The Complete

FreeBSD

Documentation from the Source

Greg Lehey

O REILLY*
COMMUNITY PRESS

Table of Contents

FOTEWOIA ..., XXV
Preface XXVIi
ThefoUrth @AITIONeeceee e b e aeas XXVii
Conventions used iNthiSDOOKcccoociiiiiiiic e XXViii
DesCribing the KEYDOAITcceceeeieeee ettt e re e sne s XXIX
ACKNOWIEAGMENES.......eeiiiriiiieieetere ettt s e e s XXX
[0 S =Y == £ XXXi
How thiSDOOK Was WIITEN...........coieiii ettt XXXil
L INtrOAUCTION oo, 1
HOW tO USE IS DOOKccveiiiiieicti ettt sttt et st sreenesre e 2
FreeBSD fEALUMNES ..ottt et st e e re e san e e nreesaneenreas 4

[Tor= 0TS DgTo Joo 0T [0] SR 6

A TG NISLONY .ottt ettt ne e e enens 7
The end of the UNIX WISeeiiiie e sieeeestieeeeiee e stee e e sate e e s tee e sneeeesateessnseeesnneeeennneeas 9
Other free UNIX-like operating SYStEMSccoieiceieneses s 9
FreeBSD @N0 LiNUX .eeeiiiiurrieeiiiiiieeeeeeieitirieessessreeesssssssbeesessssabaseesssesssessssesssssnssessensssnes 10
FreeBSD System doCUMENEALIONcoueveieieieeecee ettt se e eneas 12
Reading onling doCUMENEALiON......veiiieeree i see st siee et r e nre e 12
The ONlINE MEBNUELuuviiiiiciiiiie et e e e s s e sbb e e e s s sbbbe e s e s seabeeeeesaanns 13
(€N 1O N1 o P 15
Other documentation 0N FrEEBSDcoviieiiiiiiecie ettt e nea 16

Vi

Table of Contents

The FreeBSD COMMUNITYocvoiiiieiiiieieceee et 17
MAITING TISTS. .ttt ettt sbe e e 17
Unsubscribing from the Mailing liStSeevveiivieiee i 19
USEIE GFOUDS +vvvveesteestreasseeseseesseessseasseessseassesssseasseesssessseessseesseessssensesssseansesssseessensssesses 19
REPOIING UGS .+ttt ettt ettt et e et e s e et e e s e et e e s ra e e beesrbe e reesnneeees 19
The Berkeley aemMON..........ccoiiiiiiieireseee ettt 20
2: Before you install...........cccoocoooiis 25
USING Old NAIAWEEoviiiiiciieieeeee et sae 25
(DY o= [Y £ USSP 27
PC HAIAWATE ...ttt ettt b e sbe st b sae 27
How the system detects hardware ... 29
ConfIGUIING ISA CAIGS.......c.oiuiiiieieeeeee et sne 29
PCMCIA, PC Card and CardBuUS.........c.ccoeririiiniinie e 30
PC Card and CardBUS CAIASeeiuveerreiueeireesireesseessressieesseesssssssesssessssesssessssesssessssnssens 31
UNIVEISAl SEIAl BUS......c.eiiiiiiieiiiceiesies ettt sbe e sae 31
D] TSP USRS PSP URTURPRRTN 31
DiSK dALA TAYOUL..... .ottt sne 33
PC BIOS @NG GISKS 11 uvvieuveeiirieiiesieeesieesiaeesteesiaeesteestressteessaeabaesaeesbasssaeanseesnsessseessnesnees 33
(DT Qo Vg U1 T 0 T P USRS 34
BIOCK and CharaCter QBVICESuveiuviiiieiieeiiesiieesteesiressieesaeesbeesaeesbaesraeestessraeesseesnnesnees 35
MaKing the file SYSTEIMS.c.oiiiiiee e 39
DiSK SIZ& lIMITATIONSc.eiiiiciieieee et see 39
DiSPlay NATAWAIEcviieiiiciieee et sbe e sae 40
THE NAIAWAIE ... ettt sttt sbe e 41
LR Y 10T U [PPSR 41
TNIE MOUSE 1ttt ettt sttt et sttt et e st e et e et e e b s st e et e e st e s te e e st e et e e s te e nae e et e e abeeenb e e arbeenbeenrne s 41
The display board and MONTEOLecieeiiiiiieie e 42
(010 ol o 1o [V USRS 42
Compag/Digital Alpha MACINEScc.oiiiiiieiie e 42
The CD-ROM diStriDULIONovieiiiiee s 43
INStAllation CD-ROM......cccuiiiiieiiieiiee e sie et e ste ettt e e e taesnae e sbeessaeesbeesraeenseesnrees 43
Live File System CD-ROMccciiiiiiiiiiiieiie sttt se s ee et sba et snae e raesnae e 46
CVS RePOSItOrY CD-ROMcciiiiiiiiiiieiiee it esieesite e steesaeebeesiaeaseessaeasteessaesstaesnaeenseeans 46
The Ports Collection CD-ROMS.........ccoieiuiiiiiesiesieesiressteesirsaeeesaessieessnessessraeesseessnes 46
3: Quick installation ..., 47
Making things easy for YOUISEIT. ..o e 47
FreeBSD on a disk With free SPACEccociiiiiiiiiie e 48
FreeBSD shared With MICrOSOft..........ccocoiiiiiiiiiiie e 49

ConfIGUIING XIFFBEBBeoveieiitiiie ettt b 50

The Complete FreeBSD vii

4: Shared OS installation ..., 51
SEPANALE ISKS. .. et b 51
SHANNG @ QISK ...t sre 52
Sharing with Linux or another BSD.........c.ccoiiiiiiiiiiiesene e 52
Repartitioning With FIPS...........ooi e 52

Repartitioning—an eXamPIEciueiiieiieeiie et 54

5: Installing FreeBSD........coccoiiiinns 59
Installing on the Intel i386 architeCtUrec.cccccvveieiiie i 59
B0oOtiNg 10 SYSINSLA6L.......cceiieiiec e 60

Kinds of INStAIALIONc.vviviiiieiieiiccc e 61
Setting iNStallation OPLIONS.........ccvviieii e 62
Partitioning the diSKccieiiie et 63

SNAred PATLITIONS ve.vveieviestieiiie sttt e st b e et e st b e sbeesrae e sbeesraeebee e 66
Defining fille SYSIEMSeo et 67

WWHAE PAIITIONS? 1..veeeveiiiesiie ettt st st e b et et eesbeessbeenbeenrne s 68

HOW MUCH SWAP SPACE? .vvervviiriiesiieeiiesiaeeteesiteesteestressteessseabeessaeessessssesnsessssesssesssnesssns 70

File Systems 0N Shared diSKS.......ciueiiuieiieiiiieiiieiee e es 75
Selecting diStrIDULIONSooiiiii e 75
Selecting the installation MEdIUMcooiiiiiiiii e 76
Performing the inStallation ..o 77
Installing on an AlIPNa SYSTEM ...t 78
Upgrading an old version Of FIeeBSDccccviiiiiiineneieiecieee e 79
HOW t0 UNINSTAll FIEEBSDcooviiiiciiieccrieese e 79
IT thiNGS GO WIONQ ...ttt 80

Problems With SYSINSTAll..........ccueiiiiiieiii i 80

Problems with CD-ROM iNStallationcccuiiienieieeiisie e 80

(07 1 0 o010 TSP TP TP P PP PRUURTPRTPRPRN 80

INCOrrect BOOt INStAIlALION.eieiiieiie e 81

GEOMELTY PrODIEMS 1.ivvieiii ittt e sae e sbeesraeebee e 81

System hangs during DOOccveiuiiiiiiiee e nbe e 82

System boots, but dOESN™t FUN COMTECLIY ...uvvvivviiiierie ittt 82

ROt file SYStEM fillS UP...veeiiriiiieiiie ettt 82

PAINIC ..ttt sttt etttk ettt ettt b ekt b e a bt e e bt e e Re R R e e Rt R e e Ee R e e R e e R e e bt R n e bt e nr e ne s 83

Fixing a broken inStallationc.veiveiuiniiie i 84
Alternative installation MethodS...........cooviiriiiieic s 85

Preparing D00t fIOPPIES «..vviivviiiie i 85

B00ting frOm FIOPPY «.vveeveeiie ettt e 86

([0S e UL Ta o AV T W 1 PSPPSR 86

INSEAITING VIA FEP 1.vveeiee ettt b e nbe e e es 87

INSEAITING VIA NFS Lottt st sae e b e b e e nteennre s 88

Installing from a Microsoft Partition..........cccoccveiiueeiieiiiesiee e e 88

Creating floppies for a floppy inStallation...........cccccvvirieiieiiie i 89

viii Table of Contents

6: Post-installation configuration..............cccccooovee..e. 91
Installing additional SOTEWANEc.cviiiiiiri e 92
INSEANE WOIKSEALION ...ttt ettt nn e sre s 93
Changing the default Shell FOr FOOtviieeiiiiiie e 94
ATUING USEIS....eititiiteite ettt bttt bbb bbb bbbt et bt et be s be b e e e 94
Setting the rO0t PASSWOITvieieeirieiiieeiee st sieesiee e be e saeebe e eebeesrae e steessaeesbeessaeenbee e 95
THMIE ZONE ...ttt bbbttt r et er et ar e ar e 95
NETWOTK SEIVICES ...ttt 97
Setting UP NEIWOTK INEEITACES. . iivveiiriiiieeiee st sie et baesaeenbee e 98
Other NEIWOTK OPLIONS ..vevviiiieiie it sttt e bt e et e e srae e sbeesraeenbee e 99
SEArtUP PrETEIENCES......cui ittt 100
Configuring the MOUSEoiiiiii e 101
CONFIGUIING Xt bbbttt ne b 102
DESKLOP CONFIGUIALIONveiiieiiiesiie ettt e et esbe e teeeteesnee e 108
Additional X configurationcuveiieiiieiiieies e 108
Reb0o0oting the NEW SYSIEM.........ciiiiiiii e 109
7: The tools of the trade.............cccoiiinns 111
USEIS BN GIOUPS -ttt ittt sttt sbe st s be b b sae bbbt et e et et ebeebeebeeneebe b e 112
GAINING ACCESS.....etteeteteeterte st sttt sttt be ettt etk b e bt be s b e b et e e et ese e b e e neebeebenbe e 113
The KDE dESKIOPeviitiieitiiteiie e e e 116
ThE DESKEOP IMEBNU ..veuviiirieiee sttt ettt bbbt ae et e b b e beesnbeenees 116
The FVWM2 WINAOW MANAGETeveiiieieiieiere ettt e 118
SEANING FUMWMZ 1.eiiiie e e st et beenbeesnbe s 119
Changing the X diSPIaycoceriiirieeee e 120
SeleCting PIXEl AEPLN. .. uiiivii it 121
GettiNg @ SNEH ... e 121
SNEII DASICS ..ttt b e b b nn e 122
(0741410 1SS RTOTPUPPTRN 122
SN PAFAMELETS ..t vveieteetee st estee s e s e ettt e et s b et e ssbe et e e srbeenbeesrbeenbeesnbe s 123
Fields that can CONtAIN SPACES .. .vevvvrivieiiresiiesiesreesireseeesseesbeesseesbeesieesaeesteesseessee s 125
Files and file NAMES. ..o s 125
File NAMES aNd EXIENSIONSccuviieieiiiteeie sttt see et sb et sr e sne e sne e 126
REIALIVE PANS. .. veeuviiiiiiiiee sttt e et s e e b et beenree e 126
GlOBBING ChArACTEIS ... uviitii ittt e srre s 126
INPUL NG OULPUL ...veevvee ettt sttt sbe et e e sba e b e e sbaeenaeenees 127
ENVIFONMENE VATTADIESoiviiiiieieie et 128
CommMaANd 1iNE EAIING ...eevveivieiie et sbe e reesaeesrae s 131
Command history and other editing fUNCHIONSccviiiieiiiiiiecie e 133
SNEITSEAMUP FIIES ... vveieveeitie ittt e b sb e beesreesnae s 135
Changing YOUE SHEIL.......ccuiiiiieiie i sbee b s 136
Differences from MICIOSOTL...........cooiiiiiiiiicie s 138

Slashes: backward and fOrWArdccovuiiiiiiiiiiie et eaees 138

The Complete FreeBSD ix

TAD CNATACTETS ...ttt ettt sttt bt e e b e esbe e et e et e nae e 138
Carriage CONLrOl ChATACIEISuuiiueeiviesiee st e siee et et e sttt e e et este et e e e sreesnaes 139
The EMACS EAITOT......ccveiiieiieeiiete et 139
SLOPPING thE SYSLEIM ...t 141
8: Taking CONTIOl. ... 143
USEIS BNG GIOUPS ...ttt eeeetieieeie ettt ettt see bt e s b e b e e e s et e e eseebeebeeneebesbeee 144
ChOOSING @ USEE MAIME .veeuvveivvieteesireesteessseesieessseessesasseessesssseesseessseessesssseessessssesssessnnes 144
AGING USEIS...vvtttteeiee ittt e stee et sa e st et et e st e be e ssae e be e ssbeebeesrbeenbeessbeesteesnteenteean 145
THE SUPEI USET ...ttt sttt b et e b ettt ne et ne b 146
BECOMING SUPEE USET 1vvtuveevreesiiesseeesieesseessseessaessseesssssnseesssssssesssesssseessessnsessssssnsesssnnans 147
Adding 0r Changing PASSWOITSeiveeveeiiiiesieesieesiresreesieesaeesaeesbeesseessressteesseessneans 147
PIOCESSES ...ttt e 148
What processes do | have FUNNING?ecveeiieieeiie e sne s sreesaeesree e 149
What ProCesSeS are FUNNMING?eivieieeereesireasieesreasiresseesseesaeessesssseesseesssesssessssesssnnans 149
DABIMONS. ...ttt e 150
(01 (0] RO T TSP U PR U PR URUPPROP 151
Processes in FreeBSD REIEASE 5c..eiueiiuireiriiiie ettt 152
1]« JF TSP 152
SEOPPING PrOCESSES -..veuvetitertestestestestesie e seeseeseete et tesbesbesbesbesbe b e besbe e eneeseeseeneebenbeee 154
THMEKEEPING ...ttt ettt bbb bbb et e et ebeebesbe b 155
The TZ environment Variable...........coueoiiieniiieie e 155
Keeping the COITEC TIME ..vvvviiiieiieiii sttt e sbe e re e beesree e 156
L0 FIES. et b ettt re s 157
MUItiple ProCESSOr SUPPOIT.......cveuieieeieeieeiere sttt sttt sttt sne s 159
PC Cald GBVICES ...ttt bbbt 159
devd: The deviCe daBMONc..oiuiiiiiieie ettt 159
ReMOVING PC Card JEVICES ..vvivveiuiiiiieiiesiiesiie et esies e e sies e siee e stnesaeestnesneesreeans 161
ARENALE PC Card COUB.... i veieirieetisiieitesiee st stie sttt ettt st sbe e see e e sbesieesbesieen 161
Configuring PC Card deviCes at StartUpveceveerueeiiueesieesieeseesseesessseesseesseessessneas 161
Emulating Other SYSLEIMSo.iiiieiceee e 162
EMUIators and SIMUIALOTSc..iiuieieiieie ettt 162
EMUIBTING LEINUX. ..ttt sttt 163
RUNNING the LINUX @MUIALOTvveivieivieiie st siee e e e s te e teesiee e staesaeesrnesneesnne e 163
LNUX PIOCES L.ttt sttt ettt sbe e san et e e neenneean 164
Problems executing LinuX DINAIIES.cueiiiiiiiiieeiie st 164
EMulating SCO UNDX ..ot 164
Emulating MicroSoft WINAOWScociiiiiiiieinenese s 165

ACCeSSING MICTOSOTE fIlESeeiiiiiicciecee e 165

Table of Contents

9: The Ports ColleCtion ..., 167
HOW 10 INStall @ PACKAGEcvvevieieice e 168
BUIING 8 POI....eieeeiee ettt 169

Installing ports during system inStallationcccovvveiiviiiennine e 169
Installing ports from the first CD-ROMccviiiuiiiiiiiiniiiie e 169
Installing ports from the live file system CD-ROMccccovveiiiiiieiieiiie e sne e 169
GEEING NEW POIES 1. vveieteetie sttt estee sttt e stee st e te et et e et e s b e e sbeessbe e sbeeanbeesbeeanbaenneesnbean 170
WHAE'S IN TNAE POI? 1.eveeiiiiieeitie sttt e b e s e et e ssbe e sbaesnteenrne e 172
Getting the SOUICE ArChIVEvieiiei ittt s 173
BUITAING the PO c.vvveiieieiee ittt et esbe e teeenteesree e 174
POIt EPENABNCIES vt vvieutee ittt iee sttt ettt be et sbe e s e e steesnbeesteeanteesree e 174
Package dOCUMENTAIONc.oviiiieiiee e 174
Getting binary-0nly SOFEWAEcoiiiieiicee e 175
MaINTAINING POITS ...ttt ettt et sre e 176
UPGrading POFES....c.vevieeieeeieiieeee ettt e e e b e et e et be e b e beene et e b e 176
USING POITUPGIAAE v vveeuteesireeiee sttt et esieesbeestresbeesteeabeesteesbeesbeeesbeesteasnbeesteeenteesrneans 176
Controlling INStAIlEd POITS......oouiiiiereee e 178
SUDMITEING @ NEW PO ...ttt 180

10: File systems and deviCes........cccoooevvecceercerrcernnane, 181
FIlE PEIMISSIONS ...ttt 181
Mandatory ACCESS CONLIOL.......ccuiiiiiiiieieiec s 186
LINKS et 186
Directory NIErarChy ..o e 187

StANAArd QIFECIOIESveveieesteesee st ettt ettt ettt sb et sb e sb e nb e esne e 187
FIlE SYSTEIM TYPES ...ttt 190
SOFE UPOAIES 1.vvevvee it site ettt ettt sttt e s et e e s be et e e e nre b s 191
SNAPSHOLS L1ttt sttt b bbb 191
MOUNING FIE SYSLEMS ... et 192
Mounting files as file SYSEEMSueiuviiiiiiie it 193
UNMOUNEING File SYSEEMS ..vivviiiiesiie it sttt sbeesree e 194
FreEBSD TEVICEScveieieiiiriieiteest ettt bbbt 195
OVErVIEW Of FIEEBSD GEVICESeveeuviiieieriiestieii ettt sttt b e sne e 195
VIrtUal termINaIS.......ooeiiece e 197
PSEUAO-EIMINALS ...ttt ettt bttt sttt nr e sne e sre e 197

120 DISKS .o 199

AdAINg @ Nard diSKcceiiiiiiicicciesec e re s 199
Disk hardware iNSTallAatioNcoveriiieiisiese e 200
FOrmMatting the diSK......uivueeiieiiieiie it 203

USING SYSINSTAIL ... 204

The Complete FreeBSD Xi

D0oiNg it the NArd WaY ..o e 209
Creating a partition taDIEccveiiieriie i 210
Labelling the diSKuveeieeiii et e e e e re e e an 214
DISKIADEL ... 215
Problems running diSKIADETcooviiiiiiiiiiii e 216

Creating file SYSTEIMSoviviiciirieiee e 217
Mounting the file SYStEMS......iiveeiieiiiecie ettt e e s eereesree e 217

MOVING Il SYSTEIMS ...t 218

Recovering from diSK data @rTOrScvieirieirieirieire s 218

12: The Vinum Volume Manager ..., 221

VINUM ODJECES. ...ttt bbb ettt sbe e 221
Mapping disk SPACE t0 PIEXES ..vveiveiiiieiiiiiie sttt e sttt e s e e ae e an 222
(D ez 111 (=141 PP OPRSPTI 223
WHhiICh PIEX OrganiZatioNn?......ccueeivieiieesiee e sae et sbe et eesbeenree e 224

Creating VINUM AFIVESoiiiiiiieieee ettt 225

SEATING VINUM oo bbbttt 225

ConfIGUIING VINUML....cuiiiiiii et 226
The configuIation fille........c.viiiiiiiiiiie s 226
Creating a file SYSIEM....uiiuii i 227
Increased reSilienCe: MIMTOIING....cueiviiiieeiie sttt e e ebe e 228
Adding plexes to an existing VOIUMEcviiieeiiiiiiie e sre s see e 229
Adding subdisks t0 €XiStING PIEXESvevrveeiiviiiieiiieiiee st sie e see e eseeesree e 230
OptiMiIZiNg PErFOIMEANCE .vviivvieiteeiriesiee sttt e e te e sbe e sbe e s beesbeesnbes 232
Resilience and PErfOrMANCE........oiuiiiie it sre et sbe e eebeesree e 233

Vinum configuration database..........ccoveeeiiiiiiiin e 235

Installing FreeBSD 0N VINUMoviiiiiiiiiicic et 236

Recovering from drive failures. ... 240
Failed DOOE ISK......veiieeitieiiietiee sttt 241

Migrating Vinum t0 @ NEW MACKINEcoooiiiiiie ettt 241

Things you shouldn’t do With VINUM...........coooiiiiiiiii e 241

13: WHItiNG CD-RS ...t 243

Creating an 1SO-9660 IMAGE........coerireieeeieieeee ettt 243
TESHING the CD-R.uiiiviiiiiiiieiee sttt st b e be e e e e snbe e e 245

BUNING the CD-R ...ttt 246
Burning a CD-R 0N an ATA DUIMETvoiueiiieiiesiee e ssiee e ieesiee e sieesaeesteesseesnenans 246
BUurning a CD-R 0N @ SCSIDUINETvviiieiiieiiiesieesiiessieesiae e e siee e seesaeesteesseesnenans 248

COPYING CD-ROMS......cooooeereeseseeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeesssssesseseeeeeeeseessesessssses 250

Xii Table of Contents

14: Tapes, backups and floppy disks............cccccccc....... 251
BaCKing UP YOUTF ALooviieiieiieieieee e 251
What backup MEIUM?iiviiiiiiiie st saeenree e 252
TAPE GEBVICES .vviiuvieitrietee sttt riee sttt te e s et st et sttt e e s e e et e e s sbe e nbe e s st e e be e sn b e e baeenaeeees 252
BACKUD SOTIWAIE. ...ttt ivvieiee st iee sttt sttt be et et sbe e s e e ste e ssbe e beesnteennee e 253

1 L TSP PR TP UR VR UPPROP 253
Using floppy disks Under FIEEBSD.........cccciiiiiiiiieieriee e 256
FOrmMatting @ fIOPPY v.vveeveeiiie ettt 256
File SyStems 0N FIOPPY +eoveeiiriiiieiie ittt 257
MICTOSOft file SYSTEMS ..euvieiiiiiie sttt ettt e sbe e teeereesree e 259
Other USES OF FIOPPIES ..vvevreirrieiiieiiiesie sttt ettt e et esbe e b reesreesnre s 259
ACCesSiNg MicroSOft flOPPIES......cviiiiviiiieiiieiee it 260
15: PHINTEIS ... 263
Printer CONFIQUIALION.ccve et 264
TESHING the PIINTEI.....vi it reesbe e e 265
Configuring JELC/PIINTCAD. ...eivveeteesitiesiie st sie sttt esbe et e e e nbeesnbe s 265
REMOLE PIINEING ©evvieirieiee ittt et e e sbe e s b e e sbeesrbeesbeesnteenree e 266

R ToTo] LT g 1 T £ PSPPSRI 267
Starting the SPOOIETc.iiiiiiiie e 268
TeStING the SPOOIEYieie e et 268
TrOUDIESNOOTINGcviviieiite it 269
USING the SPOOIET ... 270
REMOVING PIINE JODS 1.vviiveiiiiiiiiesiie ettt sbe e esaeesree e 271
POSESCIIPE ..ttt bbbt ettt ettt be b e 271
VIBWING WItN GV 1utieiieeiiie ettt s b e st et ssa e e nbeesnbeennee e 272
Printing With ghOSESCIIPE ..ve.vviiiieiiie et sree e 273
WWHICH AFIVEI? L.ttt se e sre e b 274
PO bbb e h b e e et et h e bbbt e 276
16: Networks and the Internet ..., 277
NETWOTK TQYEIING ... veiveiiieicee et r e e ebesre e s 279
THE TINK JAYET .ttt e bbb sbe e e 280
THE NEIWOTK JAYETeviitieiiii ettt bbb s ae e e 281
ThE traNSPOIE JAYET ..vviviiiiiiiie sttt be e b e e 281
Port assignment and INTEINEE SEIVICES ...iiuuvivieiiiiiiee st st siee e see st see e e eeesiee e 283
NEtWOIrK CONMNEBCTIONS ...ttt sr e sn e sre s 284
The physical Network CONNECLION...........ccvcviiiiiiicise e 285
EHherNet ..o s 286
HOW ETNEINET WOTKS ...ttt 287

Finding Ethernet adareSSES . ..uivuiirriiieiiesiiesre st e sirsssteesieesbeesieesbeesieesbeesbeesaeessee e 289

The Complete FreeBSD Xiii

What systems are on that EtNEIrNEt?c.ccivviiieeiiiiiie e see e see e 290
AAIESS CIASSES ...ttt ettt sttt sttt sttt b et e bt et b e e e e sbe e besbeesbesaeesbesbeenbenneen 290
UNOULADIE A0UIESSESveveetieiee ittt sttt st b e sbe e s 291
WITEIESS LANS ...ttt ettt bbbt eb e en e 291
HOW Wireless NEtWOIKS COBXISEvvriuvieririrtieiireeiee st st ettt ettt ne e 293
ENCIYPEION 1.ttt e 293
The referenCe NEEWOIK..........ccoiuiriiiieiee e 294
17: Configuring the local network..............c..cccocoovvenenne.. 297
Network configuration with SysSinstall ..o 297
Manual Network CoNfigUIAtioNcccoiiiiiiiiire s 299
DESCIIDING YOUI NEEWOTK ..e.vvviiiiieitie st siee st ee st e s te et be e st e s e st esae e steeenneesree e 300
Checking the interface CONfigUIAtioNcveeivieiieeiii e 301
The configuIation filESiiviiiii i e 302
Automatic configuration With DHCP..........ccccooiiiiiii e 302
DHCP CHBNT ..ttt ettt ettt bbb bt et nbeeanesaeeneas 302
DHECP SEBIVET ... ettt sttt ettt ettt ettt be e sbe et e s b et e st e e st e et e et e sbs et e eanenaeennesreannas 303
e 4L To o (31T oo H SRS URRTRI 304
Configuring PC Card networking Cardscccuoeririerenene e 304
DEetaching NEIWOTK CAITSvviiviesiieiiiesee et e sresre e s e te et e e e saesbe e steesbeesteesreesree e 306
Setting up WIreless NEIWOIKINGcovoieieiiiieieecece e 306
VWDt WE CAN 0O NOW...c.viiuiiiieeeiieete st siee sttt se et eesbe e e e sbeesesaeesbesaeesbesbeenbessnen 307
ROULING .ttt bbbt ettt b b e e bbb e 307
Adding routes aUtOMALICAIIYcvieiiveirie e 309
Adding routes MANUAITYeeiuveiiieieeci e sbeenree e 309
ISP S TOULE SELUP....cveiee sttt et bbb sne s 310
Looking at the routing tables.............cooiiiiiii s 311
1o PP PR TR OPRSPI 312
Packet FOrWArAINGcc.ooieieiiiieee e 313
Configuration SUMIMANYcoiiiieiiee ettt e e sre e 313
18: Connecting to the Internet ..., 315
The physical CONNBCHION........coiiiiiieeee e 315
Establishing yourself on the INternet............ccoceviiiiiinini e 317
WHhich dOMAaIN NAME? ...ttt sre e b 317
Preparing for regiStration..........ccoivuiiiiieiiiesiie st 318
Registering a domain NAMEueiuriiieieeeiie et e e steesiee e sreesbeesreesaeesreeeseesseeans 318
GELtING IP AOUIESSES ...vveevriiirieiteesitiesiee st e et e et e et essbe e beesbeesbeeanteenseesnbes 318
Choosing an Internet Service Provider ... 319
WHOS that ISP?....eiee et 319
QUESHIONS 10 ASK AN ISP......uiiiiiiiie st e ettt ettt e e et e e et e e e b e e e e abe e e eaaeeeereeeas 319

MaKing the CONNECLION...........coviiiieiiieiee e 323

Xiv Table of Contents

19: Serial commuNICAtiONS...........cooocinrci, 325
TEIMINOIOQY ...ttt bbb ettt b et sne s 326
Asynchronous and synchronous COMMUNICALION..........ceverereririeneieeeeeesese e 326

ASYNCHIroNOUS COMMUNMICAtION ..vttvviiiireireesiieesieesiressieesaeesbeesaeesbesssbeesteessaeesbeesneeenreeans 326
SYNChroNOUS COMMUNICALION ...c.vviivviesiie st e siie st ettt et beenbe e b s 327
SEIIAL POITS .. bbbttt b e 328
CONNECEING 10 ThE POIT...eiviiiiiieiiee st sie st esbe et beesbeesnbe s 328
WHEN €an | SENGA JAA?eeiveieiiiieieriie ettt st sbe e b snee 330
IVIOGEIMIS ...tttk ettt r et ar et er e an e ene e 330
MOTEM SPEEAS ..vevvvetrieutee sttt eieestee bt e ste e et e s e e sbeeste e e beesbeeasbeesbeeesbeesteennbeesrseenteesneeans 331
Data COMPIESSION .vvevvieuveestreeitesteesteesseeebeesteessbeesteeabeesseeasbeesbeeasbeesteesnbeestseanteennenans 331
LI LTS o LTl [USSP 332
(DT E LT To o TV S PP PRSOPRSRTI 333
MOAEM COMMEANGSevieetieete st ar e en e 333
Dialing OUL MANUATTY ...eeuveeiiieiiee ettt e e sreesbe e teeareesrne e 335
Dialing OUt—an EXAMPIE........ccvieiiiiiieiie et are e e 336
(DT E 1T To T IO PP OPRSPTI 338

20: Configuring PPPcooooeeeeeeeeeeeeeeee 339
QUICK SBIUP . . bbbttt 340
HOW PPP WOTKS......coieciiieciit it 340

THE INEEITACES ..ttt sttt b e nb e e sne e 340
[DTE 1o PP PRSP OPRRPTI 341
[T o1 F: L4 To] | PRSP RSP OPRRPTI 341
WhO throws the fIrSt STONE? ...c..eiueeiiriie it 342
AULNENTICALION ...ttt e e sne e sb e beenbennee 343
Which IP addresses 0N the liNK?...........eoiiiieiiiieienee e 344
The net Mask for the TiNK........c.ooioiiii e 345
Static and dYNAMIC A0UMESSES. ...uvvirvrierieerrieiiiesieesire st e e s seesae e e sre e b e sbeesreesrres 346
Setting @ AefaUlt FOULE ...eovviivieiee et srre s 347
AULOBIAL -ttt b et e e b e e be b e nresbeenrennee 347
The information you Need t0 KNOWc.cooiiiiiiiiiii e 347
SEHING UP USEE PPP ...ttt 348
Setting Up USEr PPP: the etailS.......cciuiiiuieiieiiieiiii ittt 349
[T o1 E: L4 o] I PRSP OPRRPTI 350
REQUESEING LOR ...ttt ittieiee ittt eiee sttt siae st sa e sbe et e s be et e s be e sbeessb e e sbeesnbeenbeesnteenren e 351
AULNENTICALION ...ttt e e e et s sbe e nbennee 351
Dynamic 1P CONFIGUIALIONeovieieieiiiecee st e ere e an 352
RUNNING USEI PPP ...ttt ittt sttt sttt et be e sbeesnbeestaesnaeestneenseennen e 353
How long do We Stay CONNECLEA?vveieeeiieiiiieieesieessieesiae e s e sbe e seesre et esreesree e 353
AULOMALING ThE PrOCESS...veivvrevreiiieieeeteesireesieesreasteesaeesbeesaeesbeesrbeesteessbeesteesneeesreean 354
Actions on conNect aNd dISCONNECT...........erueeiuirieriieiesieeie st e ste et e see e 355

I tINGS GO WIONQ 1ottt sttt sttt ettt e e ssaeenb e e staeenbeenees 355

The Complete FreeBSD XV

Setting UP KEIMEI PPP ...t 355
AULNENTICALION ...ttt ettt ettt et sb et bt sbe e e sbesbeenbesneen 356
D TE T PSPPSRI 357
WHho throws the first STONE?ccviiiiiiiie it 358
Dynamic IP CONFIGUIALIONeeiiiiiieiie ettt 358
RUNNING KEIMEI PPP ...ttt nnee 358
AULOMALING ThE PrOCESS. .. e vvietiiiitiesiee et sttt ettt sir et sr e sb et snr e e sbeesreenneean 359
TIMEOUL PATAMETETS ...euteetiietie sttt e sttt ettt et sttt e st sb e e s ir e e nbe e s bt e sbe e snbeesbeesnneenees 359
CONFiGUIAtioN SUMMETY......oiuvieiiieiiiiesiie ettt ettt e s sr e sn e sb e esneesaneas 359
Actions on conNECt aNd dISCONNECT.veeivvieiieeriieiie ettt sre e 360

Things that Can g0 WIONQcoiiiiiiiiei et 361
Problems establishing @ CONNECIONcoiviiiiiiiie it 361

21: The Domain Name ServiCe.........nenns 363

DOMAINS AN ZONESovevieeiiiieiiteeer ettt 364
ZOMES ettt te et e ekt s ekt a e k£ oAbt eh e e bt SR £ bt R e e R e R £ e eRe R e e eEe e R e e eEe e Rt e b e enbenbeenbe bt e b e nne e 365

SEttiNG UP @ NAME SEIVETciuiiiitiiieitiieie ettt sttt be st 365

PaSSIVE DINS USAGE ... euveueeeeuieiieteeie ettt sttt sttt st sttt e et e bbbt b b e 366

Name server on a standalone SYSLEIMccoeiiiiriiiinere e 366

Name server on an end-USer NEIWOIKccoceieiiiiienene e 368
THE SOA TECOIT ...ttt ettt ettt ettt et e b e e b e b e e s et e e st e nbe e b e nae e e 368
THE A TECOTUS ..tttk ettt b ettt bt e e b e et e sb e e s b e b e e st e nbeenbenne e 369
THE NS FECOITS ...ttt ettt ettt ettt ettt st b et et e e e sbe e st e nbe e st e nae e 370
INTCKNAIMES ...ttt ettt bbbt e bt e e sb e e b e nbesnnesaeennas 370
THE MIX FECOTTS ..tttk ettt ettt ettt ettt be et st e b e e e e b e e s et e e s e st e enbenaeenes 370
THE HINFO FECOIUS ... veeutetieitestieste st ettt et sttt ettt e et e e e b e e s be b e e st e sbe e b e nae e 371
PULLING it A1 LOGELNET 1.viiuveeiiie ettt e re e e e 371

REVEISE TOOKUP ... e 372
The distant view: the outSide WOITdocceiiiiiiiiiereee e 373
The NAMEd.CONT FIlEviiiiiiiie e 373

SIAVE NAME SEIVETS ...ttt sttt ettt ettt ettt besee b et e e et eneeseeneaneereerees 376

The next level down: delegating ZONEScccceoiririeiiieie e 377
(o011 F: Mo T o] 0o o TSP 377
example.org With delegationcveiueeiii i 378

MesSages from NAMED..........coeiiiiiiie e 379

Upgrading a Version 4 configurationoccouveineininnensiececeeeeeeseeess 380

Looking up DNS infOrMAatioNcovoeiiiiiiiieec e 381

Checking DINS fOr COMECINESS.cuiveiriiirieisieiee e 382

DINS SECUFTLY ...ttt bbbttt 383

Xvi Table of Contents

22: Firewalls, IP aliasing and proxies ..., 385
Security and fIreWallScoo o 386
IDFW: defiNiNG ACCESS TUIES....viivieiiieiiie ettt sre e e e 386
22110 TR P UV PPPRTRTI 388
WWIING TUIBS ..ttt e b s e st e e nsb e e nbeesnbeenbne e 388
CoNFIGUIALION FIIES . .viiuvieiii ettt beesree b s 389
LIS 0L T LoV USSP 393
| 11T][0 PO SR UPT TSP URURURRTN 393
IP @liaSing SOTIWAIE .vvevveeiieiiiiesiee sttt ettt sba e e e e raeenaeenees 394
4T [PO STO P URRTR 395
PIOXY SBIVEIS ...ttt ettt bbbt et b et bt e b e et ieesbenneen 396
INSEAIIING SQUIAeeeiieieieiie ettt sae 397
R 4L To o[V T OSSP TRRR 398
Browser proxXy CONFIQUIALION.cuiiiiiiiiie e 399
Setting proxy information for Pccvvee i 399
23: Network debugging ... 401
How to approach network problems ... 401
Link 1ayer ProbIEMSoouoiiiiee s 402
NEetwork 1ayer ProbIEMScviiii e 406
ETACEIOULE ... ettt bbbttt e b e s e e bt e s b e b e e b e nne e 407
HIQGN PACKEE 10SS ...vvviiviiiee ittt sttt ettt e e st e e b e e teesnteenree e 410
ECPAUMIP bbb bbb e bttt b et ene 411
PACKEL 10SS TEVISITEM. .. viiuveeiiriiiiesiie sttt sbe et eaaeenree e 412
Transport and appliCAtioN TAYEFScoveiiiiiiiieere e 414
ELNEIEAL ... 414
24: Basic network access: clients.........ccccoocooecivecn, 417
The WOrld Wide WEDc.ooiiece e 418
WVED DFOWSEIS ...ttt ettt ettt 418
1] PSPPSRSO 419
ACCESS WIthOUL @ PASSWOIT ...t 420
Creating and distriDULING KEYS.....uovviiiieiiiiiie ittt 421
Authenticating aUtOMALICAILYevveiirieiiieiee e 422
SEttiNG UP X 10 USE SSN.uiiuviiiiiiiitie sttt sttt nae e s 423
SSN EUNNEIS ... 424
TUNNEIING Xttt ittt bbbt e b e b b e e be e sab e e beesnbeeees 425
Other USES OF TUNNELS ..vvvviiiiiesiie sttt be e b b s 425
CONFIGUIING SSN 1.ttt sttt e e e eneete et 425
SUMMArY OF fileS IN 7/.SSN uei it 428

Troubleshooting SSh CONNECLIONSccccveiiiiiicicese e 428

The Complete FreeBSD Xvii

TBINMEE. e 430
SECUIE TEINMEL ...ttt b et b e bt e e bt st e st e e b e e b e e sb et e enbesae e 431
Using telnet fOr Other SEIVICESciuuiiiiieiiecie e te e 431

COPYING TIES ...ttt 432

o) o I OO U RO ORI 432

LT 0TRSO USTURPRPRN 433
Specifying file NAMES 85 URISviiiiiiiiiiiiiieei e e s 434
Other ftP COMMEANGSooviiiiieiie e 434
L0101 ST TSP PP U R PPRPPRPOPPN 435
[S140] 101 T TP TP PP R OP R PPN 435
o= ST T U TP PPTPPR PR PPPRPRROTIT 436
VL] T TP P PP P R OPRR PR 436

ST ettt 437

TSYIIC ettt bbb e 437
Copying direCtory NIETArChISecieeiiie ittt 438

USING AN FSYNC SEIVET ...iviteiiitesieteeete ettt et se et se ettt b e bbbttt es et st 440

The Network File SYSTEM.........ccoiiiiiieeie e 441

NS CHENL. ...t bbbttt 442
Mounting remote file SYSIEMScc.eiiiiiiii i 442
Where to mount NFS file SYSIEMSccviiiiiiiieiie it 444
Mounting NFS file systems automaticallycccoiiiiiieriiiiieiieee e 445

NFS SEANGENESSES. ...ttt 445
INO JEVICES ...ttt ettt ettt ettt b et e e bt e sbe e e b e e s beeeabeesbeeenreenneean 445
JUSE ONE FilE SYSTEIM....eiutiiiiiet ettt 446

25: Basic network access: Servers.........o.. 447

RUNNING SErvers from iNEtd...........cooiiiiiiiii e 448

ConfIGUIING FIPA ... 450
E YT 101 3 To TV L 11 o ISP 450
Restricting access and 10ggINGecvveivreieeeiieiieeee e ssieesee e see e s e sbe e e ereesnee e 452

RUNNING SSNA ...ttt ene e 453

£/ 101 USROS 454

Setting UP @ WED SEIVET ..o e 455
CONFIGUIING APACHE. .. uveevet it ettt stie ettt e s e e be e ste et e e beenraesnaes 455
The configUIation fille.........ioiiiiiei e 456
PEEPA.CONT L.t e e 456
VITTUAL ROSES. ...ttt n e nne e 457
LOG file FOMMAL ...t 459
AACCESS CONEIOL... ittt ettt b et e b e b e et e e sar e e nbeesnneennee e 460
APACNE MOUUIES......c.evieiiiiiieiee ettt e e sreenneean 462
PrOXY WED SEIVETS ...ttt ittt ettt ettt sttt e et e neesneean 462
(0 (o131 3o H T TSP PP U R OPRR PP 462
RUNNING @PACHE.ee ettt re e 462

N =] V=] TP 463

Xviii Table of Contents

JEECTEXPOIES vttt eteeete ettt e et s e e e et e b e e s tb e et e e esae e beessbeebeessbe e beennbeenbeeenbeenree e 463
SAMDIA bbbttt r e re e 464
Installing the SAMDA SOFtWAIEeeierieiieiie st 465
smbd and nmbd: the Samba daemMONSceeiiiiiienie i 466
The configuration fille..........cooiiiiiiii e 466
SELEING PASSWOTTS ...ttt sttt etee sttt sttt ettt sb e st sb e s bt et e s n e et e snreenneeanneas 469
Testing the INStAlIATIONooiiiiiii e 469
Displaying Samba SEALUScccveeiiiiiieiie et 470
26: Electronic mail: clients ... 471
ML FOMMALS ...t ere e 471
MaIT USEE BOENTSeeeieeieete et ettt be e 472
11T UL TP PSP U PPV UR PP 472
OTNEI IMUAS ...ttt b ettt b et e et et e b e b e e nbeesb et e enbeeneenee 473
Files, TOlders Or dir@CLOMES?coviircriieiieee s 473
1 TU L TP T RO U TRV UR PR 474
Creating 8 NEW MESSAGEverververtereereeieeereeseesesseateetesiestesbesbeseessesseseessesseseesesnessessees 477
REPIYING 10 8 MESSAGE -...veveeeeeiieieeieetie ettt ettt b e 478
USING TOIUBIS ...t ettt 480
DEIETING MESSAGES ... euvereeeeieetieieeie ettt ettt sttt bbb se et et ebe e b e beene b et e 481
TAPGING MESSATES .. veveterteteseeseeteseeseeseeseeseateabesbesbesbesbesbesaesbeeeseensaneeseeneeneatessesnens 481
COoNFIGUIING MULE ...ttt b e 481
COlOUS TN MU 1.ttt ettt e e bt e b e e b e e s et e enbesne e 483
MIT BHHASES. ...ttt bbb bbbttt et sne b e 484
MaIT NEAAETS ...ttt 484
How to send and reply t0 MAiloiviiiieeiiie i 487
USiNg MIME attaChMENTScvveiuieiiieieesiieseese e s s ste e te e siee e staesae e teesreesnee e 489
27: Electronic mail: Servers ..., 491
How mail gets deliVEIed..........coviiiiiiicice s 492
IMITA FIES ettt b bbb sne e sne e 492
WHO gEtS the MAII?veeiiiiiiieie et nree e 493
POSTFIX .t 493
CONFIGUIING POSHIX . 1vevveerre ittt beenaeesnre s 494
HOSt and dOMAIN NAMESoivieiiiieieie ettt sr s sr e e e 495
REIQYING MAILL . .tviittiiiirieiee s e e ste e sb e steesbeenree e 496
ALIASES TEVISIEE ...ttt sttt ettt e ettt st nbennee 496
REJECLING SPAIM ... ettt sne b 498
Rejecting KNOWn SPam dOMAINSvveiveeiuieiiesiee e ssieesiee e e seesveesieesneessnesseessneans 500
Rejecting sites Without reVErse I00KUPDecvieiviiiieeiieiiiee et siee e see e e sre e ans 501
REJECHING TISIEA SITES ..vvveuveevriiiie st sttt ettt e et esbe e teesreesree e 501

RecogNizZing SPOOTEA MESSAYES ..vevvrirvreieeeiiesireeieesireaieesieesnbeesieesbeesteesbeesreeeseesreeans 501

The Complete FreeBSD XiX

Sender reStriCtionS: SUMMATYccvieieerireesiiesteesteesbeeseesbeesreesaeesteesteesseessseesseesnseas 501
Running postfiX at DOOt tIME ..o 502
TalKing t0 the MTA ..ot e et e b e e raeenaeenees 502
Downloading mail from YOUr ISPccoiiiiiiiniie s 503
POP: the Post OffiCe ProtOCOIccuiiiiriiiiiiieiie et 504
POPPEL: the SEIVET ...ttt ettt esne e as 504
fetchmail: the CHENEeoiiiieee e 504
Mailing liStS: MaJOrdOMOcviveiiiieiirieise et 505
28: XFree86 in depth ..., 507
X configuration: the thEOIY ..o 507
HOW TVS and MONITOIS WOTKcuieuiiieieiesieesie sttt 508
How monitors differ from TVScoeiiiiiieeie et 510
HOW t0 Fry YOUT MONITOT ..eiuvviiiieiiieiiiesieesie s e ete e e te et siaesbe e st esae e s teesnneesrae e 510
The CRT CONIOIIET......eeeeiitiee ettt bttt sae e 511
The XF86CONTIG MOUE lINE ...vveiviiiiieiie e 513
DG 3151070 o1 o TS UOTUSUSURURPRPRN 516
LI R R 1Yo 1V | S USSP 517
ThE FIlES SEBCHION ...ttt ettt sttt sttt b et e e st e e b nae e 517
The SErverFlags SECHIONiiiuiiieiiie sttt sttt esae e e 518
The MOAUIE SECLION ...ttt sttt sb e sae e 518
The INPUEDEVICE SECHION.....viivieiiieiitie sttt sttt e e e et e e sraesnbeesees 519
ThE MONILOT SECLIONveeeeitieiie et ettt ettt sttt ettt esbe s sb e e b sae s 519
THE DEVICE SECLIOMNvieeiitieiie sttt ettt ettt sttt st et e e e b e e b et e et enbe e b e nae e 520
THE SCIEEN SECHIONuvieeiiitieiie ettt ettt ettt sttt st e b e b e e b e e s et e e b e nae e 521
Multiple MONITOrs aNd SEIVELS.........c.viiiieieie ettt 523
MURIPIE SEIVETS ..vviiivieiee sttt e sttt ettt ettt esbe e et e e ste e snbeesteeenteenree e 523
XN TNE NEIWOIK ..o 524
Multiple monitors across MUILIPIE SEIVEISiiiviiiveeiieiriee sttt esee s see e sre e 525
(0] o] 1T 1 GRS 525
29: Starting and stopping the system 527
SEArting the SYSTEIMo.iiiiiie et 528
Things you can do before BOOtING.........cooveiiiiiiii e 529
What are you going t0 BOOL?c..ooviiiiiiiiiiiie s 529
LOAAET COMMANGS ...ttt ettt ettt sttt sttt sbe e bbb nn e sreeneas 530
J0ATET.CONT ...ttt bbbttt b e sb bt bt nn e ere s 532
Loading other modules at DOOt tIMEueeivieiiviiiee i 532
AUOMALIC KIA 108G ...t 533
RUNNING the KEIMEL ... e 533
SINGIE-USEI MOUE......ccteieiitiite ittt bbbttt b et 540

Password protecting Single-USEr MOTEcuveiviiiueeiieiiee e siie e e e see e e sreesree e 541

XX Table of Contents
Shutting down and rebooting the SYStEM ... 541
FreeBSD WIthOUL diSKSccooiiiiiiiiie e 542
NETWOIK DOOTING. ...ttt 543

Setting UP the file SYSIEMS ...iuviecieeiiieiie st e e anre s 544
BUilding a disKIESS KEIMEL.......cveeiieiiiecieci et ereesrae e 544
CONFIGUIING TFTP ..ottt bbbttt e n e b enneennne s 544
ConfIGUIING DHCPeiiiiiiieeiee et r e sr e sne e s 545
Other Ethernet DOOTSIIaDSccoueririeiieiie ettt 546
Configuring the MACKINEceiiiiiieiie e e 547
Sharing system files between multiple Machings...........cccccoviieniinieniie e 548
DISK SUDSTITULES ...vviiivveciec ittt ctee ettt et ebe e s b e ebe e s abe e sbeesnbeesbeesnneesaeeans 549
30: FreeBSD configuration files...........ccoininns 551
JEECITC.CONT ...ttt ere e 552
OUI JBEC/IC.CONT .ttt et e st et e e s beesbeesnbe s 565
Files yOU NEEA 10 ChANGEcuieiieie e 566
JEECTEXPOIES vttt ete ettt sttt et s e e e ettt e st e e e e sba e e be e s sb e et e e snb e e beennbe e s beesnreenree e 566
(o7 Y o SRR PPPSTRPI 566
JL1 (o7 Lo o TV« I SRS PUPSTRPI 568
Jetc/namedb/NAamMEd.CONTciiiiiie et 568
JL1 (o7 UL SRS PPPSTRPI 568
EECIMASTEL.PASSW 1. vveeve sttt ettt e et a e et e s et et e e sreenrae e 568
Files you might need t0 Change..........couiiiiiiiiiiiie e 568
LI (o [o] o SRR PPPSTRPI 569
Jetc/csh.cshre, fetc/csh.login, /etc/CSh.IOgOULvvevviiieeiie e 569
JEtCIANCHENT.CONT...ee et e be e e 569
JEECTAISKEAD ..vvvveiiie sttt st e b e s e et e e nrb e e beesreenrae e 569
JEECIFIPUSETS 1ttt etee et et este et e et s e et e e et st e et e e eba e e be e s bb e e b e e snb e e beennbeesbeasnbeenree e 569
(o[0T £ PUURPPPSTRPI 569

J (o0 =T [0 SR PPP SRR 570
J1 (o0 TS S [oo RS PUPSTRPI 570
JEECIINEL.CONT ...t e e et esrbe e teesreentee e 570
JEECTIOGIN.ACCESS 1. vvevveesvreisteesteeesttestaeesbeestbeateesteeebeessae e beessaeebeessbeenteessaeesteesnseenneean 570
JL (o7 (oo 13 o | SR PUPSTRPI 570
10710 (o [SR PUPSTRPI 572
JEECINEWSYSIOQ. CONT ..ottt e ssre e steesreenree e 572
JEECINSSWILCR. CONT ..t e beenree e 572
JEEC/PCCArAU.CONT ...t sr e 572
JEECIPEIIOTIC.CONT. ...ttt sb e sr e nne e 572
JEECIPIINECAD ..ttt ettt ettt b e b bt b e s e bt e b e e san e e nbeesnreenneean 573
JEECIPIOTIIE .t 573
JEECITCIITEWANL ... 573
JEECITESOIV.CONT ...ttt s r e nne e 573

JEECISYSIOQLCONT ...ttt 573

The Complete FreeBSD XXi

LU 1Y PSS PPPSTRPI 573
TDOOL/BVICENINES ...ttt sbe e 574
Files you should NOt Change.........ccooiiiiiiii e 576
(o[0T 1Y Lo SR PUPSTRPR 576
etC/MaNPAtN.CONTIG «..veeiii i 576
JEECINELCONTIQ ..ttt 576
JEECINEEWOTKS ...ttt bttt et e b e s b e et e e seb e sbeesnneenneean 576
JEECIPASSWE ...ttt sttt b e e b et nb e e sr e nne e 576
JEECIPIOLOCOIS ...ttt bttt e b e st e e sreenne e 577
JEECIPWE.AD ..t r e nre e 577
JEECITC 1ttt sttt b e et b e b e sreenreen 577
JEECITCABBB. ..ttt bbbt b e ar e nneean 577
Jetc/re.network and /etC/rC.NEtWOTKGcovvieiueeriiieiiesie e 577
JEECITC.PCCANT ...ttt ettt b e st e st e e san e e sbeesnneenneean 577
JEECITC.SEIIAL ...ttt ettt e e r e nne e 577
JEECISNEIIS .. r e 577
JEECISEIVICES ...ttt ettt ettt b e b e st b e e bt et e e ser e e nbeesnneenneean 577
JEECISPWIO.OD. ...ttt ettt r e r e nne e 578
JEECTEEIIMCAD .ttt ettt ettt b bbbt bt s hb e e b e e sh bt e beesnb e e sbeeanneenneen 578
JEECIPEIIOTIC ..ttt et nb e r e nne e 578
Obsolete configuration files............ooriiiiiii e 578
JEECTNOSE.CONT ...ttt st sr e 579
E1C/NAMEA.DO0T et e 579
JEECINELSTAIT ...ttt bttt b e sttt et e e eneenneen 579
JEECISYSCONTIG ...ttt ettt et et e e reenreean 579
31: Keeping Up to date........ccooooovierieeeees 581
FreeBSD releases and CVS.......o e 581
SYMDBDOLIC NAMES OF TAYS +.vvveivvieteesiriesiee st e sieesreeste e s beesbeessb e e sbeesbeesbeesbeesbeessbeesreesnbeas 582
FrEEBSD FEIEASES ...ttt 582
FreeBSD-RELEASEot 582
FIre@BSD-STABLEcoiiiiiiiei e a e e 583
SECUNLY FIX TRIBASES 1..vveeuvriiureestee sttt e steeste et e e et e e et e e e st e e b e e te e ssteesbe e e beenneesnbeas 583
FreeBSD-CURRENT ...t a e 583
Getting updates from the Nt ..o 584
(OA 11 T TP TP PP R PP PR PRPOPRO 585
WHICH CV/SUP SEIVEI?.c...iiiiiieitieiti ettt ettt ettt sttt e nar e sbeesneenneean 587
RUNNING CVSUP ..ttt ettt ettt ettt sttt e sb e e san e e s beeenneenneean 587
Getting INIVIAUAL FEIEASESccveiririiiieiiie et 587
Creating the SOUICE TFR.........ciieirieire et 588
REIBASE TAYS -+ vveeureetreetee sttt ettt s ettt et e b he et b e e bt e e reenneean 588
UPdating an XiStING trBE.......iivieiiiiiie sttt ettt neesne e 591

USING @ FEMOLE CV/S BB ... uviiueieitiiitee st ettt sttt ettt ettt be e neesneean 591

XXii Table of Contents

32: Updating the system software ..., 593
Upgrading kernel and USerland ... 595
Upgrading the Kernel..... ... e 597
Upgrading the DOOL fIlEScviiiiii e 598
Upgrading the configuration fileS...........ccoiiiiiiiiii e 599

Merging the PaSSWOId filEcvveiieiiieiee e 600
MEIGING JEEC/GIOUPD ...ttt ettt sbe b s 602
Mergemaster, SeCONd tiMe arOUNG.ccovieiiiireiere e 603

33: Custom Kernels ... 607
BUIlAINg @ NEW KEINEL ..o 608
Configuring /O UEVICESvvcvveiiceiecie ettt sre s 608
The Kernel BUild dir€CONYcoviieiieecr e 609
The configuration file ..o 610

NAMING the KEIMEL ...e.vviiiieiiie ettt reesbee e 611
LG L= I 0 110 T PP PRSPPI 612
MUIIPIE PrOCESSOTS 1. vvviiuveeitieiiie st et e site sttt e sbe et e s beesbee s beesbeessbeesbeessbeenteesnteenreean 613
(DL o 0ol o] o £ 31 PRSP OPRRPTI 614
Preparing fOr UPGrades ..o 616
Building and installing the new kernel............ccocooiiniii 616
REDOOTING ...ttt reenrrean 618
MaKING dEVICE NOUES.......ccuiieeiieiieeeee ettt 619
Kernel 10adable MOdUIES...........coiiiiii s 619
SYSCEL bbb e bttt he et ene 620
Living with FreeBSD-CURRENTccoiviiiiieiiee st 621
Build kernels with debug SYMBOIS.........ccuviiuiiiiiiiiieiie e 621
Solving problems in FreeBSD-CURRENTccccuvitiiiiieiiesiiesieesieesinesieessesssesssessnnes 621
Analyzing kernel crash dumps ..o 622
Climbing through the StACK.cuiiviiiie it 624
Finding out what really happenedcccviiiiiiiiiiniie e 625

A: Bibliography ..., 627
BOOKS ON BSD ...ttt bbbttt 627
USEIS” QUIABS ...viuveieiiieiesiet et ee e te e e testeste e s re st et st st et et et et ese e e eneeneeseeneenesrenreens 628
AdMINIStrators” QUIAEScoveiviiieieiieieceees st sre e 628
Programmers” QUILEScoveveieeeiereeese e stes e e te e st srestesae s e esae e e e eseesessesnssressenns 629
HArdware FefErENCEc.evieiiece bbb 629
The 4.4BSD MANUAIScoviviieieiee ettt s 630

Getting FreeBSD 0N CD-ROM ..ottt 630

The Complete FreeBSD xXiii

B: The evolution of FreeBSD..........ccccoooooiiicic, 633
FreeBSD REEASES 1 ANU 2......cveevee ettt sttt e ree e 633
FreeBSD REIGASE 3ccviiveeee ettt sttt st be et et sbs e e saeeneesaeenesreen 633
THE CAM SCSI AIVESc.viiveeieeiee ettt ettt et sas e e sbe e sbesreesbesseesbeens 634
Kernel 10adable MOAUIES...........oooiiiiiccee ettt et e re b 635
The ELF ObJECE FOIMAEL ..ot 635

What happened t0 MY [IDrariES?......uiui et see e seeene e 636
FreEBSD VEISION 4......coeeeecteeeeeetee ettt ettt sttt et e are e beeenneebeean 638
NO MOreblOCK AEVICES........oeeeeeeetee et bee e 640
New ATA (IDE) diSK AIVETcoviiiieiieieesiees e 641
NEW CONSOIE IV ...ttt ettt ettt et be e ebe e sabe e sbeeeareesbeeenreebeean 641
FreeBSD REIEASEDc.vicveecee ettt sttt et et s sae e e saeeeesrean 641

Foreword

I have been a long time developer of the Berkeley Software Distributions (BSD). My
involvement started in 1976, at the University of California at Berkeley. | got drawn in as
an office-mate of Bill Joy, who single-handedly wrote the code for BSD and then started
handling its release. Bill went on to run the Computer Systems Research Group (CSRG)
which developed and released the first fully complete BSD distributions. After Bill’s
departure to become a founder of Sun Microsystems, | eventually rose to head the CSRG
and oversee the release of the freely redistributable 4.4BSD-Lite. The 4.4BSD-Lite
distribution forms the basis for all the freely distributable variants of BSD today as well
as providing many of the utilities found in Linux and commercial UNIX distributions.

With the release of 4.4BSD-Lite, the University of California at Berkeley ceased further
BSD development. After considering the strengths and weaknesses of different BSD
development groups, | decided to do my continued development in FreeBSD because it
had the largest user community. For the past ten years, therefore, | have been a member of
the FreeBSD developer team.

I have always felt that it is important to use your own product. For this reason, | have
always run BSD everywhere: on my workstation, on my Web/file/mail/backup server, on
my laptop, and on my firewall. By necessity, | have to find tools to do my job that will run
on my BSD systems. It may be easier to just run Windows and PowerPoint to do your
presentations, but there are an ever increasing number of fine alternatives out there that
run on FreeBSD such as the open source OpenOffice.org suite or MagicPoint.

In the old days, there were not very many people working on the BSD software. This
constraint on BSD development made it easy to keep up with what BSD could do and
how to manage your system. But the last decade has seen an exponential growth in the
open source movement. The result has been a huge increase in the number of people
working on FreeBSD and an even larger increase in the number of applications and tools
that have been ported to run on FreeBSD. It has become a more than full time job just to
keep track of all the system capabilities, let alone to figure out how to use them all.

Greg Lehey has done a wonderful job with this book of helping those of us that want to
fully utilize the FreeBSD system to do so without having to devote our entire lives

XXV

XXVi Foreword

figuring how. He has gone through and figured out each of the different tasks that you
might ask your system to do. He has identified the software that you need to do the task.
He explains how to configure it for your operational needs. He tells you how to monitor
the resulting subsystem to make sure it is working as desired. And, he helps you to
identify and fix problems that arise.

The book starts with the basics of getting the FreeBSD system up and running on your
hardware, including laptops, workstations, and servers. It then explains how to customize
an installation for your personal needs. This personalization includes downloading and
operating the most important of the more than 8000 software packages in the FreeBSD
ports collection. The book also includes a very comprehensive set of systems
administration information, including the setup and operation of printers, local and
external networking, the domain name system, the NFS and Samba remote filesystems,
electronic mail, web surfing and hosting, and dial-up for FAX, remote login, and point-to-
point network connections.

In short, this book provides everything you need to know about the FreeBSD system from
the day you first pick up the software through the day you have a full suite of machines.
It covers your complete range of computing needs. There is a reason that this book is so
popular: as its title says, it is The Complete FreeBSD. | am very happy to see this revision
which once again fulfills that mandate.

Marshall Kirk McKusick
Berkeley, California
February 2003

In this chapter:

e The fourth edition

e Conventions used in
this book

e Acknowledgments

e How this book was
written

Preface

FreeBSD is a high-performance operating system derived from the Berkeley Software
Didtribution (BSD), the version of UNIX developed at the University of California at
Berkeley between 1975 and 1993. FreeBSD is not a UNIX clone. Historically and
technically, it has greater rights than UNIX System V to be called UNIX. Legally, it may
not be called UNIX, since UNIX is now a registered trade mark of The Open Group.

This book is intended to help you get FreeBSD up and running on your system and to
familiarize you with it. It can’t do everything, but plenty of UNIX books and online
documentation are available, and a large proportion of them are directly applicable to
FreeBSD. In the course of the text, I’ll repeatedly point you to other documentation.

I’m not expecting you to be a guru, but | do expect you to understand the basics of using
UNIX. If you’ve come from a Microsoft background, I’ll try to make the transition a
little less rocky.

The fourth edition

This book has already had quite a history. Depending on the way you count, this is the
fourth or fifth edition of The Complete FreeBSD: the first edition of the book was called
Installing and Running FreeBSD, and was published in March 1996. The next edition
was called “The Complete FreeBSD”, first edition. The first three editions were
published by Walnut Creek CDROM, which ceased publishing activities in 2000. This is
the first edition to be published by O’Reilly and Associates.

During this time, FreeBSD has changed continually, and it’s difficult for a book to keep
up with the change. This doesn’t mean that FreeBSD has changed beyond recognition,
but people have done a great job of working away those little rough edges that make the
difference between a usable operating system and one that is a pleasure to use. If you
come to FreeBSD from System V, you’ll certainly notice the difference.

During the lifetimes of the previous editions of this book, | realised that much of the text
becomes obsolete very quickly. For example, in the first edition | went to a lot of trouble

XXVii

XXViii Preface

to tell people how to install from an ATAPI CD-ROM, since at the time the support was a
little wobbly. Almost before the book was released, the FreeBSD team improved the
support and rolled it into the base release. The result? Lots of mail messages to the
FreeBSD quest i ons mailing list saying, “Where can | get ATAPI.FLP?”. Even the
frequently posted errata list didn’t help much.

This kind of occurrence brings home the difference in time scale between software
releases and book publication. FreeBSD CD-ROMs are released several times a year. A
new edition of a book every year is considered very frequent, but it obviously can’t hope
to keep up with the software release cycle. As a result, this book contains less time-
sensitive material than previous editions. For example, the chapter on building kernels no
longer contains an in-depth discussion of the kernel build parameters. They change too
frequently, and the descriptions, though correct at the time of printing, would just be
confusing. Instead, the chapter now explains where to find the up-to-date information.

Another thing that we discovered was that the book was too big. The second edition
contained 1,100 pages of man pages, the FreeBSD manual pages that are also installed
online on the system. These printed pages were easier to read, but they had two
disadvantages: firstly they were slightly out of date compared to the online version, and
secondly they weighed about 1 kilogram (2.2 Ibs). The book was just plain unwieldy, and
some people reported that they had physically torn out the man pages from the book to
make it more manageable. As a result, the third edition had only the most necessary man
pages.

Times have changed since then. At the time, The Complete FreeBSD was the only
English-language book on FreeBSD. Now there are several—see Appendix A,
Bibliography, for more detail. In particular, the FreeBSD online handbook is available
both in printed form and online at http://www.freebsd.org/handbook/index.html, so | have
left much of the more time-sensitive issues out of this book. See the online handbook
instead. Alternatively, you can print out the man pages yourself—see page 15 for details.

It’s very difficult to find a good sequence for presenting that material in this book. In
many cases, there is a chicken and egg problem: what do you need to know first?
Depending on what you need to do, you need to get information in different sequences.
I’ve spent a lot of time trying to present the material in the best possible sequence, but
inevitably you’re going to find that you’ll have to jump through one of the myriad page
cross references.

Conventions used in this book

In this book, | use bold for the names of keys on the keyboard. We’ll see more about this
in the next section.

I use italic for the names of UNIX utilities, directories, file names and URIs (Uniform
Resource Identifier, the file naming technology of the World Wide Web), and to
emphasize new terms and concepts when they are first introduced. | also use this font for
comments in the examples.

Conventions used in this book XXIX

| use constant w dth in examples to show the contents of files, the output from
commands, program variables, actual values of keywords, for mail 1Ds, for the names of
Internet News newsgroups, and in the text to represent commands.

| use constant width italic in examples to show variables for which context-
specific substitutions should be made. For example, the variable fi | enane would be
replaced by an actual file name.

| use constant w dth bol d in examples to show commands or text that would be
typed in literally by the user.

In this book, |1 recommend the use of the Bourne shell or one of its descendents (sh, bash,
pdksh, ksh or zsh). sh is in the base system, and the rest are all in the Ports Collection,
which we’ll look at in chapter 9. | personally use the bash shell. This is a personal
preference, and a recommendation, but it’s not the standard shell: the traditional BSD
shell is the C shell (csh), which FreeBSD has replaced with a fuller-featured descendent,
tcsh. In particular, the standard installation sets the r oot user up with a csh. See page
136 for details of how to change the shell.

In most examples, I’ll show the shell prompt as $, but it doesn’t normally matter which
shell you use. In some cases, however, it does:

e Sometimes you need to be super-user, the user who can do anything. If this is
necessary, | indicate it by using the prompt #.

e Sometimes the commands only work with the Bourne Shell and derivatives (zsh,
bash), and they won’t work with csh, tcsh and friends. In these cases I’ll show the
csh alternative with the standard csh prompt %

In the course of the text I’ll occasionally touch on a subject that is not of absolute importance, but
that may be of interest. I’ll print such notes in smaller text, like this.

Describing the keyboard

One of the big differences between UNIX and other operating systems concerns the way
they treat so-called “carriage control codes.”” When UNIX was written, the standard
interactive terminal was still the Teletype model KSR 35. This mechanical monstrosity
printed at 10 characters per second, and the carriage control characters really did cause
physical motion of the carriage. The two most important characters were Carriage
Return, which moved the carriage (which carried the print head) to the left margin, and
Line Feed, which turned the platen to advance the paper by the height of a line. To get to
the beginning of a new line, you needed to issue both control characters. We don’t have
platens or carriages any more, but the characters are still there, and in many systems,
including Microsoft, a line of text is terminated by a carriage return character and a line
feed character. UNIX only uses a “new line” character, which corresponds to the line
feed. This difference sometimes gives rise to confusion. We’ll look at it in more detail
on page 267.

XXX Preface

It’s surprising how many confusing terms exist to describe individual keys on the
keyboard. My favourite is the any key (“Press any key to continue”). We won’t
be using the any key in this book, but there are a number of other keys whose names need
understanding:

* The Enter or Return key. I’ll call this ENTER.

* Control characters (characters produced by holding down the Ctrl key and pressing a
normal keyboard key at the same time). I’ll show them as, for example, Ctrl-D in the
text, but these characters are frequently echoed on the screen as a caret (7) followed
by the character entered, so in the examples, you may see things like "D.

e The Alt key, which Emacs aficionados call a META key, works in the same way as
the Ctrl key, but it generates a different set of characters. These are sometimes
abbreviated by prefixing the character with a tilde (7) or the characters A-. |
personally like this method better, but to avoid confusion I’ll represent the character
generated by holding down the Alt key and pressing D as Alt-D.

e NL is the new line character. In ASCII, it is Ctrl-J, but UNIX systems generate it
when you press the ENTER key. UNIX also refers to this character as \n, a usage
which comes from the C programming language.

* CRis the carriage return character, in ASCII Ctrl-M. Most systems generate it with
the ENTER key. UNIX also refers to this character as \r—again, this comes from
the C programming language.

* HT is the ASCII horizontal tab character, Ctrl-1. Most systems generate it when the
TAB key is pressed. UNIX and C also refer to this character as \t.

Acknowledgments

This book is based on the work of many people, first and foremost the FreeBSD
documentation project. Years ago, | took significant parts from the FreeBSD handbook,
in particular Chapter 7, The tools of the trade. The FreeBSD handbook is supplied as
online documentation with the FreeBSD release—see page 12 for more information. It is
subject to the BSD documentation license, a variant of the BSD software license.

Redistribution and use in source (SGML DocBook) and ‘compiled’ forms (SGML,
HTML, PDF, PostScript, RTF and so forth) with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code (SGML DocBook) must retain the above copyright
notice, this list of conditions and the following disclaimer as the first lines of this
file unmodified.

2. Redistributions in compiled form (transformed to other DTDs, converted to PDF,
PostScript, RTF and other formats) must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

Acknowledgments XXXi

This documentation is provided by the FreeBSD Documentation Project “as is” and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are disclaimed. In no
event shall the FreeBSD Documentation Project be liable for any direct, indirect,
incidental, special, exemplary, or consequential damages (including, but not limited
to, procurement of substitute goods or services; loss of use, data, or profits; or
business interruption) however caused and on any theory of liability, whether in
contract, strict liability, or tort (including negligence or otherwise) arising in any way
out of the use of this documentation, even if advised of the possibility of such
damage.

Book reviewers

This book wouldn’t be the same without the help of a small group of dedicated critics
who tried out what | said and pointed out that it didn’t work. In particular, I’d like to
thank Jack Velte of Walnut Creek CDROM, who had the idea of this book in the first
place, Jordan Hubbard and Gary Palmer for tearing the structure and content apart
multiple times, and also Bob Bishop, Julian Elischer, Stefan Esser, John Fieber, Glen
Foster, Poul-Henning Kamp, Michael Smith, and Nate Williams for valuable contribu-
tions (““What, you expect new users to know that you have to shut down the machine
before powering it off?”’).! Finally, special thanks to Josef Méllers, Andreas Ritter, and
Jack \elte, who put early drafts of this book through its paces and actually installed
FreeBSD with their help.

The second edition had much more review than the first. A number of dedicated
reviewers held through for several months as | gradually cranked out usable copy. In
particular, special thanks to Annelise Anderson, Sue Blake, Jonathan M. Bresler, William
Bulley, Mike Cambria, Brian Clapper, Paul Coyne, Lee Crites, Jerry Dunham, Stefan
Esser, Patrick Gardella, Gianmarco Giovannelli, David Kelly, Andreas Klemm, Andrew
Maclntyre, Jonathan Michaels, Jorg Micheel, Marco Molteni, Charles Mott, Jay D.
Nelson, Daniel J. O’Connor, Andrew Perry, Kai Peters, Wes Peters, Mark Prior, Guido
van Rooij, Andrew Rutherford, Thomas Vickery and Don Wilde.

Many of the second edition reviewers came back for the third edition. In addition, thanks
to John Birrell for his help with the Alpha architecture, and Michael A. Endsley for
ferreting out bugs, some of which had been present since the days of Installing and
Running FreeBSD.

The following people helped with the fourth edition: Annelise Anderson, Jonathan
Arnold, Sue Blake, Doug Barton, Brian Clapper, Jerry Dunham, Matt Geddes, Jeremiah
Gowdy, Daniel B. Hemmerich, Justin Heath, Peter N. M. Hansteen, Paul A. Hoadley, Ed
Irvine, John Lind, Johannes Lochmann, Warner Losh, Yin Cheung ‘Yogesh’ Mar,
Andrew Maclintyre, Jonathan Michaels, Ove Ruben R. Olsen, Hiten Pandya, Linh Pham,
Daniel Phillips, Siegfried P Pietralla. Stephen J. Roznowski, Dan Shearer and Murray
Stokely.

In addition, my thanks to the people at O’Reilly and Associates, particularly Andy Oram,

1. See page 541 for details on how to shut down the system.

XXXii Preface

with whom | had discussed this project for years before he was finally able to persuade
O’Reilly that it was a good idea. Subsequently it was Andy who coordinated seeing this
rather unusual project through O’Reilly channels. Emma Colby designed the cover, and
David Futato provided specifications, advice, and examples for the format. Linley Dolby
proofread the document after | thought it was ready, and found tens of mistakes on nearly
every page, ensuring that the book is better than its predecessors.

Finally, thanks to David Lloyd for the loan of an ATA CD-R drive while writing the ATA
section of Chapter 13, Wkiting CD-Rs.

How this book was written

This book was written and typeset entirely with tools supplied as standard with the
FreeBSD system, including the Ports Collection. The text of this book was written with
the GNU Emacs editor, and it was formatted on 10 April 2003 with the GNU groff text
formatter, Version 1.18, and some heavily modified mm macros. The process was
performed under FreeBSD 5.0-CURRENT. Even the development versions of FreeBSD
are stable enough to perform heavy-duty work like professional text formatting.

The source files for this book are kept under RCS the Revision Control System (see the
man page rcs(1)). Here are the RCS Version I1Ds for the chapters of this particular book.

$ld: title.conplete, v 4.2 2003/ 04/09 19:43:58 grog Exp grog $
$ld: preface.nmv 4.19 2003/ 04/09 19: 26: 11 grog Exp $

$Id: introduction.nmv 4.22 2003/ 04/02 06: 36: 16 grog Exp $
$ld: concepts.mMmv 4.21 2003/ 04/ 02 06:37: 12 grog Exp $

$ld: quickinstall.mMmv 4.11 2003/ 04/09 19: 26: 40 grog Exp $
$ld: shareinstall.mMmv 4.12 2003/ 04/ 09 19: 26: 50 grog Exp $
$ld: install.mmv 4.21 2003/ 04/02 06:39: 30 grog Exp $

$ld: postinstall.mMmv 4.12 2003/ 04/ 02 06: 40: 31 grog Exp $
$Id: unixref.mMmv 4.16 2003/ 04/ 02 06:41:29 grog Exp $

$ld: uni xadm n. nmv 4. 13 2003/ 04/ 02 06:50: 29 grog Exp $

$ld: ports.nmv 4.12 2003/ 04/02 06: 43: 08 grog Exp $

$ld: filesys.nmv 4.17 2003/ 04/ 02 06:43:57 grog Exp $

$ld: disks.nmv 4.17 2003/ 04/02 06: 44: 17 grog Exp $

$ld: vinummmv 4.19 2003/ 04/ 09 19:56: 42 grog Exp $

$Id: burncd. nmv 4.13 2003/ 04/ 02 06: 46:59 grog Exp $

$ld: tapes.nmv 4.10 2003/ 04/02 06: 47:36 grog Exp $

$ld: printers.mmv 4.17 2003/ 04/ 02 06:48: 05 grog Exp $

$ld: netintro.mmv 4.16 2003/ 04/ 02 06: 48:55 grog Exp $

$ld: netsetup.mmv 4.18 2003/ 04/ 03 08:57: 41 grog Exp $

$ld: isp.nmv 4.10 2003/ 04/ 02 03:09:55 grog Exp $
$ld: nodens. rmv 4.10 2003/ 04/02 03: 11: 02 grog Exp $
$ld: ppp.Mmv 4. 14 2003/ 04/ 02 08:14:21 grog Exp $
$ld: dns.nmv 4.19 2003/ 04/ 02 08: 43:25 grog Exp $
$id: firewall.mMmv 4.12 2003/ 04/ 09 20: 40: 28 grog Exp
$l d: netdebug. mm v 4.17 2003/ 04/ 03 02: 04: 14 grog Exp
$ld: netclient.nmv 4.14 2003/ 04/ 03 02: 17: 18 grog Exp $
$ld: netserver.mmv 4.19 2003/ 04/ 09 20: 42: 40 grog Exp $
$ld: mua.nmv 4. 15 2003/ 04/ 03 02: 07: 47 grog Exp $

$ld: nmta.nmv 4.16 2003/ 04/ 03 01:18:20 grog Exp $

$ld: xtheory.nmv 4.13 2003/ 04/03 03:13:24 grog Exp $

How this book was written XXXiii

$ld:
$l d:
$ld:
$l d:
$ld:
$l d:
$ld:
$l d:

starting.mmv 4.21 2003/ 04/03 02: 35:05 grog Exp $
configfiles.mMv 4.18 2003/ 04/ 03 02: 42: 08 grog Exp $
current.mMmv 4.17 2003/ 04/09 19:28:00 grog Exp $
upgradi ng. Mmv 4.6 2003/ 04/ 03 01:51: 34 grog Exp grog $
bui | di ng. mmv 4. 17 2003/ 04/ 03 02: 48: 25 grog BExp $

bi blio.nmv 4.7 2003/ 04/ 02 04:56: 03 grog Exp $

evol ution.Mmv 4. 13 2003/ 04/ 02 04:59: 47 grog Exp $
tmac. Mh, v 1. 15 2003/ 04/ 09 19:56: 02 grog Exp $

In this chapter:

How to use this book
FreeBSD features
Licensing conditions
A little history

Other free UNIX-like
operating systems
FreeBSD system
documentation
Other documentation
on FreeBSD

The FreeBSD
community

Mailing lists

The Berkeley
daemon

Introduction

FreeBSD is a free operating system derived from AT&T’s UNIX operating system.! It

runs on the following platforms:

Computers based on the Intel i386 CPU architecture, including the 386, 486 and
Pentium families of processors, and compatible CPUs from AMD and Cyrix.

The Compag/Digital Alpha processor.
64 bit SPARC machines from Sun Microsystems.

In addition, significant development efforts are going towards porting FreeBSD to
other hardware, notably the Intel 64 bit architecture and the IBM/Motorola PowerPC

architecture.

This book describes the released versions of FreeBSD for Intel and Alpha processors.
Current support for SPARC 64 processors is changing too fast for it to be practical to give
details specific to this processor, but nearly everything in this book also applies to SPARC

64.

1. FreeBSD no longer contains any AT&T proprietary code, so it may be distributed freely. See page 7 for

more details.
introduction.mm,v v4.22 (2003/04/02 06:36:16)

1

The Complete FreeBSD 2

How to use this book

This book is intended for a number of different audiences. It attempts to present the
material without too many forward references. It contains the following parts:

1.

The first part, Chapters 1 to 6, tells you how to install FreeBSD and what to do if
things go wrong.

Chapters 7 to 15 introduce you to life with FreeBSD, including setting up optional
features and system administration.

Chapters 16 to 27 introduce you to FreeBSD’s rich network support.

Finally, Chapters 28 to 33 look at system administration topics that build on all the
preceding material.

In more detail, we’ll discuss the following subjects:

In the rest of this chapter, we’ll look at what FreeBSD is, what you need to run it, and
what resources are available, including FreeBSD’s features and history, how it
compares to other free UNIX-like operating systems, other sources of information
about FreeBSD, the world-wide FreeBSD community, and support for FreeBSD. In
addition, we’ll look at the BSD’s daemon emblem.

Chapter 2, Before you install, discusses the installation requirements and theoretical
background of installing FreeBSD.

Chapter 3, Quick Installation, presents a quick overview of the installation process.
If you’re reasonably experienced, this may be all you need to install FreeBSD.

In Chapter 4, Shared OS Installation, we’ll look at preparing to install FreeBSD on a
system that already contains another operating system.

In Chapter 5, Installing FreeBSD, we’ll walk through a typical installation in detail.

Chapter 6, Post-installation configuration, explains the configuration you need to do
after installation to get a complete functional system.

Chapter 7, The tools of the trade, presents a number of aspects of FreeBSD that are of
interest to newcomers (particularly from a Microsoft environment). We’ll look at
setting up a “desktop,” the concept of users and file naming. We’ll also consider the
basics of using the shell and editor, and how to shut down the machine.

Chapter 8, Taking control, goes into more detail about the specifics of working with
UNIX, such as processes, daemons, timekeeping and log files. We’ll also look at
features unique to FreeBSD, including multiple processor support, removable 1/O
devices and emulating other systems.

Chapter 9, The Ports Collection, describes the thousands of free software packages
that you can optionally install on a FreeBSD system.

introduction.mm,v v4.22 (2003/04/02 06:36:16)

Chapter 1: Introduction

Chapter 10, File systems and devices, contains information about the FreeBSD
directory structure and device names. You’ll find the section on device names
(starting on page 195) interesting even if you’re an experienced UNIX hacker.

Chapter 11, Disks, describes how to format and integrate hard disks, and how to
handle disk errors.

Managing disks can be a complicated affair. Chapter 12, The Vinum Volume
Manager, describes a way of managing disk storage.

In Chapter 13, Writing CD-Rs, we’ll look at how to use FreeBSD to write CD-Rs.

FreeBSD provides professional, reliable data backup services as part of the base
system. Don’t ever let yourself lose data because of inadequate backup provisions.
Read all about it in Chapter 14, Tapes, backups and floppy disks.

Chapter 15, Printers, describes the BSD spooling system and how to use it both on
local and networked systems.

Starting at Chapter 16, Networks and the Internet, we’ll look at the Internet and the
more important services.

Chapter 17, Configuring the local network, describes how to set up local networking.

Chapter 18, Connecting to the Internet, discusses the issues in selecting an Internet
Service Provider (ISP) and establishing a presence on the Internet.

Chapter 19, Serial communications, discusses serial hardware and the prerequisites
for PPP and SLIP communications.

In Chapter 20, Configuring PPP, we look at FreeBSD’s two PPP implementations
and what it takes to set them up.

In Chapter 21, The Domain Name Service, we’ll consider the use of names on the
Internet.

Security is an increasing problem on the Internet. In Chapter 22, Firewalls, IP
aliasing and proxies, we’ll look at some things we can do to improve it. We’ll also
look at IP aliasing, since it goes hand-in-hand with firewalls, and proxy servers.

Networks sometimes become notworks. In Chapter 23, Network debugging, we’ll
see what we can do to solve network problems.

Chapter 24, Basic network access: clients, describes the client viewpoint of network
access, including Web browsers, ssh, ftp, rsync and nfs clients for sharing file
systems between networked computers.

Network clients talk to network servers. We’ll look at the corresponding server
viewpoint in Chapter 25, Basic network access: servers.

Despite the World Wide Web, traditional two-way personal communication is still
very popular. We’ll look at how to use mail clients in Chapter 26, Electronic mail:
clients.

introduction.mm,v v4.22 (2003/04/02 06:36:16)

How to use this book 4

Mail servers are an important enough topic that there’s a separate Chapter 27,
Electronic mail: servers.

In Chapter 28, XFree86 in depth, we’ll look at the theory behind getting X11
working.

Chapter 29, Starting and stopping the system, describes how to start and stop a
FreeBSD system and all the things you can do to customize it.

In Chapter 30, FreeBSD configuration files, we’ll look at the more common
configuration files and what they should contain.

In Chapter 31, Keeping up to date, we’ll discuss how to ensure that your system is
always running the most appropriate version of FreeBSD.

FreeBSD keeps changing. We’ll look at some aspects of what that means to you in
Chapter 32, Updating the system software.

Chapter 33, Custom kernels, discusses optional kernel features.
Appendix A, Bibliography, suggests some books for further reading.

Appendix B, The evolution of FreeBSD, describes the changes that have taken place
in FreeBSD since it was introduced nearly ten years ago.

FreeBSD features

FreeBSD is derived from Berkeley UNIX, the flavour of UNIX developed by the
Computer Systems Research Group at the University of California at Berkeley and
previously released as the Berkeley Software Distribution (BSD) of UNIX.

UNIX is a registered trademark of the Open Group, so legally, FreeBSD may not be called UNIX.
The technical issues are different, of course; make up your own mind as to how much difference
this makes.

Like commercial UNIX, FreeBSD provides you with many advanced features, including:

FreeBSD uses preemptive multitasking with dynamic priority adjustment to ensure
smooth and fair sharing of the computer between applications and users.

FreeBSD is a multi-user system: many people can use a FreeBSD system
simultaneously for unrelated purposes. The system shares peripherals such as
printers and tape drives properly between all users on the system.

Don’t get this confused with the “multitasking” offered by some commercial
systems. FreeBSD is a true multi-user system that protects users from each other.

FreeBSD is secure. Its track record is borne out by the reports of the CERT, the
leading organization dealing with computer security. See http://www.cert.org/ for
more information. The FreeBSD project has a team of security officers concerned
with maintaining this lead.

introduction.mm,v v4.22 (2003/04/02 06:36:16)

5 Chapter 1: Introduction

e FreeBSD is reliable. It is used by ISPs around the world. FreeBSD systems regularly
go several years without rebooting. FreeBSD can fail, of course, but the main causes
of outages are power failures and catastrophic hardware failures.

* FreeBSD provides a complete TCP/IP networking implementation. This means that
your FreeBSD machine can interoperate easily with other systems and also act as an
enterprise server, providing vital functions such as NFS (remote file access) and
electronic mail services, or putting your organization on the Internet with WWW,
FTP, routing and firewall services. In addition, the Ports Collection includes software
for communicating with proprietary protocols.

* Memory protection ensures that neither applications nor users can interfere with each
other. If an application crashes, it cannot affect other running applications.

* FreeBSD includes the XFree86 implementation of the X11 graphical user interface.

e FreeBSD can run most programs built for versions of SCO UNIX and UnixWare,
Solaris, BSD/OS, NetBSD, 386BSD and Linux on the same hardware platform.

e The FreeBSD Ports Collection includes thousands of ready-to-run applications.

e Thousands of additional and easy-to-port applications are available on the Internet.
FreeBSD is source code compatible with most popular commercial UNIX systems
and thus most applications require few, if any, changes to compile. Most freely
available software was developed on BSD-like systems. As a result, FreeBSD is one
of the easiest platforms you can port to.

* Demand paged virtual memory (VM) and “merged VM/buffer cache” design
efficiently satisfies applications with large appetites for memory while still maintain-
ing interactive response to other users.

* The base system contains a full complement of C, C++ and FORTRAN development
tools. All commonly available programming languages, such as perl, python and
ruby, are available. Many additional languages for advanced research and develop-
ment are also available in the Ports Collection.

* FreeBSD provides the complete source code for the entire system, so you have the
greatest degree of control over your environment. The licensing terms are the freest
that you will find anywhere (“‘Hey, use it, don’t pretend you wrote it, don’t complain
to us if you have problems’). Those are just the licensing conditions, of course. As
we’ll see later in the chapter, there are plenty of people prepared to help if you run
into trouble.

* Extensive online documentation, including traditional man pages and a hypertext-
based online handbook.

FreeBSD is based on the 4.4BSD UNIX released by the Computer Systems Research
Group (CSRG) at the University of California at Berkeley. The FreeBSD Project has
spent many thousands of hours fine-tuning the system for maximum performance and
reliability. FreeBSD’s features, performance and reliability compare very favourably
with those of commercial operating systems.

introduction.mm,v v4.22 (2003/04/02 06:36:16)

FreeBSD features 6

Since the source code is available, you can easily customize it for special applications or
projects, in ways not generally possible with operating systems from commercial
vendors. You can easily start out small with an inexpensive 386 class PC and upgrade as
your needs grow. Here are a few of the applications in which people currently use
FreeBSD:

* Internet Services: the Internet grew up around Berkeley UNIX. The original TCP/IP
implementation, released in 1982, was based on 4.2BSD, and nearly every current
TCP/IP implementation has borrowed from it. FreeBSD is a descendent of this
implementation, which has been maintained and polished for decades. It is the most
mature and reliable TCP/IP available at any price. This makes it an ideal platform for
a variety of Internet services such as FTP servers, World Wide Web servers,
electronic mail servers, USENET news servers, DNS name servers and firewalls.
With the Samba suite, you can replace a Microsoft file server.

e Education: FreeBSD is an ideal way to learn about operating systems, computer
architecture and networking. A number of freely available CAD, mathematical and
graphic design packages also make it highly useful to those whose primary interest in
a computer is to get other work done.

* Research: FreeBSD is an excellent platform for research in operating systems as well
as other branches of computer science, since the source code for the entire system is
available. FreeBSD’s free availability also makes it possible for remote groups to
collaborate on ideas or shared development without having to worry about special
licensing agreements or limitations on what may be discussed in open forums.

e X Window workstation: FreeBSD makes an excellent choice for an inexpensive
graphical desktop solution. Unlike an X terminal, FreeBSD allows many applications
to be run locally, if desired, thus relieving the burden on a central server. FreeBSD
can even boot “diskless,” making individual workstations even cheaper and easier to
administer.

* Software Development: The basic FreeBSD system comes with a full complement of
development tools including the renowned GNU C/C++ compiler and debugger.

Licensing conditions

As the name suggests, FreeBSD is free. You don’t have to pay for the code, you can use
it on as many computers as you want, and you can give away copies to your friends.
There are some restrictions, however. Here’s the BSD license as used for all new
FreeBSD code:

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

introduction.mm,v v4.22 (2003/04/02 06:36:16)

7 Chapter 1: Introduction

2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

This software is provided by the FreeBSD project ““as is” and any express or implied
warranties, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose are disclaimed. In no event shall the FreeBSD
project or contributors be liable for any direct, indirect, incidental, special, exemplary,
or consequential damages (including, but not limited to, procurement of substitute
goods or services; loss of use, data, or profits; or business interruption) however
caused and on any theory of liability, whether in contract, strict liability, or tort
(including negligence or otherwise) arising in any way out of the use of this software,
even if advised of the possibility of such damage.

The last paragraph is traditionally written in ALL CAPS, for reasons which don’t seem to
have anything to do with the meaning. Older versions of the license also contained
additional clauses relating to advertising.

A little history

FreeBSD is a labour of love: big commercial companies produce operating systems and
charge lots of money for them; the FreeBSD project produces a professional-quality
operating system and gives it away. That’s not the only difference.

In 1981, when IBM introduced their Personal Computer, the microprocessor industry was
still in its infancy. They entrusted Microsoft to supply the operating system. Microsoft
already had their own version of UNIX, called XENIX, but the PC had a minimum of 16
kB and no disk. UNIX was not an appropriate match for this hardware. Microsoft went
looking for something simpler. The “operating system™ they chose was correspondingly
primitive: 86/DOS, a clone of Digital Research’s successful CP/M operating system,
written by Tim Paterson of Seattle Computer Products and originally called QDOS
(Quick and Dirty Operating System). At the time, it seemed just the thing: it ran fine
without a hard disk (in fact, the original PC didn’t have a hard disk, not even as an
option), and it didn’t use up too much memory. The only thing that they really had to do
was to change the name. IBM called its version PC-DOS, while Microsoft marketed its
version under the name MS-DOS.

By this time, a little further down the US West Coast, the Computer Systems Research
Group (CSRG) of the University of California at Berkeley had just modified AT&T’s
UNIX operating system to run on the new DEC VAX 11/780 machine, which sported
virtual memory, and had turned their attention to implementing some new protocols for
the ARPANET: the so-called Internet Protocols. The version of UNIX that they had
developed was now sufficiently different from AT&T’s system that it had been dubbed
Berkeley UNIX.

As time went on, both MS-DOS and UNIX evolved. Before long, MS-DOS was
modified to handle hard disks—not well, but it handled them, and for the PC users, it was

introduction.mm,v v4.22 (2003/04/02 06:36:16)

A little history 8

so much better than what they had before that they ignored the inefficiencies. After all,
the PC gave you your own hard disk on your desk, and you didn’t have to share it with all
the other people in the department. Microsoft even tried to emulate the UNIX directory
structure, but succeeded only in implementing the concept of nested directories. At
Berkeley, they were developing a higher performance disk subsystem, the Fast File
System, now known as the UNIX File System.

By the late 80s, it was evident that Microsoft no longer intended to substantially enhance
MS-DOS. New processors with support for multitasking and virtual memory had
replaced the old Intel 8088 processor of the IBM PC, but they still ran MS-DOS by
emulating the 8088 processor, which was now completely obsolete. The 640 kB memory
limit of the original PC, which once appeared bigger than anybody would ever need,
became a serious problem. In addition, people wanted to do more than one thing at a
time with their computers.

A solution to both problems was obvious: move to the 32 bit address mode of the new
Intel 80386 processor and introduce real multitasking, which operating systems on larger
machines had had for decades. Of course, these larger machines were only physically
larger. The average PC of 1990 had more memory, more disk and more processing power
than just about any of the large computers of the 70s. Nevertheless, Microsoft didn’t
solve these problems for its “Windows™ platform until much later, and the solutions still
leave a lot to be desired.

UNIX, on the other hand, was a relatively mature operating system at the time when the
PC was introduced. As a result, Microsoft-based environments have had little influence
on the development of UNIX. UNIX development was determined by other factors:
changes in legal regulations in the USA between 1977 and 1984 enabled AT&T first to
license UNIX to other vendors, noticeably Microsoft, who announced XENIX in 1981,
and then to market its own version of UNIX. AT&T developed System Il in 1982, and
System V in 1983. The differences between XENIX and System V were initially small,
but they grew: by the mid-80s, there were four different versions of UNIX: the Research
Version, used almost only inside AT&T, which from the eighth edition on derived from
4.1cBSD, the Berkeley Software Distribution (BSD) from Berkeley, the commercial
System V from AT&T, and XENIX, which no longer interested Microsoft, and was
marketed by the company that had developed it, the Santa Cruz Operation, or SCO.

One casualty of UNIX’s maturity was the CSRG in Berkeley. UNIX was too mature to
be considered an object of research, and the writing was on the wall: the CSRG would
close down. Some people decided to port Berkeley UNIX to the PC—after all, SCO had
ported its version of UNIX to the PC years earlier. In the Berkeley tradition, however,
they wanted to give it away. The industry’s reaction was not friendly. In 1992, AT&T’s
subsidiary USL (UNIX Systems Laboratories) filed a lawsuit against Berkeley Software
Design, Inc. (BSDI), the manufacturer of the BSD/386 operating system, later called
BSD/OS, a system very similar to FreeBSD. They alleged distribution of AT&T source
code in violation of licence agreements. They subsequently extended the case to the
University of California at Berkeley. The suit was settled out of court, and the exact
conditions were not all disclosed. The only one that became public was that BSDI would
migrate their source base to the newer 4.4BSD-Lite sources, a thing that they were

introduction.mm,v v4.22 (2003/04/02 06:36:16)

9 Chapter 1: Introduction

preparing to do in any case. Although not involved in the litigation, it was suggested to
FreeBSD that they should also move to 4.4BSD-L.ite, which was done with the release of
FreeBSD release 2.0 in late 1994.

Now, in the early 21st century, FreeBSD is the best known of the BSD operating systems,
one that many consider to follow in the tradition of the CSRG. | can think of no greater
honour for the development team. It was developed on a shoestring budget, yet it
manages to outperform commercial operating systems by an order of magnitude.

The end of the UNIX wars

In the course of the FreeBSD project, a number of things have changed about UNIX. Sun
Microsystems moved from a BSD base to a System V base in the late 80s, a move that
convinced many people that BSD was dead and that System V was the future. Things
turned out differently: in 1992, AT&T sold USL to Novell, Inc., who had introduced a
product based on System V.4 called UnixWare. Although UnixWare has much better
specifications than SCO’s old System V.3 UNIX, it was never a success, and Novell
finally sold their UNIX operation to SCO. SCO itself was then bought out by Caldera
(which recently changed its name back to SCO), while the ownership of the UNIX trade
mark has passed to the Open Group. System V UNIX is essentially dead: current
commercial versions of UNIX have evolved so far since System V that they can’t be
considered the same system. By contrast, BSD is alive and healthy, and lives on in
FreeBSD, NetBSD, OpenBSD and Apple’s Mac OS X.

The importance of the AT&T code in the earlier versions of FreeBSD was certainly
overemphasized in the lawsuit. All of the disputed code was over 10 years old at the
time, and none of it was of great importance. In January 2002, Caldera released all
“ancient” versions of UNIX under a BSD license. These specifically included all
versions of UNIX from which BSD was derived: the first to seventh editions of Research
UNIX and 32V, the predecessor to 3BSD. As a result, all versions of BSD, including
those over which the lawsuit was conducted, are now freely available.

Other free UNIX-like operating systems

FreeBSD isn’t the only free UNIX-like operating system available—it’s not even the best-
known one. The best-known free UNIX-like operating system is undoubtedly Linux, but
there are also a number of other BSD-derived operating systems. We’ll look at them first:

* 386/BSD was the original free BSD operating system, introduced by William F. Jolitz
in 1992. It never progressed beyond a test stage: instead, two derivative operating
systems arose, FreeBSD and NetBSD. 386/BSD has been obsolete for years.

* NetBSD is an operating system which, to the casual observer, is almost identical to
FreeBSD. The main differences are that NetBSD concentrates on hardware
independence, whereas FreeBSD concentrates on performance. FreeBSD also tries
harder to be easy to understand for a beginner. You can find more information about
NetBSD at http://mww.NetBSD.org.

introduction.mm,v v4.22 (2003/04/02 06:36:16)

Other free UNIX-like operating systems 10

e OpenBSD is a spin-off of NetBSD that focuses on security. It’s also very similar to
FreeBSD. You can find more information at http://www.OpenBSD.org.

* Apple computer introduced Version 10 (X) of its Mac OS in early 2001. It is a big
deviation from previous versions of Mac OS: it is based on a Mach microkernel with
a BSD environment. The base system (Darwin) is also free. FreeBSD and Darwin
are compatible at the user source code level.

You could get the impression that there are lots of different, incompatible BSD versions.
In fact, from a user viewpoint they’re all very similar to each other, much more than the
individual distributions of Linux, which we’ll look at next.

FreeBSD and Linux

In 1991, Linus Torvalds, then a student in Helsinki, Finland, decided he wanted to run
UNIX on his home computer. At that time the BSD sources were not freely available,
and so Linus wrote his own version of UNIX, which he called Linux.

Linux is a superb example of how a few dedicated, clever people can produce an
operating system that is better than well-known commercial systems developed by a large
number of trained software engineers. It is better even than a number of commercial
UNIX systems.

Obviously, | prefer FreeBSD over Linux, or | wouldn’t be writing this book, but the
differences between FreeBSD and Linux are more a matter of philosophy rather than of

concept. Here are a few contrasts:

Table 1-1: Differences between FreeBSD and Linux

FreeBSD is a direct descendent of the
original UNIX, though it contains no
residual AT&T code.

FreeBSD is a complete operating system,
maintained by a central group of software
developers under the Concurrent \ersions
System which maintains a complete histo-
ry of the project developemnt. There is
only one distribution of FreeBSD.

The FreeBSD development style empha-
sizes accountability and documentation of
changes.

The kernel supplied with a specific release
of FreeBSD is clearly defined.

Linux is a clone and never contained any
AT&T code.

Linux is a kernel, personally maintained by
Linus Torvalds and a few trusted compan-
ions. The non-kernel programs supplied
with Linux are part of a distribution, of
which there are several. Distributions are
not completely compatible with each other.

The Linux kernel is maintained by a small
number of people who keep track of all
changes. Unofficial patches abound.

Linux distributions often have subtly differ-

ent kernels. The differences are not always
documented.

introduction.mm,v v4.22 (2003/04/02 06:36:16)

11

Chapter 1: Introduction

FreeBSD aims to be a stable production
environment.

As a result of the centralized development
style, FreeBSD is straightforward and
easy to install.

FreeBSD is still relatively unknown, since
its distribution was initially restricted due
to the AT&T lawsuits.

As a result of the lack of knowledge of
FreeBSD, relatively little commercial
software is available for it.

As a result of the smaller user base,
FreeBSD is less likely to have drivers for
brand-new boards than Linux.

Because of the lack of commercial appli-
cations and drivers for FreeBSD, Free-
BSD runs most Linux programs, whether
commercial or not.

FreeBSD is licensed under the BSD li-
cense—see page 6. There are very few
restrictions on its use.

FreeBSD has aficionados who are pre-
pared to flame anybody who dares suggest
that it’s not better than Linux.

Many versions of Linux are still “bleeding
edge” development environments. This is
changing rapidly, however.

The ease of installation of Linux depends
on the distribution. If you switch from one
distribution of Linux to another, you’ll
have to learn a new set of installation tools.

Linux did not have any lawsuits to contend
with, so for some time it was thought to be
the only free UNIX-type system available.

A growing amount of commercial software
is becoming available for Linux.

Just about any new board will soon have a
driver for Linux.

Linux appears not to need to be able to run
FreeBSD programs.

Linux is licensed under the GNU General
Public License. Further details are at
http: //Aww.gnu.org/licenses/gpl.html. By
comparison with the BSD license, it impos-
es significant restrictions on what you can
do with the source code.

Linux has aficionados who are prepared to
flame anybody who dares suggest that it’s
not better than FreeBSD.

In summary, Linux is also a very good operating system. For many, it’s better than

FreeBSD.

introduction.mm,v v4.22 (2003/04/02 06:36:16)

Other free UNIX-like operating systems 12

FreeBSD system documentation

FreeBSD comes with a considerable quantity of documentation which we’ll look at in the
following few pages:

* The FreeBSD Documentation Project maintains a collection of “books,” documents
in HTML or PDF format which can also be accessed online. They’re installed in the
directory hierarchy /usr/share/doc.

e The traditional UNIX document format is man pages, individual documents
describing specific functionality. They’re short and to the point of being cryptic, but
if you know what you’re looking for, they have just the right amount of detail.
They’re not a good introduction.

e The GNU project introduced their own document format, GNU info. Some GNU
programs have no other form of documentation.

Reading online documentation
You’ll find a number of HTML documents in the directory /usr/share/doc/en/books:

* Jusr/share/doc/en/books/fag/index.html contains the FreeBSD FAQ (Frequently
Asked Questions). It’s just what it says it is: a list of questions that people frequently
ask about FreeBSD, with answers of course.

* Jusr/share/doc/en/books/fdp-primer/index.html is a primer for the FreeBSD Docu-
mentation Project,

* Jusr/share/doc/en/books/handbook/index.html is the FreeBSD online handbook. It
contains a lot of information specifically about FreeBSD, including a deeper
discussion of many topics in this book.

* Jusr/share/doc/en/books/porters-handbook/index.html is a handbook for contributors
to the FreeBSD Ports Collection, which we’ll discuss in Chapter 9, The Ports
Collection.

* Jusr/share/doc/en/books/ppp-primer/index.html contains a somewhat dated document
about setting up PPP. If you have trouble with Chapter 20, Configuring PPP, you
may find it useful.

In addition to the directory /usr/share/doc/en/books, there’s also a directory
lusr/share/doc/en/articles with a number of shorter items of documentation.

Note the component en in the pathnames above. That stands for English. A number of
these books are also installed in other languages: change en to de for a German version,
to es for Spanish, to fr for French, to ja for Japanese, to ru for Russian, or to zh for
Chinese. Translation efforts are continuing, so you may find documentation in other
languages as well.

introduction.mm,v v4.22 (2003/04/02 06:36:16)

13 Chapter 1: Introduction

If you’re running X, you can use a browser like mozilla to read the documents. If you
don’t have X running yet, use lynx. Both of these programs are included in the CD-ROM
distribution. To install them, use sysinstall, which is described on page 92.

Iynx is not a complete substitute for complete web browsers such as mozlla: since it is
text-only, it is not capable of displaying the large majority of web pages correctly. It’s
good enough for reading most of the FreeBSD online documentation, however.

In each case, you start the browser with the name of the document, for example:

$ 1ynx /usr/shar el doc/ en/ books/ handbook/ i ndex. ht
$ nozil | a / usr/ shar e/ doc/ en/ books/ handbook/ i ndex. ht m &

Enter the & after the invocation of mozlla to free up the window in which you invoke it:
mozlla opens its own window.

If you haven’t installed the documentation, you can still access it from the Live
Filesystem CD-ROM. Assuming the CD-ROM is mounted on /cdrom, choose the file
/cdrom/usr/share/doc/en/books/handbook/index.html.

Alternatively, you can print out the handbook. This is a little more difficult, and of course
you’ll lose the hypertext references, but you may prefer it in this form. To format the
handbook for printing, you’ll need a PostScript printer or ghostscript. See page 271 for
more details of how to print PostScript.

The printable version of the documentation doesn’t usually come with the CD-ROM
distribution. You can pick it up with ftp (see page 430) from
ftp://ftp.FreeBSD.ORG/pub/FreeBSD/doc/, which has the same directory structure as
described above. For example, you would download the handbook in PostScript form
from ftp://ftp.FreeBSD.ORG/pub/FreeBID/doc/en/books/handbook/book. ps.bz2.

The online manual

The most comprehensive documentation on FreeBSD is the online manual, usually
referred to as the man pages. Nearly every program, file, library function, device or
interface on the system comes with a short reference manual explaining the basic
operation and various arguments. If you were to print it out, it would run to well over
8,000 pages.

When online, you view the man pages with the command man. For example, to learn
more about the command Is, type:

$ man Is
LS(1) FreeBSD Ref erence Manual LS(1)
NAME
Is - list directory contents
SYNCPS S
I's [-ACFLRTacdfilogrstul] [file ...]
DESCR PTI ON

For each operand that names a file of a type other than directory, |s
displays its name as well as any requested, associated information. For

introduction.mm,v v4.22 (2003/04/02 06:36:16)

FreeBSD system documentation 14

each operand that names a file of type directory, |s displays the names.
(etc)

In this particular example, with the exception of the first line, the text in const ant
wi dt h bol d is not input, it’s the way it appears on the screen.

The online manual is divided up into sections numbered:

User commands

System calls and error numbers

Functions in the C libraries

Device drivers

File formats

Games and other diversions

Miscellaneous information

© N o o &~ w DN PP

System maintenance and operation commands
9. Kernel interface documentation

In some cases, the same topic may appear in more than one section of the online manual.
For example, there is a user command chmod and a system call chnod() . In this case,
you can tell the man command which you want by specifying the section number:

$ nman 1 chnod

This command displays the manual page for the user command chmod. References to a
particular section of the online manual are traditionally placed in parentheses in written
documentation. For example, chmod(1) refers to the user command chmod, and
chmod(2) means the system call.

This is fine if you know the name of the command and forgot how to use it, but what if
you can’t recall the command name? You can use man to search for keywords in the
command descriptions by using the - k option, or by starting the program apropos:

$man -k mail $ apropos nail

Both of these commands do the same thing: they show the names of the man pages that
have the keyword mail in their descriptions.

Alternatively, you may browse through the /usr/bin directory, which contains most of the
system executables. You’ll see lots of file names, but you don’t have any idea what they
do. To find out, enter one of the lines:

cd /usr/bin; man -f *
cd /usr/bin; whatis *

*F A

introduction.mm,v v4.22 (2003/04/02 06:36:16)

15 Chapter 1: Introduction

Both of these commands do the same thing: they print out a one-line summary of the
purpose of the program:

$ cd /usr/bin; man -f *

az2p(1) - Ank to Perl translator

addf ti nfo(1) - add infornmation to troff font files for use with groff
appl y(1) - apply a command to a set of argunents

apr opos(1) - search the whati s database

...€tc

Printing man pages

If you prefer to have man pages in print, rather than on the screen, you can do this in two
different ways:

* The simpler way is to redirect the output to the spooler:

$mnls | lpr

This gives you a printed version that looks pretty much like the original on the screen,
except that you may not get bold or underlined text.

* You can get typeset output with troff :

$mn -t Is| lpr

This gives you a properly typeset version of the man page, but it requires that your
spooling system understand PostScript—see page 271 for more details of printing
PostScript, even on printers that don’t understand PostScript.

GNU info

The Free Software Foundation has its own online hypertext browser called info. Many
FSF programs come with either no man page at all, or with an excuse for a man page
(gcce, for example). To read the online documentation, you need to browse the info files
with the info program, or from Emacs with the info mode. To start info, simply type:

$info

In Emacs, enter CTRL-h i or ALT-X i nfo. Whichever way you start info, you can get
brief introduction by typing h, and a quick command reference by typing ?.

Other documentation on FreeBSD

FreeBSD users have access to probably more top-quality documentation than just about
any other operating system. Remember that word UNIX is trademarked. Sure, the
lawyers tell us that we can’t refer to FreeBSD as UNIX, because UNIX belongs to the
Open Group. That doesn’t make the slightest difference to the fact that nearly every book
on UNIX applies more directly to FreeBSD than any other flavour of UNIX. Why?

introduction.mm,v v4.22 (2003/04/02 06:36:16)

Other documentation on FreeBSD 16

Commercial UNIX vendors have a problem, and FreeBSD doesn’t help them: why should
people buy their products when you can get it free from the FreeBSD Project (or, for that
matter, from other free UNIX-like operating systems such as NetBSD, OpenBSD and
Linux)? One obvious reason would be “value-added features.” So they add features or
fix weak points in the system, put a copyright on the changes, and help lock their
customers in to their particular implementation. As long as the changes are really useful,
this is legitimate, but it does make the operating system less compatible with ““standard
UNIX,” and the books about standard UNIX are less applicable.

In addition, many books are written by people with an academic background. In the
UNIX world, this means that they are more likely than the average user to have been
exposed to BSD. Many general UNIX books handle primarily BSD, possibly with an
additional chapter on the commercial System V version.

In Appendix A, Bibliography, you’ll find a list of books that | find worthwhile. 1’d like to
single out some that | find particularly good, and that | frequently use myself:

* UNIX Power Tools, by Jerry Peek, Tim O’Reilly, and Mike Loukides, is a superb
collection of interesting information, including a CD-ROM. Recommended for
everybody, from beginners to experts.

* UNIX for the Impatient, by Paul W. Abrahams and Bruce R. Larson, is more similar
to this book, but it includes a lot more material on specific products, such as shells
and the Emacs editor.

e The UNIX System Administration Handbook, by Evi Nemeth, Garth Snyder, Scott
Seebass, and Trent R. Hein, is one of the best books on systems administration | have
seen. It covers a number different UNIX systems, including an older version of
FreeBSD.

There are also many active Internet groups that deal with FreeBSD. Read about them in
the online handbook.

The FreeBSD community

FreeBSD was developed by a world-wide group of developers. It could not have
happened without the Internet. Many of the key players have never even met each other
in person; the main means of communication is via the Internet. If you have any kind of
Internet connection, you can participate as well. 1f you don’t have an Internet connection,
it’s about time you got one. The connection doesn’t have to be complete: if you can
receive email, you can participate. On the other hand, FreeBSD includes all the software
you need for a complete Internet connection, not the very limited subset that most PC-
based ““Internet” packages offer you.

introduction.mm,v v4.22 (2003/04/02 06:36:16)

17 Chapter 1: Introduction

Mailing lists

As it says in the copyright, FreeBSD is supplied as-is, without any support liability. If
you’re on the Internet, you’re not alone, however. Liability is one thing, but there are
plenty of people prepared to help you, most for free, some for fee. A good place to start
is with the mailing lists. There are a number of mailing lists that you can join:

* FreeBSD questi ons@t eeBSD. org is the list to which you may send general
questions, in particular on how to use FreeBSD. Use this one if you’re not sure
which is the most appropriate.

* FreeBSD newbi es@ eeBSD. or g is a list for newcomers to FreeBSD. It’s intended
for people who feel a little daunted by the system and need a bit of reassurance. It’s
not the right place to ask any kind of technical question.

* FreeBSD hacker s@t eeBSD. or g is a technical discussion list.

* FreeBSD current @reeBSD. org is an obligatory list for people who run the
development version of FreeBSD, called FreeBSD QURRENT. We’ll talk about
- QURRENTT, as it is usually called, on pages 580 and 613.

You can find a complete list on the web site.

To join a list, send a mail message to naj or dono@ eeBSD. or g with the names of the
lists you want to join:

subscri be FreeBSD newbi es
subscri be FreeBSD- questions

If the mail ID that you want to add to the list is different from the ID you’re sending
from, put the ID at the end of the line. This requires manual intervention to confirm that
the user really wants to be on the list, so it can take longer. It’s always better to send the
mail from the ID at which you want to receive the mail.

You don’t need a subject line; if you include one, it will be ignored. You’ll get a reply
back saying that the request must be authenticated: it’ll look something like this:

Pl ease be sure to read the charters before subscribing or sending
mail to any FreeBSD mailing list for an expl anati on of which topics
are relevant for a given list and what types of postings are and
are not allowed. They nay be found at:
htt p: // waw f r eebsd. or g/ handbook/ er esour ces. ht m #ERESQURCES- MAl L

Soneone (possibly you) has requested that your enail address be added
to or deleted fromthe mailing list "freebsd-questi ons@reeBSD CRG'.

If youreally want this action to be taken, please send the follow ng
commands (exactly as shown) back to "Mj or domo@r eeBSD. CRG':

aut h b2c64f 95 subscri be freebsd- questions grog@xanpl e. org
If you do not want this action to be taken, sinply ignore this nessage
and the request wll be disregarded.

introduction.mm,v v4.22 (2003/04/02 06:36:16)

Mailing lists 18

If your mailer will not allowyou to send the entire command as a single
line, you may split it using backsl ashes, |ike so:

aut h b2c64f 95 subscri be freebsd- questions \
grog@xanpl e. org

If you have any questions about the policy of the list owner, please
contact "post nast er @reeBSD. CRG'.

Thanks!
Maj or dono@r eeBSD. CRG

Just reply to that message, removing all the text except theaut h line:

auth b2c64f 95 subscri be freebsd-questions grog@xanpl e. org

Send this message to naj or dono@t eeBSD. or g (which is what you do if you just
reply), not to the list itself. You'll get another reply back:

Wl cone to the freebsd-questions nmailing list!
P ease save this nessage for future reference. Thank you.

If you ever want to renove yourself fromthis mailing list,
you can send nail to <Maj or domo@r eeBSD. CRG> with the fol | ow ng
command in the body of your email message:

unsubscri be freebsd- questions
or fromanot her account, besides grog@xanpl e. org:
unsubscri be freebsd- questions grog@xanpl e. org

If you ever need to get in contact with the owner of the list,

(if you have troubl e unsubscribing, or have questions about the
list itself) send email to <owner-freebsd- questi ons@reeBSD CRG> .
This is the general rule for nost mailing |ists when you need

to contact a hunan.

Here's the general information for the list you ve subscribed to,
in case you don't already have it:

FREEBSD- QUESTI ONS User questions

This is the mailing list for questions about FreeBSD. You shoul d not
send "how to" questions to the technical |ists unless you consider the
question to be pretty technical .

When submitting questions to - questions, remember that people are under no
obligation to answer them. Make them want to answer it: submit the question in a clear,
understandable manner. For more details, see http://mwww.lemis.con/questions.html. You
may also like to check out the FreeBSD World Wide Web (WWW) site at
http: /mww.FreeBSD.org, in particular the support page at http://mww.FreeBSD.org/sup-
port.html.

In addition, a number of companies offer support for FreeBSD. See the web page
http: //mww.freebsd.org/commercial/consulting_bycat.html for some possibilities.

introduction.mm,v v4.22 (2003/04/02 06:36:16)

19 Chapter 1: Introduction

Unsubscribing from the mailing lists

There’s a lot of traffic on the mailing lists, particularly on - questi ons. You may find
you can’t take it and want to get out again. Again, send mail to naj or dono@r ee-
BSD or g, not to the list. Each message you get from the mailing lists finishes with the
following text:

To Uhsubscribe: send mail to naj or domo@reeBSD org
w th "unsubscri be freebsd-questions" in the body of the nessage

Don’t be one of those people who send the unsubscribe request to the mailing list instead.

User groups

But how about meeting FreeBSD users face to face? There are a number of user groups
around the world. If you live in a big city, chances are that there’s one near you. Check
http: //mwww.freebsd.org/support.html#user for a list. If you don’t find one, consider
taking the initiative and starting one.

In addition, USENIX holds an annual conference, the BSDCon, which deals with
technical aspects of the BSD operating systems. It’s also a great opportunity to get to
know other users from around the world. If you’re in Europe, there is also a BSDCon
Europe, which at the time of writing was not run by USENIX. See http://mww.eurobsd-
con.org/ for more details.

Reporting bugs

If you find something wrong with FreeBSD, we want to know about it, so that we can fix
it. To report a bug, use the send-pr program to send it as a mail message.

There used to be a web form at http://mww.FreeBSD.org/send-pr.html, but it has been
closed down due to abuse.

The Berkeley daemon

The little daemon at the right symbolizes BSD. It is
included with kind permission of Marshall Kirk McKusick,
one of the leading members of the former Computer
Sciences Research Group at the University of California at
Berkeley, and owner of the daemon’s copyright. Kirk also
wrote the foreword to this book.

The daemon has occasionally given rise to a certain amount
of confusion. In fact, it’s a joking reference to processes that
run in the background—see Chapter 8, Taking control, page
150, for a description. The outside world occasionally sees
things differently, as the following story indicates:

introduction.mm,v v4.22 (2003/04/02 06:36:16)

The Berkeley daemon 20

Newsgroups: al t. hunor . best - of - usenet
Subj ect: [conp.org.usenix] A Geat Daenon Sory

From Rob Kol stad <kol st ad@sdi . comr
Newsgr oups: conp. or g. useni x
Subj ect: A Qeat Daenon Sory

Linda Branagan is an expert on daemons. She has a T-shirt that sports the daemon in
tennis shoes that appears on the cover of the 4.3BSD manuals and The Design and
Implementation of the 4.3BSD UNIX Operating System by S. Leffler, M. McKusick, M.
Karels, J. Quarterman, Addison Wesley Publishing Company, Reading, MA 1989.

She tells the following story about wearing the 4.3BSD daemon T-shirt:

Last week | walked into a local “home style cookin’ restaurant/watering hole” in
Texas to pick up a take-out order. | spoke briefly to the waitress behind the counter,
who told me my order would be done in a few minutes.

So, while | was busy gazing at the farm implements hanging on the walls, | was
approached by two “natives.” These guys might just be the original Texas rednecks.

“Pardon us, ma’am. Mind if we ask you a question?”

Well, people keep telling me that Texans are real friendly, so | nodded.
“Are you a Satanist?”’

Well, at least they didn’t ask me if | liked to party.

“Uh, no, | can’t say that I am.”

“Gee, ma’am. Are you sure about that?”’ they asked.

I put on my biggest, brightest Dallas Cowboys cheerleader smile and said, “No, I’m
positive. The closest I’ve ever come to Satanism is watching Geraldo.”

“Hmmm. Interesting. See, we was just wondering why it is you have the lord of
darkness on your chest there.”

I was this close to slapping one of them and causing a scene—then | stopped and
noticed the shirt | happened to be wearing that day. Sure enough, it had a picture of a
small, devilish-looking creature that has for some time now been associated with a
certain operating system. In this particular representation, the creature was wearing
sneakers.

They continued: “See, ma’am, we don’t exactly appreciate it when people show off
pictures of the devil. Especially when he’s lookin’ so friendly.”

These idiots sounded terrifyingly serious.

Me: “Oh, well, see, this isn’t really the devil, it’s just, well, it’s sort of a mascot.
Native: “And what kind of football team has the devil as a mascot?”

Me: “Oh, it’s not a team. It’s an operating—uh, a kind of computer.”

| figured that an ATM machine was about as much technology as these guys could
handle, and | knew that if | so much as uttered the word “UNIX”" | would only make
things worse.

introduction.mm,v v4.22 (2003/04/02 06:36:16)

21 Chapter 1: Introduction

Native: “Where does this satanical computer come from?”
Me: “California. And there’s nothing satanical about it really.”

Somewhere along the line here, the waitress noticed my predicament—but these guys
probably outweighed her by 600 pounds, so all she did was look at me sympathetically
and run off into the kitchen.

Native: “Ma’am, | think you’re lying. And we’d appreciate it if you’d leave the
premises now.”

Fortunately, the waitress returned that very instant with my order, and they agreed that
it would be okay for me to actually pay for my food before I left. While | was at the
cash register, they amused themselves by talking to each other.

Native #1: “Do you think the police know about these devil computers?”
Native #2: “If they come from California, then the FBI oughta know about "em.”

They escorted me to the door. | tried one last time: *“You’re really blowing this all out
of proportion. A lot of people use this ‘kind of computers.” Universities, researchers,
businesses. They’re actually very useful.”

Big, big, big mistake. | should have guessed at what came next.

Native: “Does the government use these devil computers?”

Me: “Yes.”

Another big boo-boo.

Native: “And does the government pay for ’em? With our tax dollars?”
| decided that it was time to jump ship.

Me: “No. Nope. Not at all. Your tax dollars never entered the picture at all. |
promise. No sir, not a penny. Our good Christian congressmen would never let
something like that happen. Nope. Never. Bye.”

Texas. What a country.

The daemon tradition goes back quite a way. As recently as 1996, after the publication of
the first edition of this book, the following message went through the Fr eeBSD- chat
mailing list:

To: "Jonathan M. Bresler" <jmb@freefall.freebsd.org>

Cc: obrien@antares.aero.org (Mike O’Brien),
joerg_wunsch@uriah.heep.sax.de,
chat@FreeBSD.org, juphoff@tarsier.cv.nrao.edu

Date: Tue, 07 May 1996 16:27:20 -0700

Sender: owner-chat@FreeBSD.org

> details and gifs PLEASE!
If you insist. : -)

Sherman, set the Wayback Machine for around 1976 or so (see Peter Salus’ A
Quarter Century of UNIX for details), when the first really national UNIX meeting was
held in Urbana, Illinois. This would be after the “forty people in a Brooklyn

introduction.mm,v v4.22 (2003/04/02 06:36:16)

The Berkeley daemon 22

classroom” meeting held by Mel Ferentz (yeah | was at that too) and the more-or-less
simultaneous West Coast meeting(s) hosted by SRI, but before the UNIX Users Group
was really incorporated as a going concern.

I knew Ken Thompson and Dennis Ritchie would be there. | was living in
Chicago at the time, and so was comic artist Phil Foglio, whose star was just beginning
to rise. At that time | was a bonded locksmith. Phil’s roommate had unexpectedly
split town, and he was the only one who knew the combination to the wall safe in their
apartment. This is the only apartment I’ve ever seen that had a wall safe, but it sure did
have one, and Phil had some stuff locked in there. | didn’t hold out much hope, since
safes are far beyond where | was (and am) in my locksmithing sphere of competence,
but I figured ““no guts no glory” and told him 1I’d give it a whack. In return, I told him,
he could do some T-shirt art for me. He readily agreed.

Wonder of wonders, this safe was vulnerable to the same algorithm that Master
locks used to be susceptible to. | opened it in about 15 minutes of manipulation. It
was my greatest moment as a locksmith and Phil was overjoyed. | went down to my
lab and shot some Polaroid snaps of the PDP-11 system | was running UNIX on at the
time, and gave it to Phil with some descriptions of the visual puns | wanted: pipes,
demons with forks running along the pipes, a ““bit bucket”” named /dev/null, all that.

What Phil came up with is the artwork that graced the first decade’s worth of
“UNIX T-shirts,” which were made by a Ma and Pa operation in a Chicago suburb.
They turned out transfer art using a 3M color copier in their basement. Hence, the
PDP-11 is reversed (the tape drives are backwards) but since Phil left off the front
panel, this was hard to tell. His trademark signature was photo-reversed, but was
recopied by the T-shirt people and ““re-forwardized,” which is why it looks a little
funny compared to his real signature.

Dozens and dozens of these shirts were produced. Bell Labs alone accounted for
an order of something like 200 for a big picnic. However, only four (4) REAL
originals were produced: these have a distinctive red collar and sleeve cuff. One went
to Ken, one to Dennis, one to me, and one to my then-wife. | now possess the latter
two shirts. Ken and Dennis were presented with their shirts at the Urbana conference.

People ordered these shirts direct from the Chicago couple. Many years later,
when | was living in LA, | got a call from Armando Stettner, then at DEC, asking
about that now-famous artwork. | told him | hadn’t talked to the Illinois T-shirt makers
in years. At his request | called them up. They’d folded the operation years ago and
were within days of discarding all the old artwork. | requested its return, and duly
received it back in the mail. It looked strange, seeing it again in its original form, a
mirror image of the shirts with which | and everyone else were now familiar.

| sent the artwork to Armando, who wanted to give it to the Ultrix marketing
people. They came out with the Ultrix poster that showed a nice shiny Ultrix machine
contrasted with the chewing-gum-and-string PDP-11 UNIX people were familiar with.
They still have the artwork, so far as | know.
I no longer recall the exact contents of the letter | sent along with the artwork. |
did say that as far as | knew, Phil had no residual rights to the art, since it was a ‘work
made for hire’, though nothing was in writing (and note this was decades before the
introduction.mm,v v4.22 (2003/04/02 06:36:16)

23 Chapter 1: Introduction

new copyright law). 1 do not now recall if I explicitly assigned all rights to DEC.
What is certain is that John Lassiter’s daemon, whether knowingly borrowed from the
original, or created by parallel evolution, postdates the first horde of UNIX daemons by
at least a decade and probably more. And if Lassiter’s daemon looks a lot like a Phil
Foglio creation, there’s a reason.

I have never scanned in Phil’s artwork; I’ve hardly ever scanned in anything, so |
have no GIFs to show. But | have some very very old UNIX T-shirts in startlingly
good condition. Better condition than | am at any rate: | no longer fit into either of
them.

Mike O’Brien
creaky antique

Note the date of this message: it appeared since the first edition of this book. Since then,
the daemon image has been scanned in, and you can find a version at
http: /Awww.mckusi ck.convbeasti e/shirts/usenix.html.

introduction.mm,v v4.22 (2003/04/02 06:36:16)

In this chapter:

* Using old hardware

e PC Hardware

* How the system
detects hardware

e Configuring ISA
cards

e PCMCIA, PC Card

and CardBus

Universal Serial Bus

Disks

Disk data layout

Making the file

systems

Disk size limitations

Display hardware

The hardware 1

Compag/Digital B efO re yO U I n Stal |

Alpha machines

* The CD-ROM
distribution

FreeBSD runs on just about any modern PC, Alpha or 64 bit SPARC machine. You can
skip this chapter and the next and move to chapter 3, and you’ll have a very good chance
of success. Nevertheless, it makes things easier to know the contents of this chapter
before you start. If you do run into trouble, it will give you the background information
you need to solve the trouble quickly and simply.

FreeBSD also runs on most Intel-based laptops; in general the considerations above apply
for laptops as well. In the course of the book we’ll see examples of where laptops require
special treatment.

Most of the information here applies primarily to Intel platforms. We’ll look at the
Compaq Alpha architecture on page 42. The first release of FreeBSD to support the
SPARC 64 architecture is 5.0, and support is still a little patchy. At the time of going to
press, it’s not worth describing, since it will change rapidly. The instructions on the CD-
ROM distribution are currently the best source of information on running FreeBSD on
SPARC 64.

Using old hardware

FreeBSD runs on all relatively recent machines. In addition, a lot of older hardware that
is available for a nominal sum, or even for free, runs FreeBSD quite happily, though you
may need to take more care in the installation.

FreeBSD does not support all PC hardware: the PC has been on the market for over 20
years, and it has changed a lot in that time. In particular:

concepts.mm,v v4.21 (2003/04/02 06:37:12) 25

26 Chapter 2: Before you install

* FreeBSD does not support 8 bit and 16 bit processors. These include the 8086 and
8088, which were used in the IBM PC and PC-XT and clones, and the 80286, used in
the IBM PC-AT and clones.

* The FreeBSD kernel no longer supports ST-506 and ESDI drives. You’re unlikely to
have any of these: they’re now so old that most of them have failed. The wd driver
still includes support for them, but it hasn’t been tested, and if you want to use this
kind of drive you might find it better to use FreeBSD Release 3. See page 31 to find
out how to identify these drives. You can get Release 3 of FreeBSD from
ftp://ftp.FreeBSD.org/pub/FreeBSD/rel eases/i386/3.x-STABLE. You’ll have to per-
form a network installation.

* Memory requirements for FreeBSD have increased significantly in the last few years,
and you should consider 16 MB a minimum size, though nobody has recently
checked whether it wouldn’t install in, say, 12 MB. FreeBSD Release 3 still runs in 4
MB, though you need 5 MB for installation.

If you’re planning to install FreeBSD on an old machine, consider the following to be an
absolute minimum:

e PC with 80386 CPU, Alpha-based machine with SRM firmware.
* 16 MB memory (Intel) or 24 MB (Alpha).

e 80 MB free disk space (Intel). Nobody has tried an installation on an Alpha or
SPARC machine with less than 500 MB, though you can probably reduce this value
significantly.

You don’t absolutely need a keyboard and display board: many FreeBSD machines run
server tasks with neither keyboard nor display. Even then, though, you may find it
convenient to put a display board in the machine to help in case you run into trouble.

When | say absolute minimum, | mean it. You can’t do very much with such a minimal
system, but for some purposes it might be adequate. You can improve the performance of
such a minimal system significantly by adding memory. Before you go to the trouble to
even try such a minimal installation, consider the cost of another 16 MB of memory. And
you can pick up better machines than this second-hand for $50. Is the hassle worth it?

To get full benefits from a desktop or laptop FreeBSD system (but not from a machine
used primarily as a server), you should be running the X Window system. This uses more
memory. Consider 32 MB a usable minimum here, though thanks to FreeBSD’s virtual
memory system, this is not such a hard limit as it is with some other systems.

The speed of a virtual memory-based system such as FreeBSD depends at least as much on
memory performance as on processor performance. If you have, say, a 486DX-33 and 16 MB of
memory, upgrading memory to 32 MB will probably buy you more performance than upgrading
the motherboard to a Pentium 100 and keeping the 16 MB memory. This applies for a usual mix
of programs, in particular, programs that don’t perform number crunching.

Any SPARC 64 machine runs FreeBSD acceptably, as the machines are relatively new. If
you’re running Intel or Alpha, consider the following the minimum for getting useful
work done with FreeBSD and X:

concepts.mm,v v4.21 (2003/04/02 06:37:12)

Using old hardware 27

* PC with 80486DX/2-66, or Alpha-based machine

e 32 MB memory (i386) or 64 MB (Alpha)

* SVGA display board with 2 MB memory, 1024x768
* Mouse

e 200 MB free disk space

Your mileage may vary. During the review phase of an earlier edition of this book, one of the
reviewers stated that he was very happy with his machine, which has a 486-33 processor, 16 MB
main memory, and 1 MB memory on his display board. He said that it ran a lot faster than his
Pentium 100 at work, which ran Microsoft. The moral: if your hardware doesn’t measure up to the
recommended specification, don’t be discouraged. Try it out anyway.

Beyond this minimum, FreeBSD supports a large number of other hardware components.

Device drivers

The FreeBSD kernel is the only part of the system that can access the hardware. It
includes device drivers, which control the function of peripheral devices such as disks,
displays and network boards. When you install new hardware, you need a driver for it.

There are two ways to get a driver into the kernel: you can build a kernel that includes the
driver code, or you can load a driver module (Kernel Loadable Module or kid) into the
kernel at run time. Not all drivers are available as klds. If you need one of these drivers,
and it’s not included in the standard kernel, you have to build a new kernel. We look at
building kernels in Chapter 33.

The kernel configuration supplied with FreeBSD distributions is called GENER C after the
name of the configuration file that describes it. It contains support for most common
devices, though support for some older hardware is missing, usually because it conflicts
with more modern drivers. For a full list of currently supported hardware, read the web
page http://mww.FreeBSD.org/releases/ and select the link Hardware Notes for the
release you’re interested in. This file is also available on installed FreeBSD systems as
Jusr/share/doc/en_US.ISO_8859-1/books/fag/hardware.html. It is also available in other
languages; see the subdirectories of /usr/share/doc.

PC Hardware

This section looks at the information you need to understand to install FreeBSD on the
i386 architecture. In particular, in the next section we’ll look at how FreeBSD detects
hardware, and what to do if your hardware doesn’t correspond to the system’s
expectations. On page 31 we’ll see how FreeBSD and other PC operating systems handle
disk space, and how to set up your disk for FreeBSD.

Some of this information also applies to the Alpha and SPARC 64 architectures. We’ll
look at the differences for the Alpha architecture on page 42. Currently the SPARC 64
implementation is changing too fast to describe it in a meaningful manner.

concepts.mm,v v4.21 (2003/04/02 06:37:12)

28 Chapter 2: Before you install

Since the original PC, a number of hardware standards have come, and some have gone:

e The original PC had an 8 bit bus. Very few of these cards are still available, but they
are compatible with the ISA bus (see the next item).

* The PC AT, introduced in 1984, had a 16 bit 80286 processor. To support this
processor, the bus was widened to 16 bits. This bus came to be known as the Industry
Sandard Architecture, or ISA. This standard is still not completely dead, and many
new motherboards support it. Most older motherboards have a number of ISA slots.

* The ISA bus has a number of severe limitations, notably poor performance. This
became a problem very early. In 1985, IBM introduced the PS/2 system, which
addressed this issue with a new bus, the so-called Microchannel Architecture or MCA.
Although successful for IBM, MCA was not adopted by other manufacturers, and
FreeBSD does not support it at all. IBM no longer produces products based on
MCA.

* In parallel to MCA, other manufacturers introduced a bus called the Extended
Industry Standard Architecture, or EISA. As the name suggests, it is a higher-
performance extension of ISA, and FreeBSD supports it. Like MCA, it is obsolete.

e EISA still proved to be not fast enough for good graphics performance. In the late
80s, a number of local bus solutions appeared. They had better performance, but
some were very unreliable. FreeBSD supported most of them, but you can’t rely on
it. It’s best to steer clear of them.

e Finally, in the early 1990s, Intel brought out a new bus called Peripheral Component
Interconnect, or PCI. PCI is now the dominant bus on a number of architectures.
Most modern PC add-on boards are PCI.

Compared to earlier buses, PCI is much faster. Most boards have a 32 bit wide data
bus, but there is also a 64 bit PCI standard. PCI boards also contain enough
intelligence to enable the system to configure them, which greatly simplifies
installation of the system or of new boards.

* Modern motherboards also have an AGP (Accelerated Graphics Port) slot specifical-
ly designed to support exactly one graphic card. As the name implies, it’s faster even
than PCI, but it’s optimized for graphics only. FreeBSD supports it, of course;
otherwise it couldn’t run on modern hardware.

* Most laptops have provision for external plug-in cards that conform to the PC Card
(formerly called PCMCIA) or CardBus standards. These cards are designed to be
inserted into and removed from a running system. FreeBSD has support for these
cards; we’ll look at them in more detail on page 30.

* More and more, the basic serial and parallel ports installed on early PCs are being
replaced by a Universal Serial Bus or USB. We’ll look at it on page 31.

concepts.mm,v v4.21 (2003/04/02 06:37:12)

PC Hardware 29

How the system detects hardware

When the system starts, each driver in the kernel examines the system to find any
hardware that it might be able to control. This examination is called probing. Depending
on the driver and the nature of the hardware it supports, the probe may be clever enough
to set up the hardware itself, or to recognize its hardware no matter how it has been set
up, or it may expect the hardware to be set up in a specific manner in order to find it. In
general, you can expect PCI drivers to be able to set up the card to work correctly. In the
case of ISA or EISA cards, you may not be as lucky.

Configuring ISA cards

ISA cards are rapidly becoming obsolete, but sometimes they’re still useful:

* ISA graphics cards are very slow in comparison with modern graphic cards, but if
you just want a card for maintenance on a server machine that normally doesn’t
display anything, this is an economical alternative.

e Some ISA disk controllers can be useful, but they are sharply limited in performance.
* ISA Ethernet cards may be a choice for low-volume networking.
e Many ISA serial cards and built-in modems are still available.

Most ISA cards require some configuration. There are four main parameters that you
may need to set for PC controller boards:

1. The port address is the address of the first of possibly several control registers that the
driver uses to communicate with the board. It is normally specified in hexadecimal,
for example 0x320.

If you come from a Microsoft background, you might be more used to the notation 320H
The notation 0x320 comes from the C programming language. You’ll see a lot of it in UNIX.

Each board needs its own address or range of addresses. The ISA architecture has a
sharply limited address range, and one of the most frequent causes of problems when
installing a board is that the port addresses overlap with those of another board.

Beware of boards with a large number of registers. Typical port addresses end in
(hexadecimal) 0. Don’t rely on being able to take any unoccupied address ending in
0, though: some boards, such as Novell NE2000 compatible Ethernet boards, occupy
up to 32 registers—for example, from 0x320 to 0x33f. Note also that a number of
addresses, such as the serial and parallel ports, often end in 8.

2. Boards use an Interrupt Request, also referred to as IRQ, to get the attention of the
driver when a specific event happens. For example, when a serial interface reads a
character, it generates an interrupt to tell the driver to collect the character. Interrupt
requests can sometimes be shared, depending on the driver and the hardware. There
are even fewer interrupt requests than port addresses: a total of 15, of which a number

concepts.mm,v v4.21 (2003/04/02 06:37:12)

30 Chapter 2: Before you install

are reserved by the motherboard. You can usually expect to be able to use IRQs 3, 4,
5,7,9, 10, 11 and 12. IRQ 2 is special: due to the design of the original IBM PC/AT,
it is the same thing as IRQ 9. FreeBSD refers to this interrupt as IRQ 9.

As if the available interrupts weren’t already restricted enough, ISA and PCI boards
use the same set of interrupt lines. PCI cards can share interrupt lines between
multiple boards, and in fact the PCI standard only supports four interrupts, called
INTA, INTB, INTC and INTD. In the PC architecture they map to four of the 15 ISA
interrupts. PCI cards are self-configuring, so all you need to do is to ensure that PCI
and ISA interrupts don’t conflict. You normally set this up in a BIOS setup menu.

3. Some high-speed devices perform Direct Memory Access, also known as DMA, to
transfer data to or from memory without CPU intervention. To transfer data, they
assert a DMA Request (DRQ) and wait for the bus to reply with a DMA Acknowledge
(DACK). The combination of DRQ and DACK is sometimes called a DMA Channel.
The ISA architecture supplies 7 DMA channels, numbered 0 to 3 (8 bit) and 5 to 7
(16 bit). The floppy driver uses DMA channel 2. DMA channels may not be shared.

4. Finally, controllers may have on-board memory, sometimes referred to as 1/0 memory
or IOmem. It is usually located at addresses between 0xa0000 and Oxef f f f .

If the driver only looks at specific board configurations, you can set the board to match
what the driver expects, typically by setting jumpers or using a vendor-supplied
diagnostic program to set on-board configuration memory, or you can build a kernel to
match the board settings.

PCMCIA, PC Card and CardBus

Laptops don’t have enough space for normal PCI expansion slots, though many use a
smaller PCI card format. It’s more common to see PC Card or CardBus cards, though.
PC Card was originally called PCMCIA, which stands for Personal Computer Memory
Card International Association: the first purpose of the bus was to expand memory.
Nowadays memory expansion is handled by other means, and PC Card cards are usually
peripherals such as network cards, modems or disks. It’s true that you can insert compact
flash memory for digital cameras into a PC Card adapter and access it from FreeBSD, but
even in this case, the card looks like a disk, not a memory card.

The original PC Card standard already has one foot in the grave: it’s a 16 bit bus that
doesn’t work well with modern laptops. The replacement standard has a 32 bit wide bus
and is called CardBus. The cards look almost identical, and most modern laptops support
both standards. In this book I’ll use use the term PC Card to include CardBus unless
otherwise stated. FreeBSD Release 5 includes completely new PC Card code. It now
supports both 16 bit PC Card and 32 bit CardBus cards.

PC Card offers one concept that conventional cards don’t: the cards are hot swappable.
You can insert them and remove them in a running system. This poses a number of
potential problems, some of which are only partially solved.

concepts.mm,v v4.21 (2003/04/02 06:37:12)

PCMCIA, PC Card and CardBus 31

PC Card and CardBus cards

PC Card and CardBus both use the same form factor cards: they are 54 mm wide and at
least 85 mm long, though some cards, noticeably wireless networking cards, are up to
120 mm long and project beyond the casing of the laptop. The wireless cards contain an
antenna in the part of the card that projects from the machine.

PC Card cards can have one of three standard thicknesses:
e Type 1 cards are 3.3 mm thick. They’re very uncommon.

* Type 2 cards are 5 mm thick. These are the most common type, and most laptops
take two of them.

* Type 3 cards are 10.5 mm thick. In most laptops you can normally insert either one
type 3 card or two type 2 cards.

The GENER CFreeBSD kernel contains support for PC Card, so you don’t need to build a
new kernel.

Universal Serial Bus

The Universal Serial Bus (USB) is a new way of connecting external peripherals,
typically those that used to be connected by serial or parallel ports. It’s much faster than
the old components: the old serial interface had a maximum speed of 115,200 bps, and
the maximum you can expect to transfer over the parallel port is about 1 MB/s. By
comparison, current USB implementations transfer data at up to 12 Mb/s, and a version
with 480 Mb/s is in development.

As the name states, USB is a bus: you can connect multiple devices to a bus. Currently
the most common devices are mid-speed devices such as printers and scanners, but you
can connect just about anything, including keyboards, mice, Ethernet cards and mass
storage devices.

Disks

A number of different disks have been used on PCs:

e ST-506 disks are the oldest. You can recognize them by the fact that they have two
cables: a control cable that usually has connections for two disks, and a thinner data
cable that is not shared with any other disk. They’re just about completely obsolete
by now, but FreeBSD Release 3 still supports them with the wd driver. These disks
are sometimes called by their modulation format, Modified Frequency Modulation or
MFM. A variant of MFM that offers about 50% more storage is RLL or Run Length
Limited modulation. From the operating system point of view, there is no difference
between MFM and RLL.

concepts.mm,v v4.21 (2003/04/02 06:37:12)

32

Chapter 2: Before you install

ESDI (Enhanced Small Device Interface) disks were designed to work around some
of the limitations of ST-506 drives. They also use the same cabling as ST-506, but
they are not hardware compatible, though most ESDI controllers understand ST-506
commands. They are also obsolete, but the wd driver in FreeBSD Release 3 supports
them, too.

IDE (Integrated Device Electronics), now frequently called ATA (AT Attachment), is
the current low-cost PC disk interface. It supports two disks connected by a single 40
or 80 conductor flat cable. The connectors for both cables are the same, but the 80
conductor cable is needed for the 66 MHz, 100 MHz and 133 MHz transfer rates
supported by recent disk drives.

All modern IDE disks are so-called EIDE (Enhanced IDE) drives. The original IDE
disks were limited by the PC BIOS standard to a size of 504 MB (1024 * 16 * 63 *
512, or 528,482,304 bytes). EIDE drives exceed this limit by several orders of
magnitude.

A problem with older IDE controllers was that they used programmed 1/O or PIO to
perform the transfer. In this mode, the CPU is directly involved in the transfer to or
from the disk. Older controllers transferred a byte at a time, but more modern
controllers can transfer in units of 32 bits. Either way, disk transfers use a large
amount of CPU time with programmed 1/O, and it’s difficult to achieve the transfer
rates of modern IDE drives, which can be as high as 100 MB/s. During such
transfers, the system appears to be unbearably slow: it “grinds to a halt.”

To solve this problem, modern chipsets offer DMA transfers, which almost
completely eliminate CPU overhead. There are two kinds of DMA, each with
multiple possible transfer modes. The older DMA mode is no longer in use. It
handled transfer rates between 2.1 MB/s and 16.7 MB/s. The newer UDMA (Ultra
DMA) mode supports transfer rates between 16.7 MB/s and 133 MB/s. Current disks
use UDMA33 (33 MHz transfer rate), which is the fastest rate you can use with a 40
conductor cable, and UDMAG6 (66 MHz), UDMA100 (100 MHz) and UDMA-133
(133 MHz) with an 80 conductor cable. To get this transfer rate, both the disk and the
disk controller must support the rate. FreeBSD supports all UDMA modes.

Another factor influencing IDE performance is the fact that most IDE controllers and
disks can only perform one transfer at a time. If you have two disks on a controller,
and you want to access both, the controller serializes the requests so that a request to
one drive completes before the other starts. This results in worse performance than
on a SCSI chain, which does not have this restriction. If you have two disks and two
controllers, it’s better to put one disk on each controller. This situation is gradually
changing, so when choosing hardware it’s worth checking on current support for
tagged queueing, which allows concurrent transfers.

SCS is the Small Computer Systems Interface. It’s usually pronounced ““scuzzy.” It
is used for disks, tapes, CD-ROMs and also other devices such as scanners and
printers. The SCSI controller is more correctly called a host adapter. Like IDE,
SCSI has evolved significantly over time. SCSI devices are connected by a single flat
cable, with 50 conductors (““narrow SCSI,” which connects a total of 8 devices) or 68

concepts.mm,v v4.21 (2003/04/02 06:37:12)

Disks 33

conductors (“‘wide SCSI,” which also connects up to 16 devices). Some SCSI
devices have subdevices, for example CD-ROM changers.

SCSI drives have a reputation for much higher performance than IDE. This is mainly
because nearly all SCSI host adapters support DMA, whereas in the past IDE
controllers usually used programmed 1/O. In addition, SCSI host adapters can
perform transfers from multiple units at the same time, whereas IDE controllers can
only perform one transfer at a time. Typical SCSI drives are still faster than IDE
drives, but the difference is nowhere near as large as it used to be. Narrow SCSI can
support transfer rates of up to 40 MB/s (Ultra 2), and wide SCSI can support rates of
up to 320 MB/s (Ultra 320). These speeds are not necessarily faster than IDE: you
can connect more than seven times as many devices to a wide SCSI chain.

Disk data layout

Before you install FreeBSD, you need to decide how you want to use the disk space
available to you. If desired, FreeBSD can coexist with other operating systems on the
Intel platform. In this section, we’ll look at the way data is laid out on disk, and what we
need to do to create FreeBSD file systems on disk.

PC BIOS and disks

The basics of disk drives are relatively straightforward: data is stored on one or more
rotating disks with a magnetic coating similar in function to the coating on an audio tape.
Unlike a tape, however, disk heads do not touch the surface: the rotating disk produces an
air pressure against the head, which keeps it floating very close to the surface. The disk
has (usually) one read/write head for each surface to transfer data to and from the
system. People frequently talk about the number of heads, not the number of surfaces,
though strictly speaking this is incorrect: if there are two heads per surface (to speed up
access), you're still interested in the number of surfaces, not the number of heads.

While transferring data, the heads are stationary, so data is written on disks in a number
of concentric circular tracks. Logically, each track is divided into a number of sectors,
which nowadays almost invariably contain 512 bytes. A single positioning mechanism
moves the heads from one track to another, so at any one time all the tracks under the
current head position can be accessed without repositioning. This group of tracks is
called a cylinder.

Since the diameter of the track differs from one track to the other, so does the storage
capacity per track. Nevertheless, for the sake of simplicity, older drives, such as ST-506
(MFM and RLL) drives, had a fixed number of sectors per track. To perform a data
transfer, you needed to tell the drive which cylinder, head and sector to address. This
mode of addressing is thus called CHS addressing.

Modern disks have a varying number of sectors per track on different parts of the disk to
optimize the storage space, and for the same reason they normally store data on the disk
in much larger units than sectors. Externally, they translate the data into units of sectors,

concepts.mm,v v4.21 (2003/04/02 06:37:12)

34 Chapter 2: Before you install

and they also optionally maintain the illusion of *““tracks™ and *““heads,” though the values
have nothing to do with the internal organization of the disk. Nevertheless, BIOS setup
routines still give you the option of specifying information about disk drives in terms of
the numbers of cylinders, heads and sectors, and some insist on it. In reality, modern disk
drives address sectors sequentially, so-called Logical Block Addressing or LBA. CHS
addressing has an additional problem: various standards have limited the size of disks to
504 MB or 8 GB. We’ll look at that in more detail on page 39.

SCSI drives are a different matter: the system BIOS normally doesn’t know anything
about them. They are always addressed in LBA mode. It’s up to the host adapter to
interrogate the drive and find out how much space is on it. Typically, the host adapter has
a BIOS that interrogates the drive and finds its dimensions. The values it determines may
not be correct: the PC BIOS 1 GB address limit (see page 39) might bite you. Check
your host adapter documentation for details.

Disk partitioning

The PC BIOS divides the space on a disk into up to four partitions, headed by a partition
table. For Microsoft systems, each partition may be either a primary partition that
contains a file system (a *“drive” in Microsoft terminology), or an extended partition that
contains multiple file systems (or ““logical partitions™).

FreeBSD does not use the PC BIOS partition table directly. It maintains its own
partitioning scheme with its own partition table. On the PC platform, it places this
partition table in a single PC BIOS partition, rather in the same way that a PC BIOS
extended partition contains multiple “logical partitions.” It refers to PC BIOS partitions
as “slices.”

This double usage of the word partition is really confusing. In this book, | follow BSD usage, but
I continue to refer to the PC BIOS partition table by that name.

Partitioning offers the flexibility that other operating systems need, so it has been adopted
by all operating systems that run on the PC platform. Figure 2-1 shows a disk with all
four slices allocated. The Partition Table is the most important data structure. It contains
information about the size, location and type of the slices (PC partitions). The PC BIOS
allows one of these slices to be designated as active: at system startup time, its bootstrap
record is used to start the system.

The partition table of a boot disk also contains a Master Boot Record (MBR), which is
responsible for finding the correct slice and booting it. The MBR and the partition table
take up the first sector on disk, and many people consider them to be the same thing. You
only need an MBR on disks from which you boot the system.

concepts.mm,v v4.21 (2003/04/02 06:37:12)

Disk data layout 35

Master Boot Record
Partition Table
Partition (slice) 1
/dev/da0s1
Partition (slice) 2
/dev/da0s2
Partition (slice) 3
/dev/da0s3
Partition (slice) 4
/dev/da0s4

Figure 2-1: Partition table

PC usage designates at least one slice as the primary partition, the C drive. Another
slice may be designated as an extended partition that contains the other *“drives™ (all
together in one slice).

UNIX systems have their own form of partitioning which predates the PC and is not
compatible with the PC method. As a result, all versions of UNIX that can coexist with
Microsoft implement their own partitioning within a single slice (PC BIOS partition).
This is conceptually similar to an extended partition. FreeBSD systems define up to eight
partitions per slice. They can be used for the following purposes:

e A partition can be a file system, a structure in which UNIX stores files.

e |t can be used as a swap partition. FreeBSD uses virtual memory: the total addressed
memory in the system can exceed the size of physical memory, so we need space on
disk to store memory pages that don’t fit into physical memory. Swap is a separate
partition for performance reasons: you can use files for swap, like Microsoft does, but
it is much less efficient.

e The partition may be used by other system components. For example, the Vinum
volume manager uses special partitions as building blocks for volumes. We’ll look at
Vinum on page 221.

* The partition may not be a real partition at all. For example, partition c refers to the
entire slice, so it overlaps all the rest. For obvious reasons, the partitions that
represent file systems and swap space (a, b, and d through h) should not overlap.

Block and character devices

Traditional UNIX treats disk devices in two different ways. As we have seen, you can
think of a disk as a large number of sequential blocks of data. Looking at it like this
doesn’t give you a file system—it’s more like treating it as a tape. UNIX calls this kind
of access raw access. You’ll also hear the term character device.

concepts.mm,v v4.21 (2003/04/02 06:37:12)

36 Chapter 2: Before you install

Normally, of course, you want files on your disk: you don’t care where they are, you just
want to be able to open them and manipulate them. In addition, for performance reasons
the system keeps recently accessed data in a buffer cache. This involves a whole lot more
work than raw devices. These devices are called block devices.

By contrast with UNIX, Linux originally did not have character disk devices. Starting
with Release 4.0, FreeBSD has taken the opposite approach: there are now no user-
accessible block devices any more. There are a number of reasons for this:

* Having two different names for devices is confusing. In older releases of FreeBSD,
you could recognize block and character devices inanls -1 listing by the letters b
and c at the beginning of the permissions. For example, in FreeBSD 3.1 you might
have seen:

$1s -1 /dev/rwdOsla /dev/wdOsla
CrWr----- 1 root operator 3, 131072 Cct 31 19:
brwr----- 1 root operator 0, 131072 Cct 31 19:

ev/ rwdOsla
ev/ wdOsla

[6104)]

9 /d
9 /d
wd is the old name for the current ad disks. The question is: when do you use which
one? Even compared to UNIX System V, the rules were different.

* Nearly all access to disk goes via the file system, and user-accessible block devices
add complication.

* If you write to a block device, you don’t automatically write to the disk, only into
buffer cache. The system decides when to write to disk. If there’s a problem writing
to disk, there’s no way to notify the program that performed the write: it might even
already have finished. You can demonstrate this very effectively by comparing the
way FreeBSD and Linux write to a floppy disk. It takes 50 seconds to write a
complete floppy disk—the speed is determined by the hardware, so the FreeBSD
copy program finishes after 50 seconds. With Linux, though, the program runs only
for a second or two, after which it finishes and you get your prompt back. In the
meantime, the system flushes the data to floppy: you still need to wait a total of 50
seconds. If you remove the floppy in this time, you obviously lose data.

The removal of block devices caused significant changes to device naming. In older
releases of FreeBSD, the device name was the name of the block device, and the raw
(character) device had the letter r at the beginning of the name, as shown in the example
above.

Let’s look more carefully at how BSD names its partitions:

e Like all other devices, the device nodes, the entries that describe the devices, are
stored in the directory /dev. Unlike traditional UNIX and older releases of FreeBSD,
FreeBSD Release 5 includes the device file system or devfs, which creates the device
nodes automatically, so you don’t need to worry about creating them yourself.

¢ Next comes the name of the driver. As we have seen, FreeBSD has drivers for IDE
and friends (ad), SCSI disks (da) and floppy disks (fd). For SCSI disks, we now
have the name /dev/da.

concepts.mm,v v4.21 (2003/04/02 06:37:12)

Disk data layout 37

The original releases of FreeBSD had the abbreviation wd for IDE drives. This abbreviation
arose because the most popular of the original MFM controllers were made by Western
Digital. Others claim, however, that it’s an abbreviation for “Winchester Disk.” SCSI disks
were originally abbreviated sd. The name da comes from the CAM standard and is short for
direct access. BSD/OS, NetBSD and OpenBSD still use the old names.

Next comes the unit number, generally a single digit. For example, the first SCSI
disk on the system would normally be called /dev/da0.

Generally, the numbers are assigned during the boot probes, but you can reserve numbers for
SCSI disks if you want. This prevents the removal of a single disk from changing the
numbers of all subsequent drives. See page 574 for more details.

Next comes the partition information. The so-called strict slice name is specified by
adding the letter s (for slice) and the slice number (1 to 4) to the disk name. BSD
systems name partitions by appending the letters a to h to the disk name. Thus, the
first partition of the first slice of our disk above (which would typically be a root file
system) would be called /dev/da0Osla.

Some other versions of BSD do not have the same support for slices, so they use a
simpler terminology for the partition name. Instead of calling the root file system
/devidaOsla, they refer to it as /dev/daOa. FreeBSD supports this method as well—
it’s called compatibility slice naming. The compatibility slice is simply the first
FreeBSD slice found on the disk, and the partitions in this slice have two different
names, for example /dev/adOsla and /dev/adOa.

Partition ¢ is an exception: by convention, it represents the whole BSD disk (in this
case, the slice in which FreeBSD resides).

In addition, NetBSD reserves partition d for the entire disk, including other partitions.
FreeBSD no longer assigns any special significance to partition d.

Figure 2-2 shows a typical layout on a system with a single SCSI disk, shared between
Microsoft and FreeBSD. You’ll note that partition /dev/da0Os3c is missing from the
FreeBSD slice, since it isn’t a real partition. Like the PC BIOS partition table, the disk
label contains information necessary for FreeBSD to manage the FreeBSD slice, such as
the location and the lengths of the individual partitions. The bootstrap is used to load the

kernel into memory. We’ll look at the boot process in more detail in Chapter 29.

concepts.mm,v v4.21 (2003/04/02 06:37:12)

38 Chapter 2: Before you install
Master Boot Record
Partition Table
Bootstrap
Slice 1-PCBIOS primary | PC BIOS C drive
/dev/dalsl
Slice 2 - PC BIOS extended | | PCBIOSD drive /dev/da0s5
/dev/da0s2 PC BIOSE: drive /dev/da0s6
Slice 3 - FreeBSD
/dev/ida0s3
\ /dev/da0s3a: / file system

/dev/ida0s3b: swap
/dev/ida0s3d: unused
/devida0s3e: /usr file system
/dev/ida0s3f: unused
/dev/da0s3g: unused
/dev/da0s3h: unused

Figure 2-2: Partition table with FreeBSD file system

Table 2-1 gives you an overview of the devices that FreeBSD defines for this disk.

Table 2-1: Disk partition terminology

Slice name Usage

/ dev/ da0s1 First slice (PC BIOS C partition)

/ dev/ da0s2 Second slice (PC BIOS extended partition)

/ dev/ da0s3 Third slice (PC BIOS partition), FreeBSD

/ dev/ da0s5 First drive in extended PC BIOS partition (D)

/ dev/ da0Os6 Second drive in extended PC BIOS partition (E)

/ dev/ da0s3a | Third slice (PC BIOS partition), partition a (root file system)

/ dev/ daOs3b | Third slice (PC BIOS partition), partition b (swap space)

/ dev/ daOs3c | Third slice (PC BIOS partition), entire partition

/ dev/ da0s3e | Third slice (PC BIOS partition), partition e (/usr file system)

/ dev/ da0a Compatibility partition, root file system, same as
/dev/idaOsla

/ dev/ daOb Compatibility partition, swap partition, same as
/dev/ida0Oslb

/ dev/ daOc Whole BSD slice, same as /dev/da0slc

/ dev/ da0e Compatibility partition, usr file system, same as

/dev/daOsle

concepts.mm,v v4.21 (2003/04/02 06:37:12)

Disk data layout 39

Making the file systems

Armed with this knowledge, we can now proceed to make some decisions about how to
install our systems. First, we need to answer some questions:

* Do we want to share this disk with any other operating system?
* If so, do we have data on this disk that we want to keep?

If you already have another system installed on the disk, it is best to use that system’s
tools for manipulating the partition table. FreeBSD does not normally have difficulty
with partition tables created by other systems, so you can be reasonably sure that the
other system will understand what it has left. If the other system is Microsoft, and you
have a slice that you don’t need, use the MS-DOS FDISK program to free up enough
space to install FreeBSD. If you don’t have a slice to delete, you can use the FIPS
program to create one—see Chapter 5, Installing FreeBSD, page 52.

If for some reason you can’t use MS-DOS FDISK, for example because you’re installing
FreeBSD by itself, FreeBSD also supplies a program called fdisk that manipulates the
partition table. Normally you invoke it indirectly via the sysinstall program—see page
63.

Disk size limitations

Disk storage capacity has grown by several orders of magnitude since FreeBSD was first
released. As it did so, a number of limits became apparent:

e The first was the BIOS 504 MB limit on IDE disks, imposed by their similarity with
ST-506 disks. We discussed this on page 32. FreeBSD works around this issue by
using a loader that understands large disks, so this limit is a thing of the past.

e The next limit was the 1 GB limit, which affected some older SCSI host adapters.
Although SCSI drives always use LBA addressing internally, the BIOS needed to
simulate CHS addressing for Microsoft. Early BIOSes were limited to 64 heads, 32
sectors and 1024 tracks (64 x 32 x 1024 x 512 = 1 GB). This wouldn’t be such a
problem, except that some old Adaptec controllers offer a 1 GB compatibility option.
Don’t use it: it’s only needed for systems that were installed with the old mapping.

e After that, it’s logical that the next limit should come at 2 GB. There are several
different problems here. The only one that affects FreeBSD appears to be a bug in
some IDE controllers, which don’t work beyond this limit. All of them are old, and
IDE controllers don’t cost anything, so if you are sure you have this problem, you can
solve it by replacing the controller. Make sure you get one that supports DMA.

Other systems, including many versions of UNIX System V, have problems with this
limit because 2* is the largest number that can be represented in a 32 bit signed
integer. FreeBSD does not have this limitation, as file sizes are represented in 64 bit
quantities.

concepts.mm,v v4.21 (2003/04/02 06:37:12)

40 Chapter 2: Before you install

e At 4 GB, some IDE controllers have problems because they convert this to a CHS
mapping with 256 heads, which doesn’t work: the largest number is 255. Again, if
you’re sure this is the cause of problems you may be having, a new controller can
help.

* At 8 GB the CHS system runs out of steam. It can’t describe more than 1024
cylinders, 255 heads or 63 sectors. Beyond this size, you must use LBA
addressing—if your BIOS supports it.

* You’d expect more problems at 16 GB, but in fact the next limitation doesn’t come
until 128 GB. It’s due to the limitations in the original LBA scheme, which had only
28 bits of sector address. The new standard extends this to 48 bits, which should be
sufficient for the next few years. FreeBSD already uses the new standard, so this
limitation has never been an issue.

None of these problems affect FreeBSD directly. The FreeBSD bootstrap no longer uses
the system BIQS, so it is not bound by the restrictions of the BIOS and the controller. If
you use another operating system’s loader, however, you could have problems. If you
have the choice, use LBA addressing. Unfortunately, you can’t do so if the disk already
contains software that uses CHS addressing.

Other things to consider are:

* If you have other software already installed on the disk, and you want to keep it, do
not change the drive geometry. If you do so, you will no longer be able to run the
other software.

e Use LBA addressing if your hardware supports it.

e |If you have to use CHS, and you don’t have any other software on the drive, use the
drive geometry specified on the disk itself or in the manual, if you’re lucky enough to
get a manual with the disk. Many BIOSes remap the drive geometry in order to get
Microsoft to agree to work with the disk, but this can break FreeBSD disk mapping.
Check that the partition editor has these values, and change them if necessary.

* [fall else fails, install Microsoft in a small slice at the start of the disk. This creates a
valid partition table for the drive, and the installation software understands it. Once
you have started the installation process, the Microsoft partition has fulfilled its
purpose, and you can delete it again.

Display hardware

For years, UNIX users have worked with a single 80x25 character mode display. Many
people consider this extremely old-fashioned, but in fact the flexibility of the UNIX
system made this quite a good way to work. Still, there’s no doubt of the advantage of a
system that offers the possibility of performing multiple operations at once, and this is
one of the particular advantages of UNIX. But you normally need a terminal to interact
with each task. The best way to do this is with the X Window System. You might also
want to use a desktop, a set of programs that offer commonly used functionality.

concepts.mm,v v4.21 (2003/04/02 06:37:12)

Display hardware 41

In many other environments, the GUI and the graphical display are the same thing, and in
some systems, notably Microsoft, there is no clear distinction between the operating
system and the GUI. In UNIX, there are at least four levels of abstraction:

* The kernel runs the computer.

* X interfaces with the kernel and runs the display. It doesn’t display anything itself
except possibly a display background, by default a grey cross-hatch pattern.

* The window manager gives you control over the windows, such as moving, resizing
and iconification (often called minimizing in other systems). It provides the windows
with decorations like frames, buttons and menus.

e The desktop provides commonly used applications and ways of starting them. Many
people get by without a desktop by using window manager functionality.

Why do it this way? Because it gives you more choice. There are dozens of window
managers available, and also several desktops. You’re not locked in to a single product.
This has its down side, though: you must make the choice, and so setting up X requires a
little more thought than installing Microsoft.

The hardware

X runs on almost any hardware. That doesn’t mean that all hardware is equal, of course.
Here are some considerations:

The keyboard

X uses the keyboard a lot more than Microsoft. Make sure you get a good one.

The mouse

X prefers a three-button mouse, though it has provisions for up to five buttons. It can
support newer mice with rollers and side buttons, but most software does not use them.
Some mice, such as the Logitech wireless mouse, require undocumented sequences to
enable some buttons (the thumb button in the case of Logitech). X does not support this
button.

Get the best mouse you can. Prefer a short, light switch. It must have at least three
buttons. Accept no substitutes. Look for one with an easy-to-use middle button.
Frequently mice with both a middle button and a roller make it difficult to use the middle
button: it’s either misplaced, too heavy in action, or requires pressing on the roller (and
thus possibly turning it). All of these prove to be a nuisance over time.

Older mice connected via the serial port or a special card (“bus mouse’). Nowadays
most mice are so-called PS/2 mice, and USB mice are becoming more popular.

concepts.mm,v v4.21 (2003/04/02 06:37:12)

42 Chapter 2: Before you install

The display board and monitor

X enables you to do a lot more in parallel than other windowing environments. As a
result, screen real estate is at a premium. Use as big a monitor as you can afford, and as
high a resolution as your monitor can handle. You should be able to display a resolution
of 1600x1200 on a 21" monitor, 1280x1024 on a 17" monitor, and 1024x768 on a 14"
monitor. Premium quality 21" monitors can display 2048x1536. If that’s not enough,
we’ll look at multiple monitor configurations on page 523.

Laptop hardware

If you have a laptop, you don’t get any choice. The display has a native resolution which
you can’t change. Most laptops display lower resolutions by interpolation, but the result
looks much worse than the native resolution. LCD screens look crisper than CRT
monitors, so you can choose higher resolutions—modern laptops have display resolutions
of up to 1600x1200.

If you’re going to use your laptop for presentations with overhead projectors, make sure
you find one that can display both on the internal screen and also on the external output at
the same time, while maintaining a display resolution of 1024x768: not many overhead
projectors can display at a higher resolution.

Compag/Digital Alpha machines

FreeBSD also supports computers based on the Compaq (previously Digital) AXP
processor, commonly called Alpha. Much of the information above also applies to the
Alpha; notable exceptions are:

e Much of the PC hardware mentioned above was never supplied with the Alpha. This
applies particularly to older hardware.

e The PC BIOS is very different from the Alpha console firmware. We’ll look at that
below.

* Disk partitioning is different. FreeBSD does not support multiple operating systems
on the Alpha platform.

In this section we’ll look at some additional topics that only apply to the Alpha.

FreeBSD requires the SRM console firmware, which is used by Tru64 (formerly known
as Digital UNIX). It does not work with the ARC firmware (sometimes called
AlphaBIOS) used with Microsoft NT. The SRM firmware runs the machine in 64 bit
mode, which is required to run FreeBSD, while the ARC firmware sets 32 bit mode. If
your system is currently running Tru64, you should be able to use the existing SRM
console.

The SRM console commands differ from one version to another. The commands
supported by your version are described in the hardware manual that was shipped with
your system. The console hel p command lists all supported console commands. If your

concepts.mm,v v4.21 (2003/04/02 06:37:12)

Compag/Digital Alpha machines 43

system has been set to boot automatically, you must type Ctrl-C to interrupt the boot
process and get to the SRM console prompt (>>>). If the system is not set to boot
automatically, it displays the SRM console prompt after performing system checks.

All SRM console versions support the set and show commands, which operate on
environment variables that are stored in non-volatile memory. The show command lists
all environment variables, including those that are read-only.

Alpha’s SRM is picky about which hardware it supports. For example, it recognizes
NCR SCSI boards, but it doesn’t recognize Adaptec boards. There are reports of some
Alphas not booting with particular video boards. The CGENER C kernel configuration
(usr/src/sys/alpha/conf/GENERIC) shows what the kernel supports, but that doesn’t
mean that the SRM supports all the devices. In addition, the SRM support varies from
one machine to the next, so there’s a danger that what’s described here won’t work for
you.

Other differences for Alpha include:

* The disk layout for SRM is different from the layout for Microsoft NT. SRM looks
for its bootstrap where Microsoft keeps its partition table. This means that you
cannot share a disk between FreeBSD and Microsoft on an Alpha.

e Most SRM-based Alpha machines don’t support IDE drives: you’re limited to SCSI.

The CD-ROM distribution

The easiest way to install FreeBSD is from CD-ROM. You can buy them at a discount
with the order form at the back of the book, or you can download an 1SO image from
ftp.FreeBSD.org and create your own CD-ROM. There are a number of CD-ROMs in a
FreeBSD distribution, but the only essential one is the first one, the Installation CD-
ROM. It contains everything you need to install the system itself. The other CD-ROMs
contain mainly installable packages. Individual releases may contain other data, such as a
copy of the source code repository. We’ll take a more detailed look at the installation
CD-ROM here.

Installation CD-ROM

The Installation CD-ROM contains everything you need to install FreeBSD on your
system. It supplies two categories of installable software:

* The base operating system is stored as gzipped tar archives in the directories base,
boot, catpages, compatlx, compat20, compat21, compat3x, compat4x, des, dict, doc,
games, info, manpages and proflibs. To facilitate transport to and installation from
floppy, the archives have been divided into chunks of 1.44 MB. For example, the
only required set is in the files base/base.??, in other words, all files whose names
start with base. and contain two additional characters. This specifically excludes the
files base.inf and base.mtree, which are not part of the archive.

concepts.mm,v v4.21 (2003/04/02 06:37:12)

44

Chapter 2: Before you install

The directory packages/All contains ported, installable software packages as gzipped
tar archives. They are designed to be installed directly on a running system, so they
have not been divided into chunks. Due to size restrictions on the CD-ROM, this
directory does not contain all the packages: others are on additional CD-ROMs.

packages/Latest contains the latest versions of the packages.

packages/All contains a large subset of the Ports Collection. To make it easier for
you to find your way around them, symbolic links to appropriate packages have been
placed in the directories archivers, astro, audio, benchmarks, biology, cad, chinese,
comms, converters, databases, deskutils, devel, editors, emulators, french, ftp, games,
german, graphics, hebrew, irc, japanese, java, korean, lang, mail, math, mbone, misc,
net, news, palm, picobsd, plan9, print, russian, science, security, shells, sysutils,
templates, textproc, ukrainian, viethamese, www, x11, x11-clocks, x11-fm, x11-fonts,
x11-servers, x11-toolkits and x11-wm. Don’t get the impression that these are
different packages—they are really pointers to the packages in All. You will find a
list of the currently available packages in the file packages/INDEX.

We’ll look at the Ports Collection in more detail in Chapter 9.

Table 2-2 lists typical files in the main directory of the installation CD-ROM.

Table 2-2: The installation CD-ROM

File Contents

ERRATA.TXT A list of last-minute changes. Read this file. It can save

you a lot of headaches.

HARDWARE.TXT | A list of supported hardware.
INSTALL.TXT Information about installing FreeBSD.
README.TXT The traditional first file to read. It describes how to use the

other files.

RELNOTESTXT Release notes.
base Installation directory: the base distribution of the system.

This is the only required directory for installation. See
Chapter 5, Installing FreeBSD, for more detail.

boot Files related to booting, including the installation kernel.
catpages Pre-formatted man pages. See page 13 for more detail.
cdrom.inf Machine-readable file describing the CD-ROM contents for

the benefit of sysinstall.

compat1x Directory containing libraries to maintain compatibility

with Release 1.X of FreeBSD.

compat20 Directory containing libraries to maintain compatibility

with Release 2.0 of FreeBSD.

concepts.mm,v v4.21 (2003/04/02 06:37:12)

The CD-ROM distribution

File Contents

compat21 Directory containing libraries to maintain compatibility
with Release 2.1 of FreeBSD.

compat22 Directory containing libraries to maintain compatibility
with Release 2.2 of FreeBSD.

compat3x Directory containing libraries to maintain compatibility
with Release 3 of FreeBSD.

compat4x Directory containing libraries to maintain compatibility
with Release 4 of FreeBSD.

crypto Installation directory: cryptographic software.

dict Installation directory: dictionaries.

doc Installation directory: documentation.

dochook.css
filename.txt
floppies
games

info

kernel
manpages
packages

ports
proflibs

src
tools

Style sheet for documentation.

A list of all the files on this CD-ROM.

A directory containing installation floppy disk images.
Installation directory: games.

Installation directory: GNU info documents.

The boot kernel.

A directory containing the man pages for installation.

A directory containing installable versions of the Ports
Collection. See page 168.

The sources for the Ports Collection. See Chapter 9, The
Ports Collection, page 167.

A directory containing profiled libraries, useful for
identifying performance problems when programming.

A directory containing the system source files.

A directory containing tools to prepare for installation from
another operating system.

The .TXT files are also supplied in HTML format with a .HTM suffix.

The contents of the CD-ROM will almost certainly change from one release to another.

Read README.TXT for details of the changes.

concepts.mm,v v4.21 (2003/04/02 06:37:12)

46 Chapter 2: Before you install

Live File System CD-ROM

Although the installation CD-ROM contains everything you need to install FreeBSD, the
format isn’t what you’d like to handle every day. The distribution may include a Live File
System CD-ROM, which solves this problem: it contains substantially the same data
stored in file system format in much the same way as you would install it on a hard disk.
You can access the files directly from this CD-ROM.

CVS Repository CD-ROM

One of the disks may also contain the “CVS Repository.” The repository is the master
source tree of all source code, including all update information. We’ll look at it in more
detail in Chapter 31, Keeping up to date, page 581.

The Ports Collection CD-ROMs

An important part of FreeBSD is the Ports Collection, which comprises many thousand
popular programs. The Ports Collection automates the process of porting software to
FreeBSD. A combination of various programming tools already available in the base
FreeBSD installation allows you to simply type make to install a given package. The
ports mechanism does the rest, so you need only enough disk space to build the ports you
want. We’ll look at the Ports Collection in more detail in Chapter 9. The files are spread
over a number of CD-ROMs:

* You’ll find the ports, the instructions for building the packages, on the installation
CD-ROM.

* The base sources for the Ports Collection fill more than one CD-ROM, even though
copyright restrictions mean that not all sources may be included: some source files
are freely distributable on the Net, but may not be distributed on CD-ROM.

Don’t worry about the missing sources: if you’re connected to the Internet, the Ports
Collection automatically retrieves the sources from an Internet server when you type
make.

* You’ll find the most popular packages, the precompiled binaries of the ports, on the
Installation CD-ROM. A full distribution contains a number of other CD-ROMs with
most of the remaining packages.

concepts.mm,v v4.21 (2003/04/02 06:37:12)

In this chapter:

* Making things easy
for yourself

* FreeBSD on a disk
with free space

* FreeBSD shared with
Microsoft

* Configuring XFree86

Quick installation

In Chapters 4 to 6 we’ll go into a lot of detail about how to install the system. Maybe this
is too much detail for you. If you’re an experienced UNIX user, you should be able to get
by with significantly less reading. This chapter presents checklists for some of the more
usual kinds of installation. Each refers you to the corresponding detailed descriptions in
Chapters 4 through 6.

On the following pages we’ll look at the simplest installation, where FreeBSD is the only
system on the disk. Starting on page 49 we’ll look at sharing the disk with Microsoft,
and on page 50 we’ll look at how to install XFree86. You may find it convenient to
photocopy these pages and to mark them up as you go along.

Making things easy for yourself

It is probably easier to install FreeBSD than any other PC operating system, including
Microsoft products. Well, most of the time, anyway. Some people spend days trying to
install FreeBSD, and finally give up. That happens with Microsoft’s products as well, but
unfortunately it happens more often with FreeBSD.

Now you’re probably saying, “That doesn’t make sense. First you say it’s easier to
install, then you say it’s more likely to fail. What’s the real story?”

As you might expect, the real story is quite involved. In Chapter 2, Before you install, |
went into some of the background. Before you start, let’s look at what you can do to
make the installation as easy as possible:

quickinstall.mm,v v4.11 (2003/04/09 19:26:40) 47

48 Chapter 3: Quick installation

e Use known, established hardware. New hardware products frequently have undocu-
mented problems. You can be sure that they work under Microsoft, because the
manufacturer has tested them in that environment. In all probability, he hasn’t tested
them under any flavour of UNIX, let alone FreeBSD. Usually the problems aren’t
serious, and the FreeBSD team solves them pretty quickly, but if you get the
hardware before the software is ready, you’re the guinea pig.

At the other end of the scale, you can have more trouble with old hardware as well.
It’s not as easy to configure, and old hardware is not as well supported as more recent
hardware.

* Perform a standard installation. The easiest way to install FreeBSD is by booting
from a CD-ROM and installing on an empty hard disk from the CD-ROM. If you
proceed as discussed in Chapter 5, Installing FreeBSD, you shouldn’t have any
difficulty.

* If you need to share your hard disk with another operating system, it’s easier to install
both systems from scratch. If you do already have a Microsoft system on the disk,
you can use FIPS (see page 52) to make space for it, but this requires more care.

* If you run into trouble, RTFM.! I’ve gone to a lot of trouble to anticipate the problems
you might encounter, and there’s a good chance that you will find something here to
help.

e If you do all this, and it still doesn’t work, see page 17 for ways of getting external
help.

FreeBSD on a disk with free space

This procedure applies if you can install FreeBSD without first having to make space on
disk. Perform the following steps:

O Boot from CD-ROM. Most systems support booting from CD-ROM, but if yours
doesn’t:

e Create two boot floppies by copying the images /cdrom/floppies/kern.flp and
/cdrom/floppies/mfsroot.flp to 3%2" diskettes. Refer to page 89 for more details.

¢ Insert the CD-ROM in the drive before booting.

e Boot from the kern.flp floppy. After loading, insert the mfsroot.flp floppy when
the system prompts you to do so, then press Enter.

If you have a larger floppy, such as 2.88 MB or LS-120, you can copy the image
/cdrom/floppies/boot.flp to it and boot from it. In this case you don’t need to change
disks.

1. Hackerspeak for “Read The Manual”—the F is usually silent.
quickinstall.mm,v v4.11 (2003/04/09 19:26:40)

FreeBSD on a disk with free space 49

Select the Qust ominstallation. Refer to page 60.

What you do in the partition editor depends on whether you want to share the drive
with another operating system or not:

e If you want to use the drive only for FreeBSD, delete any existing slices, and
allocate a single FreeBSD slice that takes up the entire disk. On exiting from the
partition editor, select the Sandard MBR. Refer to page 66.

e If you want to share the disk with other systems, delete any unwanted slices and
use them for FreeBSD. On exiting from the partition editor, select the BootMgr
MBR. Refer to page 66.

In the disk label editor, delete any existing UNIX partitions. Create the file systems
manually. If you don’t have any favourite layout, create a root file system with 4
GB, a swap partition with at least 512 MB (make sure it’s at least 1 MB larger than
the maximum memory you intend to install in your system). Allocate a /home file
system as large as you like, as long as it can fit on a single tape when backed up. If
you have any additional space, leave it empty unless you know what to use it for.
See page 68 for the rationale of this approach, which is not what sysinstall
recommends.

Install the complete system, including X and the Ports Collection. This requires
about 1 GB of disk space. Refer to page 75 if you want to limit it.

Select CD-ROM as installation medium. Refer to page 76.
Give final confirmation. The system will be installed. Refer to page 77.

After installation, set up at least a user ID for yourself. Refer to page 144.

FreeBSD shared with Microsoft

If you have a disk with Microsoft installed on only part of the disk, and you don’t want to
change the partition layout, you can proceed as in the instructions above. This is pretty
unusual, though: normally Microsoft takes the whole disk, and it’s difficult to persuade it
otherwise. To install FreeBSD on a disk that currently contains a single Microsoft
partition taking up the entire disk, go through the following steps:

a

Make a backup! There’s every possibility of erasing your data, and there’s
absolutely no reason why you should take the risk.

If you have an old machine with an IDE disk larger than 504 MB, you may run into
problems. Refer to page 32 for further details.

Boot Microsoft and repartition your disk with FIPS Refer to page 52.
Insert the CD-ROM in the drive before booting.

quickinstall.mm,v v4.11 (2003/04/09 19:26:40)

50

Chapter 3: Quick installation

Shut the machine down and reboot from the FreeBSD CD-ROM. If you have to
boot from floppy, see page 48 for details.

Select the Qust ominstallation.

In the partition editor, delete only the second primary Microsoft partition. The first
primary Microsoft partition contains your Microsoft data, and if there is an extended
Microsoft partition, it will also contain your Microsoft data.

Create a FreeBSD slice in the space that has been freed. Refer to page 63.
On exiting from the partition editor, select the BootMgr MBR. Refer to page 66.

In the disk label editor, delete any existing UNIX partitions. Create the file systems
manually. If you don’t have any favourite layout, create a root file system with 4
GB, a swap partition with at least 512 MB (make sure it’s at least 1 MB larger than
the maximum memory you intend to install in your system). Allocate a /home file
system as large as you like, as long as it can fit on a single tape when backed up. If
you have any additional space, leave it empty unless you know what to use it for.
See page 68 for the rationale of this approach, which is not what sysinstall
recommends.

Before leaving the disk label editor, also select mount points for your DOS partitions
if you intend to mount them under FreeBSD. Refer to page 74.

Install the complete system, including X and the Ports Collection. This requires
about 1 GB of disk space. Refer to page 75 if you want to limit it.

Select CD-ROM as installation medium. Refer to page 76.
Give final confirmation. The system will be installed. Refer to page 77.

After installation, set up at least a user ID for yourself. Refer to page 144.

Configuring XFree86

You can configure XFree86 during installation or after reboot.

a

Make sure your mouse is connected to the system at boot time. Depending on the
hardware, if you connect it later, it may not be recognized.

If you have already rebooted the machine, log in asr oot and restart sysinstall.

Select the sysinstall Gonfiguration menu, XFree86 and then xf86¢fg, and
follow the instructions. See page 102 for further details.

Select the Deskt op menu and install the window manager of your choice. See page
108 for further discussion.

quickinstall.mm,v v4.11 (2003/04/09 19:26:40)

In this chapter:

e Separate disks

e Sharing a disk

e Sharing with Linux or
another BSD

* Repartitioning with
FIPS

Shared OS
Installation

In many cases, you won’t want to install FreeBSD on the system by itself: you may need
to use other operating systems as well. In this chapter, we’ll look at what you need to do
to prepare for such an installation. If you’re only running FreeBSD on the machine, you
don’t need to read this chapter, and you can move on to Chapter 5, Installing FreeBSD.

Before you start the installation, read this chapter carefully.
It's easy to make a mistake, and one of the most frequent results
of mistakesisthe total loss of all data on the hard disk.

Currently, only the ia32 (Intel) port of FreeBSD is capable of sharing with other
operating systems. We’ll concentrate on how to share your system with Microsoft,
because that’s both the most difficult and the most common, but most of this chapter
applies to other operating systems as well. You may want to refer to the discussion of
Microsoft and FreeBSD disk layouts on page 34.

Separate disks

The first question is: do you need to share a disk between FreeBSD and the other
operating system? It’s much easier if you don’t have to. In this section, we’ll look at
what you need to do.

Many operating systems will only boot from the first disk identified by the BIOS, usually
called the C disk in deference to Microsoft. FreeBSD doesn’t have this problem, so the

shareinstall.mm,v v4.11 (2003/04/02 06:38:41) 51

Separate disks 52

easiest thing is to install FreeBSD on the entire second disk. BIOS restrictions usually
make it difficult to boot from any but the first two disks.

In this case, you don’t really need to do anything special, although it’s always a good idea
to back up your data first. Install FreeBSD on the second disk, and choose the Boot
Manager option in the partition editor (page 64). This will then give you the choice of
booting from the first or second disk. Note that you should not change the order of disks
after such an installation; if you do, the system will not be able to find its file systems
after boot.

Sharing a disk

If you intend to share a disk between FreeBSD and another operating system, the first
question is: is there enough space on the disk for FreeBSD? How much you need
depends on what you want to do with FreeBSD, of course, but for the sake of example
we’ll take 120 MB as an absolute minimum. In the following section, we’ll consider
what to do if you need to change your partitions. If you already have enough space for a
FreeBSD partition (for example, if you have just installed Microsoft specifically for
sharing with FreeBSD, and thus have not filled up the disk), continue reading on page 66.

Sharing with Linux or another BSD

Sharing with other free operating systems is relatively simple. You still need to have
space for FreeBSD, of course, and unlike Microsoft, there are no tools for shrinking
Linux or BSD file systems: you’ll have to remove them or recreate them. You can find
some information about sharing with Linux in the mini-Howto at
http://mww.linux.org/docs/I dp/howto/mini/Linux+ FreeBSD.html.

NetBSD and OpenBSD file systems and slices are very similar to their FreeBSD
counterparts. They’re not identical, however, and you may find that one of the systems
recognizes the partition of another system and complains about it because it’s not quite
right. For example, NetBSD has a d partition that can go outside the boundary of the
slice. FreeBSD does not allow this, so you get a harmless error message.

Repartitioning with FIPS

Typically, if you’ve been running Microsoft on your machine, it will occupy the entire
disk. If you need all this space, of course, there’s no way to install another operating
system as well. Frequently, though, you’ll find that you have enough free space in the
partition. Unfortunately, that’s not where you want it: you want the space in a new
partition. There are a number of ways to do so:

shareinstall.mm,v v4.11 (2003/04/02 06:38:41)

53 Chapter 4: Shared OS Installation

* You can reinstall the software. This approach is common in the Microsoft world, but
FreeBSD users try to avoid it.

* You can use FIPS to shrink a Microsoft partition, leaving space for FreeBSD. FIPS
is a public domain utility, and it is included on the FreeBSD CD-ROM.

* If you can’t use FIPS, use a commercial utility like PartitionMagic. This is not
included on the CD-ROMs, and we won’t discuss it further.

In the rest of the section, we’ll look at how to shrink a partition with FIPS. If you do it
with PartitionMagic, the details are different, but the principles are the same. In
particular:

Before repartitioning your disk, make a backup. You can shoot
yourself in the foot with this method, and the result will almost
invariably be loss of data.

If you’ve been running Microsoft on your system for any length of time, the data in the
partition will be spread all around the partition. If you just truncate the partition, you’ll
lose a lot of data, so you first need to move all the data to the beginning of the partition.
Do this with the Microsoft defragmentation utility. Before proceeding, consider a few
gotchas:

* The new Microsoft partition needs to be big enough to hold not only the current data,
but also anything you will want to put in it in the future. If you make it exactly the
current size of the data, it will effectively be full, and you won’t be able to write
anything to it.

e The second partition is also a Microsoft partition. To install FreeBSD on it, you need
to convert it into a FreeBSD partition.

e FIPS may result in configuration problems with your Microsoft machine. Since it
adds a partition, any automatically assigned partitions that follow will have a different
drive letter. In particular, this could mean that your CD-ROM drive will “move.”
After you delete the second Microsoft partition and change it into a FreeBSD
partition, it will “move” back again.

For further information, read the FIPS documentation in /cdrom/tools/fips.doc. In
particular, note these limitations:

* FIPS works only with Hard Disk BIOSes that use interrupt 0x13 for low-level hard
disk access. This is generally not a problem.

* FIPS does not split partitions with 12 bit FATs, which were used by older versions of
Microsoft. These are less than 10 MB in size and thus too small to be worth splitting.

* FIPS splits only Microsoft partitions. The partition table and boot sector must
conform to the MS-DOS 3.0+ or Windows 95 conventions. This is marked by the
system indicator byte in the partition table, which must have the value 4 (16 bit sector
number) or 6 (32 bit sector number). In particular, it will not split Linux or Windows
2000 and later partitions.

shareinstall.mm,v v4.11 (2003/04/02 06:38:41)

Repartitioning with FIPS 54

* FIPS does not yet work on extended Microsoft partitions.
e FIPS needs a free partition entry. It will not work if you already have four partitions.

* FIPS will not reduce the original partition to a size of less than 4085 clusters,
because this would involve rewriting the 16 bit FAT to a 12 bit FAT.

Repartitioning—an example

In this section, we’ll go through the mechanics of repartitioning a disk. We’ll start with a
disk containing a single, complete Microsoft system.

First, run the Microsoft error check utility on the partition you want to split. Make sure
no *“dead” clusters remain on the disk.

Next, prepare a bootable floppy. When you start FIPS you will be given the opportunity
to write backup copies of your root and boot sector to a file on drive A:. These will be
called ROOTBOQT.00x, where x represents a digit from O to 9. If anything goes wrong
while using FIPS you can restore the original configuration by booting from the floppy
and running RESTORRB.

If you use FIPS more than once (this is normally not necessary, but it might happen), your floppy
will contain more than one ROOTBOOT file. RESTORRB lets you choose which configuration
file to restore. The file RESTORRB.000 contains your original configuration. Try not to confuse
the versions.

Before starting FIPS you must defragment your disk to ensure that the space to be used
for the new partition is free. If you’re using programs like IMAGE or MIRROR, note that
they store a hidden system file with a pointer to your mirror files in the last sector of the
hard disk. You must delete this file before using FIPS It will be recreated the next time
you run MIRROR. To delete it, in the root directory enter:

Q:> attrib -r -s -h image.idx for IMAGE
Q:> attrib -r -s -h mrorsav.fil for MIRROR

Then delete the file.

If FIPS does not offer as much disk space for creation of the new partition as you expect,
this may mean that:

* You still have too much data in the remaining partition. Consider making the new
partition smaller or deleting some of the data. If you delete data, you must
defragment and run FIPS again.

* There are hidden files in the space of the new partition that have not been moved by
the defragmentation program. Make sure which program they belong to. If afile is a
swap file of some program (for example NDQS) it is possible that it can be safely
deleted (and will be recreated automatically later when the need arises). See your
manual for details.

shareinstall.mm,v v4.11 (2003/04/02 06:38:41)

55 Chapter 4: Shared OS Installation

If the file belongs to some sort of copy protection, you must uninstall the program to
which it belongs and reinstall it after repartitioning.

If you are running early versions of MS-DOS (before 5.0), or
another operating system, such OS/2, or you are using pro-
grams like Stacker, SuperStor, or Doublespace, read the FIPS
documentation for other possible problems.

Running FIPS
After defragmenting your Microsoft partition, you can run FIPS;
C\>D change to CD-ROM
D\> cd \tool s make sure you're in the tools directory
D\tool s\> fips and start the FIPS program
. alot of copyright information omitted
Press any key do what the computer says

Wi ch Drive (1-0x80/ 2=0x81) ?

The message Which Drive may seem confusing. It refers to BIOS internal numbering.
Don’t worry about it: if you want to partition the first physical drive in the system, (C),
enter 1, otherwise enter 2. Like the BIOS, FIPS handles only two hard disks.

If you start FIPS under Windows, it will complain and tell you to boot from a floppy
disk. It won’t stop you from continuing, but it is a Bad Idea to do so.

Next, FIPS reads the root sector of the hard disk and displays the partition table:

| | Sart | | End | Start | Nunber of|
Part. | boot abl e| Head Oyl . Sect or| Syst enj Head Oyl . Sect or| Sect or | Sectors | MB
e [N N
1 | yes | 1 0 1| Och| 239 2047 63| 63| 40083057| 19571
2 | no | 0 0 0| 00h| 0 0 0| 0| 0 0
3 | no | 0 0 0| 00h| 0 0 0| 0| 0| 0
4 | no | 0 0 0| 00h| 0 0 0| o] 0| 0

This shows that only the first partition is occupied, that it is bootable, and that it occupies
the whole disk (19571 MB, from Cylinder 0, Head 1, Sector 1 to Cylinder 2047, Head
238, Sector 63). It also claims that this makes 40083057 sectors. It doesn’t: the cylinder
number has been truncated, and FIPS complains about a partition table inconsistency,
which it fixes. After this, we have:

| | Sart | | End | Start | Nunber of|
Part. | boot abl e| Head Gyl . Sect or| Syst enj Head Gyl . Sect 0r| Sect or | Sectors | MB
e [E R
1 | yes | 1 0 1| 0ch| 239 2650 63| 63| 40083057| 19571
2 | no | 0 0 0| 00h| 0 0 o]l o]l 0 0
3 | no | 0 0 0| 00h| 0 0 o]l o]l o]l 0
4 no| 0O 0O 00 oohj 0 ©]] 0 o

Don’t worry about the “bootable” flag here—we’ll deal with that in the FreeBSD
installation. First, FIPS does some error checking and then reads and displays the boot
sector of the partition:

shareinstall.mm,v v4.11 (2003/04/02 06:38:41)

Repartitioning with FIPS 56

Checki ng boot sector ... K

Press any Key do what it says
Bytes per sector: 512

Sectors per cluster: 32

Reserved sectors: 32

Nunber of FATs: 2

Nunber of rootdirectory entries: 0
Nunber of sectors (short): 0

Medi a descriptor byte: f8h

Sectors per FAT: 9784

Sectors per track: 63

Drive heads: 240

H dden sectors: 63

Nunber of sectors (long): 40083057
Physi cal drive nunber: 80h

S gnature: 29h

After further checking, FIPS asks you if you want to make a backup floppy. Enter your
formatted floppy in drive A= and make the backup. Next, you see:

Enter start cylinder for new partition (35 - 2650):
Wse the cursor keys to choose the cylinder, <enter> to continue
ad partition Gyl i nder New Partition

258.4 MB 35 19313.4 MB

Use the Cursor Left and Cursor Right keys to adjust the cylinder number at which the
new partition starts. You can also use the keys Cursor Up and Cursor Down to change
in steps of ten cylinders. FIPS updates the bottom line of the display to show the new
values selected. Initially, FIPS chooses the smallest possible Microsoft partition, so
initially you can only increase the size of the old partition (with the Cursor Right key).
When you’re happy with the sizes, press Enter to move on to the next step.

Be very sure you’re happy before you continue. If you make the
first partition too small, there is no way to make it larger again.
On the other hand, if you make it too large, you can split it
again and then use fdisk or MS-DOS FDISK to remove the
superfluous partitions.

In this example, we choose equal-sized partitions:

ad partition Oyl i nder New Partition
251.5 MB 511 251.5 MB
(pressed Enter)
| | Sart | | End | Start | Nunber of|

Part. | boot abl e| Head Gyl . Sector| SystenjHead Gyl . Sector| Sector |Sectors | MB
memaa [. E S - e [- [[
1 | yes | 0 0 1 o6h| 15 511 63| 0| 515088| 251
2 | no | 0 512 1 0o6h| 15 1023 63| 0| 515088| 251
3| n| 0 O o0 oohf O O 0l 0l o o
4 | no | 0 0 0| 00h| 0 0 0] 0] 0| 0

Do you want to continue or reedit the partition table (c/r)? c

To ensure that the partition is recognized, reboot immediately. Make sure to disable all
programs that write to your disk in CONFIG.SYS and AUTOEXEC.BAT before
rebooting. It might be easier to to rename the files or to boot from floppy. Be particularly
careful to disable programs like MIRROR and IMAGE, which might get confused if the

shareinstall.mm,v v4.11 (2003/04/02 06:38:41)

57 Chapter 4: Shared OS Installation

partitioning is not to their liking. After rebooting, use CHKDSK or Norton Disk Doctor
to make sure the first partition is OK. If you don’t find any errors, you may now reboot
with your normal CONFIG.SYS and AUTOEXEC.BAT. Start some programs and make
sure you can still read your data.

After that, you have two valid Microsoft partitions on your disk. We’ll look at what to do
with them in the next chapter. The specific differences from a dedicated install are on
page 66, but you’ll need to start from the beginning of the chapter to do the install.

shareinstall.mm,v v4.11 (2003/04/02 06:38:41)

In this chapter:

* Booting from CD-
ROM

* Installing on the Intel
i386 architecture

* Booting to sysinstall

* Setting installation
options

e Partitioning the disk

* Defining file systems

* Selecting
distributions

* Selecting the
installation medium

e Performing the
installation

= Installing FreeBSD

* Upgrading an old
version of FreeBSD

e How to uninstall
FreeBSD

e |f things go wrong

e Alternative
installation methods

In the previous chapters, we’ve looked at preparing to install FreeBSD. In this chapter,
we’ll finally do it. If you run into trouble, I’ll refer you back to the page of Chapter 2
which discusses this topic. If you want to install FreeBSD on the same disk as Microsoft
or another operating system, you should have already read Chapter 4, Shared OS
Installation.

The following discussion relates primarily to installation on the i386 architecture. See
page 78 for differences when installing on the AXP (“Alpha’) processor.

Installing on the Intel 1386 architecture

To install FreeBSD you need the software in a form that the installation software
understands. You may also need a boot diskette. Nowadays you will almost invariably
install from CD-ROM, so we’ll assume that medium. On page 85, we’ll look at some
alternatives: installation from floppy disk or via the network.

The first step in installing FreeBSD is to start a minimal version of the operating system.
The simplest way is to boot directly from the installation CD-ROM. If your system
doesn’t support this kind of boot, boot from floppy. See page 85 for more details.

The description in this chapter is based on a real-life installation on a real machine.
When you install FreeBSD on your machine, a number of things will be different,

install.mm,v v4.21 (2003/04/02 06:39:30) 59

Installing on the Intel i386 architecture 60

depending on the hardware you’re running, the way you’re installing the software and the
release of FreeBSD you’re installing. Nevertheless, you should be able to recognize what
is going on.

Booting from CD-ROM is mainly a matter of setting up your system BIOS and possibly
your SCSI BIOS. Typically, you perform one of the following procedures:

* If you’re booting from an IDE CD-ROM, you enter your system BIOS setup routines
and set the Boot sequence parameter to select CD-ROM booting ahead of hard disk
booting, and possibly also ahead of floppy disk booting. A typical sequence might be
ROV C A

e On most machines, if you’re booting from a SCSI CD-ROM, you also need a host
adapter that supports CD-ROM boot. Set up the system BIOS to boot in the
sequence, say, SCSI, A C. On typical host adapters (such as the Adaptec 2940
series), you set the adapter to enable CD-ROM booting, and set the ID of the boot
device to the ID of the CD-ROM drive.

These settings are probably not what you want to use for normal operation. If you leave
the settings like this, and there is a bootable CD-ROM in your CD-ROM drive, it always
boots from that CD-ROM rather than from the hard disk. After installation, change the
parameters back again to boot from hard disk before CD-ROM. See your system
documentation for further details.

Booting to sysinstall

The boot process itself is very similar to the normal boot process described on page 524.
After it completes, though, you are put into the sysinstall main menu.

/stand/sysinstall Main Menu
Welcome to the FreeBSD installation and configuration tool. Please
select one of the options below by using the arrow keys or typing the
first character of the option name you're interested in. Invoke an
option by pressing [ENTER] or LTAB-ENTER] to exit the installation.

Quick start — How to use this menu syste
Standard Begin a standard installation (recommended)
Express Begin a quick installation (for the impatient)
Custom Begin a custom installation (for experts)
Configure Do post-install configuration of FreeBSD
Doc Installation instructions. README. etc.
Keymap Select keyboard type
Options View/Set various installation options
Fixit Enter repair mode with CDROM/floppy or start shell
Upgrade Upgrade an existing system
Load Config Load default install configuration
Index Glossary of functions

[Eelect] X Exit Install
[Press F1 for Installation Guide 1

Figure5-1: Main installation menu

install.mm,v v4.21 (2003/04/02 06:39:30)

61 Chapter 5: Installing FreeBSD

Figure 5-1 shows the main sysinstall menu. sysinstall includes online help at all stages.
Simply press F1 and you will get appropriate help. Also, if you haven’t been here before,
the Doc menu gives you a large part of the appropriate information from the handbook.

Kinds of installation

To get started, select one of Standard, Express or Custom. The names imply that the
Sandard installation is the best way to go, the Express installation is for people in a
hurry, and Custom installation is for when you want to specify exactly what is to be done.

In fact, the names are somewhat misleading. There isn’t really that much difference
between the three forms of installation. They all perform the same steps:

* Possibly set up options.
e Set up disk partitions, which we’ll discuss in the next section.

e Set up file systems and swap space within a FreeBSD slice, which we start on page
67.

* Choose what you want to install, which we discuss on page 75.
* Choose where you want to install it from. We’ll look at this on page 76.
* Actually install the software. We’ll treat this on page 77.

We looked at disk partitions and file systems on page 34. We’ll look at the other points
when we get to them.

So what’s the difference between the kinds of installation?

e The Standard installation takes you through these steps in sequence. Between each
step, you get a pop-up window that tells you what is going to happen next.

e The Express installation also takes you through these steps in sequence. The main
difference is that you don’t get the pop-up window telling you what is going to
happen next. This can save a little time. If you do want the information, similar
information is available with the F1 key.

* The Custom installation returns you to its main menu after each step. It’s up to you
to select the next step. You can also select another step, or go back to a previous one.
Like the Express installation, you don’t get the pop-up information window, but you
can get more information with the F1 key.

The big problem with Standard and Express installations is that they don’t let you back
up: if you pass a specific step and discover you want to change something, you have to
abort the installation and start again. With the Custom installation, you can simply go
back and change it. As a result, | recommend the Custom installation. In the following
discussion, you won’t see too much difference: the menus are the same for all three
installation forms.

install.mm,v v4.21 (2003/04/02 06:39:30)

Booting to sysinstall 62

Choose Custom Installation Options
This is the custom installation menu. You may use this menu to specify
details on the type of distribution you wish to have. where you wish
to install it from and how you wish to allocate disk storage to FreeBSD.

Exit this menu (returning to previous)
2 Options Vieuw/Set various installation options
3 Partition fillocate disk space for FreeBSD
4 Label Label allocated disk partitions
5 Distributions Select distribution(s) to extract
6 Media Choose the installation media type
7 Commit Perform any pending Partition/Label/Extract actions

[O Cancel

[Press F1 to read the installation guide 1

Figure5-2: Custom Installation options

Setting installation options

The first item on the menu is to set installation options. There’s probably not too much
you’ll want to change. About the only thing of interest might be the editor ec, which is a
compromise between a simple editor for beginners and more complicated editors like vi.
If you’re planning to edit anything during the installation, for example the file
[etclexports, which we’ll look at on page 560, you may prefer to set an editor with which
you are familiar. Select the fields by moving the cursor to the line and pressing the space
bar.

Options Editor

Name Yalue Name Yalue

NFS Secure NO Media Timeout 300

NFS Slow NO Package Temp /usr/tmp
Debugging NO Newfs fArgs -b 8192 —f 1024
No Marnings NO Fixit Console standard

Yes to ALl NO Config save YES

DHCP NO Re-scan Devices <#>

FTP username ftp Use Defaults [RESET!1]

Editor ec

Tape Blocksize 20

Extract Detail high

Release Name 5.0-CURRENT

Install Root 7

Browser package lynx

Browser Exec fusr/local /bin/lynx
Media Type <not yet set>

Use SPACE to select/toggle an option. arrow keys to move.
? or F1 for more help. MWhen you're done, type Q to Quit.

NFS server talks only on a secure por

Figure 5-3: Installation options

install.mm,v v4.21 (2003/04/02 06:39:30)

63 Chapter 5: Installing FreeBSD

Partitioning the disk

The first installation step is to set up space for FreeBSD on the disk. We looked at the
technical background in Chapter 2, on page 39. In this section only, we’ll use the term
partition to refer to a slice or BIOS partition, because that’s the usual terminology.

Even if your disk is correctly partitioned, select the Partition menu: the installation
routines need to enter this screen in order to read the partition information from the disk.
If you like what you see, you can leave again immediately with q (quit), but you must
first enter this menu. If you have more than one disk connected to your machine, you will
next be asked to choose the drives that you want to use for FreeBSD.

Select Drive(s)
Please select the drive. or drives, on which you wish to perform
this operation. If you are attempting to install a boot partition
on a drive other than the first one or have multiple operating
systems on your machine. you will have the option to install a boot
manager later. To select a drive, use the arrow keys to move to it
and press [SPACE]. To de-select it. press [SPACE] apain.

Select OK or Cancel to leave this menu.

1N Cjad0
[1 da0 dad

L OK 1 Cancel

——L Press F1 for important information regarding disk geometry! 1—

Figure 5-4: Disk selection menu

This screen shows entries for each drive that sysinstall has detected; in this example, the
system has one ATA (IDE) drive, /dev/ad0, and one SCSI drive, da0. You only get this
screen if you have at least two drives connected to your machine; otherwise sysinstall
automatically goes to the next screen.

If you intend to use more than one disk for FreeBSD, you have the choice of setting up all
disks now, or setting the others up after the system is up and running. We’ll look at the
latter option in Chapter 11, on page 199.

To select the disk on which you want to install FreeBSD, move the cursor to the
appropriate line and press the space bar. The screen you get will probably look like
Figure 5-5. Table 5-1 explains the meanings of the columns in this display. The first
partition contains the Master Boot Record, which is exactly one sector long, and the
bootstrap, which can be up to 15 sectors long. The partitioning tools use the complete
first track: in this case, the geometry information from BIOS says that it has 63 sectors
per track.

In this case, the Microsoft file system uses up the whole disk except for the last track,
1008 sectors (504 kB) at the end of the disk. Clearly there’s not much left to share. We
have the option of removing the Microsoft partition, which we’ll look at here, or we can
shorten it with FIPS We looked at FIPS in Chapter 4, page 52, and we’ll look at what
to do with the resultant layout on page 66.

install.mm,v v4.21 (2003/04/02 06:39:30)

Partitioning the disk 64

Disk name: FDISK Partition Editor]
DISK Geometry: 39770 cyls/16 heads/63 sectors = 40088160 sectors (19574MB)
Offset Size(ST) End Name PType Desc Subtype Flags
0 63 62 - 12 unused 0
63 40087089 40087151 ad0s1 7 fat 6
40087152 1008 40088159 - 12 unused 0

The following commands are supported (in upper or lower case):

A = Use Entire Disk G = set Drive Geometry C = Create Slice F = "DD' mode
D = Delete Slice Z = Toggle Size Units S = Set Bootable I = Wizard m.
T = Change Type U = Undo All Changes W = Write Changes

Use F1 or ? to get more help. arrow keys to select.

'

Figure 5-5: Partition editor menu

Don’t forget that if you remove a partition, you lose all the data
in it. If the partition contains anything you want to keep, make
sure you have a readable backup.

You remove the partition with the d command. After this, your display looks like:

Offset Size(ST) End Name PType Desc Subtype Flags

0 40088160 40088159 =] 12 unused 0

The next step is to allocate a FreeBSD partition. There are two ways to do this: if you
want to have more than one partition on the drive (for example, if you share the disk with
another operating system), you use the ¢ (create) command. We’ll look at that on page
66. In this case, though, you want to use the entire disk for FreeBSD, so you choose the
a option. The resultant display is effectively the same as in Figure 5-5: the only
difference is that the Desc field now shows f r eebsd instead of f at .

That’s all you need to do here: leave fdisk by pressing the g key.

Don’t use the W(Write Changes) command here. It's intended
for use only once the system is up and running.

install.mm,v v4.21 (2003/04/02 06:39:30)

65

Chapter 5: Installing FreeBSD

Table 5-1: fdisk information

Column | Description

G fset The number of the first sector in the partition.

S ze The length of the partition in sectors.

End The number of the last sector in the partition.

Nane Where present, this is the device name that FreeBSD assigns to the partition.
In this example, only the second entry has a name.

Pt ype The partition type. Partition type 6 is the Master Boot Record, which is
exactly one track long (note that the header says that this drive has 63 sectors
per track). Type 2 is a regular partition.

Desc A textual description of the kind of partition. fat stands for File Allocation
Table, a central part of the Microsoft disk space allocation strategy.

Subtype | The partition subtype. This corresponds to the descriptive text.

Fl ags Can be one or more of the following characters:

= The partition is correctly aligned.

> The partition finishes after cylinder 1024, which used to cause problems

for Microsoft.

A This is the active (bootable) partition.

B The partition employs BAD144 bad-spot handling.
C This is a FreeBSD compatibility partition.

R This partition contains a root file system.

On a PC, the next screen asks what kind of boot selector (in other words, MBR) you

want. You don’t get this on an Alpha.

Install Boot Manager for drive 355?
FreeBSD comes with a boot selector that allows you to easily
select between FreeBSD and any other operating systems on your machine
at boot time. If you have more than one drive and want to boot
from the second one. the boot selector will also make it possible
to do so (limitations in the PC BIOS usually prevent this otherwise).
If you do not want a boot selector. or wish to replace an existing
one, select "standard”. If you would prefer your Haster Boot
Record to remain untouched then select "None".

NOTE: PC-DOS users will almost certainly require “MNone"!

[lootMzrlTnstall the FreeBSD Boot Manage

() Standard Install a standard MBR (nho boot manager)
€) None Leave the Master Boot Record untouched

(O Cancel
[Press F1 to read about drive setup 1

Figure 5-6: Boot selector menu

install.mm,v v4.21 (2003/04/02 06:39:30)

Partitioning the disk 66

If you plan to have only one operating system on this disk, select St andar d. If you are
sharing with another operating system, you should choose BootMgr instead. We’ll look
at this in more detail in the section on booting the system on page 525. Exit by pressing
the tab key until the K tab is highlighted, then press Enter.

Table 5-2: MBR choices

Choice Description

Boot Myr Install the FreeBSD boot manager in the MBR. This will enable you
choose which partition to boot every time you start the system.

Sandard | Use a standard MBR. You will be able to boot only from the active
partition.

None Don’t change the MBR. This is useful if you already have another boot
manager installed. If no MBR is installed, though, you won’t be able to
boot from this disk.

Shared partitions

If you are installing on a disk shared with another operating system, things are a little
different. The section continues the example started in Chapter 4. When you enter the
partition editor, you will see something like:

Disk name:

DISK Geometry: 39770 cyls/16 heads/63 sectors = 40088160 sectors (19574MB)

0ffset Size(ST) End Name PType Desc Subtype Flags
0 63 62 = 12 unused 0
63 4188177 4188239 ad0s1 7 fat 12
4188240 35894880 40083119 ad0s2 7 fat 12
40083120 5040 40088159 = 12 unused 0

The following commands are supported (in upper or lower case):

A = Use Entire Disk G = set Drive Geometry C = Create Slice F = "DD' mode
D = Delete Slice Z = Toggle Size Units S = Set Bootable | = Mizard m.
T = Change Type U = Undo All Changes W = Write Changes

Use F1 or ? to get more help. arrow keys to select.

'

Figure5-7: Shared partitions

This display shows the two Microsoft partitions, ad0sl and ad0s2, which is what you see
after using FIPS; if you have just installed Microsoft on one partition, the partition ad0s2
will not be present. If it is, you first need to remove it. Be very careful to remove the
correct partition. It’s always the second of the two partitions, in this case ad0s2.

install.mm,v v4.21 (2003/04/02 06:39:30)

67 Chapter 5: Installing FreeBSD

Remove the partition by moving the highlight to the second partition and pressing d.
After this, the display looks like:

] 63 62 " 1.2 unused 0
63 4188177 4188239 ad0s1 7 fat 12
4188240 35899920 40088159 = 12 unused 0

The next step is to allocate a FreeBSD partition with the ¢ command. The menu asks for
the size of the partition, and suggests a value of 35899920 sectors, the size of the unused
area at the end. You can edit this value if you wish, but in this case it’s what you want, so
just press ENTER. You get another window asking you for the partition type, and
suggesting type 165, the FreeBSD partition table. When you accept that, you get:

0 63 62 = 12 unused 0
63 4188177 4188239 adfdsl 7 fat 12
4188240 35899920 40088159 ad0s2 8 freebsd 165

The new partition now has a partition type 8 and subtype 165 (Oxa5), which identifies it
as a FreeBSD partition.

After this, select a boot method as described on page 66 and exit the menu with the g
command. There are two operating systems on the disk, so select the Boot Myr option.

Defining file systems

The next step is to tell the installation program what to put in your FreeBSD partition.
First, we’ll look at the simple case of installing FreeBSD by itself. On page 75 we’ll look
at what differences there are when installing alongside another operating system on the
same disk.

When you select Label, you get the screen shown in Figure 5-8.

FreeBSD Disklabel Editor

Partition name: ad0sl Free: 40088097 blocks (19574MB)

Part Hount Size Newfs Part Hount Size Neuwfs
The following commands are valid here (upper or lower case):

C = Create = Delete M = Mount pt. = HWrite

N = Neufs Opts Q = Finish 5 = Toggle SoftUpdates 7 = Custom Neufs
T = Toggle Newfs U = Undo A = Auto Defaults R = Delete+Merge

Use F1 or ? to get more help. arrow keys to select.

Figure 5-8: Label editor menu

install.mm,v v4.21 (2003/04/02 06:39:30)

Defining file systems 68

What partitions?

In this example, you have 20 GB of space to divide up. How should you do it? You don’t
have to worry about this issue, since sysinstall can do it for you, but we’ll see below why
this might not be the best choice. In this section we’ll consider how UNIX file systems
have changed over the years, and we’ll look at the issues in file system layout nowadays.

When UNIX was young, disks were tiny. At the time of the third edition of UNIX, in
1972, the root file system was on a Digital RF-11, a fixed head disk with 512 kB. The
system was growing, and it was no longer possible to keep the entire system on this disk,
S0 a second file system became essential. It was mounted on a Digital RK03 with 2 MB
of storage. To quote from a paper published in the Communications of the ACM in July
1974:

In our installation, for example, the root directory resides on the fixed-head
disk, and the large disk drive, which contains user’s files, is mounted by the
system initialization program...

As time went on, UNIX got bigger, but so did the disks. By the early 80s, disks were
large enough to put / and /usr on the same disk, and it would have been possible to
merge / and /usr, but they didn’t, mainly because of reliability concerns. Since that time,
an additional file system, /var, has come into common use for frequently changed data,
and just recently sysinstall has been changed to create a /tmp file system by default.
This is what sysinstall does if you ask it to partition automatically:

FreeBSD Disklabel Editor)

Partition name: ad0sl Free: 0 blocks (OMB)

ad0s1b swap 244MB SHAP

ad0sld Jvar 256MB UFS1+S Y

adOsle /tmp 256MB UFS1+S Y

ad0s1f Jusr 18690MB UFS1+S Y

The following commands are valid here (upper or lower case):

C = Create D = Delete M = Mount pt. = Hrite

N = Newfs Opts Q = Finish § = Toggle SoftUpdates Z = Custom Newfs
T = Toggle MNewfs U = Undo A = fluto Defaults = Delete+Merge

Use F1 or ? to get more help. arrow keys to select.

Figure 5-9: Default file system sizes

It’s relatively simple to estimate the size of the root file system, and sysinstall’s value of
128 MB is reasonable. But what about /var and /tmp? Is 256 MB too much or too little?
In fact, both file systems put together would be lost in the 18.7 GB of /usr file system.
Why are things still this way? Let’s look at the advantages and disadvantages:

install.mm,v v4.21 (2003/04/02 06:39:30)

69 Chapter 5: Installing FreeBSD

e If you write to a file system and the system crashes before all the data can be written
to disk, the data integrity of that file system can be severely compromised. For
performance reasons, the system doesn’t write everything to disk immediately, so
there’s quite a reasonable chance of this happening.

* If you have a crash and lose the root file system, recovery can be difficult.

* If afile system fills up, it can cause lots of trouble. Most messages about file systems
on the FreeBSD questi ons mailing list are complaining about file systems filling
up. If you have a large number of small file systems, the chances are higher that one
will fill up while space remains on another.

* On the other hand, some file systems are more important than others. If the /var file
system fills up (due to overly active logging, for example), you may not worry too
much. If your root file system fills up, you could have serious problems.

* In single-user mode, only the root file system is mounted. With the classical layout,
this means that the only programs you can run are those in /bin and /sbin. To run
other programs, you must first mount the file system on which they are located.

* It’s nice to keep your personal files separate from the system files. That way you can
upgrade a system much more easily.

e It’s very difficult to estimate in advance the size needs of some file systems. For
example, on some systems /var can be very small, maybe only 2 or 3 MB. It’s
hardly worth making a separate file system for that much data. On the other hand,
other systems, such as ftp or web servers, may have a /var system of 50 or 100 GB.
How do you choose the correct size for your system?

* When doing backups, it’s a good idea to be able to get a file system on a single tape.

In the early days of UNIX, system crashes were relatively common, and the damage they
did to the file systems was relatively serious. Times have changed, and nowadays file
system damage is relatively seldom, particularly on file systems that have little activity.
On the other hand, disk drives have grown beyond most peoples’ wildest expectations.
The first edition of this book, only six years ago, showed how to install on a 200 MB
drive. The smallest disk drives in current production are 20 GB in size, more than will fit
on many tapes.

As a result of these considerations, | have changed my recommendations. In earlier
editions of this book, | recommended putting a small root file system and a /usr file
system on the first (or only) disk on the system. /var was to be a symbolic link to
lusr/var.

This is still a valid layout, but it has a couple of problems:

* In the example we’re looking at, /usr is about 19 GB in size. Not many people have
backup devices that can write this much data on a single medium.

* Many people had difficulty with the symbolic link to /usr/var.

install.mm,v v4.21 (2003/04/02 06:39:30)

Defining file systems 70

As a result, I now recommend:
* Make a single root file system of between 4 and 6 GB.
* Do not have a separate /usr file system.

* Do not have a separate /var file system unless you have a good idea how big it
should be. A good example might be a web server, where (contrary to FreeBSD’s
recommendations) it’s a good idea to put the web pages on the /var file system.

* Use the rest of the space on disk for a /home file system, as long as it’s possible to
back it up on a single tape. Otherwise make multiple file systems. /home is the
normal directory for user files.

This layout allows for easy backup of the file systems, and it also allows for easy
upgrading to a new system version: you just need to replace the root file system. It’s not
a perfect fit for all applications, though. Ultimately you need to make your own
decisions.

How much swap space?

Apart from files, you should also have at least one swap partition on your disk. It’s very
difficult to predict how much swap space you need. The automatic option gave you 522
MB, slightly more than twice the size of physical memory. Maybe you can get by with
64 MB. Maybe you’ll need 2 GB. How do you decide?

It’s almost impossible to know in advance what your system will require. Here are some
considerations:

e Swap space is needed for all pages of virtual memory that contain data that is not
locked in memory and that can’t be recreated automatically. This is the majority of
virtual memory in the system.

e Some people use rules of thumb like “2.5 times the size of physical memory, or 64
MB, whichever is bigger.” These rules work only by making assumptions about your
workload. If you’re using more than 2.5 times as much swap space as physical
memory, performance will suffer.

e Known memory hogs are X11 and integrated graphical programs such as Netscape
and StarOffice. If you use these, you will probably need more swap space. Older
UNIX-based hogs such as Emacs and the GNU C compiler (gcc) are not in the same
league.

* You can add additional swap partitions on other disks. This has the additional
advantage of balancing the disk load if your machine swaps a lot.

* About the only ways to change the size of a swap partition are to add another
partition or to reinstall the system, so if you’re not sure, a little bit more won’t do any
harm, but too little can really be a problem.

install.mm,v v4.21 (2003/04/02 06:39:30)

71 Chapter 5: Installing FreeBSD

e If your system panics, and memory dumping is enabled, it will write the contents of
memory to the swap partition. This will obviously not work if your swap partition is
smaller than main memory. Under these circumstances, the system refuses to dump,
so you will not be able to find the cause of the problems.

The dump routines can only dump to a single partition, so you need one that is big
enough. If you have 512 MB of memory and two swap partitions of 384 MB each,
you still will not be able to dump.

* Even with light memory loads, the virtual memory system slowly pages out data in
preparation for a possible sudden demand for memory. This means that it can be
more responsive to such requests. As a result, you should have at least as much swap
as memory.

A couple of examples might make this clearer:

1. Some years ago | used to run X, StarOffice, Netscape and a whole lot of other
memory-hungry applications on an old 486 with 16 MB. Sure, it was really slow,
especially when changing from one application to another, but it worked. There was
not much memory, so it used a lot of swap.

To view the current swap usage, use pstat. Here’s a typical view of this machine’s
swap space:

$ pstat -s
Devi ce 1024- bl ocks Used Avail Capacity Type
/ dev/ daOs1b 122880 65148 57668 53% Interleaved

2. At the time of writing | run much more stuff on an AMD Athlon with 512 MB of
memory. It has lots of swap space, but what | see is:

$ pstat -s
Devi ce 1024- bl ocks Used Avail Capacity Type
/ dev/ adOs1b 1048576 14644 1033932 1% Interl eaved

It’s not so important that the Athlon is using less swap: it’s using less than 3% of its
memory in swap, whereas the 486 used 4 times its memory. In a previous edition of this
book, I had the example of a Pentium with 96 MB of memory, which used 43 MB of
swap. Look at it from a different point of view, and it makes more sense: swap makes up
for the lack of real memory, so the 486 was using a total of 80 MB of memory, the
Pentium was using 140 MB, and the Athlon is using 526 MB. In other words, there is a
tendency to be able to say ‘“the more main memory you have, the less swap you need.”

If, however, you look at it from the point of view of acceptable performance, you will
hear things like “you need at least one-third of your virtual memory in real memory.”
That makes sense from a performance point of view, assuming all processes are relatively
active. And, of course, it’s another way of saying “take twice as much swap as real
memory.”

install.mm,v v4.21 (2003/04/02 06:39:30)

Defining file systems 72

In summary: be generous in allocating swap space. If you have the choice, use more. If
you really can’t make up your mind, take 512 MB of swap space or 1 MB more than the
maximum memory size you are likely to install.

For the file systems, the column Mount now shows the mount points, and the Newfs
column contains the letters UFSL for UNIX File System, Version 1, and the letter Y,
indicating that you need to create a new file system before you can use it. At this point,
you have two choices: decide for yourself what you want, or let the disk label editor do it
for you. Let’s look at both ways:

Creating the file systems
With these considerations in mind, we’ll divide up the disk in the following manner:

e 4 GB for the root file system, which includes /usr and /var
e 512 MB swap space
* The rest of the disk for the /home file system

To create a file system, you press c. You get a prompt window asking for the size of the
file system, and offering the entire space. Enter the size of the root file system:

FreeBSD Disklabel Editor

Disk: ad0 Partition name: ad0sl Free: 40088160 blocks (19574MB>

Part Mount Size Newfs Part Hount Size Newfs

Value Required
Please specify the partition size in blocks or append a trailing G for
gigabytes, M for megabytes, or C for cylinders.
40088160 blocks (19574MB) are free.

o

L OK 1 Cancel

Hrite
Finish

Mount pt. H
Undo Q

= Create D = Delete 1]

= Neufs Opts T = Neuwfs Toggle U
= fAuto Defaults for alll!

Use F1 or ? to get more help. arrouw keys to select.

Figure 5-10: Specifying partition size

When you press ENTER, you see another prompt asking for the kind of partition. Select
A Fle System

install.mm,v v4.21 (2003/04/02 06:39:30)

73 Chapter 5: Installing FreeBSD

FreeBSD Disklabel Editor

Disk: dal Partition name: dalsl Free: 8386733 blocks (4095MB)

Part Mount Size Newfs Part Mount Size Newfs

Please choose a partition type

If you want to use this partition for swap space. select Swap.
If you want to put a filesystem on it. choose FS.

FS fi file system
Suap)

Cancel

C = Create D = Delete M = Mount pt. W = Hrite
N = Neufs Opts T = Neuwfs Toggle U = Undo Q = Finish
A = Auto Defaults for alll

Use F1 or ? to get more help. arrow keys to select.

Figure 5-11: Selecting partition type

When you press ENTER, you see another prompt asking for the mount point for the file
system. Enter/ for the root file system, after which the display looks like:

FreeBSD Disklabel Editor

Disk: ad0 Partition name: ad0sl Free: 31699489 blocks (15478MB)
Part Mount Size Meuwfs Part Mount Size MNeufs
ad0sla 1z 4096MB UFS1 Y|

The following commands are valid here (upper or lower case):

C = Create D = Delete M = Mount pt. W = Hrite
N = Newfs Opts Q = Finish S = Toggle SoftUpdates Z = Custom Neufs
T = Toggle Newfs U = Undo A = Auto Defaults R = Delete+Merge

Use F1 or ? to get more help. arrow keys to select.

Figure 5-12: Allocated root file system

It’s not immediately obvious at this point that soft updates are not enabled for this file
system. Press s to enable them, after which the entry in the Newf s column changes from
UFSL to UFS1+S. See page 191 for reasons why you want to use soft updates.

Next, repeat the operation for the swap partition and the /home file system, entering the
appropriate values each time. Don’t change the value offered for the length of /home:
just use all the remaining space. At the end, you have:

install.mm,v v4.21 (2003/04/02 06:39:30)

Defining file systems 74

FreeBSD Disklabel Editor

Disk: ad0 Partition name: ad0sl Free: 0 blocks (OMB)
Part Hount Size Newfs Part Mount Size MNeufs
ad0sla / 4096MB UFS1+S Y

ad{slb suap 512MB SWAP
d0sld /home 14966HB UFS1+5 Y|

The following commands are valid here (upper or lower case):

C = Create D = Delete M = Mount pt. = Hrite

N = Newfs Opts Q = Finish § = Toggle SoftUpdates Z = Custom Neufs
T = Toggle Neuwfs U = Undo A = Auto Defaults = Delete+Merge

Use F1 or ? to get more help, arrouw keys to select.

Figure 5-13: Completed partition allocation

You don’t need to enable soft updates for /home; that happens automatically.

That’s all you need to do. Exit the menu by pressing g.

Where you are now

At this point in the installation, you have told sysinstall the overall layout of the disk or
disks you intend to use for FreeBSD, and whether or how you intend to share them with
other operating systems. The next step is to specify how you want to use the FreeBSD
partitions. First, though, we’ll consider some alternative scenarios.

Second time through

If you have already started an installation and aborted it for some reason after creating the
file systems, things will look a little different when you get to the label editor. It will find
the partitions, but it won’t know the name of the mount points, so the text under Mount
will be <none>. Under Newf s, you will find an asterisk (*) instead of the text UFSL Y.
The label editor has found the partitions, but it doesn’t know where to mount the file
systems. Before you can use them, you must tell the label editor the types and mount
points of the UFS partitions. To do this:

* Position the cursor on each partition in turn.

e Press m(Mount). A window pops up asking for the mount point. Enter the name, in
this example, first/ , then press Enter. The label editor enters the name of the mount
point under Mount, and under Newfs it enters UFSL N—it knows that this is a UFS
file system, so it just checks its consistency and doesn’t overwrite it. Repeat this
procedure for /home, and you’re done. If you are sharing your disk with another
system, you can also use this method to specify mount points for your Microsoft file
systems. Select the Microsoft partition and specify the name of a mount point.

install.mm,v v4.21 (2003/04/02 06:39:30)

75 Chapter 5: Installing FreeBSD

e Unless you are very sure that the file system is valid, and you really want to keep the
data in the partitions, press t to specify that the file system should be created. The
text UFS1 N changes to UFSL Y. If you leave the N there, the commit phase will
check the integrity of the file system with fsck rather than creating a new one.

File systems on shared disks

If you have another operating system on the disk, you’ll notice a couple of differences. In
particular, the label editor menu of Figure 5-8 (on page 68) will not be empty: instead,
you’ll see something like this:

FreeBSD Disklabel Editor]

Partition name: ad0s2 Free: 35899920 blocks (17529MB)

Part Mount Size Neuwfs Part Hount Size MNeufs

Be careful at this point. The file system shown in the list is the active Microsoft
partition, not a FreeBSD file system. The important piece of information here is the fact
that we have 17529 MB of free space on the disk. We’ll create the file systems in that
free space in the same way we saw on page 72.

Selecting distributions

The next step is to decide what to install. Figure 5-14 shows you the menu you get when
you enter Distributions. A complete installation of FreeBSD uses about 1 GB of space,
so there’s little reason to choose anything else. Position the cursor on the line Al |, as
shown, and press the space bar.

Why press the space bar when so far you have been pressing ENTER? Because in this particular
menu, ENTER will return you to the upper level menu or simply continue to the media selection
menu, depending on the type of installation you’re doing. It’s one of the strangenesses of
sysinstall.

Next, sysinstall asks you if you want to install the Ports Collection. We’ll look at the
Ports Collection in Chapter 9. You don’t have to install it now, and it takes much more
time than you would expect from the amount of space that it takes: the Ports Collection
consists of over 150,000 very small files, and copying them to disk can take as long as the
rest of the installation put together. On the other hand, it’s a lot easier to do now, so if
you have the time, you should install them.

Whatever you answer to this question, you are returned to the distribution menu of Figure
5-14. Select Exi t , and you’re done selecting your distributions.

Earlier versions of sysinstall asked you questions about XFree86 at this point. Nowadays you do
that after completing the installation.

install.mm,v v4.21 (2003/04/02 06:39:30)

Selecting distributions 76

Choose Distributions 1
As a convenience. we provide several "canned" distribution sets.
These select what we consider to be the most reasonable defaults for the
type of system in question. If you would prefer to pick and choose the
list of distributions yourself. simply select "Custom™. You can also
pick a canned distribution set and then fine-tune it with the Custom item.

Choose an item by pressing [SPACE]1. When you are finished. choose the Exit
item or press L[ENTERI].

<<< X Exit Exit this menu (returning to previous)

N All system sources. binaries and X Hindow System)|
Reset Reset selected distribution list to nothing

[1 4 Developer Full sources, binaries and doc but no games

[15 XK-Developer Same as above + X Mindow System

[16 KernDeveloper Full binaries and doc, kernel sources only

[1 7 ¥Hern-Developer Same as above + X Mindow System

[18 User fiverage user - binaries and doc only
vi(+)

Cancel

[Press F1 for more information on these options. 1

Figure 5-14: Distribution selection menu

Where you are now

Now sysinstall knows the layout of the disk or disks you intend to use for FreeBSD, and
what to put on them. Next, you specify where to get the data from.

Selecting the installation medium

The next thing you need to specify is where you will get the data from. Where you go
now depends on your installation medium. Figure 5-15 shows the Media menu. If you're
installing from anything except an ftp server or NFS, you just need to select your medium
and then commit the installation, which we look at on page 77. If you're installing from
media other than CD-ROM, see page 85.

At this point, sysinstall knows everything it needsto install the software. It'sjust waiting
for you to tell it to go ahead.

install.mm,v v4.21 (2003/04/02 06:39:30)

77 Chapter 5: Installing FreeBSD

Choose Installation Media
FreeBSD can be installed from a variety of different installation
media, ranging from floppies to an Internet FTP server. If you're
installing FreeBSD from a supported CDROM drive then this is generally
the best media to use if you have no overriding reason for using other
media.

Install from a FreeBSD CDRO|

[1_CDROH

2 FTP Install from an FTP server

3 FIP Passive Install from an FIP server through a firewall
3b HTTP Install from an FTP server through a http proxy
4 DOS Install from a DOS partition

5 NFS Install over NFS

6 File System Install from an existing filesystem

7 Floppy Install from a floppy disk set

8 Tape Install from SCSI or QIC tape

9 Options Go to the Options screen

Cancel

[Press F1 for more information on the various media types I

Figure 5-15: Installation medium menu

Performing the installation

So far, everything you have done has had no effect on the disk drives. If you change your
mind, you can just abort the installation, and the data on your disks will be unchanged.
That changes completely in the next step, which you call committing the installation.
Now is the big moment. You’ve set up your partitions, decided what you want to install
and from where. Now you do it.

If you are installing with the Custom installation, you need to select Commit explicitly.
The Standard installation asks you if you want to proceed:

Last Chance! Are you SURE you want continue the installation?

If you' re running this on an existing system we STRONGLY
encour age you to nake proper backups before proceedi ng.
V¢ take no responsibility for |ost disk contents!

When you answer yes, sysinstall does what we’ve been preparing for:
e |t creates the partitions and disk partitions.

e |t creates the file system structures in the file system partitions, or it checks them,
depending on what you chose in the label editor.

* It mounts the file systems and swap space.

e Itinstalls the software on the system.

install.mm,v v4.21 (2003/04/02 06:39:30)

Performing the installation 78

After the file systems are mounted, and before installing the software, sysinstall starts
processes on two other virtual terminals. On /dev/ttyvl you get log output showing you
what’s going on behind the scenes. You can switch to it with ALT-F2. Right at the
beginning you’ll see a whole lot of error messages as sysinstall tries to initialize every
device it can think of. Don’t worry about them, they’re normal. To get back to the install
screen, press ALT-F1.

In addition, after sysinstall mounts the root file system, it starts an interactive shell on
/dev/ttyv3. You can use it if something goes wrong, or simply to watch what’s going on
while you’re installing. You switch to it with ALT-F4.

After installing all the files, sysinstall asks:

Visit the general configuration menu for a chance to set
any | ast options?

You really have the choice here. You can answer Yes and continue, or you can reboot:
the system is now runnable. In all probability, though, you will have additional
installation work to do, so it’s worth continuing. We’ll look at that in the following
chapter.

Installing on an Alpha system

Installing FreeBSD on an Alpha (officially Compaq AXP) has a few minor differences
due to the hardware itself. In principle, you perform the same steps to install FreeBSD on
the Alpha architecture that you perform for the Intel architecture. See page 42 for some
differences.

The easiest type of installation is from CD-ROM. If you have a supported CD-ROM
drive and a FreeBSD installation CD for Alpha, you can start the installation by building
a set of FreeBSD boot floppies from the files floppies/kern.flp and floppies/mfsroot.flp as
described for the Intel architecture on page 85. Use the CD-ROM marked “Alpha
installation.” From the SRM console prompt, insert the kern.flp floppy and type the
following command to start the installation:

>>>hoot dval
Insert the mfsroot.flp floppy when prompted and you will end up at the first screen of the
install program. You can then continue as for the Intel architecture on page 59.

To install over the Net, fetch the floppy images from the ftp site, boot as above, then
proceed as for the Intel architecture.

1. See page 197 for an explanation of virtual terminals.
install.mm,v v4.21 (2003/04/02 06:39:30)

79 Chapter 5: Installing FreeBSD

Once the install procedure has finished, you will be able to start FreeBSD/Alpha by
typing something like this to the SRM prompt:

>>>hoot dkcO

This instructs the firmware to boot the specified disk. To find the SRM names of disks in
your machine, use the show devi ce command:

>>>show devi ce

dka0. 0. 0. 4. 0 DKAD TCBH BA (D RIM XM 57 3476
dkcO. 0. 0. 1009. 0 DKQD RZ1BB-BS 0658
dkc100. 1. 0. 1009. 0 DKCL00 SEAGATE ST34501W 0015
dva0. 0. 0.0. 1 DVAO

ewa0. 0. 0. 3.0 EW0 00- 00- F8- 75- 6D- 01

pkcO. 7. 0. 1009. 0 PKQD SCS Bus ID7 5.27
pga0. 0. 0. 4. 0 PQO PO ELCE

This example comes from a Digital Personal Workstation 433au and shows three disks
attached to the machine. The first is a CD-ROM called dkaO and the other two are disks
and are called dkcO and dkc100 respectively.

You can specify which kernel file to load and what boot options to use with the -fil e
and - f | ags options to boot:

>>>phoot -file kernel.old -flags s

To make FreeBSD/Alpha boot automatically, use these commands:

>>>set boot _osfl ags a
>>>set boot def _dev dkcO
>>>set auto_action BOOT

Upgrading an old version of FreeBSD

Paradoxically, upgrading an old version of FreeBSD is more complicated than installing
from scratch. The reason is that you almost certainly want to keep your old
configuration. There’s enough material in this topic to fill a chapter, so that’s what I’ve
done: see Chapter 31, for more details on how to upgrade a system.

How to uninstall FreeBSD

What, you want to remove FreeBSD? Why would you want to do that?

Seriously, if you decide you want to completely remove FreeBSD from the system, this is
no longer a FreeBSD issue, it’s an issue of whatever system you use to replace it. For
example, on page 63 we saw how to remove a Microsoft partition and replace it with
FreeBSD; no Microsoft software was needed to remove it. In the same way, you don’t
need any help from FreeBSD if you want to replace it with a different operating system.

install.mm,v v4.21 (2003/04/02 06:39:30)

How to uninstall FreeBSD 80

If things go wrong

In this section, we’ll look at the most common installation problems. Many of these are
things that once used to happen and haven’t been seen for some time: sysinstall has
improved considerably, and modern hardware is much more reliable and easy to
configure. You can find additional information on this topic in the section Known
Hardware Problems in the file INSTALL.TXT on the first CD-ROM.

Problems with sysinstall

sysinstall is intended to be easy to use, but it is not very tolerant of errors. You may well
find that you enter something by mistake and can’t get back to where you want to be. In
case of doubt, if you haven’t yet committed to the install, you can always just reboot.

Problems with CD-ROM installation

If you select to install from CD-ROM, you may get the message:

No CD- ROM devi ce found

This might even happen if you have booted from CD-ROM! The most common reasons
for this problem are:

* You booted from floppy and forgot to put the CD-ROM in the drive before you
booted. Sorry, this is a current limitation of the boot process. Restart the installation
(press Ctrl-Alt-DEL or the reset button, or power cycle the computer).

* You are using an ATAPI CD-ROM drive that doesn’t quite fit the specification. In
this case you need help from the FreeBSD developers. Send a message to Fr eeBSD-
guest i ons@ eeBSD. or g and describe your CD-ROM as accurately as you can.

Can’t boot

One of the most terrifying things after installing FreeBSD is if you find that the machine
just won’t boot. This is particularly bad if you have important data on the disk (either
another operating system, or data from a previous installation of FreeBSD).

At this point, seasoned hackers tend to shrug their shoulders and point out that you still
have the backup you made before you did do the installation. If you tell them you didn’t
do a backup, they tend to shrug again and move on to something else.

Still, all is probably not lost. The most frequent causes of boot failure are an incorrect
boot installation or geometry problems. In addition, it’s possible that the system might
hang and never complete the boot process. All of these problems are much less common
than they used to be, and a lot of the information about how to address them is a few
years old, as they haven’t been seen since.

install.mm,v v4.21 (2003/04/02 06:39:30)

81 Chapter 5: Installing FreeBSD

Incorrect boot installation

It’s possible to forget to install the bootstrap, or even to wipe it out altogether. That
sounds like a big problem, but in fact it is harmless. Refer to the description of the boot
process on page 525, and boot from floppy disk or CD-ROM. Interrupt the boot process
with the space bar. You might see:

BTX loader 1.00 BTX version is 1.01
BIC5 drive A is diskO
BICS drive C is diskl
BICE drive D is diskl
Bl G5 639kB/ 130048kB avai | abl e nenory

FreeBSDY i 386 bootstrap | oader, Revision 0.8
(grog@r eebi e. exanpl e. com Thu Jun 13 13: 06: 03 CST 2002)
Loadi ng / boot / def aul t s/ | oader . conf

Ht [Enter] to boot inmediately, or any other key for command pronpt.

Booting [kernel] in 6 seconds... press space bar here

ok unl oad unload the current kernel

ok set currdev disklsla and set the location of the new one
ok | oad /boot/ ker nel / ker nel load the kernel

ok boot then start it

This boots from the drive /dev/iadOsla, assuming that you are using IDE drives. The
correspondence between the name /dev/adOsla and disklsla goes via the information at
the top of the example: BTX only knows the BIOS names, so you’d normally be looking
for the first partition on drive C:.. After booting, install the correct bootstrap with
di skl abel - Bor bootOcfg, and you should be able to boot from hard disk again.

Geometry problems

Things might continue a bit further: you elect to install booteasy, and when you boot, you
get the Boot Manager prompt, but it just prints F? at the boot menu and won’t accept any
input. In this case, you may have set the hard disk geometry incorrectly in the Partition
editor when you installed FreeBSD. Go back into the partition editor and specify the
correct geometry for your hard disk. Unfortunately, you must reinstall FreeBSD from the
beginning if this happens.

It used to be relatively common that sysinstall couldn’t calculate the correct geometry for
a disk, and that as a result you could install a system, but it wouldn’t boot. Since those
days, sysinstall has become a lot smarter, but it’s still barely possible that you’ll run into
this problem.

If you can’t figure out the correct geometry for your machine, and even if you don’t want
to run Microsoft on your machine, try installing a small Microsoft partition at the
beginning of the disk and install FreeBSD after that. The install program will see the
Microsoft partition and try to infer the correct geometry from it, which usually works.
After the partition editor has accepted the geometry, you can remove the Microsoft
partition again. If you are sharing your machine with Microsoft, make sure that the
Microsoft partition is before the FreeBSD partition. Remember that, in either case, you
may need to locate the FreeBSD root file system completely in the first 1024 cylinders,
otherwise you will not be able to boot. See page 32 for further details.

install.mm,v v4.21 (2003/04/02 06:39:30)

If things go wrong 82

Alternatively, if you don’t want to share your disk with any other operating system, select
the option to use the entire disk (a in the partition editor). This will leave all geometry
considerations aside.

System hangs during boot

A number of problems may lead to the system hanging during the boot process. All the
known problems have been eliminated, but there’s always the chance that something new
will crop up. In general, the problems are related to hardware probes, and the most
important indication is the point at which the boot failed. It’s worth repeating the boot
with the verbose flag: again, refer to the description of the boot process on page 525.
Interrupt the boot process with the space bar and enter:

Ht [Enter] to boot inmmediately, or any other key for command pronpt.

Booting [kernel] in 6 seconds. .. press space bar here
ok set boot_verbose set a verbose boot
ok boot then continue

This flag gives you additional information that might help diagnose the problem. See
Chapter 29 for more details of what the output means.

If you’re using ISA cards, you may need to reconfigure the card to match the kernel, or
change the file /boot/device.hints to match the card settings. See the example on page
600. Older versions of FreeBSD used to have a program called UserConfig to perform
this function, but it is no longer supported.

System boots, but doesn’t run correctly

If you get the system installed to the point where you can start it, but it doesn’t run quite
the way you want, don’t reinstall. In most cases, reinstallation won’t help. Instead, try to
find the cause of the problem—uwith the aid of the Fr eeBSD- quest i ons mailing list if
necessary—and fix the problem.

Root file system fills up

You might find that the installation completes successfully, and you get your system up
and running, but almost before you know it, the root file system fills up. This is relatively
unlikely if you follow my recommendation to have one file system for /, /usr and /var,
but if you follow the recommendations it’s a possibility. It could be, of course, that you
just haven’t made it big enough—FreeBSD root file systems have got bigger over the
years. In the first edition of this book | recommended 32 MB ““to be on the safe side.”
Nowadays the default is 128 MB.

On the other hand, maybe you already have an 128 MB root file system, and it still fills
up. In this case, check where you have put your /tmp and /var file systems. There’s a
good chance that they’re on the root file system, and that’s why it’s filling up.

install.mm,v v4.21 (2003/04/02 06:39:30)

83 Chapter 5: Installing FreeBSD

Panic

Sometimes the system gets into so much trouble that it can’t continue. It should notice
this situation and stop more or less gracefully. You might see a message like:

panic: free vnode isn't
Syncing disks 14 13955555 5 5 giving up

dunpi ng to dev 20001 of fset O

dunp 16 32 48 64 80 96 112 128 succeeded

Automatic reboot in 15 seconds - press a key on the consol e to abort
Rebooot i ng. . .

Just because the system has panicked doesn’t mean that you should panic too. It’s a sorry
fact of life that software contains bugs. Many commercial systems just crash when they
hit a bug, and you never know why, or they print a message like General protection
faul t, which doesn’t tell you very much either. When a UNIX system panics, it usually
gives you more detailed information—in this example, the reason is free vnodeisn't. You
may not be any the wiser for a message like this (it tells you that the file system handling
has got confused about the current state of storage on a disk), but other people might. In
particular, if you do get a panic and you ask for help on FreeBSD quest i ons, please
don’t just say “My system panicked, what do I do?” The first answer—if you get one—
will be “What was the panic string?” The second will be “Where’s the dump?”’

After panicking, the system tries to write file system buffers back to disk so that they
don’t get lost. This is not always possible, as we see on the second line of this example.
It started off with 14 buffers to write, but it only managed to write 9 of them, possibly
because it was confused about the state of the disk. This can mean that you will have
difficulties after rebooting, but it might also mean that the system was wrong in its
assumptions about the number of buffers needed to be written.

In addition to telling you the cause of the panic, FreeBSD will optionally copy the current
contents of memory to the swap file for post-mortem analysis. This is called dumping the
system, and is shown on the next two lines. To enable dumping, you need to specify
where the dump should be written. In /etc/defaults/rc.conf, you will find:

dunpdev="NO' # Devi ce nane to crashdunp to (if enabl ed).

To enable dumping, put something like this in /boot/loader.conf :

dunpdev="/ dev/ adOs1b"

This enables the dumps to be taken even if a panic occurs before the system reads the
letc/rc.conf file. Make sure that the name of the dunpdev corresponds to a swap
partition with at least as much space as your total memory. You can use pstat to check
this:

install.mm,v v4.21 (2003/04/02 06:39:30)

If things go wrong 84

pstat -s

Devi ce 1024- bl ocks Used Avail Capacity Type

/ dev/ adOs1b 51200 50108 1028 98% I nterl eaved
/ dev/ daOs1b 66036 51356 14616 78% I nterl eaved
/ dev/ da2s1b 204800 51220 153516 25% Interl eaved
Tot al 321844 152684 169160 47%

As long as this machine doesn’t have more than about 192 MB of memory, it will be
possible to take a dump on /dev/da2s1b.

In addition, ensure that you have a directory called /var/crash. After rebooting, the
system first checks the integrity of the file systems, then it checks for the presence of a
dump. If it finds one, it copies the dump and the current kernel to /var/crash.

It’s always worth enabling dumping, assuming your swap space is at least as large as your
memory. You can analyze the dumps with gdb—see page 614 for more details.

To get the best results from a dump analysis, you need a debug kernel. This kernel is
identical to a normal kernel, but it includes a lot of information that can be used for dump
analysis. See page 605 for details of how to build a debug kernel. You never know when
you might run into a problem, so | highly recommend that you use a debug kernel at all
times. It doesn’t have any effect on the performance of the system.

Fixing a broken installation

A really massive crash may damage your system to such an extent that you need to
reinstall the whole system. For example, if you overwrite your hard disk from start to
finish, you don’t have any other choice. In many cases, though, the damage is repairable.
Sometimes, though, you can’t start the system to fix the problems. In this case, you have
two possibilities:

e Boot from the second CD-ROM (Live Filesystem). It will be mounted as the root file
system.

* Boot from the Fixit floppy. The Fixit floppy is in the distribution in the same
directory as the boot diskette, floppies. Just copy floppies/fixit.flp to a disk in the
same way as described for boot diskettes on page 85. To use the fixit floppy, first
boot with the boot diskette and select “Fixit floppy” from the main menu. The Fixit
floppy will be mounted under the root MFS as /mnt2.

In either case, the hard disks aren’t mounted; you might want to do repair work on them
before any other access.

Use this option only if you have a good understanding of the system installation process.
Depending on the damage, you may or may not be successful. If you have a recent
backup of your system, it might be faster to perform a complete installation than to try to
fix what’s left, and after a reinstallation you can be more confident that the system is
correctly installed.

install.mm,v v4.21 (2003/04/02 06:39:30)

85 Chapter 5: Installing FreeBSD

Alternative installation methods

The description at the beginning of this chapter applied to the most common installation
method, from CD-ROM. In the following sections we’ll look at the relatively minor
differences needed to install from other media. The choices you have are, in order of
decreasing attractiveness:

e Over the network. You have the choice of ftp or NFS connection. If you’re
connected to the Internet and you’re not in a hurry, you can load directly from one of
the distribution sites described in the FreeBSD handbook.

* From a locally mounted disk partition, either FreeBSD (if you have already installed
it) or Microsoft.

* From floppy disk. This is only for masochists or people who really have almost no
hardware: depending on the extent of the installation, you will need up to 250 disks,
and at least one of them is bound to have an 1/O error. And don’t forget that a CD-
ROM drive costs a lot less than 250 floppies.

Preparing boot floppies

If your machine is no longer the youngest, you may be able to read the CD-ROM drive,
but not boot from it. In this case, you’ll need to boot from floppy. If you are using 1.44
MB floppies, you will need two or three of them, the Kernel Disk and the MFS Root Disk
and possibly the Drivers Disk to boot the installation programs. If you are using 2.88
MB floppies or a LS-120 disk, you can copy the single Boot Disk, which is 2.88 MB
long, instead of the kernel and MFS root disks. The images of these floppies are on the
CD-ROM distribution in the files floppies/kern.flp, floppies/mfsroot.flp, flop-
pies/drivers.flp and floppies/boot.flp respectively. If you have your CD-ROM mounted
on a Microsoft system, they may be called FLOPPIES\KERN.FLP, FLOPPIES\MFS-
ROOT.FLP, FLOPPIES\DRIVERS.FLP and FLOPPIES\BOOT.FLP respectively. The
bootstrap does not recover bad blocks, so the floppy must be 100% readable.

The way you get the boot disk image onto a real floppy depends on the operating system
you use. If you are using any flavour of UNIX, just perform something like:

dd if=/cdronifl oppies/kern.flp of =/dev/fd0 bs=36b
change the floppy

dd if=/cdronifl oppi es/nisroot.flp of =/dev/fd0 bs=36b
change the floppy

dd i f=/cdronifl oppi es/drivers.flp of=/dev/fd0 bs=36b

This assumes that your software is on CD-ROM, and that it is mounted on the directory
/cdrom. It also assumes that your floppy drive is called /dev/fd0. This is the FreeBSD
name as of Release 5.0, and it’s also the name that Linux uses. Older FreeBSD and other
BSD systems refer to it as /dev/fdOc.

The dd implementation of some versions of UNIX, particularly older System V variants,
may complain about the option bs=36b. If this happens, just leave it out. It might take

install.mm,v v4.21 (2003/04/02 06:39:30)

Alternative installation methods 86

up to 10 minutes to write the floppy, but it will work, and it will make you appreciate
FreeBSD all the more.

If you have to create the boot floppy from Microsoft, use the program FDIMAGE.EXE,
which is in the tools directory of the first CD-ROM.

Booting from floppy

In almost all cases where you don’t boot from CD-ROM, you’ll boot from floppy, no
matter what medium you are installing from. If you are installing from CD-ROM, put the
CD-ROM in the drive before booting. The installation may fail if you boot before
inserting the CD-ROM.

Boot the system in the normal manner from the first floppy (the one containing the
kern.flp image). After loading the kernel, the system will print the message:

P ease insert MFS root floppy and press enter:

After you replace the floppy and press enter, the boot procedure carries on as before.

If you’re using the 2.88 MB image on a 2.88 MB floppy or an LS-120 drive, you have
everything you need on the one disk, so you don’t get the prompt to change the disk.
Depending on your hardware, you may later get a prompt to install additional drivers
from the driver floppy.

Installing via ftp

The fun way to install FreeBSD is via the Internet, but it’s not always the best choice.
There’s a lot of data to transfer, and unless you have a really high-speed, non-overloaded
connection to the server, it could take forever. On the other hand, of course, if you have
the software on another machine on the same LAN, and the system on which you want to
install FreeBSD doesn’t have a CD-ROM drive, these conditions are fulfilled, and this
could be for you. Before you decide, though, read about the alternative of NFS
installation below: if you don’t have an ftp server with the files already installed, it’s a lot
easier to set up an NFS installation.

There are two ftp installation modes you can use:

* Regular ftp mode does not work through most firewalls but will often work best with
older ftp servers that do not support passive mode. Use this mode if your connection
hangs with passive mode.

e |If you need to pass through firewalls that do not allow incoming connections, try
passive ftp.

Whichever mode of installation and whichever remote machine you choose, you need to
have access to the remote machine. The easiest and most common way to ensure access
is to use anonymous ftp. If you’re installing from another FreeBSD machine, read how to
install anonymous ftp on page 448. This information is also generally correct for other
UNIX systems.

install.mm,v v4.21 (2003/04/02 06:39:30)

87 Chapter 5: Installing FreeBSD

Setting up the ftp server

Put the FreeBSD distribution in the public ftp directory of the ftp server. On BSD
systems, this will be the home directory of user ftp, which in FreeBSD defaults to
Ivar/spool/ftp. The name of the directory is the name of the release, which in this
example we’ll assume to be 5.0-RELEASE. You can put this directory in a subdirectory
of /var/spool/ftp, for example /var/spool/ftp/FreeBSD/5.0-RELEASE, but the only
optional part in this example is the parent directory FreeBSD.

This directory has a slightly different structure from the CD-ROM distribution. To set it
up, assuming you have your distribution CD-ROM mounted on /cdrom, and that you are
installing in the directory /var/spool/ftp/FreeBSD/5.0-RELEASE, perform the following
steps:

cd /var/spool / ftp/ FreeBSD 5. 0- RELEASE

nkdir floppies

cd fl oppi es

cp /cdronmi fl oppies/* . don’t omit the. at theend

cd /cdrom the distribution directory on CD-ROM
tar cf - . | (cd /var/spool/ftp/FreeBSD 5.0- RELEASE, tar xvf -)

This copies all the directories of /cdrom into /var/spool/ftp/FreeBSD/5.0-RELEASE. For
a minimal installation, you need only the directory base. To just install base rather than
all of the distribution, change the last line of the example above to:

nkdir base
cp /cdroni base/ * base

Installing via ftp

On page 77 we saw the media select menu. Figure 5-16 shows the menu you get when
you select FTP or FTP Passive. To see the remainder of the sites, use the PageDown
key. Let’s assume you want to install from presto, a system on the local network. presto
isn’t on this list, of course, so you select URL. Another menu appears, asking for an ftp
pathname in the URL form ft p: // hosthame pathname. hostname is the name of the
system, in this case presto.exampleorg, and pathname is the path relative to the
anonymous ftp directory, which on FreeBSD systems is usually /var/spool/ftp. The
install program knows its version number, and it attaches it to the name you supply.

You can change the version number from the options menu, for example to install a snapshot of a
newer release of FreeBSD.

In this case, we’re installing Release 5.0 of FreeBSD, and it’s in the directory
Ivar/spool/ftp/pub/FreeBSD/5.0-RELEASE. sysinstall knows the 5.0-RELEASE, so you
enter only ftp://presto.example.org/pub/FreeBSD. The next menu asks you to configure
your network. This is the same menu that you would normally fill out at the end of the
installation—see page 98 for details.

This information is used to set up the machine after installation, so it pays to fill out this
information correctly. After entering this information, continue with Commit (on page
77).

install.mm,v v4.21 (2003/04/02 06:39:30)

Alternative installation methods 88

Please select a FreeBSD FIP distribution site
Please select the site closest to you or "other” if you'd like to
specify a different choice. Also note that not every site listed here
carries more than the base distribution kits. Only the Primary site is
guaranteed to carry the full range of possible distributions.

fip.freebsd.org

URL Specify some other ftp site by URL
4.0 SNAP Server current.freebsd.org
3.0 SHAP Server releng3.freebsd.org
Argentina ftp.ar.freebsd.org
flustralia ftp.au.freebsd.org
fustralia #2 ftp2.au.freebsd.org

Australia #3 ftp3.au.freebsd.org
flustralia #4 ftp4.au.freebsd.org
flustralia #5 ftp5.au.freebsd.org
Brazil ftp.br.freebsd.org
Brazil #2 ftp2.br.freebsd.org
v(+)

(I Cancel

[Select a site that’s closel 1

Figure 5-16: Selecting ftp server

Installing via NFS

If you’re installing from a CD-ROM drive on another system in the local network, you
might find an installation via ftp too complicated for your liking. Installation is a lot
easier if the other system supports NFS. Before you start, make sure you have the CD-
ROM mounted on the remote machine, and that the remote machine is exporting the file
system (in System V terminology, exporting is called sharing). When prompted for the
name of the directory, specify the name of the directory on which the CD-ROM is
mounted. For example, if the CD-ROM is mounted on directory /cdrom on the system
presto.example.org, enter pr est 0. exanpl e. or g: / cdrom. That’s all there is to it!

Older versions of FreeBSD stored the distribution on a subdirectory dists. Newer versions store it
in the root directory of the CD-ROM.

Next, you give this information to sysinstall, as shown in Figure 5-17. After entering this
information, sysinstall asks you to configure an interface. This is the same procedure
that you would otherwise do after installation—see page 98. After performing this
configuration, you continue with Commit (on page 77).

Installing from a Microsoft partition

On the Intel architecture you can also install from a primary Microsoft partition on the
first disk. To prepare for installation from a Microsoft partition, copy the files from the
distribution into a directory called C:\FREEBSD. For example, to do a minimal
installation of FreeBSD from Microsoft using files copied from a CD-ROM, copy the
directories floppies and base to the Microsoft directories C:\FREEBSD\FLOPPIES and
C:\FREEBSD\BIN respectively. You need the directory FLOPPIES because that’s where
sysinstall looks for the boot.flp, the first image in every installation.

install.mm,v v4.21 (2003/04/02 06:39:30)

89 Chapter 5: Installing FreeBSD

Choose Installation Media

FreeBSD can be installed from a variety of different installation
media, ranging from floppies to an Internet FTP server. If you're
installing FreeBSD from a supported CDROM drive then this is generally
the best media to use if you have no overriding reason for using other
media.
— Value Required —

Please enter the full NFS file specification for the remote

host and directory containing the FreeBSD distribution files.

This should be in the format: hostname:/some/freebsd/dir

[preﬁto.example.org:/cdroml

9 Options Go to the Options screen

[Cancel
[Press F1 for more information on the various media types I

Figure 5-17: Specifying NFS file system

The only required directory is base. You can include as many other directories as you
want, but be sure to maintain the directory structure. In other words, if you also wanted
to install XF86336 and manpages, you would copy them to C:\FREEBSD\XF86336 and
C:\FREEBSD\MANPAGES

Creating floppies for a floppy installation

Installation from floppy disk is definitely the worst choice you have. You will need
nearly 50 floppies for the minimum installation, and about 250 for the complete
installation. The chance of one of them being bad is high. Most problems on a floppy
install can be traced to bad media, or differences in alignment between the media and the
drive in which they are used, so:

Before starting, format all floppies in the drive you intend to
use, even if they are preformatted.

The first two floppies you’ll need are the Kernel floppy and the MFS Root floppy, which
were described earlier.

In addition, you need at minimum as many floppies as it takes to hold all files in the base
directory, which contains the binary distribution. Read the file LAYOUT.TXT paying
special attention to the “Distribution format™ section, which describes which files you
need.

If you’re creating the floppies on a FreeBSD machine, you can put ufs file systems on the
floppies instead:

install.mm,v v4.21 (2003/04/02 06:39:30)

Alternative installation methods 90

fdformat -f 1440 fd0. 1440
di skl abel -w-r fd0. 1440 fl oppy3
news -t 2 -u 18 -1 1 -i 65536 /dev/fd0

Next, copy the files to the floppies. The distribution files are split into chunks that will fit
exactly on a conventional 1.44MB floppy. Copy one file to each floppy. Make very sure
to put the file base.inf on the first floppy; it is needed to find out how many floppies to
read.

The installation itself is straightforward enough: follow the instructions starting on page
63, select Floppy in the installation medium menu on page 76, then follow the prompts.

install.mm,v v4.21 (2003/04/02 06:39:30)

In this chapter:

* Installing additional

software

Adding users

Time zone

Network services

Startup preferences

Configuring the

mouse

* Configuring X

* Rebooting the new
system

Post-installation
configuration

In the last chapter we looked at the installation of the basic system, up to the point where
it could be rebooted. It’s barely possible that this could be enough. Almost certainly,
though, you’ll need to perform a number of further configuration steps before the system
is useful. In this chapter we roughly follow the final configuration menu, but there are a
few exceptions. The most important things to do are:

* Install additional software.

* Create accounts for normal users.

e Set up networking support.

* Configure the system to start all the services you need.
e Configure the X Window System and desktop.

In this chapter, we’ll concentrate on getting the system up and running as quickly as
possible. Later on in the book we’ll go into more detail about these topics.

At the end of the previous chapter, we had a menu asking whether we wanted to visit the
“last options” menu. If you answer YES, you get the configuration menu shown in
Figure 6-1. If you have rebooted the machine, log in as root and start sysinstall. Then
select Conf i gur e, which gets you into the same menu.

postinstall.mm,v v4.12 (2003/04/02 06:40:31) 91

The Complete FreeBSD 92

FreeBSD Configuration Menu
If you've already installed FreeBSD. you may use this menu to customize
it somewhat to suit your particular configuration. MWost importantly,
you can use the Packages utility to load extra "3rd party”
software not provided in the base distributions.

Exit this menu (returning to previous)
Distributions Install additional distribution sets
Packages Install pre—packaged software for FreeBSD
Root Password Set the system manager's password
Fdisk The disk Slice (PC-style partition) Editor
Label The disk Label editor
User Management Add user and group information
Console Customize system console behavior
Time Zone Set which time zone you're in
Media Change the installation media type
Mouse Configure your mouse
Networking Configure additional network services
- v(s)

Cancel
[Press F1 for more information on these options 1

Figure 6-1: Configuration menu

As the markers under the word Networ ki ng indicate, this menu is larger than the
window in which it is displayed. We’ll look at some of the additional entries below.
Only some of these entries are of interest in a normal install; we’ll ignore the rest.

There may be some reasons to deviate from the sequence in this chapter. For example, if
your CD-ROM is mounted on a different system, you may need to set up networking
before installing additional software.

Installing additional software

The first item of interest is Packages. These are some of the ports in the Ports
Collection, which we’ll look at in more detail in Chapter 9.

The Ports Collection contains a large quantity of software that you may want to install.
In fact, there’s so much that just making up your mind what to install can be a
complicated process: there are over 8,000 ports in the collection. Which ones are worth
using? | recommend the following list:

e acroread is the Acrobat reader, a utility for reading and printing PDF files. We look
at it briefly on page 276.

* bash is the shell recommended in this book. We’ll look at it in more detail on page
113. Other popular shells are tcsh and csh, both in the base system.

e cdrecord is a utility to burn SCSI CD-Rs. We’ll discuss it in chapter Chapter 13,
Writing CD-Rs. You don’t need it if you have an IDE CD-R drive.

postinstall.mm,v v4.12 (2003/04/02 06:40:31)

93 Chapter 6: Post-installation configuration

e Emacs is the GNU Emacs editor recommended in this book. We’ll look at it on page
139. Other popular editors are vi (in the base system) and vim (in the Ports
Collection).

» fetchmail is a program for fetching mail from POP mailboxes. We look at it on page
501.

* fvwm2 is a window manager that you may prefer to a full-blown desktop. We look at
it on page 118.

* galeon isaweb browser. We’ll look at it briefly on page 416.

e ghostscript is a PostScript interpreter. It can be used to display PostScript on an X
display, or to print it out on a non-PostScript printer. We’ll look at it on page 273.

* gpg is an encryption program.

e gv is a utility that works with ghostscript to display PostScript on an X display. It
allows magnification and paging, both of which ghostscript does not do easily. We’ll
look at it on page 273.

e ispell is a spell check program.

* kde is the desktop environment recommended in this book. We’ll look at it in more
detail in Chapter 7, The tools of the trade.

e mkisofs is a program to create CD-R images. We look at it in chapter Chapter 13,
Writing CD-Rs.

* mutt is the mail user agent (MUA, or mail reader) recommended in Chapter 26,
Electronic mail: clients.

e postfix is the mail transfer agent (MTA) recommended in chapter Chapter 27,
Electronic mail: servers.

e xtset is a utility to set the title of an xterm window. It is used by the .bashrc file
installed with the instant-workstation package.

e Xv is aprogram to display images, in particular jpeg and gif.

Why do | recommend these particular ports? Simple: because | like them, and I use them
myself. That doesn’t mean they’re the only choice, though. Others prefer the Gnome
window manager to -kkde, or the pine or elm MUAs to mutt, or the vim editor to
Emacs. This is the stuff of holy wars. See
http://www.tuxedo.org/"esr/jargon/html/entry/holy-wars.html for more details.

Instant workstation

The ports mentioned in the previous section are included in the misc/instant-workstation
port, which installs typical software and configurations for a workstation and allows you
to be productive right away. At a later point you may find that you prefer other software,
in which case you can install it.

postinstall.mm,v v4.12 (2003/04/02 06:40:31)

Installing additional software 94

It’s possible that the CD set you get will not include instant-workstation. That’s not such
a problem: you just install the individual ports from this list. You can also do this if you
don’t like the list of ports.

Changing the default shell for root

After installation, you may want to change the default shell for existing users to bash. If
you have installed instant-workstation, you should copy the file
lusr/share/skel/dot.bashrc to root’s home directory and call it .bashrc and .bash_pro-
file. First, start

presto# cp /usr/ share/ skel / dot . bashrc . bashrc
presto# | n . bashrc . bash_profile

presto# bash

=== root@presto (/dev/ttyp2) ~ 1 -> chsh

The last command starts an editor with the following content:

#Changing user database information for root.
Login: root

Password:

uid [#]: O

Gid [# or name]: O
Change [month day year]:
Expire [month day year]:
Class:

Home directory: /root
Shell: /bin/csh

Full Name: Charlie &
Office Location:

Office Phone:

Home Phone:

Other information:

Change the Shell line to:

Shell: /usr/1ocal /bi n/ bash

Note that the bash shell is in the directory /usr/local/bin; this is because it is not part of
the base system. The standard shells are in the directory /bin.

Adding users

A freshly installed FreeBSD system has a number of users, nearly all for system
components. The only login user is root, and you shouldn’t log in as root. Instead you
should add at least one account for yourself. If you’re transferring a master.passwd file
from another system, you don’t need to do anything now. Otherwise select this item and
then the menu item User, and fill out the resulting menu like this:

postinstall.mm,v v4.12 (2003/04/02 06:40:31)

95 Chapter 6: Post-installation configuration

User and Group Management
fidd a new user

Login ID: UID: Group: Passuword:

Fred } 1001 } fred } e }

Full name: Member groups:

Fred Bloggs } heel,operato‘r-‘

Home directory: Login shell:

/home/Tred w /usr/local/bin/bash

[§0H] CANCEL

Figure 6-2: Adding a user

You should not need to enter the fields U D and Hone directory: sysinstall does this
for you. It’s important to ensure that you are in group wheel so that you can use the su
command to become r oot , and you need to be in group oper at or to use the shutdown
command.

Don’t bother to add more users at this stage; you can do it later. We’ll look at user
management in Chapter 8, on page 112.

Setting the root password

Next, select Root Passwor d. We’ll talk about passwords more on page 144. Select this
item to set the password in the normal manner.

Time zone

Next, select the entry ti ne zone. The first entry asks you if the machine CMOS clock
(i.e. the hardware clock) is set to UTC (sometimes incorrectly called GMT, which is a
British time zone). If you plan to run only FreeBSD or other UNIX-like operating
systems on this machine, you should set the clock to UTC. If you intend to run other
software that doesn’t understand time zones, such as many Microsoft systems, you have
to set the time to local time, which can cause problems with daylight savings time.

postinstall.mm,v v4.12 (2003/04/02 06:40:31)

Time zone

96

Select a zone which observes the same time as your locality.

United States Time Zones

Eastern
Eastern
Eastern
Eastern
Eastern
Central
Central

|
2

Eastern

Time - Michigan - most locations

Time - Louisville. Kentucky

Standard Time — Indiana
Standard Time - Indiana
Standard Time — Indiana
Standard Time - Indiana

Time

Time - Michigan - Wisconsin border
Mountain Time

Mountain Time — Navajo
Mountain Standard Time - Arizona
Pacific Time
filaska Time

3

4

5

6

7

8

9]

10

11 Mountain Time - south Idaho & east Oregon
12

13

14

15

16 Alaska Time - Alaska panhandle

Ok]

Cancel

- most locations

- Crawford County

- Starke County

- Switzerland County

Figure 6-3: Time zone select menu: USA

The next menu asks you to select a *““region,” which roughly corresponds with a
continent. Assuming you are living in Austin, TX in the United States of America, you
would select Anerica -- North and Sout h and then (after scrolling down) Uni t ed

States of America. The next menu then looks like this: Select Cent r al

Ti ne and

select Yes when the system asks you whether the abbreviation CST sounds reasonable.

This particular step is relatively cumbersome. You may find it easier to look in the

directory /usr/share/zoneinfo after installation. There you find:

cd /usr/ share/ zonei nf o/

#1s

Africa Australia
Anerica CET
Antarctica CST6CDT
Arctic EET

Asia EST
Atlantic ESTSEDT

Ec

Eur ope
Factory
avr

HST
I ndi an

VET
posi xr ul es
zone. tab

If you want to set the time zone to, say, Singapore, you could enter:

cd Asia/

#1s

Aden Chungki ng
A maty Col onbo
Amran Dacca
Anadyr Damascus
Agt au Dli

Agt obe Dubai
Ashkhabad Dushanbe
Baghdad Gaza
Bahrai n Har bi n
Baku Hong_Kong
Bangkok Hovd

Bei r ut I rkut sk

Jer usal em
Kabul
Kanchat ka
Kar achi
Kashgar

Kat mandu

Kr asnoyar sk
Kual a_Lunpur
Kuchi ng
Kuwai t
Macao
Magadan

Novosi bi r sk
sk

Phnom Penh
Pyongyang
Qat ar
Rangoon

R yadh

Sai gon
Sanar kand
Seoul
Shanghai

S ngapor e

Tehr an

Thi nbu

Tokyo

U ung_Pandang
U aanbaat ar

U an_Bat or

U ungi

Vi enti ane

M adi vost ok
Yakut sk

Yekat eri nbur g
Yer evan

postinstall.mm,v v4.12 (2003/04/02 06:40:31)

97 Chapter 6: Post-installation configuration
Bi shkek | st anbul Mani | a Tai pei
Br unei Jakarta Muscat Tashkent
Calcutta Jayapur a N cosi a Thilisi

cp S ngapore

/etc/localtine

Note that the files in /usr/share/zoneinfo/Asia (and the other directories) represent
specific towns, and these may not correspond with the town in which you are located.
Choose one in the same country and time zone.

You can do this at any time on a running system.

Network services

Network Services Menu
You may have already configured one network device (and the other
various hostname/gateway/name server parameters) in the process
of installing FreeBSD. This menu allows you to configure other
aspects of your system's network configuration.
<<< X Exit Exit this menu (returning to previous)
[1 Interfaces Configure additional network interfaces
L 1 AMD This machine wants to run the auto-mounter service
[X]1 AMD Flags Set flags to AMD service (if enabled)
L 1 Anon FIP This machine wishes to allow anonymous FTP.
[1 Gateway This machine will route packets between interfaces
[1 inetd This machine wants to run the inet daemon
[1 HNFS client This machine will be an NFS client
L 1 NFS server This machine will be an NFS server
[1 HNipdate Select a clock-synchronization server
[1 PCNFSD Run authentication server for clients with PC-NFS.
[1 portmap This machine wants to run the portmapper daemon
[1 Routed Select routing daemon (default: routed)
[1 Ruhod This machine wants to run the rwho daemon
L
[X1 Sshd This machine wants to run the ssh daemon
[X1 ICP Extensions Allow RFC1323 and RFC1644 TCP extensions?
L 0K 1 Cancel

Figure 6-4: Network services menu

The next step is
Services Menu.

to configure your networking equipment. Figure 6-4 shows the Network
There are a number of ways to get to this menu:

e |If you’re running the recommended Custom installation, you’ll get it automatically
after the end of the installation.

e |f you’re running the Standard and Express installations, you don’t get it at all: after
setting up your network interfaces, sysinstall presents you with individual items from
the Network Services Menu instead.

postinstall.mm,v v4.12 (2003/04/02 06:40:31)

Network services 98

e |If you’re setting up after rebooting, or if you missed it during installation, select
Gonfi gur e from the main menu and then Net wor ki ng.

The first step should always be to set up the network interfaces, so this is where you find
yourself if you are performing a Standard or Express installation.

Setting up network interfaces

Figure 6-5 shows the network setup menu. On a standard 80x25 display it requires
scrolling to see the entire menu. If you installed via FTP or NFS, you will already have
set up your network interfaces, and sysinstall won’t ask the questions again. The only
real network board on this list is xI0, the Ethernet board. The others are standard
hardware that can also be used as network interfaces. Don’t try to set up PPP here;
there’s more to PPP configuration than sysinstall can handle. We’ll look at PPP
configuration in Chapter 20.

Network interface information required
If you are using PPP over a serial device. as opposed to a direct
ethernet connection. then you may first need to dial your Internet
Service Provider using the ppp utility we provide for that purpose.
If you're using SLIP over a serial device then the expectation is
that you have a HARDMIRED connection.

You can also install over a parallel port using a special "laplink”
cable to another machine running a fairly recent (2.0R or later)
version of FreeBSD.

[10JN3COM 3c90x / 3c90xB PCI ethernet card
1p0 Parallel Port IP (PLIP) peer connection
sl0 SLIP interface on device /dev/cuaal (COM1)>
ppp® PPP interface on device /dev/cuaa® (COM1)
510 SLIP interface on device /dev/cuaal (COM2)

ppp? PPP interface on device /dev/cuaal (COM2)

Cancel
[Press F1 to read network configuration manual 1

Figure 6-5: Network setup menu

In our case, we choose the Ethernet board. The next menu asks us to set the internet
parameters. Figure 6-6 shows the network configuration menu after filling in the values.
Specify the fully qualified local host name; when you tab to the Dorai n: field, the
domain is filled in automatically. The names and addresses correspond to the example
network that we look at in Chapter 16, on page 294. We have chosen to call this machine
presto, and the domain is example.org. In other words, the full name of the machine is
presto.example.org. Its IP address is 223. 147. 37. 2. In this configuration, all access to
the outside world goes via gw exanpl e. or g, which has the IP address 223. 147. 37. 5.
The name server is located on the same host, presto.example.org. The name server isn’t
running when this information is needed, so we specify all addresses in numeric form.

postinstall.mm,v v4.12 (2003/04/02 06:40:31)

99 Chapter 6: Post-installation configuration

What happens if you don’t have a domain name? If you’re connecting to the global
Internet, you should go out and get one—see page 318. But in the meantime, don’t fake
it. Just leave the fields empty. If you’re not connecting to the Internet, of course, it
doesn’t make much difference what name you choose.

Network Configuration

Host - Domain:
presto.example.org w example.org
IPv4 Gateway: Name server:

223.147.37.5 223.147.37.2

Configuration for Interface x10

IPv4 Address: Netmask :

223.147.37.2 255.255.255.0

Extra options to ifconfig:

0K CANCEL

L The IPv4 address to be used for this interface

Figure 6-6: Network configuration menu

As is usual for a class C network, the net mask is 255. 255. 255. 0. You don’t need to fill
in this information—if you leave this field without filling it in, sysinstall inserts it for
you. Normally, as in this case, you wouldn’t need any additional options to ifconfig.

Other network options

It’s up to you to decide what other network options you would like to use. None of the
following are essential, and none need to be done right now, but you may possibly find
some of the following interesting:

* inetd allows connections to your system from outside. We’ll look at it in more detail
on page 446. Although it’s very useful, it’s also a security risk if it’s configured
incorrectly. If you don’t want to accept any connections from outside, you can
disable inetd and significantly reduce possible security exposures.

* NFSclient. If you want to mount NFS file systems located on other machines, select
this box. An X appears in the box, but nothing further happens. See Chapters 24 and
25 for further details of NFS.

* NFS server. If you want to allow other systems to mount file systems located on this
machine, select this box. You get a prompt asking you to create the file /etc/exports,
which describes the conditions under which other systems can mount the file systems
on this machine. You must enter the editor, but there is no need to change anything at
this point. We’ll look at /etc/exports in more detail on page 460.

postinstall.mm,v v4.12 (2003/04/02 06:40:31)

Network services

100

e ntpdate and ntpd are programs that automatically set the system time from time
servers located on the Internet. See page 156 for more details. If you wish, you can

select the server at this point.

* rwhod broadcasts information about the status of the systems on the network. You
can use the ruptime program to find the uptime of all systems running rwhod, and
rwho to find who is running on these systems. On a normal-sized display, you need
to scroll the menu down to find this option.

* You don’t need to select sshd: it’s already selected for you. See page 451 for further

details of ssh and sshd.

You don’t need to specify any of the remaining configuration options during
configuration. See the online handbook for further details.

Startup preferences

The next step of interest is the St art up submenu, which allows you to choose settings
that take effect whenever you start the machine. See Chapter 29 for details of the startup

files.

Startup Services Menu

This menu allows you to configure various aspects of your system's
startup configuration. Use L[SPACE] or L[ENTER] to select items. and
[TAB] to move to the buttons. Select Exit to leave this menu.

E<@R == Exit this menu (returning to previous))

L1 APH Aluto—power management services (typically laptops)

[1 ushd Enable USB daemon (detect USB attach / detach)

[1 usbd flags Set default flags to usbd (if enabled)

[X] startup dirs Set the list of dirs to look for startup scripts

[1 named Run a local name server on this host

[1 named flags Set default flags to named (if enabled)

[1 nis client This host wishes to be an NIS client.

[X] nis domainname Set NIS domainname (if enabled)

[1 nis server This host wishes to be an NIS server.

[1 accounting This host wishes to run process accounting.

[1 1lpd This host has a printer and wants to run lpd.

[X] linux This host wants to be able to run linux binaries.

[X1 SCO This host wants to be able to run IBCS2 binaries.

[1 SVR4 This host wants to be able to run SYR4 binaries.

[X] quotas This host wishes to check quotas on startup.

L OK 1 Cancel

Figure 6-7: Startup configuration menu

postinstall.mm,v v4.12 (2003/04/02 06:40:31)

101 Chapter 6: Post-installation configuration

The most important ones are:

e Select APMIif you’re running a laptop. It enables you to power the system down in
suspend to RAM or suspend to disk mode, preserving the currently running system,
and to resume execution at a later date.

* If you have USB peripherals, select ushd to enable the usbd daemon, which
recognizes when USB devices are added or removed.

* naned starts a name daemon. Use this if you’re connecting to the Internet at all, even
if you don’t have a DNS configuration: the default configuration is a caching name
server, which makes name resolution faster. Just select the box; you don’t need to do
anything else. We’ll look at named in Chapter 21.

e Select | pd, the line printer daemon, if you have a printer connected to the machine.
We’ll look at Ipd in Chapter 15.

e Select |i nux if you intend to run Linux binaries. This is almost certainly the case,
and by default the box is already ticked for you.

e Select SVR4 and SCO if you intend to run UNIX System V.4 (SVR4) or SCO
OpenDesktop or OpenServer (SCO) binaries respectively.

Configuring the mouse

FreeBSD detects PS/2 mice at boot time only, so the mouse must be plugged in when you
boot. If not, you will not be able to use it. To configure, select Mbuse from the
configuration menu. The menu in Figure 6-8 appears.

Please configure your mouse
You can cut and paste text in the text console by running the mouse
daemon. Specify a port and a protocol type of your mouse and enable
the mouse daemon. If you don’t want this feature. select 4 to disable
the daemon.
Once you've enabled the mouse daemon. you can specify "/dev/sysmouse”
as your mouse device and "SysMouse” or "MouseSystems” as mouse
protocol when running the X configuration utility (see Configuration
menu) .

X Exit Exit this menu {returning to previous)
[. Jllicot and run ' the mouse dacaon
3 Type Select mouse protocol type

4 Port Select mouse port

5 Flags Set additional flags

6 Disable Disable the mouse daemon

Cancel

Figure 6-8: Mouse menu

postinstall.mm,v v4.12 (2003/04/02 06:40:31)

Configuring the mouse 102

With a modern PS/2 mouse, you don’t need to do any configuration at all. You just
enable the mouse daemon or moused. Select the menu item Enabl e: you have the
chance to move the mouse and note that the cursor follows. The keys don’t work in this
menu: select Yes and exit the menu. That’s all you need to do.

If you’re running a serial mouse, choose the item Sel ect nouse port and set it to
correspond with the port you have; if you have an unusual protocol, you may also need to
set it with the Type nenu. For even more exotic connections, read the man page for
moused and set the appropriate parameters.

Configuring X

You should have installed X along with the rest of the system—see page 75. If you
haven’t, install the package x11/XFree86. In this section, we’ll look at what you need to
do to get X up and running.

X configuration has changed a lot in the course of time, and it’s still changing. The
current method of configuring X uses a program called xf86¢cfg, which is still under
development, and it shows a few strangenesses. Quite possibly the version you get will
not behave identically with the following description. The differences should be
relatively clear, however.

B Configure Layout I Eaen At If your mouse doss not work. use

the numeric keypad, following
q the diagram bellow,
= | ; = =

- Lock B«mr‘ &mﬂe‘ &me‘
= 7 & L +
[4 & N
I

4 5 L
U ot B3| =

Figure 6-9: xf86cfg main menu

The configuration is stored in a file called XF86Config, though the directory has changed
several times in the last few years. It used to be in /etc/X11/XF86Config or
letc/XF86Config, but the current preferred place is /usr/X11R6/lib/X11/XF86Config. The

postinstall.mm,v v4.12 (2003/04/02 06:40:31)

103 Chapter 6: Post-installation configuration

server looks for the configuration file in multiple places, so if you’re upgrading from an
earlier version, make sure you remove any old configuration files. We’ll look at the
contents of the file in detail in Chapter 28. In this section, we’ll just look at how to
generate a usable configuration.

From the configuration menu, select XFr ee86 and then xf 86¢f g. There is a brief delay
while xf86cfg creates an initial configuration file, then you see the main menu of Figure
6-9. This application runs without knowing what the hardware is, so the rendering is
pretty basic. The window on the left shows the layout of the hardware, and the window
on the right is available in case your mouse isn’t working. Select the individual
components with the mouse or the numeric keypad. For example, to configure the
mouse, select the image at top left:

ElConfigure Layout I Expert Hode

& g

" Rdd new nouse
Configure mouse{s)

oF

Figure 6-10: xf86cfg mouse menu

In all likelihood that won’t be necessary. The configuration file that xf86cfg has already
created may be sufficient, so you could just exit and save the file. You’ll probably want to
change some things, though. In the following, we’ll go through the more likely changes
you may want to make.

Configuring the keyboard

You can select a number of options for the keyboard, including alternative key layouts.
You probably won’t need to change anything here.

Identifierz EBuhnardl]

¥kb rules: B =xfree8t

Keyboard nodel; EGeneric 101-key PC

¥kb variant; B

|
|
Keyboard layout; EU,S. English |
|
|

¥kb options: B
Hone
G Group S5hiftfLock behavior

O 0 E Third level choosers
g EiControl Key Position

EUse keyboard LED to show

E CapsLock key behavior

EAlt/Hin key behavior
SRRy m—— -

Apply changes

<4 Bagk | Hest »» | Dk| Cancel

Figure 6-11: xf86cfg keyboard menu

postinstall.mm,v v4.12 (2003/04/02 06:40:31)

Configuring X 104

Describing the monitor

Probably the most important thing you need to change are the definitions for the monitor
and the display card. Some modern monitors and most AGP display cards supply the
information, but older devices do not. In this example we’ll configure a Hitachi CM813U
monitor, which does not identify itself to xf86cfg. Select the monitor image at the top
right of the window, then Confi gure Mnitor(s). You see:

Identifier: [lonitor0

Horizontal sync m

Standard YGA, 640x480 2 60 Hz

Super YGA, 800x600 3 56 Hz

1024x768 2 87 Hz int, {no B00xBO0}
1024x768 @ 87 Hz int,, 800x600 @ 56 Hz
800x600 @ 60 Hz, BA0xdB80 B 72 Hz
1024x768 2 60 Hz, 800x600 @ 72 Hz
High Frequency SYGA, 1024dx768 @ 70 Hz
Honitor that can do 1280x1024 @ 60 Hz
Honitor that can do 1280x1024 @ 74 Hz
Honitor that can do 1280x1024 @ 76 Hz

Yertical sync m
50 - 70 50 - 90 50 - 100 40 - 150 MM

Select card connected to nonitor
& Cardl |

<< Baok| Bewt 35| Dk| Cancel

xf86¢fg doesn’t know anything about the monitor, so it assumes that it can only display
standard VGA resolutions at 640x480. The important parameters to change are the
horizontal and vertical frequencies. You can select one of the listed possibilities, but
unless you don’t know your’s monitor specifications, you should set exactly the
frequencies it can do. In this case, the monitor supports horizontal frequencies from 31
kHz to 115 kHz and vertical frequencies from 50 Hz to 160 Hz, so that’s what we enter.
At the same time, we change the identifier to indicate the name of the monitor:

Identifier: Hitachi CHE13U[]

Horizontal sync B1—115D

Standard YGA, 640x480 2 60 Hz

Super YGA, 800x600 3 56 Hz

1024x768 @ 87 Hz int, (no B0O0xBO0})
1024x768 @ 87 Hz int., 800x600 @ 56 Hz
B00x600 @ B0 Hz, 640x480 B 72 H=
1024x768 2 60 Hz, 800x600 @ 72 Hz
High Frequency SYGA, 1024dx768 @ 70 Hz
Honitor that can do 1280x1024 @ 60 Hz
Honitor that can do 1280x1024 @ 74 Hz
Honitor that can do 1280x1024 @ 76 Hz

Yertical sync hof1so|
50 - 70 50 - 90 50 - 100 40 - 150 MM

Select card connected to nonitor
& Cardl |

<< Baok| Bewt 35| Dk| Cancel

Figure 6-12: xf86¢cfg monitor menu
postinstall.mm,v v4.12 (2003/04/02 06:40:31)

105 Chapter 6: Post-installation configuration

Select OK to return to the previous menu.

Configuring the display card

xf86cfg recognizes most modern display cards, including probably all AGP cards, so you
probably don’t need to do anything additional to configure the display card. If you find
that the resultant configuration file doesn’t know about your card, you’ll have to select the
card symbol at the top of the screen. Even if the card has been recognized, you get this
display:

Identifier: [Gardo

Card nodel filter ﬂ

3dfx Interactive 3dfz Banshee WW
3dfx Interactive 3dfz Yoodoo3
3dfx Interactive 3dfx Yoodoob
3D0labz pn

3D0labs pn2

3D0labs pn2v

3D0labs pn3

3D0labs pnd

3Dlabs rd

Alliance Semiconductor APG422
Alliance Seniconductor AT24
Alliance Seniconductor AT3D
ARK Logic arkl(Q00py

ARK Logic ark2000nt

Driver Glnga
BusID [CIz1:030

<< Baok| Bewt 35| Dk| Cancel

The only indication you have that xf86cfg has recognized the card (here a Matrox G200)
is that it has selected nga for the driver name. If you need to change it, scroll down the
list until you find the card:

Identifier: [Gardo

Card nodel filter Eatrux HGA G200 PCI {ng:

Intel i815

Intel i830H

Hatrox HGA G100 PCI {ngagl0dd PCI}
Hatrox HGA G100 PCI {mgagl00) "m
Hatrox HGA G200 PCI {(ngag200 PCI}

Hatrox HGA G200 PCI {(mgagd(0)

Hatrox mgallbdsg

Hatrox ngaZ(6dw

Hatrox nga2lbdw

Hatrox nga2lbdw AGP

Hatrox ngaghhi

Heomnagic neo2070

| Heonagic neo2090

Driver Glnga
BusID [CIz1:030

<< Baok| Bewt 35| Dk| Cancel

Figure 6-13: xf86cfg card select menu

postinstall.mm,v v4.12 (2003/04/02 06:40:31)

Configuring X 106

Selecting display resolutions

The display resolution is defined by Mode Lines, which we’ll look at in detail on page
510. The names relate to the resolution they offer. By default, xf86cfg only gives you
640x480, so you’ll certainly want to add more. First, select the field at the top left of the
screen:

G Configure Layout I Expert Hode

Configure Layout
Configure Screen O E @
Configure Hodeline —

Configure AccessX

Figure 6-14: xf86¢fg configuration selection

From this menu, select Gonfi gure MddeLi ne. You see:

G Configure Hodeline I Expert Hode

HAdd standard YESA node to current screen |

<<| B B40x480 B 60 Hz >>

B} :8.0

4+

¥
Auto Apply| Restore Update| Test
Hiyncstarty 213 WiynoStarty 430
HSyncEnds 752 VoyncEnd: 492
HTotal: 200 WTobaly (=)

Flags: -hsunc -wayhco
Fixel Clock (MHz)3 25,20
Horizomtal Sync tkHz)i 31,50
Wertical Sync (Hzlt 60,00

Add | node to [EHonitor® as; [B40x4B0260
B 00t | [Free86 Configured _Help_' llu.l.t

Figure 6-15: xf86¢cfg mode line menu

If you pass the cursor over the image of the screen, you’ll see this warning:

HARHING
Using the controls here nay danage your
monitor, You can safely skip this section
of the configuration process,

Press ESC if your monitor goes out of sync.
Auto Apply Restore Update| Test

Figure 6-16: xf86¢cfg mode line warning
Take it seriously. We’ll look at this issue again in Chapter 28 on page 508. For an initial

setup, you shouldn’t use this interface. Instead, select Add standard VESA node at the
top. We get another menu:

postinstall.mm,v v4.12 (2003/04/02 06:40:31)

107 Chapter 6: Post-installation configuration

E Configure Hodeline I Expert Hode

EAdd standard YESH node to current screen |
BA0x350 @ 85Hz= (VESA} hsync: 37.9kHz

BOOx600 B 72Hz (YESA} hsunc: 48.1kHz
800600 B 75Hz (YESA} hsunc: 46.3kHz
B00x600 B 85Hz (YESA} hsunc: 53.7kHz
1024x768i @ 43Hz {(industry standard)} hsync:
1024x768 2 60Hz (YESA) hsync: 48.dkHz
1024x768 2 F0Hz (YESA) hsync: 56.5kHz
1024x768 2 75Hz (YESA) hsync: B60.0kHz
1024x768 2 85Hz (YESA) hsync: 68.7kHz
Horizontal Sync tkHz): 31.50

Wertical Sync (Hzip B0, 00

Add | node to G Honitor(ast [[10x480860
B 00t | [FreeB6 Configured _I_lelp_: Quit |

Figure 6-17: xf86¢cfg VESA mode lines

B40x400 B B5Hz (YESAY hsync: 37.9kHz
720x400 2 85Hz (YESA} hsunc: 37.9kHz
640xd80 B 60Hz (Industry standard} hsync: 3
B40x480 2B 72Hz (YESA} hsunc: 37.3kHz
B40x480 2 75Hz (YESA} hsunc: 37.5kHz
B40x480 2 85Hz (YESA} hsunc: 43.3kHz
B00x600 2 56Hz (YESA} hsunc: 35.2kHz
B00x600 2 60Hz (YESA} hsunc: 37.3kHz

E

E

Select the resolutions you want with the highest frequency that your hardware can handle.
In this case, you might select 1024x768 @ 85 Hz, because it’s still well within the range
of the monitor. Answer Yes to the question of whether you want to add it. You can
select as many resolutions as you want, but the ModeLine window does not show them.

You can also use the ModeLine window to tune the display, but it’s easier with another
program, xvidtune. We’ll look at those details in Chapter 28.

Finally, select Qui t at the bottom right of the display. You get this window:

g ®F86Config
= Hrite configuration to

|i.|3r'fHilRE!lithlif}{FBBEunfig

Yes Ho Cancel

Figure 6-18: xf86¢fg quit

When you answer Yes, you get a similar question asking whether you want to save the
keyboard definition. Once you’ve done that, you’re finished.

postinstall.mm,v v4.12 (2003/04/02 06:40:31)

Configuring X 108

Desktop configuration

Next, select Deskt op from the Configuration menu. You get this menu:

Please select the default X desktop to use.
By default, XFree86 comes with a fairly vanilla desktop which
is based around the twm(l) window manager and does not offer
much in the way of features. It does have the advantage of
being a standard part of X so you don't need to load anything
extra in order to use it. If, however, you have access to a
reasonably full packages collection on your installation media.
you can choose any one of the following desktops as alternatives.

X Exit Exit this menu (returning to previous)
The K Desktop Environment.

3 GNOME + Sawfish GNOME + Sawfish window manager.
4 GNOME + Enlightenment GNOME + The E window manager

5 fifterstep The Afterstep window manager

6 Hindowmaker The Mindowmaker window manager
7 fvum The fvwum window manager

L 0K Cancel

Figure 6-19: Desktop select menu

Which one do you install? You have the choice. If you know what you want, use it.
There are many more window managers than shown here, so if you don’t see what you’re
looking for, check the category x11-wm in the Ports Collection. The select menu gives
you the most popular ones: Gnome, Afterstep, Enlightenment, KDE, Windowmaker and
fwwm2. In this book, we’ll consider the KDE desktop and the fuwm?2 window manager.
KDE is comfortable, but it requires a lot of resources. Gnome is similar in size to KDE.
By contrast, fwm?2 is much faster, but it requires a fair amount of configuration. We’ll
look at KDE and fwwm?2 in Chapter 7.

Additional X configuration

At this point, we’re nearly done. A few things remain to be done:

* Decide how you want to start X. You can do it explicitly with the startx command,
or you can log in directly to X with the xdm display manager. If you choose startx,
you don’t need to do any additional configuration.

* For each user who runs X, create an X configuration file.

postinstall.mm,v v4.12 (2003/04/02 06:40:31)

109 Chapter 6: Post-installation configuration

Configuring xdm
To enable xdm, edit the file /etc/ttys. By default it contains the following lines:

ttyv8 "/usr/X11R6/ bi n/ xdm - nodaenon" xterm off secure

Using an editor, change the text of f to on:

ttyv8 "/usr/XLl1R6/ bi n/ xdm - nodaenon" xterm on secure

If you do this from a running system, send a HUP signal to init to cause it to re-read the
configuration file and start xdm;

#kill -11
This causes an xdm screen to appear on /dev/ttyv8. You can switch to it with Alt-F9.

User X configuration

If you’re starting X manually with startx, create a file .xinitrc in your home directory.
This file contains commands that are executed when X starts. Select the line that
corresponds to your window manager or desktop from the following list, and put it in
Xinitre:

startkde for kde
exec gnone- sessi on for Gnome
f vang for fvwm2

If you’re using xdm, you put the same content in the file .xsession in your home
directory.

Rebooting the new system

When you get this far, you should have a functional system. If you’re still installing from
CD-ROM, you reboot by exiting sysinstall. If you have already rebooted, you exit
sysinstall and reboot with:

shutdown -r now

Don’t just press the reset button or turn the power off. That can cause data loss. We’ll
look at this issue in more detail on page 537.

postinstall.mm,v v4.12 (2003/04/02 06:40:31)

In this chapter:

Users and groups

Gaining access

The KDE desktop

The fvwm2 window

manager

e Changing the X
display

e Getting a shell

* Files and file names

* Differences from
Microsoft

* The Emacs editor

e Stopping the system

The tools of the
trade

So now you have installed FreeBSD, and it successfully boots from the hard disk. If
you’re new to FreeBSD, your first encounter with it can be rather puzzling. You probably
didn’t expect to see the same things you know from other platforms, but you might not
have expected what you see either:

FreeBSD (freebie. exanpl e. org) (ttyv0)

| ogi n:

If you have installed xdm, you’ll at least get a graphical display, but it still asks you to log
in and provide a password. Where do you go from here?

There isn’t space in this book to explain everything there is about working with FreeBSD,
but in the following few chapters I’d like to make the transition easier for people who
have prior experience with Microsoft platforms or with other flavours of UNIX. You can
find a lot more information about these topics in UNIX for the Impatient, by Paul W.
Abrahams and Bruce R. Larson, UNIX Power Tools, by Jerry Peek, Tim O’Reilly, and
Mike Loukides, and UNIX System Administration Handbook, by Evi Nemeth, Garth
Snyder, Scott Seebass, and Trent R. Hein. The third edition of this book also covers
FreeBSD Release 3.2. See Appendix A, Bibliography, for more information.

If you’ve come from Microsoft, you will notice a large number of differences between
UNIX and Microsoft, but in fact the two systems have more in common than meets the
eye. Indeed, back in the mid-80s, one of the stated goals of MS-DOS 2.0 was to make it
more UNIX-like. You be the judge of how successful that attempt was, but if you know

unixref.mm,v v4.16 (2003/04/02 06:41:29) 111

The Complete FreeBSD 112

the MS-DOS command-line interface, you’ll notice some similarities in the following
sections.

In this chapter, we’ll look at FreeBSD from the perspective of somebody with computer
experience, but with no UNIX background. If you do have a UNIX background, you may
still find it interesting.

If you’re coming from a Microsoft platform, you’ll be used to doing just about everything
with a graphical interface. In this book | recommend that you use X and possibly a
desktop, but the way you use it is still very different. FreeBSD, like other UNIX-like
systems, places much greater emphasis on the use of text. This may seem primitive, but
in fact the opposite is true. It’s easier to point and click than to type, but you can express
yourself much more accurately and often more quickly with a text interface.

As a result, the two most important tools you will use with FreeBSD are the shell and the
editor. Use the shell to issue direct commands to the system, and the editor to prepare
texts. We’ll look at these issues in more detail in this chapter. In Chapter 8, Taking
control, we’ll look at other aspects of the system. First, though, we need to get access to
the system.

Users and groups

Probably the biggest difference between most PC operating systems and FreeBSD also
takes the longest to get used to: FreeBSD is a multi-user, multi-tasking system. This
means that many people can use the system at once, and each can do several things at the
same time. You may think “Why would | want to do that?.” Once you’ve got used to
this idea, though, you’ll never want to do without it again. If you use the X Window
System, you’ll find that all windows can be active at the same time—you don’t have to
select them. You can monitor some activity in the background in another window while
writing a letter, testing a program, or playing a game.

Before you can access a FreeBSD system, you must be registered as a user. The
registration defines a number of parameters:

* A user name, also often called user ID. This is a name that you use to identify
yourself to the system.

* A password, a security device to ensure that other people don’t abuse your user ID.
To log in, you need to specify both your user ID and the correct password. When you
type in the password, nothing appears on the screen, so that people looking over your
shoulder can’t read it.

It might seem strange to go to such security measures on a system that you alone use.
The incidence of Internet-related security problems in the last few years has shown
that it’s not strange at all, it’s just common sense. Microsoft systems are still subject
to a never-ending series of security exploits. FreeBSD systems are not.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

113 Chapter 7: The tools of the trade

e A shell, a program that reads in your commands and executes them. MS-DOS uses
the program COMMAND.COM to perform this function. UNIX has a large choice of
shells: the traditional UNIX shells are the Bourne shell sh and the C shell csh, but
FreeBSD also supplies bash, tcsh, zsh and others. | personally use the bash shell,
and the examples in this book are based on it.

* A homedirectory. The system can have multiple users, so each one needs a separate
directory in which to store his private files. Typically, users have a directory
/home/username, where username is the name they use to log in. When you log in
to the system, the shell sets the current directory to your home directory. In it, you
can do what you want, and normally it is protected from access by other users. Many
shells, including the bash shell used in these examples, use the special notation ™
(tilde) to represent the name of the home directory.

e A group number. UNIX collects users into groups who have specific common access
permissions. When you add a user, you need to make him a member of a specific
group, which is entered in the password information. Your group number indirectly
helps determine what you are allowed to do in the system. As we’ll see on page 181,
your user and group determine what access you have to the system. You can belong
to more than one group.

Group numbers generally have names associated with them. The group names and
numbers are stored in the file /etc/group. In addition, this file may contain user 1Ds
of users who belong to another group, but who are allowed to belong to this group as
well.

If you find the concept of groups confusing, don’t worry about them. You can get by
quite happily without using them at all. You’ll just see references to them when we
come to discuss file permissions. For further information, look at the man page for

group(5).

By the time you get here, you should have defined a user name, as recommended on page
94. If you haven’t, you’ll have to log in asr oot and create one as described there.

Gaining access

Once you have a user name, you can log in to the system. Already you have a choice:
FreeBSD offers both virtual terminals and the X Window System. The former displays
plain text on the monitor, whereas the latter uses the system’s graphics capabilities. Once
running, you can switch from one to the other, but you have the choice of which interface
you use first. If you don’t do anything, you get a virtual terminal. If you run xdm, you
get X.

It’s still relatively uncommon to use xdm, and in many instances you may not want X at
all, for example if you’re running the system as a server. As a result, we’ll look at the
“conventional” login first.

If you’re logging in on a virtual terminal, you’ll see something like this:

unixref.mm,v v4.16 (2003/04/02 06:41:29)

Gaining access 114

login: grog

Password: password doesn’t show on the screen
Last login: Fri Apr 11 16:30:04 from canberra

Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994

The Regents of the University of California. All rights reserved.

FreeBSD 5.0-RELEASE (FREEBIE) #0: Tue Dec 31 19:08:24 CST 2002
Welcome to FreeBSD!

You have mail.

erase “H, kill “U, intr °C, status T

Niklaus Wirth has lamented that, whereas Europeans pronounce his name
correctly (Ni-klows Virt), Americans invariably mangle it into
(Nick-les Worth). Which is to say that Europeans call him by name, but
Americans call him by value.

=== grog@freebie (/dew/ttyv0) ~ 1 —>

There’s a lot of stuff here. It’s worth looking at it in more detail:

The program that asks you to log in on a terminal window is called getty. It reads in
your user ID and starts a program called login and passes the user ID to it.

login asks for the password and checks your user ID.
If the user ID and password are correct, login starts your designated shell.

While starting up, the shell looks at a number of files. See the man page for your
particular shell for details of what they are for. In this case, though, we can see the
results: one file contains the time you last logged in, another one contains the
Message of the day (/etc/motd), and a third one informs you that you have mail. The
shell prints out the message of the day verbatim—in this case, it contains information
about the name of the kernel and a welcome message. The shell also prints
information on last login time (in this case, from a remote system) and whether you
have mail.

The line “erase "H, kill “U, intr "C, status “T” looks strange. It’s
telling you the current editing control characters. We’ll look at these on page 131.
At this point, the shell changes the current directory to your home directory. There is
no output on the screen to indicate this.

The shell runs the fortune program, which prints out a random quotation from a
database of ““fortune cookies.” In this case, we get a message about Niklaus Wirth,
the inventor of the Pascal programming language.

Finally, the last line is a prompt, the information that tells you that the shell is ready
for input.

The prompt illustrates a number of things about the UNIX environment. By default, sh
and friends prompt with a $, and csh and friends prompt with a %. You can change it to
just about anything you want with the UNIX shells. You don’t have to like my particular
version, but it’s worth understanding what it’s trying to say.

The first part, ===, is just to make it easier to find in a large list on an X display. An
xterm window on a high resolution X display can contain up to 120 lines, and searching
for command prompts can be non-trivial.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

115 Chapter 7: The tools of the trade

Next, grog@freebie is my user ID and the name of system on which | am working, in
the RFC 2822 format used for mail IDs. Multiple systems and multiple users can all be
present on a single X display. This way, | can figure out which user I am and what
system | am running on.

/devittyvO is the name of the terminal device. This can sometimes be useful.

~ is the name of the home directory. Most shells, but not all of them, support this
symbolism.

1 is the prompt number. Each time you enter a command, it is associated with this
number, and the prompt number is incremented. One way to re-execute the command is
to enter 111 (two exclamation marks and the number of the command). We’ll look at
more comfortable ones on page 131.

To start X from a virtual terminal shell, use the startx command:

$ startx

If you use xdm, you bypass the virtual terminals and go straight into X. Enter your user
name and password to the login prompt or the xdm login screen, and press Enter. If you
use the xdm login, you’ll go straight into X.

File Mew Bookmarks Deskiop Windows Help |

0 B r-n example.ory
| Miklaus Wirth has lanented that, whereas Europeans pronounce his name e R
! correctly (Ni—klows Wirt), Americans inwariably wangle it into
(Mick-les Worth). Which is to say that Europeans call him by name, but %
finericans call hin by value, O@ X AF 5 WG P
=== groglandante (/dew/ttup3) ¥ 1 > I
%344 Run Command - KDesktop [2][x][x
| G Emacs is ore component of the GNL operating system
Enter the name of the application you want to run “¥ou can o basie editing with the menu bar and seroll kar using the mause.
orthe URL you want to view. Iinpovtant Help menu items:
Emars Tutarial Learr-by-doing tutarial for using Emass efficiently
Ermacs FAG, Frecuently wskedl questions and answers
Command: term | (Mon jarranty GNU Emacs comes with ABSGLUTEL ¥ Wil WARRANTY
= Copying Conelitions ~ Coricitions for recistributing and changing Ermass
—_— Trelering Manuals How to arder Emacs manuals from the Free Software Foundation
% options >>| | # Bun | % Cancel |
FreeBSD Project -

Edit View Go Bookmarks Tools Setings Window Help

2 $oRG0 FebEg &R &

E# Location: \j hitp:ffwwny freebsd.orgs

http:liwvaw freebsd.org

FreeBSD sect ¢ sever ar v

IPVG Austria /| Go
Language: Japanese, Spanish, Bussian, Other

Wha! is FrPPFHn'J

.
The FreegsC | € emaca@ancer | 5 B[
3 grog (typ3) -« £} Run Commer rﬁ |" i

BsDE
Figure 7-1: KDE display

unixref.mm,v v4.16 (2003/04/02 06:41:29)

Gaining access 116

Either way, assuming that you’ve installed and configured kde, you’ll get a display
similar to that in Figure 7-1. This example includes four windows that are not present on
startup. On startup the central part of the screen is empty. We’ll look at the windows
further below.

The KDE desktop

KDE is a complicated system, and good documentation is available at
http: /imww.kde.org/documentation/. Once you have KDE running, you can access the
same information via the help icon on the panel at the bottom (the life ring icon). The
following description gives a brief introduction.

The KDE display contains a number of distinct areas. At the top is an optional menu, at
the bottom an almost optional panel, and the middle of the screen is reserved for
windows.

The Desktop Menu

The Desktop Menu is at the very top of the screen. It provides functionality that is not
specific to a particular application. Select the individual categories with the mouse. For
example, the Newmenu looks like this:

File Mew | Bookmarks Desktop Windows Help

4P, @ Directary.
=

B | Bty d that, whereas Europeans pronounce his name
m BE e plicten » Americans irwariably mangle it into

Tras @ Link to Location (URLY l:z to say that Europeans call him by name, but
& Flappy Device P 1= 0

P "

e .

(AL & Hard Disc

Bl (5) CO/DVD-ROM Device...

§) Text File..

@] HTML File

43 Presentation Document...

5% Text Document

2 Spread Sheet Document..

B ustration Dacument

Figure 7-2: KDE desktop menu
As the menu indicates, you can use these menus to create new files.

The Panel

At the bottom of the screen is the panel, which consists of a number of fields. The left-
hand section is used for starting applications.

BODEORIARRE RS

The stylized letter K at the extreme left is the Application Sarter. When you select it, a
unixref.mm,v v4.16 (2003/04/02 06:41:29)

117 Chapter 7: The tools of the trade

long vertical menu appears at the left of the screen and allows you to start programs
(“applications’) or access just about any other function.

Next comes an icon called “show desktop.” This is a convenient way to iconify all the
windows currently on the desktop.

The remaining icons on this part of the panel represent various applications.
* The konsole terminal emulator.

e The command center, which you use to configure KDE.

* The help system.

* Access to the home directory with the browser konqueror.

* Access to the Web, also with the browser konqueror.

e The Kmail MUA.

* The KWord word processor, which can understand Microsoft Word documents.
e The Kspread spreadsheet.

e The Kpresenter presentation package.

* The Kate editor.

The next section of the panel contains some control buttons and information about the
current desktop layout:

The FreeB50 f:femacs@an-
X urog (ttyp3)

The section at the left shows the current contents of four screens, numbered 1 to 4.
Screen 1 is the currently displayed screen; you can select one of the others by moving the
cursor in the corresponding direction, or by selecting the field with the mouse.

To the right of that are icons for the currently active windows. The size expands and
contracts depending on the number of different kinds of window active. If you select one
of these icons with the left mouse button, it will iconify or deiconify (*‘minimize” or
“maximize”) the window. If you have multiple xterms active, you will only have one
icon. In this case, if you select the icon, you will get another pop-up selection menu to
allow you to choose the specific window.

The right part of the panel contains a further three fields:

unixref.mm,v v4.16 (2003/04/02 06:41:29)

The KDE desktop 118

e The first one shows a stylized padlock (for locking the session when you leave the
machine; unlock by entering your password) and a stylized off switch, for logging out
of the session.

* The next section shows a stylized power connector, which displays the current power
status of the machine, and a clipboard.

* The right side shows a digital clock.

Probably the most useful part of this section of the panel is not very obvious: the right-
pointing arrow allows you to remove the panel if you find it’s in the way. The entire
panel is replaced by a single left-pointing arrow at the extreme right of the display.

Using the mouse

By default, kde only uses the left and the right mouse buttons. In general, the left button
is used to select a particular button, and the right button is used for an auxiliary menu.

Manipulating windows

You’ll notice that each window has a frame around it with a number of features. In X
terminology, they’re called decorations. Specifically:

* There’s atitle bar with the name of the program. If you select the bar itself, you raise
the window above all others. If you hold down the button on the title bar, you can
move the window.

e At the left of the title bar there is an X logo. If you select this logo, you get a menu
of window operations.

* At the right of the title bar, there are three buttons that you can select. The left one
iconifies the window, the middle one maximizes the window, making it take up the
entire screen, and the one on the right kills the application. If the window is already
maximized, the middle button restores it to its previous size.

* You can select any corner of the window, or any of the other edges, to change the size
of the window.

The fvwm2 window manager

If you come from a conventional PC background, you shouldn’t have much difficulty
with KDE. It’s a relatively complete, integrated environment. But it isn’t really UNIX.
If you come from a UNIX environment, you may find it too all-encompassing. You may
also find that there are significant delays when you start new applications.

UNIX has a very different approach to windows. There is no desktop, just a window
manager. It takes up less disk space, less processor time, and less screen real estate. By
default, XFree86 comes with the twm window manager, but that’s really a little primitive.
With modern machines, there’s no reason to choose such a basic window manager. You
may, however, find that fvwm2 is more your style than KDE.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

119 Chapter 7: The tools of the trade

Starting fvwm?2

Like KDE, you install fwwm2 from the Ports Collection. It’s not designed to work
completely correctly out of the box, though it does work. As with KDE, the first thing
you need to do is to create a .xsession or .xinitrc file, depending on whether you’re
running xdm. It must contain at least the line:

f vwn®

Start X the same way you did for KDE. This time you see, after starting the same
applications as before:

emacs@andante.example.org

Miklaus Uirth has lanented that, uhereas Europeans pronounce his nane | ri1e paie opeions Bubfers Tools Help
correctly (Ni-klous Virt], Anericans invariably mangle it inta

THick-Tss lorth), Which ©s bo ssy that Europsans all hin by nawe, bub 5
bmerteans call hin by value @ X 3F 5 o+ W @ & ?

|o== arogBandsnts (fdevrttupd) = 1 - 1l

G Emacs is ane component of the GHL operating system.
ou cart do basic editing vith the menu bar and seroll bar using the mouse

Useful File menu items:
Exit Emacs {Or type Control-x followed by Control-c)
Fecover Session Recover files you were editing before a crash

The FreeBSD Project - Galeon

| File Edit wiew Tah Seftings Go Bookmarks Tools Help
1« B & @ @ 5 =
Vi Vi 100 hittp:rweww freetisd ong/ /| e
I Back Farart Reload Haome Stap 7 & I E & -J LS
http:/iwvnw.freebsd.org
F B s Select a server near you:
rEE IPVE Austria jil

Language: Japanese, Spanish, Russian, Other

News

+ SO SIENTS grog (ttyp3} andante:”™

The FreeBSD Project — Galeon

In the Press
- hore

Software c
Getting FreeBSD | 1,

This picture shows both similarities with and differences from KDE. The similarities
include:

* Each window has a frame and a title. The exact form of the decorations is different,
but the purpose is the same. There is no *“close application” button: for most UNIX
applications, you should get the program to exit rather than killing it.

e There is a task bar at the bottom right, taking up only half the width of the screen.
The currently active window (the xterm at the left in this example) is highlighted.

e The default fvwm2 display also has four screens, and the task bar shows the position
of the windows on the task bar.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

The fvwm2 window manager 120

Still, there are a number of differences as well:
e Unless you have a top-end machine, it’s much faster in what it does.

e The background (the root window) doesn’t have any pattern; it’s just a grey cross-
hatch.

* You can move from one screen to the other using the cursor, and windows can
overlap. In this example, the galeon web browser window goes down to the screen
below, and the Emacs window goes over all four screens, as the display on the task
bar shows. With KDE, the only way to display the rest of these windows is to move
the window.

e Paradoxically, you can do a lot more with the mouse. On the root window, the left
mouse button gives you a menu for starting various programs, both locally and
remotely, and also various window utilities. The middle button gives you direct
access to the window manipulation utilities, and the right button gives a drop-down
list to select any of the currently active windows:

The menus above show one of the problems: look at those system names on the left
submenu (dopey, snoopy and friends). They don’t exist on our sample network, and the
chance of them existing on your network are pretty low as well. They’re hard-coded in
the sample configuration file, /usr/X11R6/etc/system.fvwm2rc. To use fvwm2 effectively,
you’ll have to modify the configuration file. The best thing to do is to make a copy of
/usr/X11R6/etc/system.fvwm2rc in your own directory, as ~/.fvwm2/.fvwm2rc. Then you
can have lots of fun tweaking the file to do exactly what you want it to do. Clearly, KDE
is easier to set up.

Changing the X display

When you set up your XF86Config file, you may have specified more than one
resolution. For example, on page 107 we selected the additional resolution 1024x768
pixels. When you start X, it automatically selects the first resolution, in this case
640x480. You can change to the previous resolution (the one to the left in the list) by
pressing the Ctrl-Alt-Keypad - key, and to the following resolution (the one to the right
in the list) with Ctrl-Alt-Keypad +. Keypad + and Keypad - refer to the + and - symbols
on the numeric keypad at the right of the keyboard; you can’t use the + and - symbols on

unixref.mm,v v4.16 (2003/04/02 06:41:29)

121 Chapter 7: The tools of the trade

the main keyboard for this purpose. The lists wrap around: in our example, if your
current resolution is 640x480, and you press Ctrl-Alt-Keypad -, the display changes to
1024x768. It’s a very good idea to keep the default resolution at 640x480 until you have
debugged your XF86Config parameters: 640x480 almost always works, so if your display
is messed up, you can just switch back to a known good display with a single keystroke.

Selecting pixel depth

You can configure most display boards to display a number of different pixel depths (a
different number of bits per pixel, which translates to a different number of colours).
When you start X, however, it defaults to 8 bits per pixel (256 colours), which is a very
poor rendition. To start it with a different number, specify the number of planes. For
example, to start with 32 bits per pixel (4,294,967,296 colours), enter:

$ startx -- -bpp 32

With older display boards, which had relatively limited display memory, there was a
tradeoff between maximum resolution and maximum pixel depth. Modern display cards
no longer have this limitation. We’ll look at this issue in more detail on page 519.

Getting a shell

As we saw at the beginning of the chapter, your main tools are the shell and the editor,
and that’s what we saw on the sample screens. But when you start X, they’re not there:
you need to start them.

In KDE, you have two ways to start a terminal window:

* You can select the icon showing a monitor with a shell in front of it, third from the
left at the bottom of the example above. This starts the konsole terminal emulator.

* You can start an xterm by pressing Alt-F2. You see a window like the one in the
centre left of Figure 7-1, enter the text xt er m(as shown) and press Run or the Enter
key.

Obviously the first is the intended approach, and it’s easier. Nevertheless, | recommend
using xterm at least until you’re sure you want to stick with kde: there are some subtle
differences, and konsole is intended to work with kde only. If you do stick with KDE,
you should change the configuration of the konsole button to start xterm instead; that’s
relatively straightforward.

In fvwm2, you start an xterm from the left mouse menu, as shown above.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

Getting a shell 122

Shell basics

The most basic thing you can do with the shell is to start a program. Consider program
names to be commands: like you might ask somebody to “wash the dishes™ or “mow the
lawn,”” you can tell the shell to “remove those files™:

$rmfilel file2 file3

This starts a program called rm (remove), and gives it a list of three file names to
remove.

If you’re removing a whole lot of files, this could take a while. Consider removing the
entire directory hierarchy /usr/obj, which is created when building a new version of the
system (see page 587). This directory hierarchy contains about 15,000 files and
directories, and it’ll take a while to remove it. You can do this with the following
command:

#rm-rf /usr/obj &
In this example, we have a couple of options led in by a hyphen (-) and also the character
& at the end of the line.

e The r option tells rm to recursively descend into subdirectories. If you didn’t
specify this, it would remove all files in the directory /usr/obj and then exit,
complaining that it can’t delete directories.

e Thef (force) option tells rm to continue on error; otherwise if anything goes wrong,
it will stop.

* The &character at the end of the line tells the shell (not rm) to continue after starting
the program. It can run for some time, and there’s no need to wait for it.
Options

In the previous example, we saw a couple of options. By convention, they come between
the command name and other parameters, and they’re identified because they start with a
hyphen character (-). There’s a lot of variation, though, depending on the individual
program.

e Sometimes, as in the previous example, options consist of a single letter and can
often be joined together.

e Some programs, like tar and ps, don’t insist on the hyphen lead-in. In Chapter 8,
we’ll see the command:

ps waux

unixref.mm,v v4.16 (2003/04/02 06:41:29)

123 Chapter 7: The tools of the trade

This command could equally well be written:

ps -waux

You may also come across programs that refuse to accept the hyphen at all.

* Sometimes options can have values. For example, in Chapter 23 we’ll see:

tcpdunp -i pppO host hub. freebsd. org

Here, pppO0 is an argument to the i option. In some cases, it must be written with a
space; in others, it must be written without a space; and in others again, it can be
written either way. Pay attention to this detail when reading man pages.

e In other cases, they can be keywords, in which case they need to be written
separately. The GNU project is particularly fond of this kind of option. For example,
when building the system you may see compiler invocations like these:

cc -O-pipe -Online=rpcgen_inline -Véll -Wo-fornat-y2k -Who-uninitialized \
-D_FBSOD=__RCSID-c /usr/src/usr.bin/rpcgen/rpc_nain.c

With the exception of the last parameter, all of these texts are options, as the hyphen
suggests.

* Options are specific to particular commands, though often several commands attempt
to use the same letters to mean the same sort of thing. Typical ones are v for verbose
output, q for quiet output (i.e. less than normal).

* Sometimes you can run into problems when you supply a parameter that looks like an
option. For example, how do you remove a file called -rf? There are a number of
solutions for this problem. In this example, you could write:

$rm./-rf
This is an alternative file naming convention that we’ll look at again on page 126.

Shell parameters

When you invoke a program with the shell, it first parses the input line before passing it
to the program: it turns the line into a number of parameters (called arguments in the C
programming language). Normally the parameters are separated by white space, either a
space or a tab character. For example, consider the previous example:

$rmfilel file2 file3

the program receives four arguments, numbered 0 to 3:

unixref.mm,v v4.16 (2003/04/02 06:41:29)

Getting a shell 124

Table 7-1: Program arguments

Argument | Value

0| rm

1| filel
2 | file2
3| file3

What happens if you want to pass a name with a space? For example, you might want to
look for the text “Mail rejected” in a log file. UNIX has a standard program for
looking for text, called grep. The syntax is:

grep expression files

Argument 1 is the expression; all additional arguments are the names of files to search.
We could write:

$ grep Mail rejected /var/log/naillog

but that would try to look for the text Mai | in the files rejected (probably causing an error
message that the file did not exist) and /var/log/maillog (where just about every line
contains the text Mai |). That’s not what we want. Instead, we do pretty much what |
wrote above:

$ grep "Mail rejected" /var/log/ naillog

In other words, if we put quote characters "" around a group of words, the shell will
interpret them as a single parameter. The first parameter that is passed to grep is Mi |
rejected,not"Mail rejected".

This behaviour of the shell is a very good reason not to use file names with spaces in
them. It’s perfectly legitimate to embed spaces into UNIX file names, but it’s a pain to
use. If you want to create a file name that contains several words, for example
All files updated since last week, consider changing the spaces to underscores:
All_files_updated_since_last_week.

It’s even more interesting to see what happens when you pass a globbing character to a
program, for example:

$cc-ofoo *.c

This invocation compiles all C source files (*.c) and creates a program foo. If you do this
with Microsoft, the C compiler gets four parameters, and it has to find the C source files
itself. In UNIX, the shell expands the text *.c and replaces it with the names of the
source files. If there are thirty source files in the directory, it will pass a total of 33
parameters to the compiler.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

125 Chapter 7: The tools of the trade

Fields that can contain spaces

The solution to the “Mail rejected” problem isn’t ideal, but it works well enough as long
as you don’t have to handle fields with blanks in them too often. In many cases, though,
particularly in configuration files, fields with blanks are relatively common. As a result, a
number of system configuration files use a colon (:) as a delimiter. This looks very
confusing at first, but it turns out not to be as bad as the alternatives. We’ll see some
examples in the PATH environment variable on page 130, in the password file on page
144, and in the login class file on page 564.

Files and file names

Both UNIX and Microsoft environments store disk data in files, which in turn are placed
in directories. A file may be a directory: that is, it may contain other files. The
differences between UNIX and Microsoft start with file names. Traditional Microsoft file
names are rigid: a file name consists of eight characters, possibly followed by a period
and another three characters (the so-called file name extension). There are significant
restrictions on which characters may be used to form a file name, and upper and lower
case letters have the same meaning (internally, Microsoft converts the names to UPPER
CASE). Directory members are selected with a backslash (\), which conflicts with other
meanings in the C programming language—see page 138 for more details.

FreeBSD has a very flexible method of naming files. File names can contain any
character except / , and they can be up to 255 characters long. They are case-sensitive:
the names FOO, Foo and foo are three different names. This may seem silly at first, but
any alternative means that the names must be associated with a specific character set.
How do you upshift the German name ungleichmaBig? What if the same characters
appear in a Russian name? Do they still shift the same? The exception is because the /
character represents directories. For example, the name /home/fred/longtext-with-a-long-
name represents:

1. First character is a/, representing the root file system.
2. home is the name of a directory in the root file system.
3. fred is the name of a directory in /home.
4

. The name suggests that longtext-with-a-long-name is probably a file, not a directory,
though you can’t tell from the name.

As a result, you can’t use / in a file name. In addition, binary 0s (the ASCII NUL
character) can confuse a lot of programs. It’s almost impossible to get a binary 0 into a
file name anyway: that character is used to represent the end of a string in the C
programming language, and it’s difficult to input it from the keyboard.

Case sensitivity no longer seems as strange as it once did: web browsers have made
UNIX file names more popular with Uniform Resource Indicators or URIs, which are
derived from UNIX names.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

Files and file names 126

File names and extensions

The Microsoft naming convention (name, period and extension) seems similar to that of
UNIX. UNIX also uses extensions to represent specific kinds of files. The difference is
that these extensions (and their lengths) are implemented by convention, not by the file
system. In Microsoft, the period between the name and the extension is a typographical
feature that only exists at the display level: it’s not part of the name. In UNIX, the period
is part of the name, and names like foo.bar.bazzot are perfectly valid file names. The
system doesn’t assign any particular meaning to file name extensions; instead, it looks for
magic numbers, specific values in specific places in the file.

Relative paths

Every directory contains two directory entries, . and .. (one and two periods). These are
relative directory entries: . is an alternative way to refer to the current directory, and ..
refers to the parent directory. For example, in /home/fred, . refers to /home/fred, and ..
refers to /home. The root directory doesn’t have a parent directory, so in this directory
only, .. refers to the same directory. We’ll see a number of cases where this is useful.!

Globbing characters

Most systems have a method of representing groups of file names and other names,
usually by using special characters for representing an abstraction. The most common in
UNIX are the characters *, ? and the square brackets []. UNIX calls these characters
globbing characters. The Microsoft usage comes from UNIX, but the underlying file
name representation makes for big differences. Table 7-2 gives some examples.

Table 7-2: Globbing examples

Name Microsoft meaning UNIX meaning
QO\F G * All files with the name CONFIG, | All files whose name starts with
no matter what their extension. CONFIG., no matter what the rest
is. Note that the name contains a
period.
QON\FI G BA? | All files with the name CONFIG | All files that start with CON-
and an extension that starts with | FIG.BA and have one more char-
BA, no matter what the last | acter in their name.
character.
* Depending on the Microsoft ver- | All files.
sion, all files without an extension,
or all files.
* o All files with an extension. All files that have a period in the
middle of their name.

1. Interestingly, the Microsoft file systems also have this feature.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

127 Chapter 7: The tools of the trade

f oo[127] In older versions, invalid. In new- | The three files fool, foo2 and
er versions with long file name | foo7.
support, the file with the name
foo[127].

Input and output

Most programs either read input data or write output data. To make it easier, the shell
usually starts programs with at least three open files:

e Standard input, often abbreviated to stdin, is the file that most programs read to get
input data.

e Standard output, or stdout, is the normal place for programs to write output data.

e Standard error output, or stderr, is a separate file for programs to write error
messages.

With an interactive shell (one that works on a terminal screen, like we’re seeing here), all
three files are the same device, in this case the terminal you’re working on.

Why two output files? Well, you may be collecting something important, like a backup
of all the files on your system. If something goes wrong, you want to know about it, but
you don’t want to mess up the backup with the message.

Redirecting input and output

But of course, even if you’re running an interactive shell, you don’t want to back up your
system to the screen. You need to change stdout to be a file. Many programs can do this
themselves; for example, you might make a backup of your home directory like this:

$ tar -cf /var/tmp/backup ~

This creates (option c) a file (option f) called /var/tmp/backup, and includes all the files
in your home directory (7). Any error messages still appear on the terminal, as stderr
hasn’t been changed.

This syntax is specific to tar. The shell provides a more general syntax for redirecting
input and output streams. For example, if you want to create a list of the files in your
current directory, you might enter:

$Is -1
drwkr-xr-x 2 root wheel 512 Dec 20 14:36 CVS
STWr--T- 1 root wheel 7928 Cct 23 12:01 Makefile
STWr--1- 5 root wheel 209 Jul 26 07:11 and. nap
STWr--T- 5 root wheel 1163 Jan 31 2002 apnd. conf
STWE--T-- 5 root wheel 271 Jan 31 2002 aut h. conf
SrWr--T-- 1 root wheel 741 Feb 19 2001 crontab
STWr--T-- 5 root wheel 108 Jan 31 2002 csh.cshrc
-rwr--r-- 5 root wheel 482 Jan 31 2002 csh. | ogin

(etc)

unixref.mm,v v4.16 (2003/04/02 06:41:29)

Files and file names 128

You can redirect this output to a file with the command:

$1s -1 >/var/tnp/etclist

This puts the list in the file /var/tmp/etclist. The symbol > tells the shell to redirect stdout
to the file whose name follows. Similarly, you could use the < to redirect stdin to that
file, for example when using grep to look for specific texts in the file:

$ grep csh < /var/tnp/etclist

-rwr--r-- 5 root wheel 108 Jan 31 2002 csh. cshrc
-rwr--r-- 5 root wheel 482 Jan 31 2002 csh. | ogin
-rwr--r-- 5grog lens 110 Jan 31 2002 csh. | ogout

In fact, though, there’s a better way to do that: what we’re doing here is feeding the
output of a program into the input of another program. That happens so often that there’s
a special method of doing it, called pipes:

$1s -1 | grep csh
-rwr--r-- 5 root wheel 108 Jan 31 2002 csh. cshrc
-rwr--r-- 5 root wheel 482 Jan 31 2002 csh.login
-rwr--r-- 5 grog lens 110 Jan 31 2002 csh. | ogout

The | symbol causes the shell to start two programs. The first has a special file, a pipe, as
the output, and the second has the same pipe as input. Nothing gets written to disk, and
the result is much faster.

A typical use of pipes are to handle quantities of output data in excess of a screenful.
You can pipe to the less' program, which enables you to page backward and forward:

$1ls -1 | less

Another use is to sort arbitrary data:

$ ps aux | sort -n +1

This command takes the output of the ps command and sorts it by the numerical (- n)
value of its second column (+1). The first column is numbered 0. We’ll look at ps on
page 148.

Environment variables

The UNIX programming model includes a concept called environment variables. This
rather unusual sounding name is simply a handy method of passing relatively long-lived
information of a general nature from one program to another. It’s easier to demonstrate
the use than to describe. Table 7-3 takes a look at some typical environment variables.
To set environment variables from Bourne-style shells, enter:

1. Why less? Originally there was a program called more, but it isn’t as powerful. less is a new program with
additional features, which proves beyond doubt that less is more.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

129 Chapter 7: The tools of the trade

$ export TERMEXterm

This sets the value of the TERMvariable to xt erm The word export tells the shell to
pass this information to any program it starts. Once it’s exported, it stays exported. If the
variable isn’t exported, only the shell can use it.

Alternatively, if you want to set the variable only once when running a program, and then
forget it, you can set it at the beginning of a command line:

$ TERMExtermcol or nutt

This starts the mutt mail reader (see page 472) with xterm’s colour features enabled.

For csh and tcsh, set environment variables with:

% setenv TERM xterm

To start a process with these variables, enter:

%env xtermcol or nutt

Table 7-3: Common environment variables

Name Purpose

BLAKSI ZE | The size of blocks that programs like df count. The default is 512 bytes,
but it’s often more convenient to use 1024 or even 1048576 (1 MB).

D SPLAY When running X, the name of the X server. For a local system, this is
typically uni x: 0. For remote systems, it’s in the form

syst em nane:ser ver - nunber .scr een- nunber . For the system bum-
ble.example.org, you would probably write bunbl e. exanpl e. or g: O.

ED TCR The name of your favourite editor. Various programs that start editors
look at this variable to know which editor to start.

HOME The name of your home directory.

LANG The locale that you use. This should be the name of a directory in
Jusr/share/locale.

MA L Some programs use this variable to find your incoming mail file.

MANPATH A list of path names, separated by colons (:), that specifies where the man
program should look for man pages. A typical string might be
/usr/share/ man: /usr/| ocal / man, and specifies that there are man
pages in each of the directories /usr/share/man and /usr/local/man.

NTAPE The name of the non-rewinding tape device. See page 252 for more
details.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

Files and file names 130

Name Purpose

PATH A list of path names, separated by colons (:), that specifies where the shell
should look for executable programs if you specify just the program name.

PS1 In Bourne-style shells, this is the prompt string. It’s usually set to $, but
can be changed. See page 114 for a discussion of a possible prompt for
bash.

P2 In Bourne-style shells, this is the prompt string for continuation lines. It’s
usually set to >.

SHELL The name of the shell. Some programs use this for starting a shell.

TAPE The name of the rewinding tape device. See page 252 for more details.

TERV The type of terminal emulation you are using. This is very important:

there is no other way for an application to know what the terminal is, and
if you set it to the wrong value, full-screen programs will behave
incorrectly.

TZ Time zone. This is the name of a file in /usr/share/zoneinfo that describes
the local time zone. See the section on timekeeping on page 155 for more
details.

Note particularly the PATH variable. One of the most popular questions in the Fr eeBSD-
guest i ons mailing list is “I have compiled a program, and | can see it in my directory,
but when I try to run it, | get the message “command not found.” This is usually
because PATHdoes not include the current directory.

It’s good practice not to have your current directory or your home directory in the PATH if you do,
you can be subject to security compromises. For example, somebody could install a program
called ps in the directory /var/tmp. Despite the name, the program might do something else, for
example remove all files in your home directory. If you change directory to /var/tmp and run ps,
you will remove all files in your home directory. Obviously much more subtle compromises are
possible.

Instead, run the program like this:
$./program

You should set your PATH variable to point to the most common executable directories.
Add something like this to your .profile file (for Bourne-style shells):

PATH=/ usr/ bi n: / usr/1 ocal / bi n: / usr/ sbi n: / bi n: / sbi n: / usr/ X11Ré/ bi n
export PATH

This variable is of great importance: one of the leading problems that beginners have is to
have an incorrect PATHvariable.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

131 Chapter 7: The tools of the trade

Printing out environment variables

So you can’t start a program, and you’re wondering whether your PATH environment
variable is set correctly. You can find out with the echo command:

$ echo $PATH
/bin:/usr/bin

The $ at the beginning of $PATH tells the shell to substitute the value of the environment
variable for its name. Without this, the shell has no way of knowing that it’s an
environment variable, so it passes the text PATHto echo, which just prints it out.

If you want to print out all the environment variables, use the printenv command:

$ printenv | sort

BLOKS ZE=1048576

CLASSPATH=/ usr/ | ocal / java/l i b:/usr/local /javallib/ cl asses. zi p: / horme/ gr og/ net scape/
CVSROOT=/ hone/ ncvs

D SPLAY=f r eebi e: 0

ED TCR=enacs

HOME=/ horne/ gr og

PAGER= ess

PATH=. : [usr/ bi n: / usr/ sbi n:/bin:/sbin:/usr/ X11R6/ bi n: /usr/ | ocal / bi n: / usr/| ocal / sbi n
XAUTHCR TY=/ horne/ gr og/ . Xaut hori ty

This example sorts the variables to make it easier to find them. In all probability, you’ll
find many more variables.

Command line editing

Typing is a pain. If you’re anything like me, you’re continually making mistakes, and
you may spend more time correcting typing errors than doing the typing in the first place.
It’s particularly frustrating when you enter something like:

$ groff -rex=7.5 -r$$ -rL -rW-rN2 -npi ¢ tmac. Muni xerf. nm
troff: fatal error: can’'t open ‘unixerf.mm: No such file or directory

This command should create the PostScript version of this chapter, but unfortunately |
messed up the name of the chapter: it should have been unixref.mm, and | typed
unixerf.mm.

Yes, | know this looks terrible. In fact, UNIX has ways to ensure you almost never need to write
commands like this. The command | really use to format this chapter is “make uni xr ef .

It would be particularly frustrating if | had to type the whole command in again. UNIX
offers a number of ways to make life easier. The most obvious one is so obvious that you
tend to take it for granted: the Backspace key erases the last character you entered. Well,
most of the time. What if you’re running on a machine without a Backspace key? You
won’t have that problem with a PC, of course, but a lot of workstations have a DEL key
instead of a Backspace key. UNIX lets you specify what key to use to erase the last
character entered. By default, the erase character really is DEL, but the shell startup
changes it and prints out a message saying what it has done:

unixref.mm,v v4.16 (2003/04/02 06:41:29)

Files and file names

132

erase “H, kill U,

intr °C, status T

in the example on page 113. "H (Ctrl-H) is an alternative representation for Backspace.

The three other functions kill, intr, and status perform similar editing functions.
ki Il erases the whole line, and intr stops a running program.

More correctly, intr sends a signal called SIGINT to the process. This normally causes a
program to stop.

You’ll notice that it is set to Ctrl-C, so its function is very similar to that of the MS-DOS
Break key. status is an oddball function: it doesn’t change the input, it just displays a
statistics message. bash doesn’t in fact use it: it has a better use for Ctrl-T.

In fact, these control characters are just a few of a large number of control characters that
you can set. Table 7-4 gives an overview of the more common control characters. For a
complete list, see the man page stty(1).

Table 7-4: Terminal control characters

Name Default | Function

CR \r Go to beginning of line. Normally, this also terminates input (in
other words, it returns the complete line to the program, which
then acts on the input).

NL \n End line. Normally, this also terminates input.

INTR CtrI-C | Generate a SIGINT signal. This normally causes the process to
terminate.

QUIT Ctrl-] | Generate a SIGQUIT signal. This normally causes the process to
terminate and core dump, to save a copy of its memory to disk for
later analysis.

ERASE DEL Erase last character. FreeBSD sets this to Backspace on login, but
under some unusual circumstances you might find it still set to
DEL.

KILL Ctri-U | Erase current input line.

EOF Ctr1-D | Return end-of-file indication. Most programs stop when they
receive an EOF.

STOP CtrI-S | Stop output. Use this to examine text that is scrolling faster than
you can read.

START ctri-Q | Resume output after stop.

SUSP Ctr1-Z | Suspend process. This key generates a SIGTSTP signal when

typed. This normally causes a program to be suspended. To
restart, use the fg command.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

133 Chapter 7: The tools of the trade

Name Default | Function

DSUSP Ctrl-Y | Delayed suspend. Generate a SIGTSTP signal when the character
is read. Otherwise, this is the same as SUSP.

REPRINT | CtrI-R | Redisplay all characters in the input queue (in other words,
characters that have been input but not yet read by any process).
The term “print" recalls the days of harcopy terminals. Many
shells disable this function.

DISCARD | Ctrl-0 | Discard all terminal output until another DISCARD character
arrives, more input is typed or the program clears the condition.

To set these characters, use the stty program. For example, if you’re used to erasing the
complete input line with Ctrl-X, and specifying an end-of-file condition with Ctrl-Z, you
could enter:

$ stty susp \377 kill "X eof “Z

You need to set SUSP to something else first, because by default it is Ctrl-Z, so the
system wouldn’t know which function to perform if you press “Z.

The combination \377 represents the character octal 377 (this notation comes from the C
programming language, and its origin is lost in the mists of time, back in the days when UNIX ran
on PDP-11s). This character is the “null” character that turns off the corresponding function.
System V uses the character \O for the same purpose.

In this particular case, "X really does mean the character ~ followed by the letter X, and
not Ctrl-X, the single character created by holding down the Control character and
pressing X at the same time.

Command history and other editing functions

Nowadays, most shells supply a command history function and additional functionality
for editing it. We’ll take a brief look at these features here—for more details, see the man
pages for your shell.

Shell command line editing has been through a number of evolutionary phases. The
original Bourne shell supplied no command line editing at all, though the version
supplied with FreeBSD gives you many of the editing features of more modern shells.
Still, it’s unlikely that you’ll want to use the Bourne shell as your shell: bash, ksh, and
zsh are all compatible with the Bourne shell, but they also supply better command line
editing.

The next phase of command line editing was introduced with the C shell, csh. By
modern standards, it’s also rather pitiful. It’s described in the csh man page if you really
want to know. About the only part that is still useful is the ability to repeat a previous
command with the '1 construct. Modern shells supply command line editing that
resembles the editors vi or Emacs. In bash, sh, ksh, and zsh you can make the choice by
entering:

unixref.mm,v v4.16 (2003/04/02 06:41:29)

Files and file names 134

$ set -0 emacs
$ set -0 vi

for Emacs-style editing
for vi-style editing

In tcsh, the corresponding commands are:

% bi nd enacs
%bi nd vi

Normally you put one of these commands in your startup file.

In Emacs mode, you enter the commands simply by typing them in. In vi mode, you
have to press ESC first. Table 7-5 shows an overview of the more typical Emacs-style
commands in bash. Many other shells supply similar editing support.

As the name suggests, the Emacs editor understands the same editing characters. It also
understands many more commands than are shown here. In addition, many X-based
commands, including web browsers, understand some of these characters.

Table 7-5: Emacs editing characters

Key Function

Ctrl-A Move to the beginning of the line.

LeftArrow Move to previous character on line.

Ctrl-B Move to previous character on line (alternative).

Ctrl-D Delete the character under the cursor. Be careful with this character:
it’s also the shell’s end-of-file character, so if you enter it on an empty
line, it stops your shell and logs you out.

Ctrl-E Move to the end of the line.

RightArrow Move to next character on line.

Ctrl-F Move to next character on line (alternative).

Ctrl-K Erase the rest of the line. The contents are saved to a ring buffer of
erased text and can be restored, possibly elsewhere, with Ctrl-Y.

Ctrl-L Erase screen contents (shell) or redraw window (Emacs).

DownArrow Move to next input line.

Ctrl-N Move to next input line (alternative).

UpArrow Move to previous input line.

Ctrl-P Move to previous input line (alternative).

Ctrl-R Incremental search backward for text.

Ctrl-S Incremental search forward for text.

Ctrl-T Transpose the character under the cursor with the character before the
cursor.

Ctrl-Y Insert previously erased with Ctrl-K or Alt-D.

Ctrl-_ Undo the last command.

Alt-C Capitalize the following word.

Alt-D Delete the following word.

Alt-F Move forward one word.

Alt-L Convert the following word to lower case.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

135 Chapter 7: The tools of the trade

Key Function
Alt-T Transpose the word before the cursor with the one after it.
Alt-U Convert the following word to upper case.

Ctrl-X Ctrl-S | Save file (Emacs only).
Ctrl-X Ctrl-C | Exitthe Emacs editor.

You’ll note a number of alternatives to the cursor keys. There are two reasons for them:
firstly, the shell and Emacs must work on systems without arrow keys on the keyboard.
The second reason is not immediately obvious: if you’re a touch-typer, it’s easier to type
Ctrl-P than take your hands away from the main keyboard and look for the arrow key.
The arrows are good for beginners, but if you get used to the control keys, you’ll never
miss the arrow keys.

File name completion

As we have seen, UNIX file names can be much longer than traditional Microsoft names,
and it becomes a problem to type them correctly. To address this problem, newer shells
provide file name completion. In Emacs mode, you typically type in part of the name,
then press the Tab key. The shell checks which file names begin with the characters you
typed. If there is only one, it puts in the missing characters for you. If there are none, it
beeps (rings the “terminal bell”). If there are more than one, it puts in as many letters as
are common to all the file names, and then beeps. For example, if | have a directory
docco in my home directory, | might enter:

=== grog@freebie (/dev/ttyp4) ~ 14 —> cd docco/

=== grog@freebie (/dev/ttyp4) ~/docco 15 -> |s

freebsd faq freebsd.fbc freeware

=== grog@freebie (/dev/ttyp4) ~/docco 16 -> enacs f reebeepbsd.fbeepaq

Remember that my input is in const ant wi dt h bol d font, and the shell’s output is in
constant width font. On the first line, | entered the characters cd doc followed by a
Tab character, and the shell completed with the text co/. On the last line, | entered the
characters emacs f and a Tab. In this case, the shell determined that there was more
than one file name that started like this, so it added the letters ree and rang the bell. 1
entered the letter b and pressed Tab again, and the shell added the letters sd.¥ and
beeped again. Finally, | added the letters aq to complete the file name freebsd.fag.

Command line completion in vi mode is similar: instead of pressing Tab, you press ESC
twice.
Shell startup files

As we saw above, there are a lot of ways to customize your shell. It would be
inconvenient to have to set them every time, so all shells provide a means to set them
automatically when you log in. Nearly every shell has its own startup file. Table 7-6
gives an overview.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

Files and file names 136

Table 7-6: Shell startup files

Shell | startup file
bash | .profile, then .bashrc

csh login on login, always .cshrc
sh .profile
tesh Jlogin on login, always .tcshc, .cshrc if .tcshre not found

These files are shell scripts—in other words, straight shell commands. Figure 7-3 shows
a typical .bashrc file to set the environment variables we discussed.

unask 022
export BLOCKSI ZE=1024 # for df
export CVSROOT=/ src/ ncvs
export ED TCR=/ opt/ bi n/ enacs
export MANPATH=/ usr/ share/ man: / usr/ | ocal / man
export MXYILLA HOME=/ usr/ | ocal / net scape
export PAGER-| ess
export PATH=/ usr/bin:/usr/| ocal / bi n:/usr/sbin:/bin:/sbin:/usr/X11Re/ bi n
PS1="=== \u@h (‘tty') \w\# ->"
PS2="\u@h \w\! ++ "
export SHELL=/usr/I ocal / bi n/ bash
export TAPE=/dev/nsa0 # note non-rew nding as standard
if ["$TERM =""], then
export TERMxterm

fi
if ["$DSPLAY" =""]; then
export D SPLAY=: 0
fi
[/ usr/ gares/ f or t une # print a fortune cookie

Figure 7-3: Minimal .bashrc file

It would be tedious for every user to put settings in their private initialization files, so the
shells also read a system-wide default file. For the Bourne shell family, it is /etc/profile,
while the C shell family has three files: /etc/csh.login to be executed on login,
letc/csh.cshrc to be executed when a new shell is started after you log in, and
letc/csh.logout to be executed when you stop a shell. The start files are executed before
the corresponding individual files.

In addition, login classes (page 564) offer another method of setting environment
variables at a global level.

Changing your shell

The FreeBSD installation gives r oot a C shell, csh. This is the traditional BSD shell, but
it has a number of disadvantages: command line editing is very primitive, and the script
language is significantly different from that of the Bourne shell, which is the de facto
standard for shell scripts: if you stay with the C shell, you may still need to understand
the Bourne shell. The latest version of the Bourne shell sh also includes some command
line editing. See page 133 for details of how to enable it.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

137 Chapter 7: The tools of the trade

If you want to stay with a csh-like shell, you can get better command line editing with
tcsh, which is also in the base system. You can get both better command line editing and
Bourne shell syntax with bash, in the Ports Collection.

If you have root access, you can use vipw to change your shell, but there’s a more
general way: use chsh (Change Shell). Simply run the program. It starts your favourite
editor (as defined by the ED TCRenvironment variable). Here’s an example before:

#Changi ng user database information for velte.
Shel | : /bin/csh

Full Nane: Jack \elte

Locati on:

Cfice Phone:

Hone Phone:

You can change anything after the colons. For example, you might change this to:

#Changi ng user database information for velte.
Shel | : /usr/1ocal /bi n/ bash

Full Nane: Jack \elte

Locati on: On the road

Cffice Phone: +1-408-555-1999

Hone Phone:

chsh checks and updates the password files when you save the modifications and exit the
editor. The next time you log in, you get the new shell. chsh tries to ensure you don’t
make any mistakes—for example, it won’t let you enter the name of a shell that isn’t
mentioned in the file /etc/shells—but it’s a very good idea to check the shell before
logging out. You can try this with su, which you normally use to become super user:

bunbl e# su velte
Passwor d:
su- 2. 00$ note the new prompt

You might hear objections to using bash as a root shell. The argument goes something
like this: bash is installed in /usr/local/bin, so it’s not available if you boot into single-
user mode, where only the root file system is available. Even if you copy it to, say, /bin,
you can’t run it in single-user mode because it needs libraries in /usr/lib.

In fact, this isn’t a problem. If you install the system the way | recommend in Chapter 5,
lusr is on the root file system. Even if it isn’t, though, you don’t have to use bash in
single-user mode. When you boot to single-user mode, you get a prompt asking you
which shell to start, and suggesting /bin/sh.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

Files and file names 138

Differences from Microsoft

If you’re coming from a Microsoft background, there are a few gotchas that you might
trip over.

Slashes: backward and forward

/ (slash) and \ (backslash) are confusing. As we’ve seen, UNIX uses / to delimit
directories. The backslash\ is called an escape character. It has several purposes:

* You can put it in front of another special character to say “don’t interpret this
character in any special way.” We’ve seen that the shell interprets a space character
as the end of a parameter. In the previous example we changed Mai | rej ected to
"Mai | rejected" tostop the shell from interpreting it. We could also have written:
Mai |\ rejected.

A more common use for this quoting is to tell the shell to ignore the end of a line. If
a command line in a shell script gets too long, you might like to split it up into several
lines; but the shell sees the end of a line as a go-ahead to perform the command. Stop
it from doing so by putting a backslash immediately before the end of the line:

$ grep \
"Mail rejected" \
/var/log/maillog

Don’t put any spaces between the \ and the end of the line; otherwise the shell will
interpret the first space as a parameter by itself, and then it will interpret the end of
line as the end of the command.

* In the C programming language, the backslash is used to represent several control
characters. For example, \ n means “new line.” This usage appears in many other
places as well.

e Using \ as an escape character causes problems: how do we put a\ character on a
line? The answer: quote it. Write \\ when you mean \. This causes particular
problems when interfacing with Microsoft: if you give a Microsoft path name to a
shell, it needs the doubled backslashes: C:\WINDOWS

Tab characters

We’ve seen that the shell treats “white space,” either spaces or tab characters, as the
same. Unfortunately, some other programs do not. make, sendmail and syslogd make a
distinction between the two kinds of characters, and they all require tabs (not spaces) in
certain places. This is a real nuisance, because hardly any editor makes a distinction
between them.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

139 Chapter 7: The tools of the trade

Carriage control characters

In the olden days, the standard computer terminal was a Teletype, a kind of computer-
controlled electric typewriter. When the carriage, which contained the print head, got to
the end of a line, it required two mechanical operations to move to the beginning of the
next line: the carriage return control character told it to move the carriage back to the
beginning of the line, and the line feed character told it turn the platen to the next line.

Generations of computer systems emulated this behaviour by putting both characters at
the end of each text line. This makes it more difficult to recognize the end of line, it uses
up more storage space, and normally it doesn’t buy you much. The implementors of
UNIX decided instead to use a single character, which it calls the new line character. For
some reason, they chose the line feed to represent new line, though the character
generated by Enter is a carriage return. As we saw above, the C programming language
represents it as\ n.

This causes problems transferring data between FreeBSD and Microsoft, and also when
printing to printers that still expect both characters. We’ll look at the file transfer issues
on page 260 and the printer issues on page 267.

The Emacs editor

Apart from the shell, your second most important tool is the editor, a program that creates
and changes texts. Another divergence of concept between UNIX and Microsoft
environments is that UNIX gives you a choice of editors in just about anything you do.
Microsoft products frequently try to redefine the whole environment, so if you change
mailers, you may also have to change the editor you use to write mail. This has a
profound effect on the way you work. In particular, the Microsoft way makes it
uninteresting to write a really good editor, because you can’t use it all the time.

The standard BSD editor is vi, about which people speak with a mixture of admiration,
awe and horror. vi is one of the oldest parts of BSD. It is a very powerful editor, but
nobody would say that it is easy to learn. There are two reasons to use vi:

1. If you’re already an experienced vi hacker, you probably won’t want to change.

2. If you do a lot of work on different UNIX systems, you can rely on vi being there.
It’s about the only one on which you can rely.

If, on the other hand, you don’t know vi, and you only work on systems whose software
you can control, you probably shouldn’t use vi. Emacs is much easier to learn, and it is
more powerful than vi.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

The Emacs editor 140

]
= emacs@freebie.erample.crg 2

File Edit Options Buffersz Tools Help

O % 33 9 LBV QRIGD?

| »

GMU Emacs is one component of the GMU operating system.
You can do basic editing with the menu bar and scroll bar using the mouse.

Important Help menu items:

Emacs Tutorial Learn-by-doing tutarial for using Emacs efficiently

Emacs FAG Freguently asked guestions and answers

(Mon)Warranty GMU Emacs comes with ASSOLUTELY AMD WARRANTY

Copying Conditions Conditions for redistributing and changing Emacs

Crdering Manuals How to order Emacs manuals from the Free Sofware Foundation 2
&

2z This is GMU Emacs 21.2.1 (i366--freebsd, X toolkit, Xaw3dd scroll bars)

|— ol Enacs |
For information about the GHU Project and its goals, type C-h C-p,

Figure 7-4: Emacs main menu

When running under X, Emacs displays its own window (vi uses an xterm under these
circumstances). As a result, if you start Emacs from an xterm, you should use the &
character to start it in the background:

$ emacs &

Figure 7-4 shows the resulting display. As you can see, the first thing that Emacs offers
you is a tutorial. You should take it. You’ll also notice the menu bars at the top.
Although they look primitive compared to graphics toolbars, they offer all the
functionality of graphics-oriented menus. In addition, they will tell you the keystrokes
that you can use to invoke the same functions. Figure 7-5 gives an example of the Files
menu.

There is a lot of documentation for Emacs, much of it on line. The complete Emacs
handbook is available via the info mode of Emacs, which is described in the tutorial. If
that’s not enough, read Learning GNU Emacs, by Debra Cameron, Bill Rosenblatt and
Eric Raymond.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

141 Chapter 7: The tools of the trade

= emacs@freebie.example.org [2]l=
File| Edit Optionz Buffers Tools Help

" Open File.., (C=x C=F) |,

| Open Directory... (L= d} }:’ @ a @ ?
Insert File,.. (C=x i) Lt to save, and for Lisp evaluation,
Close (current buffer) at file with C-x C-F,
: : T . . . buffer,
e ooprenn bngddert S, G
Save Buffer As,.. (C—x C-u)

Faped Tugdden
Recover Crashed Session,..

Print Buffer

Prive H

w

Postzcript Print Buffer

Postscript Print Buffer (B+l)

HERR A R O

(C-x 23

Mew Frame 1E= i)
Wew Frame on Display...

Exit Emacs B Bl

£

_—;:—— ssrratche (Lizp Interaction)--L5--A1l {
For information about the GHU Project and its goalz, type C-h C-p.

Figure 7-5: Emacs files menu

Stopping the system

To stop X, press the key combination Ctrl-Alt-Backspace, which is deliberately chosen
to resemble the key combination Ctrl-Alt-Delete used to reboot the machine. Ctrl-Alt-
Backspace stops X and returns you to the virtual terminal in which you started it. 1f you
run from xdm, it redisplays a login screen.

To stop the system, use the shutdown program. To do so, you need to be a member of
group oper at or .

By default, KDE uses the halt program. Only root can use this program, so you should
reconfigure KDE to use shutdown. After this, you can shut down from KDE with the
keystroke combination Ctrl-Alt-PageDown.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

In this chapter:

Users and groups

The super user

Processes

Daemons

Stopping processes

Timekeeping

Log files

Multiple processor

support

e PC Card devices

e Emulating other
systems

e Emulating Linux

e Emulating SCO UNIX

* Emulating Microsoft

o Taking control

In Chapter 7 we saw the basics of working with FreeBSD. In this part of the book, we’ll
look at some more system-specific issues. This chapter discusses the following topics:

e UNIX is a multi-user operating system. We’ve already skimmed over creating user
accounts, but on page 144 we’ll look at it in more detail.

* Not all users are created equal. In particular, the system administration login r oot
has power over all other users. We’ll look atr oot on page 146.

e UNIX implements multi-tasking via a mechanism called processes. We’ll look at
them on page 148.

* Timekeeping is extremely important in a networking system. If your system has the
wrong time, it can cause all sorts of strange effects. On page 155 we’ll look at how to
ensure that your system is running the correct time.

e A number of events are of interest in keeping a machine running smoothly. The
system can help by keeping track of what happens. One mechanism for this is log
files, files that contain information about what has happened on the machine. We’ll
look at them on page 157.

e On page 159, we’ll look at how FreeBSD handles systems with more than one
processor. This is also called Symmetrical Multi-Processor or SMP support.

* Nearly every modern laptop has as special bus for plugin cards. It used to be called
PCMCIA, an acronym for the rather unlikely name Personal Computer Memory Card
International Association. Nowadays it’s called PC Card. It was later upgraded to a
32 bit bus called CardBus. We’ll look at how FreeBSD supports PC Card and
CardBus on page 159.

unixadmin.mm,v v4.13 (2003/04/02 06:50:29) 143

The Complete FreeBSD 144

e Starting on page 162, we’ll look at FreeBSD’s support for emulating other operating
systems.

* Other aspects of FreeBSD are so extensive that we’ll dedicate separate chapters to
them. We’ll look at them in Chapters 9 to 15.

» Starting and stopping the system is straightforward, but there are a surprising number
of options. Many of them are related to networking, so Chapter 29 is located after the
networking section.

Users and groups

We’ve already looked at users in Chapter 7. In this chapter, we’ll take a deeper look.

In traditional UNIX, information about users was kept in the file /etc/passwd. As the
name suggests, it included the passwords, which were stored in encrypted form. Any
user could read this file, but the encryption was strong enough that it wasn’t practical to
decrypt the passwords. Nowadays processors are much faster, and it’s too easy to crack a
password. As a result, FreeBSD keeps the real information in a file called /etc/mas-
ter.passwd, and for performance reasons it also makes it available in database form in
/etc/pwd.db and /etc/spwd.db. None of these file are user-readable. /etc/passwd remains
for compatibility reasons: some third-party programs access it directly to get information
about the environment in which they are running.

Choosing a user name

So what user name do you choose? User names are usually related to your real name and
can be up to eight characters long. Like file names, they’re case-sensitive. By
convention, they are in all lower case, even when they represent real names. Typical
ways to form a user name are:

* First name. In my personal case, this would be gr eg.
e Last name (I ehey).

* First name and initial of last name (gr egl).

e [Initial of first name, and last name (gl ehey).

e Initials (gpl).

* Nickname (for example, gr 0g).

I choose the last possibility, as we will see in the following discussion.

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

145 Chapter 8: Taking control

Adding users

We’ve already seen how to use sysinstall to create a user. It’s not the only way. There
are at least two other methods. One is the program adduser :

adduser
Use option ‘‘-verbose’’ if you want see nore warni ngs & questions
or try to repair bugs.

Enter usernane [a-z0-9]: yana
Enter full name []: Yana Lehey

Enter shell bash csh date no sh [bash]: accept the default
ud [1000]: accept the default
Enter login class: default []: accept the default
Logi n group yana [yana] hone

Login group is ‘‘hone’’. Invite yana into other groups: no
[no]: wheel to be ableto use su
Enter password []: no echo

Enter password again []: no echo

Narre: yana

Password: ****
Ful I name: Yana Lehey

ud: 1000

aad: 1001 (horre)

d ass:

G oups: hone wheel

HOME / hone/ yana

Shel | : / bi n/ bash

X2 (y/n) [y]: accept the default

Added user ‘‘yana’’
Add anot her user? (y/n) [y]:

An alternative way of adding or removing users is with the vipw program. This is a more
typical UNIX-hackish approach: vipw starts your favourite editor and allows you to edit
the contents of the file /etc/master.passwd. After you have finished, it checks the contents
and rebuilds the password database. Figure 8-1 shows an example.

.
= emacs@freebieexample.crg 2]z

File Edit Options Buffers Tools Help

DX OF 5 20 0GP

& newsi*:818::0:0:News Subsystemi/:/sbin/nologin
H iHister Man Pagesifusr/sharesmani/sbin/nologin
0:035ecure Shell DaemontAvaremptyissbin/nologin
Sendmail Submission User;dvardspool/clientmgueus:s/sbindnologin

$10:015endmail Default Userivar/spool/mgueue:/sbin/nologin
binds#*:53:53110:0:Bind Sandbox:/t/sbin/nologin

0:0:%-10 daemons Ausrlocal/xten:/sbin/nologin
ost. Office Owneri/nonexistenti/sbin/nologin
1%1807 World Wide Web Owner:/nonexistenti/shinsnologin

nobody:¥: 855 0341 :0:0:Unprivileged useri/nonexistent:/shin/nologin

Hiane: 1caU1JhJY$BQSVPd5TVNh510YSVnqu/ 100110012020t Uzer &1 /homefdlane Auzridlocal sbindbas

grog:$FLEcr iRV us3ABACFSZLAZWOEL Yqn, 01 1004 1 1000 root 1020t Greg "groggy’ Lehey,Echunga SA. +81 £-8388-8286, +61-0-8385-020 @
%03:/home/grog: fusr/local /binsbash

yvonne: 1BaTro0f ByZpEk DpLAnROFcd Teitakl/ 1 10002 10011 10202 Yvonne Lehey, Echunga, +61-8-8388-8200: homesywonne: usrdlocal/ @
Sbin/bash

i
==k pu, YFTOTI {Fundamental Server)--122--Bot
Auto-zaving, , .done

Figure 8-1: vipw display

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

Users and groups 146

You might be wondering why would you ever want to do things this way, and you might
find it funny that most experienced UNIX administrators prefer it. The reason is that you
get more of an overview than with a peephole approach that graphical environments give
you, but of course you need to understand the format better. It’s less confusing once you
know that each line represents a single user, that the lines are divided into fields (which
may be empty), and that each field is separated from the next by a colon (:). Table 8-1
describes the fields you see on the line on which the cursor is positioned. You can read
more about the format of /etc/master.passwd in the man page passwd(5).

Table 8-1: /etc/master.passwd format

Field Meaning

yvonne User name.

(gi bberi sh) Encrypted password. When adding a new user, leave this field empty
and add it later with the passwd program.

1005 User number.

1001 Group number.

(enpty) Login class, which describes a number of parameters for the user.
We’ll look at it in Chapter 29, on page 564. This field is not included
in /etc/passwd.

0 Password change time. If non-0, it is the time in seconds after which
the password must be changed. This field is not included in
[etc/passwd.

0 Account expiration time. If non-0, it is the time in seconds after which
the user expires. This field is not included in /etc/passwd.

Yvonne Lehey | The so-called gecos field, which describes the user. This field is used
by a number of programs, in particular mail readers, to extract the real
name of the user.

/ hone/ yvonne | The name of the home directory.

/ bi n/ bash The shell to be started when the user logs in.

The super user

FreeBSD has a number of privileged users for various administration functions. Some
are just present to be the owners of particular files, while others, such as daenon and
uucp, exist to run particular programs. One user stands above all others, however: r oot
may do just about anything. The kernel gives r oot special privileges, and you need to
become r oot to perform a number of functions, including adding other users. Make sure
root has a password if there is any chance that other people can access your system (this
is a must if you have any kind of dialup access). Apart from that, r oot is a user like any
other, but to quote the man page su(1):

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

147 Chapter 8: Taking control

By default (unless the prompt is reset by a startup file) the super user prompt is
set to # to remind one of its awesome power.

Becoming super user

Frequently when you’re logged in normally, you want to do something that requires you
to be root . You can log out and log in again as r oot , of course, but there’s an easier
way:

$ su become super user
Passwor d: as usual, it doesn’t echo
root prompt

To use su, you must be a member of the group wheel . Normally you do this when you
add the user, but otherwise just put the name of the user at the end of the line in
letc/group:

wheel : *: 0: r oot , grog add the text in bold face

BSD treats su somewhat differently from System V. First, you need to be a member of the group
wheel , and secondly BSD gives you more of the super user environment than System V. See the
man page for further information.

Having a single root password is a security risk on a system where multiple people
know the password. If one of them leaves the project, you need to change the password.
An alternative is the sudo port (/usr/ports/security/sudo). It provides fine-grained access
to root privileges, all based on the user’s own password. Nobody needs to know the
root password. If a user leaves, you just remove his account, and that cancels his access.

Adding or changing passwords

If your system has any connection with the outside world, it’s a good idea to change your
password from time to time. Do this with the passwd program. The input doesn’t look
very interesting:

$ passwd

Changi ng | ocal password for yana.

ad password: doesn’t echo
New passwor d: doesn’t echo
Ret ype new passwor d: doesn’t echo

passwd: rebuil ding the database. ..
passwd: done

You have to enter the old password to make sure that some passer-by doesn’t change it
for you while you’re away from your monitor, and you have to enter the new password
twice to make sure that you don’t mistype and lock yourself out of your account. If this
does happen anyway, you can log in as root and change the password: root doesn’t
have to enter the old password, and it can change anybody’s password. For example:

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

The super user 148

passwd yana

Changi ng | ocal password for yana.

New passwor d: doesn’t echo
Ret ype new passwor d: doesn’t echo

passwd: rebuilding the database...
passwd: done

In this case, you specify the name of the user for whom you change the password.

If you are changing the r oot password, be careful: it’s easy enough to lock yourself out
of the system if you mess things up, which could happen if, for example, you mistyped
the password twice in the same way (don’t laugh, it happens). If you’re running X, open
another window and use su to become r oot . If you’re running in character mode, select
another virtual terminal and log in as root there. Only when you’re sure you can still
access r oot should you log out.

If you do manage to lose the r oot password, all may not be lost. Reboot the machine to
single-user mode (see page 535), and enter:

mount -u / mount root file system read/write
mount /Zusr mount /usr file system (if separate)
passwd root change the password for r oot

Enter new passwor d:
Enter password agai n:
D enter ctrl-D to continue with startup

If you have a separate /usr file system (the normal case), you need to mount it as well,
since the passwd program is in the directory /usr/bin. Note that you should explicitly
state the name root : in single-user mode, the system doesn’t have the concept of user
IDs.

Processes

As we have seen, UNIX is a multi-user, multi-tasking operating system. In particular,
you can run a specific program more than once. We use the term process to refer to a
particular instance of a running program. Each process is given a process 1D, more
frequently referred to as PID, a number between 0 and 99999 that uniquely identifies it.
There are many things that you might like to know about the processes that are currently
running, such as:

* How many processes are running?

* Who is running the processes?

e Why is the system so slow?

* Which process is blocking my access to the modem?

Your primary tool for investigating process behaviour is the ps (process status)
command. It has a large number of command options, and it can tell you a whole lot of
things that you will only understand when you have investigated how the kernel works,
but it can be very useful for a number of things. Here are some typical uses:

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

149

Chapter 8: Taking control

W

Aft
pro

hat processes do | have running?

er starting a large number of processes in a number of windows under X, you
bably can’t remember what is still running. Maybe processes that you thought had

stopped are still running. To display a brief summary of the processes you have running,

use

$

Thi

\W

the ps command with no options:

ps

PID TT STAT TI ME COMVAND

187 pO Is+ 1. 02 -bash (bash)

0: 0
188 pl Ss 0: 00. 62 - bash (bash)
453 pl R+ 0: 00. 03 ps

s display shows the following information:
The PID of the process.

TT is short for teletype, and shows the last few letters of the name of the controlling
terminal, the terminal on which the process is running. In this example, the terminals
are /dev/ttypO and /devi/ttypl.

STAT shows the current process status. It’s involved and requires a certain amount of
understanding of how the kernel runs to interpret it—see the man page for ps for
more details.

Tl ME is the CPU time that the process has used in minutes, seconds and hundredths
of a second. Note that many other UNIX systems, particularly System V, only show
this field to the nearest second.

GOMVAND is normally the command you entered, but don’t rely on this. In the next
section, you’ll see that sendmail has changed its COMVAND field to tell you what it is
doing. You’ll notice that the command on the last line is the ps that performs the
listing. Due to some complicated timing issue in the kernel, this process may or may
not appear in the listing.

hat processes are running?

There are many more processes in the system than the list above shows. To show them

all, use the a option to ps. To show daemons as well (see the next section for a definition
of daemon), use the x option. To show much more detail, use the u or | options. For
example:

$ ps waux

USER PID9%PU WEM VSZ RSS TT STAT STARTED TI ME COMVAND

r oot 12 95.7 0.0 0 12 ?? R 1Jan70 1406:43.85 (idle: cpu0)

r oot 11 95.1 0.0 0 12 ?2? R 1Jan70 1406:44.64 (idle: cpul)

r oot 1 0.0 000 708 84 ?? ILs 1Jan70 0:09.10 /sbin/init --

r oot 12 0.0 0.0 0 12 72?7 W 1Jan70 15:04.95 (sw 1: net)

r oot 13 0.0 0.0 0 12 2?2 W 1Jan70 21:30.29 (sw 6: tty:sio clock)
r oot 15 0.0 0.0 0 12 2?2 DL 1Jan70 2:17.27 (randonm)

r oot 18 0.0 0.0 0 12 7?7 W 1Jan70 0:00.00 (sw 3: canbi0)

r oot 20 0.0 0.0 0 12 2?2 W 1Jan70 0:00.00 (irgll: ahcO uhci O++)
r oot 21 0.0 0.0 0 12 2?2 W 1Jan70 39:00.32 (irg5: rl0)

r oot 22 0.0 0.0 0 12 72?7 W 1Jan70 7:12.92 (irql4: ata0)

r oot 23 0.0 0.0 0 12 72?7 W 1Jan70 0:47.99 (irgl5: atal)

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

Processes 150
r oot 24 0.0 0.0 0 12 ?? DL 1Jan70 0:00.08 (usb0)
r oot 25 0.0 0.0 0 12 2?2 DL 1Jan70 0:00.00 (usht ask)
r oot 26 0.0 0.0 0 12 2?2 DL 1Jan70 0:00.07 (usbl)
r oot 27 0.0 0.0 0 12 ?? DL 1Jan70 0:00.08 (usb2)
r oot 340 0.0 0.1 1124 280 ?? S 18Dec02 16:41.11 nfsd: server (nfsd)
r oot 375 0.0 0.0 1192 12 ?? Ss 18Dec02 0:01.70 /usr/sbin/lpd
daenon 408 0.0 0.0 1136 152 ?? Ss 18Dec02 0: 11.41 /usr/sbi n/ rwhod
r oot 420 0.0 0.1 2648 308 ?? Ss 18Dec02 0:04.20 /usr/sbin/sshd
r oot 491 0.0 0.1 2432 368 ?? Ss 18Dec02 0:38.61 /usr/local/shin/httpd
r oot 551 0.0 0.0 1336 12 ?? Ss 18Dec02 0:02.71 /usr/sbin/inetd -wV
r oot 562 0.0 0.0 1252 216 ?? |Is 18Dec02 0:15.50 /usr/sbin/cron
r oot 572 0.0 0.0 1180 8 v2 |Vg+ - 0:00.00 /usr/libexec/getty Pc
AW 582 0.0 0.0 2432 8 ?? IW - 0:00.00 /usr/local /sbin/httpd
grog 608 0.0 0.1 1316 720 vO | 18Dec02 0:00.04 -bash (bash)
r oot 2600 0.0 0.0 1180 8 vl |Vg+ - 0:00.00 /usr/libexec/getty Pc
r oot 33069 0.0 0.3 5352 1716 ?? Ss 29Dec02 0:01.30 xterm-nane xterm
grog 33081 0.0 0.1 1328 752 p8 |Is+ 29Dec02 0:00.09 /usr/local/bin/bash

This list is just an excerpt

. Even on a freshly booted system, the real list of processes will
be much larger, about 50 processes.

We’ve seen a number of these fields already. The others are:

e USERIis the real user ID of the process, the user ID of the person who started it.

%PU is an approximate count of the proportion of CPU time that the process has
been using in the last few seconds. This is the column to examine if things suddenly
get slow.

%EMis an approximate indication of the amount of physical memory that the process
is using.

VSZ (virtual size) is the amount of virtual memory that the process is using, measured
in kilobytes.

RSS (resident segment size) is the amount of physical memory currently in use,
measured in kilobytes.

STARTED is the time or date when the process was started.

In addition, a surprising number of processes don’t have a controlling terminal. They are
daemons, and we’ll look at them in the next section.

Daemons

A significant part of the work in a FreeBSD system is performed by daemons. A daemon
is not just the BSD mascot described on page 20—it’s also a process that goes around in
the background and does routine work such as sending mail (sendmail), handling
incoming Internet connections (inetd), or starting jobs at particular times (cron).

To quote the Oxford English Dictionary: Demon Also deemon. ME [In form, and in sense I, a. L.
demon (med. L. demon)...] 1a. In ancient Greek mythology (= Seiuwv): A supernatural being of
a nature intermediate between that of gods and men, an inferior divinity, spirit, genius (including
the souls of deceased persons, esp deified heros). Often written deemon for distinction.

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

151 Chapter 8: Taking control

You can recognize daemons in a ps waux listing by the fact that they don’t have a
controlling terminal—instead you see the characters ??. Each daemon has a man page
that describes what it does.

Normally, daemons are started when the system is booted and run until the system is
stopped. If you stop one by accident, you can usually restart them. One exception is init,
which is responsible for starting other processes. If you kill it, you effectively kill the
system. Unlike traditional UNIX systems, FreeBSD does not allow init to be killed.

cron

One of the more useful daemons is cron, named after Father Time. cron performs
functions at specific times. For example, the system runs the script /etc/periodic/daily
every day at 2:00 am, the script /etc/periodic/weekly every Saturday at 3:30 am, and the
script /etc/periodic/monthly on the first day of every month at 5:30 am.

To tell cron to perform a function at a particular time, you need a file called a crontab.
The system keeps the real crontab where you can’t get at it, but you can keep a copy. It’s
a good idea to call it crontab as well.

Let’s look at the format of the default system crontab, located in /etc/crontab:

/etc/crontab - root’s crontab for FreeBSD
#

$ld: crontab,v 1.10 1995/ 05/27 01:55: 21 ache Exp $
From 1d: crontab,v 1.6 1993/05/31 02: 03:57 cgd Exp

#

SHEL L=/ bi n/ sh

PATH=/ et c: / bi n: / sbi n: / usr/ bi n: /usr/sbin

HOME=/ var/ | og

#

#mnut e hour nday nonth wday who conmand

#

*|5 * * * * r oot lusr/1ibexec/atrun
#

rotate log files every hour, if necessary

#0 * * * * r oot / usr/ bi n/ newsysl og
#

do dail y/weekl y/ nont hl'y mai nt enance

0 2 * * * r oot /etc/daily 2>&1

30 3 * * 6 r oot letc/weekly 2>&1
30 5 1 * * r oot /etc/nonthly 2>&1
#

tinme zone change adjustnent for wall cnos clock,
See adj kerntz(8) for details.
1,31 0-4 * *

* r oot /sbin/adjkerntz -a

As usual, lines starting with # are comments. The others have seven fields. The first five
fields specify the minute, the hour, the day of the month, the month, and the day of the
week on which an action should be performed. The character * means “every.” Thus, O
2 * * * (for /etc/daily) means “0 minutes, 2 o’clock (on the 24 hour clock), every day
of the month, every month, every weekday.”

Field number six is special: it only exists in /etc/crontab, not in private crontabs. It
specifies the user for whom the operation should be performed. When you write your
own crontab file, don’t use this field.

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

Daemons 152

The remaining fields define the operation to be performed. cron doesn’t read your shell
initialization files. In particular, this can mean that it won’t find programs you expect it to
find. It’s a good idea to put in explicit PATH definitions, or specify an absolute pathname
for the program, as is done in this example. cron mails the output to you, so you should
check r oot ’s mail from time to time.

To install or list a crontab, use the crontab program:

$ crontab crontab install a crontab

$ crontab -I list the contents of an installed crontab
#DONOT EDT THS FILE - edit the nmaster and reinstall.

(crontab installed on Ved Jan 1 15:15:10 1997)

(Qon version -- $ld: crontab.c,v 1.7 1996/12/17 00:55:12 pst Exp $)
00* * * [hone/grog/ Scripts/rotate-1og

Processes in FreeBSD Release 5
Some of the processes in the example above are specific to FreeBSD Release 5:

* FreeBSD Release 5 has an idle process to use up the excess processor time and
perform certain activities needed when no process is active. This example machine
has two processors, so there are two of them:

12 7?2 R 1Jan70 1406:43.85 (idle: cpu0)

root 12 95.7 0.0 O
5.1 0.0 0 12 ?? R 1Jan70 1406:44.64 (idle: cpul)

root 11 9

e A number of the processes have names starting with i r q or swi :

root 12 0.0 0.0 0 12 72?7 W 1Jan70 15:04.95 (sw 1: net)
root 13 0.0 0.0 0 12 2?2 W 1Jan70 21:30.29 (sw6: tty:s
root 18 0.0 0.0 0 12 72?2 W 1Jan70 0:00.00 (sw 3: canbi
root 20 0.0 0.0 0 12 ??2 W 1Jan70 0:00.00 (irqgll: ahcO
root 21 0.0 0.0 0 12 2?2 W 1Jan70 39:00.32 (irg5: rl0)
root 22 0.0 0.0 0 12 72?2 W Lan70 7:12.92 (irqld: ata0)
root 23 0.0 0.0 0 12 2?2 W 1Jan70 0:47.99 (irql5: atal)

These processes handle hardware interrupts (i r) or software interrupts (sw). The
text which follows gives an idea of which devices or software services they support.

top

Another tool for investigating system performance is top, which shows a number of
performance criteria, including the status of the processes are using the most resources.
Start it with the number of processes you want displayed. Figure 8-2 gives an example.

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

153 Chapter 8: Taking control

$top -S 10

last pid: 3992; |oad averages: 0.59, 0.17, 0.06 up 0+23:54:49 17:25:13
87 processes: 3 running, 73 sleeping, 8 waiting, 3 |ock

CPU states: 10.2%user, 0.0%nice, 18.8%system 1.7%interrupt, 69.4%idl e
Mem 43M Active, 36MInact, 31IMWred, 7460K Cache, 22MBuf, 2996K Free
Snap: 512M Total , 512M Free

PIDUSER PR NCE S ZE RES STATE
12 root -16 0 OK 12K RN
11 root -16 0 OK 12K CPUL

2854 grog 97 0 4940K 3932K *@ ant
20 root -64 -183 OK 12KWAT
2925 root 96 0 712K 608K sel ect

3193 grog 96 0 2220K 1304K CPWO
3783 root 96 0 520K 416K sel ect

167 root 96 0 13876K 2112K sel ect
25 root -68 -187 OK 12KWAT

110 root 96 0 1528K 956K sel ect

TME WPU CPU COMVAND
23. 7H 55. 32%55. 32%i dl e: cpu0
23.7H 54. 49% 54. 49%i dl e: cpul

04 3.88% 3.86%xterm
0.83% 0.83%irqgld: atal
0.15% 0. 15% nake
0.15% 0. 15%top

00 0.10% O0.05% nake
0.00% 0. 00% xcpust at e
0.00% 0.00%irq9: xI0
0.00% 0. 00% nt pd

RPOORORRRRON
QORQOOOQQ

o

=

Figure 8-2: top display

By default, the display is updated every two seconds and contains a lot of information
about the system state:

e The first line gives information about the last PID allocated (you can use this to
follow the number of processes being created) and the load average, which gives
information about how many processes are waiting to be scheduled.

* The next line gives an overview of process statistics, and in what state they are. A
process waits for external events to complete; it waits on a lock if some other process
has a kernel resource which it wants.

e The third line shows the percentage of time used in user mode, in system (kernel)
mode and by interrupts.

e The fourth line shows memory usage.

* The fifth line shows swap statistics. When swapping activity occurs, it also appears
on this line.

* The remaining lines show the ten most active processes (because the parameter 10
was specified on the command line). The - S option tells top to include system
processes, such as the idle and the interrupt processes. The state can be:

* RUN when the process is waiting for a processor to run on.
e (CPW or CPUL, when the process is actively executing.

* *| ock, where | ock is the name of a kernel lock. In this example, the xterm is
waiting on the lock G ant .

* A wait string, which indicates an event on which the process is waiting.

See the man page top(1) for more details.

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

Daemons 154

Stopping processes

Sometimes you may find that you want to stop a currently running process. There are a
number of ways to do this, but the easiest are:

* |f the process is running on a terminal, and it’s accepting input, hitting the EOF key
(usually CtrlI-D) will often do it.

e |fEOF doesn’t do it, try the INTR key (usually Ctrl-C).

* |f the process is ignoring INTR, or if it is not associated with a terminal, use the kill
command. For example, to find who is using all the CPU time, use ps and look at
the ¥6PU field:

ps waux | grep cron
r oot 105 97.3 1.1 236 340 ?? |Is 9: 11AM 137: 14. 29 cron

Here, cron is using 97% of the CPU time, and has accumulated over 2 hours of CPU
time since this morning. It’s obviously sick, and we should put it out of its misery.
To stop it, enter:

kill 105

This command sends a signal called SI GTERM(terminate) to the process. This signal
gives the process time to tidy up before exiting, so you should always try to use it
first. The 105 is cron’s PID, which we got from the ps command.

If the process doesn’t go away within a few seconds, it’s probably ignoring Sl GTERM
In this case, you can use the ultimate weapon:

kill -9 105

The - 9 is the number of SI &I LL, a signal that cannot be caught or ignored. You can
find a list of the signals and their numeric values in /usr/include/sys/signal .h, which is
part of the software development package.

FreeBSD also has a script called killall. As the name implies, it kills a group of
processes, by name. If you find that you have, say, a whole lot of runaway sendmail
processes, you might save the day by writing:

killall sendnail

As we’ll see elsewhere, you can also use killall to send a signal to a single process when
you know that only one is present. For example, to cause inetd to re-read its
configuration file, you could write:

killall -1 inetd

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

155 Chapter 8: Taking control

Timekeeping

FreeBSD is a networking system, so keeping the correct time is more important than on a
standalone system. Apart from the obvious problem of keeping the same time as other
local systems, it’s also important to keep time with systems in other time zones.

Internally, FreeBSD keeps the time as the number of seconds since the epoch, the
beginning of recorded history: 00:00:00 UTC, 1 January 1970. UTC is the international
base time zone, and means Universal Coordinated Time, despite the initials. It
corresponds very closely, but not exactly, to Greenwich Mean Time (GMT), the local
time in England in the winter. It would be inconvenient to keep all dates in UTC, so the
system understands the concept of time zones. For example, in Walnut Creek, CA, the
time zone in the winter is called PST (Pacific Standard Time), and in the summer it is
PDT (Pacific Daylight Time). FreeBSD comes with a set of time zone description files in
the directory hierarchy /usr/share/zoneinfo. We’ve already seen on page 95 that when
you install the system, it stores information about the local time zone in the file
letc/localtime. If you move time zones, you should change the time zone, not the time,
either by running the tzsetup program, or simply by copying the file. For example, if you
travel with a laptop from Adelaide, South Australia, to San Francisco CA, you would do:

cp /usr/share/ zonei nf o/ Areri ca/ Los_Angel es /etc/local tinme

When you get home again, you would do:

cp /usr/share/ zonei nf o/ Austral i a/ Adel ai de /etc/local tine

At no time do you need to change the date or time directly.

Why Los_Angel es and not San_Fr anci sco? The developers of the time zone package
chose the largest city in the time zone. You need to have a certain understanding of the
time zones to choose the correct one.

The TZ environment variable

An alternate means of describing the time zone is to set the environment variable TZ,
which we looked at on page 128. You might use this form if you’re connected to a
remote system in a different time zone, or maybe just to find the time at some other place.
For example, in Adelaide, SA | might find:

$ date

Sun Apr 14 13:31:15 CST 2002
$ TZ=Aneri ca/ Los_Angel es date
Sat Apr 13 21:01: 15 PDT 2002

Set the TZ variable to the name of the time zone info file in the /usr/share/zoneinfo

hierarchy. For example, the value of TZ for Berlin, Germany is Europe/Berlin in
FreeBSD.

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

Timekeeping 156

This is not the same as the usage of the TZ variable in UNIX System V. System V
doesn’t have the time zone definition files in /usr/share/zoneinfo, so the TZ variable tells
it information about the time zone. If you were using System V in Berlin, you would set
your TZ variable to MEZ1M5Z2, indicating time zone names and offsets from UTC.

Keeping the correct time

If you’re connected to the Internet on a reasonably regular basis, there are a number of
programs which can help you synchronize your time via the ntp (Network Time Protocol)
service.

A number of systems around the world supply time information via the ntp service. Look
at http://www.eecis.udel.edu/ "mills/ntp/servers.html to find one near you.

Your choice of program depends on the nature of your connection to the Internet. If
you’re connected full time, you’ll probably prefer ntpd, which keeps the system
synchronized. Otherwise you can use ntpdate, which you can run as you feel like it.

ntpd

ntpd performs periodic queries to keep the system synchronized with a time server.
There are many ways to run it—see the man page ntpd(8). In most cases, you can set up
one system on the network to connect to an external time reference, and the other systems
on the same Ethernet can get the time information from the first system.

To get the time from an external source and broadcast it to the other systems on the
network, create a file /etc/ntp.conf with a content like this:

server 227.21.37.18 this address is invalid; check what’s near you
driftfile /etc/ntp.drift
broadcast 223.147. 37. 255

The first line defines the server. The value in this example is invalid , so don’t try to use
it. It’s important to get one near you: network delays can significantly impair the
accuracy of the results. ntpd uses the file /etc/ntp.drift to record information about the
(in)accuracy of the local system’s clock. You only need the final line if you have other
systems on the network which wait for a broadcast message. It specifies the broadcast
address for the network and also tells ntpd to broadcast on this address.

After setting up this file, you just need to start ntpd:

ntpd

To ensure that ntpd gets started every time you reboot, make sure that you have the
following lines in /etc/rc.conf;

nt pd_enabl e=" YES' # Run ntpd Network Tinme Protocol (or NO.

The comment on the first line is misleading: the value of nt pd_enabl e must be YES.
You don’t need any flags. You put exactly the same text in the /etc/rc.conf on the other
machines, and simply omit the file /etc/ntp.conf. This causes ntpd on these machines to

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

157 Chapter 8: Taking control

monitor broadcast messages.

In previous versions of FreeBSD, ntpd was called xntpd, so you may find things like
xnt pd_enabl e in your /etc/rc.conf. If you do, you’ll have to change the name.

ntpdate

If you connect to the Internet infrequently, ntpd may become discouraged and not keep
good time. In this case, it’s better to use ntpdate. Simply run it when you want to set the
time:

ntpdate server

You can’t use both ntpdate and ntpd at the same time: they both use the same port. ntpd
takes quite some time to synchronize, and if the time is wildly out, it won’t even try, so
it’s often a good idea to run ntpdate on startup and then start ntpd manually.

Log files

Various components of FreeBSD report problems or items of interest as they happen. For
example, there can always be problems with mail delivery, so a mail server should keep
some kind of record of what it has been doing. If hardware problems occur, the kernel
should report them. 1f somebody tries to break into the machine, the components affected
should report the fact.

FreeBSD has a generalized system for logging such events. The syslogd daemon takes
messages from multiple sources and writes them to multiple destinations, usually log files
in the directory /var/log. You can change this behaviour by modifying the file
letc/syslog.conf. See syslog.conf(5) for further details. In addition to syslogd, other
programs write directly to files in this directory. The following files are of interest:

* XFreeB86.0.log contains the log file for the last (or current) X session started on
display 0. This is a prime source of information if you run into problems with X.

e auth.log contains information about user authentication. For example, you might
see:

Dec 10 10:55:11 bunbl e su: grog to root on /dev/ttypO

Dec 10 12: 00: 19 bunbl e sshd[126]: Server listening on :: port 22.

Dec 10 12:00:19 bunbl e sshd[126]: Server listening on 0.0.0.0 port 22.

Dec 10 12:06: 52 bunbl e sshd[167]: Accepted publickey for grog from223.147.37.80
port 49564 ssh2

Dec 10 12:06:58 bunbl e su: BAD SU grog to root on /dev/ttyp0

The first line is a successful su invocation; the last line is an unsuccessful one

(because the password was mistyped). The messages at 12:00:19 are from sshd
startup, and the message at 12:06:52 is a successful remote login with ssh.

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

Log files 158

e cron is alog file for cron. It’s relatively uninteresting:

Jan 5 16:00: 00 bunbl e newsysl og[2668]: | ogfil e turned over

Jan 5 16:05: 00 bunbl e /usr/sbin/cron[2677]: (root) QWD (/usr/libexec/ atrun)
Jan 5 16:05: 00 bunbl e /usr/sbin/cron[2678]: (root) QWD (/usr/libexec/atrun)
Jan 5 16:10: 00 bunbl e /usr/shin/cron[2683]: (root) QWD (/usr/libexec/atrun)

If you have problems with cron, that could change rapidly.

* dmesg.today and dmesg.yesterday are created by a cron job at 2 am every day. The
dmesg message buffer wraps around, overwriting older entries, so they can be of use.

* lastlog is a binary file recording last login information. You don’t normally access it
directly.

* maillog contains information about mail delivery.
* messages is the main log file.

* The files mount.today and mount.yesterday show the currently mounted file systems
in the format needed for /etc/fstab.

* The file ppp.log contains information on PPP connections. We look at it on page
353.

* The files setuid.today and setuid.yesterday contain a list of setuid files. The daily
security check compares them and sends a mail message if there are any differences.

* The file vinum_history contains information about vinum activity.

* The file wtmp contains information about logins to the system. Like lastlog, it’s in
binary form. See utmp(5) for the format of both lastlog and wtmp.

A number of the more important log files are kept through several cycles. As the example
above shows, cron runs the newsyslog command every hour. newsyslog checks the size
of the files, and if they are larger than a certain size, it renames the old ones by giving
them a numerical extension one higher than the current one, then renames the base file
with an extension .0 and compresses it. The result looks like this:

-rwr--r-- 1 root wheel 31773 Jan 5 13:01 nessages

-rWr--r-- 1 root wheel 8014 Jan 2 01:00 nessages. 0. bz2
-rwr--r-- 1 root wheel 10087 Dec 15 14:00 nessages. 1. bz2
-rWr--r-- 1 root wheel 9940 Dec 3 17:00 nessages. 2. bz2
-rwWr--r-- 1 root wheel 9886 Nov 16 11: 00 nessages. 3. bz2
-rwr--r-- 1 root wheel 9106 Nov 5 18: 00 nessages. 4. bz2
-rWr--r-- 1 root wheel 9545 Cct 15 17: 00 nessages. 5. bz2

newsyslog has a configuration file /etc/newsys og.conf, which we discuss on page 565.

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

159 Chapter 8: Taking control

Multiple processor support

FreeBSD Release 5 can support most current Intel and AMD multiprocessor mother-
boards with the ia32 architecture. It also supports some Alpha, SPARC64 and Intel ia64
motherboards. Documentation on SMP support is currently rather scanty, but you can find
some information at http://www.freebsd.org/fsmp/SMP/SMP.html.

The GENER C kernel does not support SMP, so you must build a new kernel before you
can use more than one processor. The configuration file /usr/src/sys/i386/conf/GENERIC
contains the following commented-out entries:

To nake an SWP kernel, the next two are needed
#opt i ons Sw # Symretric Multi Processor Kernel
#opt i ons APIC IO # Symetric (APIQ 1/0

For other platforms, you don’t need APl C | Q See Chapter 33 for information on how to
build a new kernel.

PC Card devices

As we have already seen, PC Card devices are special because they can be hot-plugged.
They are also intended to be recognized automatically. Starting with Release 5, FreeBSD
recognizes card insertion and removal in the kernel and invokes the appropriate driver to
handle the event. When you insert a card you will see something like this on the system
console:

ata2 at port 0x140-0x14f irq 11 function O config 1 on pccardO
ad4: 7MB <LEXAR ATA FLASH> [251/2/32] at ata2-master B C8PIO

This is a compact flash memory card, which the system sees as an ATA disk. The kernel
has created the necessary structures, but it can’t know how to mount the device, for
example. We’ll look at what we can do about this in the next section.

devd: The device daemon

The device daemon, devd, provides a way to run userland programs when certain kernel
events happen. It is intended to handle userland configuration of PC Card devices such as
Ethernet cards, which it can do automatically. We’ll look at this automatic usage on page
304.

devd reads the kernel event information from the device /dev/devctl and processes it
according to rules specified in the configuration file /etc/devd.conf, which is installed
with the system. If you want to use it for other devices, you must modify /etc/devd.conf.
This file contains a number of sections, referred to as statements in the man page:

* The options statement describes file paths and a number of regular expressions
(patterns) to look for in the messages it reads from /dev/devctl.

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

PC Card devices 160

attach statements specify what action to perform when a device is attached. For
example:

attach 0 {)
devi ce- nane "$scsi -control | er-regex";
action "cantontrol rescan all";

b

The devi ce- nane entry uses the regular expression $scsi - control | er-regex to
recognize the name of a SCSI controller in the attach message. The acti on entry
then specifies what action to take when such a device is attached to the system. In
this case, it runs the camcontrol program to rescan the SCSI buses and recognize any
new devices that have been added.

Multiple attach statements can match a specific event, but only one will be executed.
The order in which they are checked is specified by a priority, a numerical value after
the keyword action. The statements are checked in order of highest to lowest
numerical priority.

detach statements have the same syntax as attach statements. As the name suggests,
they are executed when a device is detached.

It’s not always possible or necessary to perform any actions when a device is
removed. In the case of SCSI cards, there is no detach statement. We’ll look at this
issue in more detail below.

Finally, if the kernel was unable to locate a driver for the card, it generates a no match
event, which is handled by the nomatch statement.

So what does devd do when we insert the compact flash card? By default, nothing. The
ATA driver recognizes and configures the card. It would be nice to get devd to mount it
as well. That’s relatively simple:

Ensure that you have an entry for the device in /etc/fstab. Digital cameras create a
single MS-DOS file system on flash cards. An appropriate entry in /etc/fstab for this
device might be:

/ dev/ ad4sl / carer a nsdos rw noaut o 0 0

This is a removable device, so you should use the noaut o keyword to stop the system
trying to mount it on system startup.

In the options section of /etc/devd.conf, add an expression to recognize the names of
ATA controllers:

set ata-controll er-regex
"ata[0-9] +;

Add an attach section for the device:

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

161 Chapter 8: Taking control

attach 0 {
devi ce-nane "$at a-control | er-regex";
action "nount /camera";

b
e Restart devd:

killall devd
devd

After this, the file system will be automatically mounted when you insert the card.

Removing PC Card devices

The next thing we’d like to do is to unmount the file system when you remove the flash
card. Unfortunately, that isn’t possible. Unmounting can involve data transfer, so you
have to do it before you remove the card. If you forget, and remove the card without
unmounting, the system may panic next time you try to access the card.

After unmounting, you can remove the card. On the console you’ll see something like:

ad4: renoved fromconfiguration

ad4: no status, reselecting device

ad4: timeout sendi ng command=e7 s=ff e=04
ad4: flushing cache on detach failed
ata2: detached

Alternate PC Card code

The PC Card implementation described here, called NEWCARD, is new in FreeBSD
Release 5. At the time of writing, the older implementation, called OLDCARD, is still
included in the system. It’s possible that you might have an older card that is supported
by OLDCARD but not by NEWCARD. In that case, you will need to build a kernel with
OLDCARD support. Check the NOTES files in /usr/src/sys/conf and
lusr/src/sys/ar ch/conf, where arch is the architecture of your system, and the man pages
pccardd and pccard.conf.

Configuring PC Card devices at startup

A number of entries in /etc/rc.conf relate to the use of PC Card devices, but nearly all of
them are for OLDCARD. You only need one for NEWCARD:

devd_enabl e="YES'

This starts devd at system startup.

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

PC Card devices 162

Emulating other systems

A large number of operating systems run on Intel hardware, and there is a lot of software
that is available for these other operating systems, but not for FreeBSD.

Emulators and simulators

There are a number of ways to execute software written for a different platform. The
most popular are:

e dmulation is a process where a program executes the functions that are normally
performed by the native instruction set of another machine. They simulate the low-
level instructions of the target machine, so simulators don’t have to run on the same
kind of machine as the code that they execute. A good example is the port
emulators/pll, which simulates a PDP-11 minicomputer, the machine for which most
early versions of UNIX were written.

Simulators run much more slowly than the native instruction set: for each simulated
instruction, the simulator may execute hundreds of machine instructions. Amusingly,
on most modern machines, the pll emulator still runs faster than the original
PDP-11: modern machines are over 1,000 times faster than the PDP-11.

* In general, emulators execute the program instructions directly and only simulate the
operating system environment. As a result, they have to run on the same kind of
hardware, but they’re not noticeably slower than the original. If there is any
difference in performance, it’s because of differences between the host operating
system and the emulated operating system.

* Another use for the term emulator is where the hardware understands a different
instruction set than the native one. Obviously this is not the kind of emulator we’re
talking about here.

FreeBSD can emulate many other systems to a point where applications written for these
systems will run under FreeBSD. Most of the emulators are in the Ports Collection in the
directory /usr/ports/emulators.

In a number of cases, the emulation support is in an experimental stage. Here’s an
overview:

e FreeBSD will run most BSD/OS programs with no problems. You don’t need an
emulator.

e FreeBSD will also run most NetBSD and OpenBSD executables, though not many
people do this: it’s safer to recompile them under FreeBSD.

* FreeBSD runs Linux executables with the aid of the linux kid (loadable kernel
module). We’ll look at how to use it in the next section.

* FreeBSD can run SCO COFF executables with the aid of the ibcs2 kid. This support
is a little patchy: although the executables will run, you may run into problems
caused by differences in the directory structure between SCO and FreeBSD. We’ll

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

163 Chapter 8: Taking control

look at it on page 164.

* A Microsoft Windows emulator is available. We’ll look at it on page 165.

Emulating Linux

Linux is a UNIX-like operating system that in many ways is very similar to FreeBSD.
We discussed it on page 10. Although it looks very UNIX-like, many of the internal
kernel interfaces are different from those of FreeBSD or other UNIX-based systems. The
Linux compatibility package handles these differences, and most Linux software will run
on FreeBSD. Most of the exceptions use specific drivers that don’t run on FreeBSD,
though there is a considerable effort to minimize even this category.

To install the Linux emulator, you must:

* Install the compatibility libraries. These are in the port /usr/portsemulators/lin-
ux_base.

e Run the Linux emulator kld, linux.

Running the Linux emulator

Normally you load the Linux emulator when you boot the system. Put the following line
in your /etc/rc.conf ;

|'i nux_enabl e=" YES'

If you don’t want to do this for some reason, you can start it from the command line:

ki dl oad |inux
You don’t interact directly with the emulator module: it’s just there to supply kernel
functionality, so you get a new prompt immediately when you start it.

linux is a kld, so it doesn’t show up in a ps listing. To check whether it is loaded, use
kldstat:

$ kl dst at
Id Refs Address S ze Nane
1 5 0xc0100000 1d08b0 ker nel
2 2 0xc120d000 a000 i bcs2. ko
3 1 0xc121b000 3000 i bcs2_cof f. ko
5 1 0xc1771000 e000 l'i nux. ko

This listing shows that the SCO UNIX emulation (ibcs2) has also been loaded.

The Linux emulator and many Linux programs are located in the directory hierarchy
Jusr/compat/linux. You won’t normally need to access them directly, but if you get a
Linux program that includes libraries destined for /lib, you will need to manually place
them in /usr/compat/linux/lib. Be very careful not to replace any files in the /usr/lib

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

Emulating Linux 164

hierarchy with Linux libraries; this would make it impossible to run FreeBSD programs
that depend on them, and it’s frequently very difficult to recover from such problems.
Note that FreeBSD does not have a directory /lib, so the danger is relatively minor.

Linux procfs

Linux systems have a file system called procfs, or Process File System, which contains
information used by many programs. FreeBSD also has a procfs, but it is completely
different. To be able to run Linux programs which refer to procfs, place the following
entry in your /etc/fstab file:

I'i nproc /conpat/linux/proc linprocfs rw 0 0

Problems executing Linux binaries

One of the problems with the ELF format used by older Linux binaries is that they may
contain no information to identify them as Linux binaries. They might equally well be
BSD/OS or UnixWare binaries. That’s normally not a problem, unless there are library
conflicts: the system can’t decide which shared library to use. If you have this kind of
binary, you must brand the executable using the program brandelf. For example, to
brand the StarOffice program swriter3, you would enter:

brandel f -t Linux /usr/local/StarCGfice-3.1/1inux-x86/bin/switer3

This example deliberately shows a very old version of StarOffice: it’s not clear that there
are any modern binaries that cause such problems.

Emulating SCO UNIX

SCO UNIX, also known as SCO OpenDesktop and SCO Open Server, is based on UNIX
System V.3.2. This particular version of UNIX was current in the late 1980s. It uses an
obsolete binary format called COFF (Common Object File Format).

Like Linux support, SCO support for FreeBSD is supplied as a loadable kernel module.
It’s not called sco, though: a number of older System V.3.2 systems, including Interactive
UNIX, also support the ibcs2! standard. As a result, the kid is called ibcs2.

Run ibcs2 support like Linux support: start it manually, or modify /etc/rc.conf to start it
automatically at bootup:

i bcs2_enabl e=" YES' # Ibcs2 (SO enulation | oaded at startup (or NO.

Alternatively, load the kld:

1. ibcs2 stands for Intel Binary Compatibility System 2.
unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

165 Chapter 8: Taking control

kil dl oad i bcs2

One problem with SCO emulation is the SCO shared libraries. These are required to
execute many SCO executables, and they’re not supplied with the emulator. They are
supplied with SCO’s operating systems. Check the SCO license to determine whether
you are allowed to use them on FreeBSD. You may also be eligible for a free SCO
license—see the SCO web site for further details.

Emulating Microsoft Windows

The wine project has been working for some time to provide an emulation of Microsoft’s
Windows range of execution environments. It’s changing continually, so there’s little
point describing it here. You can find up-to-date information at
http://www.winehg.com/about/, and you can install it from the port emulators/wine. Be
prepared for a fair amount of work.

Accessing Microsoft files

Often you’re not as interested in running Microsoft applications as decoding their
proprietary formats. For example, you might get a mail message with an attachment
described only as

[-- Attachnent #2: FreeBSD doc --]
[-- Type: application/octet-stream Encodi ng: x-unknown, S ze: 15K --]

[-- application/octet-streamis unsupported (use 'v' to viewthis part) --]

This attachment has an unspecific MIME type,* but you might guess that it is Microsoft
Word format because the file name ends in .doc. That doesn’t make it any more legible.
To read it, you need something that understands the format. A good choice is
OpenOffice.org, a clone of Microsoft’s “Office” product. Install from the Ports
Collection (/usr/ports/editors/openoffice).

OpenOffice.org is not a good example of the UNIX way. It breaks a number of
conventions, and in general it’s a lot more difficult to use than normal FreeBSD tools. Its
only real advantage is that you can process Microsoft document formats.

1. See Chapter 26, Electronic mail: clients, page 486, for more information about MIME.
unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

In this chapter:

How to install a
package

Building a port
Package
documentation
Getting binary-only
software
Maintaining ports
Upgrading ports
Controlling installed
ports

Submitting a new
port

The Ports Collection

The Internet is full of free software that is normally distributed in source form. That can
be a problem in itself: the way from the source archive that you get free from the Internet
to the finished, installed, running program on your machine—normally called porting—
can be a long and frustrating one. See my book Porting UNIX Software for more details
of the porting process.

To get a software package up and running on your system, you need to go through most
of these steps:

1.

Get the source files on your machine. They are usually contained in an archive, a file
containing a number of other files. Archives used for the ports collection are
generally gzipped tar files, packaged with tar and compressed with gzip, but other
formats are also possible. Whatever the format, you’ll typically use ftp to get them to
your machine.

Unpack the archive into a source tree, in this case using gunzip and tar.

Configure the package. Most packages include shell scripts to do this. Configuration
performs a threefold adaptation of the package:

1. Itadapts it to the system hardware.
2. It adapts it to the software environment you’re running (in this case, FreeBSD).
3. It adapts it to your personal preferences.

Build the package. For most packages, this involves compiling the source files and
creating executables. The main tool for this purpose is make, which uses a set of
rules, traditionally stored in a file called Makefile, to decide how to build the package.
There is nearly always a Makefile in the sources, but the Ports Collection includes a

ports.mm,v v4.12 (2003/04/02 06:43:08) 167

The Complete FreeBSD 168

second one that controls the build at a higher level.

5. Install the package. This involves mainly copying the executables, configuration files
and documentation created by a build to the correct place in the directory hierarchy.

6. Configure the installed software. This is similar in concept to package configuration,
except that it occurs in the run-time environment. The package configuration may
perform all the necessary configuration for you.

These are a lot of steps, and you’ll often find they’re laid through a minefield: one false
move, and everything blows up. To make porting and installing software easier, the
FreeBSD team created a framework called the Ports Collection, which makes it trivial to
perform these steps. It also provides a method of packaging and installing the resultant
ported software, called packages. The CD-ROM edition of FreeBSD includes a large
number of pre-built packages that can be installed directly.

In this chapter, we’ll consider the following points as they relate to the FreeBSD ports
collection:

* How to install a pre-compiled package. We’ll look at this in the next section.

* What the ports tree is, and how to compile and install (“build”) a package. We’ll
look at this on page 169.

* How to create and submit a new port, on page 174.

How to install a package

In FreeBSD parlance, a package is simply a special archive that contains those files
(usually executable binary files) that are installed when you build and install a port.
Effectively it’s a snapshot of the port build process that we saw above, taken after step 4
has completed. Compared to the full-blown port, packages are much faster to install—it’s
usually a matter of seconds. On the other hand, they don’t give you the choice of
configuration that the complete port does. The distribution CD-ROMSs contain a directory
packages with a large number of pre-compiled software packages. Alternatively, you can
find FreeBSD packages on many servers on the Internet—check the online handbook for
some places to look.

To help maintain an overview, both ports and packages are divided into categories. They
are stored in directories named after the category. See the file /usr/ports/INDEX for a
list. For example, emacs under editors is currently in the file packagesedi-
torsemacs-21.2.tgz, though this name will change with updated versions of emacs. For
the latest version of the packages only, you’ll find another copy without the extension in
packages/Latest/emacs.tgz. To install it, you enter:

ports.mm,v v4.12 (2003/04/02 06:43:08)

169 Chapter 9: The Ports Collection

pkg_add / cdroni packages/ Lat est/ enacs. t gz

Alternatively, you can install packages from the sysinstall final configuration menu
shown in Figure 6-1 on page 92.

Building a port

The more general way to install third-party software is with a port. The FreeBSD project
uses the term port to describe the additional files needed to adapt a package to build
under FreeBSD. It does not include the source code itself, though the CD-ROM
distribution includes many code archives in the directory /ports/distfiles, spread over
several of the CD-ROMs.

Before you get started with the ports, you need to install the port information on your
system. Normally this will be in /usr/ports. This directory tree is frequently called the
Ports Tree. There are a number of ways to install them.

Installing ports during system installation

The simplest way to install the Ports Collection is when you install the system. When
you choose the components to install, sysinstall offers to install the Ports Collection for
you as well.

Installing ports from the first CD-ROM

The file ports/ports.tgz on the first CD-ROM is a tar archive containing all the ports. If
you didn’t install it during system installation, use the following method to install the
complete collection (about 200 MB). Make sure your CD-ROM is mounted (in this
example on /cdrom), and enter:

cd /usr
tar xzvf /cdromiports/ports.tgz

If you only want to extract a single package, say inn, which is in the category news, enter:

cd /usr
tar xzvf /cdromiports/ports.tgz ports/news/inn

It takes a surprisingly long time to install the ports; although there isn’t much data in the
archive, there are about 250,000 files in it, and creating that many files takes a lot of disk
1/0.

Installing ports from the live file system CD-ROM

Alternatively, the files are also on the live file system CD-ROM. This is not much of an
advantage for installation, but you may find it convenient to browse through the source
trees in the directory ports on the CD-ROM. Let’s assume you have found a directory
lusr/ports/graphics/hpscan on the CD-ROM, and it is your current working directory.

ports.mm,v v4.12 (2003/04/02 06:43:08)

Building a port 170

You can move the data across with the following:

cd /cdrond ports/ graphics
nkdir -p /usr/ports/graphics
tar cf - . | (cd /usr/ports/graphics; tar xvf -)

Getting new ports

What happens when a new version of a port comes out? For example, you’ve been using
Emacs Version 20 forever, and now Version 21.2 becomes available? It’s brand new, so
it’s obviously not on your CD-ROM.

One way to get the port is via ftp. This used to be quite convenient: you could download
a tarball directly and extract it locally. That is unfortunately no longer possible: currently
you must download files a directory at a time. If you’re following the Ports Collection at
all closely, you should consider using cvsup, which can keep your sources up to date
automatically. See Chapter 31, page 577, for more details.

All ports are kept in subdirectories of the URL ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/.
This directory has the following contents:

dr wxr - Xr - X 6 1006 1006 512 Jun 8 13:18 al pha

drwxr-xr-x 209 1006 1006 401408 May 28 14:08 distfiles

drvwr - xr - x 6 1006 1006 1536 May 28 17:53 i 386

dr wxr - Xr - X 3 1006 1006 512 Apr 6 13:45 ja64

drwxr-xr-x 83 1006 1006 3072 May 20 15:35 | ocal -distfiles

| VKr KT v 1 root wheel 13 Jun 1 2001 packages -> i 386/ packages

|1 VT VKT W 1 root wheel 24 Jun 1 2001 ports -> ../FreeBSD-current/ports
| rVaKr K wix 1 root wheel 5Jun 1 2001 ports-current -> ports

| P VKr KT i 1 root wheel 5Jun 1 2001 ports-stable -> ports

dr wxr - xr - x 4 1006 1006 512 Apr 9 10: 37 sparc64

The directories alpha, 1386, ia64 and sparc64 contain packages (not ports) for the
corresponding architecture. distfiles contains a large number of the original sources for
the third-party packages; it’s intended as a ““last resort” location if you can’t find them at
other locations.

The directory local-distfiles is used by people working on the Ports Collection; you don’t
normally need anything from these directories. The important directories for you are
ports, ports-current and ports-stable. Currently these are really all the same directory,
but things may not remain like that.

Getting back to your emacs port: you would find it in the directory /pub/Free-
BSD/ports/ports/editors/. Note the final / in that directory name: if you leave it out, ftp
prints an error message and exits. Here’s what might happen:

$ ftp ftp://ftp. FreeBSD or g/ pub/ FreeBSD port s/ ports/ editors/
Gonnected to ftp. beastie.tdk. net.

220 ftp. beastie.tdk.net FTP server (Version 6.00LS) ready.
331 Quest login ok, send your enail address as password.
230- The FreeBSD nirror at Tel e Dannark Internet.

...much blurb omitted

250 QWD comrand successf ul .

250 OAD conmand successf ul .

ftp>1s

229 Entering Extended Passive Mde (||]|55649|)

ports.mm,v v4.12 (2003/04/02 06:43:08)

171 Chapter 9: The Ports Collection

150 (pening ASA | node data connection for '/bin/ls’.
total 704

drwkr-xr-x 3 1006 1006 512 May 20 10: 07 enacs

drwxr-xr-x 4 1006 1006 512 May 20 10: 08 enacs20
drwxr-xr-x 4 1006 1006 512 May 20 10: 08 enacs20-di
drwxr-xr-x 4 1006 1006 512 May 20 10: 08 enacs20- nul e- devel
drwxr-xr-x 3 1006 1006 512 May 20 10: 08 emacs21
drwxr-xr-x 2 1006 1006 512 May 20 10: 08 eshel | - enacs20

This shows that your files will be in the directory emacs21. You can get them with the
ftp nget command:

ftp> nget emacs21

nget enacs21/files [anpgy?]? a answer a for all files
Pronpting off for duration of nget.

ftp: local: emacs2l/files: No such file or directory
ftp: local: emacs2l/Makefile: No such file or directory
(etc)

This happens because you need to create the destination directory manually. Try again:

ftp> Inkdir emacs2l create the local directory

ftp> nget enmacs2l

nget enmacs2l/files [anpgy?]? a

Pronpting off for duration of nget.

229 Entering Extended Passive Mde (]||]|57074|)

550 ermacs21/files: not a plain file.

229 Entering Extended Passive Mde (|||57085|)

150 peni ng Bl NARY node data connection for 'enacs21/ Makefile' (2185 bytes).
100%|*************************************| 2185 2 34 WS 00 00 EI'A
226 Transfer conpl ete.

(etc)

You get one of these for each file transferred. But note the error message: not a plain file.
emacs21/files is a directory, so we need to get it separately:

ftp> !'nkdir emacs21/files

ftp> nget emacs21/files

nget emacs21/files/patch-1ib-src: Makefile.in [anpgy?]? a

Pronpting off for duration of nget.

229 Entering Extended Passive Mde (||]|57258|)

150 peni ng BI NARY node data connection for 'enacs2l/files/patch-1ib-src: Makefile.in
(908 bytes).

loo%l*************************************| 908 1 64 Ws 00 00 EI'A

226 Transfer conpl ete.

(etc)

Note that the ftp command specifies the URL of the directory. It must have a trailing / ,
otherwise ftp will complain. This form is supported by FreeBSD ftp, but many other ftp
clients will require you to do it in two steps:

ftp ftp. FreeBSD. org

Gonnected to ftp. beastie.tdk. net.

(etc)

ftp> cd / pub/ FreeBSD ports/ports/editors
250 OAD command successful .

ports.mm,v v4.12 (2003/04/02 06:43:08)

Building a port 172

What's in that port?

One problem with the Ports Collection is the sheer number. It can be difficult just to find
out what they’re supposed to do. If you build all the ports, you’ll be busy for weeks, and
there’s no way you could read all the documentation in one lifetime. Where can you get
an overview? Here are some suggestions. In each case, you should have the directory
lusr/ports as your current working directory.

e There’s an index in /usr/ports/INDEX. If you have updated the ports tree, you can
make the index with the following commands:

cd /usr/ports
make i ndex

index is the name of a target, the part of a rule that identifies it. It’s usually either a
file name or an abbreviation for an operation to perform. We’ll see a number of
make targets in the course of the book.

The index is intended for use by other programs, so it’s written as a single long line
per package, with fields delimited by the vertical bar character (]). Here are two
lines as an example, wrapped over three lines to fit on the page:

mp3asm-0.1.3]/usr/ports/audio/mp3asm|/usr/local [MP3 frame level editor|/usr/port
s/audio/mp3asm/pkg-descr | ports@FreeBSD.orgjaudio] autoconf213-2.13.000227_1] |htt
p://mp3asm.sourceforge.net/

mp3blaster-3.0p8]/usr/ports/audio/mp3blaster|/usr/local |[MP3 console ncurses-base
d player|/usr/ports/audio/mp3blaster/pkg-descr|greid@FreeBSD.orglaudio] | |http://
ww . stack.nl/ brama/mp3blaster_html

You’ll probably want to process it with other tools.

* You can print the index with the following commands:

cd /usr/ports
make print-index | |pr

Note that there are about 1,000 pages of output, which look like this:

Port: zip-2.3 1

Path: /usr/ports/archivers/zip

Info: Create/update ZIP files compatible with pkzip
Maint: ache@FreeBSD.org

Index: archivers

B-deps: unzip-5.50

R-deps:

* You can search for a specific keyword with the search target. For example, to find
ports related to Emacs, you might enter:

cd /usr/ports
nmake search key=Emacs | |ess

Pipe the output through less: it can be quite a lot.

ports.mm,v v4.12 (2003/04/02 06:43:08)

173 Chapter 9: The Ports Collection

* You can build a series of nearly 10,000 html pages like this:

cd /usr/ports
make readmes

You can then browse them at the URL file:///usr/ports/README.html.

Getting the source archive

You’ll see from the above example that there are not many files in the port. Most of the
files required to build the software are in the original source code archive (the “tarball™),
but that’s not part of the port.

There are a number of places from which you can get the sources. If you have a CD-
ROM set, many of them are scattered over the CD-ROMs, in the directory
/cdrom/ports/distfiles on each CD-ROM. The Ports Collection Makefiles look for them
in this directory (another good reason to mount your CD-ROM on /cdrom) and also in
lusr/ports/distfiles.

If you don’t have the source tarball, that’s not a problem. Part of the function of the Ports
Collection is to go out on the Net and get them for you. This is completely automatic:
you just type nake, and the build process gets the source archive for you and builds it. Of
course, you must be connected to the Internet for this to work.

If you mount your CD-ROM elsewhere (maybe because you have more than one CD-
ROM drive, and so you have to mount the CD-ROM on, say, /cd4), the Makefiles will not
find the distribution files and will try to load the files from the Internet. One way to solve
this problem is to create a symbolic link from /cd4/ports/distfiles to /usr/ports/distfiles.
The trouble with this approach is that you will then no longer be able to load new
distribution files into /usr/ports/distfiles, because it will be on CD-ROM. Instead, do:

cd /cdd/ports/distfiles

nkdir -p /usr/ports/distfiles make sure you have a distfiles directory
#for i in*; do

> In-s /cdd/ports/distfiles/$i /usr/ports/distfiles/$i

> done

If you’re using csh or tcsh, enter:

cd /cdd/ports/distfiles

nkdir -p /usr/ports/distfiles make sure you have a distfiles directory
foreach i (*)

? In-s /cd4/ports/distfiles/$i /usr/ports/distfiles/$i

? end

This creates a symbolic link to each distribution file, but if the file for a specific port isn’t
there, the Ports Collection can fetch it and store it in the directory.

ports.mm,v v4.12 (2003/04/02 06:43:08)

Building a port 174

Building the port
Once you have the skeleton files for the port, the rest is simple. Just enter:

cd /usr/ports/ editors/ emacs21

make

make install

=—===>

====> To enabl e nenubar fontset support, define WTH MENUBAR FONTSET
—===>

>> enmacs-21.2.tar. gz doesn't seemto exist in /usr/ports/distfiles/.
>> Attenpting to fetch fromftp://ftp.gnu. org/ gnu/ enacs/ .

===> Extracting for emacs-21.2 1

>> Checksum (K for enacs-21. 2. tar. gz.

===> enacs-21.2_1 depends on executabl e: gnmake - found

===> enacs-21.2_1 depends on executabl e: aut oconf213 - not found
==> Verifying install for autoconf213 in /usr/ports/devel/aut oconf213
===> Extracting for autoconf213-2.13.000227_2

>> Checksum CK for aut oconf - 000227. tar . bz2.

===> aut oconf213-2. 13. 000227_2 depends on executabl e: gn# - not found
== Verifying install for gnd in /usr/ports/devel / mt

===> Extracting for m-1.4 1

>> Checksum XK for mi-1.4.tar. gz.

===> Patching for mi-1.4_1

===> Applying FreeBSD patches for mi-1.4 1

==> @nfiguring for mi-1.4 1

creating cache ./config.cache

checking for nawk... no

(etc)

It’s a good idea to perform the make step first: make install does not always build the
package.

Port dependencies

Sometimes, it’s not enough to build a single port. Many ports depend on other ports. If
you have the complete, up-to-date ports tree installed on your system, the Ports
Collection will take care of this for you: it will check if the other port is installed, and if it
isn’t, it will install it for you. For example, tkdesk depends on tk. tk depends on tcl. If
you don’t have any of them installed, and you try to build tkdesk, it will recursively
install tk and tcl for you.

Package documentation

Once you have installed your port, you’ll want to use it. In almost every case, that
requires documentation. Most packages have documentation, but unfortunately it’s not
always obvious where it is. In some cases, the port doesn’t install all the documentation.

More generally, there are the following possibilities:

e |If the port includes man pages, they will be installed in /usr/X11R6/man if the
package is related to X, and /usr/local/man if they are not. Typically installing the
man pages is the last thing that happens during the installation, so you should see it
on the screen. If not, or if you want to check, you can have a look at the package list:

ports.mm,v v4.12 (2003/04/02 06:43:08)

175

Chapter 9: The Ports Collection

$ cd /var/ db/ pkg

$ pkg_info -L enacs-21.2 1| grep /man/
/usr/local / man/ nanl/ ct ags. 1. gz

/usr/| ocal / man/ nanl/ enacs. 1. gz

/usr/ | ocal / man/ nanl/ et ags. 1. gz
/usr/local / man/ manl/ gfdl . 1. gz

You don’t need to change the directory to /var/db/pkg, but if you do, you can use file
name completion to finish the name of the package. We use / man/ as the search
string, and not simply man, because otherwise other files might match as well.

If the package includes GNU info pages, you can use the same method to look for
them:

$ pkg_info -L emacs-21.2 1| grep /info/
/usr/local /i nfol ada- node

/usr/local /i nfol aut ot ype
/usr/local/infol ccnode
/usr/local/infolcl

(many more)

This isn’t normally necessary, though: if you’re using GNU info, the index page will
be updated to include the package.

If the package includes hardcopy documentation, it may or may not be included in
the port. The Emacs documentation also includes a user’s guide and a programmer’s
guide. The user’s guide, all 640 pages of it, is in the directory man of the Emacs
build directory, but it doesn’t get built during installation. This is typical of most
ports. In this case you’ll have to build the documentation yourself.

Getting binary-only software

A lot of software doesn’t need to be ported. For example, if you want Netscape, you can
just download it from ftp.netscape.com. But how do you install it? Netscape’s
installation procedures are getting better, but they still leave something to be desired.

The answer’s simple: take the port! Although Netscape comes only in binary form, the
port handles getting the correct version and installing it for you. Another advantage to
using a port instead of installing the package manually is that the port installs the
software as a FreeBSD package, which makes it much easier to remove the software later.

This method can be used to install some other software as well, for example StarOffice.
The moral is simple: always check the Ports Collection before getting a software package
from the Net.

ports.mm,v v4.12 (2003/04/02 06:43:08)

Getting binary-only software 176

Maintaining ports

Once you install a port, you might consider that to be the end of the story. That’s seldom
the case. For example:

* You might need to replace a port with a newer version. How do you do it? We’ll
look at that below.

e One day, you might find your disk fills up, so you go looking for old ports you don’t
use any more. We’ll look at some utility commands on page 178.

Upgrading ports
From time to time, new versions of software will appear. There are a number of
approaches to upgrading:

* You can remove the old version of the port and install a new version. The trouble
here is that removing the old version might remove any configuration files as well.

* You can install a new version without removing the old version. The trouble here is
that you end up with two entries in the packages database /var/db/pkg:

$ pkg_info | grep enacs
emacs-21.1 5 Q\U editing nmacros
enacs-21.2 1 QG\U edi ting nmacros

Clearly you don’t need emacs-21.1 5 any more. In fact, it’s not complete any more,
because the program /usr/local/bin/emacs has been overwritten by the new version.
But you can’t remove it either: that would remove components of emacs-21.2 1,
which you want to keep. On the other hand, if you don’t remove it, you are left with
nearly 50 MB of disk space used up in the directory /usr/local/share/femacs/21.1.

* You can use portupgrade, a program that does some of the upgrading automatically.
We’ll look at this below.

Using portupgrade

Portupgrade is—what else?—a port. Install it in the usual manner:

cd /usr/ports/sysutil s/ portupgrade
make install

Before you can perform the upgrade, you should first back up /var/db/pkg, then build a
ports database with pkgdb. A typical build might look like this:

ports.mm,v v4.12 (2003/04/02 06:43:08)

177 Chapter 9: The Ports Collection

cd /var/db
tar czvf db. pkg.tar.gz pkg/

pkgdb -F
[Wdating the pkgdb <fornat:bdbl btree> in /var/db/pkg ... - 181 packages
found (-5 +92) (.. .) et done]

Checking the origin of AbiWrd-1.0.3
Checking the origin of | mageMagi ck-5.5.1.1
Checking the origin of CGRBit-0.5.17

Checking the origin of xv-3.10a_3

Checking the origin of zip-2.3_1

Checking for origin duplicates

Checki ng Abi Wrd-1.0.3

Checki ng | mageMagi ck-5.5. 1.1

Stal e dependency: | mageMagi ck-5.5. 1.1 -> ghost scri pt-gnu-7.05_3:
ghost script-gnu-6.52_4 (score:64% ? ([y]es/[n]o/[a]ll) [no] ¥y
F xed. (-> ghostscri pt-gnu-6.52_4)

Checking GRBit-0.5.17

Checking XFree86-4.2.0_1,1

Checki ng bonobo-1.0.21 1

Stal e dependency: bonobo-1.0.21 1 -> ghostscri pt-gnu-7.05_3:
ghostscript-gnu-6.52_4 ? ([yles/[n]o/[a]ll) [yes] Enter pressed
Fi xed. (-> ghostscript-gnu-6.52_4)

Checking cdrtool s-1.11. a28

Checki ng xv-3.10a_3

Checking zip-2.3 1

Regenerating +REQJ RED BY fil es
Checking for cyclic dependenci es

In this example, the port ghostscript-gnu-7.05_3 had been replaced by the earlier version
ghostscript-gnu-6.52_4, since ghostscript Release 7 has some annoying bugs. The
dialogue shows how pkgdb recognized the discrepancy, and how it recovered from it.

Now you can start the upgrade. To upgrade a specific port, simply specify its base name,
without the version number. This example uses the -v option to show additional
information:

portupgrade -v bison

---> Ugrade of devel/bison started at: Mn, 04 Nov 2002 13:20: 52 +1030
---> Upgrading 'bison-1.35 1' to 'bison-1.75 (devel/bison)

---> Build of devel/bison started at: Mn, 04 Nov 2002 13:20:52 +1030
... normal port build output

===> Registering installation for bison-1.75

make clean issued by portupgrade

===> (deaning for libiconv-1.8 2

===> (deaning for gettext-0.11.5_1

---> Renoving the tenporary backup files
---> Installation of devel/bison ended at: Mn, 04 Nov 2002 13:23:00 +1030 (consune
d 00: 00: 06)
---> Renoving the obsol et ed dependenci es
---> (deaning out obsol ete shared libraries
---> Ubgrade of devel/bison ended at: Mn, 04 Nov 2002 13:23:01 +1030 (consuned 00:
02: 08)
---> Reporting the results (+: succeeded / -:ignored / *:skipped / !:failed)
+ devel / bi son (bison-1.35 1)

ports.mm,v v4.12 (2003/04/02 06:43:08)

Upgrading ports 178

If the port is already up to date, you’ll see something like this:

portupgrade -v perl-5.8.0_3

** No need to upgrade 'perl-5.8.0_3 (>= perl-5.8.0_3). (specify -f to force)

---> Reporting the results (+ succeeded / -:ignored / *:skipped / !:failed)
- lang/perl 5.8 (perl-5.8.0_3)

To upgrade all ports, use the command:

portupgrade -a

Controlling installed ports

We’ve already seen the program pkg_add when installing pre-compiled packages. There
are a number of other pkg_ programs that can help you maintain installed ports, whether
they have been installed by pkg_add or by make install from the Ports Collection:

* pkg_info tells you which ports are installed. For example:

$ pkg_info | less

Abl VWord-1.0.3 An open-source, cross-pl atform WS WG word proces
I mageMagi ck-5.5.1. 1 I nage processing tools (interactive optional--mnsc
CRBit-0.5.17 H gh- perf ormance OCORBA CRB with support for the C

XFree86-4.2.0_1,1 X11/ XFree86 core distribution (conplete, using nmn
.. Etc

bash- 2. 05b. 004 The G\U Bourne Again Shel |

bi son-1. 75 A parser generator fromFSF, (nostly) conpatible w
bonobo-1.0.21_1 The conponent and conpound docunent systemfor GO
cdrtool s-1.11.a28 Cdrecord, nkisofs and several other prograns to re
... etc

el m2. AME+22 B.M Mai | User Agent

el m2. AME+32 ELM Mai | User Agent

Note that the last two entries in this example show that two versions of elm are
installed. This can’t be right; it happens when you install a new version without
removing the old version and without running portupgrade. We’ll discuss this matter
further below.

* |If you have the ports tree installed, you can use pkg version to check whether your
ports are up to date. pkg_version is a little cryptic in its output:

Abi Vr d- gnone
| mageMagi ck
Bt

Wngz

XFr ee86

ANILANANT

x2x-1. 28

-

The symbols to the right of the package names have the following meanings:

ports.mm,v v4.12 (2003/04/02 06:43:08)

179 Chapter 9: The Ports Collection

= The installed version of the package is current.

The installed version of the package is older than the current version.

The installed version of the package is newer than the current version.

This situation can arise with an out-of-date index file, or when testing

new ports.

? The installed package does not appear in the index. This could be due
to an out of date index or a package that has not yet been committed.

* There are multiple versions of a particular software package listed in the
index file.

I The installed package exists in the index but for some reason,
pkg_version was unable to compare the version number of the installed
package with the corresponding entry in the index.

Vv A

* There are two ways to remove a port: if you’ve built it from source, and you’re in the
build directory, you can write:

make deinstall

Alternatively, you can remove any installed package with pkg delete. For example,
the list above shows two versions of the elm mail user agent. To remove the older
one, we enter:

pkg_del ete el m2. 4AME+22

File “/usr/local /man/ manl/answer. 1’ doesn't really exist.

Unabl e to conpletely remove file '/usr/local / man/ manl/ answer. 1’
File ‘/usr/local / man/ manl/ checkal i as. 1’ doesn’'t really exist.

Unabl e to conpletely remove file '/usr/local / man/ manl/ checkal i as. 1’
... €tc

Gouldn’'t entirely del ete package (perhaps the packing list is
incorrectly specified?)

In this case, it looks as if somebody has tried to remove the files before, so
pkg_delete couldn’t do so.

Another problem with pkg_delete is that it might delete files of the same name that
have been replaced by newer packages. After performing this operation, we try:

$elm
bash: elm command not found

Oops! We tried to delete the old version, but we deleted at least part of the new
version. Now we need to install it again.

The moral of this story is that things aren’t as simple as they might be. When you
install a new version of a package, you may want to test it before you commit to
using it all the time. You can’t just go and delete the old version. One possibility
would be to install the new package, and try it out. When you’ve finished testing,
delete both packages and re-install the one you want to keep.

ports.mm,v v4.12 (2003/04/02 06:43:08)

Controlling installed ports 180

Keeping track of updates

The best way to find out about updates is to subscribe to the FreeBSD- port s mailing
list. That way, you will get notification every time something changes. If you’re tracking
the ports tree with CVSup, you also get the updates to the ports tree automatically.
Otherwise you will have to download the port. In either case, to update your installed
port, just repeat the build.

Submitting a new port

The Ports Collection is constantly growing. Hardly a day goes by without a new port
being added to the list. Maybe you want to submit the next one? If you have something
interesting that isn’t already in the Ports Collection, you can find instructions on how to
prepare the port in the FreeBSD Porter’s Handbook. The latest version is available on the
FreeBSD web site, but you’ll also find it on your system as /usr/share/doc/en/porters-
handbook/index.html.

ports.mm,v v4.12 (2003/04/02 06:43:08)

In this chapter:

* File permissions

* Mandatory Access
Control
Links
Directory hierarchy
File system types
Mounting file

systems
* FreeBSD devices
e Virtual terminals

File systems and
devices

One of the most revolutionary concepts of the UNIX operating system was its file system,
the way in which it stores data. Although most other operating systems have copied it
since then, including Microsoft’s platforms, none have come close to the elegance with
which it is implemented. Many aspects of the file system are not immediately obvious,
some of them not even to seasoned UNIX users.

We’ve already looked at file naming conventions on page 125. In the next section, we’ll
look at the file system access, structure and hierarchy, and on page 195 we’ll look at how
the file system treats hardware devices as files.

File permissions

A UNIX system may potentially be used by many people, so UNIX includes a method of
protecting data from access by unauthorized persons. Every file has three items of
information associated with it that describe who can access it in what manner:

* The file owner, the user ID of the person who owns the file.
* The file group, the group ID of the group that “owns” the file.

e A list of what the owner, the group and other people can do with the file. The
possible actions are reading, writing or executing.

filesys.mm,v v4.17 (2003/04/02 06:43:57) 181

File permissions 182

For example, you might have a program that accesses private data, and you want to be
sure that only you can execute it. You do this by setting the permissions so that only the
owner can execute it. Or you might have a text document in development, and you want
to be sure that you are the only person who can change it. On the other hand, the people
who work with you have a need to be able to refer to the document. You set the
permissions so that only the owner can write it, that the owner and group can read it, and,
because it’s not ready for publication yet, you don’t allow anybody else to access it.

Traditionally, the permissions are represented by three groups of rwx: r stands for read
permission, w stands for write permission, and x stands for execute permission. The three
groups represent the permissions for the owner, the group and others respectively. If the
permission is not granted, it is represented by a hyphen (-). Thus, the permissions for the
program | discussed above would be r-x—-—--- (I can read and execute the program,
and nobody else can do anything with it). The permissions for the draft document would
be rw-r-——-—- (I can read and write, the group can read, and others can’t access it).

Typical FreeBSD file access permissions are rwxr-xr-x for programs and rw-r—-r—--
for other system files. In some cases, however, you’ll find that other permissions are
required. For example, the file “/.rhosts, which is used by some network programs for
user validation, may contain the user’s password in legible form. To help ensure that
other people don’t read it, the network programs refuse to read it unless its permissions
are rw--—--—-——— . The vast majority of system problems in UNIX can be traced to
incorrect permissions, so you should pay particular attention to them.

Apart from these access permissions, executables can also have two bits set to specify the
access permissions of the process when it is run. If the setuid (set user ID) bit is set, the
process always runs as if it had been started by its owner. If the setgid (set group ID) bit
is set, it runs as if it had been started by its group. This is frequently used to start system
programs that need to access resources that the user may not access directly. We’ll see an
example of this with the ps command on page 185. Is represents the setuid bit by
setting the third letter of the permissions string to s instead of x; similarly, it represents
the setgid bit by setting the sixth letter of the permissions string to s instead of x.

In addition to this access information, the permissions contain a character that describes
what kind of file it represents. The first letter may be a — (hyphen), which designates a
regular file, the letter d for directory, or the letters b or c for a device node. We’ll look at
device nodes in Chapter 11, page 195. There are also a number of other letters that are
less used. See the man page Is(1) for a full list.

To list files and show the permissions, use the Is command with the -1 option:

$ls -l

total 2429

-rw-rw-r-- 1 grog wheel 28204 Jan 4 14:17 %backup%
drwxrwxr-x 3 grog wheel 512 Oct 11 15:26 2.1.0-951005-SNAP
drwx-—---- 4 grog wheel 512 Nov 25 17:23 Mail
-rw-rw-r-- 1 grog wheel 149 Dec 4 14:18 Makefile
-rw-rw-r-- 1 grog wheel 108 Dec 4 12:36 Makefile.bak
-rw-rw-r-- 1 grog wheel 108 Dec 4 12:36 Makefile™
-rw-rw-r-- 1 grog wheel 0 Dec 4 12:36 depend
-rw-rw-r-- 1 daemon wheel 1474560 Dec 14 17:03 deppert.floppy
-rxr-xr-x 1 grog wheel 100 Dec 19 15:24 doio

filesys.mm,v v4.17 (2003/04/02 06:43:57)

183 Chapter 10: File systems and devices

-nxrwxr-x 1 grog wheel 204 Dec 19 15:25 doiovm
-nxrvxr-x 1 grog wheel 204 Dec 19 15:16 doiovm™
-rxr-xr-x 1 grog wheel 115 Dec 26 08:42 dovm
-nwxr-xr-x 1 grog wheel 114 Dec 19 15:30 dovmi~
drwxr-xr-x 2 grog wheel 512 Oct 16 1994 emacs
drawxrwxrwx 2 grog wheel 512 Jan 3 14:07 letters

This format shows the following information:
* First, the permissions, which we’ve already discussed.

e Then, the link count. This is the number of hard links to the file. For a regular file,
this is normally 1, but directories have at least 2. We look at links on page 186.

* Next come the names of the owner and the group, and the size of the file in bytes.
You’ll notice that the file deppert.floppy belongs to daemon. This was probably an
accident, and it could lead to problems. Incidentally, looking at the name of the file
and its size, it’s fairly obvious that this is an image of a 3% floppy, that is to say, a
literal copy of the data on the complete floppy.

* The date is normally the date that the file was last modified. With the —u option to s,
you can list the last time the file was accessed.

* Finally comes the name of the file. As you can see from this example, the names can
be quite varied.

A couple of the permissions are of interest. The directories all have the x (execute)
permission bit set. This enables accessing (i.e. opening) files in the directory—that’s the
way the term execute is defined for a directory. If | reset the execute permission, | can
still list the names of the files, but I can’t access them.

I am the only person who can access the directory Mail. This is the normal permission
for a mail directory.

Changing file permissions and owners

Often enough, you may want to change file permissions or owners. UNIX supplies three
programs to do this:

* To change the file owner, use chown. For example, to change the ownership of the
file deppert.floppy, which in the list above belongs to daemon, root would enter:

chown grog deppert. f | oppy

Note that only root may perform this operation.

* To change the file group, use chgrp, which works in the same way as chown. To
change the group ownership to lemis, you would enter:

chgrp | ems deppert.fl oppy

chown can also change both the owner and the group. Instead of the two previous
examples, you could enter:

filesys.mm,v v4.17 (2003/04/02 06:43:57)

File permissions 184

chown grog:lenis deppert.fl oppy

This changes the owner to gr og, as before, and also changes the group to | enm s.

* To change the permissions, use the chmod program. chmod has a number of
different formats, but unfortunately the nine-character representation isn’t one of
them. Read the man page chmod(1) for the full story, but you can achieve just about
anything you want with one of the formats shown in table 10-1:

Table 10-1: chmod permission codes

Specification | Effect
go-w Deny write permission to group and others

=rw, +X Set the read and write permissions to the usual defaults, but retain
any execute permissions that are currently set

+X Make a directory or file searchable/executable by everyone if it is
already searchable/executable by anyone

U=r WX, go=r x Make a file readable/executable by everyone and writable by the

owner only
go= Clear all mode bits for group and others
g=u-w Set the group bits equal to the user bits, but clear the group write bit

Permissions for new files

None of this tells us what the permissions for new files are going to be. The wrong
choice could be disastrous. For example, if files were automatically created with the
permissions rwxr wxr wx, anybody could access them in any way. On the other hand,
creating them with r-------- could result in a lot of work setting them to what you
really want them to be. UNIX solves this problem with a thing called umask (User
mask). This is a default non-permission: it specifies which permission bits not to allow.

As if this weren’t confusing enough, it’s specified in the octal number system, in which
the valid digits are O to 7. Each octal digit represents 3 bits. By contrast, the more
common hexadecimal system uses 16 digits, O to 9 and a to f. The original versions of
UNIX ran on machines that used the octal number system, and since the permissions
come in threes, it made sense to leave the umask value in octal.

An example: by default, you want to create files that anybody can read, but only you can
write. You set the mask to 022. This corresponds to the binary bit pattern 000010010.

The leading O is needed to specify that the number is in octal, not to make up three digits. If you
want to set the permissions so that by default nobody can read, you’d set it to 0222. Some shells
automatically assume that the number is octal, so you may be able to omit the 0, but it’s not good
practice.

filesys.mm,v v4.17 (2003/04/02 06:43:57)

185 Chapter 10: File systems and devices

The permissions are allowed where the corresponding bit is O:

I KT WKT WK Possible permissions
000010010 umask
I VKT - XF - X resultant permissions

By default, files are created without the x bits, whereas directories are created with the
allowed x bits, so with this umask, a file would be created with the permissions rw
r--r--.

umask is a shell command. To set it, just enter:

$ umask 022

It’s preferable to set this in your shell initialization file—see page 135 for further details.

Beware of creating a too restrictive umask. For example, you will get into a lot of trouble
with a umask like 377, which creates files that you can only read, and that nobody else
can access at all. If you disallow the x (executable) bit, you will not be able to access
directories you create, and you won’t be able to run programs you compile.

Making a program executable

File permissions enable one problem that occurs so often that it’s worth drawing attention
to it. Many operating systems require that an executable program have a special naming
convention, such as COMMAND.COM or FOO.BAT, which in MS-DOS denotes a
specific kind of binary executable and a script file, respectively. In UNIX, executable
programs don’t need a special suffix, but they must have the x bit set. Sometimes this bit
gets reset (turned off), for example if you copy it across the Net with ftp. The result
looks like this:

$ ps

bash: ps: Pernission denied

$ Is -1 /bin/ps

-r--r--r-- 1 bin kmem 163840 May 6 06:02 /bin/ps

$ su you need to be super user to set ps permission
Passwor d: password doesn’t echo
chmod +x /bin/ps make it executable
ps now it works
PID TT STAT TI ME COMVAND
226 p2 S 0: 00.56 su (bash)
239 p2 Rt 0: 00. 02 ps
146 vl |Is+ 0:00.06 /usr/libexec/getty Pc ttyvl
147 v2 |s+ 0:00.05 /usr/libexec/getty Pc ttyv2
D exit su
$ ps
ps: /dev/nem Perm ssion denied hey! it's stopped working

Huh? It only worked under su, and stopped working when | became a mere mortal
again? What’s going on here?

There’s a second problem with programs like ps: some versions need to be able to access
special files, in this case /dev/imem, a special file that addresses the system memory. To
do this, we need to set the setgid bit, s, which requires becoming superuser again:

filesys.mm,v v4.17 (2003/04/02 06:43:57)

File permissions 186

$ su you need to be super user to set ps permission
Passwor d: password doesn’t echo
chmod g+s /bin/ps set the setgid bit
Is -1 /bin/ps see what it looks like
-r-xr-sr-x 1 bin kmem 163840 May 6 06:02 /bin/ps
D exit su
$ ps now it still works
PID TT STAT TI ME COMVAND
226 p2 S 0. 56 su (bash)

0: O
239 p2 R+ 0: 00. 02 ps

146 vl |Is+ 0:00.06 /usr/libexec/getty Pc ttyvl
147 v2 s+ 0:00.05 /usr/libexec/getty Pc ttyv2

In this example, the permissions in the final result really are the correct permissions for
ps. It’s impossible to go through the permissions for every standard program. If you
suspect that you have the permissions set incorrectly, use the permissions of the files on
the Live Filesystem CD-ROM as a guideline.

setuid and setgid programs can be a security issue. What happens if the program called
ps is really something else, a Trojan Horse? We set the permissions to allow it to break
into the system. As a result, FreeBSD has found an alternative method for ps to do its
work, and it no longer needs to be set setgid.

Mandatory Access Control

For some purposes, traditional UNIX permissions are insufficient. Release 5.0 of
FreeBSD introduces Mandatory Access Control, or MAC, which permits loadable kernel
modules to augment the system security policy. MAC is intended as a toolkit for
developing local and vendor security extensions, and it includes a number of sample
policy modules, including Multi-Level Security (MLS) with compartments, and a humber
of augmented UNIX security models including a file system firewall. At the time of
writing it is still considered experimental software, so this book doesn’t discuss it further.
See the man pages for more details.

Links

In UNIX, files are defined by inodes, structures on disk that you can’t access directly.
They contain the metadata, all the information about the file, such as owner, permissions
and timestamps. What they don’t contain are the things you think of as making up a file:
they don’t have any data, and they don’t have names. Instead, the inode contains
information about where the data blocks are located on the disk. It doesn’t know
anything about the name: that’s the job of the directories.

A directory is simply a special kind of file that contains a list of names and inode
numbers: in other words, they assign a name to an inode, and thus to a file. More than
one name can point to the same inode, so files can have more than one name. This
connection between a name and an inode is called a link, sometimes confusingly hard
link. The inode numbers relate to the file system, so files must be in the same file system

filesys.mm,v v4.17 (2003/04/02 06:43:57)

187 Chapter 10: File systems and devices

as the directory that refers to them.

Directory entries are independent of each other: each points to the inode, so they’re
completely equivalent. The inode contains a link count that keeps track of how many
directory entries point to it: when you remove the last entry, the system deletes the file
data and metadata.

Alternatively, symbolic links, sometimes called soft links, are not restricted to the same
file system (not even to the same system!), and they refer to another file name, not to the
file itself. The difference is most evident if you delete a file: if the file has been hard
linked, the other names still exist and you can access the file by them. If you delete a file
name that has a symbolic link pointing to it, the file goes away and the symbolic link
can’t find it any more.

It’s not easy to decide which kind of link to use—see UNIX Power Tools (O’Reilly) for
more details.

Directory hierarchy

Although Microsoft platforms have a hierarchical directory structure, there is little
standardization of the directory names: it’s difficult to know where a particular program
or data file might be. UNIX systems have a standard directory hierarchy, though every
vendor loves to change it just a little bit to ensure that they’re not absolutely compatible.
In the course of its evolution, UNIX has changed its directory hierarchy several times.
It’s still better than the situation in the Microsoft world. The most recent, and probably
most far-reaching changes, occurred over ten years ago with System V.4 and 4.4BSD,
both of which made almost identical changes.

Nearly every version of UNIX prefers to have at least two file systems, / (the root file
system) and /usr, even if they only have a single disk. This arrangement is considered
more reliable than a single file system: it’s possible for a file system to crash so badly that
it can’t be mounted any more, and you need to read in a tape backup, or use programs
like fsck or fsdb to piece them together. We have already discussed this issue on page
68, where | recommend having /usr on the same file system as /.

Standard directories

The physical layout of the file systems does not affect the names or contents of the
directories, which are standardized. Table 10-2 gives an overview of the standard
FreeBSD directories; see the man page hi er (7) for more details.

filesys.mm,v v4.17 (2003/04/02 06:43:57)

Directory hierarchy 188

Table 10-2: FreeBSD directory hierarchy

Directory

name Usage

/ Root file system. Contains a couple of system directories and
mount points for other file systems. It should not contain
anything else.

/bin Executable programs of general use needed at system startup
time. The name was originally an abbreviation for binary, but
many of the files in here are shell scripts.

/boot Files used when booting the system, including the kernel and its
associated klds.

/cdrom A mount point for CD-ROM drives.

/compat A link to /usr/compat: see below.

/dev Directory of device nodes. The name is an abbreviation for
devices. From FreeBSD 5.0 onward, this is normally a mount
point for the device file system, devfs. We’ll look at the contents
of this directory in more detail on page 195.

fetc Configuration files used at system startup. Unlike System V, /etc
does not contain kernel build files, which are not needed at
system startup. Unlike earlier UNIX versions, it also does not
contain executables—they have been moved to /sbin.

/home By convention, put user files here. Despite the name, /usr is for
system files.

/mnt A mount point for floppies and other temporary file systems.

/proc The process file system. This directory contains pseudo-files that
refer to the virtual memory of currently active processes.

/root The home directory of the user root. In traditional UNIX file
systems, r oot ’s home directory was /, but this is messy.

/sbin System executables needed at system startup time. These are
typically system administration files that used to be stored in /etc.

/sys If present, this is usually a symbolic link to /usr/src/sys, the
kernel sources. This is a tradition derived from 4.3BSD.

/tmp A place for temporary files. This directory is an anachronism;
normally it is on the root file system, though it is possible to
mount it as a separate file system or make it a symbolic link to
Ivar/tmp. It is maintained mainly for programs that expect to find
it.

usr The ““second file system.” See the discussion above.

filesys.mm,v v4.17 (2003/04/02 06:43:57)

189 Chapter 10: File systems and devices
Directory

name Usage

Jusr/X11R6 The X Window System.

Jusr/X11R6/bin Executable X11 programs.

Jusr/X11R6/include
Jusr/X11R6/lib
Jusr/X11R6/man
fusr/bin

/usr/compat
Jusr/games
Jusr/include
Jusr/lib
Jusr/libexec

/usr/libdata
/usr/local

Jusr/obj
Jusr/ports
Jusr/shin

/usr/share

Jusr/src
Ivar

Ivar/log
/var/mail

Header files for X11 programming.
Library files for X11.
Man pages for X11.

Standard executable programs that are not needed at system start.
Most standard programs you use are stored here.

A directory containing code for emulated systems, such as Linux.
Games.

Header files for programmers.

Library files. FreeBSD does not have a directory /lib.

Executable files that are not started directly by the user, for
example the phases of the C compiler (which are started by
/usr/bin/gec) or the getty program, which is started by init.

Miscellaneous files used by system utilities.

Additional programs that are not part of the operating system. It
parallels the /usr directory in having subdirectories bin, include,
lib, man, shin, and share. This is where you can put programs
that you get from other sources.

Obiject files created when building the system. See Chapter 33.
The Ports Collection.

System administration programs that are not needed at system
startup.

Miscellaneous read-only files, mainly informative. Subdirectories
include doc, the FreeBSD documentation, games, info, the GNU
info documentation, locale, internationization information, and
man, the man pages.

System source files.

A file system for data that changes frequently, such as mail, news,
and log files. If /var is not a separate file system, you should
create a directory on another file system and symlink /var to it.

Directory with system log files
Incoming mail for users on this system

filesys.mm,v v4.17 (2003/04/02 06:43:57)

FreeBSD directory hierarchy 190

Directory

name Usage

Ivar/spool Transient data, such as outgoing mail, print data and anonymous
ftp.

Ivar/itmp Temporary files.

File system types

FreeBSD supports a number of file system types. The most important are:

UFS is the UNIX File System.> All native disk file systems are of this type. Since
FreeBSD 5.0, you have a choice of two different versions, UFS 1 and UFS 2. As the
names suggest, UFS 2 is a successor to UFS 1. Unlike UFS 1, UFS 2 file systems are
not limited to 1 TB (1024 GB) in size. UFS 2 is relatively new, so unless you require
very large file systems, you should stick to UFS 1.

€d9660 is the 1SO 9660 CD-ROM format with the so-called Rock Ridge Extensions
that enable UNIX-like file names to be used. Use this file system type for all CD-
ROMs, even if they don’t have the Rock Ridge Extensions.

nfs is the Network File System, a means of sharing file systems across a network.
We’ll look at it in Chapter 25.

FreeBSD supports a number of file systems from other popular operating systems.
You mount the file systems with the mount command and the -t option to specify
the file system type. For example:

mount -t ext2fs /dev/dalsl /1inux mount a Linux ext2 file system
nmount -t nsdos /dev/da2sl /C mount a Microsoft FAT file system

Here’s a list of currently supported file systems:

Table 10-3: File system support

File system mount option
CD-ROM cd9660
DVD udf

Linux ext2 ext 2f s
Microsoft MS-DOS | nsdosfs
Microsoft NT ntfs

Novell Netware nw s
Microsoft CIFS snbf s

1. Paradoxically, although BSD may not be called UNIX, its file system is called the UNIX File System. The

UNIX System Group, the developers of UNIX System V.4, adopted UFS as the standard file system for Sys-
tem V and gave it this name. Previously it was called the Berkeley Fast File System, or ffs.

filesys.mm,v v4.17 (2003/04/02 06:43:57)

191 Chapter 10: File systems and devices

Soft updates

Soft updates change the way the file system performs 1/0. They enable metadata to be
written less frequently. This can give rise to dramatic performance improvements under
certain circumstances, such as file deletion. Specify soft updates with the - Uoption when
creating the file system. For example:

newfs -U /dev/dals2h

If you forget this flag, you can enable them later with tunefs:

tunefs -n enabl e /dev/ dals2h
You can’t perform this operation on a mounted file system.

Snapshots

One of the problems with backing up file systems is that you don’t get a consistent view
of the file system: while you copy a file, other programs may be modifying it, so what
you get on the tape is not an accurate view of the file at any time. Snapshots are a
method to create a unified view of a file system. They maintain a relatively small file in
the file system itself containing information on what has changed since the snapshot was
taken. When you access the snapshot, you get this data rather than the current data for
the parts of the disk which have changed, so you get a view of the file system as it was at
the time of the snapshot.

Creating snapshots

You create snapshots with the mount command and the -0 snapshot option. For
example, you could enter

mount -u -0 snapshot /var/snapshot/snapl /var

This command creates a snapshot of the /var file system called /var/snapshot/snapl.
Snapshot files have some interesting properties:

* You can have multiple snapshots on a file system, up to the current limit of 20.

* Snapshots have the schg flag set, which prevents anybody writing to them.

* Despite the schg flag, you can still remove them.

* They are automatically updated when anything is written to the file system. The view
of the file system doesn’t change, but this update is necessary in order to maintain the
“old” view of the file system.

e They look like normal file systems. You can mount them with the md driver. We’ll
look at that on page 193.

Probably the most useful thing you can do with a snapshot is to take a backup of it. We’ll
look at backups on page 253.

filesys.mm,v v4.17 (2003/04/02 06:43:57)

File system types 192

At the time of writing, snapshots are still under development. It’s possible that you might
still have trouble with them, in particular with deadlocks that can only be cleared by
rebooting.

It takes about 30 seconds to create a snapshot of an 8 GB file system. During the last five
seconds, file system activity is suspended. If there’s a lot of soft update activity going on
in the file system (for example, when deleting a lot of files), this suspension time can
become much longer, up to several minutes. To remove the same snapshot takes about
two minutes, but it doesn’t suspend file system activity at all.

Mounting file systems

Microsoft platforms identify partitions by letters that are assigned at boot time. There is
no obvious relation between the partitions, and you have little control over the way the
system assigns them. By contrast, all UNIX partitions have a specific relation to the root
file system, which is called simply /. This flexibility has one problem: you have the
choice of where in the overall file system structure you put your individual file systems.
You specify the location with the mount command. For example, you would typically
mount a CD-ROM in the directory /cdrom, but if you have three CD-ROM drives
attached to your SCSI controller, you might prefer to mount them in the directories /cd0,
/cdl, and /cd2. To mount a file system, you need to specify the device to be mounted,
where it is to be mounted, and the type of file system (unless it is ufs). The mount point,
(the directory where it is to be mounted) must already exist. To mount your second CD-
ROM on /cd1, you enter:

nkdir /cdl only if it doesn’t exist
mount -t cd9660 -0 ro /dev/cdla /cdl

When the system boots, it calls the startup script /etc/rc, which among other things
automatically mounts the file systems. All you need to do is to supply the information:
what is to be mounted, and where? This is in the file /etc/fstab. If you come from a
System V environment, you’ll notice significant difference in format—see the man page
fstab(5) for the full story. A typical /etc/fstab might look like:

/ dev/ adOsla / ufs rw 1 1 rootfile system

/ dev/ adOs1b none swap sw 0 0 swap

/ dev/ adOsle /usr ufs rw 2 2 Jusrfile system

/dev/ dalsle /src ufs rw 2 2 additional file system
/dev/da2sl /linux ext 2fs rw 2 2 Linux file system
/dev/adlsl /C nsdos rw 2 2 Microsoft file system
proc / proc procfs rw 0 O proc pseudo-file system
I'i nproc /conpat/linux/proc linprocfs rw 0O

/ dev/ cdOa / cdrom cd9660 ro 00 CD-ROM

presto:/ / prest o/ r oot nfs rw 0 O NFS file systems on other systems
presto:/usr /prestol/usr nfs rw 00

prest o: / hone / prest o/ hone nfs rw 00

presto:/S /S nfs rw 00

/1 guest @anba/ publ i c /snb snbf s rw,noauto 0O O SMB file system

filesys.mm,v v4.17 (2003/04/02 06:43:57)

193 Chapter 10: File systems and devices

The format of the file is reasonably straightforward:

e The first column gives the name of the device (if it’s a real file system), a keyword for
some file systems, like pr oc, or the name of the remote file system for NFS mounts.

* The second column specifies the mount point. Swap partitions don’t have a mount
point, so the mount point for the swap partition is specified as none.

* The third column specifies the type of file system. Local file systems on hard disk are
always ufs, and file systems on CD-ROM are cd9660. Remote file systems are
always nfs. Specify swap partitions with swap, and the proc file system with proc.

e The fourth column contains r wfor file systems that can be read or written, r o for file
systems (like CD-ROM) that can only be read, and swfor swap partitions. It can also
contain options like the noaut o in the bottom line, which tells the system startup
scripts to ignore the line. It’s there so that you can use the shorthand notation nount
/ snb when you want to mount the file system.

* The fifth and sixth columns are used by the dump and f sck programs. You won’t
normally need to change them. Enter 1 for a root file system, 2 for other UFS file
systems, and O for everything else.

Mounting files as file systems

So far, our files have all been on devices, also called special files. Sometimes, though,
you may want to access the contents of a file as a file system:

* It’s sometimes of interest to access the contents of a snapshot, for example to check
the contents.

e After creating an 1SO image to burn on CD-R, you should check that it’s valid.

e Also, after downloading an 1SO image from the Net, you may just want to access the
contents, and not create a CD-R at all.

In each case, the solution is the same: you mount the files as a vhode device with the md
driver.

The md driver creates a number of different kinds of pseudo-device. See the man page
md(4). We use the vnode device, a special file that refers to file system files. Support for
md is included in the GENERIC kernel, but if you’ve built a kernel without the md drive,
you can load it as a kld. If you’re not sure, try loading the kld anyway.

In the following example, we associate a vnode device with the 1SO image iso-image
using the program mdconfig:

kl dl oad nd load the kld module if necessary
kldload: can't load md: File exists already loaded or in the kernel

mdconfig -a -t vnode -f iso-inmage and configure the device

nd0 this is the name assigned in directory /dev
mount -t cd9660 /dev/ nd0 / mmt then mount it

filesys.mm,v v4.17 (2003/04/02 06:43:57)

Mounting file systems 194

After this, you can access the image at /mnt as a normal file system. You specify -t
cd9660 in this case because the file system on the image is a CD9660 file system. You
don’t specify this if you’re mounting a UFS file system, for example a shapshot image.

Older versions of FreeBSD used the vn driver, which used different syntax. Linux uses
loop mounts, which FreeBSD doesn’t support.

Unmounting file systems

When you mount a file system, the system assumes it is going to stay there, and in the
interests of efficiency it delays writing data back to the file system. This is also the
reason why you can’t just turn the power off when you shut down the system. If you
want to stop using a file system, you must tell the system about it so that it can flush any
remaining data. You do this with the umount command. Note the spelling of this
command—there’s no n in the command name.

You need to do this even with read-only media such as CD-ROMs: the system assumes it
can access the data from a mounted file system, and it gets quite unhappy if it can’t.
Where possible, it locks removable media so that you can’t remove them from the device
until you unmount them.

Using umount is straightforward: just tell it what to unmount, either the device name or
the directory name. For example, to unmount the CD-ROM we mounted in the example
above, you could enter one of these commands:

unount /dev/ cdla
urmount /cdl

Before unmounting a file system, umount checks that nobody is using it. If somebody is
using it, it refuses to unmount it with a message like umount: /cdl: Device busy.
This message often occurs because you have changed your directory to a directory on the
file system you want to remove. For example (which also shows the usefulness of having
directory names in the prompt):

=== root@freebie (/dev/ttyp2) /cdl 16 -> unount /cdl
umount: /cdl: Device busy

=== root@freebie (/dev/ttyp2) /cdl 17 -> cd

=== root@freebie (/dev/ttyp2) ~ 18 -> urmount /cdl
=== root@freebie (/dev/ttyp2) ~ 19 ->

After unmounting a vnode file system, don’t forget to unconfigure the file:

urmount / mt
mdconfig -d -u O

The parameter O refers to md device 0, in other words /dev/md0.

filesys.mm,v v4.17 (2003/04/02 06:43:57)

195 Chapter 10: File systems and devices

FreeBSD devices

UNIX refers to devices in the same manner as it refers to normal files. By contrast to
normal (“regular”) files, they are called special files. They’re not really files at all:
they’re information about device support in the kernel, and the term device node is more
accurate. Conventionally, they are stored in the directory /dev. Some devices don’t have
device nodes, for example Ethernet interfaces: they are treated differently by the ifconfig
program.

Traditional UNIX systems distinguish two types of device, block devices and character
devices. FreeBSD no longer has block devices; we discussed the reasons for this on page
35.

In traditional UNIX systems, including FreeBSD up to Release 4, it was necessary to
create device nodes manually. This caused a number of problems when they didn’t match
what was in the system. Release 5 of FreeBSD has solved this problem with the device
file system, also known as devfs. devfs is a pseudo-file system that dynamically creates
device nodes for exactly those devices that are in the kernel, which makes it unnecessary
to manually create devices.

Overview of FreeBSD devices

Every UNIX system has its own peculiarities when it comes to device names and usage.
Even if you’re used to UNIX, you’ll find the following table useful.

Table 10-4: FreeBSD device names

Device Description

acd0 First ata (IDE) CD-ROM drive.

ado First ata (IDE or similar) disk drive. See Chapter 2, page 38, for a
complete list of disk drive names.

bpf 0 Berkeley packet filter.

cd0 First SCSI CD-ROM drive.

cho SCSI CD-ROM changer (juke box)

consol e System console, the device that receives console messages. Initially it is
/dev/ttyv0, but it can be changed.

cuaa0 First serial port in callout mode.

cuai a0 First serial port in callout mode, initial state. Note the letteri for initial.

cual a0 First serial port in callout mode, lock state. Note the letter | for lock.

da0 First SCSI disk drive. See Chapter 2, page 38, for a complete list of disk
drive names.

esa0 First SCSI tape drive, eject on close mode.

filesys.mm,v v4.17 (2003/04/02 06:43:57)

FreeBSD devices 196

Device Description

fd File descriptor pseudo-devices: a directory containing pseudo-devices that,
when opened, return a duplicate of the file descriptor with the same
number. For example, if you open /dev/fd/O, you get another handle on
your stdin stream (file descriptor 0).

fdo The first floppy disk drive, accessed as a file system.

knmem Kernel virtual memory pseudo-device.

Ipto First parallel printer.

nmem Physical virtual memory pseudo-device.

nsa0 First SCSI tape drive, no-rewind mode.

nul | The “bit bucket.” Send data to this device if you never want to see it
again.

psn® PS/2 mouse.

pt ypO First master pseudo-terminal. Master pseudo-terminals are named
/dev/ptypO through /dev/ptypv, /deviptyqO through /dev/ptyqv, /deviptyrO
through /dev/ptyrv, /deviptysO through /dev/ptysv, /dev/ptyPO through
/deviptyPv, /deviptyQO through /dev/ptyQv, /dev/ptyRO through
/deviptyRv and /dev/ptyS0O through /dev/ptySv.

r andom Random number generator.

sa0 First SCSI tape drive, rewind on close mode.

sysnouse System mouse, controlled by moused. We’ll look at this again on page
516.

tty Current controlling terminal.

ttydo First serial port in callin mode.

ttyido First serial port in callin mode, initial state.

ttyl do First serial port in callin mode, lock state.

ttypO First slave pseudo-terminal. Slave pseudo-terminals are named /dev/ttypO
through /devittypv, /devittyq0 through /devittyqv, /dev/ttyrO through
/devittyrv, /devittysO through /devittysv, /devittyPO through /dev/ttyPv,
/devi/ttyQO through /devittyQv, /dev/ttyRO through /dev/ttyRv and
/devi/ttyS0 through /devittySv. Some processes, such as xterm, only look
at /dev/ttypO through /dev/ttysv.

ttyvo First virtual tty. This is the display with which the system starts. Up to 10
virtual ttys can be activated by adding the appropriate getty information in
the file /etc/ttys. See Chapter 19, page 338, for further details.

ugen0 First generic USB device.

ukbd0 First USB keyboard.

ul pto First USB printer.

filesys.mm,v v4.17 (2003/04/02 06:43:57)

197 Chapter 10: File systems and devices

Device Description

unass0 First USB mass storage device.

uns0 First USB mouse.

uscanner0 | First USB scanner.

vi num Directory for Vinum device nodes. See Chapter 12, for further details.
zero Dummy device that always returns the value (binary) 0 when read.

You’ll note a number of different modes associated with the serial ports. We’ll look at
them again in Chapter 19.

Virtual terminals

As we have seen, UNIX is a multitasking operating system, but a PC generally only has
one screen. FreeBSD solves this problem with virtual terminals. When in text mode,
you can change between up to 16 different screens with the combination of the Alt key
and a function key. The devices are named /dev/ttyvO through /dev/ttyvl5, and
correspond to the keystrokes Alt-F1 through Alt-F16. By default, three virtual terminals
are active: /dev/ttyvO through /devi/ttyv2. The system console is the virtual terminal
/devittyvO, and that’s what you see when you boot the machine. To activate additional
virtual terminals, edit the file /etc/ttys. There you find:

ttyvO0 "/usr/libexec/getty Pc" cons25 on secure
ttyvl "/usr/libexec/getty Pc" cons25 on secure
ttyv2 "/usr/libexec/getty Pc" cons25 on secure
ttyv3d "/usr/libexec/getty Pc" cons25 off secure

The keywords on and of f refer to the state of the terminal: to enable one, set its state to
on. To enable extra virtual terminals, add a line with the corresponding terminal name, in
the range /devittyv4 to /devittyvl5. After you have edited /etc/ttys, you need to tell the
system to re-read it in order to start the terminals. Do this as r oot with this command:

#kill -11
Process 1 is init —see page 524 for more details.

Pseudo-terminals

In addition to virtual terminals, FreeBSD offers an additional class of terminals called
pseudo-terminals. They come in pairs: a master device, also called a pty (pronounced
pity) is used only by processes that use the interface, and has a name like /dev/ptyp0. The
slave device looks like a terminal, and has a name like /dev/ttyp0. Any process can open
it without any special knowledge of the interface. These terminals are used for network
connections such as xterm, telnet and rlogin. You don’t need a getty for pseudo-
terminals. Since FreeBSD Release 5.0, pseudo-terminals are created as required.

filesys.mm,v v4.17 (2003/04/02 06:43:57)

n this chapter:
Adding a hard disk
Using sysinstall
Doing it the hard way
Creating file systems
Moving file systems
Recovering from disk
data errors

Disks

One of the most important parts of running any computer system is handling data on disk.
We have already looked at UNIX file handling in Chapter 10. In this chapter, we’ll look
at two ways to add another disk to your system, and what you should put on them. In
addition, we’ll discuss disk error recovery on page 218.

Adding a hard disk

When you installed FreeBSD, you created file systems on at least one hard disk. At a
later point, you may want to install additional drives. There are two ways to do this: with
sysinstall and with the traditional UNIX command-line utilities.

There was a time when it was dangerous to use sysinstall after the system had been
installed: there was a significant chance of shooting yourself in the foot. There’s always a
chance of doing something wrong when initializing disks, but sysinstall has become a lot
better, and now it’s the tool of choice. It’s good to know the alternatives, though. In this
section we’ll look at sysinstall, and on page 209 we’ll see how to do it manually if
sysinstall won’t cooperate.

We’ve been through all the details of disk layout and slices and partitions in Chapter 2, so
| won’t repeat them here. Basically, to add a new disk to the system, you need to:

* Install the disk physically. This usually involves power cycling the machine.

e Barely possibly, format the disk. Without exception, modern disks come pre-
formatted, and you only need to format a disk if it has defects or if it’s ancient. In
many cases the so-called “format™ program doesn’t really format at all.

disks.mm,v v4.17 (2003/04/02 06:44:17) 199

Adding a hard disk 200

e If you want to share with other operating systems, create a PC style partition table on
the disk. We looked at the concepts on page 63.

e Define a FreeBSD slice (which the PC BIOS calls a “partition”).
» Define the partitions in the FreeBSD slice.

* Tell the system about the file systems and where to mount them.
* Create the file systems.

These are the same operations that we performed in Chapter 5.

Disk hardware installation

Before you can do anything with the disk, you have to install it in the system. To do this,
you must normally shut down the system and turn the power off, though high-end SCSI
enclosures allow hot-swapping, changing disks in a running system. If the disk is IDE,
and you already have an IDE disk on the controller, you need to set the second disk as
“slave” drive. And you may have to set the first disk as “master” drive: if you only have
one drive, you don’t set any jumpers, but if you have two drives, some disks require you
to set jumpers on both disks. If you don’t do this, the system will appear to hang during
the power-on self test, and will finally report some kind of disk error.

Adding a SCSI disk is more complicated. You can connect up to 15 SCSI devices to a
host adapter, depending on the interface. Many systems restrict the number to 7 for
compatibility with older SCSI interfaces. Typically, your first SCSI disk will have the
SCSI ID 0, and the host adapter will have the SCSI ID 7. Traditionally, the IDs 4, 5, and
6 are reserved for tape and CD-ROM drives, and the IDs 0 to 3 are reserved for disks,
though FreeBSD doesn’t impose any restrictions on what goes where.

Whatever kind of disk you’re adding, look at the boot messages, which you can retrieve
with the dmesg command. For example, if you’re planning to add a SCSI device, you
might see:

synD: <875> port 0xc400-0xc4ff nem O0xec002000- 0xec002f f f, 0xec003000- 0xec0030f f irq 10
at device 9.0 on pci 0

synD: Synbios NVRAM ID 7, Fast-20, SE NOparity

synD: open drain IRQIine driver, using on-chip SRAM

syn®: using LOAD STCRE- based fi rnware.

synD: SCAN FCR LUNS disabl ed for targets 0.

synil: <875> port 0xc800-0xc8ff nem 0xec001000- Oxec001f f f, Oxec000000- OxecO000ff irqg 9
at device 13.0 on pci0

synml: No N\VRAM ID 7, Fast-20, SE parity checking

further down...

Wi ting 3 seconds for SCS devices to settle

sa0 at synD bus O target 3 lun O

sa0: <EXABYTE EXB- 8505SMBANSH2 0793> Renovabl e Sequential Access SCSl -2 devi ce
sa0: 5.000MB/s transfers (5.000MH, offset 11)

sal at synD bus O target 4 lun O

sal: <ARCH VE Pyt hon 28849- XXX 4. W Renovabl e Sequential Access SCSl -2 device
sal: 5.000M8/s transfers (5.000MH, offset 15)

sa2 at synD bus O target 5 lun O

sa2: <TANDBERG TDC 3800 -03: > Renovabl e Sequential Access SCSl - GCS devi ce

sa2: 3.300MB/s transfers

pass4 at syn® bus O target 4 lun 1

pass4: <ARCH VE Pyt hon 28849- XXX 4. QW Renovabl e Changer SCSl-2 devi ce

disks.mm,v v4.17 (2003/04/02 06:44:17)

201 Chapter 11: Disks

pass4: 5.000M¥/ s transfers (5.000MH, offset 15)

cd0 at synD bus O target 6 lun O

cd0: <NRC MBR 7 110> Renovabl e CD- ROM SCSI -2 devi ce

cdO: 3.300M¥ s transfers

cd0: cd present [322265 x 2048 byte records]

da0 at synl bus O target 3 lun O

da0: <SEAGATE ST15230W SUMA. 2G 0738> Fi xed Direct Access SCS -2 device

da0: 20.000MB/s transfers (10.000MHz, offset 15, 16bit), Tagged Queuei ng Enabl ed
da0: 4095MB (8386733 512 byte sectors: 255H 639 T 5220

This output shows two Symbios SCSI host adapters /dev/(symO and /dev/syml), three
tape drives /dev/(sa0, /devisal and /dev/isa?), a CD-ROM drive /dev/(cd0), a tape
changer /dev/(pass4), and also a disk drive /dev/da0 on ID 3, which is called a target in
these messages. The disk is connected to the second host adapter, and the other devices
are connected to the first host adapter.

Installing an external SCSI device

External SCSI devices have two cable connectors: one goes towards the host adapter, and
the other towards the next device. The order of the devices in the chain does not have to
have anything to do with the SCSI ID. This method is called daisy chaining. At the end
of the chain, the spare connector may be plugged with a terminator, a set of resistors
designed to keep noise off the bus. Some devices have internal terminators, however.
When installing an external device, you will have to do one of the following:

* If you are installing a first external device (one connected directly to the cable
connector on the backplane of the host adapter), you will have to ensure that the
device provides termination. If you already have at least one internal device, the host
adapter will no longer be at one end of the chain, so you will also have to stop it from
providing termination. Modern SCSI host adapters can decide whether they need to
terminate, but older host adapters have resistor packs. In the latter case, remove these
resistor packs.

* If you are adding an additional external device, you have two choices: you can
remove a cable in the middle of the daisy chain and plug it into your new device. You
then connect a new cable from your device to the device from which you removed the
original cable.

Alternatively, you can add the device at the end of the chain. Remove the terminator
or turn off the termination, and plug your cable into the spare socket. Insert the
terminator in your device (or turn termination on).

You can add external SCSI devices to a running system if they’re hot-pluggable. It might
even work if they’re not hot-pluggable, but it’s not strictly the correct thing to do, and
there’s the risk that you might damage something, possibly irreparably. After connecting
the devices, powering them up and waiting for them to come ready, run camcontrol
rescan. For example, if you added a second disk drive to the second host adapter in the
example above, you might see:

disks.mm,v v4.17 (2003/04/02 06:44:17)

Adding a hard disk 202

cantontrol rescan 1

dal at synil bus O target O lun O

dal: <SEAGATE ST15230W SUM. 2G 0738> Fi xed Direct Access SCS -2 devi ce

dal: 20.000MB/s transfers (10.000M, offset 15, 16bit), Tagged Queuei ng Enabl ed
dal: 4095MB (8386733 512 byte sectors: 255H 635/ T 5220

Re-scan of bus 1 was successf ul

There’s a problem with this approach: note that /dev/dal has ID 0, and the already
present /devidaO has ID 3. If you now reboot the system, they will come up with the
device names the other way round. We’ll look at this issue in more detail in the next
section.

Installing an internal SCSI device

Installing an internal SCSI device is much the same as installing an external device.
Instead of daisy chains, you have a flat band cable with a number of connectors. Find one
that suits you, and plug it into the device. Again, you need to think about termination:

e If you are installing the device at the end of the chain, it should have termination
enabled. You should also disable termination for the device that was previously at the
end of the chain. Depending on the device, this may involve removing the physical
terminators or setting a jumper.

* If you are installing the device in the middle of the chain, make sure it does not have
termination enabled.

In this chapter, we’ll look at two ways of installing a drive in an existing SCSI chain. We
could be in for a surprise: the device ID we get for the new drive depends on what is
currently on the chain. For example, consider our example above, where we have a chain
with a single drive on it:

da0 at syni bus O target 3 lun O

da0: <SEAGATE ST15230W SUM. 2G 0738> Fi xed Direct Access SCS -2 devi ce

da0: 20.000M¥ s transfers (10.000MHz, offset 15, 16bit), Tagged Queuei ng Enabl ed
da0: 4095MB (8386733 512 byte sectors: 255H 639 T 5220

This drive on target (ID) 2. If we put our new drive on target 0 and reboot, we see:

da0 at synml bus O target O lun O

da0: <SEACGATE ST15230W SUMA. 2G 0738> Fi xed D rect Access SCSl -2 device

da0: 20.000MB/s transfers (10.000MH, offset 15, 16bit), Tagged Queuei ng Enabl ed
da0: 4095MB (8386733 512 byte sectors: 255H 639 T 5220

dal at synl bus O target 3 lun O

dal: <SEAGATE ST15230WSUMA. 2G 0738> Fi xed D rect Access SCS -2 device

dal: 20.000MB/s transfers (10.000MH, offset 15, 16bit), Tagged Queuei ng Enabl ed
dal: 4095MB (8386733 512 byte sectors: 255H 635/ T 5220

At first glance, this looks reasonable, but that’s only because both disks are of the same
type. If you look at the target numbers, you’ll notice that the new disk is /dev/da0, not
/dev/dal. The target ID of the new disk is lower than the target ID of the old disk, so the
system recognizes the new disk as /dev/da0, and our previous /dev/da0 has become
/dev/dal.

disks.mm,v v4.17 (2003/04/02 06:44:17)

203 Chapter 11: Disks

This change of disk ID can be a problem. One of the first things you do with a new disk
is to create new disk labels and file systems. Both offer excellent opportunities to shoot
yourself in the foot if you choose the wrong disk: the result would almost certainly be the
complete loss of data on that disk. Even apart from such catastrophes, you’ll have to edit
/etc/fstab before you can mount any file systems that are on the disk. The alternatives are
to wire down the device names, or to change the SCSI IDs. In FreeBSD 5.0, you wire
down device names and busses by adding entries to the boot configuration file
/boot/device.hints. We’ll look at that on page 568.

Formatting the disk

Formatting is the process of rewriting every sector on the disk with a specific data pattern,
one that the electronics find most difficult to reproduce: if they can read this pattern, they
can read anything. Microsoft calls this a low-level format. Obviously it destroys any
existing data, so

If you have anything you want to keep, back it up before
formatting.

Most modern disks don’t need formatting unless they’re damaged. In particular,
formatting will not help if you’re having configuration problems, if you can’t get PPP to
work, or you’re running out of disk space. Well, it will solve the disk space problem, but
not in the manner you probably desire.

If you do need to format a SCSI disk, use camcontrol. camcontrol is a control program
for SCSI devices, and it includes a lot of useful functions that you can read about in the
man page. To format a disk, use the following syntax:

cantontrol format dal

Remember that formatting a disk destroys all data on the disk.
Before using the command, make sure that you need to do so:
there are relatively few cases that call for formatting a disk.
About the only reasons are if you want to change the physical
sector size of the disk, or if you are getting ““medium format
corrupted” errors from the disk in response to read and write
requests.

FreeBSD can format only floppies and SCSI disks. In general it is no longer possible to
reformat ATA (IDE) disks, though some manufacturers have programs that can recover
from some data problems. In most cases, though, it’s sufficient to write zeros to the entire
disk:

dd if=/dev/zero of =/ dev/ adls2 bs=128k

If this doesn’t work, you may find formatting programs on the manufacturer’s web site.
You’ll probably need to run them under a Microsoft platform.

1. Microsoft also uses the term high-level format for what we call creating a file system.
disks.mm,v v4.17 (2003/04/02 06:44:17)

Adding a hard disk 204

Using sysinstall

If you can, use sysinstall to partition your disk. Looking at the dmesg output for our
new disk, we see:

dal at synml bus O target O lun O

dal: <SEAGATE ST15230W SUM. 2G 0738> Fi xed Direct Access SCS -2 devi ce

dal: 20.000MB/s transfers (10.000M, offset 15, 16bit), Tagged Queuei ng Enabl ed
dal: 4095MB (8386733 512 byte sectors: 255H 639 T 5220

You see the standard installation screen (see Chapter 5, page 60). Select | ndex, then
Partition, and you see the following screen:

Select Drive(s)
Please select the drive., or drives, on which you wish to perform
this operation. If you are attempting to install a boot partition
on a drive other than the first one or have multiple operating
systems on your machine. you will have the option to install a boot
manager later. To select a drive, use the arrouw keys to move to it
and press [SPACE]. To de-select it. press [SPACE] again.

Select OK or Cancel to leave this menu.

[1 ad0 ado
[1 da0 da0

L (K Cancel

—L Press F1 for important information reparding disk geometry! 1—

Figure 11-1: Disk selection menu

In this case, we want to partition /dev/dal, so we position the cursor on dal (as shown)
and press Enter. We see the disk partition menu, which shows that the disk currently
contains three partitions:

e The first starts at offset 0, and has a length of 63. This is not unused, no matter what
the description says. It’s the partition table, padded to the length of a ““track.”

* The next partition takes up the bulk of the drive and is a Microsoft partition.

e Finally, we have 803 sectors left over as a result of the partitioning scheme.
Sometimes this can be much larger—I have seen values as high as 35 MB. This is
the price we pay for compatibility with PC BIOS partitioning.

We want a FreeBSD partition, not a Microsoft partition. At this point, we have a number
of choices:

disks.mm,v v4.17 (2003/04/02 06:44:17)

205 Chapter 11: Disks

Disk name: FDISK Partition Editor
DISK Geometry: 522 cyls/255 heads/63 sectors = 8385930 sectors (4094MB)
0ffset Size(ST) End Name PType Desc Subtype Flags
0 63 62 - [unused 0
63 8385867 8385929 dalsl 2 fat 6
8385930 803 8386732 = 6 unused 0

The following commands are supported (in upper or lower case):

fi = Use Entire Disk G = set Drive Geometry C = Create Slice
D = Delete Slice Z = Toggle Size Units S = Set Bootable
T = Change Type U = Undo All Changes W = Write Changes

Use F1 or ? to get more help. arrouw keys to select.

Figure 11-2: Disk partition menu

* \We can change the partition type (called “Subtype” in the menu). It’s currently 6,
and we would need to change it to 165. Do this with thet command.

* We could delete the partition by positioning the cursor on the partition information
and pressing d, then create a new partition, either with a if we want a single partition,
or with c if we want more than one partition.

e If we’re using this disk for FreeBSD only, we don’t have to waste even this much
space. There is an option “use whole disk for FreeBSD,” the so-called ““dangerously
dedicated” mode. This term comes partially from superstition and partially because
some BlOSes expect to find a partition table on the first sector of a disk, and they
can’t access the disk if they don’t find one. If your BIOS has this bug, you’ll find this
one out pretty quickly when you try to boot. If it doesn’t fail on the first boot, it
won’t fail, though it’s barely possible that you might have trouble if you move it to a
system with a different BIOS. If you want to use this method, use the undocumented
f command.

To use the whole disk, we first delete the current partition: we press the cursor down key
until it highlights the FreeBSD partition. Then we press d, and the three partitions are
joined into one, marked unused.

disks.mm,v v4.17 (2003/04/02 06:44:17)

Using sysinstall 206

The next step is to create a new partition using the entire disk. If we pressf, we get the
following message:

Disk name: FDISK Partition Editor

DISK Geometry: 522 cyls/255 heads/63 sectors = 8385930 sectors (4094MB)
0ffset Size(ST) End Name PType Desc Subtype Flags

0 8386733 8386732 - [unused 0

User Confirmation Requested
Do you want to do this with a true partition entry
so as to remain cooperative with any future possible
operating systems on the drive(s)?
(See also the section about ~“dangerously dedicated'’
disks in the FreeBSD FAQ.)

The followi
Ve No
A = Use Ent
D = Delete S]]
T = Change Type U = Undo All Changes W = Write Changes

Use F1 or ? to get more help. arrouw keys to select.

We don’t get this message if we use the a command: it just automatically assumes Yes.
In this case we've decided to use the whole disk, so we move the cursor right to No and
press Enter. That gives us a boot manager selection screen:

Install Boot Manager for drive da0?
FreeBSD comes with a boot selector that allows you to easily
select between FreeBSD and any other operating systems on your machine
at boot time. If you have more than one drive and want to boot
from the second one, the boot selector will also make it possible
to do so (limitations in the PC BIOS usually prevent this otherwise).
If you do not want a boot selector. or wish to replace an existing
one, select "standard”. If you would prefer your Master Boot
Record to remain untouched then select “None”.

NOTE: PC-DOS users will almost certainly require “None"!

() BootHar Install the FreeBSD Boot Manager

{) Standard Install a standard MBR (no boot manager)
Hone} Leave the Master Boot Record untouched

Cancel

[Press F1 to read about drive setup &

disks.mm,v v4.17 (2003/04/02 06:44:17)

207 Chapter 11: Disks

This isn’t a boot disk, so we don’t need any boot record, and it doesn’t make any
difference what we select. It’s tidier, though, to select None as indicated. Then we press
g to exit the partition editor, get back to the function index, and select Label . We see:

FreeBSD Disklabel Editor
Disk: dal Partition name: dalsl Free: 8386733 blocks (4095MB)
Part Mount Size Neuwfs Part Mount Size Neuwfs
The following commands are valid here (upper or lower case):
C = Create D = Delete M = Mount pt. W = Hrite
N = Neufs Opts T = Neuwfs Toggle U = Undo Q = Finish
A = Auto Defaults for alll
Use F1 or ? to get more help. arrow keys to select.

The important information on this rather empty looking menu is the information at the
top about the free space available. We want to create two partitions: first, a swap partition
of 512 MB, and then a file system taking up the rest of the disk. We press C, and are
shown a submenu offering us all 8386733 blocks on the disk. We erase that and enter
512m which represents 512 MB. Then we press Enter, and another submenu appears,
asking us what kind of slice it is. We move the cursor down to select A swap
partition:

FreeBSD Disklabel Editor
Disk: dal Partition name: dalsl Free: 8386733 blocks (4095MB)

Part Mount Size Newfs Part Mount Size Newfs

Please choose a partition type

If you want to use this partition for swap space. select Swap.
If you want to put a filesystem on it. choose FS.

FS fi file system
Suap)

Cancel

The

C = Create D = Delete M = Mount pt. W = Hrite
N = Neufs Opts T = Neuwfs Toggle U = Undo Q = Finish
A = Auto Defaults for alll

Use F1 or ? to get more help. arrow keys to select.

disks.mm,v v4.17 (2003/04/02 06:44:17)

Using sysinstall 208

Next, we press ¢ again to create a new partition. This time, we accept the offer of the rest
of the space on the disk, 7338157 sectors, we select A file system and we are
presented with yet another menu asking for the name of the file system. We enter the
name, in this case /S:

FreeBSD Disklabel Editor

Disk: dal Partition name: dalsl Free: 7338157 blocks (3583MB)
Part Mount Size Newfs Part Mount Size Newfs
dalsib swap 512MB SHAP

Value Required
Please specify a mount point for the partition

A

L OK 1 Cancel

The following commands are valid here (upper or lower case):

C = Create D = Delete M = Mount pt. W = Hrite
N = Neufs Opts T = Neuwfs Toggle U = Undo Q = Finish
A = Auto Defaults for alll

Use F1 or ? to get more help. arrow keys to select.

After pressing Enter, we see:

FreeBSD Disklabel Editor
Disk: dal Partition name: dalsl Free: 0 blocks (OMB)
Part Mount Size Newfs Part Mount Size Newfs
dalslb swap 512MB SHAP
dalsle /s 3583MB UFS Y
The following commands are valid here (upper or lower case):
C = Create D = Delete M = Mount pt. W = Hrite
N = Neufs Opts T = Neuwfs Toggle U = Undo Q = Finish
fi = Auto Defaults for alll
Use F1 or ? to get more help. arrow keys to select.

disks.mm,v v4.17 (2003/04/02 06:44:17)

209 Chapter 11: Disks

Finally, we press Wto tell the disk label editor to perform the function. We get an
additional warning screen:

FreeBSD Disklabel Editor

Disk: dal Partition name: dalsl Free: 0 blocks (OMB)

Part Mount Size Newfs Part Mount Size Newfs
dalslb swap 512MB SHAP

dalsl User Confirmation Requested

WARNING: This should only be used when modifying an EXISTING
installation. If you are installing FreeBSD for the first time
then you should simply type Q when you're finished here and your
changes will be committed in one batch automatically at the end of
these questions.

fire you absolutely sure you want to do this now?

L Jes | No

e
N = Neufs Opts T = Neuwfs Toggle U = Undo Q = Finish
A = Auto Defaults for alll

Use F1 or ? to get more help. arrow keys to select.

We’re doing this online, so that’s OK. We select Yes, and sysinstall creates the file
system and mounts both it and the swap partition. This can take quite a while. Don’t try
to do anything with the drive until it’s finished.

Doing it the hard way

Unfortunately, sometimes you may not be able to use the sysinstall method. You may
not have access to sysinstall, or you may want to use options that sysinstall doesn’t offer.
That leaves us with the old way to add disks. The only difference is that this time we need
to use different tools. In the following sections, we’ll look at what we have to do to
install this same 4 GB Seagate drive manually. This time we’ll change the partitioning to
contain the following partitions:

* A Microsoft file system.
* The /newhome file system for our FreeBSD system.
e Additional swap for the FreeBSD system.

We’ve called this file system /newhome to use it as an example of moving file systems to
new disks. On page 218 we’ll see how to move the data across.

disks.mm,v v4.17 (2003/04/02 06:44:17)

Doing it the hard way 210

Creating a partition table

The first step is to create a PC BIOS style partition table on the disk. As in Microsoft, the
partitioning program is called fdisk. In the following discussion, you’ll find a pocket
calculator indispensable.

If the disk is not brand new, it will have existing data of some kind on it. Depending on
the nature of that data, fdisk could get sufficiently confused to not work correctly. If you
don’t format the disk, it’s a good idea to overwrite the beginning of the disk with dd:

dd if=/dev/zero of =/ dev/ dal count =100

100+0 records in

100+0 records out

51200 bytes transferred in 1 secs (51200 byt es/ sec)

We’ll assign 1 GB for Microsoft and use the remaining approximately 3 GB for
FreeBSD. Our resulting partition table should look like:

Master Boot Record
Partition Table

Slice 1 - Microsoft primary | o Microsoft primary partition

/dev/dalsl, 1 GB

Slice 2 - FreeBSD
/dev/dals2, 3 GB

- /dev/dals2b: FreeBSD swap
/dev/dals2h: /newhome file system

Slice 3 (unused)

Slice 4 (unused)

Figure 11-3: Partition table on second FreeBSD disk

The Master Boot Record and the Partition Table take up the first sector of the disk, but
many of the allocations are track oriented, so the entire first track of the disk is not
available for allocation. The rest, up to the end of the last entire cylinder, can be divided
between the partitions. It’s easy to make a mistake in specifying the parameters, and
fdisk performs as good as no checking. You can easily create a partition table that has
absolutely no relationship with reality, so it’s a good idea to calculate them in advance.
For each partition, we need to know three things:

e The partition type, which fdisk calls sysid. This is a number describing what the
partition is used for. FreeBSD partitions have partition type 165, and modern (MS-
DOS Release 4 and later) Microsoft partitions have type 6.

* The start sector, the first sector in the partition.

* The end sector for the partition.

disks.mm,v v4.17 (2003/04/02 06:44:17)

211 Chapter 11: Disks

In addition, we need to decide which partition is the active partition, the partition from
which we want to boot. In this case, it doesn’t make any difference, because we won’t be
booting from the disk, but it’s always a good idea to set it anyway.

We specify the partitions we don’t want by giving them a type, start sector and end sector
of 0. Our disk has 8386733 sectors, numbered O to 8386732. Partitions should start and
end on a cylinder boundary, and we want the Microsoft partition to be about 1 GB. 1 GB
is 1024 MB, and 1 MB is 2048 sectors of 512 bytes each, so theoretically we want 1024 x
2048, or 2197152 sectors. Because of the requirement that partitions begin and end on a
“cylinder” boundary, we need to find the closest number of “cylinders™ to this value.
First we need to find out how big a “cylinder” is. We can do this by running fdisk
without any options:

fdisk dal

*Hkxxkxk \Mrking on device /dev/dal ***xx*x

paraneters extracted fromin-core disklabel are:

cyl i nder s=13726 heads=13 sect ors/track=47 (611 bl ks/cyl)

Figures belowwon't work with BIGs for partitions not incyl 1
paraneters to be used for Bl C5 cal cul ations are:
cyl i nders=13726 heads=13 sectors/track=47 (611 bl ks/cyl)

fdisk: invalid fdisk partition table found

Medi a sector size is 512

\Mrning: BICB sector nunbering starts with sector 1
I nformati on from DCO5 boot bl ock i s:

The data for partition 1is:

<UNUSED>

The data for partition 2 is:

<UNUSED>

The data for partition 3 is:
<UNUSED>
The data for partition 4 is:
sysi d 165, (FreeBSD Net BSDY 386BSD)
start 47, size 8386539 (4094 Meg), flag 80 (active)
beg: cyl O/ head 1/ sector 1;
end: cyl 413/ head 12/ sector 47

You’ll notice that fdisk has decided that there is a FreeBSD partition in partition 4. That
happens even if the disk is brand new. In fact, this is a less desirable feature of fdisk: it
“suggests” this partition, it’s not really there, which can be really confusing. This
printout does, however, tell us that fdisk thinks there are 611 sectors per cylinder, so we
divide 2197152 by 611 and get 3423.327 cylinders. We round down to 3423 cylinders,
which proves to be 2091453 sectors. This is the length we give to the first partition.

We use the remaining space for the FreeBSD partition. How much? Well, dmesg tells us
that there are 8386733 sectors, but if you look at the geometry that fdisk outputs, there
are 13726 cylinders with 13 heads (tracks) per cylinder and 47 sectors per track. 13726 x
13 x 47 is 8386586. This rounding down is the explanation for the missing data at the
end of the disk that we saw on page 204. The best way to calculate the size of the
FreeBSD partition is to take the number of cylinders and multiply by the number of
tracks per cylinder. The FreeBSD partition starts behind the Microsoft partition, so it
goes from cylinder 3423 to cylinder 13725 inclusive, or 10303 cylinders. At 611 sectors
per cylinder, we have a total of 6295133 sectors in the partition. Our resulting
information is:

disks.mm,v v4.17 (2003/04/02 06:44:17)

Doing it the hard way 212

Table 11-1: sample fdisk parameters

Partition Partition Start Size
number type sector
1 6 1 | 2091453
2 165 | 2091453 | 6295133
3 0 0
4 0 0

Next we run fdisk in earnest by specifying the -i option. During this time, you may see
messages on the console:

dal: invalid prinary partition table: no nagic

The message no magic doesn’t mean that fdisk is out of purple smoke. It refers to the
fact that it didn’t find the so-called magic number, which identifies the partition table.
We don’t have a partition table yet, so this message isn’t surprising. It’s also completely
harmless.

fdisk prompts interactively when you specify the -i flag:

fdisk -i dal

xkxxkxk \Mrking on device /dev/dal *x**x*x

paraneters extracted fromin-core diskl abel are:

cyl i nders=13726 heads=13 sect ors/track=47 (611 bl ks/cyl)

Figures belowwon't work with BIGS for partitions not incyl 1
paraneters to be used for Bl C5 cal cul ations are:
cyl i nders=13726 heads=13 sect ors/track=47 (611 bl ks/cyl)

Do you want to change our idea of what BIGS thinks ? [n] Enter pressed
Medi a sector size is 512
\Wrning: Bl G5 sector nunbering starts with sector 1
I nformati on from DOB boot bl ock i s:
The data for partition 1 is:
sysid 165, (FreeBSD Net BSDY 386BSD)
start 0, size 8386733 (4095 Meg), flag 80 (active)
beg: cyl 0/ head 0/ sector 1;
end: cyl 522/ head 12/ sector 47
Do you want to change it? [n] y
Supply a decinmal value for "sysid (165=FreeBSD" [0] 6
Supply a decinal value for "start" [0] Enter pressed
Suppl y a decinal value for "size" [0] 2091453
Explicitly specify beg/end address ? [n] Enter pressed
sysid 6, (Primary "big DO5 (> 32MB))
start 0, size 2091453 (1021 Meg), flag O
beg: cyl O/ head 0/ sector 1;
end: cyl 350/ head 12/ sector 47
Are we happy wth this entry? [n] y
The data for partition 2 is:
<UNUSED>
Do you want to change it? [n] y
Supply a decinmal value for "sysid (165=FreeBSD" [0] 165
Supply a decinal value for "start" [0] 2091453
Supply a decinal value for "size" [0] 6295133
Explicitly specify beg/end address ? [n] Enter pressed
sysi d 165, (FreeBSD Net BSDY 386BSD)

disks.mm,v v4.17 (2003/04/02 06:44:17)

213

Chapter 11: Disks

start 2091453, size 6295133 (3073 M), flag O
beg: cyl 351/ head 0/ sector 1;
end: cyl 413/ head 12/ sector 47
Are we happy wth this entry? [n] y
The data for partition 3 is:
<UNUSED>
Do you want to change it? [n] Enter pressed
The data for partition 4 is:
sysi d 165, (FreeBSD Net BSDY 386BSD)
start 47, size 8386539 (4094 Meg), flag 80 (active)
beg: cyl O/ head 1/ sector 1;
end: cyl 413/ head 12/ sector 47
Do you want to change it? [n] y

The static data for the DOB partition 4 has been reinitialized to:
sysi d 165, (FreeBSD Net BSDY 386BSD)
start 47, size 8386539 (4094 Meg), flag 80 (active)
beg: cyl O/ head 1/ sector 1;
end: cyl 413/ head 12/ sector 47
Supply a decinal value for "sysid (165=FreeBSD " [165] O
Supply a decinal value for "start" [47] O
Supply a decinal value for "size" [8386539] O
Explicitly specify beg/end address ? [n] Enter pressed
<UNUSED>

Are we happy with this entry? [n] y

Do you want to change the active partition? [n] y
Supply a decinal value for "active partition” [1] 2
Are you happy with this choice [n] y

% haven't changed the partition table yet. This is your |ast chance.

paraneters extracted fromin-core di skl abel are:
cyl i nders=13726 heads=13 sect ors/track=47 (611 bl ks/cyl)

Figures belowwon't work with BICs for partitions not incyl 1
paraneters to be used for Bl C5 cal cul ations are:
cyl i nders=13726 heads=13 sect ors/track=47 (611 bl ks/cyl)

I nfornmation from DOB boot bl ock i s:
1: sysid 6, (Primary 'big’ DCB (> 32MB))
start 0, size 2091453 (1021 Meg), flag O
beg: cyl O/ head O/ sector 1;
end: cyl 350/ head 12/ sector 47
2: sysid 165, (FreeBSD Net BSD 386BSD)
start 2091453, size 6295133 (3073 Meg), flag 80 (active)
beg: cyl 351/ head O/ sector 1;
end: cyl 413/ head 12/ sector 47
3 <UNUSED>
4: <UNUSED>
Should we wite new partition table? [n] y

You’ll notice a couple of things here:

* Even though we created valid partitions 1 and 2, which cover the en

tire drive, fdisk

gave us the phantom partition 4 which covered the whole disk, and we had to remove

it.

e The cylinder numbers in the summary at the end don’t make any sense. We’ve
already calculated that the Microsoft partition goes from cylinder 0 to cylinder 3422
inclusive, and the FreeBSD partition goes from cylinder 3423 to cylinder 13725. But
fdisk says that the Microsoft partition goes from cylinder 0 to cylinder 350 inclusive,

and the FreeBSD partition goes from cylinder 351 to cylinder 413.
about?

disks.mm,v v4.17 (2003/04/02 06:44:17)

What’s that all

Doing it the hard way 214

The problem here is overflow: once upon a time, the maximum cylinder value was
1023, and fdisk still thinks this is the case. The numbers we’re seeing here are the
remainder left by dividing the real cylinder numbers by 1024.

Labelling the disk

Once we have a valid PC BIOS partition table, we need to create the file systems. We
won’t look at the Microsoft partition in any more detail, but we still need to do some
more work on our FreeBSD slice (slice or PC BIOS partition 2). It’ll make life easier
here to remember a couple of things:

e From now on, we’re just looking at the slice, which we can think of as a logical disk.
Names like disk label really refer to the slice, but many standard terms use the word
disk, so we’ll continue to use them.

* All offsets are relative to the beginning of the slice, not the beginning of the disk.
Sizes also refer to the slice and not the disk.

The first thing we need is the disk (slice) label, which supplies general information about
the slice:

* The fact that it’s a FreeBSD slice.
* The size of the slice.
* The sizes, types and layout of the file systems.

* Some obsolete information about details like rotational speed of the disk and the
track-to-track switching time. This is still here for historical reasons only. It may go
away soon.

The only information we need to input is the kind, size and locations of the partitions. In
this case, we have decided to create a file system on partition h (/dev/dals2h) and swap
space on partition b /dev/(dalslb). The swap space will be 512 MB, and the file system
will take up the rest of the slice. This is mainly tradition: traditionally data disks use the
h partition and not the a partition, so we’ll stick to that tradition, though there’s nothing
to stop you from using the a partition if you prefer. In addition, we need to define the ¢
partition, which represents the whole slice. In summary, the FreeBSD slice we want to
create looks like:

/dev/dals2b: FreeBSD swap, 512 MB
/dev/dals2h: /newhome file system, 2.5 GB

Figure 11-4: FreeBSD dlice on second disk

disks.mm,v v4.17 (2003/04/02 06:44:17)

215 Chapter 11: Disks

Disklabel

The program that writes the disk label is called (wait for it) disklabel. It’s not as warty as
fdisk, but it can still give you a run for your money. Nowadays you can ignore most of
the complexity, though. You can normally create a disk label with the single command:

di skl abel -w-r /dev/dals2 auto

This creates the label with a single partition, c. You can look at the label with disklabel
without options:

di skl abel /dev/dals2

[dev/ da0Os2:

type: SCS

di sk: SEAGATE

| abel :

fl ags:

byt es/ sector: 512

sectors/track: 47

tracks/cylinder: 13

sectors/cylinder: 611

cylinders: 10303

sectors/unit: 6295133

rpm 3600

interleave: 1

trackskew 0

cylinderskew 0

headsw tch: 0 # mlliseconds
track-to-track seek: 0 # mlliseconds
drivedata: O

8 partitions:
size offset fstype [fsize bsize bps/cpg]
c: 6295133 0 unused 0 0 # (Oyl. 0 - 10302)

Only the last three lines are of interest. The rest is historical information that is irrelevant
and that may be just plain wrong, like the r pmvalue 3600, a typical value 20 years ago.
Nowadays even the cheapest disks run at 5400 rpm.

At this point, the only partition you have is the “whole disk” partition c. You still need
to partitions b and h and specify their location and size. Do this with disklabel -e, which
starts an editor with the output you see above. Simply add additional partitions:

8 partitions:

size offset fstype [fsize bsize bps/cpg]
c: 6295133 0 unused 0 0 # (Oyl. 0 - 10302)
b: 1048576 0 swap 0 0 # (Oyl. 0 - 10302)
h: 5246557 1048576 unused 0 0 # (Ql. 0 - 10302)

You don’t need to maintain any particular order, and you don’t need to specify that
partition h will be a file system. In the next step, newfs will do that for you
automatically.

disks.mm,v v4.17 (2003/04/02 06:44:17)

Doing it the hard way 216

Problems running disklabel

Sometimes this doesn’t quite work. Here are some of the errors you might encounter:

You may find:

di skl abel -w -r dals2 auto
di skl abel : /dev/dals2c: Unhdefined error: O

This message may be the result of the kernel having out-of-date information about the
slice in memory. If this is the case, a reboot may help.

No di sk | abel on di sk is straightforward enough. You tried to use disklabel to
look at the label before you had a label to look at.

Label magi ¢ nunber or checksumis wong! tells you that disklabel thinks it
has a label, but it’s invalid. This could be the result of an incorrect previous attempt
to label the disk. It can be difficult to get rid of an incorrect label. The best thing to
do is to repartition the disk with the label in a different position, and then copy
/dev/izero to where the label used to be. Then you can repartition again the way you
want to have it.

pen partition would nove or shrink probably means that you have
specified incorrect values in your slice definitions. Check particularly that the c
partition corresponds with the definition in the partition table.

wite: Read-only file systemmeans that you are trying to do something
invalid with a valid disk label. FreeBSD write protects the disk label, which is why
you get this message.

In addition, you might get kernel messages like:

fixlabel: raw partition size > slice size
or
fixlabel: raw partitions offset != slice offset

The meanings of these messages should be obvious.

You may get this message:

di skl abel -w-r /dev/dals2 auto
di skl abel : "auto" requires the usage of a canonical disk name

This is disklabel’s inimitable way of telling you that it wants you to type dals2, not
/ dev/ dals2.

In old times, disklabel sometimes failed to create a file system with the aut o
keyword. In such a case, you needed to describe the disk geometry in the file
/etc/disktab. This problem hasn’t occurred for a long time. If it happens to you, you
might get around it by defining the disk in /etc/disktab (see the man page disktab(5)
for details) and then referencing the definition in the invocation of disklabel:

disks.mm,v v4.17 (2003/04/02 06:44:17)

217 Chapter 11: Disks

di skl abel -w-r dals2 definition

where def i ni ti on is the name of the entry in /etc/disktab.

Creating file systems

Once we have a valid label, we need to create the file systems. In this case, there’s only
one file system, on /dev/dals2h. Mercifully, this is easier:

news -U /dev/ dals2h

Wrni ng: Bl ock size and bytes per inode restrict cylinders per group to 89.

Wrni ng: 420 sector(s) in last cylinder unallocated

/ dev/ dals2h: 5246556 sectors in 1281 cylinders of 1 tracks, 4096 sectors
2561.8MB in 15 cyl groups (89 c/g, 178.00M¥ g, 21632 i/Q)

super - bl ock backups (for fsck -b #) at:

32, 364576, 729120, 1093664, 1458208, 1822752, 2187296, 2551840, 2916384,

3280928, 3645472, 4010016, 4374560, 4739104, 5103648

The - Uflag tells newfs to enable soft updates, which we looked at on page 191.

Mounting the file systems

Finally the job is done. Well, almost. You still need to mount the file system, and to tell
the system that it has more swap. But that’s not much of a problem:

nkdir /newhore make sure we have a directory to mount on
mount /dev/ dals2h /newhone and mount it

swapon /dev/ dals2b

df show free capacity and mounted file systems
Fi | esystem 1024- bl ocks Wsed Avail Capacity Munted on

/ dev/ adOsla 19966 17426 944 9%% |/

/ dev/ adOsle 1162062 955758 113340 89% /usr

procfs 4 4 0 100% /proc

presto:/ 15823 6734 8297 45% [prestol root

presto: / usr 912271 824927 41730 95% /prestolusr

prest o: / hone 1905583 1193721 521303 70% [/ prestol hone

presto:/S 4065286 3339635 563039 86% /S

/ dev/ dals2h 2582220 2 2375642 0% /newhone

pstat -s show swap usage

Devi ce 1K- bl ocks Used Avai |l Capacity Type

/ dev/ adOs4b 524160 0 524160 0% Interl eaved

/ dev/ dals2b 524160 0 524160 0% Interleaved

Tot al 1048320 0 1048320 0%

This looks fine, but when you reboot the system, /newhome and the additional swap will
be gone. To ensure that they get mounted after booting, you need to add the following
lines to /etc/fstab:

/ dev/ dals2b none swap sw 0 0
/ dev/ dals2h / newhone ufs rw 0 0

disks.mm,v v4.17 (2003/04/02 06:44:17)

Creating file systems 218

Moving file systems

Very frequently, you add a new disk to a system because existing disks have run out of
space. Let’s consider the disk we have just added and assume that currently the files in
/home are physically located on the /usr file system, and that /home is a symbolic link to
/usr/home. We want to move them to the new file system and then rename it to /home.
Here’s what to do:

e Copy the files:

cd /hone
tar cf - . | (cd /newhone; tar xvf - 2>/var/tnp/tarerrors)

This writes any error messages to the file /var/tmp/tarerrors. If you don’t do this, any
errors will get lost.

* Check /var/tmp/tarerrors and make sure that the files really made it to the right
place!

¢ Remove the old files:

rm-rf /usr/home

* In this case, /home was a symbolic link, so we need to remove it and create a
directory called /home:

rm/ honme
nkdir /homre

You don’t need to do this if /home was already a directory (for example, if you’re
moving a complete file system).

* Modify /etc/fstab to contain a line like:
/ dev/ dals2h / hone ufs rw 0 0

e Unmount the /newhome directory and mount it as /home:

unount / newhorne
nmount / horre

Recovering from disk data errors

Modern hard disks are a miracle in evolution. Today you can buy a 200 GB hard disk for
under $200, and it will fit in your shirt pocket. Thirty years ago, a typical disk drive was
the size of a washing machine and stored 20 MB. You would need 10,000 of them to
store 200 GB.

disks.mm,v v4.17 (2003/04/02 06:44:17)

219 Chapter 11: Disks

At the same time, reliability has gone up, but disks are still relatively unreliable devices.
You can achieve maximum reliability by keeping them cool, but sooner or later you are
going to run into some kind of problem. One kind is due to surface irregularities: the disk
can’t read a specific part of the surface.

Modern disks make provisions for recovering from such errors by allocating an alternate
sector for the data. IDE drives do this automatically, but with SCSI drives you have the
option of enabling or disabling reallocation. Usually reallocation is enabled when you
buy the disk, but occasionally it is not. When installing a new disk, you should check that
the parameters ARRE (Auto Read Reallocation Enable) and AWRE (Auto Write
Reallocation Enable) are turned on. For example, to check and set the values for disk
/dev/dal, you would enter:

cantontrol nodepage dal -m1 -e

This command will start up your favourite editor (either the one specified in the EDl TCR
environment variable, or vi by default) with the following data:

AWRE (Auto Wite Reallocation Enbld): O
ARRE (Auto Read Real location Enbld): O
TB (Transfer Block): 1

EER (Enabl e Early Recovery): O

PER (Post Eror): 1

DIE (D sable Transfer on Error): O

DCR (D sabl e Correction): O

Read Retry Gount: 41

Wite Retry Gount: 24

The values for AWRE and ARRE should both be 1. If they aren’t, as in this case, where
AWRE is 0, change the data with the editor, write it back, and exit. camcontrol writes the
data back to the disk and enables the option.

Note the last two lines in this example. They give the number of actual retries that this
drive has performed. You can reset these values too if you want; they will be updated if
the drive performs any additional retries.

disks.mm,v v4.17 (2003/04/02 06:44:17)

In this chapter:

* Vinum objects

e Creating Vinum
drives

e Starting Vinum

* Configuring Vinum

* Vinum configuration
database

Installing FreeBSD
on Vinum

* Recovering from
drive failures

* Migrating Vinum to a
new machine

* Things you shouldn’t
do with Vinum

The Vinum Volume
Manager

Vinum is a Volume Manager, a virtual disk driver that addresses these three issues:
* Disks can be too small.

* Disks can be too slow.

* Disks can be too unreliable.

From a user viewpoint, Vinum looks almost exactly the same as a disk, but in addition to
the disks there is a maintenance program.

Vinum objects

Vinum implements a four-level hierarchy of objects:

* The most visible object is the virtual disk, called a volume. Volumes have essentially
the same properties as a UNIX disk drive, though there are some minor differences.
They have no size limitations.

* Volumes are composed of plexes, each of which represents the total address space of
a volume. This level in the hierarchy thus provides redundancy. Think of plexes as
individual disks in a mirrored array, each containing the same data.

* Vinum exists within the UNIX disk storage framework, so it would be possible to use
UNIX partitions as the building block for multi-disk plexes, but in fact this turns out

vinum.mm,v v4.19 (2003/04/09 19:56:42) 221

222 Chapter 12: The Vinum Volume Manager

to be too inflexible: UNIX disks can have only a limited number of partitions.
Instead, Vinum subdivides a single UNIX partition (the drive) into contiguous areas
called subdisks, which it uses as building blocks for plexes.

* Subdisks reside on Vinum drives, currently UNIX partitions. Vinum drives can
contain any number of subdisks. With the exception of a small area at the beginning
of the drive, which is used for storing configuration and state information, the entire
drive is available for data storage.

Plexes can include multiple subdisks spread over all drives in the Vinum configuration, so
the size of an individual drive does not limit the size of a plex, and thus of a volume.

Mapping disk space to plexes

The way the data is shared across the drives has a strong influence on performance. It’s
convenient to think of the disk storage as a large number of data sectors that are
addressable by number, rather like the pages in a book. The most obvious method is to
divide the virtual disk into groups of consecutive sectors the size of the individual
physical disks and store them in this manner, rather like the way a large encyclopaedia is
divided into a number of volumes. This method is called concatenation, and sometimes
JBOD (Just a Bunch Of Disks). It works well when the access to the virtual disk is
spread evenly about its address space. When access is concentrated on a smaller area, the
improvement is less marked. Figure 12-1 illustrates the sequence in which storage units
are allocated in a concatenated organization.

Disk 1 Disk 2 Disk 3 Disk 4

10 12
11 13
14
15
16
17

O 0 N O

g~ W N~ O

Figure 12-1: Concatenated organization

An alternative mapping is to divide the address space into smaller, equal-sized
components, called stripes, and store them sequentially on different devices. For
example, the first stripe of 292 kB may be stored on the first disk, the next stripe on the
next disk and so on. After filling the last disk, the process repeats until the disks are full.
This mapping is called striping or RAID-0,' though the latter term is somewhat
misleading: it provides no redundancy. Striping requires somewhat more effort to locate
the data, and it can cause additional 1/0O load where a transfer is spread over multiple
disks, but it can also provide a more constant load across the disks. Figure 12-2

1. RAID stands for Redundant Array of | nexpensive Disks and offers various forms of fault tolerance.
vinum.mm,v v4.19 (2003/04/09 19:56:42)

Vinum objects 223

illustrates the sequence in which storage units are allocated in a striped organization.

Disk 1 Disk 2 Disk 3 Disk 4
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 19
20 21 22 23

Figure 12-2: Striped organization

Data integrity

Vinum offers two forms of redundant data storage aimed at surviving hardware failure:
mirroring, also known as RAID level 1, and parity, also known as RAID levels 2 to 5.

Mirroring maintains two or more copies of the data on different physical hardware. Any
write to the volume writes to both locations; a read can be satisfied from either, so if one
drive fails, the data is still available on the other drive. It has two problems:

e The price. It requires twice as much disk storage as a non-redundant solution.

* The performance impact. Writes must be performed to both drives, so they take up
twice the bandwidth of a non-mirrored volume. Reads do not suffer from a
performance penalty: you only need to read from one of the disks, so in some cases,
they can even be faster.

The most interesting of the parity solutions is RAID level 5, usually called RAID-5. The
disk layout is similar to striped organization, except that one block in each stripe contains
the parity of the remaining blocks. The location of the parity block changes from one
stripe to the next to balance the load on the drives. If any one drive fails, the driver can
reconstruct the data with the help of the parity information. If one drive fails, the array
continues to operate in degraded mode: a read from one of the remaining accessible
drives continues normally, but a read request from the failed drive is satisfied by
recalculating the contents from all the remaining drives. Writes simply ignore the dead
drive. When the drive is replaced, Vinum recalculates the contents and writes them back
to the new drive.

In the following figure, the numbers in the data blocks indicate the relative block
numbers.

vinum.mm,v v4.19 (2003/04/09 19:56:42)

224 Chapter 12: The Vinum Volume Manager
Disk 1 Disk 2 Disk 3 Disk 4
0 1 2 Parity
3 4 Parity 5
6 Parity 7 8
Parity 9 10 11
12 13 14 Parity
15 16 Parity 17

Figure 12-3: RAID-5 organization

Compared to mirroring, RAID-5 has the advantage of requiring significantly less storage
space. Read access is similar to that of striped organizations, but write access is
significantly slower, approximately 25% of the read performance.

Vinum also offers RAID-4, a simpler variant of RAID-5 which stores all the parity blocks
on one disk. This makes the parity disk a bottleneck when writing. RAID-4 offers no
advantages over RAID-5, so it’s effectively useless.

Which plex organization?

Each plex organization has its unique advantages:

Concatenated plexes are the most flexible: they can contain any number of subdisks,
and the subdisks may be of different length. The plex may be extended by adding
additional subdisks. They require less CPU time than striped or RAID-5 plexes,
though the difference in CPU overhead from striped plexes is not measurable. They
are the only kind of plex that can be extended in size without loss of data.

The greatest advantage of striped (RAID-0) plexes is that they reduce hot spots: by
choosing an optimum sized stripe (between 256 and 512 kB), you can even out the
load on the component drives. The disadvantage of this approach is the restriction on
subdisks, which must be all the same size. Extending a striped plex by adding new
subdisks is so complicated that Vinum currently does not implement it. A striped
plex must have at least two subdisks: otherwise it is indistinguishable from a
concatenated plex. In addition, there’s an interaction between the geometry of UFS
and Vinum that makes it advisable not to have a stripe size that is a power of 2: that’s
the background for the mention of a 292 kB stripe size in the example above.

RAID-5 plexes are effectively an extension of striped plexes. Compared to striped
plexes, they offer the advantage of fault tolerance, but the disadvantages of somewhat
higher storage cost and significantly worse write performance. Like striped plexes,
RAID-5 plexes must have equal-sized subdisks and cannot currently be extended.
Vinum enforces a minimum of three subdisks for a RAID-5 plex: any smaller number
would not make any sense.

vinum.mm,v v4.19 (2003/04/09 19:56:42)

Vinum objects 225

e Vinum also offers RAID-4, although this organization has some disadvantages and no
advantages when compared to RAID-5. The only reason for including this feature
was that it was a trivial addition: it required only two lines of code.

The following table summarizes the advantages and disadvantages of each plex
organization.

Table 12-1: Vinum plex organizations

Minimum | Can Must be
Plex type subdisks add equal Application
subdisks | size

concatenated | 1 yes no Large data storage with maximum
placement flexibility and moderate
performance.

striped 2 no yes High performance in combination
with highly concurrent access.

RAID-5 3 no yes Highly reliable storage, primarily
read access.

Creating Vinum drives

Before you can do anything with Vinum, you need to reserve disk space for it. Vinum
drive objects are in fact a special kind of disk partition, of type vinum. We’ve seen how to
create disk partitions on page 215. If in that example we had wanted to create a Vinum
volume instead of a UFS partition, we would have created it like this:

8 partitions:
size offset fstype [fsize bsize bps/cpg]
0 0

c: 6295133 0 unused # (Ol . 0 - 10302)
b: 1048576 0 swap 0 0 # (Ql. 0 - 10302)
h: 5246557 1048576 Vi num 0 0 # (Ol 0 - 10302)

Starting Vinum

Vinum comes with the base system as a kid. It gets loaded automatically when you run
the vinum command. It’s possible to build a special kernel that includes Vinum, but this
is not recommended: in this case, you will not be able to stop Vinum.

vinum.mm,v v4.19 (2003/04/09 19:56:42)

226 Chapter 12: The Vinum Volume Manager

FreeBSD Release 5 includes a new method of starting Vinum. Put the following lines in
/boot/loader.conf:

vi num | oad="YES"
vi num aut ost art =" YES'

The first line instructs the loader to load the Vinum kld, and the second tells it to start
Vinum during the device probes. Vinum still supports the older method of setting the
variable st art _vi numin /etc/rc.conf, but this method may go away soon.

Configuring Vinum

Vinum maintains a configuration database that describes the objects known to an
individual system. You create the configuration database from one or more configuration
files with the aid of the vinum utility program. Vinum stores a copy of its configuration
database on each Vinum drive. This database is updated on each state change, so that a
restart accurately restores the state of each Vinum object.

The configuration file

The configuration file describes individual Vinum objects. To define a simple volume,
you might create a file called, say, configl, containing the following definitions:

drive a devi ce /dev/dals2h
vol une nyvol
pl ex org concat
sd length 512mdrive a

This file describes four Vinum objects:

* The drive line describes a disk partition (drive) and its location relative to the
underlying hardware. It is given the symbolic name a. This separation of the
symbolic names from the device names allows disks to be moved from one location
to another without confusion.

* The vol une line describes a volume. The only required attribute is the name, in this
case nyvol .

* The pl ex line defines a plex. The only required parameter is the organization, in this
case concat . No name is necessary: the system automatically generates a name from
the volume name by adding the suffix . px, where x is the number of the plex in the
volume. Thus this plex will be called myvol.p0.

* The sd line describes a subdisk. The minimum specifications are the name of a drive
on which to store it, and the length of the subdisk. As with plexes, no name is
necessary: the system automatically assigns names derived from the plex name by
adding the suffix . sx, where x is the number of the subdisk in the plex. Thus Vinum
gives this subdisk the name myvol.p0.s0

vinum.mm,v v4.19 (2003/04/09 19:56:42)

Configuring Vinum

227

After processing this file, vinum(8) produces the following output:

vinum-> create configl

1 drives:

Da State: up
1 vol unes:

V nyvol Sate: up
1 pl exes:

P nyvol . p0 C Sate: up
1 subdi sks:

S nyvol . p0. sO Sate: up

This output shows the brief listing format of vinum.

Figure 12-4.

/ dev/ dals2h

P exes:

Subdi sks:

D a

s ——

Subdisk

nyvol . p0. sO

Plex 1
nyvol . p0

A 3582/ 4094 MB (87%

1 S ze: 512 MB
1 S ze: 512 MB
S ze: 512 MB

It is represented graphically in

0MB

volume
address

space

512 MB

e

Figure 12-4: A smple Vinum volume

This figure, and the ones that follow, represent a volume, which contains the plexes,
which in turn contain the subdisks. In this trivial example, the volume contains one plex,

and the plex contains one subdisk.

Creating a file system

You create a file system on this volume in the same way as you would for a conventional

disk:

newfs -U /dev/vi nuni nyvol

/ dev/ vi numi nyvol : 512. OMB (1048576 sectors) bl ock size 16384, fragnent size 2048
using 4 cylinder groups of 128.02MB, 8193 bl ks, 16512 i nodes.
super - bl ock backups (for fsck -b #) at:

32, 262208, 524384, 786560

vinum.mm,v v4.19 (2003/04/09 19:56:42)

228 Chapter 12: The Vinum Volume Manager

This particular volume has no specific advantage over a conventional disk partition. It
contains a single plex, so it is not redundant. The plex contains a single subdisk, so there
is no difference in storage allocation from a conventional disk partition. The following
sections illustrate various more interesting configuration methods.

Increased resilience: mirroring

The resilience of a volume can be increased either by mirroring or by using RAID-5
plexes. When laying out a mirrored volume, it is important to ensure that the subdisks of
each plex are on different drives, so that a drive failure will not take down both plexes.
The following configuration mirrors a volume:

drive b device /dev/da2s2h
vol une mrror
pl ex org concat
sd length 512mdrive a
pl ex org concat
sd length 512mdrive b

In this example, it was not necessary to specify a definition of drive a again, because
Vinum keeps track of all objects in its configuration database. After processing this
definition, the configuration looks like:

2 drives:

Da State: up / dev/ dals2h A 3070/ 4094 MB (74%
Db State: up / dev/ da2s2h A 3582/4094 MB (87%
2 vol unes:

V nyvol Sate: up M exes: 1 Sze: 512 MB
V mrror Sate: up A exes: 2 Sze: 512 MB
3 pl exes:

P nyval . p0 C Sate: up Subdi sks: 1 Sze: 512 MB
P mrror.p0 C Sate: up Subdi sks: 1 Sze: 512 MB
Pmrror.pl C Sate: initializing Subdisks: 1 Sze: 512 MB
3 subdi sks:

S nyvol . p0. sO Sate: up D a S ze: 512 MB
S mrror. p0.s0 Sate: up D a S ze: 512 MB
Snmrror.pl.sO State: enpty Db S ze: 512 MB

Figure 12-5 shows the structure graphically.

In this example, each plex contains the full 512 MB of address space. As in the previous
example, each plex contains only a single subdisk.

Note the state of mirror.pl and mirror.pl.s0: i nitializing and enpty respectively.
There’s a problem when you create two identical plexes: to ensure that they’re identical,
you need to copy the entire contents of one plex to the other. This process is called
reviving, and you perform it with the start command:

vinum-> start mrror.pl

vinunj 278]: reviving mrror. pl.sO
Reviving nirror.pl.sO in the background
vinum-> vinunf278]: mrror.pl.sO is up

vinum.mm,v v4.19 (2003/04/09 19:56:42)

Configuring Vinum 229

e ———

0MB
Subdisk 1 volume Subdisk 2
address
mrror.po0.s0 space mrror.pl.sO
512 MB
Plex 1 Plex 2
mrror. p0 mrror.pl

e

Figure 12-5: A mirrored Vinum volume

During the start process, you can look at the status to see how far the revive has
progressed:

vinum-> list mrror.pl. sO
Snirror. pl.sO State: R43% D b S ze: 512 MB

Reviving a large volume can take a very long time. When you first create a volume, the
contents are not defined. Does it really matter if the contents of each plex are different?
If you will only ever read what you have first written, you don’t need to worry too much.
In this case, you can use the set upst at e keyword in the configuration file. We’ll see an
example of this below.

Adding plexes to an existing volume

At some time after creating a volume, you may decide to add additional plexes. For
example, you may want to add a plex to the volume myvol we saw above, putting its
subdisk on drive b. The configuration file for this extension would look like:

pl ex nane nyvol . pl org concat vol une nyvol
sd size 1g drive b

To see what has happened, use the recursive listing option - r for the list command:

vinum-> 1 -r nyvol

V nyvol Sate: up M exes: 2 Sze: 1024 MB
P nyvol . p0 C Sate: up Subdi sks: 1 Sze: 512 MB
P nyvol . pl1 C Sate: initializing Subdisks: 1 S ze: 1024 MB
S nyvol . p0. sO Sate: up D a S ze: 512 MB
S nyvol . pl. sO State: enpty D b S ze: 1024 MB

vinum.mm,v v4.19 (2003/04/09 19:56:42)

230 Chapter 12: The Vinum Volume Manager

The command | is a synonym for list, and the - r option means recursive: it displays all
subordinate objects. In this example, plex myvol.plis 1 GB in size, although myvol.p0 is
only 512 MB in size. This discrepancy is allowed, though it isn’t very useful by itself:
only the first half of the volume is protected against failures. As we’ll see in the next
section, though, this is a useful stepping stone to extending the size of a file system.

Note that you can’t use the set upst at e keyword here. Vinum can’t know whether the
existing volume contains valid data or not, so you must use the start command to
synchronize the plexes.

Adding subdisks to existing plexes

After adding a second plex to myvol, it had one plex with 512 MB and another with 1024
MB. It makes sense to have the same size plexes, so the first thing we should do is add a
second subdisk to the plex myvol.pO.

If you add subdisks to striped, RAID-4 or RAID-5 plexes, you will change the mapping
of the data to the disks, which effectively destroys the contents. As a result, you must use
the -f option. When you add subdisks to concatenated plexes, the data in the existing
subdisks remains unchanged. In our case, the plex is concatenated, so we create and add
the subdisk like this:

sd name nyvol . p0. sl pl ex nyvol . pO size 512mdrive ¢

After adding this subdisk, the volume looks like this:

e ——

0MB
nyvol . p0. sO volume
address nyvol . pl. sO
nyvol . p0. s1 Space
1024 MB
Plex 1 Plex 2
nyvol . p0 nyvol . pl

e ——

Figure 12-6: An extended Vinum volume

vinum.mm,v v4.19 (2003/04/09 19:56:42)

Configuring Vinum 231

It doesn’t look too happy, however:

vinum-> 1 -r nyvol

V nyvol State: up P exes: 2 S ze: 1024 MB
P nyvol . p0 C Sate: corrupt Subdi sks: 2 Sze: 1024 MB
P nyvol . p1 C Sate: initializing Subdisks: 1 Sze: 1024 MB
S nyvol . p0. sO Sate: up D a S ze: 512 MB
S nyvol . p0. s1 Sate: enpty D c S ze: 512 MB
S nyvol . pl. sO State: stale D b S ze: 1024 MB

In fact, it’s in as good a shape as it ever has been. The first half of myvol still contains the
file system that we put on it, and it’s as accessible as ever. The trouble here is that there
is nothing in the other two subdisks, which are shown shaded in the figure. Vinum can’t
know that that is acceptable, but we do. In this case, we use some maintenance
commands to set the correct object states:

vinum-> setstate up nyvol . p0.s1 nyvol . p0
vinum->1 -r nyvol

V nyvol Sate: up A exes: 2 Sze: 1024 MB
P nyvol . p0 C Sate: up Subdi sks: 2 Sze: 1024 MB
P nyvol . pl1 C Sate: faulty Subdi sks: 1 Sze: 1024 MB
S nyvol . p0. sO Sate: up D a S ze: 512 MB
S nyvol . p0. s1 Sate: up D c S ze: 512 MB
S nyvol . pl. sO Sate: stale Db S ze: 1024 MB

vi num - > saveconfig

The command setstate changes the state of individual objects without updating those of
related objects. For example, you can use it to change the state of a plex to up even if all
the subdisks are down. If used incorrectly, it can can cause severe data corruption.
Unlike normal commands, it doesn’t save the configuration changes, so you use
saveconfig for that, after you’re sure you have the correct states. Read the man page
before using them for any other purpose.

Next you start the second plex:

vinum-> start nyvol . pl

Revi vi ng nyvol . p1.s0 in the background

vi nunj 446] : reviving nyvol . pl.s0

vi num -> vinunj446]: nyvol .pl.s0 is up some time later

I command for previous prompt

3 drives:

Da Sate: up / dev/ dals2h A 3582/4094 MB (87%
Db State: up / dev/ da2s2h A 3070/4094 MB (74%
Dc State: up / dev/ da3s2h A 3582/4094 MB (87%
1 vol unes:

V nyvol State: up M exes: 2 S ze: 1024 MB
2 pl exes:

P nyvol . p0 C Sate: up Subdi sks: 2 S ze: 1024 MB
P nyvol . p1 C Sate: up Subdi sks: 1 S ze: 1024 MB
3 subdi sks:

S nyvol . p0. sO Sate: up D a S ze: 512 MB
S nyvol . pl. sO Sate: up Db S ze: 1024 MB
S nyvol . p0. sl State: up D c S ze: 512 MB

vinum.mm,v v4.19 (2003/04/09 19:56:42)

232 Chapter 12: The Vinum Volume Manager

The message telling you that myvol.pl.s0 is up comes after the prompt, so the next
command doesn’t have a prompt. At this point you have a fully mirrored, functional
volume, 1 GB in size. If you now look at the contents, though, you see:

df /mt
Fi | esystem 1048576- bl ocks Wsed Avail Capacity Munted on
/ dev/ vi nuri nyvol 503 1 461 0% /mt

The volume is now 1 GB in size, but the file system on the volume is still only 512 MB.
To expand it, use growfs:

unount /mt
growfs /dev/ vi nu nyvol
V¢ strongly recommend you to make a backup before growi ng the Fil esystem

D d you backup your data (Yes/No) ? Yes

new file systensize is: 524288 frags
Wrni ng: 261920 sector(s) cannot be al | ocat ed.

growfs: 896. 1MB (1835232 sectors) block size 16384, fragment size 2048

using 7 cylinder groups of 128.02MB, 8193 bl ks, 16512 i nodes.

super - bl ock backups (for fsck -b #) at:

1048736, 1310912, 1573088

mount /dev/ vi nuni nyvol /mt

df /mt
Fi | esystem 1048576- bl ocks Wsed Avail Capacity Munted on
/ dev/ vi nuni nyvol 881 1 809 0% /mt

Optimizing performance

The mirrored volumes in the previous example are more resistant to failure than
unmirrored volumes, but their performance is less: each write to the volume requires a
write to both drives, using up a greater proportion of the total disk bandwidth.
Performance considerations demand a different approach: instead of mirroring, the data is
striped across as many disk drives as possible. The following configuration shows a
volume with a plex striped across four disk drives:

drive c device /dev/da3s2h
drive d device /dev/ dads2h
vol une stripe
plex org striped 480k
sd length 128mdrive a
sd length 128mdrive b
sd length 128mdrive ¢
sd length 128mdrive d

When creating striped plexes for the UFS file system, ensure that the stripe size is a
multiple of the file system block size (normally 16 kB), but not a power of 2. UFS
frequently allocates cylinder groups with lengths that are a power of 2, and if you allocate
stripes that are also a power of 2, you may end up with all inodes on the same drive,
which would significantly impact performance under some circumstances. Files are
allocated in blocks, so having a stripe size that is not a multiple of the block size can
cause significant fragmentation of 1/O requests and consequent drop in performance. See
the man page for more details.

vinum.mm,v v4.19 (2003/04/09 19:56:42)

Configuring Vinum

233

Vinum requires that a striped plex have an integral number of stripes. You don’t have to
calculate the size exactly, though: if the size of the plex is not a multiple of the stripe size,
Vinum trims off the remaining partial stripe and prints a console message:

vinum renoving 256 bl ocks of partial stripe at the end of stripe.p0

As before, it is not necessary to define the drives that are already known to Vinum. After
processing this definition, the configuration looks like:

V stripe

5 pl exes:

P nyvol . p0
P mrror.p0
Pnirror.pl
P nyvol . pl1
P stripe. p0

8 subdi sks:

S nyvol . p0. sO
S mrror. p0.s0
Snmrror.pl.sO
S nyvol . pl. sO
S nyvol . p0. sl
S stri pe. p0. sO
S stripe. p0.sl
S stripe. p0. s2
S stripe. p0. s3

Sate:
Sate:
Sate:
Sate:

Sate:
Sate:
Sate:

C Sate:
C Sate:
C Sate:
C Sate:
S Sate:

Sate:
Sate:
Sate:
State:
Sate:
Sate:
State:
Sate:
Sate:

up
up
initializ
up
up

/ dev/ dals2h
/ dev/ da2s2h
/ dev/ da3s2h
/ dev/ dads2h

P exes:
Pl exes:
A exes:

Subdi sks:
Subdi sks:
i ng Subdi sks:
Subdi sks:
Subdi sks:

[viviviviviviwiwlv)
QCOTYLDOTTOO®

AR R

A 2942/ 4094 MB (71%
A 2430/ 4094 MB (59%
A 3966/ 4094 MB (96%)
A 3966/ 4094 MB (96%)
S ze 1024 MB
S ze 512 MB
S ze 511 MB
S ze 512 MB
S ze 512 MB
1 S ze: 512
S ze: 1024 MB
S ze: 511 MB
S ze: 512 MB
S ze: 512 MB
S ze: 512 MB
S ze: 1024 MB
S ze: 512 MB
S ze: 127 MB
S ze: 127 MB
S ze: 127 MB
S ze: 127 MB

This volume is represented in Figure 12-7. The darkness of the stripes indicates the

position within the plex address space: the lightest stripes come first, the darkest last.

Resilience and performance

With sufficient hardware, it is possible to build volumes that show both increased
resilience and increased performance compared to standard UNIX partitions. Mirrored
disks will always give better performance than RAID-5, so a typical configuration file

might be:

drive e device
drive f device
drive g device

drive h device
drive i device
drive j device

/ dev/ da5s2h
/ dev/ da6s2h
/ dev/ da7s2h
/ dev/ da8s2h
/ dev/ da9s2h
/ dev/ dal0s2h

vol une rai d10 setupstate

plex org stri

ped 480k

sd | ength 102480k drive a
sd I ength 102480k drive b

vinum.mm,v v4.19 (2003/04/09 19:56:42)

234

Chapter 12: The Vinum Volume Manager

|

Figure 12-7: A striped Vinum volume

sd | ength 102480k drive ¢
sd length 102480k drive d
sd | ength 102480k drive e
pl ex org striped 480k
sd |l ength 102480k drive f
sd | ength 102480k drive g
sd I ength 102480k drive h
sd | ength 102480k drive
sd | ength 102480k drive j

e —
L 1
e o e —
I {
e —
I {
stripe. p0. s3

Plex 1

In this example, we have added another five disks for the second plex, so the volume is
spread over ten spindles. We have also used the setupstate keyword so that all

components come up. The volume looks like this:

vinum-> 1 -r raidl0

V rai d10 State: up P exes:

P rai d10. p0o S Sate: up Subdi sks:
P rai d10. p1 S Sate: up Subdi sks:
S rai d10. p0. sO State: up D a

S rai d10. p0. s1 Sate: up Db

S rai d10. p0. s2 State: up D c

S rai d10. p0. s3 State: up D d

S rai d10. p0. s4 Sate: up D e

S rai d10. p1. sO State: up D f

S rai d10. pl1. sl Sate: up D g

S rai d10. pl. s2 Sate: up D h

S rai d10. pl. s3 State: up D i

S rai d10. pl. s4 Sate: up D j

2 Sze: 499 MB
5 S ze: 499 MB
5 S ze: 499 MB
S ze: 99 MB
S ze: 99 MB
S ze: 99 MB
S ze: 99 MB
S ze: 99 MB
S ze: 99 MB
S ze: 99 MB
S ze: 99 MB
S ze: 99 MB
S ze: 99 MB

This assumes the availability of ten disks. It’s not essential to have all the components on
different disks. You could put the subdisks of the second plex on the same drives as the
subdisks of the first plex. If you do so, you should put corresponding subdisks on

different drives:

vinum.mm,v v4.19 (2003/04/09 19:56:42)

Configuring Vinum

235

pl ex org striped 480k

sd | ength 102480k drive
sd | ength 102480k drive
sd | ength 102480k drive
sd | ength 102480k drive
sd | ength 102480k drive

pl ex org striped 480k

sd | ength 102480k drive
sd | ength 102480k drive
sd | ength 102480k drive
sd | ength 102480k drive
sd | ength 102480k drive

DO TQ

TO D0

The subdisks of the second plex are offset by two drives from those of the first plex: this
helps ensure that the failure of a drive does not cause the same part of both plexes to

become unreachable, which would destroy the file system.

Figure 12-8 represents the structure of this volume.

. p0.sO

.p0.s1

.p0.s2

. p0.s3

. p0. s4

—

Plex 1

rai d10. po

.pl.sl

.pl.s2

.pl.s3

.pl.s4

I

.pl.sO

Plex 2

rai d10. p1

_ T

Figure 12-8: A mirrored, striped Vinum volume

Vinum configuration database

Vinum stores configuration information on each drive in essentially the same form as in
the configuration files. You can display it with the dumpconfig command. When reading
from the configuration database, Vinum recognizes a number of keywords that are not
allowed in the configuration files, because they would compromise data integrity. For
example, after adding the second plex to myvol, the disk configuration would contain the

following text:

vinum.mm,v v4.19 (2003/04/09 19:56:42)

236 Chapter 12: The Vinum Volume Manager

vi num - > dunpconfig
Drive a Devi ce / dev/ dals2h
CGreated on bunbl e. exanpl e.org at Tue Nov 26 14:35:12 2002
Gonfig |ast updated Tue Nov 26 16:12: 35 2002
S ze: 4293563904 bytes (4094 MB)
vol une nyvol state up
pl ex nane nyvol .p0 state up org concat vol nyvol
pl ex nane nyvol .pl state up org concat vol nyvol
sd name nyvol . p0.sO drive a plex nyvol.p0 | en 1048576s driveof fset 265s state up ple
xof f set Os
sd narme nyvol . p1.sO drive b plex nyvol.pl | en 2097152s driveof fset 265s state up ple
xof fset Os
sd nane nyvol . p0.s1 drive c plex nyvol.pO | en 1048576s driveof fset 265s state up ple
xof f set 1048576s

Drive /dev/dals2h: 4094 MB (4293563904 byt es)

Drive b: Devi ce /dev/ da2s2h
Qreated on bunbl e. exanpl e.org at Tue Nov 26 14: 35: 27 2002
Gonfig | ast updated Tue Nov 26 16:12: 35 2002
S ze: 4293563904 bytes (4094 MB)
vol une nyvol state up
pl ex nane nyvol . p0 state up org concat vol nyvol
pl ex nane nyvol .pl state up org concat vol nyvol
sd nanme nyvol . p0.s0 drive a plex nyvol.p0 | en 1048576s driveof fset 265s state up ple
xof fset Os
sd narme nyvol . p1.sO drive b plex nyvol.pl | en 2097152s driveof fset 265s state up ple
xof f set Os
sd name nyvol . p0.sl drive c plex nyvol.p0 | en 1048576s driveof fset 265s state up ple
xof f set 1048576s

The obvious differences here are the presence of explicit location information and naming
(both of which are also allowed, but discouraged, for use by the user) and the information
on the states (which are not available to the user). Vinum does not store information
about drives in the configuration information: it finds the drives by scanning the
configured disk drives for partitions with a Vinum label. This enables Vinum to identify
drives correctly even if they have been assigned different UNIX drive IDs.

When you start Vinum with the vinum start command, Vinum reads the configuration
database from one of the Vinum drives. Under normal circumstances, each drive contains
an identical copy of the configuration database, so it does not matter which drive is read.
After a crash, however, Vinum must determine which drive was updated most recently
and read the configuration from this drive. It then updates the configuration, if necessary,
from progressively older drives.

Installing FreeBSD on Vinum

Installing FreeBSD on Vinum is complicated by the fact that sysinstall and the loader
don’t support Vinum, so it is not possible to install directly on a Vinum volume. Instead,
you need to install a conventional system and then convert it to Vinum. That’s not as
difficult as it might sound.

vinum.mm,v v4.19 (2003/04/09 19:56:42)

Installing FreeBSD on Vinum 237

A typical disk installation lays out disk partitions in the following manner:

daOs3a: / file system
da0s3b: swap

daOs3e: /usr file system da0s3c: entire disk

da0s3f: /var file system

Figure 12-9: Typical partition layout without Vinum

This layout shows three file system partitions and a swap partition, which is not the
layout recommended on page 68. We’ll look at the reasons for this below.

Each partition corresponds logically to a Vinum subdisk. You could enclose all these
subdisks in a Vinum drive. The only problem is that Vinum stores its configuration
information at the beginning of the drive, and that’s where the root file system is. One
way to solve this problem is to put the swap partition first and make it 265 sectors longer
than needed. You can do this from sysinstall simply by creating the swap partition
before any other partition. Consider installing FreeBSD on a 4 GB drive. Create, in
sequence, a swap partition of 256 MB, a root file system of 256 MB, a /usr file system of
2 GB, and a /var file system to take up the rest. It’s important to create the swap
partition at the beginning of the disk, so you create that first. After installation, the output
of disklabel looks like this:

8 partitions:

size of fset fstype [fsize bsize bps/cpg]
a 524288 532480 4. 2BSD 2048 16384 94 # (gl 871*- 1729*)
b: 532215 265 swap # (Ol . 0*- 871*)
c: 8386733 0 unused 0 0 # (Ql. 0 - 13726%)
e: 4194304 1056768 4. 2BSD 2048 16384 89 # (CQyl. 1729*- 8594*)
f: 3135661 5251072 4. 2BSD 2048 16384 89 # (CQyl. 8594*- 13726%)

To convert to Vinum, use disklabel with the - e (edit label) option to create a volume of
type vinum that maps the c partition:

h: 8386733 0 Vi num # (Ql. 0 - 13726%)

vinum.mm,v v4.19 (2003/04/09 19:56:42)

238 Chapter 12: The Vinum Volume Manager

After this, you have the following situation:

da0s3b: swap

da0s3a: / file system

daOs3e: /usr file system da0s3c: entire disk da0s3h: vinumdrive

da0s3f: /var file system

Figure 12-10: Partition layout with Vinum

The shaded area at the top of the Vinum partition represents the configuration
information, which cuts into the swap partition. To fix that, we redefine the swap
partition to start after the Vinum configuration information and to be 265 sectors shorter.
The file systems are relatively trivial to recreate: take the size and offset values from the
disklabel output above and use them in a Vinum configuration file:

drive rootdev device /dev/daOs2h
vol umre swap
pl ex org concat

b: 532215 265 swap
sd | en 532215s driveof fset 265s drive rootdev
vol une root
pl ex org concat
a 524288 532480 4. 2BSD 2048 16384 94
sd | en 524288s driveof fset 532480s dri ve root dev
vol une usr
pl ex org concat
e: 4194304 1056768 4, 2BSD 2048 16384 89
sd | en 4194304s driveof fset 1056768s drive root dev
vol une var
pl ex org concat
f: 3135661 5251072 4. 2BSD 2048 16384 89

sd | en 3135661s driveof fset 5251072s drive rootdev

The comments are the corresponding lines from the disklabel output. They show the
corresponding values for size and offset. Run vinum create against this file, and confirm
that you have the volumes /, /usr and /var.

Next, ensure that you are set up to start Vinum with the new method. You should have
the following lines in /boot/loader.conf :

vi num | oad="YES'
vi num aut ost art =" YES'

Then reboot to single-user mode, start Vinum and run fsck against the volumes, using the

- n option to tell fsck not to correct any errors it finds. You should see something like
this:

vinum.mm,v v4.19 (2003/04/09 19:56:42)

Installing FreeBSD on Vinum

239

fsck -n -t ufs /dev/vi num usr
/dev/ vi numiusr (NO WR TE)
Last Mounted on /usr

* %k
* %
* %
* %k
* %
* %
* %k

Phase 1 -
Phase 2 -
Phase 3 -
Phase 4 -
Phase 5 -

35323 files,

Check Bl ocks and S zes
Check Pat hnanes

Check Connectivity
Check Reference Counts
Check Gyl groups

314115 used, 718036 free (4132 frags, 89238 bl ocks, 0.4%fragmentati on)

If there are any errors, they will probably be because you have miscalculated size or
offset. You’ll see something like this:

fsck -n -t ufs /dev/vi nun usr
** [dev/vi numfusr (NOWR TE)
Cannot find file system superbl ock

/ dev/ vi nund usr :

CANNOT Fl GURE QJT FI LE SYSTEM PARTI TI ON

You need to do this in single-user mode because the volumes are shadowing file systems,
and it’s normal for open file systems to fail fsck, since some of the state is in buffer cache.

If all is well, remount the root file system read-write:

nount -u /

Then edit /etc/fstab to point to the new devices. For this example, /etc/fstab might
initially contain:

$ld: fstab,v 1.3 2002/11/14 06: 48:16 grog Exp $
Devi ce

/ dev/ da0Os4a
/ dev/ daOs4b
/ dev/ daOs4e
/ dev/ daOs4f

Change it to reflect the Vinum volumes:

$ld: fstab,v 1.3 2002/ 11/ 14 06: 48: 16 grog Exp

Mount poi nt
/

none
[usr
[var

Devi ce Mount poi nt
/ dev/ vi nur swap none

/ dev/ vi nur r oot /

/ dev/ vi nuni usr [usr

[dev/ vi nund var [var

oti ons
rw
sw
rw
rw

$

oti ons
sw

rw

rw

rw

Dunp Pass#
1 1
0 0
1 1
1 1
Dunp Pass#
0 0
1 1
1 1
1 1

Then reboot again to mount the root file system from /dev/vinum/root. You can also
optionally remove all the UFS partitions except the root partition. The loader doesn’t
know about Vinum, so it must boot from the UFS partition.

Once you have reached this stage, you can add additional plexes to the volumes, or you
can extend the plexes (and thus the size of the file system) by adding subdisks to the
plexes, as discussed on page 229.

vinum.mm,v v4.19 (2003/04/09 19:56:42)

240 Chapter 12: The Vinum Volume Manager

Recovering from drive failures

One of the purposes of Vinum is to be able to recover from hardware problems. If you
have chosen a redundant storage configuration, the failure of a single component will not
stop the volume from working. In many cases, you can replace the components without
down time.

If a drive fails, perform the following steps:
1. Replace the physical drive.
2. Partition the new drive. Some restrictions apply:

e If you have hot-plugged the drive, it must have the same ID, the Vinum drive
must be on the same partition, and it must have the same size.

e If you have had to stop the system to replace the drive, the old drive will not be
associated with a device name, and you can put it anywhere. Create a Vinum
partition that is at least large enough to take all the subdisks in their original
positions on the drive. Vinum currently does not compact free space when
replacing a drive. An easy way to ensure this is to make the new drive at least as
large as the old drive.

If you want to have this freedom with a hot-pluggable drive, you must stop Vinum
and restart it.

3. If you have restarted Vinum, create a new drive. For example, if the replacement
drive data3 is on the physical partition /dev/da3slh, create a configuration file, say
configfile, with the single line

drive data3 device /dev/da3slh

Then enter:

vinumcreate configfile

4. Start the plexes that were down. For example, vinum list might show:

vinum-> 1| -r test

V test State: up M exes: 2 Sze: 30

P test.p0 C Sate: up Subdi sks: 1 S ze: 30 MB
P test.pl C Sate: faulty Subdisks: 1 Sze: 30 MB
S test.p0.sO Sate: up PQ 0 B Sze: 30 MB
Stest.pl.sO State: obsolete PQ 0 B Sze: MB

vinum-> start test.pl.s0O

Reviving test.pl.sO in the background

Vi num-> vinunj 295] : reviving test.pl.sO this message appears after the prompt
(some time later)

vinunj 295]: test.pl.sO is up

vinum.mm,v v4.19 (2003/04/09 19:56:42)

Recovering from drive failures 241

Failed boot disk

If you’re running your root file system on a Vinum volume, you can survive the failure of
the boot volume if it is mirrored with at least two concatenated plexes each containing
only one subdisk. Under normal circumstances, you can carry on running as if nothing
had happened, but obviously you will no longer be able to reboot from that disk. Instead,
boot from the other disk.

The root file system also has individual UFS partitions, so you have a choice of what you
mount. For example, if your root file system has UFS partitions /dev/daOs4a and
/dev/dalsda, you can mount either of these partitions or /dev/vinum/root. Never mount
more than one of them, otherwise you can cause data corruption.

An even more insidious way to corrupt the root file system is to mount /dev/daOs4a or
/dev/dalsd4a and modify it. In this case, the two partitions are no longer the same, but
there’s no way for Vinum to know that. If this happens, you must mark the other subdisk
as crashed with the vinum stop command.

Migrating Vinum to a new machine

Sometimes you might want to move a set of Vinum disks to a different FreeBSD
machine. This is simple, as long as there are no name conflicts between the objects on
the Vinum disks and any other Vinum objects you may already have on the system.
Simply connect the disks and start Vinum. You don’t need to put the disks in any
particular location, and you don’t need to run vinum create: Vinum stores the
configuration on the drives themselves, and when it starts, it locates it accordingly.

Things you shouldn’t do with Vinum

The vinum command offers a large number of subcommands intended for specific
purposes. It’s easy to abuse them. Here are some things you should not do:

* Do not use the resetconfig command unless you genuinely don’t want to see any of
your configuration again. There are other alternatives, such as rm, which removes
individual objects or groups of objects.

e Do not re-run the create command for objects that already exist. Vinum already
knows about them, and the start command should find them.

e Do not name your drives after the disk device on which they are located. The
purpose of having drive names is to be device independent. For example, if you have
two drives a and b, and they are located on devices /dev/dalslh and /dev/da2slh
respectively, you can remove the drives, swap their locations and restart Vinum.
Vinum will still correctly locate the drives. If you had called the drives dal and da2,
you would then see something confusing like this:

vinum.mm,v v4.19 (2003/04/09 19:56:42)

242 Chapter 12: The Vinum Volume Manager

2 drives:
D da2 State: up / dev/ dalslh A 3582/4094 MB (87%
D dal Sate: up / dev/ dals2h A 3582/4094 MB (87%

This is clearly not helpful.

* Don’t put more than one drive on a physical disk. Each drive contains two copies of
the Vinum configuration, and both updating the configuration and starting Vinum
slow down as a result. If you want more than one file system to occupy space on a
physical drive, create subdisks, not drives.

vinum.mm,v v4.19 (2003/04/09 19:56:42)

In this chapter:

e Creating an
1ISO-9660 image

* Burning the CD-R

e Copying CD-ROMs

Writing CD-Rs

Under FreeBSD, data on conventional hard disks is stored in the UNIX File System or
UFS format. CD-ROMs and CD-Rs use a different file system, the 1SO 9660 format,
which is compatible with other systems. This is not a problem when you mount a CD-
ROM: FreeBSD includes a read-only 1SO 9660 file system. When you want to write a
CD-R, however, things are a little more complicated: the medium requires you to write
the entire file system at once, and since the file system is stored in a different format, you
can’t just copy the UFS file system. Instead, you must first create an image of the file
system that you want to put on the CD-R, and then you copy it. We’ll look at these steps
in more detail below.

Creating an ISO-9660 image

The first step is to create the 1SO 9660 file system image, frequently simply called an 1SO
image. There are a number of ports available in the Ports Collection; here we’ll look at
mkisofs, which is part of the cdrtools port. Installation isn’t quite as straightforward as
you might expect: you need a special flag to install mkisofs:

cd /usr/ports/sysutils/cdrtool s
make install -DWI SGFS

mkisofs has a bewildering number of parameters. Here are the important ones:

e The - A option specifies the application ID, a text string written to the header of the
file system to describe the “application” on the image. It can be up to 128 characters
long.

burncd.mm,v v4.13 (2003/04/02 06:46:59) 243

Creating an ISO-9660 image 244

Use - b if you want to be able to boot from the CD, such as a FreeBSD bootable CD.
In the case of FreeBSD, use the 2.88 MB image floppies/boot.flp which is built as
part of the release process. Note that this file must be in one of the directories
included in the image, and the name is relative to the root directory of the CD.

The -f option tells mkisofs to follow symbolic links. If you don’t specify this option
and you have symbolic links in the directory from which you create the image, the
resultant CD-ROM image will contain only a symbolic link instead of the file itself.
If the file to which the symbolic link points is below the top-level (root) directory, this
is the preferred way to do things, because it saves space, but if it points outside the
CD-ROM, the file will not appear on the CD-ROM at all. Use this option if you have
symbolic links to files outside the directory that you’re using for the root of the CD-
ROM file system.

The - J option makes the CD compatible with Microsoft’s Joliet format. You don’t
need it for FreeBSD, but it doesn’t cost much, so it’s a good idea to include it if
there’s a chance the CD will be used in a Microsoft environment.

Use the - o0 option to specify the name of the resultant ISO image. This image is the
size of the resultant CD, so it could be up to 700 MB.

The - p option specifies the preparer 1D, another 1SO 9660 header field to specify
who made the CD-ROM.

The -r option specifies the Rock Ridge Extensions that are used to store UNIX file
names. It makes a number of assumptions about permissions and owners; see the
man page for details. It takes no parameters.

The - T option tells mkisofs to include a translation file TRANS.TBL in each directory
for use by systems that don’t support the Rock Ridge extensions. For each file name
in the directory, TRANS.TBL contains a Microsoft-compatible name (up to eight
characters, a period (.) and up to three more characters). The names bear a slight
resemblance to the original names.

If you don’t like the name TRANS.TBL, you can specify a different name with the
- tabl e- nane option, which implies - T. For example, if you write -t abl e- narre
. MAP you will generate names that won’t show up with a normal Is command.

The -V option specifies the volume ID for the file system. This will normally be
more specific than the application ID; for example, each CD in a set of CDs might
have the same application ID and a different volume ID.

The final parameters are the names of the directories that will be included in the
image. You can specify multiple directories. In each case, the entire directory
hierarchy will be included.

burncd.mm,v v4.13 (2003/04/02 06:46:59)

245

Chapter 13: Writing CD-Rs

This is a lot of stuff to type in every time. It’s easier to write a Makefile and use make:

APPLID = "Dummy appl i cation"
BOOT =
To nake it bootable, put in sonething like this:

Note that the -b option is there as well

BOOT = "-b fl oppies/boot. flp"
1 SO = /var/tnp/isoi mage
PREPARER = "me"

VAID = "Vol une 0000"

DR = .

cdrom

nki sofs -A ${APPLID} ${

BOOT} -J -0 ${1Sq -f \
-p ${PREPARER -1 -T -V ${VOLID} ${DR

For example, to make a bootable CD-R of the FreeBSD release, you would first perform
the make world and make release. Assuming that the release directory is /home/release,

you will

find the directory trees for the first two CD-ROMs in /home/re-

lease/R/cdrom/disc1l and /home/release/R/cdrom/disc2. You could do this:

nmake cdrom D R=/ hone/ r el ease/ R cdromni di scl

nki sof

s -A"Dummy application® -J -o ../iso -table-nane . NAP

-V "Vol une 0000" .

6. 40%done, estimate f

12. 79%done, estinmate f

19. 19%done, estinate f

25.57%done, estinate f

31.97%done, estimate f

38. 36%done, estinate finish Sun Aug 27
44. 75% done, estinmate fini

51.15%done, estimate f

57.54%done, estinmate f

63. 94%done, estinate f

70. 34%done, estinate finish Sun Aug 27
76. 72%done, estinmate finish Sun Aug 27
83.12%done, estimate finish Sun Aug 27
89. 52%done, estinate finish Sun Aug 27
95. 90%done, estinate finish Sun Aug 27

Tot al
Tot al
Tot al
Path t
Max br
78211

transl ation tabl e size: 35119
rockridge attributes bytes: 59724
directory bytes: 104448

abl e size(bytes): 256

k space used 86224

extents witten (152 M)

2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000

-p "Geg Lehey" -r -T

The progress reports are rather boring nowadays, considering that the whole process only
takes a couple of minutes, but the summary information at the bottom can be of interest.

Testing the CD-R

So now you have an 1SO image. How do you know it’s correct? It’s just a single file, and
it could have just about anything on it. You can burn a CD, of course, but if it’s junk, you
have another coaster. If you’re not sure, it’s better to look inside first. You can do that by

using it as the basis for an md vnode device.

The md driver creates a number of different kinds of pseudo-device. See the man page
md(4) for more details. We use the vnode device, a special file that refers to file system
files. Support for md is included in the GENERIC kernel, but if you’ve built a kernel

burncd.mm,v v4.13 (2003/04/02 06:46:59)

Creating an 1SO-9660 image 246

without the md driver, you can load it as a kld. If you’re not sure, try loading the kid
anyway. Then you associate a vnode device with the ISO image iso-image using the
program mdconfig:

ki dl oad md load the kld module if necessary
kldload: can’'t load md: File exists already loaded or in the kernel
mdconfig -a -t vnode -f iso-inmage configure the device

nd0 this is the name assigned

mount -t cd9660 /dev/ nd0 / mt mount it

After this, you will be able to access the image at /mnt as a normal file system. Don’t
forget to unmount and unconfigure the file when you’re finished:

urmount / mt
mdconfig -d -u O

Older releases of FreeBSD used the vn driver, which used different syntax.

Burning the CD-R

Once you have created and tested an ISO image, you can copy it to CD-R. For SCSI
burners, you use cdrecord; ATA (IDE) CD-R burners you use burncd. In the following
sections we’ll look at both programs.

Burning a CD-R on an ATA burner

To burn a CD-R in an ATA (or IDE) burner, use burncd, which is part of the base system.
Typically you’ll only have one CD-R burner on the system, so it will be called /dev/acd0.
You’ll have something like this in your dmesg output:

acd0: (O RW<RWD RM224> at atal-slave Bl C8Pl O

burncd has both flags and commands. For our purposes, the most important flags are:
e The-f device option specifies the device to use for the burning process.
* The - moption tells burncd to close the disk in multisession mode.

e The -q option tells burncd to be quiet and not to print progress messages. In fact,
it’s not very verbose anyway.

* The -s speed option specifies the speed of the burner device. It defaults to 1, so
you’ll save a lot of time using this.

* The-t option specifies a test write: burncd does not actually write on the medium.

* The-v (verbose) option prints a few extra progress messages.

burncd.mm,v v4.13 (2003/04/02 06:46:59)

247 Chapter 13: Writing CD-Rs

The most important commands for writing ISO 9660 CD-ROMs are:

e data or nodel write data tracks, also known as model tracks, for the image files
named on the command line.

* fixat e fixates the medium by generating the table of contents. This should be the
last command to burncd.

If burncd doesn’t recognize a command, it assumes it’s a file name. If it does, it assumes
it isn’t a file name. This can be confusing: there are other commands not mentioned in
the list above, for example raw. If you have an ISO file called raw, you’ll have to rename
it before you can burn it with burncd.

Before you start, you should decide on the recording speed. If your machine is fast
enough, use the rated recording speed. In the case of the example machine, that’s an 8x
speed (i.e. it records at eight times the speed at which a normal audio CD is played).
Before you do this, though, you should make sure that your system can keep a sufficient
data rate so that there is always data available to transfer to the CD-R. If it can’t keep up,
you’ll get an underrun, a gap in the data, and your CD-R is worthless (a coaster).

To make sure you don’t make coasters, you should do a test run. The system goes
through all the motions, but it doesn’t actually write anything to the CD-R blank.
Nevertheless, it tests all aspects of the burn, so you must have a valid CD-R blank in the
drive, otherwise the attempt will fail. To test burn an image called iso, enter:

burncd -f /dev/acdOc -t -v -s 8 data iso fixate
addi ng type 0x08 file iso size 184576 KB 92288 bl ocks
next witeable LBA O

addr = 0 size = 189005824 bl ocks = 92288

witing fromfile iso size 184576 KB

witten this track 6880 KB (3% total 6880 KB

At this point, burncd overwrites the line with progress indications until it is finished.
Finally, you see:

witten this track 184576 KB (100% total 184576 KB
fixating CD please wait..
burncd: ioctl (COR OOFl XATE): | nput/output error

This last line appears a little alarming. It’s not really serious, though: the CD has not
really been written, so it’s not possible to read from it. A number of CD-R drives return
error conditions under these circumstances.

If everything was OK in the test run, you can repeat the command without the - t flag:

burncd -f /dev/acdOc -v -s 8 data iso fixate

The output is identical, but this time you should not get the error message.

burncd.mm,v v4.13 (2003/04/02 06:46:59)

Burning the CD-R 248

Burning a CD-R on a SCSI burner

If you have a SCSI burner, use cdrecord, which is part of the cdrtools port we installed
on page 243. cdrecord has a rather strange habit of not using device names: instead, it
accesses the device directly by its SCSI parameters (bus, unit and LUN). You can get
these parameters from the dmesg output in /var/run/dmesg.boot, but there’s an easier
way:

cdrecord -scanbus
Cdrecord 1.9 (i386-unknown-freebsd4.1) Copyright (C) 1995-2000 Jorg Schilling
Using libscg version “schily-0.1"
scsibus0:

0,0,0 0) °MATSHITA” *CD-R CW-7503 ~ ”1.06” Removable CD-ROM
cdrecord: Warning: controller returns zero sized CD capabilities page.
cdrecord: Warning: controller returns wrong size for CD capabilities page.
cdrecord: Warning: controller returns wrong page O for CD capabilities page (2A).

,1,0 1) *TEAC > ?CD-ROM CD-532S ~ ”1.0A” Removable CD-ROM

2) *

4) “SONY > ”SDT-10000 > 70101” Removable Tape

OO0OO0OO0OO00O0O0
O~NOUTAWN
[eleloloJololo]
¢!
*

8) “QUANTUM * ~“QM318000TD-SW * *N491” Disk

This output doesn’t tell you exactly which devices are CD-Rs, and it also doesn’t look at
any except the first SCSI bus. Alternatively, you can use the standard system utility
camcontrol :

cantontrol devli st
<MATSHITA CD-R CW-7503 1.06> at scbus0O target O lun O (pass0,cdO)

<TEAC CD-ROM CD-532S 1.0A> at scbusO target 1 lun O (passl,cdl)
<SONY SDT-10000 0101> at scbusO target 4 lun 0 (sa0,pass2)
<QUANTUM QM318000TD-SW N491> at scbus0O target 8 lun 0 (pass3,da0)
<EXABYTE EXB-8505SMBANSH2 0793> at scbusl target 1 lun O (sal,pass4)
<Quantum DLT4000 CC1E> at scbusl target 3 lun 0 (sa2,

<AIWA GD-8000 0119> at scbusl target 4 lun 0 (sa3,pass6)
<NRC MBR-7 110> at scbusl target 6 lun 0 (pass7,cd2)
<NRC MBR-7 110> at scbusl target 6 lun 1 (pass8,cd3)
<NRC MBR-7 110> at scbusl target 6 lun 2 (pass9,cd4)
<NRC MBR-7 110> at scbusl target 6 lun 3 (passlO,cd5)
<NRC MBR-7 110> at scbusl target 6 lun 4 (passli,cd6)
<NRC MBR-7 110> at scbusl target 6 lun 5 (passl2,cd7)
<NRC MBR-7 110> at scbusl target 6 lun 6 (passl3,cd8)

Either way, you need to recognize the CD-R device, which in this case is relatively easy:
it’s the Matsushita CW-7503 (“MATSHITA™) at the very beginning of each list. cdrecord
refers to this device as 0,0,0 (bus 0, target 0, LUN 0).

The next thing to look at is the recording speed. If your machine is fast enough, use the
rated recording speed. In the case of the example machine, that’s an 8x speed (i.e. it
records at 8 times the speed at which a normal audio CD is played). Before you do this,
though, you should make sure that your system can keep a sufficient data rate so that
there is always data available when to go on the CD. If you can’t keep up, you’ll get an
underrun, a gap in the data, and your CD-R is worthless (a coaster).

burncd.mm,v v4.13 (2003/04/02 06:46:59)

249 Chapter 13: Writing CD-Rs

To make sure you don’t make coasters, you should do a dummy run. The system goes
through all the motions, but it doesn’t actually write anything to the CD-R blank.
Nevertheless, it tests all aspects of the burn, so you must have a valid CD-R blank in the
drive, otherwise the attempt will fail. To burn an image called iso, enter:

cdrecord -dumy -v dev=0, 0, 0 -speed=8 i so
Cdrecord 1.9 (i386-unknown-freebsd5.0) Copyright (C) 1995-2000 Jorg Schilling
TOC Type: 1 = CD-ROM

scsidev: ’0,0,0”

scsibus: 0 target: O lun: O

Using libscg version “schily-0.1"

atapi: O

Device type . Removable CD-ROM

Version 12

Response Format: 2

Capabilities - SYNC LINKED

Vendor_info : ’MATSHITA”
Identifikation : ’CD-R CW-7503 ~
Revision : 71.06”

Device seems to be: Generic mmc CD-R.
Using generic SCSI1-3/mmc CD-R driver (mmc_cdr).
Driver flags : SWABAUDIO

FIFO size : 4194304 = 4096 KB

Track 01: data 152 MB

Total size: 175 MB (17:22.84) = 78213 sectors
Lout start: 175 MB (17:24/63) = 78213 sectors

Current Secsize: 2048
ATIP info from disk:

Indicated writing power: 5

Is not unrestricted

Is not erasable

ATIP start of lead in: -11080 (97:34/20)

ATIP start of lead out: 335100 (74:30/00)
Disk type: Long strategy type (Cyanine, AZO or similar)
Manuf. index: 11
Manufacturer: Mitsubishi Chemical Corporation
Blocks total: 335100 Blocks current: 335100 Blocks remaining: 256887
RBlocks total: 342460 RBlocks current: 342460 RBlocks remaining: 264247
Starting to write CD/DVD at speed 8 in dummy mode for single session.
Last chance to quit, starting dummy write in 1 seconds.
Waiting for reader process to fill input buffer ... input buffer ready.
Starting new track at sector: 0
Track 01: O of 152 MB written (Fifo 100%).

At this point, cdrecord overwrites the last line with progress indications until it is
finished. If you’re watching, keep an eye on the fifo information at the end of the line.
This gives you an idea how well the system is keeping up with the burner. If the
utilization drops to 0, you will get an underrun, and the blank would have become a
coaster if this were for real.

Finally, you see:

Track 01: 152 of 152 MB written (fifo 100%).

Track 01: Total bytes read/written: 160176128/160176128 (78211 sectors).
Writing time: 136.918s

Fixating. . .

WARNING: Some drives don’t like fixation in dummy mode.

Fixating time: 35.963s

cdrecord: fifo had 2523 puts and 2523 gets.

cdrecord: fifo was O times empty and 2451 times full, min fill was 96%.

burncd.mm,v v4.13 (2003/04/02 06:46:59)

Burning the CD-R 250

The summary information at the end shows that at some point the fifo dropped below
100% full, but this is far from being a problem. If, on the other hand, there was a lot of
disk activity at the same time, you might find the fifo level dropping much lower.

When you’re sure that you won’t have any problems, you can do the real thing: just
repeat the command without the - dummy option. The output looks almost identical.

Copying CD-ROMs

Frequently you’ll want to make a verbatim copy of another CD. There are copyright
implications here, of course, but many CD-ROMSs are not restricted. In particular, you
may make copies of FreeBSD CD-ROM s for your personal use.

CD-ROMs are already in 1SO format, of course, so to get a file iso, as in the examples
above, you could just perform a literal copy with dd:

dd if=/dev/cdOc of =i so bs=128k

The bs=128k tells dd to copy in blocks of 128 kB. It’s not strictly necessary, but if you
omit it, it will perform a separate transfer for every sector, and on a slow machine it can
be much less efficient.

There’s an even easier way, though, if you have two CD-ROM drives: you can frequently
copy directly from one drive to the other, without storing on disk at all. To do this, of
course, you need to be very sure that your CD-ROM drive is fast enough. In particular, if
it spins down during the copy, you will almost certainly have underruns and a useless
copy. Be very sure to do a dummy run first. Let’s assume that your second CD-ROM
drive is /dev/cd1lc (a SCSI drive). For IDE drives, write:

burncd -f /dev/acdOc -t -v -s 8 data /dev/cdlc fixate

In this example, the -f option indicates that /dev/acdOc is the (IDE) CD-R burner.
/devicdlc is the (SCSI) CD-ROM drive with the original CD-ROM. You don’t need to
mount /dev/cdlc, since it’s being accessed as raw data, not a file system.

When you’re sure this will work, remove the -t flag and repeat.
For SCSI, enter

cdrecord -dumy -v dev=0, 0, 0 - speed=8 /dev/ cdlc

When it completes satisfactorily, remove the - dummy and repeat.

burncd.mm,v v4.13 (2003/04/02 06:46:59)

In this chapter:

* Backing up your data
e Using floppy disks
under FreeBSD

Tapes, backups and
floppy disks

In Chapter 11 we looked at hard disks. In this chapter, we’ll consider how to guard
against data loss, and how to transfer data from one location to another. These are
functions that UNIX traditionally performs with tapes, and we’ll look at them in the next
sections. Because FreeBSD runs on PCs, however, you can’t completely escape floppy
disks, though it would be an excellent idea. We’ll look at floppies on page 256.

Backing up your data

No matter how reliable your system, you are never completely protected against loss of
data. The most common reasons are hardware failure and human error. By comparison,
it’s very seldom that a software error causes data loss, but this, too, can happen.

UNIX talks about archives, which are copies of disk data in a form suitable for writing on
a serial medium such as tape. You can, however, write them to disk files as well, and
that’s what people do when they want to move a source tree from one system to another.
You’ll also hear the term tarball for an archive made by the tar program, which we
discuss below.

tapes.mm,v v4.10 (2003/04/02 06:47:36) 251

Backing up your data 252

What backup medium?

Traditionally, PCs use floppy disks as a removable storage medium. We’ll look at
floppies below, but you can sum the section up in one statement: don’t use floppy disks.

Floppy disks are particularly unsuited as a backup medium for modern computers.
Consider even a minimal system with a 2 GB hard disk. Storing 2 GB of data on floppies
requires about 1,500 floppies, which, at $0.30 each, would cost you $450. Copying the
data to a floppy takes about 50 seconds per floppy, so the raw backup time would be
about 21 hours, plus the time it takes you to change the floppies, which could easily take
another three or more hours. During this time you have to sit by the computer playing
disk jockey, a total of three days’ work during which you could hardly do anything else.
When you try to read in the data again, there’s a virtual certainty that one of the floppies
has a data error, especially if you read them with a different drive.

By contrast, a single DDS or Exabyte cassette stores several gigabytes and costs about
$6. The backup time for 2 GB is about 90 minutes, and the operation can be performed
completely unattended.

A number of cheaper tape drives are also available, such as Travan tapes. FreeBSD
supports them, but for one reason or another, they are not popular. FreeBSD once used to
have support for “floppy tape,” run off a floppy controller, but these tapes were very
unreliable, and they are no longer supported.

You can also use writeable “CD-ROMs” (CD-Rs) for backup purposes. By modern
standards, the media are small (up to 700 MB), but they have the advantage of being
readily accessible on other systems. We looked at CD-Rs in Chapter 13.

Tape devices

FreeBSD tape devices have names like /dev/nsa0 (see page 196). Each letter has a
significance:

* n means non-rewinding. When the process that accesses the tape closes it, the tape
remains at the same position. This is inconvenient if you want to remove the tape
(before which you should rewind it), but it’s the only way if you want to handle
multiple archives on the tape. The name of the corresponding rewind device has no n
(for example, the rewind device corresponding to /dev/insa0 is /dev/sa0). A rewind
device rewinds the tape when it is closed.

Older releases of FreeBSD used the names /dev/inrsa0 and /dev/rsa0. r stands for raw, in
other words a character device. Since the removal of block devices, this letter is superfluous,
but you might see it occasionally in older documents.

* sa stands for serial access, and is always SCSI. You can also get ATAPI tape drives,
which are called /deviastO and /dev/nastO, and the older QIC-02 interface tapes are
called /dev/wstO and /dev/nwstO.

e 0 is the unit number. If you have more than one tape, the next will be called
/dev/nsal, and so on.

tapes.mm,v v4.10 (2003/04/02 06:47:36)

253 Chapter 14: Tapes, backups and floppy disks

Backup software

FreeBSD does not require special “backup software.” The base operating system
supplies all the programs you need. The tape driver is part of the kernel, and the system
includes a number of backup programs. The most popular are:

* tar, the tape archiver, has been around longer than anybody can remember. It is
particularly useful for data exchange, since everybody has it. There are even versions
of tar for Microsoft platforms. It’s also an adequate backup program.

e cpio is an alternative backup program. About its only advantage over tar is that it
can read cpio format archives.

e pax is another alternative backup program. It has the advantage that it can also read
and write tar and cpio archives.

e dump is geared more towards backups than towards archiving. It can maintain
multiple levels of backup, each of which backs up only those files that have changed
since the last backup of the next higher (numerically lower) level. It is less suited
towards data exchange because its formats are very specific to BSD. Even older
releases of FreeBSD cannot read dumps created under FreeBSD Release 5.

* amanda, in the Ports Collection, is another popular backup program.

Backup strategies are frequently the subject of religious wars. | personally find that tar
does everything | want, but you’ll find plenty of people who recommend dump or
amanda instead. In the following section, we’ll look at the basics of using tar. See the
man page dump(8) for more information on dump.

tar

tar, the tape archiver, performs the following functions:

* Creating an archive, which can be a serial device such as a tape, or a disk file, from
the contents of a number of directories.

* Extracting files from an archive.
* Listing the contents of an archive.

tar does not compress the data. The resulting archive is slightly larger than the sum of
the files that it contains, since it also contains a certain amount of header information.
You can, however, use the gzip program to compress a tar archive, and tar invokes it for
you automatically with the - z option. The size of the resultant archives depends strongly
on the data you put in them. JPEG images, for example, hardly compress at all, while
text compresses quite well and can be as high as 90% smaller than the constituent files.

tapes.mm,v v4.10 (2003/04/02 06:47:36)

Backing up your data 254

Creating a tar archive
Create an archive with the c option. Unlike most UNIX programs,

tar does not require a hyphen (-) in front of the options. For example, to save your
complete kernel source tree, you could write:

tar cvf source-archive.tar /usr/src/sys

tar: Renoving leading / fromabsol ute path names in the archive.
usr/ srcl sys/

usr/ srcl sys/ Vs

usr/ srcl/ sys/ VS Root

usr/ src/ sys/ CVS Reposi tory

usr/srclsys/ CVS Entri es

usr/ srcl/ sys/ conpi | e/

usr/ srcl/ sys/ conpi | e/ VS

(etc)

The parameters have the following meaning:

» cvf are the options. c stands for create an archive, v specifies verbose operation (in
this case, this causes tar to produce the list of files being archived), and f specifies
that the next parameter is the name of the archive file.

e source-archive. tar isthe name of the archive. In this case, it’s a disk file.

e [usr/src/sys is the name of the directory to archive. tar archives all files in the
directory, including most devices. For historical reasons, tar can’t back up devices
with minor numbers greater than 65536, and changing the format would make it
incompatible with other systems.

The message on the first line (Removi ng | eadi ng / ...) indicates that, although the
directory name was specified as / usr/ src/ sys, tar treats it as usr/src/sys. This makes
it possible to restore the files into another directory at a later time.

You can back up to tape in exactly the same way:

tar cvf /dev/nsa0 /usr/src/sys

There is a simpler way, however: if you don’t specify a file name, tar looks for the
environment variable TAPE. If it finds it, it interprets it as the name of the tape drive.
You can make things a lot easier by setting the following line in the configuration file for
your shell (.profile for sh, .bashrc for bash, .login for csh and tcsh):

TAPE=/ dev/ nsa0 export TAPE for sh and bash
setenv TAPE /dev/ nsa0 for csh and tcsh

After this, the previous example simplifies to:

tar cv /usr/src/sys

tapes.mm,v v4.10 (2003/04/02 06:47:36)

255 Chapter 14: Tapes, backups and floppy disks

Listing an archive
To list an archive, use the option't :

tar t from tape
usr/ srcl/ sys/

usr/ srcl sys/ OVs/

usr/ srcl/ sys/ CVS Root

usr/ src/ sys/ CVS Reposi tory

usr/srcl sys/ CVS Entri es

usr/ srcl/ sys/ conpi | e/

usr/ srcl sys/ conpi | e/ VS

usr/ srcl/ sys/ conpi | e/ OVS Root

(etc)

tar tvf source-archive.tar from disk

dr wxr wxr wx r oot/ bin 0 Cct 25 15:07 1997 usr/ src/ sys/

dr wxr wxr wx r oot/ bin 0 Cct 25 15:08 1997 usr/src/ sys/ QVY
-rWrwrw root/wheel 9 Sep 30 23:13 1996 usr/ src/ sys/ CVY Root
-rwWrwrw root/wheel 17 Sep 30 23:13 1996 usr/ src/ sys/ CVS Reposi tory
-rWrwrw root/bin 346 CGct 25 15:08 1997 usr/src/ sys/ VS Entries

dr wxr wkr wx r oot/ bin 0 Gt 27 17:11 1997 usr/ src/ sys/ conpi | e/

drwxr wxrwx r oot/ bin 0 Jul 30 10:52 1997 usr/ src/ sys/ conpi | e/ CVS/
(etc)

This example shows the use of the v (verbose) option with t. If you don’t use it, tar
displays only the names of the files (first example, from tape). If you do use it, tar also
displays the permissions, ownerships, sizes and last modification date in a form
reminiscent of Is -1 (second example, which is from the disk file source-archive.tar).

Extracting files
To extract a file from the archive, use the x option:

tar xv usr/src/sys/ Mkefile from tape
usr/src/ sys/ Makefil e confirms that the file was extracted

As with the ¢ option, if you don’t use the v option, tar does not list any file names. If
you omit the names of the files to extract, tar extracts the complete archive.

Compressed archives

You can combine gzip with tar by specifying the z option. For example, to create the
archive source-archive.tar.gz in compressed format, write:

tar czf source-archive.tar.gz /usr/src/sys

You must specify the z option when listing or extracting compressed archives, and you
must not do so when listing or extracting non-compressed archives. Otherwise you get
messages like:

tar tzvf source-archive.tar

gzip: stdin: not in gzip fornat

tar: child returned status 1

tar tvf source-archive.tar.gz

tar: only read 2302 bytes from archive source-archive.tar.gz

tapes.mm,v v4.10 (2003/04/02 06:47:36)

Backing up your data 256

Using floppy disks under FreeBSD

I don’t like floppy disks. UNIX doesn’t like floppy disks. Probably you don’t like floppy
disks either, but we occasionally have to live with them.

FreeBSD uses floppy disks for one thing only: for initially booting the system on systems
that can’t boot from CD-ROM. We’ve already seen that they’re unsuitable for archival
data storage and data transfer. For this purpose, FreeBSD uses tapes and CD-ROMs,
which are much more reliable, and for the data volumes involved in modern computers,
they’re cheaper and faster.

So why use floppies? The only good reasons are:

* You have a floppy drive. You may not have a tape drive. Before you go out and buy
all those floppies, though, consider that it might be cheaper to buy a tape drive and
some tapes instead.

* You need to exchange data with people using Microsoft platforms, or with people
who don’t have the same kind of tape as you do.

In the following sections, we’ll look at how to handle floppies under FreeBSD, with
particular regard to coexisting with Microsoft. Here’s an overview:

* Always format floppies before using them on your system for the first time, even if
they’ve been formatted before. We’ll look at that in the next section.

* Just occasionally, you need to create a UNIX file system on floppy. We’ll look at that
on page 257.

* When exchanging with Microsoft users, you need to create a Microsoft file system.
We’ll look at that on page 259.

* When exchanging with other UNIX users, whether FreeBSD or not, use tar or cpio.
We’ll look at how to do that on page 259.

Formatting a floppy

Even if you buy preformatted floppies, it’s a good idea to reformat them. Track
alignment can vary significantly between individual floppy drives, and the result can be
that your drive doesn’t write quite on top of the pre-written tracks. | have seen read
failure rates as high as 2% on pre-formatted floppies: in other words, after writing 100
floppies with valuable data, the chances are that two of them have read errors. You can
reduce this problem by reformatting the floppy in the drive in which it is to be written, but
you can’t eliminate it.

On Microsoft platforms, you format floppies with the FORMAT program, which
performs two different functions when invoked on floppies: it performs both a low-level
format, which rewrites the physical sector information, and then it performs what it calls
a high-level format, which writes the information necessary for Microsoft platforms to
use it as a file system. UNIX calls the second operation creating a file system. It’s not
always necessary to have a file system on the diskette—in fact, as we’ll see, it can be a

tapes.mm,v v4.10 (2003/04/02 06:47:36)

257 Chapter 14: Tapes, backups and floppy disks

disadvantage. In addition, FreeBSD offers different kinds of file system, so it performs
the two functions with different programs. In this section, we’ll look at fdformat, which
performs the low-level format. We’ll look at how to create a UFS or Microsoft file
system in the next section.

To format a diskette in the first floppy drive, /dev/fd0, you would enter:

$ fdformat /dev/fdo
Format 1440K floppy ‘/dev/fd0' ? (y/n): vy
Processing ---------mccmmmemm e e

Each hyphen character (-) represents two tracks. As the format proceeds, the hyphens
change individually to an F (Format) and then to V (\Verify) in turn, so at the end the line
reads

Processi ng WMWY done.

File systems on floppy

It’s possible to use floppies as file systems under FreeBSD. You can create a UFS file
system on a floppy just like on a hard disk. This is not necessarily a good idea: the UFS
file system is designed for performance, not maximum capacity. By default, it doesn’t
use the last 8% of disk space, and it includes a lot of structure information that further
reduces the space available on the disk. Here’s an example of creating a file system,
mounting it on the directory /A, and listing the remaining space available on an empty
3%2" floppy. We use the disktab approach to labelling the disk, as we saw on page 216.
letc/disktab does have labels for floppy disks: use f d1440 for a 32" 1.44 MB floppy,
and f d1200 for a 5%2" 1.2 MB floppy:

di skl abel -w-r /dev/fdO fd1440 label the floppy
di skl abel -r /dev/fdO and list the information
[dev/ f dO:

type: unknown

di sk: fd1440

| abel :

flags:

byt es/ sector: 512

sectors/track: 18

tracks/cylinder: 2

sectors/cylinder: 36

cylinders: 80

sectors/unit: 2880

rpm 300

interleave: 1

trackskew 0

cyl i nderskew 0

headswi tch: 0 # mlliseconds

track-to-track seek: 0 # mlliseconds

drivedata: 0

3 partitions:

size offset fstype [fsize bsize bps/cpg]
a: 2880 0 unused 512 4096 # (Oyl. 0- 79
b: 2880 0 unused 512 4096 # (Ol . 0 - 79)
c: 2880 0 unused 512 4096 # (gl 0- 79
new s /dev/fd0 create a new file system

Warni ng: Bl ock size restricts cylinders per group to 6.

tapes.mm,v v4.10 (2003/04/02 06:47:36)

Using floppy disks under FreeBSD 258

\érning: 1216 sector(s) in last cylinder unallocated

/ dev/ f dO. 1440: 2880 sectors in 1 cylinders of 1 tracks, 4096 sectors
1.4MBin 1 cyl groups (6 c/g, 12.00MB/ g, 736 i/Q)

super - bl ock backups (for fsck -b #) at:

mount /dev/fdo /A mount the floppy on /A
#df /A display the space available
Fi | esystem 1024- bl ocks Wsed Avail Capacity Munted on

/ dev/ f dO 1319 0 1213 0% /mt

Let’s look at this in a little more detail:

e The first invocation of disklabel, with the - woption, writes a disk label to the floppy,
which supplies enough information for newfs to create a UFS file system on it.

* The second invocation of disklabel, just with the -r option, lists the information
written by the first invocation. This isn’t necessary for creating the file system, but it
helps to check that the disk is labelled correctly.

* newfs creates the UFS file system on the floppy.

* We have already seen mount on page 192. In this case, we use it to mount the floppy
on the file system /A.

e The df program shows the maximum and available space on a file system. By
default, df displays usage in blocks of 512 bytes, an inconvenient size. In this
example, the environment variable BLOOKSI ZE was set to 1024 to display the usage
in 1 kB (1024 byte) blocks. See page 128 for more details of environment variables.

The output of df looks terrible! Our floppy only has 1213 kB left for normal user data,
even though there is nothing on it and even df claims that it can really store 1319 kB.
This is because UFS keeps a default of 8% of the space free for performance reasons.
You can change this, however, with tunefs, the file system tune program:*

unount /A first unmount the floppy

tunefs -mO /dev/fdO and change the minimum free to 0
tunefs: m ni num percentage of free space changes from8%to 0%

tunefs: should optimze for space with nminfree < 8%

mount /dev/fdOo /A mount the file system again
#df /A and take another look

Fi | esystem 1024- bl ocks Used Avai |l Capacity Munted on

/ dev/ fdO 1319 0 1319 0% /A

Still, this is a far cry from the claimed data storage of a Microsoft disk. In fact, Microsoft
disks can’t store the full 1.4 MB either: they also need space for storing directories and
allocation tables. The moral of the story: only use file systems on floppy if you don’t
have any alternative.

1. To quote the man page: You can tune a file system, but you can’t tune a fish.
tapes.mm,v v4.10 (2003/04/02 06:47:36)

259 Chapter 14: Tapes, backups and floppy disks

Microsoft file systems
To create an MS-DOS file system, use the newfs_msdos command:

$ newfs_nsdos -f 1440 /dev/fd0

The specification - f 1440 tells newfs_msdos that this is a 1.4 MB floppy. Alternatively,
you can use the mformat command:

$ nformat A

You can specify the number of tracks with the -t option, and the number of sectors with
the - s option. To explicitly specify a floppy with 80 tracks and 18 sectors (a standard
3%2" 1.44 MB floppy), you could enter:

$ nformat -t 80 -s 18 A
mformat is one of the mtools that we look at in the next section.

Other uses of floppies

Well, you could take the disks out of the cover and use them as a kind of frisbee. But
there is one other useful thing you can do with floppies: as an archive medium, they don’t
need a file system on them. They just need to be low-level formatted. For example, to
write the contents of the current directory onto a floppy, you could enter:

$ tar cviM/dev/fdo .
i

xfmre

. Xx6530nodkey

.uwnrc

.twrc

.rnsof t

.rnl ast

...etc

Prepare volune #2 for /dev/fd0 and hit return:

Note also the solitary dot (.) at the end of the command line. That’s the name of the
current directory, and that’s what you’re backing up. Note also the option M which is
short for - - mul ti - vol une. There’s a very good chance that you’ll run out of space on a
floppy, and this option says that you have a sufficient supply of floppies to perform the
complete backup.

To extract the data again, use tar with the x option:

$ tar xvfM/dev/fdo
v

xfmc

. X6530nodkey
.uwmc

...etc

See the man page tar (1) for other things you can do with tar.

tapes.mm,v v4.10 (2003/04/02 06:47:36)

Using floppy disks under FreeBSD 260

Accessing Microsoft floppies

Of course, most of the time you get data on a floppy, it’s not in tar format: it has a
Microsoft file system on it. We’ve already seen the Microsoft file system type on page
190, but that’s a bit of overkill if you just want to copy files from floppy. In this case, use
the mtools package from the Ports Collection. ntools is an implementation of the MS-
DOS programs ATTRIB, CD, COPY, DEL, DIR, FORMAT, LABEL, MD, RD, READ,
REN, and TYPE under UNIX. To avoid confusion with existing utilities, the UNIX
versions of these commands start with the letter m. They are also written in lower case.
For example, to list the contents of a floppy and copy one of the files to the current
(FreeBSD) directory, you might enter:

$ ndir list the current directory on A:
Volume in drive A is MESSED OS
Directory for A:/

10 SYs 33430 4-09-91 5:00a

MSDOS SYS 37394 4-09-91 5:00a

COMMAND COM 47845 12-23-92 5:22p

NFS <DIR> 12-24-92 11:03a

DOSEDIT COM 1728 10-07-83 7:40a

CONFIG SYS 792 10-07-94 7:31p

AUTOEXEC BAT 191 12-24-92 11:10a

MOUSE <DIR> 12-24-92 11:09a

12 File(s) 82944 bytes free

$ ntd nfs change to directory A:\NFS
$ nmdir and list the directory

Volume in drive A is MESSED 0S
Directory for A:/NFS

<DIR> 12-24-92 11:03a
<DIR> 12-24-92 11:03a

HOSTS 5985 10-07-94 7:34p
NETWORK BAT 103 12-24-92 12:28p
DRIVES BAT 98 11-07-94 5:24p
...and many more
51 File(s) 82944 bytes free
$ ntype drives. bat type the contents of DRIVES.BAT
net use c: presto:/usr/dos
c:
cd \nfs

net use T: porsche:/dos
net use g: porsche:/usr

$ ntopy a: hosts . copy A:HOSTSto local UNIX directory
Copying HOSTS

$1Is -1 hosts and list it

-rw-rw-rw- 1 root wheel 5985 Jan 28 18:04 hosts

You must specify the drive letter to mcopy, because it uses this indication to decide
whether the file name is a UNIX or a Microsoft file name. You can copy files from
FreeBSD to the floppy as well, of course.

A word of warning. UNIX uses a different text data format from Microsoft: in UNIX,
lines end with a single character, called Newline, and represented by the characters \n in
the C programming language. It corresponds to the ASCII character Line Feed
(represented by ~J). Microsoft uses two characters, a Carriage Return ("M) followed by
a Line Feed. This unfortunate difference causes a number of unexpected compatibility
problems, since both characters are usually invisible on the screen.

tapes.mm,v v4.10 (2003/04/02 06:47:36)

261 Chapter 14: Tapes, backups and floppy disks

In FreeBSD, you won’t normally have many problems. Occasionally a program
complains about non-printable characters in an input line. Some, like Emacs, show them.
For example, Emacs shows our last file, drives.bat, like this:

net use c: presto:/usr/dos™
c:M

cd \nfs™

net use f: porsche:/dos™
net use g: porsche:/usrm

This may seem relatively harmless, but it confuses some programs, including the C
compiler and pagers like more, which may react in confusing ways. You can remove
them with the —t option of mcopy:

$ ntopy -t a:drives. bat .

Transferring files in the other direction is more likely to cause problems. For example,
you might edit this file under FreeBSD and then copy it back to the diskette. The results
depend on the editor, but assuming we changed all occurrences of the word porsche to
Treedom, and then copied the file back to the diskette, Microsoft might then find:

C:> type drives. bat
net use c: presto:/usr/dos

c:
cd \nfs
net use f: freedom:/dos
net use g: freedom:/usr

This is a typical result of removing the Carriage Return characters. The -t option to

mcopy can help here, too. If you use it when copying to a Microsoft file system, it
reinserts the Carriage Return characters.

tapes.mm,v v4.10 (2003/04/02 06:47:36)

In this chapter:

Printer configuration
Starting the spooler
Testing the spooler
Troubleshooting
Using the spooler
PostScript

PDF

Printers

In this chapter, we’ll look at some aspects of using printers with FreeBSD. As a user, you
don’t access printers directly. Instead, a series of processes, collectively called the
spooler, manage print data. One process, lpr, writes user print data to disk, and another,
Ipd, copies the print data to the printers. This method enables processes to write print
data even if the printers are busy and ensures optimum printer availability.

In this section, we’ll look briefly at what you need to do to set up printers. For more
details, look in the online handbook section on printing.

Ipd is the central spooler process. It is responsible for a number of things:

e It controls access to attached printers and to printers attached to other hosts on the
network.

* It enables users to submit files to be printed. These submissions are known as jobs.

e |t prevents multiple users from accessing a printer at the same time by maintaining a
queue for each printer.

e |t can print header pages, also known as banner or burst pages, so users can easily
find jobs they have printed in a stack of printouts.

* |t takes care of communications parameters for printers connected on serial ports.
* It can send jobs over the network to another spooler on another host.

e |t can run special filters to format jobs to be printed for various printer languages or
printer capabilities.

printers.mm,v v4.17 (2003/04/02 06:48:05) 263

The Complete FreeBSD 264

e |t can account for printer usage.

Through a configuration file, and by providing the special filter programs, you can enable
the spooler to do all or some subset of the above for a great variety of printer hardware.

This may sound like overkill if you are the only user on the system. It is possible to
access the printer directly, but it’s not a good idea:

* The spooler prints jobs in the background. You don’t have to wait for data to be
copied to the printer.

* The spooler can conveniently run a job to be printed through filters to add headers or
convert special formats (such as PostScript) into a format the printer will understand.

* Most programs that provide a print feature expect to talk to the spooler on your
system.

Printer configuration

There are three commonly used ways to connect a printer to a computer:

* Older UNIX systems frequently used serial printers, but they are no longer in
common use. Serial printers seldom transmit more than 1,920 characters per second,
which is too slow for modern printers.

* Most printers are still connected by a parallel port. Parallel ports enable faster
communication with the printer, up to about 100,000 bytes per second. Such speeds
may still not be enough for complex PostScript or bit-mapped images. Most parallel
ports require CPU intervention via an interrupt for each character transmitted, and
100,000 interrupts per second can use the entire processing power of a fast machine.

* More modern printers have USB or Ethernet interfaces, which enable them to connect
to several machines at once at much higher speeds. The load on the host computer is
also much lower.

It’s pretty straightforward to connect a parallel printer. You don’t need to do anything
special to configure the line printer driver Ipt: it’s in the kernel by default. All you need
to do is to plug in the cable between the printer and the computer. If you have more than
one parallel interface, of course, you’ll have to decide which one to use. Parallel printer
devices are called /dev/Iptn, where n is the number, starting with 0. USB devices have
names like /dev/ulptn. See Table 10-4 on page 195 for further details.

Configuring an Ethernet-connected printer is more complicated. You obviously need an
IP address, which you configure on the printer. Most modern printers then appear like a
remote computer to the spooler. We look at spooling to remote computers on page 266.

printers.mm,v v4.17 (2003/04/02 06:48:05)

265 Chapter 15: Printers

Testing the printer

When you have connected and powered on a parallel port printer, run the built-in test if
one is supplied: typically there’s a function that produces a printout describing the
printer’s features. After that, check the communication between the computer and the
printer.

| ptest > /dev/Ipt0

If you have a pure PostScript printer, one which can’t print anything else, you won’t get
any output. Even here, though, you should see some reaction on the status display.

Configuring /etc/printcap

The next step is to configure the central configuration file, /etc/printcap. This file is not
the easiest to read, but after a while you’ll get used to it. Here are some typical entries:

I'p|lj]|ps|local LaserJet 6MP printer:\
11 p=/ dev/| pt 0: sd=/ var/ spool /out put /| pd: | f =/ var/| og/ | pd- errs: sh: nx#0: \
cif=/usr/local/libexec/lpfilter:

rip|sanple renote printer:\
:rnf reebi e: sd=/ var/ spool / out put / freebi e: | f=/var/l og/| pd-errs:\
crp=lp:

Let’s look at this in detail:

* Allfields are delimited by a colon (:).

* Continuation lines require a backslash character (\). Note particularly that you
require a colon at the end of a continued line, and another at the beginning of the
following line.

e The first line of each entry specifies a number of names that you can use to specify
this printer when talking to lpr or Ipd. The names are separated by vertical bar
symbols | . By tradition, the last name is a more verbose description, and you
wouldn’t normally use it to talk to programs.

e The following fields describe capabilities, descriptions of how to do something.
Capabilities are described by a two-letter keyword and optionally a parameter, which
is separated by a delimiter indicating the type of parameter. If the field takes a string
parameter, the delimiter is =, and if it takes a numeric value, the delimiter is#. You’ll
find a full description in the man page.

e The first entry defines a local printer, called I p, Ij, ps and | ocal LaserJet 6MP
printer. Why so many names? | p is the default, so you should have it somewhere.
['j is frequently used to talk to printers that understand HP’s LaserJet language (now
PCL), and ps might be used to talk to a printer that understands PostScript. The final
name is more of a description.

printers.mm,v v4.17 (2003/04/02 06:48:05)

Printer configuration 266

The entry | p=/ dev/ | pt O tells the spooler the name of the physical device to which
the printer is connected. Remote printers don’t have physical devices.

sd tells the spooler the directory in which to store jobs awaiting printing. This
directory must exist; the spooler doesn’t create it.

| f=/var/l og/ | pd-errs specifies the name of a file in which to log errors.

sh is a flag telling Ipd to omit a header page. If you don’t have that, every job will
be preceded by a descriptor page. In a small environment, this doesn’t make sense
and is just a waste of paper.

The parameter nx tells Ipd the maximum size of a spool job in kilobytes. If the job is
larger than this value, Ipd refuses to print it. In our case, we don’t want to limit the
size. We do this by setting nx to 0.

i f tells Ipd to apply a filter to the job before printing. We’ll look at this below.

In the remote printer entry, r n¥f r eebi e tells Ipd to send the data to the machine
called f reebi e. This could be a fully qualified domain name, of course.

In the remote printer entry, rp=I p tells Ipd the name of the printer on the remote
machine. This doesn’t have to be the same name as the name on the local machine.

Remote printing

In a network, you don’t need to have a printer on every machine; you can print on another
machine (which may be a printer) on the same network. There are a couple of things to
consider:

There are two machines involved in remote printing, the client (“local’’) machine and
the server (“‘remote’”) machine.

On the client, you specify the name of the server machine with the r mcapability, and
you specify the name of the printer with the r p capability. You don’t specify any | p
(device name) capability. A typical entry might look like this:

| p| H° LaserJet 6MP on freebie:\
:rn¥freebi e: sd=/ var/ spool / out put/ freebi e: | f=/var/| og/ | pd- errs: mx#0:

On the client machine, you must also create the spool directory, /var/spool/out-
put/freebie in the example above.

On the server machine, you don’t need to do anything special with the /etc/printcap
file. You need an entry for the printer specified in the client machine’s r p entry, of
course.

On the server machine you must allow spooler access from the client machine. For a
BSD machine, you add the name of the machine to the file /etc/hosts.Ipd on a line by
itself.

printers.mm,v v4.17 (2003/04/02 06:48:05)

267 Chapter 15: Printers

Spooler filters

Probably the least intelligible entry in the configuration file on page 265 was the i f entry.
It specifies the name of an input filter, a program through which Ipd passes the complete
print data before printing.

What does it do that for? There can be a number of reasons. Maybe you have data in a
format that isn’t fit to print. For example, it might be PostScript, and your printer might
not understand PostScript. Or it could be the other way around: your printer understands
only PostScript, and the input isn’t PostScript.

There’s a more likely reason to require a filter, though: most printers still emulate the old
teletypes, so they require a carriage return character (Ctrl-M or "M) to start at the
beginning of the line, and a new line character (Ctrl-J or ~J) to advance to the next line.
UNIX uses only J, so if you copy data to it, you’re liable to see a staircase effect. For
example, ps may tell you:

$ ps
PID TT STAT TI ME COMVAND
2252 pl Ss 0: 01. 35 / bi n/ bash
2287 pl |IW 0:04.77 e /etclprintcap
2346 pl R+ 0: 00. 05 ps

When you try to print it, however, you get:

PID TT STAT TI ME CCOMAND
2252 pl Ss 0:01 35 /bin/bash
2287 pl IW 0

The rest of the page is empty: you’ve gone off the right margin.
There are a number of ways to solve this problem:

* You may be able to configure your printer to interpret Ctrl-J as both new line and
return, and to ignore Ctrl-M. Check your printer handbook.

* You may be able to issue a control sequence to your printer to tell it to interpret Ctrl-
J as both new line and return to the beginning of the line, and to ignore Ctrl-M. For
example, HP LaserJets and compatibles will do this if you send them the control
sequence ESC&k2G

* You can write an input filter that transforms the print job into a form that the printer
understands. We’ll look at this option below.

printers.mm,v v4.17 (2003/04/02 06:48:05)

Printer configuration 268

There are a couple of options for the print filter. One of them, taken from the online
handbook, sends out a LaserJet control sequence before every job. Put the following shell
script in /usr/local/libexec/lpfilter:

#!/ bi n/ sh
printf "\0338&2G &% cat & printf "\f" & exit O
exit 2

Figure 15-1: Simple print filter

This approach does not work well with some printers, such as my HP LaserJet 6MP,
which can print both PostScript and LaserJet (natural) formats at random. They do this
by recognizing the text at the beginning of the job. This particular filter confuses them by
sending a LaserJet command code, so the printer prints the PostScript as if it were plain
text.

In this kind of situation, the standard filters are no longer sufficient. You can solve the
problem with the port apsfilter, which is in the Ports Collection.

Starting the spooler

As we saw above, the line printer daemon Ipd is responsible for printing spooled jobs.
By default it isn’t started at boot time. If you’re r oot , you can start it by name:

| pd

Normally, however, you will want it to be started automatically when the system starts
up. You do this by setting the variable | pd_enabl e in /etc/rc.conf:

| pd_enabl e="YES' # Run the line printer daenon

See page 546 for more details of /etc/rc.conf.

You can also add another line referring to the line printer daemon to /etc/rc.conf:

| pd_flags="" # Flags to I pd (if enabl ed).

You don’t normally need this line. See the man page for Ipd for details of the flags.

Testing the spooler

To test the spooler, you can run the Iptest program again. This time, however, instead of
sending it directly to the printer, you send it to the spooler:

printers.mm,v v4.17 (2003/04/02 06:48:05)

269

Chapter 15: Printers

$ Iptest 80 5| Ipr

The results should look like:

HINE”)%+, — . /0123456789 - ; <=>?@ABCDEFGH1JKLMNOPQRSTUVIXYZ\]"™_“abcdefghi jklimnop
“HI8” O+, - /0123456789 ; <=>?@ABCDEFGHIJKLMNOPQRSTUWXYZ\]™_“abcdefghi jkimnopq
H3U8” O*+, . /0123456789 ;<=>?@ABCDEFGHIJKLMNOPQRSTUWIXYZ\]~_Zabcdefghi jkImnopar
8> O*+,—. /0123456789 ;<=>?@ABCDEFGHIIKLMNOPQRSTUMIXYZN]™_~abcdefghi jkImnopgrs
%8> O*+,—. /0123456789 ; <=>?@ABCDEFGHIJKLMNOPQRSTUMWXYZ\]™_“abcdefghi jklImnopgrst

Troubleshooting

Here’s a list of the most common problems and how to solve them.

Table 15-1: Common printer problems

Problem

Cause

The printer prints, but the last
page doesn’t appear. The status
shows that the printer still has
data in the buffer. After several
minutes, the last page may
appear.

The lines wander off to the right
edge of the paper and are never
seen again.

Individual characters or whole
sections of text are missing.

The output contained completely
unintelligible random characters.

printers.mm,v v4.17 (2003/04/02 06:48:05)

Your output data is not ejecting the last page. The
printer is configured to either wait for an explicit
eject request (the ASCII Form feed character, Ctrl-
L) or to eject after a certain period of time.

You have a choice as to what you do about this.
Usually you can configure the printer, or you could
get the print filter to print a form feed character at
the end of the job. Figure 15-1 already does this—
that’s the printf "\f".

This is the staircase effect. Refer to page 268 for a
couple of solutions.

This problem occurs almost only on serial printers.
It’s a result of incorrect handshaking—see page 330
and the online handbook for more details.

On a serial printer, if the characters appear slowly,
and there’s a predominance of the characters {]},
this probably means that you have set up the
communication parameters incorrectly. Check the
online handbook for a solution. Make sure you
don’t confuse this problem with the following one.

Troubleshooting

270

Problem

Cause

The text was legible, but it bore
no relationship to what you want-
ed to print.

The display on the printer shows
that data are arriving, but the
printer doesn’t print anything.

You get the message | pr: can-
not create freebiel.seq

One possibility is that you are sending PostScript
output to your printer. See the discussion on page
271 to check if it is PostScript. If it is, your printer
is not interpreting it correctly, either because it
doesn’t understand PostScript, or because it has
been confused (see the discussion on page 268 for
one reason).

You might be sending normal text to a PostScript
printer that doesn’t understand normal text. In this
case, too, you will need a filter to convert the text to
PostScript—the opposite of the previous problem.

Alternatively, your printer port may not be inter-
rupting correctly. This will not stop the printer from
printing, but it can take up to 20 minutes to print a
page. You can fix this by issuing the following
command, which puts the printer /dev/lptO into
polled mode:

I ptcontrol -p

You have forgotten to create the spool directory
Ivar/spool/output/frecbie.

Using the spooler

Using the spooler is relatively simple. Instead of outputting data directly to the printer,
you pipe it to the spooler Ipr command. For example, here is the same print command,
first printing directly to the printer, and secondly via the spooler:

ps waux > /dev/|pt0
$ ps waux | Ipr

Note the difference in prompt: you have to be root to write directly to the printer, but
normally anybody can write to the spooler. The spooler creates a job from this data. You
can look at the current print queue with the Ipg program:

$ 1pg

waiting for | p to becone ready (offline ?)

Rank Onaner ob Files Total S ze
1st grog 313 (standard input) 9151 bytes
2nd grog 30 (standard input) 3319 bytes
3rd yvonne 31 (standard input) 3395 bytes
4th r oot 0 (standard i nput) 2611 bytes

printers.mm,v v4.17 (2003/04/02 06:48:05)

271 Chapter 15: Printers

The first line is a warning that Ipd can’t currently print. Take it seriously. In this
example, the printer was deliberately turned off so that the queue did not change from one
example to the next.

Normally, the job numbers increase sequentially: this particular example came from three
different machines. You can get more detail with the -1 option:

$Ipg -1

waiting for I p to becone ready (offline ?)

grog: 1st [j ob 313freebi e. exanpl e. or g]
(standard i nput) 9151 bytes

grog: 2nd [j ob 030pr est 0. exanpl e. or g]
(standard i nput) 3319 bytes

yvonne: 3rd [j ob 031presto. exanpl e. or g]
(standard i nput) 3395 bytes

root: 4th [j ob 000bunbl e. exanpl e. or g]
(standard i nput) 2611 bytes

Removing print jobs

Sometimes you may want to delete spool output without printing it. You don’t need to do
this because of a printer configuration error: just turn the printer off, fix the configuration
error, and turn the printer on again. The job should then be printed correctly. But if you
discover that the print job itself contains garbage, you can remove it with the lprm
program. First, though, you need to know the job number. Assuming the list we have
above, we might want to remove job 30:

1 prm 30
df A030pr est 0. exanpl e. org dequeued
cf AO30pr est 0. exanpl e. org dequeued

1 pqg

waiting for | p to becone ready (offline ?)

Rank Onaner Job Files Total S ze
1st grog 313 (standard input) 9151 bytes
2nd yvonne 31 (standard input) 3395 bytes
3rd r oot 0 (standard input) 2611 bytes

If the printer is offline, it may take some time for the Iprm to complete.

PostScript

We’ve encountered the term PostScript several times already. It’s a Page Description
Language. With it, you can transmit detailed documents such as this book electronically
and print them out in exactly the same form elsewhere.! PostScript is a very popular
format on the World Wide Web, and web browsers like Netscape usually print in
PostScript format.

1. This is in fact the way this book was sent to the printers.
printers.mm,v v4.17 (2003/04/02 06:48:05)

PostScript 272

Most other document formats describe special print features with escape sequences,
special commands that start with a special character. For example, the HP LaserJet and
PCL formats use the ASCII ESC character (Ox1b) to indicate the beginning of an escape
sequence. PostScript uses the opposite approach: unless defined otherwise, the contents
of a PostScript file are commands, and the printable data is enclosed in parentheses.
PostScript documents start with something like:

% PS- Adobe- 3. 0

%treator: groff version 1.10
%treationDate: Fri Qct 31 18: 36:45 1997
%@ocunent NeededResour ces: font Synbol
%4 font Courier

%4 font Ti nes- Roman

%®ocunent Suppl i edResour ces: fil e i nmages/ vi pw ps
%8Fages: 32

%FageC der: Ascend

%&xientation: Portrait

%&ndComment s

9%8/Begi NPr ol og

This is the prologue (the beginning) of the PostScript output for this chapter. The
prologue of such a program can be several hundred kilobytes long if it includes
embedded fonts or images. A more typical size is about 500 lines.

You can do a number of things with PostScript:

* You can look at it with gv, which is in the Ports Collection. We’ll look at this option
below.

e Many printers understand PostScript and print it directly. If yours does, you probably
know about it, since it’s an expensive option. In case of doubt, check your printer
manual.

e If your printer doesn’t understand PostScript, you can print with the aid of
ghostscript. The apsfilter port does this for you.

Viewing with gv

gv is part of the instant workstation port that we discussed on page 93. To view a file
with gv, simply start it:

$ gv filenane &

If you don’t specify a file name, you get a blank display. You can then open a file
window by pressing o, after which you can select files and display them. Figure 15-2
shows the display of a draft version of this page with an overlaid open window at the top
right. The Open File window contains a field at the top into which you can type the name
of a file. Alternatively, the columns below, with scroll bars, allow you to browse the
current directory and the parent directories.

The window below shows the text of the previous page (roughly) on the right hand side.
Instead of scroll bars, there is a scroll area below the text Save Mar ked. You can scroll
the image in all directions by selecting the box with the left mouse button and moving

printers.mm,v v4.17 (2003/04/02 06:48:05)

273 Chapter 15: Printers

around. At top left are menu buttons that you can select with the left mouse button. Note
also the button 1. 414 at the top of the window: this is the magnification of the image.
You can change it by selecting this button: a menu appears and gives you a range of
magnifications to choose from.

The column to the right of these buttons is a list of page numbers. You can select a page
number with the middle mouse button. You can also get an enlargement display of the
text area around the mouse cursor by pressing the left button.

- Q¥ home Mook FraelsD-4/C haptarcomplata/ ps/printers.ps |
File | State Page Portrait 1.414 Ad | 1eBSD-4/Chap wleterpsiprin| Thu Dec 5 17:32:20 2(
| Fhd Sz | = Cpon Fila_
I Mome/Book/FreeBSD-4/Chapter/complete/ps!
Open i i
Beion Al 4ol ,;nm I F_toswt Diractory Directorias
| Brint Marked| Book If““"’s: | o .*
| Save Al FreeBSD-4 [1] nis.ps
Save Marked| C"aﬂii: pors.ps
m though, you need to know ;mpﬁne s;;lhsizﬂps
above, we might want to remef————| prin?:sps
e problems ps
- quaeais |
Al esto. B {1 L i =
sea0s Opresto. example.org dsquened o 5'?:;"-*’*
waits For 1f
Open Fil cel
LA S|
ad yvoaae 31 & dard Laput]) 33¥5 bytea
ird root o (standard input) 2611 bytes

If the printer is offline, it may take some time for the lprm to complete.

PostScript

We've encoumtered the tern PosiScripr several times already. It's a
402 powerful Page Description Language. With it, you can transmit detailed
:g documents such as this book electronically and print them out in exactly

the same form elsewhere. PostScript is a very popular format on the
World-Wide Web, and web browsers like Netscape usually print in

PostScript format,

Most other document formats describe special print feamres with escape
T

LTI er e emacial _canuvnande nchich etaer nrith o enacial shaeaerare

Figure 15-2: gv display

Printing with ghostscript

If your printer doesn’t support PostScript, you can still print some semblance of the
intended text with the help of ghostscript. The results are very acceptable with modern
laser and inkjet printers, less so with older dot matrix printers.

To print on your particular printer, you first need to find a driver for it in ghostscript. In
this context, the term driver means some code inside ghostscript that converts the data
into something that the printer can print.

We’ve already seen how to use /etc/printcap. In this case, we’ll need an input filter, a
script or program that transforms the PostScript data into a form that the printer
understands. The entry in /etc/printcap is pretty much the same for all printers:

printers.mm,v v4.17 (2003/04/02 06:48:05)

PostScript 274

ps| HP CificeJet 725 with PostScript:\
1 p=/ dev/ | pt 0: sd=/ var/ spool / out put/ col our: | f=/var/l og/ | pd-errs: sh: mx#0: \
cif=/usr/local/libexec/psfilter:

This entry defines a printer called ps. The comment states that it’s an HP OfficeJet, but
that’s only a comment. Obviously you should choose a comment that matches the printer
you really have.

The printer is connected to /dev/Ipt0, the first parallel printer. Spool data is collected in
the directory /var/spool/output/colour. You must create this directory, or printing will
fail, and depending on what you use to print, you may not even see any error messages.
They also don’t appear on the log file, which in this case is /var/log/lpd-errs.

The important entry is in the last line, which refers to the input filter /usr/local/libexec/ps-
filter. This file contains the instructions to convert the PostScript into something that the
printer can understand. For example, for the HP OfficeJet we’re talking about here, it
contains:

#/bi n/ sh
/usr/local /bin/gs -sDEM CE=pcl 3 -qg -sPaper S ze=a4 - dNCPAUSE -sQutputFi |l e=- -

These options state:

e Use ghostscript device pcl3. This is the driver to choose for most Hewlett Packard
inkjet printers. We’ll see alternatives for other printers below.

e The output file is stdin (see page 127). By convention, a number of programs use the
character - to represent the stdout stream.

e - means quiet. Normally ghostscript outputs a message on startup, and it often
outputs other informative messages as well. In this case, we’re using it as a filter, so
we don’t want any output except what we print.

e Don’t pause between pages. If you don’t specify this parameter, ghostscript waits
for a key press at the end of each page.

e The paper size is the international A4 format. By default, ghostscript produces
output for American standard 8.5 x 10 inch ““letter”” paper.

* The character - by itself tells ghostscript that the input is from stdin. Together with
the output to stdout, this makes ghostscript function as a filter.

Which driver?

The previous example used the driver for the HP DeskJet. Well, to be more precise, it
used one of a plethora of drivers available. You can find more information in the HTML
driver documentation at /usr/local/share/ghostscript/7.05/doc/Devices.htm. The 7.05 in
the name refers to the release of ghostscript, which will change.

The documentation isn’t the easiest to read. It’s probably older than your printer, so
there’s a good chance that it won’t mention your specific printer model. You may need to
experiment a little before you get things working the way you want.

printers.mm,v v4.17 (2003/04/02 06:48:05)

275 Chapter 15: Printers

Printer drivers for DeskJets

There are at least six sets of drivers for HP DeskJets. They’re all described in
Devices.htm, but the following summary may help:

* Hewlett Packard supply their own drivers. In addition to ghostscript, they require
server software that you can install from the Ports collection (/usr/ports/print/hpijs).

* Next come three different independently written drivers for specific models of
DeskJet, probably all now obsolete. If you recognize your printer or something
similar in one of them, that’s a good first choice.

* Next comes the generic pcl3 driver that was used in the example above. It’s not
mentioned in the documentation.

* Finally, uniprint is a completely different driver framework for a number of different
makes of printer. It requires a slightly different command line, and we’ll look at it
separately below.

If you’re using a DeskJet, you have the choice. Unfortunately, there’s no way to know
which is best until you’ve tried them all. Similar considerations apply to other makes of
printer.

uniprint drivers

The uniprint drivers have a somewhat different kind of interface. They’re described
towards the end of the same Deviceshtm file. To use them, change the driver
specification as in the following example, that refers to an Epson

#/bi n/ sh
/usr/local /bin/gs @tc500ph.upp -qg -sPaperS ze=a4 - dNOPAUSE -sQutputFile= - -c quit

The differences here are:
e The name of the driver (stc500ph.upp) is specified differently.

e The line ends with a command to the driver itself (-¢ qui t). The exact meaning is
not documented, though it’s easy to guess.

Which drivers?

Another problem you might encounter is that it’s possible to specify the drivers you want
in your ghostscript executable when you build the port. It’s quite possible that the
drivers described in Devices.htm don’t exist on your system. To find out, run ghostscript
interactively with the - h (help) option:

$gs -h

Q\U CGhostscript 7.05 (2002- 04-22)

Copyright (©Q 2002 artofcode LLGC Benicia, CA Al rights reserved.

Usage: gs [switches] [filel.ps file2.ps ...]

Mbst frequently used sw tches: (you can use # in place of =)
- dNCPAUSE no pause after page -q ‘quiet’, fewer nessages
- g<wi dt h>x<hei ght > page size in pixels -r<res> pixels/inch resol ution
- SDEV CE=<devnane> sel ect device -dBATCH exit after last file
-sQutputFile=<file> select output file: - for stdout, |conmmand for pipe,

printers.mm,v v4.17 (2003/04/02 06:48:05)

—_——

PostScript 276

enbed %l or %d for page #

Input formats: PostScript PostScriptLevel 1 PostScriptLevel 2 PDF
Avai | abl e devi ces:

x11 x1lal pha x1lcnyk x1lgray2 x1igray4 x1lnono x11rgléx x11rg32x nu2k
nd5k nd50Mono md50Eco ndlxMono bj 10e bj 10v bj 10vh bj 200 bj c600 bj c800
lips2p Iips3 lips4 bjc880j |ipsdv uniprint dnprt epag escpage | p2000

al ¢8600 al ¢8500 al c2000 al c4000 | p8800c | p8300c | p8500c | p3000c | p8200c

| p8000C epl 5900 epl 5800 epl 2050 epl 2050p epl 2120 | p7500 | p2400 | p2200

| p9400 | p8900 | p8700 | p8100 | p7700 | p8600F | p8400f | p8300f | p1900 | p9600s
| p9300 | p9600 | p8600 | p1800 M) c180 m ¢360 nj 720 nj 500c desk| et dj et 500
cdeskj et cdj col or cdj nono cdj 550 cdj 670 cdj 850 cdj 880 cdj 890 cdj 1600

cdj 970 laserjet ljetplus ljet2p ljet3 Ijet3d Ijetd ljet4d cljet5 cljet5c
cljet5pr Ij5nmono |j5gray pj pjxl pjxl 300 pxl mono pxlcolor pcl3 hpdj ijs
npdl rpdl gdi bnpnono bnpgray bnpl6 bnp256 bnpl6ém bnp32b bnpsepl bnpsep8
faxg3 faxg32d faxg4 jpeg | peggray pcxnono pcxgray pcx16 pcx256 pex24b
pcxenyk pdfwite bit bitrgb bitcnyk pbm pbnraw pgm pgntaw pgnm pgnnr aw
pnm pnmaw ppm ppnraw pkm pknraw pksm pksnraw pngnono pnggray pnglé
png256 pnglém psmono psgray psrgb pswite epswite tifferle tiffg3
tiffg32d tiffgd tiffl2nc tiff24nc tifflzw tiffpack nul | page

Search pat h:

. [opt/lib/lghostscript : /opt/lib/ghostscript/fonts :
/opt/liblghostscript/garanond : /usr/local /share/ ghostscript/7.05/1ib :
/usr/ | ocal / shar e/ ghostscript/fonts

For nore infornati on, see /usr/local/share/ghostscript/7.05/ doc/ Use. ht m
Report bugs to bug-gs@host script.com using the formin Bug-formhtm

PDF

PDF, or Page Description Format, is a newer format for transferring print documents.
Like PostScript, it comes from Adobe, and it is becoming increasingly important as a
document interchange format on the Internet.

There are two ways to handle PDF:

Use Acrobat Reader, available in the Ports Collection as /usr/src/print/acroread5.
The 5 refers to the version of Acrobat Reader and may change. Acrobat Reader is
proprietary, but it’s available for free, unfortunately only in binary form. It is quite a
convenient way to view PDF documents, and it can print them in PostScript formats.
This means that you can also use it to convert PDF to PostScript.

ghostscript also understands PDF, and it is capable of converting between PostScript
and PDF in both directions. ghostscript provides two scripts, pdf2ps and ps2pdf,
which act as a front end to ghostscript to make the job easier.

Unlike PostScript, an editor is available for PDF (Acrobat, the big brother of Acrobat
Reader). Unfortunately, it’s proprietary and not free, and worse still, it’s not available for
FreeBSD.

printers.mm,v v4.17 (2003/04/02 06:48:05)

In this chapter:

* Network layering

* The physical network
connection

e Ethernet

* Wireless LANs

e The reference
network

Networks and the
Internet

In this part of the book we’ll look at the fastest-growing part of the industry: networks,
and in particular the Internet.

The industry has seen many different kinds of network software:

* Years ago, the CCITT started a group of recommendations for individual protocols.
The CCITT is now called the ITU-T, and its data communications recommendations
have not been wildly successful. The best known is probably recommendation X.25,
which still has a large following in some parts of the world. An X.25 package was
available for FreeBSD, but it died for lack of love. If you need it, you’ll need to
invest a lot of work to get it running.

e IBM introduced their Systems Network Architecture, SNA, decades ago. It’s still
going strong in IBM shops. FreeBSD has minimal support for it in the Token Ring
package being developed in FreeBSD-CURRENT.

e Early UNIX machines had a primitive kind of networking called UUCP, for UNIX to
UNIX Copy. It ran over dialup phone lines or dedicated serial connections. System
V still calls this system Basic Networking Utilities, or BNU. Despite its primi-
tiveness, and despite the Internet, there are still some applications where UUCP
makes sense, but this book discusses it no further.

e The Internet Protocols were developed by the US Defense Advanced Research
Projects Agency (DARPA) for its ARPANET network. The software was originally
developed in the early 80s by BBN and the CSRG at the University of California at
Berkeley. The first widespread release was with the 4.2BSD operating system—the

netintro.mm,v v4.16 (2003/04/02 06:48:55) 277

The Complete FreeBSD 278

granddaddy of FreeBSD. After the introduction of IP, the ARPANET gradually
changed its name to Internet.

The Internet Protocol is usually abbreviated to IP. People often refer to it as TCP/IP,
which stands for Transmission Control Protocol/Internet Protocol. In fact, TCP is
just one of many other protocols that run on top of IP. In this book, I refer to the IP
protocol, but of course FreeBSD includes TCP and all the other standard protocols.
The IP implementation supplied with FreeBSD is the most mature technology you
can find anywhere, at any price.

In this part of the book, we’ll look only at the Internet Protocols. Thanks to its
background, FreeBSD is a particularly powerful contender in this area, and we’ll go into
a lot of detail about how to set up and operate networks and network services. In the
chapters following, we’ll look at:

How the Internet works, which we’ll look at in the rest of this chapter.

How to set up local network connections in Chapter 17, Configuring the local
network.

How to select an Internet Service Provider in Chapter 18, Connecting to the Internet.
How to use the hardware in Chapter 19, Serial communications.

How to use PPP in Chapter 20, Configuring PPP.

How to set up domain name services in Chapter 21, The Domain Name Service.

How to protect yourself from intruders in Chapter 22, Firewalls, IP aliasing and
proxies. This chapter also describes proxy servers and Network Address Translation.

How to solve network problems in Chapter 23, Network debugging.

Most network services come in pairs, a client that requests the service, and a server
that provides it. In Chapter 24, Basic network access: clients we’ll look at the client
side of the World Wide Web (“web browser”), command execution over the net,
including ssh and telnet, copying files across the network, and mounting remote file
systems with NFS.

In Chapter 25, Basic network access: servers we’ll look at the server end of the same
services. In addition, we’ll look at Samba, a server for Microsoft’s Common Internet
File System, or CIFS.

Electronic mail is so important that we dedicate two chapters to it, Chapter 26,
Electronic mail: clients and Chapter 27, Electronic mail: servers.

The rest of this chapter looks at the theoretical background of the Internet Protocols and
Ethernet. You can set up networking without understanding any of it, as long as you and
your hardware don’t make any mistakes. This is the approach most commercial systems
take. It’s rather like crossing a lake on a set of stepping stones, blindfolded. In this book,
| take a different approach: in the following discussion, you’ll be inside with the action,
not on the outside looking in through a window. It might seem unusual at first, but once
you get used to it, you’ll find it much less frustrating.

netintro.mm,v v4.16 (2003/04/02 06:48:55)

279 Chapter 16: Networks and the Internet

Network layering

One of the problems with networks is that they can be looked at from a number of
different levels. End-users of PCs access the World Wide Web (WWW), and often
enough they call it the Internet. That’s just plain wrong. At the other end of the scale is
the Link Layer, the viewpoint you’ll take when you first create a connection to another
machine.

Years ago, the International Standards Organization came up with the idea of a seven-
layered model of networks, often called the OS reference model. Why OSl and not 1SO?
O3 stands for Open Systems Interconnect. Since its introduction, it has become clear
that it doesn’t map very well to modern networks. W. Richard Stevens presents a better
layering in TCP/IP Illustrated, Volume 1, page 6, shown here in Figure 16-1.

Application layer

Transport layer

Network layer

Link layer

Figure 16-1: Four-layer network model

We’ll look at these layers from the bottom up:

* The Link layer is responsible for the lowest level of communication, between
machines that are physically connected. The most common kinds of connection are
Ethernet and telephone lines. This is the only layer associated with hardware.

* The Network layer is responsible for communication between machines that are not
physically connected. For this to function, the data must pass through other machines
that are not directly interested in the data. This function is called routing. We’ll look
at how it works in Chapter 17.

* The Transport Layer is responsible for communication between any two processes,
regardless of the machines on which they run.

* The Application Layer defines the format used by specific applications, such as email
or the Web.

netintro.mm,v v4.16 (2003/04/02 06:48:55)

Network layering 280

The link layer

Data on the Internet is split up into packets, also called datagrams, which can be
transmitted independently of each other. The link layer is responsible for getting packets
between two systems that are connected to each other. The most trivial case is a point-to-
point network, a physical connection where any data sent down the line arrives at the
other end. More generally, though, multiple systems are connected to the network, as in
an Ethernet. This causes a problem: how does each system know what is intended for it?

IP solves this problem by including a packet header in each IP packet. Consider the
header something like the information you write on the outside of a letter envelope:
address to send to, return address, delivery instructions. In the case of IP, the addresses
are 32-bit digits that are conventionally represented in dotted decimal notation: the value
of each byte is converted into decimal. The four values are written separated by dots.
Thus the hexadecimal address Oxdf 932501 would normally be represented as
223.147. 37. 1.

UNIX uses the notation Ox in a number to represent a hexadecimal number. The usage comes
from the C programming language.

As we will see in Chapter 23, it makes debugging much easier if we understand the
structure of the datagrams, so I’ll show some of the more common ones in this chapter.
Figure 16-2 shows the structure of an IP header.

0 31
. IP Header . .
0 \ersion Type of service Total length in bytes
length

4 identification flags fragment offset

8 Time to live Protocol Header Checksum
12 Source IP address
16 Destination IP address

Figure 16-2: | P Header

We’ll only look at some of these fields; for the rest, see TCP/IP Illustrated, Volume 1.

e The Version field specifies the current version of IP. This is currently 4. A newer
standard is IPv6, Version number 6, which is currently in an early implementation
stage. IPv6 headers are very different from those shown here.

* The time to live field specifies how many times the packet may be passed from one
system to another. Each time it is passed to another system, this value is
decremented. If it reaches O, the packet is discarded. This prevents packets from
circulating in the net for ever as the result of a routing loop.

netintro.mm,v v4.16 (2003/04/02 06:48:55)

281 Chapter 16: Networks and the Internet

e The protocol specifies the kind of the packet. The most common protocols are TCP
and UDP, which we’ll look at in the section on the network layer.

* Finally come the source address, the address of the sender, and the destination
address, the address of the recipient.

The network layer

The main purpose of the network layer is to ensure that packets get delivered to the
correct recipient when it is not directly connected to the sender. This function is usually
called routing.

Imagine routing to be similar to a postal system: if you want to send a letter to somebody
you don’t see often, you put the letter in a letter box. The people or machines who handle
the letter look at the address and either deliver it personally or forward it to somebody
else who is closer to the recipient, until finally somebody delivers it.

Have you ever received a letter that has been posted months ago? Did you wonder where
they hid it all that time? Chances are it’s been sent round in circles a couple of times.
That’s what can happen in the Internet if the routing information is incorrect, and that’s
why all packets have a time to live field. If it can’t deliver a packet, the Internet Protocol
simply drops (forgets about) it. You may find parallels to physical mail here, too.

It’s not usually acceptable to lose data. We’ll see how we avoid doing so in the next
section.

The transport layer

The transport layer is responsible for end-to-end communication. The IP address just
identifies the interface to which the data is sent. What happens when it gets there? There
could be a large number of processes using the link. The IP header doesn’t contain
sufficient information to deliver messages to specific users within a system, so two
additional protocols have been implemented to handle the details of communications
between “end users.”! These end users connect to the network via ports, or
communication end points, within individual machines.

TCP

The Transmission Control Protocol, or TCP, is a so-called reliable protocol: it ensures
that data gets to its destination, and if it doesn’t, it sends another copy. If it can’t get
through after a large number of tries (14 tries and nearly 10 minutes), it gives up, but it
doesn’t pretend the data got through. To perform this service, TCP is also connection
oriented: before you can send data with TCP, you must establish a connection, which is
conceptually similar to opening a file.

To implement this protocol, TCP packets include a TCP header after the IP header, as
shown in Figure 16-3. This figure ignores the possible options that follow the IP header.
The offset of the TCP header, shown here as 20, is really specified by the value of the IP

1. In practice, these end users are processes.
netintro.mm,v v4.16 (2003/04/02 06:48:55)

Network layering 282

Header length field in the first byte of the packet. This is only a 4 bit field, so it is
counted in words of 32 bits: for a 20 byte header, it has the value 5.

0 31
. IP Header . .
0 \ersion Type of service Total length in bytes
length
4 identification flags fragment offset
8 Time to live Protocol Header Checksum
12 Source IP address
16 Destination IP address
20 source port destination port
24 sequence number
28 acknowledgment number
TCP Header ; i
32 reserved flags window size
length
36 TCP checksum urgent pointer

Figure 16-3: TCP Header with I P header

A number of fields are of interest when debugging network connections:

* The sequence number is the byte offset of the last byte that has been sent to the other
side.

* The acknowledgment number is the byte offset of the last byte that has received from
the other side.

* The window size is the number of bytes that can be sent before an acknowledgment is
required.

These three values are used to ensure efficient and reliable transmission of data. For each
connection, TCP maintains a copy of the highest acknowledgment number received from
the other side and a copy of all data that the other side has not acknowledged receiving.
It does not send more than window size bytes of data beyond this value. If it does not
receive an acknowledgment of transmitted data within a predetermined time, usually one
second, it sends all the unacknowledged data again and again at increasingly large
intervals. If it can’t transmit the data after about ten minutes, it gives up and closes the
connection.

netintro.mm,v v4.16 (2003/04/02 06:48:55)

283 Chapter 16: Networks and the Internet

UbDP

The User Datagram Protocol, or UDP, is different: it’s an unreliable protocol. It sends
data out and never cares whether it gets to its destination or not. So why do we use it if
it’s unreliable? It’s faster, and thus cheaper. Consider it a junk mail delivery agent: who
cares if you get this week’s AOL junk CD-ROM or not? There will be another one in
next week’s mail. Since it doesn’t need to reply, UDP is connectionless: you can just
send a message off with UDP without worrying about establishing a connection first. For
example, the rwhod daemon broadcasts summary information about a system on the
LAN every few minutes. In the unlikely event that a message gets lost, it’s not serious:
another one will come soon.

0 31
. IP Header . .
0 \ersion Type of service Total length in bytes
length

4 identification flags fragment offset

8 Time to live Protocol Header Checksum
12 Source IP address
16 Destination IP address
20 source port destination port
24 sequence number checksum

Figure 16-4: UDP Header with I P header

Port assignment and Internet services

A port is simply a 16 bit number assigned to specific processes and which represents the
source and destination end points of a specific connection. A process can either request
to be connected to a specific port, or the system can assign one that is not in use.

RFC 1700 defines a number of well-known ports that are used to request specific services
from a machine. On a UNIX machine, these are provided by daemons that listen on this
port number—in other words, when a message comes in on this port number, the IP
software passes it to them, and they process it. These ports are defined in the file
[etc/services. Here’s an excerpt:

netintro.mm,v v4.16 (2003/04/02 06:48:55)

Network layering 284

Network services, Internet style
#

WELL KNOMAN PCRT NUMBERS

#

ftp 21/tcp #File Transfer [Control]

ssh 22/tcp #Secure Shell Login

ssh 22/ udp #Secure Shell Login

tel net 23/tcp

snip 25/tcp nai | #Sinpl e Mail Transfer

snip 25/ udp nai | #Sinpl e Mail Transfer

donai n 53/tcp #Donai n Nane Server

donai n 53/ udp #Donai n Nane Server

http 80/tcp WA W ht t p #\Nrld Wde Wb HITP
http 80/ udp waw W ht t p #Nrld Wde Wb HITP

This file has a relatively simple format: the first column is a service name, and the second
column contains the port number and the name of the service (either tcp or udp).
Optionally, alternative names for the service may follow. In this example, sm p may also
be called nai | , and ht t p may also be called v,

When the system starts up, it starts specific daemons. For example, if you’re running
mail, you may start up sendmail as a daemon. Any mail requests coming in on port 25
(snt p) will then be routed to sendmail for processing.

Network connections

You can identify a TCP connection uniquely by five parameters:

* The source IP address.

e The source port number. These two parameters are needed so that the other end of
the connection can send replies back.

e The destination IP address.
e The destination port number.
e The protocol (TCP).

When you set up a connection, you specify the destination IP address and port number,
and implicitly also the protocol. Your system supplies the source IP address; that’s
obvious enough. But where does the source port number come from? The system
literally picks one out of a hat; it chooses an unused port number somewhere above the
“magic” value 1024. You can look at this information with netstat:

$ netstat

Proto Recv-Q Send-Q Local Address For ei gn Addr ess (state)
tcpd 0 0 presto.snmp 203. 130. 236. 50. 1825 ESTABLI SHED
tcpd 0 0 presto. 3312 andant e. ssh ESTABLI SHED
tcpd 0 0 presto. 2593 hub. f r eebsd. or g. ssh ESTABLI SHED
tcpd 0 0 presto.snmp WA auug. org. au. 3691 ESTABLI SHED

As you can see, this is the view on a system called presto. We’ll see presto again in our
sample network below. Normally you’ll see a lot more connections here. For each
connection, the protocol is t cp4 (TCP on IPv4). The first line shows a connection to the
port srmip on presto from port 1825 on a machine with the IP address 203.130.236.50.

netintro.mm,v v4.16 (2003/04/02 06:48:55)

285 Chapter 16: Networks and the Internet

netstat shows the IP address in this case because the machine in question does not have
reverse DNS mapping. This machine is sending a mail message to presto. The second
and third lines show outgoing connections from presto to port ssh on the systems
andante and hub.freebsd.org. The last is another incoming mail message from
www.auug.org.au. Graphically, you could display the connection between presto and
www.auug.org.au like this:

IP223. 147.37. 2 IP 150. 101. 248. 57
presto WWW
Port 25 TCP Port 3691

Note that the port number for sm p is 25.
For various reasons, it’s not always possible to connect directly in this manner:

e The Internet standards define a number of IP address blocks as non-routable. In these
cases, we’ll have to translate at least the IP addresses to establish connection. This
technique is accordingly called Network Address Translation or NAT, and we’ll look
at it in Chapter 22, on page 393.

* For security reasons, it may not be advisable to make direct connections to servers via
the Internet. Instead, the only access may be via an encrypted session on a different
port. This technique is called tunneling, and we’ll look at it in Chapter 24, on page
422.

The physical network connection

The most obvious thing about your network connection is what it looks like. It usually
involves some kind of cable going out of your computer,® but there the similarity ends.
FreeBSD supports most modern network interfaces:

e The most popular choice for Local Area Networks is Ethernet, which transfers data
between a number of computers at speeds of 10 Mb/s, 100 Mb/s or 1000 Mb/s (1
Gbh/s). We’ll look at it in the following section.

* An increasingly popular alternative to Ethernet is wireless networking, specifically
local networks based on the IEEE 802.11 standard. We’ll look at them on page 291.

* FDDI stands for Fiber Distributed Data Interface, and was originally run over glass
fibres. In contrast to Ethernet, it ran at 100 Mb/s instead of 10 Mb/s. Nowadays
Ethernet runs at 100 Mb/s as well, and FDDI runs over copper wire, so the biggest
difference is the protocol. FreeBSD does support FDDI, but we won’t look at it here.

* Token Ring is yet another variety of LAN, introduced by IBM. It has never been very
popular in the UNIX world. FreeBSD does have some support for it, but it’s a little
patchy, and we won’t look at it in this book.

1. Maybe it won’t. For example, you might use wireless Ethernet, which broadcasts in the microwave radio
spectrum.

netintro.mm,v v4.16 (2003/04/02 06:48:55)

The physical network connection 286

e Probably the most common connection to a Wide-Area Network is via a telephone
with a modem or with DSL. Modems have the advantage that you can also use them
for non-IP connections such as UUCP and direct dial up (see page 338), but they’re
much slower than DSL. If you use a modem to connect to the Internet, you’ll almost
certainly use the Point to Point Protocol, PPP, which we look at on page 339. In
some obscure cases you may need to use the Serial Line Internet Protocol, SLIP, but
it’s really obsolete.

e An alternative to ADSL or modem lines is cable networking, which uses TV cable
services to supply Internet connectivity. In many ways, it looks like Ethernet.

* In some areas, Integrated Services Digital Networks (ISDNs) are an attractive
alternative to modems. They are much faster than modems, both in call setup time
and in data transmission capability, and they are also much more reliable. FreeBSD
includes the isdn4bsd package, which was developed in Germany and allows the
direct connection of low-cost German ISDN boards to FreeBSD. In other parts of the
world, ISDN is not cost effective, and it’s also much slower than ADSL and cable.

* In some parts of the world, satellite links are of interest. In most cases, they are
unidirectional: they transfer data from the Internet to your system (the downlink) and
require some other connection to get data back to the Internet (the uplink).

* If you have a large Internet requirement, you may find it suitable to connect to the
Internet via a Leased Line, a telephone line that is permanently connected. This is a
relatively expensive option, of course, and we won’t discuss it here, particularly as
the options vary greatly from country to country and from region to region.

The decision on which WAN connection you use depends primarily on the system you
are connecting to, in many cases an Internet Service Provider or ISP. We’ll look at ISPs
in Chapter 18.

Ethernet

In the early 1970s, the Xerox Company chartered a group of researchers at its Palo Alto
Research Center (PARC) to brainstorm the Office of the Future. This innovative group
created the mouse, the window interface metaphor and an integrated, object-oriented
programming environment called Smalltalk. In addition, a young MIT engineer in the
group named Bob Metcalfe came up with the concept that is the basis of modern local
area networking, the Ethernet. The Ethernet protocol is a low-level broadcast packet-
delivery system that employed the revolutionary idea that it was easier to resend packets
that didn’t arrive than it was to make sure all packets arrived. There are other network
hardware systems out there, IBM’s Token Ring architecture and Fiber Channel, for
example, but by far the most popular is the Ethernet system in its various hardware
incarnations. Ethernet is by far the most common local area network medium. There are
three types:

netintro.mm,v v4.16 (2003/04/02 06:48:55)

287 Chapter 16: Networks and the Internet

1. Originally, Ethernet ran at 10 Mb/s over a single thick coaxial cable, usually bright
yellow in colour. This kind of Ethernet is often referred to as thick Ethernet, also
called 10B5, and the line interface is called AUI. You may also hear the term yellow
string (for tying computers together), though this term is not limited to thick Ethernet.
Thick Ethernet is now obsolete: it is expensive, difficult to lay, and relatively
unreliable. It requires 50 Q resistors at each end of the cable to transmit signals
correctly. If you leave these out, you won’t get degraded performance: the network
Will Not Work at all.

2. As the name suggests, thin Ethernet is thin coaxial cable, and otherwise quite like
thick Ethernet. It is significantly cheaper (thus the term Cheapernet), and the only
disadvantage over thick Ethernet is that the cables can’t be quite as long. The cable is
called RG58, and the cable connectors are called BNC. Both terms are frequently
used to refer to this kind of connection, as is 10 Base 2. You’ll still see thin Ethernet
around, but since it’s effectively obsolete. Performance is poor, and it’s no cheaper
than 100 Mb/s Ethernet. Like thick Ethernet, all machines are connected by a single
cable with terminators at each end.

3. Modern Ethernets run at up to 1000 Mb/s over multi-pair cables called UTP, for
Unshielded Twisted Pair. Twisted pair means that each pair of wires are twisted to
minimize external electrical influence—after all, the frequencies on a 1000 Mb/s
Ethernet are way up in the UHF range. Unlike coaxial connections, where all
machines are connected to a single cable, UTP connects individual machines to a hub
or a switch, a box that distributes the signals. We’ll discuss the difference between a
hub and a switch on page 288. You’ll also hear the terms 10BaseTP, 100BaseTP and
1000BaseTP.

Compared to coaxial Ethernet, UTP cables are much cheaper, and they are more
reliable. If you damage or disconnect a coaxial cable, the whole network goes down.
If you damage a UTP cable, you only lose the one machine connected to it. On the
down side, UTP requires switches or hubs, which cost money, though the price has
decreased to the point where it’s cheaper to buy a cheap switch and UTP cables rather
than the RG58 cable alone. UTP systems employ a star architecture rather than the
string of coaxial stations with terminators. You can connect many switches together
simply by reversing the connections at one end of a switch-to-switch link. In
addition, UTP is the only medium currently available that supports 100 Mb/s
Ethernet.

How Ethernet works

A large number of systems can be connected to a single Ethernet. Each system has a 48
bit address, the so-called Ethernet address. Ethernet addresses are usually written in
bytes separated by colons (:), for example 0: a0: 24: 37: 0d: 2b. All data sent over the
Ethernet contains two addresses: the Ethernet address of the sender and the Ethernet
address of the receiver. Normally, each system responds only to messages sent to it or to
a special broadcast address.

netintro.mm,v v4.16 (2003/04/02 06:48:55)

Ethernet 288

You’ll also frequently hear the term MAC address. MAC stands for Media Access
Control and thus means the address used to access the network link layer. For Ethernets I
prefer to use the more exact term Ethernet address.

The fact that multiple machines are on the same network gives rise to a problem:
obviously only one system can transmit at any one time, or the data will be garbled. But
how do you synchronize the systems? In traditional Ethernets, the answer is simple, but
possibly surprising: trial and error. Before any interface transmits, it checks that the
network is idle—in the Ethernet specification, this is called Carrier Sense.
Unfortunately, this isn’t enough: two systems might start sending at the same time. To
solve this problem, while it sends, each system checks that it can still recognize what it is
sending. If it can’t, it assumes that another system has started sending at the same time—
this is called a collision. When a collision occurs, both systems stop sending, wait a
random amount of time, and try again. You’ll see this method referred to as CSMA/CD
(Carrier Sense Multiple Access/Callision Detect).

There are a number of problems with this approach:

e The interface needs to listen while sending, so it can’t receive anything while it’s
sending: it’s running in half-duplex mode. If it could send and receive at the same
time (full-duplex mode), the network throughput could be doubled.

* The more active the network, the more likely collisions will be. This slows things
down too, sometimes to a point where the network hardly transmits any traffic.

e The more systems on the network, the less bandwidth is available for each system.

With the point-to-point connections on a UTP-based network, you would think it would
be possible to change some of this. After all, the connections look pretty much like the
same wire that joins two modems together, and modems don’t have collisions, and they
do run in full-duplex mode. The problem is the hub: if you send a packet out to a hub, it
doesn’t know which connector to send it down, so it sends it down all of them, thus
imitating the old Ethernet. To send it just to the destination, it would need to analyze the
Ethernet address in every packet and know where to send it.

This is what a switch does: it learns the Ethernet addresses of each interface on the
network and uses this information to send packets to only the line to which that interface
is connected. There could be more than one if switches are cascaded. This also means
that the line can run in full-duplex mode.

Nowadays the price differential between switches and hubs is very small; go into a
computer market and you’ll see that the prices overlap. If at all possible, buy a switch.

Transmitting Internet data across an Ethernet has another problem. Ethernet evolved
independently of the Internet standards. As a result, Ethernets can carry different kinds
of traffic. In particular, Microsoft uses a protocol called NetBIOS and Novell uses a
protocol called IPX. In addition, Internet addresses are only 32 bits, and it would be
impossible to map them to Ethernet addresses even if they were the same length. The
result? You guessed it, another header. Figure 16-5 shows an Ethernet packet carrying an
IP datagram.

netintro.mm,v v4.16 (2003/04/02 06:48:55)

289 Chapter 16: Networks and the Internet

Finding Ethernet addresses

So we send messages to Ethernet interfaces by setting the correct Ethernet address in the
header. But how do we find the Ethernet address? All our IP packets use IP addresses.
And it’s not a good solution to just statically assign Ethernet addresses to IP addresses:
first, there would be problems if an interface board or an IP address was changed, and
secondly multiple boards can have the same IP address.

Upper destination address

Rest of destination address

Upper source address

Rest of source address Frame type
Versi 1P Reader T f i Total length in byt
ersion e of service otal length in bytes
length » g y
identification flags fragment offset
Time to live Protocol Header Checksum

Source IP address

Destination IP address

source port destination port

sequence number

acknowledgment number

TCP Header

reserved flags window size
length

TCP checksum urgent pointer

Data

Figure 16-5: Ethernet frame with TCP datagram

The chosen solution is the Address Resolution Protocol, usually called ARP. ARP sends
out a message on the Ethernet broadcast address saying effectively “Who has IP address
223.147.37.1? Tell me your Ethernet address.” The message is sent on the broadcast
address, so each system on the net receives it. In each machine, the ARP protocol checks
the specified IP address with the IP address of the interface that received the packet. If
they match, the machine replies with the message “I am IP 223. 147. 37. 1, my Ethernet
address is 00: a0: 24: 37: 0d: 2b™

netintro.mm,v v4.16 (2003/04/02 06:48:55)

Ethernet 290

What systems are on that Ethernet?

Multiple systems can be accessed via an Ethernet, so there must be some means for a
system to determine which other systems are present on the network. There might be a
lot of them, several hundred for example. You could keep a list, but the system has to
determine the interface for every single packet, and a list that long would slow things
down. The preferred method is to specify a range of IP addresses that can be reached via
a specific interface. The computer works in binary, so one of the easiest functions to
perform is a logical and. As a result, you specify the range by a network mask: the
system considers all addresses in which a specific set of bits have a particular value to be
reachable via the interface. The specific set of bits is called the interface address.

For example, let’s look forward to the reference network on page 294 and consider the
local network, which has the network address 223.147.37.0 and the netmask
255. 255. 255. 0. The value 255 means that every bit in the byte is set. The logical and
function says “if a specific bit is set in both operands, set the result bit to 1; otherwise set
it to 0.” Figure 16-6 shows how the system creates a network address from the IP
address 223. 147. 37. 5 and the net mask 255. 255. 255. 0.

@1|o|1|1|1|1|1\]1|o|o|1|o|o|1|1\]0|0|1|o|o|1|0|1\ @M0|0|0|1|o|1\ IP address

]1|1|1|1|1|1|1m]1|1|1|1|1|1|1|1\]1|1|1|1|1|1|1|1\]o|o|o|o|o|o|0|o\ Net mask

]1|1|o|1|1|1|1|1\]1|o|o|1|o|0|1|1\]0|o|1|0|o|1|o|1\]o|0|0|0|o|0W Net address

Figure 16-6: Net mask

The result is the same as the IP address for the first three bytes, but the last byte is 0:
223.147.37.0.

This may seem unnecessarily complicated. An easier way to look at it is to say that the 1
bits of the net mask describe which part of the address is the network part, and the 0 bits
describe which part represents hosts on the network.

Theoretically you could choose your network mask bits at random. In practice, it’s clear
that it makes more sense to make network masks a sequence of binary 1 bits followed by
a sequence of binary 0 bits. It has become typical to abbreviate the network mask to the
number of 1 bits. Thus the network mask 255.255.255.0, with 24 bits set and 8 bits not
set, is abbreviated to / 24. The/ character is always part of the abbreviation.

Address classes

When the Internet Protocols were first introduced, they included the concept of a default
netmask. These categories of address were called address classes. The following classes
are defined in RFC 1375:

netintro.mm,v v4.16 (2003/04/02 06:48:55)

201 Chapter 16: Networks and the Internet

Table 16-1: Address classes

Network Host
Address | Network address | address | Number of
Class | range mask bits bits systems
A | 0-127 255.0.0.0 /8 24 16777216
B 128-191 255.255.0.0 /16 16 65536
C 192- 207 255. 255. 255. 0 124 8 256
F 208- 215 255. 255. 255. 240 /28 4 16
G | 216-219 | (reserved)
H 220- 221 255, 255. 255. 248 129 3 8
K 222-223 255, 255. 255. 254 /31 1 2
D | 224-239 (multicast)
E | 240-255 (reserved)

This method is no longer used for specifying net masks, though the software still defaults
to these values, but it is used for allocating networks. In addition you will frequently hear
the term Class C network to refer to a network with 256 addresses in the range 192-223.
This usage goes back to before RFC 1375.

Unroutable addresses

On occasion you may want to have addresses which are not visible on the global Internet,
either for security reasons or because you want to run Network Address Translation (see
page 393). RFC 1918 provides for three address ranges that should not be routed:
10. 0. 0. 0/ 8 (with last address 10. 255. 255. 255), 172. 16. 0. 0/ 12 (with last address
172. 31. 255. 255), and 192. 168. 0. 0/ 16 (with | ast addr ess
192. 168. 255. 255) .

Wireless LANS

An obvious problem with Ethernet is that you need a cable. As more and more machines
are installed, the cabling can become a nightmare. It’s particularly inconvenient for
laptops: the network cable restricts where you can use the machine.

Wireless network cards have been around for some time, but in the last few years they
have become particularly popular. Modern cards are built around the IEEE 802.11 series
of standards.

The 802 series of standards cover almost all networking devices; don’t let the number 802 suggest
wireless networking. Ethernet is 802.3, for example.

They are usually PCMCIA (PC Card) cards, though some PCI cards are also available.
Currently you’re liable to come across the following kinds of cards:

netintro.mm,v v4.16 (2003/04/02 06:48:55)

Wireless LANs 292

802.11 FHSS (Frequency Hopping Spread Spectrum) cards, which run at up to 2
Mb/s. These are now obsolete, but FreeBSD still supports the WebGear Aviator card
with the ray driver.

802.11 DSSS (Discrete Sequence Spread Spectrum) cards, which also run at up to 2
Mb/s. These are also obsolete.

802.11b DSSS cards, which run at up to 11 Mb/s. They can interoperate with the
slower 802.11 DSSS cards, but not with FHSS cards.

802.11a cards, which run at 54 Mb/s. They use a modulation called Orthogonal
Freguency Division Multiplexing or OFDM, and run in the 5 GHz band. They are not
compatible with older cards. At the time of writing, they have not achieved
significant market penetration. FreeBSD does not support them yet, though that may
have changed by the time you read this.

802.119g cards are the newest. Like 802.11a, they which run at 54 Mb/s, and they’re
not supported. Again, that may have changed by the time you read this. Like
802.11b, they run in the 2.4 GHz band.

Most current cards are 802.11b and run at up to 11 Mb/s. We’ll concentrate on them in
the rest of this section. They operate in the 2.4 GHz band, which is shared with a number
of other services, including some portable telephones and microwave ovens. This kind of
portable telephone can completely disrupt a wireless network. Interference and range are
serious issues: wireless networks are generally not as reliable as wired networks.

Wireless cards can operate in up to three different modes:

Normally, they interoperate with an access point, also called a base station. The base
station is normally connected to an external network, so it also doubles as a gateway.
Unlike Ethernets, however, all traffic in the network goes via the base station. This
arrangement is called a Basic Service Set or BSS

Networks can have multiple base stations which are usually interconnected via a
wired Ethernet. If the machine with the wireless card moves around, the base stations
negotiate with the machine to decide which base station handles the card. In this
manner, the machines can cover large distances without losing network connection.
This arrangement is called an Extended Basic Service Set or EBSS

This mode of operation, with or without an EBSS, is called managed mode,
infrastructure mode or BSS mode.

In smaller networks, the cards can interact directly. This mode of operation is called
peer-to-peer mode, ad-hoc mode or IBSSmode (for Independent Basic Service Set).

Finally, some cards support a method called Lucent demo ad-hoc mode, which some
BSD implementations used to call ad-hoc mode. But it’s not the same as the previous
method, and though the principle is the same, they can’t interoperate. This mode is
not standardized, and there are significant interoperability issues with it, so even if it’s
available you should use IBSS mode.

netintro.mm,v v4.16 (2003/04/02 06:48:55)

293 Chapter 16: Networks and the Internet

How wireless networks coexist

Wireless networks have a number of issues that don’t affect Ethernets. In particular,
multiple networks can share the same geographical space. In most large cities you’ll find
that practically the entire area is shared by multiple networks. This raises a number of
issues:

* There’s only so much bandwidth available. As the number of networks increase, the
throughput drops.

There’s no complete solution to this problem, but it’s made a little easier by the
availability of multiple operating frequencies. Depending on the country, 802.11b
cards can have between 11 and 14 frequency channels. If your area has a lot of traffic
on the frequency you’re using, you may be able to solve the problem by moving to
another frequency. That doesn’t mean that this many networks can coexist in the
same space: as the name spread spectrum indicates, the signal wanders off to either
side of the base frequency, and in practice you can use only three or four distinct
channels.

* Cards on a given network need to have a way to identify each other.

802.11 solves this issue by requiring a network identification, called a Service Set
Identifier or SSID. All networks have an SSID, though frequently base stations will
accept connections from cards that supply a blank SSID. SSIDs don’t offer any
improvement in security: their only purpose is identifying the network.

* Cards on a given network need to protect themselves against snooping by people who
don’t belong to the network.

The 802.11 standard offers a partial solution to this issue by optionally encrypting the
packets. We’ll look at this issue below.

Encryption

As mentioned above, security is a big issue in wireless networks. The encryption
provided is called Wired Equivalent Privacy or WEP, and it’s not very good. Everybody
connecting to the network needs to know the WEP key, so if anybody loses permission to
access the network (for example, when changing jobs), the WEP keys need to be
changed, which is a serious administrative problem. In some cases it’s completely
impractical: if you want to access a wireless network in an airport or a coffee shop (where
they’re becoming more and more common), it’s not practical to use a WEP key. In fact,
nearly all such public access networks don’t use encryption at all.

As if that weren’t bad enough, the WEP algorithm is flawed. Depending on the
circumstances, it can take less than 10 minutes to crack it. Don’t trust it.

So how do you protect yourself? The best solution is, of course, don’t use wireless
networks for confidential work. If you have to use a wireless network, make sure that
anything confidential is encrypted end-to-end, for example with an ssh tunnel, which
we’ll look at on page 422.

netintro.mm,v v4.16 (2003/04/02 06:48:55)

Wireless LANs 294

The reference network

One of the problems in talking about networks is that there are so many different kinds of
network connection. To simplify things, this book bases on one of the most frequent
environments: a number of computers connected together by an Ethernet LAN with a
single gateway to the Internet. Figure 16-7 shows the layout of the network to which we
will refer in the rest of this book.

802.11b wireless net
access ‘0' andante
point laptop

w0 192.168. 27. 17

xI0|192.168.27.1

freebie presto bumble wait

ri0|223.147.37. 1 dcO | 223.147.37. 2 x10(223.147.37.3 fxp0 |223.147.37. 4

[|
Local Ethernet dcO | 223. 147.37.5
Address 223. 147.37.0 gw
1 ®
Domain example.org Router
tuno | 139. 130. 136. 133
. modem
Connection to network
223.147.38.0 PPP link, net 139. 130. 136. 0
modem modem
pppO | 139. 130. 136. 9 ppp3 | 139. 130. 136. 129
router
free-gw
rl 0 |139.130. 237. 117
[|
ISP’s Ethernet x1 0 | 139. 130. 237. 65 xI 0 | 139. 130. 237. 3
Addre_ss 139. 130. 237.0 gateway M
Domain example.net igw

fddi 0 | 139. 130. 249. 201
to | Internet

Figure 16-7: Reference network

netintro.mm,v v4.16 (2003/04/02 06:48:55)

295 Chapter 16: Networks and the Internet

This figure contains a lot of information, which we will examine in detail in the course of
the text:

* The boxes in the top row represent the systems in the local network exanpl e. or g:
freebie, presto, bumble, and wait.

e The line underneath is the local Ethernet. The network has the address
223.147.37.0. It has a full 256 addresses (““Class C”), so the network mask is
255, 255. 255. 0.

e The machines on this Ethernet belong to the domain example.org. Thus, the full
name of bumble is bumble.example.org. We’ll look at these names in Chapter 21.

* The connections from the systems to the Ethernet are identified by two values: on the
left is the interface name, and on the right the address associated with the interface
name.

* Further down the diagram is the router, gw. It has two interfaces: dcO interfaces to
the Ethernet, and t unO interfaces to the PPP line to the ISP. Each interface has a
different addresses.

e The lower half of the diagram shows part of the ISP’s network. It also has an
Ethernet, and its router looks very much like our own. On the other hand, it
interfaces to a third network via the machine igw. To judge by the name of the
interface, it is a FDDI connection—see page 285 for more details.

e The ISP runs a name server on the machine ns, address 139. 130. 237. 3.

* The ends of the Ethernets are thickened. This represents the terminators required at
the end of a coaxial Ethernet. We talked about them on page 287. In fact this
network is a 100 Mb/s switched network, but they are still conventionally represented
in this form. You can think of the Ethernets as the switches that control each
network.

e presto has a wireless access point connected to it. The diagram shows one laptop,
andante, connected via a NAT interface.

netintro.mm,v v4.16 (2003/04/02 06:48:55)

In this chapter:
* Network

configuration with
sysinstall

* Manual network
configuration

e Automatic
configuration with
DHCP

* Configuring PC Card
networking cards

e Setting up wireless
networking

* Routing

* |SP’s route setup

* Looking at the

. moeomang CONfiguring the local

* Configuration

summary network

In Chapter 16 we looked at the basic concepts surrounding BSD networking. In this
chapter and the following two, we’ll look at what we need to do to configure a network,
first manually, then automatically. Configuring PPP is still a whole lot more difficult
than configuring an Ethernet, and they require more prerequisites, so we’ll dedicate
Chapter 20, to that issue.

In this chapter, we’ll first look at example.org in the reference network on page 294, since
it’s the easiest to set up. After that, we’ll look at what additional information is needed to
configure machines on example.net.

Network configuration with sysinstall

To configure a network, you must describe its configuration to the system. The system
initialization routines that we discussed on page 524 include a significant portion that sets
up the network environment. In addition, the system contains a number of standard IP
configuration files that define your system’s view of the network. If you didn’t configure
the network when you installed your system, you can still do it now. Log in as root and
start sysinstall. Select the | ndex, then Networ k | nt erfaces. You will see the menu
of Figure 17-1, which is the same as in Figure 6-4 on page 97. On a standard 80x25
display it requires scrolling to see the entire menu. The only real network board on this
list is xI0, the Ethernet board. The others are standard hardware that can also be used as
network interfaces.

netsetup.mm,v v4.15 (2003/04/02 06:50:16) 297

Network configuration with sysinstall

298

Network interface information required
If you are using PPP over a serial device, as opposed to a direct
ethernet connection. then you may first need to dial your Internet
Service Provider using the ppp utility we provide for that purpose.
If you're using SLIP over a serial device then the expectation is
that you have a HARDMIRED connection.

You can also install over a parallel port using a special “laplink”
cable to another machine running a fairly recent (2.0R or later)
version of FreeBSD.

<10

1p0 Parallel Port IP (PLIP) peer connection
510 SLIP interface on device /dev/cuaa® (COM1)>
ppp® PPP interface on device /dev/cuaa® (COM1)
510 SLIP interface on device /dev/cuaal (COM2)
ppp® PPP interface on device /dev/cuaal (COM2)

L K 7 Cancel

[Press F1 to read network configuration manual 1

Figure 17-1: Network setup menu

Choose the Ethernet board, xI0 You get a question about whether you want to use IPv6
configuration. This book we doesn’t discuss IPv6, so answer Nb. Next you get a question
about DHCP configuration. We discuss DHCP configuration on page 302. If you already
have a DHCP server set up, you may prefer to answer Yes to this question, which is all
you need to do. If you answer Nb, the next menu asks us to set the internet parameters.
Figure 17-2 shows the network configuration menu after filling in the values.

Host :

presto.example.org w example.org

Network Configuration
Domain:

IPv4 Gateway: Name server:

223.147.37.5 223.147.37.2

Configuration for Interface x10

IPv4 Address: Netmask :

223.147.37.2 255.255.255.0

Extra options to ifconfig:

0K CANCEL

L The IPv4 address to be used for this interface

Figure 17-2: Network configuration menu

netsetup.mm,v v4.15 (2003/04/02 06:50:16)

299 Chapter 17: Configuring the local network

Specify the fully qualified local host name. When you tab to the Domai n: field, the
domain is filled in automatically. We have chosen to call this machine presto, and the
domain is example.org. In other words, the full name of the machine is presto.exam-
ple.org. Its IP address is 223. 147. 37. 2. In this configuration, all access to the outside
world goes via gw.example.org, which has the IP address 223. 147. 37. 5. The name
server is located on the same host, presto.example.org. If the name server isn’t running
when this information is needed, we must specify all addresses in numeric form, as
shown.

What happens if you don’t have a domain name? If you’re connecting to the global
Internet, you should go out and get one—see page 318. But in the meantime, don’t fake
it. Just leave the fields empty. If you’re not connecting to the Internet, of course, it
doesn’t make much difference what name you choose.

As is usual for a class C network, the net mask is 255. 255. 255. 0. You don’t need to fill
in this information—if you leave this field without filling it in, sysinstall inserts it for
you. Normally, as in this case, you wouldn’t need any additional options to ifconfig.

sysinstall saves configuration information in /etc/rc.conf. When the system starts, the
startup scripts use this information to configure the network. It also optionally starts the
interface immediately. In the next section we’ll look at the commands it uses to perform
this function.

Manual network configuration

Usually FreeBSD configures your network automatically when it boots. To do so, it uses
the configuration files in /etc. So why do it manually? There are several reasons:

* It makes it easier to create and maintain the configuration files if you know what’s
going on behind the scenes.

* It makes it easier to modify something “on the fly.” You don’t have to reboot just
because you have changed your network configuration.

* With this information, you can edit the configuration files directly rather than use the
menu interface, which saves a lot of time.

We spend a lot of time discussing this point on the FreeBSD mailing lists. One thing’s for sure:
neither method of configuration is perfect. Both menu-based and text-file—based configuration
schemes offer you ample opportunity to shoot yourself in the foot. But at the moment, the
configuration file system is easier to check if you understand what's going on. That’s the reason
for the rest of this chapter.

In this section, we’ll look at the manual way to do things first, and then we’ll see how to

put it in the configuration files so that it gets done automatically next time. You can find
a summary of the configuration files and their contents on page 545.

netsetup.mm,v v4.15 (2003/04/02 06:50:16)

Manual network configuration 300

Describing your network

In Table 16-7 on page 294, we saw that systems connect to networks via network
interfaces. The kernel detects the interfaces automatically when it starts, but you still
need to tell it what interfaces are connected to which networks, and even more
importantly, which address your system has on each network. In addition, if the network
is a broadcast network, such as an Ethernet, you need to specify a range of addresses that
can be reached directly on that network. As we saw on page 290, we perform this
selection with the network mask.

Ethernet interfaces

Once we have understood these concepts, it’s relatively simple to use the ifconfig
program to set them. For example, for the Ethernet interface on system gw, with IP
address 223. 147. 37. 5, we need to configure interface dcO. The network mask is the
standard value for a class C network, 255. 255. 255. 0. That’s all we need to know:

ifconfig dcO inet 223.147.37.5 netmask 255. 255. 255.0 up

In fact, this is more than you usually need. The i net tells the interface to use Internet
protocol Version 4 (the default), and up tells it to bring it up (which it does anyway). In
addition, this is a class C network address, so the net mask defaults to 255. 255. 255. 0.
As a result, you can abbreviate this to:

ifconfig dcO 223.147.37.5

Note that this is different from what Linux requires. With Linux you must supply explicit
netmask and broadcast address specifications.

As we saw on page 290, it has become typical to abbreviate net masks to the character /
followed by the number of 1 bits set in the network mask. ifconfig understands this
usage, so if you wanted to set a non-standard network mask of, say, 255. 255. 255. 240,
which has 28 bits set, you could write:

ifconfig dcO 223. 147.37.5/ 28

Point-to-point interfaces

With a point-to-point interface, the software currently requires you to specify the IP
address of the other end of the link as well. As we shall see in Chapter 20, there is no
good reason to do this, but ifconfig insists on it. In addition, we need the network mask
for a non-broadcast medium. The value is obvious:! you can reach exactly one address at
the other end, so it must be 255.255. 255. 255. With this information, we could
configure the PPP interface on gw:

1. Well, you’d think it was obvious. We’ll see on page 345 that some people think it should be something else.
netsetup.mm,v v4.15 (2003/04/02 06:50:16)

301 Chapter 17: Configuring the local network

ifconfig tunO 139.130. 136. 133 139. 130. 136. 129 net mask 255. 255. 255. 255

In fact, this is almost never necessary; in Chapter 20 we’ll see that the PPP software
usually sets the configuration automatically.

The loopback interface

The IP protocols require you to use an address to communicate with every system—even
your own system. Theoretically, you could communicate with your system via the an
Ethernet interface, but this is relatively slow: the data would have to go through the
network stack. Instead, there is a special interface for communicating with other
processes in the same system, the loopback interface. Its name is 100, and it has the
address 127. 0. 0. 1. It’s straightforward enough to configure:

#ifconfig 100 127.0.0.1

In fact, though, you don’t even need to do this much work: the system automatically sets
it up at boot time.

Checking the interface configuration

ifconfig doesn’t just set the configuration: you can also use it to check the configuration.
It’s a good idea to do this after you change something:

$ifconfig

dcO: fl ags=8843<UP, BROADCAST, RUNN NG S| MPLEX, MULTI CAST> ntu 1500
inet 223.147.37.5 netnmask Oxffffff00 broadcast 223.147.37.255
inet6 fe80::280: c6f f: fef9:d3fa%lcO prefixl en 64 scopei d Ox1
et her 00: 80:c6:f9:d3:fa
nedi a: B hernet autosel ect (100baseTX <ful | - dupl ex>)
status: active

| p0: flags=8810<PA NTCPQ NT, Sl MPLEX, MLTI CAST> miu 1500

| 00: fl ags=8049<UP, LOCPBACK, RUNN NG MLLTI CAST> ntu 16384
inet6 ::1 prefixlen 128
inet6 fe80::1%00 prefixlen 64 scopei d 0x3
inet 127.0.0.1 net mask Oxff 000000

tunO: flags=8051<UP, PO NTCPA NT, RUNN NG MULTI CAST> ntu 1500
i net 139.130. 136. 133 --> 139. 130. 136. 129 net mask Oxffffffff

Other BSD systems require you to write ifconfig -a. to list the configuration of all interfaces, and
FreeBSD still accepts it. Some other UNIX systems, particularly System V, don’t understand even
this flag.

There are a number of things to note here:

* The dc0 interface has both an IPv4 address (i net) and a corresponding IPv6 address
(i net 6). It also specifies the Ethernet address (et her 00: 80: c6: f9: d3: fa). Itis
capable of negotiating 10 Mb/s, 100 Mb/s half duplex and 100 Mb/s full duplex. It’s
connected to a switch, so it’s currently running 100 Mb/s full duplex.

* The interface Ip0 is the the PLIP interface for connections via the parallel port. It is
not configured (in other words, it has not been set up for operation).

netsetup.mm,v v4.15 (2003/04/02 06:50:16)

Manual network configuration 302

e We’ve already seen the loopback interface 100.

e There is also a tunO interface for PPP.

The configuration files

The system startup scripts summarize this configuration information in a number of
configuration variables. See Chapter 29 for more details. At the moment, the following
variables are of interest to us:

* host nane is the name of the host. You should have set it when you installed the
system (see page 87). You can also set it manually with the hostname command:

hostnane -s gw exanpl e. org

* For each interface, a variable of the form ifconfig_interface contains the
parameters to be passed to ifconfig to configure that interface.

Previously, FreeBSD also required you to set a variable net wor k_i nt er f aces, a list of
the names of the interfaces to be configured. This variable now defaults to the value
aut o to specify that all interfaces should be configured. You only need to change it if
you specifically want to exclude an interface from configuration.

For gw, we put the following information in /etc/rc.conf:

host name="gw exanpl e. or g"
i fconfig _dcO="i net 223.147.37.5"

We don’t configure the tun0 interface here; as we’ll see in Chapter 20, the PPP setup
works differently.

Automatic configuration with DHCP

Maintaining the network configurations for a number of machines can be a pain,
especially if they’re laptops that come and go. There’s an alternative for larger networks:
use DHCP, the Dynamic Host Configuration Protocol. DHCP enables a machine to get
configuration information automatically from the network. The concept is expandable,
but typically you get an IP address and net mask and the names of the default name
servers and routers. In terms of the configuration we’ve seen so far, this replaces running
the ifconfig and route programs, and also the file /etc/resolv.conf, which describes the
locations of name servers. We’ll look at it on page 366.

There are two parts to DHCP: the client and the server.

netsetup.mm,v v4.15 (2003/04/02 06:50:16)

303 Chapter 17: Configuring the local network

DHCP client

To get a configuration, you run dhclient. In previous releases of FreeBSD, dhclient
printed out information about the addresses it received. In Release 5, it does not print
anything. Simply start it with the name of the interface:

dhclient dcO

To assign an address automatically at boot time, put the special value DHCP in the
i fconfi g_dcO variable:

i f confi g_dcO=DHCOP

DHCP server

DHCP requires a server. The server is not included as part of the base system; instead,
install the net/isc-dhcp3 port:

cd /usr/ports/net/isc-dhcp3
make install

To configure dhcpd, edit the configuration file /usr/local/etc/isc-dhcpd.conf. Here’s an
example:

ddns- updat e- styl e ad- hoc;

100 M/ s E hernet
subnet 223.147.37.0 netmask 255. 255. 255. 0 {
range 223.147.37.90 223.147. 37. 110;
option donai n- nane-servers freebie. exanpl e. com presto. exanpl e. com
option donai n-nane "exanpl e. cont;
option routers gw exanpl e.com
option subnet - mask 255. 255. 255. 0;
option broadcast - address 223. 147. 37. 255;
defaul t-| ease-ti ne 86400;
nax- | ease-ti me 259200;
use- host - decl - nanes on; use the specified name as host name
host andante {
har dwar e et hernet 0: 50: da: cf : 7: 35;

}
}
This configuration file tells dhcpd:

e To dynamically allocate IP addresses in the range 223.147.37.90 to
223.147. 37. 110 (r ange keyword).

e That the domain name servers are freebie.example.com and andante.example.com.
We’ll look at domain name servers in Chapter 21.

e The net mask and the broadcast address.

The variables def aul t-| ease-tine and nax-| ease-tine, which are specified in
seconds, determine how long it will be before a system checks its configuration. The
values here represent one day and three days respectively.

netsetup.mm,v v4.15 (2003/04/02 06:50:16)

Automatic configuration with DHCP 304

use- host - decl - nanes tells dhcpd to use the name on the host line as the host name
of the system. Otherwise you would need an additional opti on host - nane specifica-
tion for every system. For one machine it doesn’t make much difference, but if you have
twenty such machines, you’ll notice the difference.

One of the problems with dhcpd is that by default it doesn’t allocate a static IP address.
Theoretically you could attach a laptop to the same DHCP server and get a different
address every time, but in fact dhcpd does its best to keep the same address, and
sometimes you may find it impossible to change its mind. In this configuration file,
though, we have explicitly told dhcpd about andante, which is recognized by its Ethernet
address. This works relatively well for fixed machines, but there’s a problem with laptops
and PC Card: dhcpd recognizes the network interface, not the machine, and if you swap
the interface card, the IP address moves to the new machine.

Starting dhcpd

The dhecpd port installs a sample startup file in the directory /usr/local/etc/rc.d. It’s
called isc-dhcpd.sh.sample, a name which ensures that it won’t get executed. This file
doesn’t normally require any configuration; simply copy it to isc-dhcpd.sh in the same
directory. This enables the system startup to find it and start dhcpd.

To start dhcpd during normal system operation, just run this same script:

[usr/local/etc/rc.dlisc-dhcpd. sh start

Mar 14 15:45:09 freebi e dhcpd: Internet Software Consortium DHCP Server V3.0rcl0

Mar 14 15:45:09 freebi e dhcpd: Copyright 1995-2001 |nternet Software Gonsortium

Mar 14 15:45:09 freebie dhcpd: Al rights reserved.

Mar 14 15:45:09 freebie dhcpd: For info, please visit http://ww i sc.org/ products/ DHOP
Mar 14 15:45:09 freebi e dhcpd: Wote O del eted host decls to | eases file.

Mar 14 15:45:09 freebi e dhcpd: Wote 0 new dynam ¢ host decls to | eases file.

Mar 14 15:45:09 freebie dhcpd: Wote 14 | eases to | eases file.

Mar 14 15:45: 09 freebi e dhcpd: Listening on BPF x| 0/ 00: 50: da: cf : 07: 35/ 223. 147. 37. 0/ 24
Mar 14 15:45:09 freebi e dhcpd: Sending on BPH xI 0/ 00: 50: da: cf : 07: 35/ 223. 147. 37. 0/ 24
Mar 14 15:45:09 freebie dhcpd: Sending on Socket/fal | back/ fal | back- net

When you change the configuration file /usr/local/etc/isc-dhcpd.conf, you must restart
dhcpd:

lusr/local/etc/rc.dl/isc-dhcpd. sh restart

Configuring PC Card networking cards

We’ve looked at PC Card devices on page 159, but there are some special issues involved
in configuring networking cards. Of course, ifconfig works with PC Card networking
cards in exactly the same way as it does with PCI and ISA cards, but you can’t configure
them in the same manner at startup, because they might not yet be present.

netsetup.mm,v v4.15 (2003/04/02 06:50:16)

305 Chapter 17: Configuring the local network

On inserting a PC Card device, you will see something like this on the console:

Manuf acturer |1D 01015751

Product version: 5.0

Product name: 3Com Corporation | 3CCOFES75BT | LAN Cardbus Card | 001 |
Functions: Network Adaptor, Menory

A S readi ng done

cardbusO: Resource not specified in S id=14, size=80

cardbus0O: Resource not specified in S id=18, size=80

xI 0: <3Com 3c575B Fast Etherlink XL> port 0x1080-0x10bf nem 0x88002400- 0x8800247
f, 0x88002480- 0x880024ff irq 11 at device 0.0 on cardbusO

xI 0: Ethernet address: 00:10:4b:f8:fd: 20

mibusO: <M1 bus> on xI 0

tdkphy0O: <TDK 78120 nedi a i nterface> on mi busO

tdkphyO: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto

After this, ifconfig shows:

$ifconfig xI0
xl 0: fl ags=8802<BROADCAST, SI MPLEX, MULTI CAST> ntu 1500
ether 00: 10: 4b: f 8: fd: 20
nedi a: E hernet autosel ect (100baseTX <ful | - dupl ex>)

The card is there, but it’s not configured. FreeBSD uses the devd daemon to perform
userland configuration after a card has been attached. We’ve already looked at devd on
page 159. When devd establishes that the card is a networking card, it calls
letc/pccard_ether to configure it. In the following, we’ll see how /etc/pccard_ether
configures our xI0 interface. It performs the following steps:

* |t reads the configuration from /etc/defaults/rc.conf and /etc/rc.conf.
» [f the interface is already up, it exits.
» [Ifafile /etc/start_if.xI0 exists, it executes it. After doing so, it continues.

e It checks whether the variable renovabl e i nterfaces exists and contains the
name of the interface, x10. If not, it continues.

e Ifthe value of i f confi g_xI 0 is NO, it exits.
e |f the value of i f confi g_xI O is DHCP, it attempts to set up the interface with DHCP.

e Otherwise it performs the ifconfig commands specified in the variable i f con-
fig_xlO0.

That’s a lot of choice. What do you use when? That depends on what you want to do.
The first thing to note is that nothing happens unless your interface name is in the
variable r enovabl e_i nt er f aces, and the variable i f confi g_xI O exists. The question
is, what do you put ini f confi g_xl 0?

In principle, it’s the same as with other network cards: either IP address and other
options, or DHCP. The third alternative is important, though. Let’s consider the case
where you want to start a number of services when the system is connected. You might
want to run ntpdate, then start ntpd and rwhod, and you may want to mount some NFS
file systems. You can do all this at startup with normal network cards, but
letc/pccard_ether isn’t clever enough to do all that. Instead, create a file called

netsetup.mm,v v4.15 (2003/04/02 06:50:16)

Configuring PC Card networking cards 306

letc/start_if.xI0 and give it the following contents:

dhclient xI0

nt pdat e freebie
killall ntpd
ntpd &

killall rwhod
rwhod &

nmount -t nfs -a

Don’t forget to start DHCP or otherwise set the IP address, because this method bypasses
the standard startups.

In addition, you put this in /etc/rc.conf:

devd_enabl e=YES
i fconfig_xl 0=NO
renmovabl e_i nterfaces="w 0 xe0 x| 0"

The values in the last line only need to include xI0, of course, but it’s good to put in every
interface name that you would possibly use.
Detaching network cards

When you remove a network card, devd invokes /etc/pccard_ether again. The actions
are similar to the one it performs when the card is attached:

* [fafile /etc/stop_if.xI0 exists, it is executed.

e |f the variable i fconfi g xlI O is set to DHOP, /etc/pccard_ether stops the dhclient
process, which would otherwise loop forever.

e [fifconfig_xl0 contains normal ifconfig parameters, /etc/pccard_ether removes
any static routes for that interface.

If you travel elsewhere with a laptop and suspend the system, make sure you unmount
any NFS file systems first. You can’t do it once you’re no lon