0.0 No description
npm WARN newtwitbot@0.0.0 No repository field.
+ twit@2.2.9
added 55 packages, removed 55 packages and updated 1 package in
15.243s

After the twit package has finished installing, open the index.js
file. We’ll start adding lines. (Don’t worry about the WARN lines! If
we were building code to then store for other people to use, we
would want to add a description. In this case, we aren’t.)

Building the index.js File
If you get lost, don’t worry. The complete contents of the
index.js file are listed at the end of this chapter.

Open index.js in an editor and add these lines. They tell our
bot to use the twit code and let the code access the Twitter
application keys in the config.js file.

// Dependencies
var twit = require('twit'), config = require('./config');

Now under those lines, add the following:

var Twitter = new twit(config);

This line creates a variable called Twitter, a special object that
has access to all the code in the twit library, as well as the keys
we set up in the config.js file so that it can actually communicate
with Twitter. (This is confusing, but think of this Twitter variable as
a superhero. It’s more than just a single value; it can access lots of
custom functions built to do things with Twitter like post, retweet,
and favorite. This will be clearer by the end of the chapter.)

Creating a Node Twitter Bot on Raspberry Pi 27

Next we’ll get to the heart of our bot. We’ll start by making
it find tweets that contain the text strings doggo or pupper. Then
it will use the console.log function you’ve already seen and post
any found tweets to your terminal.

Add this function, called retweet, to your index.js file:

var retweet = function() {
 var params = {
 q: 'doggo OR pupper',
 result_type: 'recent'
 }
 Twitter.get('search/tweets', params, function(err, data) {
 // if there no errors
 if (!err) {
 // grab ID of tweet to retweet
 var retweetId = data.statuses[0].id_str;
 // Tell Twitter to retweet
 Twitter.post('statuses/retweet/:id',
 {
 id: retweetId
 },
 function(err, response) {
 if (response) {
 console.log('Retweeted!!!');
 }
 // if there was an error while tweeting
 if (err) {
 console.log('Error tweeting');
 }
 }
);
 }
 // if unable to Search a tweet
 else {
 console.log('Error searching');
 }
 }
);
}

There’s a lot going on here. This entire block of code is a
single function. We’ll take a closer look in a minute, but let’s get
it working and try it first.

Jumpstarting JavaScript28

If you tried to run this code right now, it wouldn’t actually do any-
thing. You’ve written a function, but you haven’t added any code that
will call it. Let’s do that now. At the end of this code, add these lines:

retweet();
// retweet every 3 minutes
setInterval(retweet, 180000);

Now we’re calling our function every 180,000 milliseconds,
or every 3 minutes. Change this to whatever interval you wish.

WARNING If you run your bot too frequently, Twitter will
see that you’re using up too many resources and will “rate-limit”
you. Once every 3 minutes is plenty.

It’s time to try the program. Open your bot’s Twitter feed in
a web browser. Now in your terminal, run your program by using
this command:

pi@raspberrypi:~/newtwitbot $ node index.js

You’ll see lots of output! All the info about each tweet that
matches your search string is displayed on your terminal. It is also
retweeted to your bot’s Twitter account.

Customize Your Own Search
It’s not likely that you’ll want to keep searching for and retweet-
ing doggo and pupper tweets! You can change the query string
(the text in quotes after q:) to look for any terms you wish,
including hashtags. Separate multiple terms with commas. The
argument result_type: 'recent' tells the code to search for
the latest tweets since our bot last retweeted. You can find more
parameters for this query string by checking out the Twitter API
reference at dev.twitter.com/rest/reference/get/search/tweets.

Creating a Node Twitter Bot on Raspberry Pi 29

Your program will keep running and retweeting every 3 min-
utes until you stop it by pressing Ctrl-C.

Let’s take a closer look. Consider this code:

var params = {
 q: 'watermelon, papaya, mango', result_type: 'recent'
}

This code sets up the parameters of the data we’ll be search-
ing for.

Here’s the code that uses those parameters, starting with the
Twitter.get function. This function comes from the twit API, and
it takes three objects:

 * The action we want it to take—in this case we want it to
search, so we use search/tweets.

 * The params object (our query string and any other params).

 * A callback function that calls another twit API function,
Twitter.post. This function does the actual posting or
reports errors.

Twitter.get('search/tweets', params, function(err, data) {
 // if there no errors
 if (!err) {
 // grab ID of matching tweet
 var retweetId = data.statuses[0].id_str;
 // found something to retweet
 Twitter.post('statuses/retweet/:id',
 {id: retweetId},
 function(err, response) {
 if (response) {
 console.log('Retweeted this tweet');
 console.log(data);
 retweeting.');
 }
 }
 // error while retweeting
 if (err) {
 console.log('Error tweeting';});
 }
 // if unable to search through tweets
 else {

Jumpstarting JavaScript30

 console.log('Error searching.');
 }
 });
}

The last bit of code we added uses a JavaScript timer func-
tion, setInterval(). This timer function calls the retweet function
periodically.

retweet();
// retweet every 3 minutes
setInterval(retweet, 180000);

We’ve covered quite a bit of ground in this chapter. Here’s the
entire index.js code so far:

// Complete index.js code from Chapter 3
// Dependencies
var retweet = function() {
 var params = {
 q: 'doggo OR pupper',
 result_type: 'recent'
 }
 Twitter.get('search/tweets', params, function(err, data) {
 // if there no errors
 if (!err) {
 // grab ID of tweet to retweet
 var retweetId = data.statuses[0].id_str;
 // Tell Twitter to retweet
 Twitter.post('statuses/retweet/:id',
 {
 id: retweetId
 },
 function(err, response) {
 if (response) {
 console.log('Retweeted!!!');
 }
 // if there was an error while tweeting
 if (err) {
 console.log('Error tweeting');
 }
 }
);
 }

Creating a Node Twitter Bot on Raspberry Pi 31

 // if unable to Search a tweet
 else {
 console.log('Error searching');
 }
 }
);
}
retweet();
// retweet every 3 minutes
setInterval(retweet, 180000);

In the next chapter, we’ll expand on the bot’s functionality
and use the Raspberry Pi to make an LED light up when our bot’s
Twitter handle is mentioned!

Flash an LED in
Response to a
Twitter Event

You’ve created your Twitter bot with Node. If you’ve set it up
on your Raspberry Pi, you can hook up an LED and make it flash
when an event happens on Twitter.

In this chapter, you’ll wire up an LED on a breadboard hooked
in to your Pi. Next, you’ll write a short program that will make
the LED blink twice. Finally, you’ll add this code to your Twitter
bot program so that each time your bot’s Twitter handle is men-
tioned, the LED will alert you by blinking (Figure 4.1).

4

Jumpstarting JavaScript34

FIGURE 4.1: Blinking LED

SET UP THE LED ON YOUR
RASPBERRY PI

The setup, shown in Figure 4.2, is fairly simple.
Here’s what you’ll need:

 * Raspberry Pi with 5V power supply

 * Breadboard

 * 2 male-to-female jumper cables (the example uses black
and green)

 * An LED

Step 1. Locate the GPIO pins on your Pi (Figure 4.3).

Flash an LED in Response to a Twitter Event 35

FIGURE 4.2: Complete LED setup on Raspberry Pi

FIGURE 4.3: Close-up of GPIO pins

Jumpstarting JavaScript36

What Do You Mean by GPIO?
See those 26 pins along one edge of your Pi? Seventeen of
these pins are called GPIO, short for General Purpose Input/
Output. You can attach external hardware to these pins. The
other pins are power or ground pins.

Step 2. Connect the female end of the green jumper cable to
pin 4 of the GPIO on the Pi, as shown in both Figures 4.1 and 4.2.

Step 3. Connect the female end of the black jumper cable to
pin 3 of the GPIO.

Step 4. Take a look at your LED. One leg is longer than the
other. The longer leg is the plus side, and the shorter leg is the
minus terminal. This is important to keep track of.

Step 5. Insert your LED into the breadboard as shown in Fig-
ure 4.2. Make sure the plus side of the LED is on the right.

Step 6. Connect the male end of the black cable to the bread-
board adjacent to the minus terminal of the LED. If any of this is
confusing, just take a close look at Figure 4.2.

Step 7. Connect the male end of the green cable to the bread-
board adjacent to the plus terminal of the LED.

Your Pi will now be able to blink the LED in response to the
code you’re about to write!

CREATE THE BLINK PROGRAM

Open your terminal and connect to your Pi. Navigate to the
directory where you created your Twitter bot files.

pi@raspberrypi:~ $ cd newtwitbot
pi@raspberrypi:~/newtwitbot $

Flash an LED in Response to a Twitter Event 37

Remember using npm to install the Twitter code library called
twit? We’re going to use npm again, this time to import another
library called onoff that lets us control the LED.

To install this library, use this command:

pi@raspberrypi:~/newtwitbot $ npm install --save onoff

After onoff has finished installing, create and open a new file,
helloBlink.js.

pi@raspberrypi:~/newtwitbot $ nano helloBlink.js

This opens the editor with a new blank file. Here’s the code
to enter:

//helloBlink.js
var Gpio = require('onoff').Gpio,
 led = new Gpio(4, 'out');
var iv = setInterval(function () {
 led.writeSync(led.readSync() === 0 ? 1 : 0)
}, 500);
// Toggle state of the LED every half second
setTimeout(function () {
 clearInterval(iv);
 led.writeSync(0);
 // Turn LED off
 led.unexport();
}, 2000);
// End blinking after 2 seconds

Save this file.
Now give it a try with the node command:

pi@raspberrypi:~/newtwitbot $ node helloBlink.js

MAKE YOUR BOT DETECT YOUR
TWITTER HANDLE

Before your bot can blink in response to your Twitter handle
being tweeted, it needs to be able to detect when that happens.

Jumpstarting JavaScript38

In this section, we’ll add some code that will tweet a greeting
back to anyone who tweets your handle.

In the last chapter, you created a Twitter bot in a program
called index.js. Open index.js (or whatever you named your file)
in an editor. We’ll add this new code to the end of the current file.
Make sure you change @doggothebotto to whatever you named
your bot!

//Respond when someone mentions me, @doggothebotto
var stream = Twitter.stream('statuses/filter',
{ track: ['@doggothebotto'] });
//Look for my @name
stream.on('tweet', tweetEvent);
function tweetEvent(tweet) {
 // Get Twitter handle of who tweeted me
 var name = tweet.user.screen_name;
 // Now send a reply back to the sender
 var reply='You mentioned me! @' + name + ' ' + 'Bork bork!';
 var params = {
 status: reply, in_reply_to_status_id: nameID
 };
 Twitter.post('statuses/update', params,
 function(err, data,response) {
 if (err !== undefined) {
 //Report error if response tweet fails
 console.log(err);
 } else {
 //Report success
 console.log('Tweeted: ' + params.status);
 }
 })
};

Basically, this code listens for your bot’s Twitter handle. When
it detects your handle, it grabs the handle of the sender. Then it
creates a reply that includes the sender’s handle, and tweets it.
In our example, if someone—let’s call her @lynnbeighley—were to
tweet anything containing my bot’s name, @doggothebotto, the bot
will respond with You mentioned me! @lynnbeighley Bork bork!.

Flash an LED in Response to a Twitter Event 39

MAKE YOUR BOT BLINK THE LED
WHEN MENTIONED

The last step is to add in the code you used in the helloBlink.js
program at the correct point in your bot program. You can copy
and paste it immediately after this line:

console.log('Tweeted: ' + params.status);

The complete block of code we added to the end of your bot
code in this chapter is

//Respond when someone mentions me, @doggothebotto
var stream = Twitter.stream('statuses/filter',
{ track: ['@doggothebotto'] });
//Look for my @name
stream.on('tweet', tweetEvent);
function tweetEvent(tweet) {
 // Get Twitter handle of who tweeted me
 var name = tweet.user.screen_name;
 // Now send a reply back to the sender
 var reply='You mentioned me! @' + name + ' ' + 'Bork bork!';
 var params = {
 status: reply, in_reply_to_status_id: nameID
 };
 Twitter.post('statuses/update', params,
 function(err, data,response) {
 if (err !== undefined) {
 //Report error if response tweet fails
 console.log(err);
 } else {
 //Report success
 console.log('Tweeted: ' + params.status);
var Gpio = require('onoff').Gpio,
 led = new Gpio(4, 'out');
var iv = setInterval(function () {
 led.writeSync(led.readSync() === 0 ? 1 : 0)
}, 500);
// Toggle state of the LED every half second
setTimeout(function () {
 clearInterval(iv);
 led.writeSync(0);
 // Turn LED off

Jumpstarting JavaScript40

 led.unexport();
}, 2000);
// End blinking after 2 seconds
 }
 })
};

You’ve now got a bot that not only responds when someone
tweets at it, but also blinks an LED to let you know! Using similar
techniques, you could monitor Twitter for more practical search
terms—for example, the words tsunami and earthquake.

Run Node Applications in the
Background
If you’re running something like a Twitter bot on your Pi, you’ll
probably want to let it run in the background. You can use the
command forever to do this.

Use npm to install forever:

pi@raspberrypi:~ $ npm install forever --global

Now you can run it like this:

pi@raspberrypi:~ $ forever start yourProgram.js

Your program will now run as a process. To stop it, use this:

pi@raspberrypi:~ $ forever stop yourProgram.js

NODE, PI, AND THE INTERNET OF
THINGS

You’ve now had a jumpstart into JavaScript with Node and Rasp-
berry Pi. You can control real-world devices and interact with
the Internet. Blinking an LED is just a small taste of what you can

Flash an LED in Response to a Twitter Event 41

directly control with your Raspberry Pi. Now that you can do that,
you can connect and control other, more interesting electronic
devices.

For example, you could attach a temperature sensor and
periodically post environmental readings to a web page. Or you
could use a motion sensor and set up an alert to catch your cat
jumping up on your counter at night.

Now it’s up to you to dream up and build your own JavaScript/
Node/Pi projects!

	Contents
	Preface: What is Node.js?
	Chapter 1: Meet JavaScript and Node.js!
	Chapter 2: Getting into JavaScript
	Chapter 3: Creating a Node Twitter Bot on Raspberry Pi
	Chapter 4: Flash an LED in Response to a Twitter Event

