

Simon St. Laurent

Introducing Erlang

ISBN: 978-1-449-33176-4

[LSI]

Introducing Erlang
by Simon St. Laurent

Copyright © 2013 Simon St. Laurent. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Meghan Blanchette Production Editor: Melanie Yarbrough
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

January 2013: First Edition

Revision History for the First Edition:

2013-01-23 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449331764 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Introducing Erlang, the cover image of a giant red flying squirrel, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449331764

Table of Contents

Preface. vii

1. Getting Comfortable. 1
Installation 1
Firing It Up 2
First Steps: The Shell 2

Moving through Text 3
Moving through History 3
Moving through Files 4

Doing Something 4
Calling Functions 5
Numbers in Erlang 6
Working with Variables in the Shell 8

Seeing Your Bound Variables 10
Clearing Bound Variables in the Shell 10

2. Functions and Modules. 13
Fun with fun 13
Defining Modules 15

From Module to Fun 17
Functions and Variable Scope 18
Module Directives 18

Documenting Code 20
Documenting Modules 21
Documenting Functions 22
Documenting Your Application 24

3. Atoms, Tuples, and Pattern Matching. 27
Atoms 27
Pattern Matching with Atoms 28

iii

Atomic Booleans 29
Guards 30
Underscoring That You Don’t Care 32
Adding Structure: Tuples 34

Pattern Matching with Tuples 35
Processing Tuples 36

4. Logic and Recursion. 39
Logic Inside of Functions 39

Evaluating Cases 39
If This, Then That 42
Variable Assignment in case and if Constructs 44

The Gentlest Side Effect: io:format 45
Simple Recursion 46

Counting Down 46
Counting Up 47
Recursing with Return Values 49

5. Communicating with Humans. 53
Strings 53
Asking Users for Information 55

Gathering Terms 56
Gathering Characters 59
Reading Lines of Text 60

6. Lists. 65
List Basics 65
Splitting Lists into Heads and Tails 67
Processing List Content 68
Creating Lists with Heads and Tails 70
Mixing Lists and Tuples 72
Building a List of Lists 73

7. Higher-Order Functions and List Comprehensions. 77
Simple Higher-Order Functions 77
Creating New Lists with Higher-Order Functions 79

Reporting on a List 79
Running List Values Through a Function 80
Filtering List Values 81

Beyond List Comprehensions 81
Testing Lists 82
Splitting Lists 82

iv | Table of Contents

Folding Lists 83

8. Playing with Processes. 87
The Shell Is a Process 87
Spawning Processes from Modules 89
Lightweight Processes 92
Registering a Process 92
When Processes Break 94
Processes Talking Amongst Themselves 95
Watching Your Processes 97
Breaking Things and Linking Processes 99

9. Exceptions, Errors, and Debugging. 107
Flavors of Errors 107
Catching Runtime Errors as They Happen 108
Raising Exceptions with throw 110
Logging Progress and Failure 111
Debugging through a GUI 112
Tracing Messages 119
Watching Function Calls 122

10. Storing Structured Data. 125
From Tuples to Records 125

Setting Up Records 126
Creating and Reading Records 127
Using Records in Functions and Modules 128

Storing Records in Erlang Term Storage 131
Creating and Populating a Table 132
Simple Queries 137
A Key Feature: Overwriting Values 138
ETS Tables and Processes 138
Next Steps 140

Storing Records in Mnesia 141
Starting up Mnesia 141
Creating Tables 142
Reading Data 145
Query List Comprehensions 146

11. Getting Started with OTP. 151
Creating Services with gen_server 152
A Simple Supervisor 157

Table of Contents | v

Packaging an Application 162

12. Next Steps Through Erlang. 165
Moving Beyond the Shell 165
Distributed Computing 166
Processing Binary Data 166
Input and Output 166
Testing, Analyzing, and Refactoring 166
Networking and the Web 167
Data Storage 167
Extending Erlang 168
Languages Built on Erlang 168
Community 168
Sharing the Gospel of Erlang 169

A. An Erlang Parts Catalog. 171

B. OTP Templates. 179

vi | Table of Contents

Preface

Erlang has long been a mysterious dark corner of the programming universe, visited
mostly by developers who need extreme reliability or scalability and people who want
to stretch their brains.

Developed at Ericsson to serve on telephone switching equipment, it seemed like a
strangely special-purpose language until recently, when our computer and network ar‐
chitectures came to look a lot more like massively parallel telephone-switching equip‐
ment. Thanks to the rise of NoSQL data stores CouchDB and Riak, you may already be
using Erlang without realizing it, and Erlang is moving out into many more fields.

Exploring Erlang, if you come from pretty much any background other than functional
programming, will require you to clear your mind of many techniques used in other
programming languages. Forget classes, forget variables that change values—even forget
the conventions of variable assignment.

Instead, you’re going to have to think about pattern matching, message passing, and
establishing pathways for data rather than telling it where to go. Erlang programming
can feel like making a key whose teeth set the tumblers on a lock just right for the key
to pass, or playing pachinko and watching the balls fall through a maze.

Sound strange? It is—but also enjoyable, powerful, and fun.

My first explorations of Erlang confused me and excited me at the same time. I’d had
some experience with what I’d called “invariant variables,” variables that can be bound
to a value only once, in XSLT. That created a lot of headaches for me until I realized I
was coming at the problems all wrong, and then it suddenly made sense.

vii

Who This Book Is For
This book is mostly for people who’ve been programming in other languages but want
to look around. Maybe you’re being very practical, and Erlang’s distributed model and
the resulting scale and resilience advantages appeal to you. Maybe you want to see what
this “functional programming” stuff is all about. Or maybe you’re just going for a hike,
taking your mind to a new place.

I suspect that functional programming is more approachable as a first language, before
you’ve learned to program in other paradigms. However, getting started in Erlang—
sometimes even just installing it—requires a fair amount of computing skill. If you’re a
complete newcomer to programming, welcome, but there will be a few challenges along
the way.

Who This Book Is Not For
This book is not for people in a hurry to get things done.

If you already know Erlang, you don’t likely need this book unless you’re looking for a
slow brush-up.

If you’re already familiar with functional languages, you may find the pacing of this
“Gentle Introduction” hopelessly slow. Definitely feel welcome to jump to another book
that moves faster if you get bored. Come back if you find the others go too fast, and feel
welcome to use this as a companion guide or reference with the other books.

What This Book Will Do For You
In Seven Languages in Seven Weeks, Bruce Tate suggests that “Erlang makes hard things
easy and easy things hard.” This book will get you through the “easy things hard” part,
and show you a bit of the promised land of “hard things easy.”

In practical terms, you’ll learn to write simple Erlang programs. You’ll understand why
Erlang makes it easier to build resilient programs that can scale up and down with ease.
Perhaps most importantly, you’ll be able to read other Erlang resources that assume a
fair amount of experience and make sense of them.

In more theoretical terms, you’ll get to know functional programming. You’ll learn how
to design programs around message-passing and recursion, creating process-oriented
programs focused more on data flow.

You’ll also be better prepared to read other books and conversations about Erlang.

viii | Preface

How This Book Works
This book tries to tell a story with Erlang. You’ll probably get the most out of it if you
read it in order at least the first time, though you’re always welcome to come back to
find whatever bits and pieces you need.

You’ll start by getting Erlang installed and running, and looking around its shell. You’ll
spend a lot of time in the shell, so get cozy. Next, you’ll start loading code into the shell
to make it easier to write programs, and you’ll learn how to call that code and mix it up.

You’ll take a close look at numbers because they’re an easy place to get familiar with
Erlang’s basic structures. Then you’ll learn about atoms, pattern-matching, and guards
—the likely foundations of your program structure. After that you’ll learn about strings,
lists, and the recursion at the heart of much Erlang processing. Once you’ve gone a few
million recursions down and back, it’ll be time to look at processes, a key part of Erlang
that relies on the message-passing model to support concurrency and resilience.

Once you have the foundation set, you can take a closer look at debugging and data
storage, and then get a quick look at a toolset that is likely at the heart of your long-term
development with Erlang: the Open Telecom Platform (OTP), which is about much
much more than telephones.

Some people want to learn programming languages through a dictionary. Here’s a list
of operators, here’s a list of control structures, these are the datatypes—and then smash
them together. Those lists are here, but they’re in Appendix A, not the main flow of the
book.

The main point you should get from this book is that you can program in Erlang. If you
don’t get that, let me know!

Why I Wrote This Book
I’m not an Erlang expert hoping to create more Erlang experts to get a lot of work done.

I’m a developer and writer who encountered Erlang, thought it was the programming
language I’d been seeking for a long time, and felt compelled to share some of that. I’m
hoping that the path I followed will work for other people, probably with variations, and
that a book written from a beginner’s perspective (and vetted by experts) would help
more people find and enjoy Erlang.

Other Resources
This book may not be the best way for you to learn Erlang. It all depends on what you
want to learn and why.

Preface | ix

If your primary interest in learning Erlang is to break out of a programming rut, you
should explore Bruce Tate’s wild tour of Seven Languages in Seven Weeks (Pragmatic
Publishers), which explores Ruby, Io, Prolog, Scala, Erlang, Clojure, and Haskell. Erlang
gets only (an excellent) 37 pages, but that might be what you want.

For an online experience (now also in print from No Starch Books) with more snark
and funnier illustrations, you should explore Fred Hebert’s Learn You Some Erlang for
Great Good!, at http://learnyousomeerlang.com/. While much longer than Tate’s telling,
it certainly moves faster and may feel more like an experienced programmer’s guide to
Erlang.

The two classic general books on Erlang are the similarly-titled Programming Erlang
(Pragmatic Publishers) by Erlang creator Joe Armstrong, and Erlang Programming
(O’Reilly) by Francesco Cesarini and Simon Thompson. They cover a lot of similar and
overlapping terrain, and both may be good places to start if this book moves too slowly
or you need more reference material. Erlang Programming goes further into what you
can do with Erlang, whereas Programming Erlang provides a lot of detail on setting up
an Erlang programming environment.

On the more advanced side, Erlang and OTP in Action (Manning) by Martin Logan,
Eric Merritt, and Richard Carlsson, opens with a high-speed 72-page introduction to
Erlang and then spends most of its time applying the Open Telecom Platform, Erlang’s
framework for building upgradeable and maintainable concurrent applications.

If you want to focus on connecting Erlang to the Web, you should definitely also explore
Building Erlang Web Applications (O’Reilly) by Zachary Kessin.

You’ll also want to visit the main Erlang website, http://www.erlang.org/, for updates,
downloads, documentation, and more.

Are You Sure You Want Erlang?
Though they’ve been obscure for a long time, there’s a crowd of functional languages
rising into greater popularity.

Four of them in particular—Clojure, Scala, F#, and Haskell—may be more appealing
than Erlang if you have specific needs.

• Clojure and Scala run on the Java Virtual Machine (JVM), making them insanely
portable, and they have access to Java libraries as a result. ClojureScript does the
same with JavaScript, too. (Erjang makes it possible to run Erlang on the JVM, but
it’s not a core part of the language.)

• F# runs on the .NET Common Language Runtime (CLR), making it very portable
in the Microsoft ecosystem, and again, has access to .NET libraries.

x | Preface

http://learnyousomeerlang.com/
http://www.erlang.org/

• Haskell doesn’t run on a virtual machine, but also offers a stronger type system and
a different kind of discipline (and laziness).

Personally, I got my start with these concepts in XSLT. It’s a very different kind of lan‐
guage meant for a specific domain of document transformation, but many of the same
ideas flow through it.

You don’t, of course, have to decide if Erlang is your life’s dream now. You can learn
concepts in Erlang and apply them elsewhere if it turns out to be a better idea for your
work.

Erlang Will Change You
Before you go deeper, you should know that working in Erlang may irrevocably change
the way you look at programs. Its combination of functional code, process-orientation,
and distributed development may seem alien at first. However, once it sinks in, Erlang
can transform the way you solve problems, and potentially make it difficult to return to
other languages, environments, and programming cultures.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Preface | xi

A Note on Erlang Syntax
Erlang’s syntax seems to be a sticking point for a lot of people. It doesn’t look like the C
family of languages. Punctuation is different and capitalization matters. Periods even
get used as conclusions rather than connectors!

To me, Erlang syntax mostly feels natural, and I’m especially happy that it’s different
from the other languages I typically use. I make a lot fewer mix-ups that way.

Rather than dwell on syntax, I’ve chosen just to present it as it is. Comparing it to other
languages doesn’t seem likely to be helpful, especially when different readers may come
from different programming backgrounds. Hopefully you will find Erlang syntax as
pleasant as I do.

Using Code Examples
The examples in this book are meant to teach basic concepts in small bites. While you
may certainly borrow code and reuse it as you see fit, you won’t be able to take the code
of this book and build a stupendous application instantly (unless perhaps you have an
unusual fondness for calculating the speeds of falling objects). You should, however, be
able to figure out the steps you need to take to build a great application.

You can download the code from the Examples link on the book’s page at http://oreil.ly/
introducing_erlang.

This book is here to help you get your job done. In general, you may use the code in this
book in your programs and documentation. You do not need to contact us for permis‐
sion unless you are reproducing a significant portion of the code. For example, writing
a program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O’Reilly books does require per‐
mission. Answering a question by citing this book and quoting example code does not
require permission. Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: "Introducing Erlang, by Simon St.Laurent
(O’Reilly). Copyright 2013 Simon St.Laurent, 9781449331764.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

xii | Preface

http://oreil.ly/introducing_erlang
http://oreil.ly/introducing_erlang
mailto:permissions@oreilly.com

Help This Book Grow
While I hope that you will enjoy reading this book and learn from it, I also hope that
you can contribute to helping other readers learn Erlang here. You can help your fellow
readers in a number of ways:

• If you find specific technical problems, bad explanations, or things that can be
improved, please report them through the errata system at http://oreilly.com/cata
log/errata.csp?isbn=0636920025818.

• If you like (or don’t like) the book, please leave reviews. The most visible places to
do so are on Amazon.com (or its international sites) and at the O’Reilly page for
the book at http://oreil.ly/introducing_erlang. Detailed explanations of what worked
and what didn’t work for you (and the broader target audience of programmers new
to Erlang) are helpful to other readers and to me.

• If you find you have much more you want to say about Erlang, please consider
sharing it, whether on the Web, in a book of your own, in training classes, or in
whatever form you find easiest.

I’ll update the book for errata, and try to address issues raised in reviews. Even once the
book is “complete,” I may still add some extra pieces to it. If you purchased it as an ebook,
you’ll receive these updates for free at least up to the point where it’s time for a whole
new edition. I don’t expect that new edition declaration to come quickly, however, unless
the Erlang world changes substantially.

Hopefully this book will engage you enough to make you consider sharing.

Please Use It For Good
I’ll let you determine what “good” means, but think about it. Please try to use Erlang’s
power for projects that make the world a better place, or at least not a worse place.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers ex‐
pert content in both book and video form from the world’s leading
authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database

Preface | xiii

http://oreilly.com/catalog/errata.csp?isbn=0636920025818
http://oreilly.com/catalog/errata.csp?isbn=0636920025818
http://oreil.ly/introducing_erlang
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals

from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/introducing_erlang.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Many thanks to Zachary Kessin for interesting me in Erlang in the first place, and to
him and Francesco Cesarini for encouraging me to write this. Detailed feedback from
Steve Vinoski and Fred Hebert has made it possible, I hope, for this book to get readers
started on the right track. J. David Eisenberg and Chuck Ha helped make it especially
possible for beginners to get started right, pointing out gaps and issues in my prose.

In particular, thanks to my wife Angelika for encouraging me to finish this, to my son
Konrad for not throwing the printouts around too much, and to my daughter Sungiva
for understanding that after I told her the story about Ned and Ernie, adventuring
snakes, I needed to go back downstairs and work on this.

xiv | Preface

http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/introducing_erlang
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Getting Comfortable

Erlang has a funny learning curve for many people. It starts gently for a little while, then
gets much much steeper as you realize the discipline involved, and then goes nearly
vertical for a little while as you try to figure out how that discipline affects getting work
done—and then it’s suddenly calm and peaceful with a gentle grade for a long time as
you reapply what you’ve learned in different contexts.

Before that climb, it’s best to get comfortable in the sunny meadows at the bottom of the
learning curve. Erlang’s shell, its command-line interface, is a cozy place to get started
and a good place to start figuring out what works and what doesn’t work in Erlang. Its
features will spare you headaches later, so settle in!

Installation
Erlang is officially available from http://www.erlang.org/download.html. For this book,
I used Erlang/OTP R15B, attracted by this new feature:

Line number and filename information are now included in exception backtraces. This
information will be pretty-printed in the shell and used in crash reports etc. In practice
it will be much easier to find where something failed.

When you’re getting started, extra information is useful, even in a language like Erlang
that’s designed to make debugging easier. Starting out with these features, of course,
means that you can’t tell newcomers that they need to appreciate how much harder it
was for you getting started, but that’s a minor loss.

If you’re on Windows, it’s easy. Download the Windows binary file, run the installer, and
you’re set. If you are a brave beginner tackling your first programming language, this is
easily your best bet.

1

http://www.erlang.org/download.html

On Linux or Mac OS X, you may be able to download the source file and compile it. For
me, on Mac OS X, I just had to unzip and untar it, and then, from the directory created
by the untarring, run ./configure, make, and sudo make install. However, that simple
sequence works only if you have the right files previously installed, and can give you
mysterious errors if they weren’t. In particular, Apple’s shift to the LLVM compiler in
newer versions of XCode instead of GCC makes it less likely that GCC will be on newer
Mac OS X systems, and Erlang needs GCC.

(You can also ignore the error about FOP, which Erlang uses to generate PDF docu‐
mentation you can download elsewhere. Also, on newer Macs, you’ll get an error at the
end that wxWidgets doesn’t work on 64-bit Mac OS X. For now, ignore this.)

If the compilation approach doesn’t work or isn’t for you, Erlang Solutions offers a
number of installs at http://www.erlang-solutions.com/section/132/download-erlang-
otp. Also, many different package managers (Debian, Ubuntu, MacPorts, brew, and so
on) include Erlang. It may not be the very latest version, but having Erlang running is
much better than not having Erlang running.

As CouchDB, which uses Erlang, spreads, Erlang is now part of the
default installation on more systems, including Ubuntu.

Firing It Up
On Mac OS X or Linux, go to the command line and type erl. On Windows, go to the
command line and type werl.

You’ll see something like the following code sample, likely with a cursor next to the 1>
prompt.

Erlang R15B (erts-5.9) [source] [smp:2:2] [async-threads:0] [hipe] [kernel-
poll:false]
Eshell V5.9 (abort with ^G)
1>

You’re in Erlang!

First Steps: The Shell
Before moving on to the excitement of programming Erlang, it’s always worth noting
how to quit. The shell suggests ^G, Ctrl-G, which will bring you to a mysterious (for
now) user switch command. (Ctrl-C will bring you to a menu.) The simplest way to quit,
allowing everything that might be running in the shell to exit normally, is q().

2 | Chapter 1: Getting Comfortable

http://www.erlang-solutions.com/section/132/download-erlang-otp
http://www.erlang-solutions.com/section/132/download-erlang-otp

1> q().
ok
2> SimonMacBook:~ simonstl$

So what have you done here? You’ve issued a shell command, calling a function q that
itself calls the init:stop() function built into Erlang. The period after the command
tells Erlang you’re done with the line. It reports back with ok, prints a new line number
(it always does that after a period), and drops you back out to the regular command
line, in this case a bash shell on your laptop.

If you had left off the period after q(), the results would look a little different. You’d have
started a new line but the command count wouldn’t update, so the line would still start
with 1>. When this happens, you can just type . and press Enter to finish your command.

1> q()
1> .
ok
2> SimonMacBook:~ simonstl$

Including the period at the end of the line will soon become second nature, but leaving
it off can create a lot of confusion at the start.

Quitting Erlang with q(). turns off everything Erlang is doing, period.
That’s fine when you’re working locally, but will become a bad idea when
you’re connecting to a remote shell. To quit the shell without the risk of
shutting down the Erlang runtime on another system, try Ctrl-G and
then entering q, followed by the Enter key.

Moving through Text
If you explore the shell, you’ll find that many things work the way they do in other shells.
The left and right arrow keys move you backward and forward through the line you’re
editing. Some of the key bindings echo the emacs text editor. Ctrl-A will take you to the
beginning of a line, while Ctrl-E will take you back to the end of the line. If you get two
characters in the wrong sequence, pressing Ctrl-T will transpose them.

Like most Unix shells, pressing the Tab key will make the shell try to autocomplete what
you’ve written, though in this case it’s looking for module or function names (you’ll see
them soon), not filenames.

Also, as you type closing parentheses or square brackets, the cursor will highlight the
corresponding opening parenthesis or square bracket.

Moving through History
The up and down arrow keys run through the history, making it easy to reissue
commands.

First Steps: The Shell | 3

When you use the up and down arrows, the history will be broken down by newlines,
not by periods, so if you left a period off in a prior command you’ll need to add it again.
If you want to see what’s in the history, try h(). You can also specify how much history
to keep around with history(N) and results(N). You can tell Erlang to execute a given
line again with e(N), and reference a given result value with v(N). Those line numbers
can be useful!

Moving through Files
The Erlang shell does understand filesystems to some extent because you may need to
move through them to reach the files that will become part of your program. The com‐
mands have the same names as Unix commands but are expressed as functions. The
Erlang shell starts wherever you opened the shell, and you can figure out where that is
with pwd():

4> pwd().
/Users/simonstl
ok
5>

To change directories, use the cd() command, but you’ll need to wrap the argument not
only in parentheses but in quotes, preferably double quotes.

5> cd(..).
* 1: syntax error before: '..'
5> cd("..").
/Users
ok
6> cd("simonstl").
/Users/simonstl
ok
7>

You can look around with the ls() command, which will list files in the current directory
if you give it no arguments, and list files in a specified directory if you give it one argu‐
ment.

Doing Something
One of the easiest ways to get started playing with Erlang is to use the shell as a calculator.
Unlike your typical command line, you can enter mathematical expressions and get
useful results:

Eshell V5.9 (abort with ^G)
1> 2+2.
4
2> 27-14.
13
3> 35*42023943.

4 | Chapter 1: Getting Comfortable

1470838005
4> 200/15.
13.333333333333334
5> 200 div 15.
13
6> 200 rem 15.
5
7> 3*(4+15).
57

The first three operators are addition(+), subtraction(-), and multiplication(*), which
work the same way whether you’re working with integer values or floating points. The
fourth, /, supports division where you expect a floating point (a number with a decimal
part) result. If you want an integer result (and have integer arguments), use the div
operator instead, with rem to get the remainder, as shown on lines 5 and 6. Parentheses
let you modify the order in which operators are processed, as shown on line 7. (The
normal order of operations is listed in Appendix A.)

Erlang will accept integers in place of floats, but floats are not always welcome where
integers are used. If you need to convert a floating point number to an integer, you can
use the round() built-in function:

8> round(200/15).
13

The round() function drops the decimal part of the number. If the decimal part was
greater than or equal to .5, it increases the integer part by 1, rounding up. If you’d rather
just drop the decimal part completely, use the trunc() function, which effectively always
rounds down.

You can also refer to a previous result by its line number using v(). For example:

9> 4*v(8).
52

The result on line 8 was 13, and 4*13 is 52.

If you’re feeling adventurous, you can use negative numbers to reference
prior results. v(-1) is the previous result, v(-2) is the result before that,
and so on.

Calling Functions
If you want to do more powerful calculations, Erlang’s math module offers pretty much
the classic set of functions supported by a scientific calculator. They return floating point
values. The constant pi is available as a function, Math:pi(). Trigonometric,

Calling Functions | 5

logarithmic, exponential, square root, and (except on Windows) even the Gauss error
functions are readily available. (The trigonometric functions take their arguments in
radians, not degrees, so be ready to convert if necessary.) Using these functions is a little
verbose because of the need to prefix them with math:, but it’s still reasonably sane.

For example, to get the sine of zero radians, you’d write:

1> math:sin(0).
0.0

Note that it’s 0.0, not just 0, indicating that the number is floating point.

To calculate the cosine of pi and 2pi radians, you’d write:

2> math:cos(math:pi()).
-1.0
3> math:cos(2*math:pi()).
1.0

To calculate 2 taken to the 16th power, you’d use:

4> math:pow(2,16).
65536.0

The full set of mathematical functions supported by Erlang’s math module is listed in
Appendix A.

Numbers in Erlang
Erlang recognizes two kinds of numbers: integers and floating-point numbers (often
called floats). It’s easy to think of integers as “whole numbers,” with no decimal part,
and floats as “decimal numbers,” with a decimal point and some value (even if it’s 0) to
the right of the decimal. 1 is an integer, 1.0 is a floating-point number.

However, it’s a little trickier than that. Erlang stores integers and floats in a very different
way. Erlang lets you store massive numbers as integers, but whether they’re big or small,
they are always precise. You don’t need to worry about their values being off by just a
little.

Floats, on the other hand, cover a wide range of numbers but with limited precision.
Erlang uses the 64-bit IEEE 754-1985 “double precision” representation. This means
that it keeps track of about 15 decimal digits plus an exponent. It can also represent some
large numbers—powers up to positive or negative 308 are available—but because it
tracks only a limited number of digits, results will vary a little more than may seem
convenient, especially when you want to do comparisons.

1> 3487598347598347598437583475893475843749245.0.
3.4875983475983474e42

6 | Chapter 1: Getting Comfortable

2> 2343243.345435893850234543339545.
2343243.3454358936
3> 0.0000000000000000000000000000023432432432432234232324.
2.3432432432432235e-30

As you can see, some digits get left behind, and the overall magnitude of the number
represented with an exponent.

When you enter floating point numbers, you must always also have at least one number
to the left of the decimal point, even if it’s zero. Otherwise Erlang reports a syntax error
—it doesn’t understand what you’re doing.

4> .0000000000000000000000000000023432432432432234232324.
* 1: syntax error before: 23432432432432234232324

You can also write floats using the digits plus exponent notation:

7> 2.923e127.
2.923e127
8> 7.6345435e-231.
7.6345435e-231

Floats’ lack of precision can cause anomalous results. For example, the sine of zero is
zero, and the sine of pi is also zero. However, if you calculate this in Erlang, you won’t
quite get to zero with the float approximation Erlang provides for pi:

1> math:sin(0).
0.0
2> math:sin(math:pi()).
1.2246467991473532e-16

If Erlang’s representation of pi went further, and its calculations of pi went further, the
result for line 2 would be closer to zero.

If you need to keep track of money, integers are going to be a better bet. Use the smallest
available unit—cents for US dollars, for instance—and remember that those cents are
1/100 of a dollar. (Financial transactions can go to much smaller fractions, but you’ll
still want to represent them as integers with a known multiplier.) For more complex
calculations, though, you’ll want to use floats, and just be aware that results will be
imprecise.

If you need to do calculations on integers using a base other than 10, you can use
Base#Value notation. For example, if you wanted to specify the binary value of 1010111,
you could write:

3> 2#1010111.
87

Erlang reports back with the base 10 value of the number. Similarly, you can specify
hexadecimal numbers by using 16 instead of 2:

Numbers in Erlang | 7

4> 16#cafe.
51966

Erlang lets you use either upper- or lower-case for hexdecimal numbers - 16#CAFE and
16#CaFe also produce 51966. You aren’t limited to the traditional binary (base 2), octal
(base 8), and hexadecimal (base 16) choices. If you want to work in base 18, or any base
up to 36, you can:

5> 18#gaffe.
1743080

Why might you use base 36? It’s an extremely easy way to create keys
that look like a combination of letters and numbers, but resolve neatly
to numbers. The 6-digit codes airlines use to identify tickets, like
G6ZV1N, are easily treated as base 36. (However, they usually leave out
some digits and letters that are easily confused, such as -0 and O, and 1
and l.)

To make any of these numbers negative just put a minus sign (-) in front of them. This
works with normal integers, Base#Value notation, and floats:

6> -1234.
-1234
7> -16#cafe.
-51966
8> -2.045234324e6.
-2045234.324

Working with Variables in the Shell
The v() function lets you refer to the results of previous expressions, but it’s not exactly
convenient to keep track of result numbers, and the v() function works only in the shell.
It isn’t a general-purpose mechanism. A more reasonable solution stores values with
textual names, creating variables.

Erlang variable names begin with a capital letter or an underscore. Normal variables
start with a capital letter, whereas underscores start “don’t care” variables. For now, stick
with normal variables. You assign a value to a variable using a syntax that should be
familiar from algebra or other programming languages, here with N as the variable:

1> N=1.
1

To see the value of a variable, just type its name.

2> N.
1

8 | Chapter 1: Getting Comfortable

To see Erlang protest at your rude behavior, try assigning the variable a new value:

3> N=2.
** exception error: no match of right hand side value 2
4> N=N+1.
** exception error: no match of right hand side value 2

What’s happening here? Erlang expects the righthand side of an expression, after the =,
to match the lefthand side. It’s willing to make that happen if a variable on the left side
isn’t bound yet, as was the case with N=1 in the first line. However, once the variable N
is set to 1, Erlang interprets N=2 as 1=2, which it won’t accept. N=N+1 also evaluates to
1=2, and doesn’t work. Erlang’s single assignment model, where each variable can be
assigned a value only once in a given context, imposes discipline whose value you will
see in later chapters.

Erlang expressions work like algebra, where N never equals N+1. It just can’t happen that
way. However, once you’ve set N to 1, it’s fine to try expressions that also come to one:

5> N=2-1.
1
6> N=15 div (3*5).
1

This will get much more important when you start to take advantage of Erlang’s pattern
matching capabilities. You can also write the following:

7> 1=N.
1

Erlang won’t attempt to bind any variables when they appear on the right side of the
equals sign, and this just effectively asks Erlang to compare 1 to 1. Try it with 2, however,
and Erlang complains that there isn’t a match; 2 does not equal 1:

8> 2=N.
** exception error: no match of right hand side value 1

You can also use bound variables in calculations, for example to create new bound
variables, here’s one called Number:

9> Number=N*4+N.
5
10> 6*Number.
30

When you assign a value to a variable, you should make sure that all the calculations
are on the right side of the equals sign. Even though I know that M should be 6 when
2*M = 3*4, Erlang doesn’t:

11> 2*M=3*4.
* 1: illegal pattern

Working with Variables in the Shell | 9

The shell will remember your variables until you quit or tell it to forget them. Code in
Erlang functions doesn’t forget, until the functions stop running.

Seeing Your Bound Variables
After a while poking around the shell using it as a calculator (try it!), you may find you’ve
forgotten what variables you’ve already bound. If you need a reminder, the b() shell
command can help:

11> b().
N = 1
Number = 5
ok

Clearing Bound Variables in the Shell
In the shell, and only in the shell, you can clear all variable bindings and you can clear
specific variable bindings. This may prove useful after an egregious typo or to reset your
console for new calculations, but it isn’t an option you’ll have in regular code.

To clear a specific variable, removing its binding and letting you set a new value, use the
f() function, giving the variable name as an argument:

12> f(N).
ok
13> b().
Number = 5
ok
14> N=2.
2

To clear all the bound variables in the shell, just call f() with no arguments.

15> b().
N = 2
Number = 5
ok
16> f().
ok
17> b().
ok

They all disappeared.

10 | Chapter 1: Getting Comfortable

Before moving on to the next chapter, which will introduce modules and functions,
spend some time playing in the Erlang shell. The experience, even at this simple level,
will help you move forward. Use variables, and see what happens with large integers.
Erlang supports large numbers very well. Try mixing numbers with decimal values
(floats) and integers in calculations, and see what happens. Nothing should be difficult
yet, though I suspect the idea of variables that don’t change values gives you a hint of
what’s to come.

Working with Variables in the Shell | 11

CHAPTER 2

Functions and Modules

Like most programming languages, Erlang lets you define functions to help you repre‐
sent repeated calculations. While Erlang functions can become complicated, they start
out reasonably simple.

Fun with fun
You can create functions in the Erlang shell using the appropriately named fun. For
example, to create a function that calculates the velocity of a falling object based on the
distance it drops in meters, you could create the following:

1> FallVelocity = fun(Distance) -> math:sqrt(2 * 9.8 * Distance) end.
#Fun<erl_eval.6.111823515>

You can read that as a pattern match that binds the variable FallVelocity to a function
that takes an argument of Distance. The function returns (I like to read the -> as yields)
the square root of 2 times a gravitational constant for Earth of 9.8 m/s, times Distance
(in meters). Then the function comes to an end, and a period closes the statement.

If you want to include multiple statements in a fun, separate them with
commas, like FallVelocity = fun(Distance) -> X = (2 * 9.8 *
Distance), math:sqrt(X) end.

The return value in the shell, #Fun<erl_eval.6.111823515>, isn’t especially meaningful
by itself, but it tells you that you’ve created a function and didn’t just get an error. If you
want a slightly more detailed sign that Erlang understood you, you can use the b() shell
command to see what it thinks:

13

2> b().
FallVelocity =
 fun(Distance) ->
 math:sqrt(2 * 9.8 * Distance)
 end
ok

Conveniently, binding the function to the variable FallVelocity lets you use that vari‐
able to calculate the velocity of objects falling to Earth:

3> FallVelocity(20).
19.79898987322333
4> FallVelocity(200).
62.609903369994115
5> FallVelocity(2000).
197.9898987322333

If you want those meters per second in miles per hour, just create another function. You
can copy-and-paste the earlier results into it (as I did here), or pick shorter numbers:

6> Mps_to_mph = fun(Mps) -> 2.23693629 * Mps end.
#Fun<erl_eval.6.111823515>
7> Mps_to_mph(19.79898987322333).
44.289078952755766
8> Mps_to_mph(62.609903369994115).
140.05436496173314
9> Mps_to_mph(197.9898987322333).
442.89078952755773

I think I’ll stay away from 2000 meter drops. Prefer the fall speed in kilometers per hour?

10> Mps_to_kph = fun(Mps) -> 3.6 * Mps end.
#Fun<erl_eval.6.111823515>
11> Mps_to_kph(19.79898987322333).
71.27636354360399
12> Mps_to_kph(62.609903369994115).
225.3956521319788
13> Mps_to_kph(197.9898987322333).
712.76363543604

You can also go straight to your preferred measurement by nesting the following calls:

14> Mps_to_kph(FallVelocity(2000)).
712.76363543604

However you represent it, that’s really fast, though air resistance will slow those down
a lot in reality.

This is handy for repeated calculations, but you probably don’t want to push this kind
of function use too far in the shell, as flushing your variables or quitting the shell session
makes your functions vanish.

14 | Chapter 2: Functions and Modules

If you get an error that looks like ** exception error: no function
clause matching erl_eval:'-inside-an-interpreted-fun-'(value),
check your capitalization. It may take a while to get used to capitalizing all
your variables, including arguments in functions.

Defining Modules
Most Erlang programs, except things like the preceding simple calculations, define their
functions in compiled modules rather than in the shell. Modules are a more formal place
to put programs, and they give you the ability to store, encapsulate, share, and manage
your code more effectively.

Each module should go in its own file, with an extension of .erl. You should use
name_of_module.erl, where name_of_module is the name you specify inside of the
module file. Example 2-1, which you can find in the examples archive at ch02/ex1-
drop, shows what a module, drop.erl, containing the functions previously defined might
look like.

Example 2-1. Module for calculating and converting fall velocities
-module(drop).
-export([fall_velocity/1, mps_to_mph/1, mps_to_kph/1]).

fall_velocity(Distance) -> math:sqrt(2 * 9.8 * Distance).

mps_to_mph(Mps) -> 2.23693629 * Mps.

mps_to_kph(Mps) -> 3.6 * Mps.

There are two key kinds of information in this module. At the top, the -module and -
export directives tell the compiler key things about the module—its name and which
functions it should make visible to other code that uses this module. The -export
directive gives a list of functions that should be made visible—not just their names, but
their arity, the number of arguments they take. Erlang considers functions with the same
name but different arity to be different functions.

All of the code in a module must be contained in functions.

Below the directives is a set of expressions defining functions, which look similar to the
fun declarations used earlier but not quite the same. The function names start with
lowercase, not uppercase, and the syntax is slightly different. fun and end don’t appear,
and the function name is immediately followed by parentheses containing a set of ar‐
guments.

Defining Modules | 15

If you get errors like "drop.erl:2: bad function arity drop.erl:
6: syntax error before: Fall_velocity“, it’s probably because you
didn’t convert the names from your fun/s so they start with a lowercase
letter.

How do you make this actually do something?

It’s time to start compiling Erlang code. The shell will let you compile modules and then
use them immediately. The c() function lets you compile code. You need to be in the
same directory as the file, whether you started the Erlang shell from there or navigated
there with the commands shown in the previous chapter. You don’t need to (and
shouldn’t) include the .erl file extension in the name you pass to c(), though you can
specify directory paths.

1> ls().
drop.erl
ok
2> c(drop).
{ok,drop}
3> ls().
drop.beam drop.erl
ok

Line 1 checks to see if the drop.erl source file is there, and you see the directory listing.
Line 2 actually compiles it, and line 3 shows that a new file, drop.beam, is now available.
Now that you have drop.beam, you can call functions from the module. You need to
prefix those calls with drop, as shown in lines 4 and 5 of the following code.

4> drop:fall_velocity(20).
19.79898987322333
5> drop:mps_to_mph(drop:fall_velocity(20)).
44.289078952755766

It works the same as its predecessors, but now you can quit the shell, return, and still
use the compiled functions.

6> q().
ok
$ erl
Erlang R15B (erts-5.9) [source] [smp:8:8] [async-threads:0] [hipe] [kernel-
poll:false]

Eshell V5.9 (abort with ^G)
1> drop:mps_to_mph(drop:fall_velocity(20)).
44.289078952755766

Most Erlang programming (beyond tinkering in the shell) is creating functions in mod‐
ules and connecting them into larger programs.

16 | Chapter 2: Functions and Modules

Erlang Compilation and the Runtime System
When you write Erlang in the shell, it has to interpret every command, whether or not
you’ve written it before. When you tell Erlang to compile a file, it converts your text into
something it can process without having to re-interpret all the text, tremendously im‐
proving efficiency when you run the code.

That “something it can process,” in Erlang’s case, is a BEAM file. It contains code that
the BEAM processor, a key piece of the Erlang Runtime System (ERTS) can run. BEAM
is Bodgan’s Erlang Abstract Machine, a virtual machine that interprets optimized BEAM
code. This may sound slightly less efficient than the traditional compilation to machine
code that runs directly on the computer, but it resembles other virtual machines. (Ora‐
cle’s Java Virtual Machine (JVM) and Microsoft’s .NET Framework are the two most
common virtual machines.)

Having its own virtual machine and runtime system lets Erlang optimize some key
things, making it easier to build applications that scale reliably. Its process scheduler
simplifies distributing work across multiple processors in a single computer. You don’t
have to think about how many processors your application might get to use—you just
write independent processes, and Erlang spreads them out. Erlang also manages input
and output in its own way, avoiding connection styles that block other processing. The
virtual machine also uses a garbage collection strategy that fits its style of processing,
allowing for briefer pauses in program execution. (Garbage collection releases memory
that processes needed at one point but are no longer using.)

When you create and deliver Erlang programs, you will be distributing them as a set of
compiled BEAM files. You don’t need to compile each one from the shell as we’re doing
here, though. erlc will let you compile Erlang files directly and combine that compila‐
tion into make tasks and similar things, whereas escript can compile or interpret and
run Erlang code from outside of the Erlang shell.

From Module to Fun
If you like the style of code that fun allowed but also want your code stored more reliably
in modules where it’s easier to debug, you can get the best of both worlds by using the
fun keyword to refer to a function you’ve already defined. To do that, you don’t use
parentheses after fun, and give the module name, function name, and arity.

1> F_v = fun drop:fall_velocity/1.
#Fun<drop.fall_velocity.1>
2> F_v(20).
19.79898987322333

Defining Modules | 17

You can also do this within code in a module, and if you’re referring to code in the same
module, you can leave off the module name preface. (In this case, that would mean
leaving off drop: and just using fall_velocity/1.)

Functions and Variable Scope
Erlang lets you bind a variable only once, but you might call a function many times over
the course of a program. Doesn’t that mean the same variable will be bound many times?

Yes, it will be bound many times but always in separate contexts. Erlang doesn’t consider
multiple calls to the same function to be the same thing. It starts with a fresh set of
unassigned variables every time you call that function.

Similarly, Erlang doesn’t worry if you use the same variable name in different functions
or function clauses. They aren’t going to be called in the same context at the same time,
so there isn’t a collision.

The place you need to avoid re-assigning values to an already bound variable is within
a given path through a given function. As long as you don’t try to reuse a variable in a
given context, you shouldn’t have to worry.

Module Directives
By default, modules have very thick walls, and everything inside of them is considered
private. Everything going in or out of the module needs a pass to do so, and you grant
those passes through module directives (sometimes called module attributes).

The example above showed two module directives—-module and -export. The -module
directive sets the name for the module, which outside code will need to know in order
to call the functions. The -export directive specifies which functions that outside code
can reach.

The drop module currently mixes two different kinds of functions. The fall_velocity/
1 function fits the name of the module, drop, very well, providing a calculation based
on the height from which an object falls. The mps_to_mph/1 and mps_to_kph/1 func‐
tions, however, aren’t about dropping. They are generic measurement conversion func‐
tions that are useful in other contexts and really belong in their own module.
Example 2-2 and Example 2-3, both in ch02/ex2-combined, show how this might be
improved.

Example 2-2. Module for calculating fall velocities
-module(drop).
-export([fall_velocity/1]).

fall_velocity(Distance) -> math:sqrt(2 * 9.8 * Distance).

18 | Chapter 2: Functions and Modules

Example 2-3. Module for converting fall velocities
-module(convert).
-export([mps_to_mph/1, mps_to_kph/1]).

mps_to_mph(Mps) -> 2.23693629 * Mps.

mps_to_kph(Mps) -> 3.6 * Mps.

Next, you can compile them, and then the separated functions are available for use:

Eshell V5.9 (abort with ^G)
1> c(drop).
{ok,drop}
2> c(convert).
{ok,convert}
3> ls().
convert.beam convert.erl drop.beam drop.erl

ok
4> convert:mps_to_mph(drop:fall_velocity(20)).
44.289078952755766

That reads more neatly, but how might this code work if a third module needed to call
those functions? Modules that call code from other modules need to specify that ex‐
plicitly. Example 2-4, in ch02/ex3-combined, shows a module that uses functions from
both the drop and convert modules.

Example 2-4. Module for combining drop and convert logic
-module(combined).
-export([height_to_mph/1]).

height_to_mph(Meters) -> convert:mps_to_mph(drop:fall_velocity(Meters)).

That looks much like the way you called it from the Erlang shell, but if you have a lot of
calls to external modules, that can get verbose quickly. The -import directive, shown in
Example 2-5, lets you simplify your code, though it comes with a possible risk of con‐
fusing other people who think the imported functions must be defined within this
module. (You can find this in ch02/ex4-combined.)

Example 2-5. Module for combining drop and convert logic using import
-module(combined).
-export([height_to_mph/1]).
-import(drop, [fall_velocity/1]).
-import(convert, [mps_to_mph/1]).

height_to_mph(Meters) -> mps_to_mph(fall_velocity(Meters)).

Defining Modules | 19

For now, it’s probably best to know about the -import directive so you can read other
people’s code, but not to use it unless you just can’t resist. It can make it harder to figure
where bugs are coming from, which may cost you more time than the extra typing.

Erlang includes one other directive that’s similarly convenient but not best practice to
use: -compile(export_all). That directive tears down the module wall, making all
functions available for external calls. In a module where everything is supposed to be
public, that might save you typing out all the functions and all the arities of your module.
However, it also means anyone can call anything in your code, exposing a lot more
surface area for misunderstandings and complex debugging. If you just can’t resist, it’s
available, but try to resist.

You can also make up your own user directives. -author(Name) and
-date(Date) are commonly used. If you make up your own directives,
they can have only one argument. If you spend enough time in Erlang,
you’ll also encounter the following: -behaviour(Behaviour),
-record(Name, Fields), and -vsn(Version).

Documenting Code
Your programs can run perfectly well without documentation. Your projects, however,
will have a much harder time.

While programmers like to think they write code that anyone can look at and sort out,
the painful reality is that code even a little more complicated than that shown in the
previous examples can prove mystifying to other developers. If you step away from code
for a while, the understanding you developed while programming it may have faded,
and even your own code can seem incomprehensible.

The simplest way to add more explicit explanations to your code is to insert comments.
You can start a comment with %, and it runs to the end of the line. Some comments take
up an entire line, while others are short snippets at the end of a line. Example 2-6 shows
both varieties of comments.

Example 2-6. Comments in action
-module(combined).
-export([height_to_mph/1]). % there will be more soon!

%%% combines logic from other modules into a convenience function.
height_to_mph(Meters) -> convert:mps_to_mph(drop:fall_velocity(Meters)).

The Erlang compiler will ignore all text between the % sign and the end of the line, but
humans exploring the code will be able to read them.

20 | Chapter 2: Functions and Modules

Why are there multiple percent signs at the start of the line? The Erlang Emacs mode
and many other Erlang tools expect the number of percent signs to indicate levels of
indentation. Three percent signs (%%%) means that the comment will be formatted flush
left, two percent signs (%%) means the comment is indented with surrounding code, and
a single percent sign (%) is used for comments on the end of a line.

Informal comments are useful, but developers have a habit of including comments that
help them keep track of what they’re doing while they’re writing the code. Those com‐
ments may or may not be what other developers need to understand the code, or even
what you need when you return to the code after a long time away. More formal comment
structures may be more work than you want to take on in the heat of a programming
session, but they also force you to ask who might be looking at your code in the future
and what they might want to know.

Erlang includes a documentation system called EDoc, which converts comments placed
in the code into navigable HTML documentation. It relies on specially formatted com‐
ments, a directive, and occasionally an extra file to provide structured information about
your modules and application.

Documenting Modules
The modules in this chapter are very simple so far, but there is enough there to start
documenting, as shown in the files at ch02/ex5-docs. Example 2-7 presents the drop
module with more information about who created it and why.

Example 2-7. Documented module for calculating fall velocities
%% @author Simon St.Laurent <simonstl@simonstl.com> [http://simonstl.com]
%% @doc Functions calculating velocities achieved by objects
%% dropped in a vacuum.
%% @reference from In
troducing Erlang,
%% O'Reilly Media, Inc., 2012.
%% @copyright 2012 by Simon St.Laurent
%% @version 0.1

-module(drop).
-export([fall_velocity/1]).

fall_velocity(Distance) -> math:sqrt(2 * 9.8 * Distance).

Erlang can build the files for you using the EDoc file function:

Eshell V5.9 (abort with ^G)
1> edoc:files(["drop.erl"], [{dir, "doc"}]).
ok

You’ll now have a collection of files in the doc subdirectory. If you open drop.html in a
browser, you’ll see something like Figure 2-1.

Documenting Code | 21

Figure 2-1. Module documentation generated from the drop.erl file

All of that metadata is great, and it can be gratifying to see your name “in lights.” How‐
ever, unless you have a complex story to tell about your module as a whole, it’s likely
that the core of the documentation will appear at the function level.

Documenting Functions
The drop module contains one function: fall_velocity/1. You probably know that it
takes a distance in meters and returns a velocity in meters per second for an object
dropped in a vacuum on Earth, but the code doesn’t actually say that. Example 2-8 shows
how to fix that with EDoc comments and the @doc tag.

Example 2-8. Documented function for calculating fall velocities
%% @doc Calculates the velocity of an object falling on Earth
%% as if it were in a vacuum (no air resistance). The distance is
%% the height from which the object falls, specified in meters,
%% and the function returns a velocity in meters per second.

fall_velocity(Distance) -> math:sqrt(2 * 9.8 * Distance).

22 | Chapter 2: Functions and Modules

Figure 2-2 shows the result, which is considerably more helpful than the previous blank
space around the function. It neatly takes the first sentence of the information following
@doc and put it in the index, using the whole description for the Function Details section.
You can also use XHTML markup in the @doc section.

Figure 2-2. Function documentation generated from the drop.erl file

That’s a major improvement, but what if a user specifies “twenty” meters instead of 20
meters? Because Erlang doesn’t worry much about types, the Erlang code doesn’t say
that the value for Distance has to be a number or the function will return an error.

You can add a directive, -spec, to add that information. It’s a little strange, as in some
ways it feels like a duplicate of the method declaration. In this case, it’s simple, as shown
in Example 2-9.

Example 2-9. Documented function for calculating fall velocities
%% @doc Calculates the velocity of an object falling on Earth
%% as if it was in a vacuum (no air resistance). The distance is
%% the height from which the object falls, specified in meters,
%% and the function returns a velocity in meters per second.

-spec(fall_velocity(number()) -> number()).

fall_velocity(Distance) -> math:sqrt(2 * 9.8 * Distance).

Documenting Code | 23

EDoc will combine the types specified in the -spec directive with the parameter names
in the actual function declaration to produce the documentation shown in Figure 2-3.

Figure 2-3. EDoc documentation with type information

This chapter has really demonstrated only the number() type, which combines
integer() and float(). Appendix A includes a full list of types.

Documenting Your Application
Sometimes you want information like the author and copyright data to appear in every
module, often when it varies from module to module. Other times that becomes clutter,
and it’s easier to put it into one place where it applies to all of your modules.

You can create an overview.edoc file in your project’s doc directory. Its content looks
much like the markup used in the modules, but because it isn’t mixed with code, you
don’t need to preface every line with %%. The overview.edoc file for this project might
look like Example 2-10.

Example 2-10. Documented module for calculating fall velocities
@author Simon St.Laurent <simonstl@simonstl.com> [http://simonstl.com]
@doc Functions for calculating and converting velocities.
@reference from <a href= "http://shop.oreilly.com/product/0636920025818.do"
>Introducing Erlang, O'Reilly Media, Inc., 2012.
@copyright 2012 by Simon St.Laurent
@version 0.1

Now, if you re-generate documentation and click on the Overview link, you’ll see some‐
thing like Figure 2-4.

24 | Chapter 2: Functions and Modules

Figure 2-4. EDoc documentation with type information

If you create similar documentation in each of the Erlang files and run
edoc:files(["drop.erl", "convert.erl", "combined.erl"]). in the Erlang shell,
EDoc will build a neat if somewhat plain set of frame-based documentation for your
application, as shown in Figure 2-5.

Documenting Code | 25

Figure 2-5. The opening to the complete set of module documentation

This is just an introduction to EDoc. For more, see Chapter 18 of Erlang Programming,
where you can learn about fun things like the @todo tag.

26 | Chapter 2: Functions and Modules

CHAPTER 3

Atoms, Tuples, and Pattern Matching

Erlang programs are at heart a set of message requests and tools for processing them.
Erlang provides tools that simplify the efficient handling of those messages, letting you
create code that is readable (to programmers at least) while still running efficiently when
you need speed.

Atoms
Atoms are a key structure in Erlang. Technically they’re just another type of data, but
it’s hard to overstate their impact on Erlang programming style.

Usually, atoms are bits of text that start with a lowercase letter, like ok or earth. They
can also contain (though not start with) underscores (_) and at symbols (@), like
this_is_a_short_sentence or me@home. If you want more freedom to start with up‐
percase letters or use spaces, you can put them in single quotes, like 'Today is a good
day'. Generally, the one word lowercase form is easier to read.

Atoms have a value—it’s the same as their text. (Remember, the period after hello isn’t
part of the atom—it ends the expression.)

1> hello.
hello

That’s not very exciting in itself. What makes atoms exciting is the way that they can
combine with other types and Erlang’s pattern matching techniques to build simple but
powerful logical structures.

27

Pattern Matching with Atoms
Erlang used pattern matching to make the examples in Chapter 2 work, but it was very
simple. The name of the function was the one key piece that varied, and as long as you
provided a numeric argument Erlang knew what you meant. Erlang’s pattern matching
offers much more sophisticated possibilities, however, allowing you to match on argu‐
ments as well as on function names.

For example, suppose you want to calculate the velocity of falling objects not just on
Earth, where the gravitational constant is 9.8 meters per second squared, but on Earth’s
moon, where it is 1.6 meters per second squared, and on Mars, where it is 3.71 meters
per second squared. Example 3-1, which you can find in ch03/ex1-atoms, shows one way
to build code that supports this.

Example 3-1. Pattern matching on atoms as well as function names
-module(drop).
-export([fall_velocity/2]).

fall_velocity(earth, Distance) -> math:sqrt(2 * 9.8 * Distance);

fall_velocity(moon, Distance) -> math:sqrt(2 * 1.6 * Distance);

fall_velocity(mars, Distance) -> math:sqrt(2 * 3.71 * Distance).

It looks like the fall_velocity function gets defined three times here, and it certainly
provides three processing paths for the same function. However, because those
definitions are separated with semicolons, they are treated as choices—selected by
pattern-matching—rather than duplicate definitions. As in English, these pieces are
called clauses.

If you use periods instead of semicolons, you’ll get errors like drop.erl:
5: function fall_velocity/2 already defined.

Once you have this, you can calculate velocities for objects falling a given distance on
Earth, the Earth’s moon, and Mars:

1> c(drop).
{ok,drop}
2> drop:fall_velocity(earth,20).
19.79898987322333
3> drop:fall_velocity(moon,20).
8.0
4> drop:fall_velocity(mars,20).
12.181953866272849

28 | Chapter 3: Atoms, Tuples, and Pattern Matching

You’ll quickly find that atoms are a critical component for writing readable Erlang code.

Atomic Booleans
Two of Erlang’s atoms have special properties: true and false, representing the boolean
logic values of the same names. Erlang will return these atoms if you ask it to compare
something:

1> 3<2.
false
2> 3>2.
true
3> 10 == 10.
true

Erlang also has special operators that work on these atoms (and on comparisons that
resolve to these atoms):

1> true and true.
true
2> true and false.
false
3> true or false.
true
4> false or false.
false
5> true xor false.
true
6> true xor true.
false
7> not true.
false

The and, or, and xor operators both take two arguments. For and, the result is true if
and only if the two arguments are true. For or, the result is true if at least one of the
arguments is true. For xor, exclusive or, the result is true if one but not both arguments
is true. In all other cases they return false. If you’re comparing expressions more com‐
plicated than true and false, it’s wise to put them in parentheses.

There are two additional operators for situations where you don’t want
or need to evaluate all of the arguments. The andalso operator behaves
like and but evaluates the second argument only if the first one is true.
The orelse operator evaluates the second argument only if the first one
is false.

Atomic Booleans | 29

The not operator is simpler, taking just one argument. It turns true into false and
false into true. Unlike the other boolean operators, which go between their arguments,
not goes before its single argument.

If you try to use these operators with any other atoms, you’ll get a bad argument
exception.

There are other atoms that often have an accepted meaning, like ok and
error, but those are more conventions than a formal part of the
language.

Guards
The fall_velocity calculations work fairly well, but there’s still one glitch: if the func‐
tion gets a negative value for distance, the square root (sqrt) function in the calculation
will be unhappy:

5> drop:fall_velocity(earth,-20).
** exception error: bad argument in an arithmetic expression
 in function math:sqrt/1
 called as math:sqrt(-392.0)
 in call from drop:fall_velocity/2 (drop.erl, line 4)

Since you can’t dig a hole 20 meters down, release an object, and marvel as it accelerates
to the surface, this isn’t a terrible result. However, it might be more elegant to at least
produce a different kind of error.

In Erlang, you can specify which data a given function will accept with guards. Guards,
indicated by the when keyword, let you fine-tune the pattern matching based on the
content of arguments, not just their shape. Guards have to stay simple, can use only a
very few built-in functions, and are limited by a requirement that they evaluate only
data without any side effects, but they can still transform your code.

You can find a list of functions that can safely be used in guards in
Appendix A.

Guards evaluate their expressions to true or false, as previously described, and the
first one with a true result wins. That means that you can write when true for a guard
that always gets called if it is reached, or block out some code you don’t want to call (for
now) with when false.

30 | Chapter 3: Atoms, Tuples, and Pattern Matching

In this simple case, you can keep negative numbers away from the square root function
by adding guards to the fall_velocity clauses, as shown in Example 3-2, which you
can find at ch03/ex2-guards.

Example 3-2. Adding guards to the function clauses
-module(drop).
-export([fall_velocity/2]).

fall_velocity(earth, Distance) when Distance >= 0 -> math:sqrt(2 * 9.8 * Distance);

fall_velocity(moon, Distance) when Distance >= 0 -> math:sqrt(2 * 1.6 * Distance);

fall_velocity(mars, Distance) when Distance >= 0 -> math:sqrt(2 * 3.71 * Distance).

In Erlang, greater-than-or-equal-to is written >=, and less-than-or-
equal-to is written =<. Don’t make them look like arrows.

The when expression describes a condition or set of conditions in the function head. In
this case, the condition is simple: the Distance must be greater than or equal to zero. If
you compile that code and ask for a negative velocity, the result is different:

5> drop:fall_velocity(earth,-20).
** exception error: no function clause matching
 drop:fall_velocity(earth,-20) (drop.erl, line 12)

Because of the guard, Erlang doesn’t find a function clause that works with a negative
argument. The error message may not seem like a major improvement, but as you add
layers of code, “not handled” may be a more appealing response than “broke my for‐
mula.”

A clearer, though still simple, use of guards might be code that returns an absolute value.
Yes, Erlang has a built-in function, abs/1, for this, but Example 3-3 makes clear how
this works.

Example 3-3. Calculating absolute value with guards
-module(mathdemo).
-export([absolute_value/1]).

absolute_value(Number) when Number < 0 -> -Number;

absolute_value(Number) when Number == 0 -> 0;

absolute_value(Number) when Number > 0 -> Number.

When mathdemo:absolute_value is called with a negative (less than zero) argument,
Erlang calls the first clause, which returns the negation of that negative argument,

Guards | 31

making it positive. When the argument equals (==) zero, Erlang calls the second clause,
returning 0. Finally, when the argument is positive, Erlang calls the third clause, just
returning the number. (The first two clauses have processed everything that isn’t posi‐
tive, so the guard on the last clause is unnecessary and will go away in Example 3-4.)

1> c(mathdemo).
{ok,mathdemo}
2> mathdemo:absolute_value(-20).
20
3> mathdemo:absolute_value(0).
0
4> mathdemo:absolute_value(20).
20

This may seem like an unwieldy way to calculate. Don’t worry—Erlang has simpler logic
switches you can use inside of functions. However, guards are critically important to
choosing among function clauses, which will be especially useful as you start to work
with recursion in Chapter 4.

Erlang runs through the function clauses in the order you list them, and stops at the
first one that matches. If you find your information is heading to the wrong clause, you
may want to re-order your clauses or fine-tune your guard conditions.

Also, when your guard clause is testing for just one value, you can easily switch to using
pattern-matching instead of a guard. This absolute_value function in Example 3-4
does the same thing as the one in Example 3-3.

Example 3-4. Calculating absolute value with guards
absolute_value(Number) when Number < 0 -> -Number;
absolute_value(0) -> 0;
absolute_value(Number) -> Number.

In this case, it’s up to you whether you prefer the simpler form or preserving a parallel
approach.

You can also have multiple comparisons in a single guard. If you separate
them with semicolons it works like an OR statement, succeeding if any
of the comparisons succeeds. If you separate them with commas, it
works like an AND statement, and they all have to succeed for the guard
to succeed.

Underscoring That You Don’t Care
Guards let you specify more precise handling of incoming arguments. Sometimes you
may actually want handling that is less precise, though. Not every argument is essential
to every operation, especially when you start passing around complex data structures.

32 | Chapter 3: Atoms, Tuples, and Pattern Matching

You could create variables for arguments and then never use them, but you’ll get warn‐
ings from the compiler (which suspects you must have made a mistake) and you may
confuse other people using your code who are surprised to find your code cares about
only half of the arguments they sent.

You might, for example, decide that you’re not concerned with what planemo (for plan‐
etary mass object, including planets, dwarf planets, and moons) a user of your velocity
function specifies and you’re just going to use Earth’s value for gravity. Then, you might
write something like Example 3-5, from ch03/ex3-underscore.

Example 3-5. Declaring a variable and then ignoring it
-module(drop).
-export([fall_velocity/2]).

fall_velocity(Planemo, Distance) -> math:sqrt(2 * 9.8 * Distance).

This will compile, but you’ll get a warning, and if you try to use it for, say, Mars, you’ll
get the wrong answer for Mars.

1> c(drop).
drop.erl:5: Warning: variable 'Planemo' is unused
{ok,drop}
2> drop:fall_velocity(mars, 20).
19.79898987322333

On Mars, that should be more like 12 than 19, so the compiler was right to scold you.

Other times, though, you really only care about some of the arguments. In these cases,
you can use a simple underscore (_). The underscore accomplishes two things: it tells
the compiler not to bother you, and it tells anyone reading your code that you’re not
going to be using that argument. In fact, Erlang won’t let you. You can try to assign values
to the underscore, but Erlang won’t give them back to you. It considers the underscore
permanently unbound:

3> _ = 20.
20
4> _.
* 1: variable '_' is unbound

If you really wanted your code to be earth-centric and ignore any suggestions of other
planemos, you could instead write something like Example 3-6.

Example 3-6. Deliberately ignoring an argument with an underscore
-module(drop2).
-export([fall_velocity/2]).

fall_velocity(_, Distance) -> math:sqrt(2 * 9.8 * Distance).

Underscoring That You Don’t Care | 33

This time there will be no compiler warning, and anyone who looks at the code will
know that first argument is useless.

5> c(drop2).
{ok,drop2}
6> drop2:fall_velocity(you_dont_care, 20).
19.79898987322333

You can use underscore multiple times to ignore multiple arguments. It matches any‐
thing for the pattern match, and never binds, so there’s never a conflict.

You can also start variables with underscores—like _Planemo—and the
compiler won’t warn if you never use those variables. However, those
variables do get bound, and you can reference them later in your code
if you change your mind. However, if you use the same variable name
more than once in a set of arguments, even if the variable name starts
with an underscore, you’ll get an error from the compiler for trying to
bind twice to the same name.

Adding Structure: Tuples
Erlang’s tuples let you combine multiple items into a single composite data type. This
makes it easier to pass messages between components, letting you create your own
complex data types as you need. Tuples can contain any kind of Erlang data, including
numbers, atoms, other tuples, and the lists and strings you’ll encounter in later chapters.

Tuples themselves are simple, a group of items surrounded by curly braces:

1> {earth, 20}.
{earth, 20}

Tuples might contain 1 item, or they might contain 100. Two to five seem typical (and
useful, and readable). Often (but not always) an atom at the beginning of the tuple
indicates what it’s really for, providing an informal identifier of the complex information
structure stored in the tuple.

Erlang includes rarely used built-in functions that give you access to the contents of a
tuple on an item by item basis. You can retrieve the values of items with the element
function, set values in a new tuple with the setelement function, and find out how many
items are in a tuple with the tuple_size function.

2> Tuple = {earth, 20}.
{earth,20}
3> element(2, Tuple).
20

34 | Chapter 3: Atoms, Tuples, and Pattern Matching

4> NewTuple = setelement(2, Tuple, 40).
{earth,40}
5> tuple_size(NewTuple).
2

If you can stick with pattern matching tuples, however, you’ll likely create more readable
code.

Pattern Matching with Tuples
Tuples make it easy to package multiple arguments into a single container, and let the
receiving function decide what to do with them. Pattern matching on tuples looks much
like pattern matching on atoms, except that there is, of course, a pair of curly braces
around each set of arguments, as Example 3-7, which you’ll find in ch03/ex4-tuples,
demonstrates.

Example 3-7. Encapsulating arguments in a tuple
-module(drop).
-export([fall_velocity/1]).

fall_velocity({earth, Distance}) -> math:sqrt(2 * 9.8 * Distance);

fall_velocity({moon, Distance}) -> math:sqrt(2 * 1.6 * Distance);

fall_velocity({mars, Distance}) -> math:sqrt(2 * 3.71 * Distance).

The arity changes: this version is fall_velocity/1 instead of fall_velocity/2 because
the tuple counts as only one argument. The tuple version works much like the atom
version but requires the extra curly braces when you call the function as well.

1> c(drop).
{ok,drop}
2> drop:fall_velocity({earth,20}).
19.79898987322333
3> drop:fall_velocity({moon,20}).
8.0
4> drop:fall_velocity({mars,20}).
12.181953866272849

Why would you use this form when it requires a bit of extra typing? Using tuples opens
more possibilities. Other code could package different things into tuples—more argu‐
ments, different atoms, even functions created with fun(). Passing a single tuple rather
than a pile of arguments gives Erlang much of its flexibility, especially when you get to
passing messages between different processes.

Adding Structure: Tuples | 35

Processing Tuples
There are many ways to process tuples, not just the simple pattern matching shown in
Example 3-7. If you receive the tuple as a single variable, you can do many different
things with it. A simple place to start is using the tuple as a pass through to a private
version of the function. That part of Example 3-8 may look familiar, as it’s the same as
the fall_velocity/2 function in Example 3-2. (You can find this at ch03/ex5-
tuplesMore.)

Example 3-8. Encapsulating arguments in a tuple and passing them to a private func‐
tion
-module(drop).
-export([fall_velocity/1]).

fall_velocity({Planemo, Distance}) -> fall_velocity(Planemo, Distance).

fall_velocity(earth, Distance) when Distance >= 0 -> math:sqrt(2 * 9.8 * Distance);
fall_velocity(moon, Distance) when Distance >= 0 -> math:sqrt(2 * 1.6 * Distance);
fall_velocity(mars, Distance) when Distance >= 0 -> math:sqrt(2 * 3.71 * Distance).

The -export directive makes only fall_velocity/1, the tuple version, public. The
fall_velocity/2 function is available within the module, however. It’s not especially
necessary here, but this “make one version public, keep another version with different
arity private” is common in situations where you want to make a function accessible but
don’t necessarily want its inner workings directly available.

If you call this function—the tuple version, so curly braces are necessary—fall_veloc

ity/1 calls the private fall_velocity/2, which returns the proper value to fall_ve
locity/1, which will return it to you. The results should look familiar.

1> c(drop).
{ok,drop}
2> drop:fall_velocity({earth,20}).
19.79898987322333
3> drop:fall_velocity({moon,20}).
8.0
4> drop:fall_velocity({mars,20}).
12.181953866272849

There are a few different ways to extract the data from the tuple. You could reference
the components of the tuple by number using the built-in function element, which takes
a numeric position and a tuple as its arguments. The first component of a tuple can be
reached at position 1, the second at position 2, and so on.

fall_velocity(Where) -> fall_velocity(element(1,Where) , element(2,Where)).

You could also break things up a bit and do pattern matching after getting the variable:

36 | Chapter 3: Atoms, Tuples, and Pattern Matching

fall_velocity(Where) ->
 {Planemo, Distance} = Where,
 fall_velocity(Planemo, Distance).

This function has more than one line. Note that actions are separated with commas, and
that only the last line ends with a period. The result of that last line will be the value the
function returns.

The pattern matching is a little different. The function accepted a tuple as its argument
and assigned it to the variable Where. (If Where is not a tuple, the function will fail with
an error.) Extracting the contents of that tuple, since we know its structure, can be done
with a pattern match inside the function. The Planemo and Distance variables will be
bound to the values contained in the Where tuple, and can then be used in the call to
fall_velocity/2.

Adding Structure: Tuples | 37

CHAPTER 4

Logic and Recursion

So far, Erlang seems logical but fairly simple. Pattern matching controls the flow through
a program, and requests that match a form return certain responses. While this is enough
to get many things done, there are times when you’ll want more powerful options, es‐
pecially as you start working with larger and more complicated data structures.

Logic Inside of Functions
Pattern matching and guards are powerful tools, but there are times when it’s much
easier to do some comparisons inside of a function clause instead of creating new func‐
tions. Erlang’s designers agreed, and created two constructs for evaluating conditions
inside of functions: the case expression and the less frequently used if expression.

The case construct lets you use pattern matching and guards inside of a function clause.
It reads most clearly when a single value (or set of values) needs to be compared with
multiple possibilities. The if construct evaluates only a series of guards, without pattern
matching. The if construct tends to produce more readable code in situations where
the multiple possibilities are specified by combinations of different values.

Both constructs return a value your code can capture.

Evaluating Cases
The case construct lets you perform pattern-matching inside of your function clause.
If you found the multiple function clauses of Example 3-2 hard to read, you might prefer
to create a version that looks like Example 4-1, which you can find in ch04/ex1-case.

Example 4-1. Moving pattern matching inside the function
-module(drop).
-export([fall_velocity/2]).

39

fall_velocity(Planemo, Distance) when Distance >= 0 ->
 case Planemo of
 earth -> math:sqrt(2 * 9.8 * Distance);
 moon -> math:sqrt(2 * 1.6 * Distance);
 mars -> math:sqrt(2 * 3.71 * Distance) % no closing period!
 end.

The case construct will compare the atom in Planemo to the values listed, going down
the list in order. It won’t process beyond the match it finds. The case construct will
return the result of different calculations based on which atom is used, and because the
case construct returns the last value in the function clause, the function will return that
value as well.

You can use the underscore (_) for your pattern match if you want a
choice that matches “everything else.” However, you should always put
that last—nothing that comes after that will ever be evaluated.

The results should look familiar:

1> c(drop).
{ok,drop}
2> drop:fall_velocity(earth,20).
19.79898987322333
3> drop:fall_velocity(moon,20).
8.0
4> drop:fall_velocity(mars,20).
12.181953866272849
5> drop:fall_velocity(mars,-20).
** exception error: no function clause matching
 drop:fall_velocity(mars,-20) (drop.erl, line 5)

The case construct switches among planemos, while the guard clause on the function
definition keeps out negative distances, producing (rightly) the error on line 5. This way
the guard needs to appear only once.

You can also use the return value from the case construct to reduce duplicate code and
make the logic of your program clearer. In this case, the only difference between the
calculations for earth, moon, and mars is a gravitational constant. Example 4-2, which
you can find in ch04/ex2-case, shows how to make the case construct return the gravi‐
tational constant for use in a single calculation at the end.

Example 4-2. Using the return value of the case construct to clean up the function
-module(drop).
-export([fall_velocity/2]).

40 | Chapter 4: Logic and Recursion

fall_velocity(Planemo, Distance) when Distance >= 0 ->
 Gravity = case Planemo of
 earth -> 9.8;
 moon -> 1.6;
 mars -> 3.71
 end, % note comma - function isn't done yet

 math:sqrt(2 * Gravity * Distance).

This time, the Gravity variable is set to the return value of the case construct. Note the
comma after the end. This function isn’t done yet! Commas let you separate constructs
inside of function declarations. The now more readable formula math:sqrt(2 * Grav
ity * Distance). is the last line of the function, and the value it produces will be the
return value.

You can also use guards with a case statement, as shown, perhaps less than elegantly,
in Example 4-3, which is in ch04/ex3-case. This might make more sense if there were
different planemos with different rules about distances.

Example 4-3. Moving guards into the case statement
-module(drop).
-export([fall_velocity/2]).

fall_velocity(Planemo, Distance) ->
 Gravity = case Planemo of
 earth when Distance >= 0 -> 9.8;
 moon when Distance >= 0 -> 1.6;
 mars when Distance >= 0 -> 3.71
 end, % note comma - function isn't done yet

 math:sqrt(2 * Gravity * Distance).

This produces similar results, except that the error message at the end changes from no
function clause matching drop:fall_velocity(mars,-20) to no case clause
matching mars in function drop:fall_velocity/2:

1> c(drop).
{ok,drop}
2> drop:fall_velocity(mars,20).
12.181953866272849
3> drop:fall_velocity(mars,-20).
** exception error: no case clause matching mars
 in function drop:fall_velocity/2 (drop.erl, line 6)

The error is correct, in that the case construct is trying to match mars, but misleading
because the problem isn’t with mars but rather with the guard that’s checking the Dis
tance variable. If Erlang tells you that your case doesn’t match but a match is obviously
right there in front of you, check your guard statements.

Logic Inside of Functions | 41

If This, Then That
The if construct is broadly similar to the case statement, but without the pattern
matching. This allows you to write a catch-all clause—a guard matching true at the end
if you would like, and often makes it easier to express logic based on broader compar‐
isons than simple matching.

Suppose, for example, that the precision of the fall_velocity function is too much.
Instead of an actual speed you’d like to describe the speed produced by dropping from
a tower of a given height. You can add an if construct that does that to the earlier code
from Example 4-2, as shown in Example 4-4, in ch04/ex4-if.

Example 4-4. Adding an if construct to convert numbers into atoms
-module(drop).
-export([fall_velocity/2]).

fall_velocity(Planemo, Distance) when Distance >= 0 ->
 Gravity = case Planemo of
 earth -> 9.8;
 moon -> 1.6;
 mars -> 3.71
 end,

 Velocity = math:sqrt(2 * Gravity * Distance),

 if
 Velocity == 0 -> 'stable';
 Velocity < 5 -> 'slow';
 Velocity >= 5, Velocity < 10 -> 'moving';
 Velocity >= 10, Velocity < 20 -> 'fast';
 Velocity >= 20 -> 'speedy'
 end.

This time, the if construct returns a value (an atom describing the velocity) based on
the many guards it includes. Because that value is the last thing returned within the
function, that becomes the return value of the function.

The commas in the if behave like the and operator.

The results are a little different from past trials:

1> c(drop).
{ok,drop}
2> drop:fall_velocity(earth,20).

42 | Chapter 4: Logic and Recursion

fast
3> drop:fall_velocity(moon,20).
moving
4> drop:fall_velocity(mars,20).
fast
5> drop:fall_velocity(earth,30).
speedy

If you want to capture the value produced by the if construct and use it for something
else, you can. Example 4-5, in ch04/ex5-if, sends a warning to standard output (in this
case the Erlang shell) if you drop an object too fast.

Example 4-5. Sending an extra warning if the velocity is too high
-module(drop).
-export([fall_velocity/2]).

fall_velocity(Planemo, Distance) when Distance >= 0 ->
 Gravity = case Planemo of
 earth -> 9.8;
 moon -> 1.6;
 mars -> 3.71
 end,

 Velocity = math:sqrt(2 * Gravity * Distance),

 Description = if
 Velocity == 0 -> 'stable';
 Velocity < 5 -> 'slow';
 (Velocity >= 5) and (Velocity < 10) -> 'moving';
 (Velocity >= 10) and (Velocity < 20) -> 'fast';
 Velocity >= 20 -> 'speedy'
 end,

 if
 (Velocity > 40) -> io:format("Look out below!~n") ;
 true -> true
 end,

 Description.

The new (second) if clause checks the Velocity variable to see if it’s above 40. If it is,
it calls io:format, which creates a side effect: a message on the screen. However, every
if must find some true statement or it will report an error in those cases when nothing
matches. Here, you could add an explicit case matching when the Velocity is less than
or equal to 40. In many cases, however, it won’t matter. The true -> true line is a catch-
all that returns true no matter what reaches it. After the if concludes, the single line
Description. returns the contents of the Description variable from the function.

Logic Inside of Functions | 43

The catchall approach works in cases where you only want to test for a
subset of cases among a complicated set of possibilities. In cases as sim‐
ple as this example, however, it’s probably cleaner to create a more ex‐
plicit test.

The function produces an extra result—the message—when the distance is large enough
(and the planemo’s gravity strong enough) to produce a velocity faster than 40 meters
per second:

1> c(drop).
{ok,drop}
2> drop:fall_velocity(earth,10).
fast
3> drop:fall_velocity(earth,200).
Look out below!
speedy

Variable Assignment in case and if Constructs
Every possible path created in a case or if statement has the opportunity to bind values
to variables. This is usually a wonderful thing, but could let you create unstable programs
by assigning different variables in different clauses. This might look something like
Example 4-6, which you can find in ch04/ex6-broken.

Example 4-6. A badly broken if construct
-module(broken).
-export([bad_if/1]).

bad_if(Test_val) ->

 if
 Test_val < 0 -> X = 1;
 Test_val >= 0 -> Y = 2
 end,

 X+Y.

In theory, after the case or if is over, the program might crash because of unbound
variables. However, Erlang won’t let you get that far:

1> c(broken).
broken.erl:11: variable 'X' unsafe in 'if' (line 6)
broken.erl:11: variable 'Y' unsafe in 'if' (line 6)
error

The compilation errors turn up where your program actually uses the variables. The
Erlang compiler double-checks to make sure that the variables it’s about to put to use
are properly defined. It won’t let you compile something this broken.

44 | Chapter 4: Logic and Recursion

You can bind variables in an if or case construct. You have to define all of the variables
in every single clause, however. If you’re defining only one variable, it’s also much cleaner
to bind the return value of the if or case clause to a variable instead of defining that
variable in every clause.

The Gentlest Side Effect: io:format
Up until Example 4-5, all of the Erlang examples you’ve seen focused on a single path
through a group of functions. You put an argument or arguments in, and got a return
value back. That approach is the cleanest way to do things: you can count on things that
worked before to work again because there’s no opportunity to muck up the system with
leftovers of past processing.

Example 4-5 stepped outside of that model, creating a side effect that will linger after
the function is complete. The side effect is just a message that appears in the shell (or
in standard output when you start running Erlang outside of the shell). Applications
that share information with multiple users or keep information around for longer than
a brief processing cycle will need stronger side effects, like storing information in
databases.

Erlang best practice suggests using side effects only when you really need to. An appli‐
cation that presents an interface to a database, for example, really will need to read and
write that database. An application that interacts with users will need to put information
on the screen (or other interface) so that users can figure out what they’re expected to
do.

Side effects are also extremely useful for tracing logic when you are first starting out.
The simplest way to see what a program is doing, before you’ve learned how to use
Erlang’s built-in tracing and debugging tools for processes, is to have the program report
its status at points you consider interesting. This is not a feature you want to leave in
shipping code, but when you’re getting started, it can give you an easily understandable
window into your code’s behavior.

The io:format function lets you send information to the console, or, when you’re even‐
tually running code outside of the console, to other places. For now, you’ll just use it to
send messages from the program to the console. Example 4-5 showed the simplest way
to use io:format, just printing a message it takes in double quotes:

io:format("Look out below!~n") ;

The ~n represents a newline, telling the console to start any new messages it sends at the
beginning of the next line. It makes your results look a bit neater.

The more typical way to use io:format includes two arguments: a double-quoted for‐
matting string, and a list of values that can be included in the string. In this case (which
you can see in ch04/ex7-format), it might look like the following:

The Gentlest Side Effect: io:format | 45

io:format("Look out below! ~w is too high.~n", [Distance]) ;

or:

io:format("Look out below! ~w is too high on ~w.~n", [Distance, Planemo]) ;

io:format/2 offers many formatting options beyond ~w and ~n. You’ll encounter them
as they become necessary, but if you’re impatient, there’s a list in Appendix A. You may
also want to explore the section on error logging in Chapter 9, if you find yourself using
io:format for tasks that might be helped by more sophisticated logging tools.

Erlang flatly prohibits operations that could cause side effects in guard
expressions. If side effects were allowed in guards, then any time a guard
expression was evaluated—whether it returned true or false—the side
effect would happen. io:format wouldn’t likely do anything terrible,
but these rules mean that it too is blocked from use in guard expressions.

Simple Recursion
Because variables can’t change values, the main tool you’ll use to repeat actions is re‐
cursion: having a function call itself until it’s (hopefully) reached a conclusion. This can
sound complicated, but it doesn’t have to be.

There are two basic kinds of useful recursion. In some situations, you can count on the
recursion to reach a natural end. The process runs out of items to work on, or reaches
a natural limit. In other situations, there is no natural end, and you need to keep track
of the result so the process will end. If you can master these two basic forms, you’ll be
able to create many more complex variations.

There is a third form, in which the recursive calls never reach an end.
This is called an infinite loop, and is an error you’ll want to avoid.

Counting Down
The simplest model of recursion with a natural limit is a countdown, like the one used
for rockets. You start with a large number, and count down to zero. When you reach
zero, you’re done (and the rocket takes off, if there is one).

To implement this in Erlang, you’ll pass a starting number to an Erlang function. If the
number is greater than zero, it will then announce the number and call itself with the
number minus one as the argument. If the number is zero (or less), it will announce
blastoff! and end. Example 4-7, found in ch04/ex8-countdown, shows one way to do
this.

46 | Chapter 4: Logic and Recursion

Example 4-7. Counting down
-module(count).
-export([countdown/1]).

countdown(From) when From > 0 ->
 io:format("~w!~n", [From]),
 countdown(From-1);

countdown(From) ->
 io:format("blastoff!~n").

The last clause could have a guard—when From =< 0—but it would be useful only to
make clear when the blastoff happens to human readers. Unnecessary guard clauses
may lead to weird errors, so brevity is probably the best option here, though you’ll get
a warning that From is unused in the final clause. Here’s a test run:

1> c(count).
count.erl:9: Warning: variable 'From' is unused
{ok,count}
2> count:countdown(2).
2!
1!
blastoff!
ok

The first time through, Erlang chose the first clause of countdown(From), passing it a
value of 2. That clause printed 2, plus an exclamation point and a newline, and then it
called the countdown function again, passing it a value of 1. That triggered the first clause
again. It printed 1, plus an exclamation point and a newline, and then it called the
countdown function again—this time passing it a value of 0.

The value of 0 triggered the second clause, which printed blastoff! and ended. After
running three values through the same set of code, the function comes to a neat
conclusion.

You could also implement this conclusion with an if statement inside
a single countdown(From) function clause. This is unusual in Erlang. I
find guards more readable in these cases, but you may see things
differently.

Counting Up
Counting up is trickier because there’s no natural endpoint, so you can’t model your
code on Example 4-7. Erlang’s single-assignment approach to variables rules out some
approaches, but there’s another way to make this work, using an accumulator. An

Simple Recursion | 47

accumulator is an extra argument that keeps track of the current result of past work,
passing it back into a recursive function. (You can have more than one accumulator
argument if you need, though one is often sufficient.) Example 4-8, which you can find
in ch04/ex9-countup, shows how to add a countup function to the count module, which
lets Erlang count up to a number.

Example 4-8. Counting up
-module(count).
-export([countdown/1, countup/1]).

countup(Limit) ->
 countup(1, Limit).

countup(Count, Limit) when Count =< Limit ->
 io:format("~w!~n", [Count]),
 countup(Count+1, Limit);

countup(Count, Limit) ->
 io:format("Finished.~n").

...

It produces results such as the following:

1> c(count).
{ok,count}
2> count:countup(2).
1!
2!
Finished.
ok

The export directive makes the countup/1 function visible (as well as the earlier count
down/1, which you’ll find in the sample code).

The countup/2 function, which does most of the work, remains private, not exported.
This isn’t mandatory; you might make it public if you wanted to support counting be‐
tween arbitrary values, but it’s common Erlang practice. Keeping the recursive internal
functions private makes it less likely that someone will misuse them for purposes they’re
not well-suited to. In this case, it doesn’t matter at all, but it can make a big difference
in other more complex situations, especially when data is modified.

When you call countup/1, it calls countup/2 with an argument of 1 (for the current
count) and the Limit value you provided for the upper limit.

If the current count is less than or equal to the upper limit, the first clause of the countup/
2 function reports the current Count value with io:format. Then it calls itself again,
increasing the Count by one but leaving the Limit alone.

48 | Chapter 4: Logic and Recursion

If the current count is greater than the upper limit, it fails the guard on the first clause,
so the second clause kicks in, reports “Finished.”, and is done.

The guards here are sufficient to avoid infinite loops. You can enter zero,
negative numbers, or decimals as arguments to countup/1 and it will
terminate neatly. You can get into serious trouble, however, if your ter‐
mination test relies on == or =:= for a more exact comparison rather
than >= or =< for a rough comparison.

Recursing with Return Values
The counting examples are simple—they demonstrate how recursion works, but just
discard the return values. There are return values—the io:format calls return the atom
ok—but they aren’t of much use. More typically, a recursive function call will make use
of the return value.

A classic recursive call calculates factorials. A factorial is the product of all positive
integers equal to or less than the argument. The factorial of 1 is 1; 1 by itself yields 1.
The factorial of 2 is 2; 2 × 1 yields 2. It starts to get interesting at 3, where 3 × 2 × 1 is
six. At 4, 4 × 3 × 2 × 1 is 24, and the results get larger rapidly with larger arguments.

There was a pattern to that, though. You can calculate any factorial by multiplying the
integer by the factorial of one less. That makes it a perfect case for using recursion, using
the results of smaller integers to calculate the larger ones. This approach is similar to
the countdown logic, but instead of just counting, the program collects calculated results.
That could look like Example 4-9, which you’ll find in ch04/ex10-factorial-down.

Example 4-9. A factorial written with the counting down approach
-module(fact).
-export([factorial/1]).

factorial(N) when N > 1->
 N * factorial(N-1);

factorial(N) when N =< 1 ->
 1.

The first clause of factorial uses the pattern previously described. The first clause,
used for numbers above one, returns a value that is the number N times the factorial of
the next integer down. The second clause returns the value 1 when it reaches 1. Using
=< in that comparison, rather than ==, gives the function more resilience against non-
integer or negative arguments, though the answers it returns aren’t quite right: factorials
really only work for integers of 1 or higher. The results are as previously suggested:

1> c(fact).
{ok,fact}

Simple Recursion | 49

2> fact:factorial(1).
1
3> fact:factorial(3).
6
4> fact:factorial(4).
24
5> fact:factorial(40).
815915283247897734345611269596115894272000000000

This works, but it may not be clear why it works. Yes, the function counts down and
collects the values, but if you want to see the mechanism, you need to add some io:for
mat calls into the code, as shown in Example 4-10. (You can find this at ch04/ex10-
factorial-down-instrumented.)

Example 4-10. Looking into the factorial recursion calls
-module(fact).
-export([factorial/1]).

factorial(N) when N > 1->
 io:format("Calling from ~w.~n", [N]),
 Result = N * factorial(N-1),
 io:format("~w yields ~w.~n", [N, Result]),
 Result;

factorial(N) when N =< 1 ->
 io:format("Calling from 1.~n"),
 io:format("1 yields 1.~n"),
 1.

There’s a bit more overhead here. To present the result of the recursive call and still return
that value to the next recursive call requires storing it in a variable, here called Result.
The io:format call makes visible which value produced the result. Then, because the
last value expression in a function clause is the return value, Result appears again. The
second clause for 1 is similar, except that it can report simply that 1 yields 1. because
it always will.

When you compile this and run it, you’ll see something such as the following:

7> fact:factorial(4).
Calling from 4.
Calling from 3.
Calling from 2.
Calling from 1.
1 yields 1.
2 yields 2.
3 yields 6.
4 yields 24.
24

50 | Chapter 4: Logic and Recursion

Although the calls count down the values, as the logic would suggest, the messages about
results don’t appear until the countdown is complete, and then they all appear in order,
counting up.

The reason this happens is that the function calls don’t return values until the countdown
is complete. Until then, the Erlang runtime builds a stack of frames corresponding to
the function calls. You can think of the frames as paused versions of the function logic,
waiting for an answer to come back. Once the call with an argument of 1 returns a simple
value, not calling any further, Erlang can unwind those frames and calculate the
Result. That unwinding presents the results—“X yields Y”—in the order that the frames
unwind.

That “unwinding” also means that the code in Example 4-9 and Example 4-10 is not
tail recursive. When Erlang encounters code that ends with a simple recursive call, it can
optimize the handling to avoid keeping that stack of calls around. This probably doesn’t
matter for a one-time calculation, but it makes a huge difference when you write code
that will stay running for a long time.

You can achieve tail recursion for factorials by applying the counting up approach to
factorials. You’ll get the same results (at least for integer values), but the calculations will
work a little differently, as shown in Example 4-11, at ch04/ex12-factorial-up.

Example 4-11. A factorial written with the counting up approach
-module(fact).
-export([factorial/1]).

factorial(N) ->
 factorial(1, N, 1).

factorial(Current, N, Result) when Current =< N ->
 NewResult = Result*Current,
 io:format("~w yields ~w!~n", [Current, NewResult]),
 factorial(Current+1, N, NewResult);

factorial(Current, N, Result) ->
 io:format("Finished.~n"),
 Result.

As in the counting up example, the main function call, here factorial/1, calls a private
function, factorial/3. In this case, there are two accumulators. Current stores the
current position in the count, whereas Result is the answer from the previous
multiplication. When the value of Current climbs past the limiting value N, the first
guard fails, the second clause is invoked, and the function is finished and returns the
Result. (You’ll get a compilation warning because the final clause doesn’t use the ac‐
cumulator variables Current or N. You can ignore it.)

Simple Recursion | 51

Because factorial/3’s last call in the recursive section is to itself, without any compli‐
cations to track, it is tail recursive. Erlang can minimize the amount of information it
has to keep around while the calls all happen.

The calculation produces the same results, but does the math in a different order:

9> fact:factorial(4).
1 yields 1!
2 yields 2!
3 yields 6!
4 yields 24!
Finished.
24

Although the code is tracking more values, the Erlang runtime has less to do. When it
finally hits the final result, there’s no further calculation needed. That result is the result,
and it passes back through to the original call. This also makes it easier to structure the
io:format calls. If you remove them or comment them out, the rest of the code stays
the same.

52 | Chapter 4: Logic and Recursion

CHAPTER 5

Communicating with Humans

Erlang’s origins in telecom switching have left it with a fairly minimal set of tools for
communicating with people, but there’s enough there to do worthwhile things. You’ve
already used some of it (io:format/1-2) but there are more pieces you’ll want to learn
to handle communications with people and sometimes with other applications. At the
very least, this chapter will let you build more convenient interfaces for testing your code
than calling functions from the Erlang shell.

If you’re feeling completely excited about the recursion you learned in
Chapter 4, you may want to jump ahead to Chapter 6, where that re‐
cursion will once again be front and center.

Strings
Atoms are great for sending messages within a program, even messages that the pro‐
grammer can remember, but they’re not really designed for communicating outside of
the context of Erlang processes. If you need to be assembling sentences or even pre‐
senting information, you’ll want something more flexible. Strings, sequences of
characters, are the structure you need. You’ve already used strings a little bit, as the
double-quoted arguments to io:format in Chapter 4:

io:format("Look out below!~n") ;

The double-quoted content (Look out below!~n) is a string. A string is a sequence of
characters. If you want to include a double-quote within the string, you can escape it
with a backslash, like \". To include a backslash, you have to use \\, and Appendix A
includes a complete list of escapes and other options. If you create a string in the shell,
Erlang will report back the string with the escapes. To see what it “really” contains, use
io:format:

53

1> X = "Quote - \" in a string. \n Backslash, too: \\ . \n".
"Quote - \" in a string. \n Backslash, too: \\ ."
2> io:format(X).
Quote - " in a string.
 Backslash, too: \ .
ok

If you start entering a string and don’t close the quotes, when you press
Enter, the Erlang shell will just give you a new line with the same number.
This lets you include newlines in strings, but it can be very confusing.
If you think you’re stuck, usually entering ". will get you out of it.

Erlang development hasn’t focused heavily on text historically, but if your programs
involve sharing information with humans, you’ll want to get familiar with how to get
information into and out of strings. This is an area where you may want to spend a fair
amount of time in the shell playing with different tools.

Technically, strings don’t really exist as a type in Erlang because strings
are lists of characters. Thinking about strings as lists of characters, how‐
ever, is useful in only a few situations, typically where you want to pro‐
cess a string from start to end. You’ll learn about lists in Chapter 6, and
the code here will have to use a list built-in function, but for now you
should just think about string operations rather than lists.

The simplest, usually, is concatenation, where you combine two strings into one. Erlang
offers two easy ways to do this. The first uses the ++ operator:

1> "erl" ++ "ang".
"erlang"
2> A="ang".
"ang"
3> "erl" ++ A.
"erlang"

The other approach uses an explicit string:concat/2 function:

4> string:concat("erl", "ang").
"erlang"
5> N="ang".
"ang"
6> string:concat("erl", N).
"erlang"

The ++ operator is usually more convenient because it lets you work with more than two
arguments without nesting functions.

54 | Chapter 5: Communicating with Humans

Erlang has a shortcut where you can concatenate two strings just by
putting them next to each other: "erl" "ang" will end up as “erlang”.
However, if you try to mix variables into that, you’ll get a syntax error.
This shortcut is of limited value except maybe when you’re cutting and
pasting quoted values as you’re writing your code, and doesn’t work in
every context.

Erlang also offers three options for comparing string equality, the == operator, the =:=
(exact equality) operator, and a string:equal/2 function. The == operator is generally
the simplest for this, though the others produce the same results:

7> "erl" == "erl".
true
8> "erl" == "ang".
false
9> G ="ang".
"ang"
10> G == "ang".
true

Erlang doesn’t offer functions for changing strings in place, as that would work badly
with a model where variable contents don’t change. However, it does offer a set of func‐
tions for finding content in strings and dividing or padding those strings, which together
let you extract information from a string (or multiple strings) and recombine it into a
new string.

If you want to do more with your strings, you should definitely explore the documen‐
tation for the string and re (regular expressions) Erlang modules. If the strings you
want to work with represent file or directory names, definitely explore the filename
module. If you need to perform Unicode encoding conversion on Erlang strings, you’ll
also want to explore the unicode module. (By default, Erlang represents characters using
UTF-8 values.)

I’m working on creating a single wrapper module that assembles Er‐
lang’s tools for working with strings into one place. For more, visit
https://github.com/simonstl/erlang-simple-string.

Asking Users for Information
Many Erlang applications run kind of like wholesalers—in the background, providing
goods and services to retailers who interact directly with users. Sometimes, however,
it’s nice to have a direct interface to code that is a little more customized than the Erlang

Asking Users for Information | 55

https://github.com/simonstl/erlang-simple-string

console. You probably won’t write many Erlang applications whose primary interface is
the command line, but you may find that interface very useful when you first try out
your code. (Odds are good that if you’re working with Erlang, you don’t mind using a
command-line interface, either.)

You can mix input and output with your program logic, but for this kind of simple facade,
it probably makes better sense to put it in a separate module. In this case, the ask module
will work with the drop module from Example 3-8.

Erlang’s io functions for input have a variety of strange interactions with
the Erlang shell, as discussed in the following section. You will have
better luck working with them in other contexts.

Gathering Terms
The simplest way to build an interface—an interface probably just for programmers—
is to create a way for users to enter Erlang terms using io:read/1. This lets users enter
a complete Erlang term—an atom, number, or tuple, for example. An initial version of
this might look like Example 5-1, which you can find in ch05/ex1-ask.

Example 5-1. Asking the user for an Erlang term
-module(ask).
-export([term/0]).

term() ->
 Input = io:read("What {planemo, distance} ? >>"),
 Term = element(2,Input),
 drop:fall_velocity(Term).

The Input variable will be set by the call to io:read/1, getting an Erlang term. If all
goes well, it will contain a tuple like {ok,{mars,20}}, where the first value is ok and the
second value of the tuple is the term the user entered. Extracting that value—in this case
a tuple—requires a call to the element/2 method. Finally, the code calls the
drop:fall_velocity method with that value.

If you wanted, you could cram that all into one line as term() ->
drop:fall_velocity(element(2,io:read("What {planemo, dis

tance} ? >>")))., but that’s both hard to read and hard to modify.

For your own use, this could be perfectly fine. A simple session might look like the
following:

56 | Chapter 5: Communicating with Humans

1> c(drop).
{ok,drop}
2> c(ask).
{ok,ask}
3> ask:term().
What {planemo, distance} ? >>{mars,20}.
12.181953866272849

If you leave off the period at the end of the term, Erlang will repeat the prompt but not
show where you were, trusting you to read the line above. Also, the things you enter at
an io:read/1 prompt become part of the console’s command history, and you can repeat
them with the up arrow. (These issues are interactions with the Erlang shell, not issues
with the function itself.)

Things can get weird quickly, however, if the user enters unexpected terms—a number
instead of a tuple—or broken terms, with bad syntax.

4> ask:term().
What {planemo, distance} ? >>20.
** exception error: no function clause matching
 drop:fall_velocity(20) (drop.erl, line 4)
5> ask:term().
What {planemo, distance} ? >>.
** exception error: no function clause matching
 drop:fall_velocity({1,erl_parse,
 ["syntax error before: ","'.'"]}) (drop.erl, line 4)

In both cases, passing the extracted Term directly to fall_velocity/1 is a bad idea. In
the first case, it’s because fall_velocity/1 expects a tuple, not a bare number. In the
second case, fall_velocity/1 has a similar problem, but it’s being sent an error mes‐
sage, not a term it can process. Example 5-2, in ch05/ex2-ask, shows a better way to
handle these kinds of problems. It gives the user a direct error message when it en‐
counters the wrong type of information or broken information. (It also uses pattern
matching instead of element/2.)

Example 5-2. Asking the user for an Erlang term and handling bad results
-module(ask).
-export([term/0]).

term() ->
 Input = io:read("What {planemo, distance} ? >>"),
 process_term(Input).

process_term({ok, Term}) when is_tuple(Term) -> drop:fall_velocity(Term);

process_term({ok, _}) -> io:format("You must enter a tuple.~n");

process_term({error, _}) -> io:format("You must enter a tuple with correct syn
tax.~n").

Asking Users for Information | 57

This doesn’t solve every possible problem. Users could still enter tuples with the wrong
content, and drop:fall_velocity will report an error. Chapter 9 will explore how to
address that problem in much greater detail.

When you go to the trouble of building this kind of interface, however, it’s probably not
because typing ask:term() is shorter than typing drop:fall_velocity. Odds are good
that you want to try a number of values and possibilities, so you want the question
repeated. Example 5-3, in ch05/ex3-ask, presents the result of a (correctly formatted)
call to the user and then calls term() again, setting up a recursive loop. (It also offers a
nice way to exit the loop.)

Example 5-3. Asking the user for an Erlang term and handling bad results
-module(ask).
-export([term/0]).

term() ->
 Input = io:read("What {planemo, distance} ? >>"),
 process_term(Input).

process_term({ok, Term}) when is_tuple(Term) ->
 Velocity = drop:fall_velocity(Term),
 io:format("Yields ~w. ~n",[Velocity]),
 term();

process_term({ok, quit}) ->
 io:format("Goodbye.~n");
 % does not call term() again

process_term({ok, _}) ->
 io:format("You must enter a tuple.~n"),
 term();

process_term({error, _}) ->
 io:format("You must enter a tuple with correct syntax.~n"),
 term().

When you compile the ask module and call ask:term/0, you’ll see the question repeated
as long as you keep entering appropriate tuples. To break out of that loop, just enter the
atom quit followed by a period.

6> c(ask).
{ok,ask}
7> ask:term().
What {planet, distance} ? >>{mars,20}.
Yields 12.181953866272849.
What {planet, distance} ? >>20.
You must enter a tuple.
What {planet, distance} ? >>quit.
Goodbye.
ok

58 | Chapter 5: Communicating with Humans

Gathering Characters
The io:get_chars/2 function will let you get just a few characters from the user. This
seems like it should be convenient if, for example, you have a list of options. Present the
options to the user, and wait for a response. In this case, the list of planemos is the option,
and they’re easy to number 1 through 3, as shown in the code for Example 5-4, which
you can find at ch05/ex4-ask. That means you just need a single character response.

Example 5-4. Presenting a menu and waiting for a single character response
-module(ask).
-export([chars/0]).

chars() ->
 io:format("Which planemo are you on?~n"),
 io:format(" 1. Earth ~n"),
 io:format(" 2. Earth's Moon~n"),
 io:format(" 3. Mars~n"),
 io:get_chars("Which? > ",1).

Most of that is presenting the menu, and you could combine all of those io:format/1
calls into a single call if you wanted. The key piece is the io:get_chars/2 call at the end.
The first argument is a prompt, and the second is the number of characters you want
returned. The function still lets users enter whatever they want until they press Enter,
but it will tell you only the first however many characters you specified.

1> c(ask).
{ok,ask}
2> ask:chars().
Which planemo are you on?
 1. Earth
 2. Earth's Moon
 3. Mars
Which? > 3
"3"
3>
3>

The io:get_chars function returns the string "3", the character the user entered, after
they hit Enter. However, as you can tell by the duplicated command prompt, the Enter
still gets reported to the Erlang shell. This can get stranger if users enter more content
than is needed:

4> ask:chars().
Which planemo are you on?
 1. Earth
 2. Earth's Moon
 3. Mars

Asking Users for Information | 59

Which? > 222222
"2"
5> 22222
5>

There may be times when io:get_chars is exactly what you want, but odds are good,
at least when working within the shell, that you’ll get cleaner results by taking in a
complete line of user input and picking what you want from it.

Reading Lines of Text
Erlang offers a few different functions that pause to request information from users.
The io:get_line/1 function waits for the user to enter a complete line of text termi‐
nated by a newline. You can then process the line to extract the information you want,
and nothing will be left in the buffer. Example 5-5, in ch05/ex5-ask, shows how this could
work, though extracting the information is somewhat more complicated than I would
like.

Example 5-5. Collecting user responses a line at a time
-module(ask).
-export([line/0]).

line() ->
 Planemo = get_planemo(),
 Distance = get_distance(),
 drop:fall_velocity({Planemo, Distance}).

get_planemo() ->
 io:format("Where are you?~n"),
 io:format(" 1. Earth ~n"),
 io:format(" 2. Earth's Moon~n"),
 io:format(" 3. Mars~n"),
 Answer = io:get_line("Which? > "),

 Value = hd(Answer),
 char_to_planemo(Value).

char_to_planemo(Char) ->
 case
 [Char] == "1" -> earth;
 Char == $2 -> moon;
 Char == 51 -> mars
 end.

get_distance() ->
 Input = io:get_line("How far? (meters) > "),
 Value = string:strip(Input, right, $\n),
 {Distance, _} = string:to_integer(Value),
 Distance.

60 | Chapter 5: Communicating with Humans

To clarify the code, the line/0 function just calls three other functions. It calls
get_planemo/0 to present a menu to the user and get a reply, and it similarly calls
get_distance/0 to ask the user the distance of the fall. Then it calls drop:fall_veloc
ity/1 to return the velocity at which a frictionless object will hit the ground when
dropped from that height at that location.

The get_planemo/0 function is a combination of io:format/1 calls to present infor‐
mation and an io:get_line/1 call to retrieve information from the user. Unlike
io:get_chars/1, io:get_line/1 returns the entire value the user entered, including
the newline, and leaves nothing in the buffer.

get_planemo() ->
 io:format("Where are you?~n"),
 io:format(" 1. Earth ~n"),
 io:format(" 2. Earth's Moon~n"),
 io:format(" 3. Mars~n"),
 Answer = io:get_line("Which? > "),

 Character = hd(Answer),
 char_to_planemo(Character).

The last two lines are the actual string processing. The only piece of the response that
matters to this application is the first character of the string. The easy way to grab that
is with the built-in function hd/1, which pulls the first item from a string or list.

Because strings are really lists of numbers, you could instead call
lists:nth(1, Answer). The first argument, 1, is the position you want
to retrieve, and the second argument, Answer, is the list, in this case a
string, from which you want to retrieve it. For this function, the first
character in an Erlang string is in position 1, not 0 as in many other
languages. That makes the function name nth make sense when it’s time
to retrieve the 4th, 5th, 6th, and so on values.

The drop:fall_velocity/1 function won’t know what to do with a planemo listed as
1, 2, or 3; it expects an atom of earth, moon, or mars. The get_planemo/0 function
concludes by returning the value of that conversion, performed by the char_to_plane
mo/1 function:

char_to_planemo(Char) ->
 case
 [Char] == "1" -> earth;
 Char == $2 -> moon;
 Char == 51 -> mars
 end.

Asking Users for Information | 61

The case statement shows three different ways of testing the character. If you prefer to
evaluate the character as text, you can put square brackets around it and compare it to
a string, like "1" here. You can also test against Erlang’s character notation, in which $2
is the value for the character two. Finally, if you’re comfortable with character values,
you can compare it to those values, like 51, which corresponds to 3. The atom returned
by the case statement will be returned to the get_planemo/0 function, which will in turn
return it to the line/0 function for use in the calculation.

You could also rewrite that function to skip the case statement and just use pattern
matching:

char_to_planemo($1) -> earth;
char_to_planemo($2) -> moon;
char_to_planemo($3) -> mars.

Erlang’s character notation understands Unicode as well. If you try $☃,
the Unicode Snowman, Erlang will understand that it is character 9731,
hex 2603. It also understood Emoji characters from Unicode’s Astral
Plane, which are often difficult for simple Unicode implementations.
However, many Erlang functions do not understand Unicode, and one
of the major updates planned to the language for R16 is more thorough
Unicode support.

Getting the distance is somewhat easier:

get_distance() ->
 Input = io:get_line("How far? (meters) > "),
 {Distance, _} = string:to_integer(Value),
 Distance.

The Input variable collects the user’s response to the question “How far?”, and the
string:to_integer/1 function extracts an integer from that response. The pattern
match on the left grabs the first piece of the tuple it returns, which is the integer, while
the underscore discards the rest of what it sends, which is anything else on the line. That
will include the newline, but also any decimal part users enter. You could use
string:to_float/1 for more precision, but that won’t accept an integer. Using
string:to_integer/1 isn’t perfect, but for these purposes it’s probably acceptable.

It isn’t necessary for this conversion, but if you just want to strip newlines
out of user responses, you can use string:strip(Input, right, $
\n), where Input is what just came from the user.

A sample run demonstrates that it produces the right results given the right input.

62 | Chapter 5: Communicating with Humans

1> c(ask).
{ok,ask}
2> ask:line().
Where are you?
 1. Earth
 2. Earth's Moon
 3. Mars
Which? > 1
How far? (meters) > 20
19.79898987322333
3> ask:line().
Where are you?
 1. Earth
 2. Earth's Moon
 3. Mars
Which? > 2
How far? > 20
8.0

Chapter 9 will return to this code, looking at better ways to handle the errors users can
provoke by entering unexpected answers.

Strings are not Erlang’s strongest suit, but it has the facilities to make pretty much any‐
thing you need work. As you read the next two chapters on lists, remember that strings
are actually lists underneath, and you can use any of the list tools on strings.

Asking Users for Information | 63

CHAPTER 6

Lists

Erlang is great at handling lists, long series of similar (or not) values. List processing
makes it easy to see the value of recursion, and offers opportunities to get a lot of work
done for very little effort.

List Basics
An Erlang list is an ordered set of elements. Generally you will process a list in order,
from the first item (the head) to the last item, though there are times when you may
want to grab a particular item from the list. Erlang also provides built-in functions for
manipulating lists when you don’t want to go through the entire sequence.

Erlang syntax encloses lists in square brackets and separates elements with commas. A
list of numbers might look like the following:

[1,2,4,8,16,32]

The elements can be of any type, including numbers, atoms, tuples, strings, and other
lists. When you’re starting out, it’s definitely easiest to work with lists that contain only
a single type of element, rather than mixing all the possibilities, but Erlang itself has no
such constraint. There is also no limit on the number of items a list can contain, though
eventually you may find practical limits of memory.

You can pattern match with lists just as you can with other Erlang data structures:

1> [1,X,4,Y] = [1,2,4,8].
[1,2,4,8]
2> X.
2
3> Y.
8

65

While it’s possible to use lists instead of tuples, your code will make more
sense if you use tuples to handle data structures containing various
kinds of data in a known structure, and lists to handle data structures
containing less varied data in unknown quantities. (Tuples are expected
to come in a certain order and can also contain lists, so if you have a
data structure that’s mostly known except for an expanding part or two,
including a list inside of a tuple can be a workable solution.)

Lists can contain lists, and sometimes this can produce surprising results. If, for example,
you want to add a list to a list, you may end up with more levels of list than you planned:

4> Insert=[2,4,8].
[2,4,8]
5> Full = [1, Insert, 16, 32].
[1,[2,4,8],16,32]

You can fix that (if you want to) with the lists:flatten/1 function:

6> Neat = lists:flatten(Full).
[1,2,4,8,16,32]

This also means that if you want to append lists, you need to decide whether you’re
creating a list of lists or a single list containing the contents of the component lists. To
create a list of lists, you just put lists into lists.

7> A = [1,2,4].
[1,2,4]
8> B = [8,16,32].
[8,16,32]
9> ListOfLists = [A,B].
[[1,2,4],[8,16,32]]

To create a single list from multiple lists, you can use the lists:append/2 function or
the equivalent ++ operator.

10> Combined1 = lists:append(A,B).
[1,2,4,8,16,32]
11> Combined2 = A ++ B.
[1,2,4,8,16,32]

Both produce the same result: a combined and flattened list.

The ++ operator is right associative, which can change the order of the
resulting list when you append multiple lists.

If you have a set of lists you’d like combined, you can use the lists:append/1 function,
which takes a list of lists as its argument and returns a single list containing their contents:

66 | Chapter 6: Lists

12> C = [64,128,256].
[64,128,256]
13> Combined4 = lists:append([A,B,C]).
[1,2,4,8,16,32,64,128,256]

If you want to generate a list of sequential integers (or characters), the
lists:seq/2 function is handy. Its arguments are the start and end of
the list values. For example, lists:seq(-2,8) produces
[-2,-1,0,1,2,3,4,5,6,7,8], and lists:seq($A,$z) produces the
string (list) "ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklm
nopqrstuvwxyz".

Splitting Lists into Heads and Tails
Lists are a convenient way to hold piles of similar data, but their great strength in Erlang
is the way they make it easy to do recursion. Lists are a natural fit for the “counting
down” style of logic explored in Chapter 4: you can run through a list until you run out
of items. In many languages, running through a list means finding out how many items
it contains and going through them sequentially. Erlang takes a different approach,
letting you process the first item in a list, the head, while extracting the rest of the list,
the tail, so that you can pass it to another call recursively.

To extract the head and the tail, you use pattern matching, with a special form of the
list syntax on the left:

[Head | Tail] = [1,2,4].

The two variables separated by a vertical bar (|), or cons, for list constructor, will be
bound to the head and tail of the list on the right. In the console, Erlang will just report
the contents of the right side of the expression, not the fragments created by the pattern
match, but if you work through a list you can see the results:

1> List = [1,2,4].
[1,2,4]
2> [H1 | T1] = List.
[1,2,4]
3> H1.
1
4> T1.
[2,4]
5> [H2 | T2] = Tail1.
[2,4]
6> H2.
2
7> T2.
[4]
8> [H3 | T3] = T2.

Splitting Lists into Heads and Tails | 67

[4]
9> H3.
4
10> T3.
[]
11> [H4 | T4] = T3.
** exception error: no match of right hand side value []

Line 2 copies the initial list into two smaller pieces. H1 will contain the first item of the
List, whereas T1 will contain a list that has everything except the first element. Line 5
repeats the process on the smaller list, breaking T1 into a H2 and a T2. This time T2 is
still a list, as shown on line 7, but contains only one item. Line 8 breaks that single-item
list again, putting the value into H3 and an empty list into T3.

What happens when you try to split an empty list, as shown on line 11? Erlang reports
an error, “no match…”. This fortunately does not mean that recursion on lists is doomed
to produce errors. That lack of a match will naturally stop the recursive process, which
is probably what you want.

Head and tail work only moving forward through a list. If order matters
and you really need to go through a list backwards, you’ll need to use
the lists:reverse function and then walk through the reversed list.

Processing List Content
The head and tail notation was built for recursive processing. Actually making that work
typically follows a pattern in which a list arrives as an argument and is then passed to
another (usually private) function with an accumulator argument. A simple case might
perform a calculation on the contents of the list. Example 6-1, in ch06/ex1-product,
shows this pattern in use, multiplying the values of a list together.

Example 6-1. Calculating the product of values in a list
-module(overall).
-export([product/1]).

product([]) -> 0; % in case the list is empty, return zero
product(List) -> product(List,1).

product([], Product) -> Product; % when list empty, stop, report

product([Head|Tail], Product) -> product(Tail, Product * Head).

68 | Chapter 6: Lists

In this module, the product/1 function is the gateway, passing the list (if the list has
content) plus an accumulator to product/2, which does the real work. If you wanted to
test the arriving list to make sure it meets your expectations, it probably makes the most
sense to do that work in product/1, and let product/2 focus on recursive processing.

Is the product of an empty list really zero? It might make more sense for
an empty list to fail and produce a crash. Erlang’s “let it crash” philos‐
ophy is, as you’ll see later, pretty calm about such things. In the long
run, you’ll have to decide which cases are better left to crash and which
shouldn’t.

The product/2 function has two clauses. The first matches the empty list, and will get
called at the end of the recursive process when there are no more entries to process, or
if the list arrives empty. It returns its second argument, the accumulator.

The second clause does more work if the arriving list is not empty. First, the pattern
match ([Head|Tail]) splits off the first value the list from the rest of the list. Next, it
calls product/2 again, with the remaining (if any) portion of the list and a new accu‐
mulator that is multiplied by the value of the first entry in the list. The result will be the
product of the values included in the list:

1> c(overall).
{ok,overall}
2> overall:product([1,2,3,5]).
30

That went smoothly, but what happened? After product/1 called product/2, it made
five iterations over the list, concluding with an empty list, as shown in Table 6-1.

Table 6-1. Recursive processing of a simple list in product/2
Arriving List Arriving Product Head Tail

[1,2,3,5] 1 1 [2,3,5]

[2,3,5] 1 (1*1) 2 [3,5]

[3,5] 2 (1*2) 3 [5]

[5] 6 (2*3) 5 []

[] 30 (6*5) None None

The last arriving Product, 30, will be handled by the clause for the empty list and re‐
ported as the return value for product/2. When product/1 receives that value, it will
also report 30 as its return value and exit.

Processing List Content | 69

Because strings are lists, you can do strange things like enter over
all:product("funny"). product/1 will interpret the character values
as numbers, and return 17472569400.

Creating Lists with Heads and Tails
While there are times you want to calculate a single value from a list, much list processing
involves modifying lists or converting a list into another list. Because you can’t actually
change a list, modifying or converting a list means creating a new list. To do that, you
use the same vertical bar head/tail syntax, but on the right side of the pattern match
instead of the left. You can try this out in the console, though it’s more useful in a module:

1> X=[1|[2,3]].
[1,2,3]

Erlang interprets [1|[2,3]] as creating a list. If the value to the right of the vertical bar
is a list, it gets appended to the head as a list. In this case, the result is a neat list of
numbers. There are a few other forms you should be aware of:

2> Y=[1,2 | [3]].
[1,2,3]
3> Z=[1,2 | 3].
[1,2|3]

In line 2, there isn’t a list wrapped around the now two items in the head, but the con‐
structor still blends the head and the tail together seamlessly. (If you do wrap them in
square brackets, the list constructor assumes that you want a list as the first item in the
list, so [[1,2] | [3]] will produce [[1,2],3].)

However, line 3 demonstrates what happens if you don’t wrap the tail in square brackets
—you get a list, called an improper list, that still contains a constructor, with a strange
tail. Until you’ve learned your way quite thoroughly around Erlang, you probably should
avoid this, as it will create runtime errors if you try to process it as a normal list. Even‐
tually you may find rare reasons to do this, or encounter code that uses it.

More typically, you’ll use list constructors to build lists inside of recursive functions.
Example 6-2, which you can find in ch06/ex2-drop, starts from a set of tuples repre‐
senting planemos and distances. With the help of the drop module from Example 3-8,
it creates a list of velocities for the corresponding falls.

Example 6-2. Calculating a series of drop velocities, with an error
-module(listdrop).
-export([falls/1]).

70 | Chapter 6: Lists

falls(List) -> falls(List,[]).

falls([], Results) -> Results;
falls([Head|Tail], Results) -> falls(Tail, [drop:fall_velocity(Head) | Results]).

Much of this is familiar from Example 6-1, except that the Results variable gets a list
instead of a number, and the last line of falls/2 creates a list instead of a single value.
If you run it, however, you’ll see one minor problem:

1> c(drop).
{ok,drop}
2> c(listdrop).
{ok,listdrop}
3> listdrop:falls([{earth,20},{moon,20},{mars,20}]).
[12.181953866272849,8.0,19.79898987322333]

The resulting velocities are reversed: the Earth has more gravity than Mars, and objects
should fall faster on Earth. What happened? That last key line in falls/2 is reading a
list from the beginning to the end, and creating a list from the end to the beginning.
That puts the values in the wrong order. Fortunately, as Example 6-3 demonstrates, this
is easy to fix. You need to call lists:reverse/1 in the clause of the falls/2 function
that handles the empty list.

Example 6-3. Calculating a series of drop velocities, with the error fixed
-module(listdrop).
-export([falls/1]).

falls(List) -> falls(List,[]).

falls([], Results) -> lists:reverse(Results);
falls([Head|Tail], Results) -> falls(Tail, [drop:fall_velocity(Head) | Results]).

Now it works:

4> c(listdrop).
{ok,listdrop}
5> listdrop:falls([{earth,20},{moon,20},{mars,20}]).
[19.79898987322333,8.0,12.181953866272849]

You could instead have put the lists:reverse/1 call in the falls/1
gateway function. Either way is fine, though I prefer to have falls/2
return a finished result.

Creating Lists with Heads and Tails | 71

Mixing Lists and Tuples
As you get deeper into Erlang and pass around more complex data structures, you may
find that you’re processing lists full of tuples, or that it would be more convenient to
rearrange two lists into a single list of tuples or vice-versa. The lists module includes
easy solutions to these kinds of transformations and searches.

The simplest set of tools are the lists:zip/2 and lists:unzip/1 functions. They can
turn two lists of the same size into a list of tuples or a list of tuples into two lists.

1> List1=[1,2,4,8,16].
[1,2,4,8,16]
2> List2=[a,b,c,d,e].
[a,b,c,d,e]
3> TupleList=lists:zip(List1,List2).
[{1,a},{2,b},{4,c},{8,d},{16,e}]
4> SeparateLists=lists:unzip(TupleList).
{[1,2,4,8,16],[a,b,c,d,e]}

The two lists, List1 and List2, have different contents, but the same number of items.
The lists:zip/2 function returns a list containing a tuple for each of the items in the
original list. The lists:unzip/1 function takes that list of two-component tuples, and
splits it out into a tuple containing two lists.

Erlang also provides lists:zip3/3 and lists:unzip3/1, which do the
same combining and separating on sets of three lists or tuple values.

You will also likely encounter times when you need to process a different kind of list
containing tuples, a collection of values identified by keys. Many languages include
associative arrays, where access is provided through key values, but Erlang’s lists are
always sequential, and have no built-in concept of retrieving information with a key.
However, the lists module provides functions that support treating a list of tuples as
if it were a key/value store, such as hash table, hash tree, or associative array.

You don’t need to do anything special to create a list that you’ll use this way, except to
make sure that the key is in a consistent location in the tuples stored in the list. Because
the functions let you specify the location, you can put them anywhere in the tuple as
long as you’re consistent, but for this example, they’ll be in the first position.

The first function to explore is lists:keystore/4. It takes a key value, a position, a list
that is the previous state of the key/value store (defined in line 1 of the following code

72 | Chapter 6: Lists

sample), and a tuple. If no tuple has that key value, then the new tuple simply gets added
to the list, as shown in line 2 of the following code sample. If, as in line 3, a tuple already
has that key value, the function will return a list that replaces the matched tuple with
the new one.

1> Initial=[{1,tiger}, {3,bear}, {5,lion}].
[{1,tiger},{3,bear},{5,lion}]
2> Second=lists:keystore(7,1,Initial,{7,panther}).
[{1,tiger},{3,bear},{5,lion},{7,panther}]
3> Third=lists:keystore(7,1,Second,{7,leopard}).
[{1,tiger},{3,bear},{5,lion},{7,leopard}]

You can also pass lists:keystore/4 an empty list for the array, and it will just return
a list containing the new tuple.

Sometimes you want to replace a value only if it is present, not add a new value to the
list. The similar lists:keyreplace/4 will do just that.

4> Fourth=lists:keyreplace(6,1,Third,{6,chipmunk}).
[{1,tiger},{3,bear},{5,lion},{7,leopard}]

There was no item in the previous list with a key value of 6, so lists:keyreplace/4
just returned a copy of the original list.

All of these functions are copying lists or creating new modified versions
of a list. As you’d expect in Erlang, the original list is untouched.

If you want to get information back out of a list, the lists:keyfind/3 argument will
report the data that matches a given key:

5> Animal5=lists:keyfind(5,1,Third).
{5,lion}

If the key isn’t present, however, you’ll just get a return value of false, instead of a tuple.

6> Animal6=lists:keyfind(6,1,Third).
false

Building a List of Lists
While simple recursion isn’t too complicated, list processing has a way of turning into
lists of lists in various stages. Pascal’s triangle, a classic mathematical tool, is relatively
simple to create but demonstrates more intricate work with lists. It starts with a 1 at the
top, and then each new row is composed of the sum of the two numbers above it:

Building a List of Lists | 73

 1
 1 1
 1 2 1
 1 3 3 1
 1 4 6 4 1
...

If those numbers seem familiar, it’s probably because they’re the binomial coefficents
that appear when you put (x+y) to a power. That’s just the beginning of this mathematical
marvel, described in more detail at http://en.wikipedia.org/wiki/Pascal’s_triangle.

This is easily calculated with Erlang in a number of ways. You can apply the list tech‐
niques already discussed in this chapter by treating each row as a list, and the triangle
as a list of lists. The code will be seeded with the first row—the top 1—represented as
[0,1,0]. The extra zeros make the addition much simpler.

This is not intended to be an efficient, elegant, or maximally compact
implementation. At this point, a naive implementation likely explains
more about lists. Once this makes sense, and you learn about list com‐
prehensions in Chapter 7, you can explore what a vastly more compact
version might look like, see http://rosettacode.org/wiki/Pascal’s_trian
gle#Erlang.

For a first step, Example 6-4 calculates rows individually. This is a simple recursive
process, walking over the old list and adding its contents to create a new list.

Example 6-4. Calculating a row
-module(pascal).
-export([add_row/1]).
add_row(Initial) -> add_row(Initial, 0, []).

add_row([], 0, Final) -> [0 | Final];

add_row([H | T], Last, New) -> add_row(T, H, [Last + H | New]).

The add_row/1 function sets things up, sending the current row, a 0 to get the math
started, and an empty list you can think of as “where the results go,” though it is really
an accumulator. The add_row/3 function has two clauses. The first checks to see if the
list being added is empty. If it is, then it reports back the final row, adding a 0 at the
front.

Most of the work gets done in the second clause of add_row/3. When it receives its
arguments, the [H | T] pattern match splits the head of the list into the H value (a
number) and the tail into T (a list, which may be empty if that was the last number). It
also gets values for the Last number processed and the current New list being built.

74 | Chapter 6: Lists

http://en.wikipedia.org/wiki/Pascal’s_triangle
http://rosettacode.org/wiki/Pascal’s_triangle#Erlang
http://rosettacode.org/wiki/Pascal’s_triangle#Erlang

It then makes a recursive call to add_row/3. In that new call, the tail of the old list, T, is
the new list to process, the H value becomes the Last number processed, and the third
argument, the list, opens with the actual addition being performed, which is then com‐
bined with the rest of the New list being built.

Because the lists in the triangle are symmetrical, there is no need to use
lists:reverse/1 to flip them. You can, of course, if you want to.

You can test this easily from the console, but remember that your test lists need to be
wrapped in zeros:

1> c(pascal).
{ok,pascal}
2> pascal:add_row([0,1,0]).
[0,1,1,0]
3> pascal:add_row([0,1,1,0]).
[0,1,2,1,0]
4> pascal:add_row([0,1,2,1,0]).
[0,1,3,3,1,0]

Now that you can create a new row from an old one, you need to be able to create a set
of rows from the top of the triangle, as shown in Example 6-5, which you can find in
ch06/ex4-pascal. The add_row/3 function effectively counted down to the end of the list,
but triangle/3 will need to count up to a given number of rows. The triangle/1
function sets things up, defining the initial row, setting the counter to 1 (because that
initial row is the first row), and passing on the number of Rows to be created.

The triangle/3 function has two clauses. The first, the stop clause, halts the recursion
when enough Rows have been created, and reverses the list. (The individual rows may
be symmetrical, but the triangle itself is not.) The second clause does the actual work
of generating new rows. It gets the Previous row generated from the List, and then it
passes that to the add_row/1 function, which will return a new row. Then it calls itself
with the new list, an incremented Count, and the Rows value the stop clause needs.

Example 6-5. Calculating the whole triangle with both functions
-module(pascal).
-export([triangle/1]).

triangle(Rows) -> triangle([[0,1,0]],1,Rows).

triangle(List, Count, Rows) when Count >= Rows -> lists:reverse(List);

triangle(List, Count, Rows) ->
 [Previous | _] = List,
 triangle([add_row(Previous) | List], Count+1, Rows).

Building a List of Lists | 75

add_row(Initial) -> add_row(Initial, 0, []).

add_row([], 0, Final) -> [0 | Final];

add_row([H | T], Last, New) -> add_row(T, H, [Last + H | New]).

Happily, this works.

5> c(pascal).
{ok,pascal}
6> pascal:triangle(4).
[[0,1,0],[0,1,1,0],[0,1,2,1,0],[0,1,3,3,1,0]]
7> pascal:triangle(6).
[[0,1,0],
 [0,1,1,0],
 [0,1,2,1,0],
 [0,1,3,3,1,0],
 [0,1,4,6,4,1,0],
 [0,1,5,10,10,5,1,0]]

Pascal’s triangle may be a slightly neater set of lists than most you will process, but this
kind of layered list processing is a very common tactic for processing and generating
lists of data.

76 | Chapter 6: Lists

CHAPTER 7

Higher-Order Functions and List
Comprehensions

Higher-order functions, functions that accept other functions as arguments, are a key
place where Erlang’s power really starts to shine. It’s not that you can’t do higher-order
functions in other languages—you can in many—but more that Erlang treats higher-
order functions as a native and natural part of the language rather than an oddity.

Simple Higher-Order Functions
Way back in Chapter 2, you saw how to use a fun to create a function:

1> Fall_velocity = fun(Distance) -> math:sqrt(2 * 9.8 * Distance) end.
#Fun<erl_eval.6.111823515>
2> Fall_velocity(20).
19.79898987322333
3> Fall_velocity(200).
62.609903369994115

Erlang not only lets you put functions into variables, it lets you pass functions as argu‐
ments. This means that you can create functions whose behavior you modify at the time
you call it, in much more intricate ways than is normally possible with parameters. A
very simple function that takes another function as an argument might look like
Example 7-1, which you can find in ch07/ex1-hof.

Example 7-1. An extremely simple higher-order function
-module(hof).
-export([tripler/2]).

tripler(Value, Function) -> 3 * Function(Value).

77

The argument names are generic, but fit. tripler/2 will take a value and a function as
arguments. It runs the value through the function, and multiplies that result by three.
In the shell, this might look like the following:

1> c(hof).
{ok,hof}
2> MyFunction=fun(Value)->20*Value end.
#Fun<erl_eval.6.111823515>
3> hof:tripler(6,MyFunction).
360

That defines another simple function taking one argument (and returning that number
multiplied by 20), and stores it in the variable MyFunction. Then it calls the hof:tri
pler/2 function with a value of six and the MyFunction function. In the hof:tripler/
2 function, it feeds the Value to the Function, getting back 120. Then it triples that,
returning 360.

You can skip assigning the function to a variable if you want, and just include the fun
declaration inside the hof:tripler/2 function call:

4> hof:tripler(6,fun(Value)->20*Value end).
360

That may or may not be easier to read, depending on the functions and your expecta‐
tions. This case is trivially simple, but demonstrates that it works.

While this is a powerful technique, you can outsmart yourself with it
easily. (I do!) Just as with normal code, you need to make sure the num‐
ber and sometimes the type of your arguments line up. The extra flex‐
ibility and power can create new problems if you aren’t careful.

fun has a few other tricks up its sleeve that you should know. You can use a fun to
preserve context, even context that has since vanished.

5> X=20.
20
6> MyFunction2=fun(Value)->X * Value end.
#Fun<erl_eval.6.82930912>
7> f(X).
ok
8> X.
* 1: variable 'X' is unbound
9> hof:tripler(6,MyFunction2).
360

78 | Chapter 7: Higher-Order Functions and List Comprehensions

Line 5 assigns a variable named X a value, and line 6 uses that variable in a fun. Line 7
obliterates the X variable, as line 8 demonstrates, but line 9 shows that MyFunction2 still
remembers that X was 20. Even though the value of X has been flushed from the shell,
the fun preserves the value and can act upon it. (This is called a closure.)

You may also want to pass a function from a module, even a built-in module, to your
(or any) higher-order function. That’s simple, too:

7> hof:tripler(math:pi(), fun math:cos/1).
-3.0

In this case, the hof:tripler function receives the value pi and a fun, which is the
math:cos/1 function from the built-in math module. Since the cosine of pi is -1, the
tripler returns -3.0.

Creating New Lists with Higher-Order Functions
Lists are one of the best and easiest places to apply higher-order functions. Applying a
function to all the components of a list to create a new list, sort a list, or break a list into
smaller pieces is popular work. You don’t need to do much difficult work to make this
happen, though: Erlang’s built-in lists module offers a variety of higher-order func‐
tions, listed in Appendix A, that take a function and list and do something with them.
You can also use list comprehensions to do much of the same work. The lists module
may seem easier at first, but as you’ll see, list comprehensions are powerful and concise.

Reporting on a List
The simplest of these functions is foreach/2, which always returns the atom ok. That
may sound strange, but foreach/2 is a function you’ll call if and only if you want to do
something to the list with side effects—like present the contents of a list to the console.
To do that, define a simple function that applies io:format/2, here stored in the variable
Print, and a List, and then pass them both to lists:foreach/2.

1> Print = fun(Value) -> io:format(" ~p~n",[Value]) end.
#Fun<erl_eval.6.111823515>
2> List = [1,2,4,8,16,32].
[1,2,4,8,16,32]
3> lists:foreach(Print,List).
 1
 2
 4
 8
 16
 32
ok

Creating New Lists with Higher-Order Functions | 79

The lists:foreach/2 function walked through the list, in order, and called the function
in Print with each item of the list as a Value. The io:format/2 function inside of Print
presented the list item, slightly indented. When it reached the end of the list, lists:fore
ach/2 returned the value ok, which the console also displayed.

Most of the demonstrations in this chapter will be operating on that
same List variable, containing [1,2,4,8,16,32].

Running List Values Through a Function
You might also want to create a new list based on what a function does with all of the
values in the original list. You can square all of the values in a list by creating a function
that returns the square of its argument, and passing that to lists:map/2. Instead of
returning ok, it returns a new list reflecting the work of the function it was given:

4> Square = fun(Value)->Value*Value end.
#Fun<erl_eval.6.111823515>
5> lists:map(Square,List).
[1,4,16,64,256,1024]

There’s another way to accomplish the same thing, with what Erlang calls a list compre‐
hension.

6> [Square(Value) || Value <- List].
[1,4,16,64,256,1024]

That produces the same resulting list, with different (and more flexible) syntax. While
you saw the [A | B] syntax in list constructors, a list comprehension uses [A || B]
syntax. That extra vertical bar changes the whole way this is interpreted. Instead of being
a head and a tail, it’s an expression—here a function—and a rule for extracting the
arguments for that function from a list, called a generator.

In this case, the function is the fun you put in the Square variable on line 4. Its argument,
Value, is taken on a walk through the List. That arrow—the <-—means “an element
of,” or if you want be more active, “comes from.” You can read this list comprehension
as “Create a list consisting of squares of a Value, where the Value comes from List.”

Strictly speaking, the expression on the left doesn’t have to be formally declared as a
function. You can get the same results with something less formal:

7> [Value * Value || Value <- List].
[1,4,16,64,256,1024]

80 | Chapter 7: Higher-Order Functions and List Comprehensions

The multiplication operator (*) is technically a call to the */2 function,
but any legal Erlang expression can be on the left of the ||.

Filtering List Values
The lists module offers a few different functions for filtering the content of a list based
on a function you provide as a parameter. The most obvious, lists:filter/2, returns
a list composed of the members of the original list for which the function returned
true. For example, if you wanted to filter a list of integers down to values that could be
represented as four binary digits, so numbers 0 or greater but less than 16, you could
define a function and store it in Four_bits:

8> Four_bits = fun(Value)-> (Value<16) and (Value>=0) end.
#Fun<erl_eval.6.111823515>

Then, if you apply it to the previously defined List of [1,2,4,8,16,32], you’d get just
the first four values:

9> lists:filter(Four_bits,List).
[1,2,4,8]

Once again, you can create the same effect with a list comprehension. This time, you
don’t actually need to create a function, but instead use a guard-like construct (written
without the when) on the right side of the comprehension:

10> [Value || Value <- List, Value<16, Value>=0].
[1,2,4,8]

If you also want a list of values that didn’t match, lists:partition/2
will return a tuple that contains the matched items in its first element,
and the unmatched items in its second.

Beyond List Comprehensions
List comprehensions are concise and powerful, but they lack a few key features available
in other recursive processing. The only type of result they can return is a list, but there
will be many times when you want to process a list and return something else, like a
boolean, a tuple, or a number. List comprehensions also lack support for accumulators,
and don’t let you suspend processing completely when certain conditions are met.

You could write your own recursive functions to process lists, but much of the time you’ll
find that the lists module already offers a function that takes a function you define
and a list and returns what you need.

Beyond List Comprehensions | 81

Testing Lists
Sometimes you just want to know if all the values—or any of the values—in a list meet
specific criteria. Are they all of a specific type, or do they have a value that meets certain
criteria?

The lists:all/2 and lists:any/2 functions let you test a list against rules you specify
in a function. If your function returns true for all of the list values, both of these func‐
tions will return true. lists:any/2 will also return true if one or more values in the
list results in your function returning true. Both will return false if your function
consistently returns false.

lists:all/2 and lists:any/2 don’t necessarily evaluate the entire list;
as soon as they hit a value that provides a definitive answer, they’ll stop
and return that answer.

11> IsInt = fun(Value) -> is_integer(Value) end.
#Fun<erl_eval.6.111823515>
12> lists:all(IsInt, List).
true
13> lists:any(IsInt, List).
true
14> Compare = fun(Value) -> Value > 10 end.
#Fun<erl_eval.6.111823515>
15> lists:any(Compare, List).
true
16> lists:all(Compare, List).
false

You can think of lists:all/2 as an and function applied to lists; more precisely like
andalso because it stops processing as soon as it encounters a false result. Similarly,
lists:any/2 is like or, or orelse, in this case stopping as soon as it finds a true result.
As long as you need only to test individual values within lists, these two higher order
functions can save you writing a lot of recursive code.

Splitting Lists
Filtering lists is useful, but sometimes you want to know what didn’t go through the
filter, and sometimes you just want to separate items.

The lists:partition/2 function returns a tuple containing two lists. The first is the
list items that met the conditions specified in the function you provided, while the

82 | Chapter 7: Higher-Order Functions and List Comprehensions

second is the items that didn’t. If the Compare variable is defined as shown in line 14 of
the previous demonstration, returning true when a list value is greater than 10, then
you can split a list into a list of items greater than 10 and a list of items fewer than 10
easily:

17> lists:partition(Compare,List).
{[16,32],[1,2,4,8]}

Sometimes you’ll want to split a list by starting from the beginning—the head—and
stopping when a list value no longer meets a condition. The lists:takewhile/2 and
lists:dropwhile/2 functions create a new list that contains the parts of an old list
before or after encountering a boundary condition. These functions aren’t filters, and
to make that clear, the examples use a different list than the rest in this chapter.

18> Test=fun(Value) -> Value < 4 end.
#Fun<erl_eval.6.111823515>
19> lists:dropwhile(Test, [1,2,4,8,4,2,1]).
[4,8,4,2,1]
20> lists:takewhile(Test, [1,2,4,8,4,2,1]).
[1,2]

Both functions run through a list from head to tail and stop when they reach a value for
which the function you provide as the first argument returns false. The lists:drop
while/2 function returns what’s left of the list, including the value that flunked the test.
It does not, however, filter out later list entries that it might have dropped if they had
appeared earlier in the list. The lists:takewhile/2 function returns what was already
processed, not including the value that flunked the test.

Folding Lists
Adding an accumulator to list processing lets you turn lists into much more than other
lists, and opens the door to much more sophisticated processing. Erlang’s lists:foldl/
3 and lists:foldr/3 functions let you specify a function, an initial value for an accu‐
mulator, and a list. Instead of the one-argument functions you’ve seen so far, you need
to create a two argument function, accepting the current value in the list traversal and
the accumulator. The result of that function will become the new value of the accumu‐
lator.

Defining a function that works within the folding functions looks a little different, be‐
cause of the two arguments:

21> Divide=fun(Value, Accumulator) -> Value / Accumulator end.
#Fun<erl_eval.6.111823515>

This function divides its first argument—to be the Value coming from the list—by
second, the Accumulator passed to it by the function doing folding.

Beyond List Comprehensions | 83

Folding has one other key twist. You can choose whether you want the function to
traverse the list from head to tail, with lists:foldl/3, or from tail to head, with
lists:foldr/3. If order doesn’t change the result, you should go with lists:foldl/3,
as its implementation is tail-recursive and more efficient in most situations.

The Divide function is one of those cases that will produce very different results de‐
pending on the direction in which you process the list (and the initial accumulator
value). In this case, folding also produces different results than you might expect in a
simple division. Given the usual List of [1,2,4,8,16,32], it seems like going from left
to right will produce 1/2/4/8/16/32, and going from right to left will produce
32/16/8/4/2/1, at least if you use an initial accumulator of 1. They don’t produce those
results, however.

22> 1/2/4/8/16/32.
3.0517578125e-5
23> lists:foldl(Divide,1,List).
8.0
24> 32/16/8/4/2/1.
0.03125
25> lists:foldr(Divide,1,List).
0.125

This code seems too simple to have a bug, so what’s going on? Table 7-1 walks through
the calculations for lists:foldl(Divide,1,List), and Table 7-2 walks through
lists:foldr(Divide,1,List) step by step.

Table 7-1. Recursive division of a list forwards with foldl/3
Value from List Accumulator Result of Division

1 1 1

2 1 (1/1) 2

4 2 (2/1) 2

8 2 (4/2) 4

16 4 (8/2) 4

32 4 8

Table 7-2. Recursive division of a list backwards with foldr/3
Value from List Accumulator Result of Division

32 1 32

16 32 (32/1) 0.5

8 0.5 (32/16) 16

4 16 (8/0.5) 0.25

2 0.25 (4/16) 8

1 8 0.125

84 | Chapter 7: Higher-Order Functions and List Comprehensions

Moving through a list step-by-step produces very different values. In this case, the simple
Divide function’s behavior changes drastically above and below the value 1, and com‐
bining that with walking through a list item by item yields results that might not be
precisely what you expected.

The result of the foldl is the same as 32/(16/(8/(4/(2/(1/1))))),
while the result of the foldr is the same as 1/(2/(4/(8/(16/
(32/1))))). The parentheses in those perform the same restructuring
as the fold, and the concluding 1 in each is where the initial accumulator
value fits in.

Folding is an incredibly powerful operation. This simple if slightly weird example just
used a single value, a number, as an accumulator. If you use a tuple as the accumulator,
you can store all kinds of information about a list as it passes by, and even perform
multiple operations. You probably won’t want to try to define the functions you use for
that as one-liners, but the possibilities are endless.

Beyond List Comprehensions | 85

CHAPTER 8

Playing with Processes

Erlang is a functional language, but Erlang programs are rarely structured around simple
functions. Instead, Erlang’s key organizational concept is the process, an independent
component (built from functions) that sends and receives messages. Programs are de‐
ployed as sets of processes that communicate with each other. This approach makes it
much easier to distribute work across multiple processors or computers, and also makes
it possible to do things like upgrade programs in place without shutting down the whole
system.

Taking advantage of those features, though, means learning how to create (and end)
processes, how to send messages among them, and how to apply the power of pattern
matching to incoming messages.

The Shell Is a Process
You’ve been working within a single process throughout this book so far, the Erlang
shell. None of the previous examples sent or received messages, of course, but the shell
is an easy place to send and (for test purposes, at least) receive messages.

The first thing to explore is the process identifier, often called a pid. The easiest pid to
get is your own, so in the shell you can just try the self() function:

1> self().
<0.36.0>

<0.36.0>, is the shell’s representation of a triple, a set of three integers that provide the
unique identifier for this process. You may get a different set of numbers when you try
it. This group of numbers is guaranteed to be unique within this run of Erlang, not

87

permanently the same in future use. Erlang uses pids internally, but while you can read
them in the shell, you can’t type pids directly into the shell or into functions. Erlang
much prefers that you treat pids as abstractions, though if you really want to address a
process by its pid numbers, you can use the pid/3 shell function to do so.

Pids can even identify processes running on multiple computers within
a cluster. You’ll need to do more work to set up a cluster, but you won’t
have to throw away code you wrote with pids and processes built on
them when you get there.

Every process gets its own pid, and those pids function like addresses for mailboxes.
Your programs will send messages from one process to another by sending them to a
pid. When that process gets time to check its mailbox, it will be able to retrieve and
process the messages there.

Erlang, however, will never report that a message send failed, even if the pid doesn’t
point to a real process. It also won’t report that a message was ignored by a process. You
need to make sure your processes are assembled correctly.

The syntax for sending a message is pretty simple: a function or variable containing the
pid, plus the send operator (!) and the message.

2> self() ! test1.
test1
3> Pid=self().
<0.36.0>
4> Pid ! test2.
test2

Line 2 sent a message to the shell containing the atom test1. Line 3 assigned the pid
for the shell, retrieved with the self() function, to a variable named Pid, and then line
4 used that Pid variable to send a message containing the atom test2. (The ! always
returns the message, which is why it appears right after the sends in lines 2 and 4.)

Where did those messages go? What happened to them? Right now, they’re just waiting
in the shell’s mailbox, doing nothing.

There’s a shell function—flush()—that you can use to see what’s in the mailbox, though
it also removes those messages from the mailbox. The first time you use it, you’ll get a
report of what’s in the mailbox, but the second time, the messages are gone, already read.

5> flush().
Shell got test1
Shell got test2
ok
6> flush().
ok

88 | Chapter 8: Playing with Processes

The proper way to read the mailbox, which gives you a chance to do something with
the messages, is the receive… end construct. You can test this out in the shell. The first
of the following tests just reports what the message was, whereas the second expects a
number and doubles it.

7> self() ! test1.
test1
8> receive X -> X end.
test1
9> self() ! 23.
23
10> receive Y->2*Y end.
46

So far, so good. However, if you screw up—if there isn’t a message waiting, or if you
provide a pattern match that doesn’t work—the shell will just sit there, hung. Actually,
it’s waiting for something to arrive in the mailbox, but you’ll be stuck. The easiest way
out of that is to hit Ctrl-G, and then type q. You’ll have to restart Erlang. (X and Y become
bound variables, so don’t try to reuse them, either.)

Spawning Processes from Modules
While sending messages to the shell is an easy way to see what’s happening, it’s not
especially useful. Processes at their heart are just functions, and you know how to build
functions in modules. The receive…end statement is structured like a case…end state‐
ment, so it’s easy to get started.

Example 8-1, which is in ch08/ex1-simple, shows a simple—excessively simple—module
containing a function that reports messages it receives.

Example 8-1. An overly simple process definition
-module(bounce).
-export([report/0]).

report() ->
 receive
 X -> io:format("Received ~p~n",[X])
 end.

When the report/0 function receives a message, it will report that it received it. Setting
this up means compiling it and then using the spawn/3 function, which turns the func‐
tion into a free-standing process. The arguments are the module name, the function
name, and a list of arguments for the function. (Even if you don’t have any arguments,
you need to include an empty list in square brackets.) The spawn/3 function will return
the Pid, which you should capture in a variable, here Pid:

Spawning Processes from Modules | 89

1> c(bounce).
{ok,bounce}
2> Pid=spawn(bounce,report,[]).
<0.38.0>

Once you have the process spawned, you can send a message to that pid, and it will
report that it received it:

3> Pid ! 23.
Received 23
23
ok

However, there’s one small problem. The report process exited—it went through the
receive clause only once, and when it was done, was done. If you try to send it a message,
you’ll get back the message, and nothing will report an error, but you also won’t get any
notification that the message was received because nothing is listening any longer.

4> Pid ! 23.
23

To create a process that keeps processing messages, you need to add a recursive call, as
shown in the receive statement in Example 8-2, in ch08/ex2-recursion.

Example 8-2. A function that creates a stable process
-module(bounce).
-export([report/0]).

report() ->
 receive
 X -> io:format("Received ~p~n",[X]),
 report()
 end.

That extra call to report() means that after the function shows the message that arrived,
it will run again, ready for the next message. If you recompile the bounce module and
spawn it to a new Pid2 variable, you can send it multiple messages, as shown here.

5> c(bounce).
{ok,bounce}
6> Pid2=spawn(bounce,report,[]).
<0.47.0>
7> Pid2 ! 23.
Received 23
23
ok8> Pid2 ! message.
Received message
message

90 | Chapter 8: Playing with Processes

You can also pass an accumulator from call to call if you want, for a simple example, to
keep track of how many messages have been received by this process. Example 8-3 shows
the addition of an argument, in this case just an integer that gets incremented with each
call. You can find it in ch08/ex3-counter.

Example 8-3. A function that adds a counter to its message reporting
-module(bounce).
-export([report/1]).

report(Count) ->
 receive
 X -> io:format("Received #~p: ~p~n",[Count,X]),
 report(Count+1)
 end.

The results are pretty predictable, but remember that you need to include an initial value
in the arguments list in the spawn/3 call.

1> c(bounce).
{ok,bounce}
2> Pid2=spawn(bounce,report,[1]).
<0.38.0>
3> Pid2 ! test.
Received #1: test
test
ok4> Pid2 ! test2.
Received #2: test2
test2
ok5> Pid2 ! another.
Received #3: another

Whatever you do in your recursive call, keeping it simple (and preferably tail-recursive)
is best, as these can get called many, many times in the life of a process.

If you want to create impatient processes that stop after waiting a given
amount of time for a message, you should investigate the after con‐
struct of the receive clause.

You can write this function in a slightly different way that may make what’s happening
clearer and easier to generalize. Example 8-4, in ch08/ex4-state, shows how to use the
return value of the receive clause, here the Count plus one, to pass state from one
iteration to the next.

Example 8-4. Using the return value of the receive clause as state for the next iteration
-module(bounce).
-export([report/1]).

Spawning Processes from Modules | 91

report(Count) ->
 NewCount = receive
 X -> io:format("Received #~p: ~p~n",[Count,X]),
 Count + 1
 end,
 report (NewCount).

In this model, all (though just one here) of the receive clauses return a value that gets
passed to the next iteration of the function. If you use this approach, you can think of
the return value of the receive clause as the state to be preserved between function
calls. That state can be much more intricate than a counter—it might be a tuple, for
instance, that includes references to important resources or work in progress.

Lightweight Processes
If you’ve worked in other programming languages, you may be getting worried. Threads
and process spawning are notoriously complex and often slow in other contexts, but
Erlang expects applications to be a group of easily spawned processes? That run recur‐
sively?

Yes, absolutely. Erlang was written specifically to support that model, and its processes
are more lightweight than pretty much any of its competitors. The Erlang scheduler gets
processes started and distributes processing time among them, as well as splitting them
out across multiple processors.

It is certainly possible to write processes that perform badly and to structure applications
so that they wait a long time before doing anything. You don’t, though, have to worry
about those problems happening just because you’re using multiple processes.

Registering a Process
Much of the time, pids are all you need to find and contact a process. However, you will
likely create some processes that need to be more findable. Erlang provides a process
registration system that is extremely simple: you specify an atom and a pid, and then
any process that wants to reach that registered process can just use the atom to find it.
This makes it easier, for example, to add a new process to a system and have it connect
with previously existing processes.

To register a process, just use the register/2 built-in function. The first argument is
an atom, effectively the name you’re assigning the process, and the second argument is
the pid of the process. Once you have it registered, you can just send it messages, using
the atom instead of a pid:

1> Pid1=spawn(bounce,report,[1]).
<0.33.0>
2> register(bounce,Pid1).

92 | Chapter 8: Playing with Processes

true
3> bounce ! hello.
Received #1: hello
hello
ok4> bounce ! "Really?".
Received #2: "Really?"
"Really?"
ok

If you attempt to call a process that doesn’t exist (or one that has crashed), you’ll get a
bad arguments error:

6> zingo ! test.
** exception error: bad argument
 in operator !/2
 called as zingo ! test

If you attempt to register a process to a name that is already in use, you’ll also get an
error, but if a process has exited (or crashed), the name is effectively no longer in use
and you can re-register it.

You can also use whereis/1 to retrieve the pid for a registered process (or undefined,
if there is no process registered with that atom), and unregister/1 to take a process out
of the registration list without killing it.

5> GetBounce = whereis(bounce).
<0.33.0>
6> unregister(bounce).
true
7> TestBounce = whereis(bounce).
undefined
8> GetBounce ! "Still there?".
Received #3: "Still there?"
"Still there?"
ok

If you want to see which processes are registered, you can use the regs()
shell command.

If you’ve worked in other programming languages and learned the gospel of “no global
variables,” you may be wondering why Erlang permits a systemwide list of processes like
this. Most of the rest of this book, after all, has been about isolating change and mini‐
mizing shared context.

Registering a Process | 93

If you think of registered processes as more like services than functions, however, it may
make more sense. A registered process is effectively a service published to the entire
system, something usable from multiple contexts. Used sparingly, registered processes
create reliable entry points for your programs, something that can be very valuable as
your code grows in size and complexity.

When Processes Break
Processes are fragile. If there’s an error, the function stops and the process goes away.
Example 8-5, in ch08/ex5-division, shows a report/0 function that can break if it gets
input that isn’t a number.

Example 8-5. A fragile function
-module(bounce).
-export([report/0]).

report() ->
 receive
 X -> io:format("Divided to ~p~n",[X/2]),
 report()
 end.

If you compile and run this (deliberately) error-inviting code, you’ll find that it works
well so long as you only send it numbers. Send anything else, and you’ll see an ERROR
REPORT in the shell, and no more responses from that pid. It died.

1> c(bounce).
{ok,bounce}
2> Pid3=spawn(bounce,report,[]).
<0.38.0>
3> Pid3 ! 38.
Divided to 19.0
38
ok4> Pid3 ! 27.56.
Divided to 13.78
27.56
ok5> Pid3 ! seven.

=ERROR REPORT==== 24-Aug-2012::20:59:43 ===
Error in process <0.38.0> with exit value: {badarith,[{bounce,report,0,[{file,
"bounce.erl"},{line,6}]}]}

seven
6> Pid3 ! 14.
14

94 | Chapter 8: Playing with Processes

As you get deeper into Erlang’s process model, you’ll find that “let it crash” is not an
unusual design decision in Erlang, though being able to tolerate such things and con‐
tinue requires some extra work. Chapter 9 will also show you how to find and deal with
errors of various kinds.

Processes Talking Amongst Themselves
Sending messages to Erlang processes is easy, but it’s hard for them to report back re‐
sponses if you don’t leave information about where they can find you again. Sending a
message without including the sender’s pid is kind of like leaving a phone message
without including your own number: it might trigger action, but the recipient might not
get back to you.

To establish process to process communications without registering lots of processes,
you need to include pids in the messages. Passing the pid requires adding an argument
to the message. It’s easy to get started with a test that calls back the shell. Example 8-6,
in ch08/ex6-talking, builds on the drop module from Example 3-2, adding a drop/0
function that receives messages and removing the fall_velocity/2 function from the
export.

Example 8-6. A process that sends a message back to the process that called it
-module(drop).
-export([drop/0]).

drop() ->
 receive
 {From, Planemo, Distance} ->
 From ! {Planemo, Distance, fall_velocity(Planemo, Distance)},
 drop()
 end.

fall_velocity(earth, Distance) when Distance >= 0 -> math:sqrt(2 * 9.8 * Distance);
fall_velocity(moon, Distance) when Distance >= 0 -> math:sqrt(2 * 1.6 * Distance);
fall_velocity(mars, Distance) when Distance >= 0 -> math:sqrt(2 * 3.71 * Distance).

To get started, it’s easy to test this from the shell:

1> c(drop).
{ok,drop}
2> Pid1=spawn(drop,drop,[]).
<0.38.0>
3> Pid1 ! {self(), moon, 20}.
{<0.31.0>,moon,20}
4> flush().
Shell got {moon,20,8.0}
ok

Processes Talking Amongst Themselves | 95

Example 8-7, which you’ll find in ch08/ex7-talkingProcs, shows a process that calls that
process, just to demonstrate that this can work with more than just the shell.

Example 8-7. Calling a process from a process, and reporting the results
-module(mph_drop).
-export([mph_drop/0]).

mph_drop() ->
 Drop=spawn(drop,drop,[]),
 convert(Drop).

convert(Drop) ->
 receive
 {Planemo, Distance} ->
 Drop ! {self(), Planemo, Distance},
 convert(Drop);
 {Planemo, Distance, Velocity} ->
 MphVelocity= 2.23693629 * Velocity,
 io:format("On ~p, a fall of ~p meters yields a velocity of ~p mph.~n",
[Planemo, Distance, MphVelocity]),
 convert(Drop)
 end.

The mph_drop/1 function spawns a drop:drop/0 process when it is first set up, using
the same module you saw in Example 8-6, and stores the pid in Drop. Then it calls
convert/1, which will listen for messages recursively.

If you don’t separate the initialization from the recursive listener, your
code will work, but will spawn new drop:drop/0 processes every time
it processes a message instead of using the same one repeatedly.

The receive clause relies on the call from the shell (or another process) including only
two arguments, while the drop:drop/0 process sends back a result with three. (As your
code grows more complex, you will likely want to use more explicit flags about the kind
of information contained in a message.) When the receive clause gets a message with
two arguments, it sends a message to Drop, identifying itself as the sender and passing
on the arguments. When the Drop returns a message with the result, the receive clause
reports on the result, converting the velocity to miles per hour. (Yes, it leaves the distance
metric, but makes the velocity more intelligible to Americans.)

Using this from the shell looks like the following:

1> c(drop).
{ok,drop}
2> c(mph_drop).
{ok,mph_drop}

96 | Chapter 8: Playing with Processes

3> Pid1=spawn(mph_drop,mph_drop,[]).
<0.43.0>
4> Pid1 ! {earth,20}.
On earth, a fall of 20 meters yields a velocity of 44.289078952755766 mph.
{earth,20}
5> Pid1 ! {mars,20}.
On mars, a fall of 20 meters yields a velocity of 27.250254686571544 mph.
{mars,20}

This simple example might look like it behaves as a more complex version of a function
call, but there is a critical difference. In the shell, with nothing else running, the result
will come back quickly—so quickly that it reports before the shell puts up the message
—but this was a series of asynchronous calls. Nothing held and waited specifically for a
returned message.

The shell sent a message to Pid1, the process identifier for mph_drop:convert/1. That
process sent a message to Drop, the process identifier for drop:drop/0, which
mph_drop:mph_drop:0 set up when it was spawned. That process returned another
message to mph_drop:convert/1, which reported to standard output, in this case the
shell. Those messages passed and were processed rapidly, but in a system with thousands
or millions of messages in motion, those passages might have been separated by many
messages, and come in later.

Watching Your Processes
Erlang provides a simple but powerful tool for keeping track of your processes and seeing
what’s happening. Pman, the process manager, offers a minimal GUI that lets you look
into the current state of your processes and see what’s happening. Depending on how
you installed Erlang, you may be able to start it from a toolbar, but you can always start
it from the shell:

6> pman:start().
<0.48.0>

You’ll see something like Figure 8-1 appear. It’s a long list of processes, more than you
probably wanted to know about. To see a saner, simpler version, check “Hide System
Processes,” and you’ll see something similar to Figure 8-2.

The documentation for Pman warns that “The Pman application has
been superseded by the Observer application. Pman will be removed in
R16.” Things will be changing soon. However, Observer in R15 doesn’t
run on 64-bit Macs (because of dependencies on wxWidgets). This
chapter will get an update when R16 releases.

Watching Your Processes | 97

Figure 8-1. The Process Manager at startup

Figure 8-2. The Process Manager after hiding (most) system processes

The list of processes is useful, but Pman also lets you look inside of process activity. If
you double-click on a process, say mph_drop:convert/1, you’ll get some basic infor‐
mation about the process, as shown in Figure 8-3.

98 | Chapter 8: Playing with Processes

Figure 8-3. A closer look at mph_drop

Once you’ve opened the window, make the process do something:

7> Pid1 ! {mars,20}.
On mars, a fall of 20 meters yields a velocity of 27.250254686571544 mph.
{mars,20}

The Pman window for that process will update to show messages and calls, as shown in
Figure 8-4. rec means a message was received, whereas ! indicates a message sent and
call indicates a function call. (io:format makes a lot of calls, which is the bottom part
of that message.)

Pman is generally the easiest place to turn when you’re having difficulty figuring out
what is happening among your processes.

Breaking Things and Linking Processes
When you send a message, you’ll always get back the message as the return value. This
doesn’t mean that everything went well and the message was received and processed
correctly, however. If you send a message that doesn’t match a pattern at the receiving
process, nothing will happen (for now at least), with the message landing in the mailbox
but not triggering activity. Sending a message that gets through the pattern matching
but creates an error will halt the process where the error occurred, possibly even a few
messages and processes down the line.

Breaking Things and Linking Processes | 99

Figure 8-4. Tracing calls when you send mph_drop a message

Messages that don’t match a pattern in the receive clause don’t
vanish; they just linger in the mailbox without being processed. It
is possible to update a process with a new version of the code that
retrieves those messages.

Because processes are fragile, you often want your code to know when another process
has failed. In this case, if bad inputs halt the drop:drop/0, it doesn’t make much sense
to leave the mph_drop:convert/1 process hanging around. You can see how this works
through the shell and Pman. First, start up Pman and spawn mph_drop:mph_drop/0.

1> pman:start().
<0.33.0>
2> Pid1=spawn(mph_drop,mph_drop,[]).
<0.40.0>

You’ll see something like Figure 8-5 in Pman. Then, feed your process some bad data,
an atom (zoids) instead of a number for the Distance, and Pman will look more like
Figure 8-6.

3> Pid1 ! {moon,zoids}.
{moon,zoids}
4>

100 | Chapter 8: Playing with Processes

=ERROR REPORT==== 29-Sep-2012::13:41:18 ===
Error in process <0.41.0> with exit value: {badarith,[{drop,fall_velocity,2,
[{file,"drop.erl"},{line,12}]},{drop,drop,0,[{file,"drop.erl"},{line,7}]}]}

Figure 8-5. A healthy set of processes

Figure 8-6. Only the drop:drop/0 process is gone

Since the remaining mph_drop:convert/1 process is now useless, it would be better for
it to halt when drop:drop/0 fails. Erlang lets you specify that dependency with a link.
The easy way to do that while avoiding potential race conditions is to use spawn_link/
3 instead of just spawn/3. This is shown in Example 8-8, which you can find in ch08/
ex8-linking.

Example 8-8. Calling a linked process from a process so failures propagate
-module(mph_drop).
-export([mph_drop/0]).

mph_drop() ->
 Drop=spawn_link(drop,drop,[]),
 convert(Drop).

Breaking Things and Linking Processes | 101

convert(Drop) ->
 receive
 {Planemo, Distance} ->
 Drop ! {self(), Planemo, Distance},
 convert(Drop);
 {Planemo, Distance, Velocity} ->
 MphVelocity= 2.23693629 * Velocity,
 io:format("On ~p, a fall of ~p meters yields a velocity of ~p mph.~n",[Plane
mo, Distance, MphVelocity]),
 convert(Drop)
 end.

Now, if you recompile and test this out with Pman, you’ll see that both processes vanish
when drop:drop/0 fails, as shown in Figure 8-7.

1> c(mph_drop).
{ok,mph_drop}
2> pman:start().
<0.38.0>
3> Pid1=spawn(mph_drop,mph_drop,[]).
<0.45.0>
4> Pid1 ! {moon,zoids}.

=ERROR REPORT==== 29-Sep-2012::13:38:10 ===
Error in process <0.46.0> with exit value: {badarith,[{drop,fall_velocity,2,
[{file,"drop.erl"},{line,12}]},{drop,drop,0,[{file,"drop.erl"},{line,7}]}]}

{moon,zoids}

Figure 8-7. Both processes now depart when there is an error

Links are bidirectional. If you kill the the mph_drop:mph_drop/0 process
—with, for example, exit(Pid1,kill).—the drop:drop/1 process will
also vanish. (kill is the harshest reason for an exit, and isn’t trappable
because sometimes you really need to halt a process.)

102 | Chapter 8: Playing with Processes

That kind of failure may not be what you have in mind when you think of linking
processes. It’s the default behavior for linked Erlang processes, and makes sense in many
contexts, but you can also have a process trap exits. When an Erlang process fails, it
sends an explanation to other processes that are linked to it in the form of a tuple. The
tuple contains the atom EXIT, the Pid of the failed process, and the error as a complex
tuple. If your process is set to trap exits, through a call to process_flag(trap_exit,
true), these errors reports arrive as messages, rather than just killing your process.

Example 8-9, in ch08/ex9-trapping, shows how the initial mph_drop/0 method changes
to include this call to set the process flag, and adds another entry to the receive clause
which will listen for exits and report them more neatly.

Example 8-9. Trapping a failure, reporting an error, and exiting
-module(mph_drop).
-export([mph_drop/0]).

mph_drop() ->
 process_flag(trap_exit, true),
 Drop=spawn_link(drop,drop,[]),
 convert(Drop).

convert(Drop) ->
 receive
 {Planemo, Distance} ->
 Drop ! {self(), Planemo, Distance},
 convert(Drop);
 {'EXIT', Pid, Reason} ->
 io:format("FAILURE: ~p died because of ~p.~n",[Pid, Reason]);
 {Planemo, Distance, Velocity} ->
 MphVelocity= 2.23693629 * Velocity,
 io:format("On ~p, a fall of ~p meters yields a velocity of ~p mph.~n",[Plane
mo, Distance, MphVelocity]),
 convert(Drop)
 end.

If you run this and feed it bad data, the convert/1 method will report an error message
(mostly duplicating the shell) before exiting neatly.

1> c(mph_drop).
{ok,mph_drop}
2> Pid1=spawn(mph_drop,mph_drop,[]).
<0.45.0>
3> Pid1 ! {moon,20}.
On moon, a fall of 20 meters yields a velocity of 17.89549032 mph.
{moon,20}
4> Pid1 ! {moon,zoids}.
FAILURE: <0.46.0> died because of {badarith,
 [{drop,fall_velocity,2,
 [{file,"drop.erl"},{line,12}]},
 {drop,drop,0,

Breaking Things and Linking Processes | 103

 [{file,"drop.erl"},{line,7}]}]}.

=ERROR REPORT==== 29-Sep-2012::14:37:47 ===
Error in process <0.46.0> with exit value: {badarith,[{drop,fall_velocity,2,
[{file,"drop.erl"},{line,12}]},{drop,drop,0,[{file,"drop.erl"},{line,7}]}]}

{moon,zoids}

A more robust alternative would set up a new Drop variable, spawning a new process.
That version, shown in Example 8-10, which you can find at ch08/ex10-resilient, is much
tougher. Its receive clause sweeps away failure, soldiering on with a new copy (New
Drop) of the drop calculator if needed.

Example 8-10. Trapping a failure, reporting an error, and setting up a new process
-module(mph_drop).
-export([mph_drop/0]).

mph_drop() ->
 process_flag(trap_exit, true),
 Drop=spawn_link(drop,drop,[]),
 convert(Drop).

convert(Drop) ->
 receive
 {Planemo, Distance} ->
 Drop ! {self(), Planemo, Distance},
 convert(Drop);
 {'EXIT', _Pid, _Reason} ->
 NewDrop=spawn_link(drop,drop,[]),
 convert(NewDrop);
 {Planemo, Distance, Velocity} ->
 MphVelocity= 2.23693629 * Velocity,
 io:format("On ~p, a fall of ~p meters yields a velocity of ~p mph.~n",[Plane
mo, Distance, MphVelocity]),
 convert(Drop)
 end.

If you compile and run Example 8-10, you’ll see Figure 8-8 when you first start Pman
(and check the Hide System Processes box). If you feed it bad data, as shown on line 6
in the following code sample, you’ll still get the error message from the shell, but the
process will work just fine. As you’ll see in Pman, as shown in Figure 8-9, it started up
a new process to handle the drop:drop/0 calculations, and as line 8 shows, it works like
its predecessor.

1> c(mph_drop).
{ok,mph_drop}
2> Pid1=spawn(mph_drop,mph_drop,[]).
<0.43.0>
3> pman:start().
<0.46.0>

104 | Chapter 8: Playing with Processes

4> Pid1 ! {moon,20}.
On moon, a fall of 20 meters yields a velocity of 17.89549032 mph.
{moon,20}
5> Pid1 ! {mars,20}.
On mars, a fall of 20 meters yields a velocity of 27.250254686571544 mph.
{mars,20}
6> Pid1 ! {mars,zoids}.
{mars,zoids}
7>
=ERROR REPORT==== 29-Sep-2012::14:53:13 ===
Error in process <0.44.0> with exit value: {badarith,[{drop,fall_velocity,2,
[{file,"drop.erl"},{line,13}]},{drop,drop,0,[{file,"drop.erl"},{line,7}]}]}

7> Pid1 ! {moon,20}.
On moon, a fall of 20 meters yields a velocity of 17.89549032 mph.
{moon,20}

Figure 8-8. Processes before an error. Note the Pid on the top line.

Figure 8-9. Processes after an error. Note the top line Pid change.

Breaking Things and Linking Processes | 105

Erlang offers many more process management options. You can remove a link with
unlink/1, or establish a connection for just watching a process with erlang:monitor/
2. If you want to terminate a process, you can use exit/1 within that process, or exit/
2 to specify a process and reason from another process.

Building applications that can tolerate failure and restore their functionality is at the
core of robust Erlang programming. Developing in that style is probably a larger leap
for most programmers than Erlang’s shift to functional programming, but it’s where the
true power of Erlang becomes obvious.

106 | Chapter 8: Playing with Processes

CHAPTER 9

Exceptions, Errors, and Debugging

“Let it crash” is a brilliant insight, but one whose application you probably want to
control. While it’s possible to write code that constantly breaks and recovers, it can be
easier to write and maintain code that explicitly handles failure where it happens. How‐
ever you choose to deal with errors, you’ll definitely want to be able to track them down
in your application.

Flavors of Errors
As you’ve already seen, some kinds of errors will keep Erlang from compiling your code,
and the compiler will also give you warnings about potential issues, like variables that
are declared but never used. Two other kinds of errors are common: runtime errors,
which turn up when code is operating and can actually halt a function or process, and
logic errors, which may not kill your program but can cause deeper headaches.

Logic errors are often the trickiest to diagnose, requiring careful thought and perhaps
some time with the debugger, log files, or a test suite. Simple mathematical errors can
take a lot of work to untangle. Sometimes issues are related to timing, when the sequence
of operations isn’t what you expect. In severe cases, race conditions can create deadlocks
and halting, but more mild cases can produce bad results and confusion.

Runtime errors can also be annoying, but they are much more manageable. In some
ways you can see handling runtime errors as part of the logic of your program, though
you don’t want to get carried away. In Erlang, unlike many other programs, handling
errors as errors may offer only minor advantages over letting an error kill a process and
then dealing with the problem at the process level, as Example 8-10 showed.

107

Catching Runtime Errors as They Happen
If you want to catch runtime errors close to where they took place, the try…catch
construct lets you wrap suspect code and handle problems (if any) that code creates. It
makes it clear to both the compiler and the programmer that something unusual is
happening, and lets you deal with any unfortunate consequences of that work.

For a simple example, look back to Example 3-1, which calculated fall velocity without
considering the possibility that it would be handed a negative distance. The math:sqrt/
1 function will produce a badarith error if it has a negative argument. Example 4-2 kept
that problem from occurring by applying guards, but if you want to do more than block,
you can take a more direct approach with try and catch, as shown in Example 9-1. (You
can find it in ch09/ex1-tryCatch.)

Example 9-1. Using try and catch to handle a possible error
-module(drop).
-export([fall_velocity/2]).

fall_velocity(Planemo, Distance) ->
Gravity = case Planemo of
 earth -> 9.8;
 moon -> 1.6;
 mars -> 3.71
 end,

try math:sqrt(2 * Gravity * Distance) of
 Result -> Result
catch
 error:Error -> {error, Error}
end.

The calculation itself is now wrapped in a try. If the calculation succeeds, the pattern
match following the of will be used. In this case, the calculation just produces one value,
so matching the variable Result will put that value in Result, which then becomes the
return value.

You can leave out the of clause entirely if this is all you’re doing; the result of the ex‐
pression in the try will become the returned value. You probably won’t see of very
frequently in code. This try…catch construct produces exactly the same results as the
one in Example 9-1.

try math:sqrt(2 * Gravity * Distance)
catch
 error:Error -> {error, Error}
end.

108 | Chapter 9: Exceptions, Errors, and Debugging

If the calculation fails, in this case because of a negative argument, the pattern match in
the catch clause comes into play. In this case, the atom error will match the class or
exception type of the error (which can be error, throw, or exit), and the variable Error
will collect the details of the error. It then returns a tuple, opening with the atom error
and the contents of the Error variable, which will explain the type of error.

You can try the following on the command line:

1> c(drop).
{ok,drop}
2> drop:fall_velocity(earth,20).
19.79898987322333
3> drop:fall_velocity(earth,-20).
{error,badarith}

When the calculation is successful, you’ll just get the result. When it fails, the tuple tells
you the kind of error that caused the problem. It’s not a complete solution, but it’s a
foundation on which you can build.

You can have multiple statements in the try (much as you can in a case), separated by
commas as usual. At least when you’re getting started, it’s easiest to keep the code you
are trying simple so you can see where failures happened. However, if you wanted to
watch for requests that provided an atom that didn’t match the planemos in the case,
you could put it all into the try:

fall_velocity(Planemo, Distance) ->
 try
 Gravity = case Planemo of
 earth -> 9.8;
 moon -> 1.6;
 mars -> 3.71
 end,
 math:sqrt(2 * Gravity * Distance)
 of
 Result -> Result
 catch
 error:Error -> {error, Error}
end.

If you try an unsupported planemo, you’ll now see the code catch the problem, at least
once you recompile the code to use the new version:

4> drop:fall_velocity(jupiter,20).
** exception error: no case clause matching jupiter
 in function drop:fall_velocity/2 (drop.erl, line 5)
5> c(drop).
{ok,drop}
6> drop:fall_velocity(jupiter,20).
{error,{case_clause,jupiter}}

Catching Runtime Errors as They Happen | 109

The case_clause error indicates that a case failed to match, and the second component
of that tuple, jupiter, tells you the item that didn’t match.

You can also have multiple pattern matches in the catch. If your patterns don’t match
the error in the catch clause, it gets reported as a runtime error, as if the try hadn’t
wrapped it.

If the code that might fail can create a mess, you may want to include an after clause
after the catch clause and before the closing end. The code in an after clause is guar‐
anteed to run whether the attempted code succeeds or fails, and can be a good place to
address any side effects of the code. It doesn’t affect the return value of the clause.

Erlang also includes an older catch construct that doesn’t use try. You
may find this in someone else’s code, but probably shouldn’t include it
in any new code that you write. It is less sophisticated and less readable,
though Chapter 11 shows one use for it in the shell.

Raising Exceptions with throw
You may want to create your own errors, or at least report results in a way that the try…
catch mechanism can work with. The throw/1 function lets you create exceptions that
can then be caught (or left to kill a process and possibly reported to the shell). It often
takes a tuple as an argument, letting you provide more detail about the exception, but
you can use whatever you think appropriate. You definitely want to handle exceptions
close to where you want to raise them, however.

Using it in the shell provides a simple example of what it does:

1> throw(my_exception).
** exception throw: my_exception

You can pattern match for thrown exceptions in a catch clause by using throw instead
of error:

try some:function(argument)
 catch
 error:Error -> {found, Error};
 throw:Exception -> {caught, Exception}
 end;

You probably should save throw for cases where you can’t come up with a better approach
for signaling within your code, and be sure to use it only where you know you have
nearby code that will catch it. Relying on other people and distant code to understand
your invented exceptions may stretch their patience.

110 | Chapter 9: Exceptions, Errors, and Debugging

The preceding example used found and caught to distinguish between
the different kinds of exceptions, but most code will likely just use error
for both.

Logging Progress and Failure
The io:format/2 function is useful for simple communications with the shell, but as
your programs grow (and especially as they become distributed processes), hurling text
toward standard output is less likely to get you the information you need. Erlang offers
a set of functions for more formal logging. They can hook into more sophisticated log‐
ging systems, but it’s easy to get started with them as a way to structure messages from
your application.

Three functions in the error_logger module give you three levels of reporting:
info_msg

For logging ordinary news that doesn’t require intervention.

warning_msg

For news that’s worse. Someone should do something eventually.

error_msg

Something just plain broke, and needs to be looked at.

Like io:format, there are two versions of each function. The simpler version takes just
a string, while the more sophisticated version takes a string and a list of arguments that
get added to that string. Both use the same formatting structure as io:format, so you
can pretty much replace any io:format calls you’d been using for debugging directly.
All of these return ok.

As you can see, these calls produce reports that are visually distinctive, though warnings
and errors get the same ERROR REPORT treatment:

1> error_logger:info_msg("The value is ~p. ~n",[360]).
ok

=INFO REPORT==== 12-Oct-2012::08:00:41 ===
The value is 360.
2> error_logger:warning_msg("Connection lost; will retry.").

=ERROR REPORT==== 12-Oct-2012::08:01:33 ===
Connection lost; will retry.
ok
Connection lost; will retry.ok
3> error_logger:error_msg("Unable to read database.~n").

Logging Progress and Failure | 111

=ERROR REPORT==== 12-Oct-2012::08:03:45 ===
Unable to read database.
ok

The more verbose form produces only a mild improvement over io:format, so why
would you use it? Because Erlang has much much more lurking under the surface. By
default, when Erlang starts up, it sets up the error_logger module to report to the shell.
However, if you turn on SASL—the Erlang System Architecture Support Libraries, not
the authentication layer—you’ll be able to connect these notices to a much more so‐
phisticated system for logging distributed processes. (If you just want to write your errors
to disk, you should explore the error_logger:logfile/1 function.)

It’s possible to break the logger with bad format strings, so if you want
more reliable logging, you may want to check into the more spartan
_report versions of these functions.

While logging information is useful, it’s not unusual to write code with subtle errors
where you’re not positive what to log where. You could litter the code with reporting,
or you could switch to a different set of tools, Erlang’s debugging facilities.

Debugging through a GUI
Erlang’s graphical debugger is the friendliest place to start, requiring only a minor
change in how you compile code to get started. This demonstration will use the same
code shown in Example 9-1, but you need to compile it with the debug_info flag, and
start the debugger with debugger:start(). You’ll see a window like the one shown in
Figure 9-1.

1> c(drop, [debug_info]).
{ok,drop}
2> debugger:start().

=ERROR REPORT==== 16-Oct-2012::05:30:03 ===
WX Failed loading "wxe_driver"@"/usr/local/lib/erlang/lib/wx-0.99.2/priv"
{ok,<0.40.0>}

The ERROR REPORT is because of issues with my 64-bit Mac, and hope‐
fully they will go away in a future release. The debugger is somewhat
unstable here but mostly still works, and you can take that report as a
good sign that the error_logger module is used throughout Erlang.

112 | Chapter 9: Exceptions, Errors, and Debugging

Figure 9-1. The debugger window when first opened

When it first opens, the debugger window is pretty empty looking. You need to tell it
what you want to watch, by choosing Interpret… from the Module menu (which looks
like a button in the top row). As shown in Figure 9-2, you should see the drop module
(you may need to navigate to it if you didn’t start in the same directory). If you select
the drop module and click Choose, drop will appear in the lefthand pane of the Monitor
window, as shown in Figure 9-3. You can then click Done to close the window and get
back to the Monitor.

Figure 9-2. Choosing a module

Debugging through a GUI | 113

Figure 9-3. A module name appears on the lefthand side

The only feedback you’ll get that you actually selected the module is
its appearance in the Monitor pane. If your windows are stacked so
that you can’t see that happen, it’s easy to think that nothing hap‐
pened. It did, really!

Once the module name appears in the lefthand side of the Monitor window, the de‐
bugger is ready to watch it. You need to tell the debugger, however, what you want to
see. If you double-click on the name of the module (drop), you’ll get the View Module
drop window shown in Figure 9-4, showing its code.

You can add a breakpoint by clicking on a line of code, and then choosing Line Break…
from the Break menu. You’ll see the Line Break dialog shown in Figure 9-5, with rea‐
sonable default settings. You can just click OK, and the View Module drop window will
change to indicate the breakpoint, as shown in Figure 9-6. You can close this window,
and just leave the Monitor window open.

Now, if you go back to the shell and request:

3> drop:fall_velocity(earth,20).

You’ll just get a pause. Nothing seems to happen, as the breakpoint stopped execution.
However, in the Monitor window, you’ll see a new entry in the table on the righthand
side, as shown in Figure 9-7. If you double-click that new entry, you’ll get to the Attach
Process window in Figure 9-8, which lets you step through the code line by line.

Once you have the Attach Process window up, you can work through your code line by
line (or tell it to continue) using the buttons in the middle line:

114 | Chapter 9: Exceptions, Errors, and Debugging

Figure 9-4. Examining the code for the drop module

Figure 9-5. The Line Break dialog for setting breakpoints

Step
Execute the current line of code and move into the next line. If the next line of code
to be executed is in another function (and that function is in a module compiled
for debugging), you’ll step through that function’s code.

Next
Execute the current line of code and move to the next line of code in this module.

Continue
End the line-by-line stepping and just have the code execute as usual.

Debugging through a GUI | 115

Figure 9-6. The drop module with a breakpoint set on line 6

Figure 9-7. The Monitor window shows activity

116 | Chapter 9: Exceptions, Errors, and Debugging

Figure 9-8. Code and bound values in the Attach Process window

Finish
Similar to continue, but continues only for the current function. The debugger can
keep working on the code when it returns from this function. (This is useful when
you’ve stepped into a function whose details don’t interest you and you don’t have
the patience to wait.)

Where
Moves the code window to the currently executing line.

Up and Down
Moves the code window up or down a function level in the stack.

Debugging through a GUI | 117

Figure 9-9 through Figure 9-12 show the results of stepping through the code executed
by the drop:fall_velocity(earth,20) call. Note the changing bound variables and
the final return to State: uninterpreted in Figure 9-12 when the call completes.

Figure 9-9. Stepping to the match on line 7

You can use the Evaluator pane to make your own calculations using the values and
functions available in the current scope at any time the code is paused. Unlike some
debuggers, you can’t change the value of the bound variables here—because you can’t
change the values of variables in Erlang generally.

The debugger offers many more features, but this core set will get you started.

118 | Chapter 9: Exceptions, Errors, and Debugging

Figure 9-10. Next step: the try statement and calculation on line 12, with additional
bound values

Tracing Messages
Erlang also offers a wide variety of tools for tracing code, both with other code (with
the trace and trace_pattern built-in functions) and with a text-based debugger/
reporter. The dbg module is the easiest place to start into this toolset, letting you specify
what you want traced and showing you the results in the shell.

An easy place to get started is tracing messages sent between processes. You can use
dbg:p to trace the messages sent between the mph_drop process defined in Example 8-8
and the drop process from Example 8-6. After compiling the modules—the debug_info

Tracing Messages | 119

Figure 9-11. A successful calculation leads to line 13, which provides the return value

 flag isn’t needed here—you call dbg:tracer() to start reporting trace information to
the shell. Then you spawn the mph_drop process as usual, and pass that pid to the dbg:p/
2 process. The second argument here will be m, meaning that the trace should report the
messages.

1> c(drop).
{ok,drop}
2> c(mph_drop).
{ok,mph_drop}
3> dbg:tracer().
{ok,<0.43.0>}

120 | Chapter 9: Exceptions, Errors, and Debugging

4> Pid1=spawn(mph_drop,mph_drop,[]).
<0.46.0>
5> dbg:p(Pid1,m).
{ok,[{matched,nonode@nohost,1}]}

Figure 9-12. The function call complete, the window goes mostly blank

Now when you send a message to the mph_drop process, you’ll get a set of reports on the
resulting flow of messages. (<0.46.0> is the mph_drop process, and <0.47.0> is the drop
process.)

6> Pid1 ! {moon,20}.
(<0.46.0>) << {moon,20}
(<0.46.0>) <0.47.0> ! {<0.46.0>,moon,20}
On moon, a fall of 20 meters yields a velocity of 17.89549032 mph.
(<0.46.0>) << {moon,20,8.0}
(<0.46.0>) <0.24.0> ! {io_request,<0.46.0>,<0.24.0>,

Tracing Messages | 121

 {put_chars,unicode,io_lib,format,
 ["On ~p, a fall of ~p meters yields a
velocity of ~p mph.~n",
 [moon,20,17.89549032]]}}
{moon,20}
(<0.46.0>) << {io_reply,<0.24.0>,ok}
(<0.46.0>) << timeout

The << pointing to a pid indicates that that process received a message. Sends are indi‐
cated, as usual, with the pid followed by ! followed by the message. In this case:

• mph_drop (<0.46.0>) receives the message tuple {moon,20}.
• It sends a further message, the tuple {<0.46.0>,moon,20}, to the drop process at

pid <0.47.0>.
• On this run, the report from mph_drop that “On moon, a fall of 20 meters yields a

velocity of 17.89549032 mph.” comes through faster than the tracing information.
The rest of the trace indicates how that report got there.

• mph_drop receives a tuple {moon,20,8.0} (from drop).
• Then it calls io:format/2, which triggers another set of process messages to make

the report, concluding with a timeout that doesn’t do anything.

The trace reports come through a bit after the actual execution of the code, but they
make the flow of messages clear. You’ll want to learn to use dbg in its many variations
to trace your code, and may eventually want to use match patterns and the trace
functions themselves to create more elegant systems for watching specific code.

Watching Function Calls
If you just want to keep track of arguments moving between function calls, you can use
the tracer to report on the sequence of calls. Chapter 4 demonstrated recursion and
reported results along the way through io:format. There’s another way to see that work,
again using the dbg module.

Example 4-11, the upward factorial calculator, started with a call to
fact:factorial/1, which then called fact:factorial/3 recursively. dbg will let you
see the actual function calls and their arguments, mixed with the io:format reporting.
(You can find it in ch09/ex4-dbg.)

Tracing functions is a little trickier than tracing messages because you can’t just pass
dbg:p/2 a pid. As shown on line 3 in the following code sample, you need to tell it you
want it to report on all processes (all), and their calls (c). Once you’ve done that, you

122 | Chapter 9: Exceptions, Errors, and Debugging

have to specify which calls you want it to report, using dbg:tpl as shown on line 4. It
takes a module name (fact), function name (factorial), and optionally a match spec‐
ification that lets you specify arguments more precisely. Variations on this function also
let you specify arity.

So turn on the tracer, tell it you want to follow function calls, and specify a function (or
functions, through multiple calls to dbg:tpl) to watch. Then call the function, and you’ll
see a list of the calls.

1> c(fact).
fact.erl:13: Warning: variable 'Current' is unused
fact.erl:13: Warning: variable 'N' is unused
{ok,fact}
2> dbg:tracer().
{ok,<0.38.0>}
3> dbg:p(all, c).
{ok,[{matched,nonode@nohost,26}]}
4> dbg:tpl(fact, factorial, []).
{ok,[{matched,nonode@nohost,2}]}
5> fact:factorial(4).
1 yields 1!
(<0.31.0>) call fact:factorial(4)
(<0.31.0>) call fact:factorial(1,4,1)
2 yields 2!
(<0.31.0>) call fact:factorial(2,4,1)
3 yields 6!
(<0.31.0>) call fact:factorial(3,4,2)
4 yields 24!
(<0.31.0>) call fact:factorial(4,4,6)
Finished.
(<0.31.0>) call fact:factorial(5,4,24)
24

You can see that the sequence is a bit messy here, with the trace reporting coming a little
bit after the io:format results from the function being traced. Because the trace is
running in a separate process (at pid <0.38.0>) from the function (at pid <0.31.0>), its
reporting may not line up smoothly (or at all, though it usually does).

When you’re done tracing, call dbg:stop/0 (if you might want to restart tracing with
the same setup) or dbg:stop_clear/0 (if you know that when you start again you’ll
want to set things up again).

The dbg module and the erlang:trace functions on which it builds are incredibly
powerful tools.

Watching Function Calls | 123

CHAPTER 10

Storing Structured Data

Tuples and lists are powerful tools for creating complex data structures, but there are
two key pieces missing from the story so far. First, tuples are relatively anonymous
structures. Relying on a specific order and number of components in tuples can create
major maintenance headaches. Second, despite Erlang’s general preference for avoiding
side effects, storing and sharing data is a fundamental side effect needed for a wide
variety of projects.

Records will help you create labeled sets of information. Erlang Term Storage (ETS) will
help you store and manipulate those sets, and the Mnesia database provides additional
features for reliable distributed storage.

From Tuples to Records
Tuples let you build complex data structures, but force you to rely on keeping the order
and number of items consistent. If you change the sequence of items in a tuple, or if you
want to add an item, you have to check through all of your code to make sure that the
change propagates smoothly. As your projects grow, and especially if you need to share
data structures with code you don’t control, you’ll need a safer way to store and address
information.

Records let you create data structures that use names to connect with data rather than
order. You can read, write, and pattern match data in a record without having to worry
about the details of where in a tuple a field lurks or whether someone’s added a new
field.

125

There are still tuples underneath records, and occasionally Erlang will
expose them to you. Do not attempt to use the tuple representation
directly, or you will add all the potential problems of using tuples to the
slight extra syntax of using records.

Setting Up Records
Using records requires telling Erlang about them with a special declaration. It looks like
a -module or -export declaration, but is a -record declaration:

-record(planemo, {name, gravity, diameter, distance_from_sun}).

That defines a record type named planemo, containing fields named name, gravity, and
distance_from_sun. Right now, when you create a new record, the fields will all have
the value undefined, but you can also specify default values if you prefer, for situations
where there is a sensible normal option. This declaration creates records for different
towers for dropping objects:

-record(tower, {location, height=20, planemo=earth, name}).

Unlike -module or -export declarations, you’ll often want to share record declarations
across multiple modules and (for the examples in this chapter at least) even use them
in the shell. To share record declarations reliably, just put the record declarations in their
own file, ending with the extension .hrl. You may want to put each record declaration
in a separate file or all of them in a single file, depending on your needs. To get started,
to see how these behave, you can put both of the declarations into a single file, re‐
cords.hrl, shown in Example 10-1. (You can find it in ch10/ex1-records.)

Example 10-1. A records.hrl file containing two rather unrelated record declarations
-record(planemo, {name, gravity, diameter, distance_from_sun}).
-record(tower, {location, height=20, planemo=earth, name}).

You may want to put individual record declarations into their own files
and import them separately, bringing them in only when you actually
need to get data into or out of a particular record type. This can be
especially important if you’re mixing code in cases where different de‐
velopers used the same name for a record type but different underlying
structures.

The command rr (for read records) lets you bring this into the shell:

1> rr("records.hrl").
[planemo,tower]

The shell now understands records with the names planemo and tower.

126 | Chapter 10: Storing Structured Data

You can also declare records directly in the shell with the rd/2 function,
but if you’re doing anything more than just poking around, it’s easier to
have them in a more reliable formal imported declaration. You can call
rl/0 if you want to see what records are defined, or rl/1 if you want to
see how a specific record is defined.

Creating and Reading Records
You can now create variables that contain new records. The syntax for referencing re‐
cords prefaces the name of the record type with a #, and encloses name-value pairs in
curly brackets. For example, you could create towers with syntax like the following:

2> Tower1=#tower{}.
#tower{location = undefined,height = 20,planemo = earth,
 name = undefined}
3> Tower2=#tower{location="Grand Canyon"}.
#tower{location = "Grand Canyon",height = 20,
 planemo = earth,name = undefined}
4> Tower3=#tower{location="NYC", height=241, name="Woolworth Building"}.
#tower{location = "NYC",height = 241,planemo = earth,
 name = "Woolworth Building"}
5> Tower4=#tower{location="Rupes Altai 241", height=500, planemo=moon, name="Pic
colomini View"}.
#tower{location = "Rupes Altai 241",height = 500,
 planemo = moon,name = "Piccolomini View"}
6> Tower5=#tower{planemo=mars, height=500, name="Daga Vallis", location="Valles
Marineris"}.
#tower{location = "Valles Marineris",height = 500,
 planemo = mars,name = "Daga Vallis"}

These towers (or at least drop sites) demonstrate a variety of ways to use the record
syntax to create variables as well as interactions with the default values:

• Line 2 just creates Tower1 with the default values. You can add real values later.
• Line 3 creates a Tower2 with a location, but otherwise relies on the default values.
• Line 4 overrides the default values for location, height, and name, but leaves the
planemo alone.

• Line 5 replaces all of the default values with new values.
• Line 6 replaces all of the default values, and also demonstrates that it doesn’t matter

in what order you list the name/value pairs. Erlang will sort it out.

You can read record entries with two different approaches. To extract a single value, you
can use a dot (.) syntax that may look familiar from other languages. For example, to
find out how which planemo Tower5 is on, you could write:

From Tuples to Records | 127

7> Tower5#tower.planemo.
mars

You could also use pattern matching to extract several pieces simultaneously:

8> #tower{location=L5, height=H5} = Tower5.
#tower{location = "Valles Marineris",height = 500,
 planemo = mars,name = "Daga Vallis"}
9> L5.
"Valles Marineris"
10> H5.
500

The syntax feels a little backward, with the variable being bound on the right side of the
equals sign instead of in its usual place on the left.

As always, you can’t write a new value to an existing variable, but you can create a new
record based on the values of an old one. The syntax used on line 13 is much like that
used for assigning the contents of a field to a variable, but with a value in place of the
variable name:

12> Tower5.
#tower{location = "Valles Marineris",height = 500,
 planemo = mars,name = "Daga Vallis"}
13> Tower5a=Tower5#tower{height=512}.
#tower{location = "Valles Marineris",height = 512,
 planemo = mars,name = "Daga Vallis"}

Yes, you always need to specify the record type. It’s a bit of extra typing.

If you ever want to make the shell forget your record declarations, you can issue the shell
command rf(). Your record-based variables will still exist, in a raw tuple form you
should avoid ever using.

Using Records in Functions and Modules
Records work well in modules as well, using the same declaration files. You can, of
course, just include the record declaration in every module that uses it, but that will
require you to hunt down every declaration and update it if you ever want to change it.
The saner approach is to use the files like the ones previously shown. You can do that
easily with a single extra declaration near the top of your module:

-include("records.hrl").

128 | Chapter 10: Storing Structured Data

Once you have the record declaration included, you can pattern match against records
submitted as arguments. The simplest way to do this is to just match against the type of
the record, as shown in Example 10-2, which is also in ch10/ex1-records.

Example 10-2. A method that pattern matches a complete record
-module(record_drop).
-export([fall_velocity/1]).
-include("records.hrl").

fall_velocity(#tower{} = T) ->
 fall_velocity(T#tower.planemo, T#tower.height).

fall_velocity(earth, Distance) when Distance >= 0 -> math:sqrt(2 * 9.8 * Distance);
fall_velocity(moon, Distance) when Distance >= 0 -> math:sqrt(2 * 1.6 * Distance);
fall_velocity(mars, Distance) when Distance >= 0 -> math:sqrt(2 * 3.71 * Distance).

This uses a pattern match that will match only tower records, and puts the record into
a variable T. Once again, the syntax may seem backward, with T being on the right of
the equals instead of on the left, but it works. Then, like its predecessor in
Example 3-8, it passes the individual arguments to fall_velocity/2 for calculations,
this time using the record syntax.

Short variable names suddenly seem more attractive when you have to
append the name of the record type on every use. In simple functions
this can work, but in more complex functions short names may prove
confusing, especially if you have two variables containing the same kind
of record.

Because you used the same -record declaration in both the shell and the module, you
can use the records you created to test the function.

14> c(record_drop).
{ok,record_drop}
15> record_drop:fall_velocity(Tower5).
60.909769331364245
16> record_drop:fall_velocity(Tower1).
19.79898987322333

The record_drop:fall_velocity/1 function shown in Example 10-3 pulls out the
planemo and binds it to Planemo, and height and binds it to Distance. Then it returns
the velocity of an object dropped from that Distance just like earlier examples through‐
out this book.

You can also extract the specific fields from the record in the pattern match, as shown
in Example 10-3, which is in ch10/ex2-records.

From Tuples to Records | 129

Example 10-3. A method that pattern matches components of a record
-module(record_drop).
-export([fall_velocity/1]).
-include("records.hrl").

fall_velocity(#tower{planemo=Planemo, height=Distance}) ->
 fall_velocity(Planemo, Distance).

fall_velocity(earth, Distance) when Distance >= 0 -> math:sqrt(2 * 9.8 * Distance);
fall_velocity(moon, Distance) when Distance >= 0 -> math:sqrt(2 * 1.6 * Distance);
fall_velocity(mars, Distance) when Distance >= 0 -> math:sqrt(2 * 3.71 * Distance).

Again, the syntax may seem backwards, but it lets you extract the individual fields. You
can take the records created and feed them into this function, and it will tell you the
velocity resulting from a drop from the top of that tower to the bottom.

Finally, you can pattern match against both the fields and the records as a whole.
Example 10-4, in ch10/ex3-records, demonstrates using this mixed approach to create a
more detailed response than just the fall velocity.

Example 10-4. A method that pattern matches the whole record as well as components
of a record
-module(record_drop).
-export([fall_velocity/1]).
-include("records.hrl").

fall_velocity(#tower{planemo=Planemo, height=Distance} = T) ->
io:format("From ~s's elevation of ~p meters on ~p, the object will reach ~p m/s
before crashing in ~s.~n",[T#tower.name, Distance, Planemo, fall_velocity(Planemo,
Distance), T#tower.location]).

fall_velocity(earth, Distance) when Distance >= 0 -> math:sqrt(2 * 9.8 * Distance);
fall_velocity(moon, Distance) when Distance >= 0 -> math:sqrt(2 * 1.6 * Distance);
fall_velocity(mars, Distance) when Distance >= 0 -> math:sqrt(2 * 3.71 * Distance).

If you pass a tower record to record_drop:fall_velocity/1, it will match against
individual fields it needs to do the calculation, and match the whole record into T so
that it can produce a more interesting if not necessarily grammatically correct report.

17> record_drop:fall_velocity(Tower5).
From Daga Vallis's elevation of 500 meters on mars, the object will reach
60.909769331364245 m/s before crashing in Valles Marineris.
ok
18> record_drop:fall_velocity(Tower3).
From Woolworth Building's elevation of 241 meters on earth, the object will
reach 68.72845116834803 m/s before crashing in NYC.
ok

130 | Chapter 10: Storing Structured Data

record_drop:fall_velocity/1 uses the ~s control sequence for the
io:format/2 call. It just includes the contents of the string, without
surrounding quotes.

Storing Records in Erlang Term Storage
Erlang Term Storage (ETS) is a simple but powerful in-memory collection store. It holds
tuples, and since records are tuples underneath, they’re a natural fit. ETS and its disk-
based cousin DETS provide a (perhaps too) simple solution for many data management
problems. ETS is not exactly a database, but does similar work, and is useful by itself as
well as underneath the Mnesia database you’ll see in the next section.

Every entry in an ETS tables is a tuple (or corresponding record), and one piece of the
tuple is designated the key. ETS offers a few different structural choices depending on
how you want to handle that key. ETS can hold four kinds of collections:
Sets (set)

Can contain only one entry with a given key. This is the default.

Ordered sets (ordered_set)
Same as a set, but also maintains a traversal order based on the keys. Great for
anything you want to keep in alphabetic or numeric order.

Bags (bag)
Lets you store more than one entry with a given key. However, if you have multiple
entries that have completely identical values, they get combined into a single entry.

Duplicate bags (duplicate_bag)
Not only lets you store more than one entry with a given key, but also lets you store
multiple entries with completely identical values.

By default, ETS tables are sets, but you can specify one of the other options when you
create a table. The examples here will be sets because they are simpler to figure out, but
the same techniques apply to all four table varieties.

There is no requirement in ETS that all of your entries look at all similar.
When you’re starting out, however, it’s much simpler to use the same
kind of record, or at least tuples with the same structure. You can also
use any kind of value for the key, including complex tuple structures
and lists, but again, it’s best not to get too fancy at the beginning.

All of the examples in the following section will use the planemo record type defined in
the previous section, and the data in Table 10-1.

Storing Records in Erlang Term Storage | 131

Table 10-1. Planemos for gravitational exploration
Planemo Gravity (m/s2) Diameter (km) Distance from Sun (106 km)

mercury 3.7 4878 57.9

venus 8.9 12104 108.2

earth 9.8 12756 149.6

moon 1.6 3475 149.6

mars 3.7 6787 227.9

ceres 0.27 950 413.7

jupiter 23.1 142796 778.3

saturn 9.0 120660 1427.0

uranus 8.7 51118 2871.0

neptune 11.0 30200 4497.1

pluto 0.6 2300 5913.0

haumea 0.44 1150 6484.0

makemake 0.5 1500 6850.0

eris 0.8 2400 10210.0

Creating and Populating a Table
The ets:new/2 function lets you create a table. The first argument is a name for the
table, and the second argument is a list of options. There are lots and lots of options,
including the identifiers for the table types described above, but the two most important
for getting started are named_table and the tuple starting with keypos.

Every table has a name, but only some can be reached using that name. If you don’t
specify named_table, the name is there but visible only inside the database. You’ll have
to use the value returned by ets:new/2 to reference the table. If you do specify
named_table, processes can reach the table as long as they know the name, without
needing access to that return value.

Even with a named table, you still have some control over which pro‐
cesses can read and write the table through the private, protected,
and public options.

The other important option, especially for ETS tables containing records, is the key
pos tuple. By default, ETS treats the first value in a tuple as the key. The tuple represen‐
tation underneath records (which you shouldn’t really touch) always uses the first value
in a tuple to identify the kind of record, so that approach works very badly as a key for
records. Using the keypos tuple lets you specify which record value should be the key.

132 | Chapter 10: Storing Structured Data

Remember, the record format for a planemo looks like the following:

-record(planemo, {name, gravity, diameter, distance_from_sun}).

Because this table is mostly used for calculations based on a given planemo, it makes
sense to use the name as a key. An appropriate declaration for setting up the ETS table
might look like the following:

PlanemoTable=ets:new(planemos,[named_table, {keypos, #planemo.name}])

That gives the table the name planemos and uses the named_table option to make that
table visible to other processes that know the name. Because of the default access level
of protected, this process can write to that table but other processes can only read it.
It also tells ETS to use the name field as the key. Because it doesn’t specify otherwise, the
table will be treated as a set—each key maps to only one instance of record, and ETS
doesn’t keep the list sorted by key.

Once you have the table set up, as shown in Example 10-5, you use the ets:info/1
function to check out its details. (You can find this in ch10/ex4-ets.)

Example 10-5. Setting up a simple ETS table and reporting on what’s there
-module(planemo_storage).
-export([setup/0]).
-include("records.hrl").

setup() ->
 PlanemoTable=ets:new(planemos, [named_table, {keypos, #planemo.name}]),
 ets:info(PlanemoTable).

If you compile and run this, you’ll get a report of an empty ETS table with more prop‐
erties than you probably want to know about at the moment.

1> c(planemo_storage).
{ok,planemo_storage}
2> planemo_storage:setup().
[{compressed,false},
 {memory,317},
 {owner,<0.316.0>},
 {heir,none},
 {name,planemos},
 {size,0},
 {node,nonode@nohost},
 {named_table,true},
 {type,set},
 {keypos,2},
 {protection,protected}]

Storing Records in Erlang Term Storage | 133

Most of this is either more information than you need or unsurprising, but it is good to
see the name(planemos), size (0—empty!), and keypos (not 1, the default, but 2, the
location of the name in the tuple underneath the record). It is, as the defaults specify,
set up as a protected set.

You can set up only one ETS table with the same name. If you call planemo_stor
age:setup/0 twice, you’ll get an error:

3> planemo_storage:setup().
** exception error: bad argument
 in function ets:new/2
 called as ets:new(planemos,[named_table,{keypos,2}])
 in call from planemo_storage:setup/0 (planemo_storage.erl, line 6)

To avoid this, at least in these early tests, you’ll want to use the f() shell command to
clear out any previous tables. If you think you’re likely to call your initialization code
repeatedly after you figure the basics out, you can also test the ets:info/1 for undefined
to make sure the table doesn’t already exist, or put a try…catch construct around the
ets:new/2 call.

A more exciting ETS table, of course, will include content. The next step is to use
ets:insert/2 to add content to the table. The first argument is the table, referenced
either by its name (if you set the named_table option), or by the variable that captured
the return value of ets:new/2. In Example 10-6, which is in ch10/ex5-ets, the first call
uses the name, to show that it works, and the rest use the variable. The second argument
is a record representing one of the rows from Table 10-1.

Example 10-6. Populating a simple ETS table and reporting on what’s there
-module(planemo_storage).
-export([setup/0]).
-include("records.hrl").

setup() ->
PlanemoTable=ets:new(planemos, [named_table, {keypos, #planemo.name}]),

ets:insert(planemos,
 #planemo{ name=mercury, gravity=3.7, diameter=4878, distance_from_sun=57.9 }),
ets:insert(PlanemoTable,
 #planemo{ name=venus, gravity=8.9, diameter=12104, distance_from_sun=108.2 }),
ets:insert(PlanemoTable,
 #planemo{ name=earth, gravity=9.8, diameter=12756, distance_from_sun=149.6 }),
ets:insert(PlanemoTable,
 #planemo{ name=moon, gravity=1.6, diameter=3475, distance_from_sun=149.6 }),
ets:insert(PlanemoTable,
 #planemo{ name=mars, gravity=3.7, diameter=6787, distance_from_sun=227.9 }),
ets:insert(PlanemoTable,
 #planemo{ name=ceres, gravity=0.27, diameter=950, distance_from_sun=413.7 }),
ets:insert(PlanemoTable,
 #planemo{ name=jupiter, gravity=23.1, diameter=142796, distance_from_sun=778.3 }),

134 | Chapter 10: Storing Structured Data

ets:insert(PlanemoTable,
 #planemo{ name=saturn, gravity=9.0, diameter=120660, distance_from_sun=1427.0 }),
ets:insert(PlanemoTable,
 #planemo{ name=uranus, gravity=8.7, diameter=51118, distance_from_sun=2871.0 }),
ets:insert(PlanemoTable,
 #planemo{ name=neptune, gravity=11.0, diameter=30200, distance_from_sun=4497.1 }),
ets:insert(PlanemoTable,
 #planemo{ name=pluto, gravity=0.6, diameter=2300, distance_from_sun=5913.0 }),
ets:insert(PlanemoTable,
 #planemo{ name=haumea, gravity=0.44, diameter=1150, distance_from_sun=6484.0 }),
ets:insert(PlanemoTable,
 #planemo{ name=makemake, gravity=0.5, diameter=1500, distance_from_sun=6850.0 }),
ets:insert(PlanemoTable,
 #planemo{ name=eris, gravity=0.8, diameter=2400, distance_from_sun=10210.0 }),
ets:info(PlanemoTable).

Again, the last call is to ets:info/1, which now reports that the table has 14 items.

4> c(planemo_storage).
{ok,planemo_storage}
5> f().
ok
6> planemo_storage:setup().
[{compressed,false},
 {memory,541},
 {owner,<0.342.0>},
 {heir,none},
 {name,planemos},
 {size,14},
 {node,nonode@nohost},
 {named_table,true},
 {type,set},
 {keypos,2},
 {protection,protected}]

If you want to see what’s in that table, you have a couple of options. The quick way to
do it in the shell is to use the ets:tab2list/1 function, which will return a list of records
(or tuples, if you leave out the record import on line 7):

7> rr("records.hrl").
[planemo,tower]
8> ets:tab2list(planemos).
[#planemo{name = pluto,gravity = 0.6,diameter = 2300,
 distance_from_sun = 5913.0},
 #planemo{name = saturn,gravity = 9.0,diameter = 120660,
 distance_from_sun = 1427.0},
 #planemo{name = moon,gravity = 1.6,diameter = 3475,
 distance_from_sun = 149.6},
 #planemo{name = mercury,gravity = 3.7,diameter = 4878,
 distance_from_sun = 57.9},
 #planemo{name = earth,gravity = 9.8,diameter = 12756,
 distance_from_sun = 149.6},
 #planemo{name = neptune,gravity = 11.0,diameter = 30200,

Storing Records in Erlang Term Storage | 135

 distance_from_sun = 4497.1},
 #planemo{name = makemake,gravity = 0.5,diameter = 1500,
 distance_from_sun = 6850.0},
 #planemo{name = uranus,gravity = 8.7,diameter = 51118,
 distance_from_sun = 2871.0},
 #planemo{name = ceres,gravity = 0.27,diameter = 950,
 distance_from_sun = 413.7},
 #planemo{name = venus,gravity = 8.9,diameter = 12104,
 distance_from_sun = 108.2},
 #planemo{name = mars,gravity = 3.7,diameter = 6787,
 distance_from_sun = 227.9},
 #planemo{name = eris,gravity = 0.8,diameter = 2400,
 distance_from_sun = 10210.0},
 #planemo{name = jupiter,gravity = 23.1,diameter = 142796,
 distance_from_sun = 778.3},
 #planemo{name = haumea,gravity = 0.44,diameter = 1150,
 distance_from_sun = 6484.0}]

If you’d rather keep track of the table in a separate window, Erlang’s table visualizer
shows the same information in a slightly more readable form. You can start it from the
shell with tv:start(), and you’ll see something like Figure 10-1. Double-click on the
planemos table, and you’ll see a more detailed report on its contents like the one shown
in Figure 10-2.

Figure 10-1. Opening the table visualizer

The visualizer doesn’t know about your record declarations, but the skeleton key icon
over the second column indicates that it is the key. The Options menu lets you poll the
table to be sure you have its latest contents, and set a polling interval if you want it to
refresh automatically. If you declare tables public, you can even edit their contents in
the visualizer.

If you want to see a table of all the current ETS tables, try issuing ets:i()
in the shell. You’ll see the tables you’ve created (probably) near the bot‐
tom.

136 | Chapter 10: Storing Structured Data

Figure 10-2. Reviewing the planemos table in the visualizer

Simple Queries
The easiest way to look up records in your ETS table is with the ets:lookup/2 function
and the key. You can test this easily from the shell:

9> ets:lookup(planemos,eris).
[#planemo{name = eris,gravity = 0.8,diameter = 2400,
 distance_from_sun = 10210.0}]

The return value is always a list. This is true despite Erlang’s knowing that this ETS table
has the set type, so only one value can match the key, and despite there being only one
value. In situations like this where you know that there will only be one returned value,
the hd/1 function, which Example 5-5 showed for use with user inputs, can get you the
head of a list quickly. Since there is only one item, the head is just that item.

10> hd(ets:lookup(planemos,eris)).
#planemo{name = eris,gravity = 0.8,diameter = 2400,
 distance_from_sun = 10210.0}

Storing Records in Erlang Term Storage | 137

The square brackets are gone, which means that you can now extract, say, the gravity of
a planemo:

11> Result=hd(ets:lookup(planemos,eris)).
#planemo{name = eris,gravity = 0.8,diameter = 2400,
 distance_from_sun = 10210.0}
12> Result#planemo.gravity.
0.8

A Key Feature: Overwriting Values
Up until now, you’ve had to work with (or around) Erlang’s single-assignment paradigm.
You can’t overwrite the value of a variable, or change the value of an item in a list directly.
However, ETS doesn’t have that restriction. If you want to change the value of gravi
ty on mercury, you can:

13> ets:insert(planemos, #planemo{ name=mercury,
 gravity=3.9, diameter=4878, distance_from_sun=57.9 }).
true
14> ets:lookup(planemos, mercury).
[#planemo{name = mercury,gravity = 3.9,diameter = 4878,
 distance_from_sun = 57.9}]

Just because you can change values in an ETS table, however, doesn’t mean that you
should rewrite your code to replace immutable variables with flexible ETS table contents.
Nor should you make all your tables public so that various processes can read and write
whatever they like to the ETS table, making it a different form of shared memory.

Try to remember the discipline you’ve had to learn up until this point. Ask yourself when
making changes is going to be useful, and when it might introduce tricky bugs. You
probably won’t have to change the gravity of Mercury, but it certainly could make sense
to change a shipping address. If you have doubts, lean toward caution.

ETS Tables and Processes
Now that you can extract gravitational constants for planemos, you can expand the drop
module to calculate drops in many more locations. Example 10-7 combines the drop
module from Example 8-6 with the ETS table built in Example 10-6 to create a more
powerful drop calculator. (You can find this in ch10/ex6-ets-calculator.)

Example 10-7. Calculating drop velocities using an ETS table of planemo properties
-module(drop).
-export([drop/0]).
-include("records.hrl").

drop() ->
 setup(),
 handle_drops().

138 | Chapter 10: Storing Structured Data

handle_drops() ->
 receive
 {From, Planemo, Distance} ->
 From ! {Planemo, Distance, fall_velocity(Planemo, Distance)},
 handle_drops()
 end.

fall_velocity(Planemo, Distance) when Distance >= 0 ->
 P=hd(ets:lookup(planemos,Planemo)),
 math:sqrt(2 * P#planemo.gravity * Distance).

setup() ->
 ets:new(planemos, [named_table, {keypos, #planemo.name}]),

 ets:insert(planemos,
 #planemo{ name=mercury, gravity=3.7, diameter=4878, distance_from_sun=57.9 }),
 ets:insert(planemos,
 #planemo{ name=venus, gravity=8.9, diameter=12104, distance_from_sun=108.2 }),
 ets:insert(planemos,
 #planemo{ name=earth, gravity=9.8, diameter=12756, distance_from_sun=149.6 }),
 ets:insert(planemos,
 #planemo{ name=moon, gravity=1.6, diameter=3475, distance_from_sun=149.6 }),
 ets:insert(planemos,
 #planemo{ name=mars, gravity=3.7, diameter=6787, distance_from_sun=227.9 }),
 ets:insert(planemos,
 #planemo{ name=ceres, gravity=0.27, diameter=950, distance_from_sun=413.7 }),
 ets:insert(planemos,
 #planemo{ name=jupiter, gravity=23.1, diameter=142796, distance_from_sun=778.3 }),
 ets:insert(planemos,
 #planemo{ name=saturn, gravity=9.0, diameter=120660, distance_from_sun=1427.0 }),
 ets:insert(planemos,
 #planemo{ name=uranus, gravity=8.7, diameter=51118, distance_from_sun=2871.0 }),
 ets:insert(planemos,
 #planemo{ name=neptune, gravity=11.0, diameter=30200, distance_from_sun=4497.1 }),
 ets:insert(planemos,
 #planemo{ name=pluto, gravity=0.6, diameter=2300, distance_from_sun=5913.0 }),
 ets:insert(planemos,
 #planemo{ name=haumea, gravity=0.44, diameter=1150, distance_from_sun=6484.0 }),
 ets:insert(planemos,
 #planemo{ name=makemake, gravity=0.5, diameter=1500, distance_from_sun=6850.0 }),
 ets:insert(planemos,
 #planemo{ name=eris, gravity=0.8, diameter=2400, distance_from_sun=10210.0 }).

The drop/0 function changes a little to call the initialization separately and avoid setting
up the table on every call. This moves the message handling to a separate function,
handle_drop/0. The fall_velocity/2 function also changes, as it now looks up pla‐
nemo names in the ETS table and gets their gravitational constant from that table rather
than hardcoding those contents into the function. (While it would certainly be possible
to pass the PlanemoTable variable from the previous example as an argument to the
recursive message handler, it’s simpler to just use it as a named table.)

Storing Records in Erlang Term Storage | 139

If this process crashes and needs to be restarted, restarting it will trigger
the setup/0 function, which currently doesn’t check to see if the ETS
table exists. That could cause an error, except that ETS tables vanish
when the processes that created them die. ETS offers an heir option
and an ets:give_away/3 function if you want to avoid that behavior,
but for now it works well.

If you combine this module with the mph_drop module from Example 8-7, you’ll be able
to calculate drop velocities on all of these planemos:

1> c(drop).
{ok,drop}
2> c(mph_drop).
{ok,mph_drop}
3> Pid1=spawn(mph_drop,mph_drop,[]).
<0.33.0>
4> Pid1 ! {earth,20}.
On earth, a fall of 20 meters yields a velocity of 44.289078952755766 mph.
{earth,20}
5> Pid1 ! {eris,20}.
On eris, a fall of 20 meters yields a velocity of 12.65402255793022 mph.
{eris,20}
6> Pid1 ! {makemake,20}.
On makemake, a fall of 20 meters yields a velocity of 10.003883211552367 mph.
{makemake,20}

That’s a lot more variety than its earth, moon, and mars predecessors!

Next Steps
While many applications just need a fast key/value store, ETS tables are far more flexible
than the examples so far demonstrate. You can use Erlang’s match specifications and
ets:fun2ms to create more complex queries with ets:match and ets:select. You can
delete rows (and tables) with ets:delete. The ets:first, ets:next, and ets:last
functions let you traverse tables recursively.

Perhaps most important, you can also explore DETS, the Disk-Based Term Storage,
which offers similar features but with tables stored on disk. It’s slower, with a 2GB limit,
but the data doesn’t vanish when the controlling process stops.

You can dig deeper into ETS and DETS, but if your needs are more complex, and espe‐
cially if you need to split data across multiple nodes, you should probably explore the
Mnesia database.

140 | Chapter 10: Storing Structured Data

Storing Records in Mnesia
Mnesia is a database management system (DBMS) that comes with Erlang. It uses ETS
and DETS underneath, but provides many more features than those components.

You should consider shifting from ETS (and DETS) tables to the Mnesia database if:

• You need to store and access data across a set of nodes, not just a single node.
• You don’t want to have to think about whether you’re going to store data in memory

or on a disk or both.
• You need to be able to roll back transactions if something goes wrong.
• You’d like a more approachable syntax for finding and joining data.
• Management prefers the sound of “database” to the sound of “tables”.

You may even find that you use ETS for some aspects of a project and Mnesia for others.

That isn’t “amnesia,” the forgetting, but “mnesia,” the Greek word for
memory.

Starting up Mnesia
If you want to store data on disk, you need to give Mnesia some information. Before you
turn Mnesia on, you need to create a database, using the mnesia:create_schema/1
function. For now, because you’ll be getting started using only the local node, that will
look like the following:

1> mnesia:create_schema([node()]).
ok

By default, when you call mnesia:create_schema/1, Mnesia will store schema data in
the directory where you are when you start it. If you look in the directory where you
started Erlang, you’ll see a new directory with a name like Mnesia.nonode@nohost. In‐
itially, it holds a LATEST.LOG file and a schema.DAT file. The node() function just
returns the identifier of the node you’re on, which is fine when you’re getting started.
(If you want to change where Mnesia stores data, you can start Erlang with some extra
options: erl -mnesia dir " path ". The path will be the location Mnesia keeps any
disk-based storage.)

If you start Mnesia without calling mnesia:create_schema/1, Mnesia
will keep its schema in memory, and it will vanish if and when Mnesia
stops.

Storing Records in Mnesia | 141

Unlike ETS and DETS, which are always available, you need to turn Mnesia on:

2> mnesia:start().
ok

There’s also an mnesia:stop/0 function if you want to stop it.

If you run Mnesia on a computer that goes to sleep, you may get odd
messages like Mnesia(nonode@nohost): ** WARNING ** Mnesia is
overloaded: {dump_log, time_threshold} when it wakes up. Don’t
worry, it’s a side-effect of waking up, and your data should still be safe.
You probably shouldn’t run production systems on devices that go to
sleep, of course.

Creating Tables
Like ETS, Mnesia’s basic concept of a table is a collection of records. It also offers set,
orderered_set, and bag options, just like those in ETS, but doesn’t offer duplicate_bag.

Mnesia wants to know more about your data than ETS, too. ETS pretty much takes data
in tuples of any shape, counting only on there being a key it can use. The rest is up to
you to interpret. Mnesia wants to know more about what you store, and takes a list of
field names. The easy way to handle this is to define records and consistently use the
field names from the records as Mnesia field names. There’s even an easy way to pass
the record names to Mnesia, using record_info/2.

The planemos table can work just as easily in Mnesia as in ETS, and some aspects of
dealing with it will be easier. Example 10-8, which is in ch10/ex7-mnesia, shows how to
set up the planemo table in Mnesia. The setup/0 method creates a schema, then starts
Mnesia, and then creates a table based on the planemo record type. Once the table is
created, it writes the values from Table 10-1 to it.

Example 10-8. Setting up an Mnesia table of planemo properties
-module(drop).
-export([setup/0]).
-include("records.hrl").

setup() ->
 mnesia:create_schema([node()]),
 mnesia:start(),
 mnesia:create_table(planemo, [{attributes, record_info(fields, planemo)}]),

 F = fun() ->
 mnesia:write(
 #planemo{ name=mercury, gravity=3.7, diameter=4878, distance_from_sun=57.9 }),
 mnesia:write(
 #planemo{ name=venus, gravity=8.9, diameter=12104, distance_from_sun=108.2 }),

142 | Chapter 10: Storing Structured Data

 mnesia:write(
 #planemo{ name=earth, gravity=9.8, diameter=12756, distance_from_sun=149.6 }),
 mnesia:write(
 #planemo{ name=moon, gravity=1.6, diameter=3475, distance_from_sun=149.6 }),
 mnesia:write(
 #planemo{ name=mars, gravity=3.7, diameter=6787, distance_from_sun=227.9 }),
 mnesia:write(
 #planemo{ name=ceres, gravity=0.27, diameter=950, distance_from_sun=413.7 }),
 mnesia:write(
 #planemo{ name=jupiter, gravity=23.1, diameter=142796, distance_from_sun=778.3 }),
 mnesia:write(
 #planemo{ name=saturn, gravity=9.0, diameter=120660, distance_from_sun=1427.0 }),
 mnesia:write(
 #planemo{ name=uranus, gravity=8.7, diameter=51118, distance_from_sun=2871.0 }),
 mnesia:write(
 #planemo{ name=neptune, gravity=11.0, diameter=30200, distance_from_sun=4497.1 }),
 mnesia:write(
 #planemo{ name=pluto, gravity=0.6, diameter=2300, distance_from_sun=5913.0 }),
 mnesia:write(
 #planemo{ name=haumea, gravity=0.44, diameter=1150, distance_from_sun=6484.0 }),
 mnesia:write(
 #planemo{ name=makemake, gravity=0.5, diameter=1500, distance_from_sun=6850.0 }),
 mnesia:write(
 #planemo{ name=eris, gravity=0.8, diameter=2400, distance_from_sun=10210.0 })
 end,

 mnesia:transaction(F).

Apart from the setup, the key thing to note is that all of the writes are contained in a fun
that is then passed to mnesia:transaction to be executed as a transaction. Mnesia will
restart the transaction if there is other activity blocking it, so the code may get executed
repeatedly before the transaction happens. Because of this, do not include any calls that
create side effects to the function you’ll be passing to mnesia:transaction, and don’t
try to catch exceptions on Mnesia functions within a transaction. If your function calls
mnesia:abort/1 (probably because some condition for executing it wasn’t met), the
transaction will be rolled back, returning a tuple beginning with aborted instead of
atomic.

You may also want to explore the more flexible mnesia:activity/2
when you need to mix more kinds of tasks in a transaction.

Storing Records in Mnesia | 143

Your interactions with Mnesia should be contained in transactions, especially when your
database is shared across multiple nodes. The main mnesia:write, mnesia:read, and
mnesia:delete methods work only within transactions, period. There are dirty_
methods, but every time you use them, especially to write data to the database, you’re
taking a risk.

Just as in ETS, you can overwrite values by writing a new value with the
same key as a previous entry.

If you want to check on how this function worked out, try the mnesia:table_info
function, which can tell you more than you want to know. The listing below is abbre‐
viated to focus on key results.

1> c(drop).
{ok,drop}
2> rr("records.hrl").
[planemo,tower]
3> drop:setup().
{atomic,ok}
4> mnesia:table_info(planemo,all).
[{access_mode,read_write},
 {active_replicas,[nonode@nohost]},
 {all_nodes,[nonode@nohost]},
 {arity,5},
 {attributes,[name,gravity,diameter,distance_from_sun]},
 ...
 {memory,541},
 {ram_copies,[nonode@nohost]},
 {record_name,planemo},
 {record_validation,{planemo,5,set}},
 {type,set},
 {size,14},
 ...]

You can see which nodes are involved in the table (nonode@nohost is the default for the
current node). arity in this case is the count of fields in the record, and attributes
tells you what their names are. ram_copies plus the name of the current node tells you
that this table is stored in memory locally. It is, as in the ETS example, of type set, and
there are 14 records.

144 | Chapter 10: Storing Structured Data

By default, Mnesia will store your table in RAM only (ram_copies) on
the current node. This is speedy, but it means the data vanishes if the
node crashes. If you specify disc_copies (note the spelling), Mnesia
will keep a copy of the database on disk, but still use RAM for speed.
You can also specify disc_only_copies, which will be slow. Unlike ETS,
the table you create will still be around if the process that created it
crashes, and will likely survive even a node crash so long as it wasn’t
only in RAM on a single node. By combining these options and (even‐
tually) multiple nodes, you should be able to create fast and resilient
systems.

The table is now set up, and you can start to use it. If you’re running the Table Viewer,
or start it with tv:start(), you can take a look at the contents of your Mnesia tables as
well as your ETS tables. In the View menu, choose Mnesia Tables. The interface is similar
to that for ETS tables.

Reading Data
Just like writes, you should wrap mnesia:read calls in a fun, which you then pass to
mnesia:transaction. You can do that in the shell if you want to explore:

5> mnesia:transaction(fun() -> mnesia:read(planemo,neptune) end).
{atomic,[#planemo{name = neptune,gravity = 11.0,
 diameter = 30300,distance_from_sun = 4497.1}]}

The result arrives as a tuple, which when successful contains atomic plus a list with the
data from the table. The table data is packaged as a record, and you can get to its fields
easily.

You can rewrite the fall_velocity/2 function from Example 10-8 to use an Mnesia
transaction instead of an ETS call. The ETS version looked like the following:

fall_velocity(Planemo, Distance) when Distance >= 0 ->
 P=hd(ets:lookup(planemos,Planemo)),
 math:sqrt(2 * P#planemo.gravity * Distance).

Line 2 of the Mnesia version is a bit different.

fall_velocity(Planemo, Distance) when Distance >= 0 ->
 {atomic, [P | _]} = mnesia:transaction(fun() -> mnesia:read(planemo,Planemo)
end),
 math:sqrt(2 * P#planemo.gravity * Distance).

Because Mnesia returns a tuple rather than a list, this uses pattern matching to extract
the first item in the list contained in the second item of the tuple (and throws away the
tail of that list with _). This table is a set, so there will always be only one item there.
Then the data, contained in P, can be used for the same calculation as before.

Storing Records in Mnesia | 145

If you compile and run this, you’ll see a familiar result:

6> c(drop).
{ok,drop}
7> drop:fall_velocity(earth,20).
19.79898987322333
8> Pid1=spawn(mph_drop,mph_drop,[]).
<0.120.0>
9> Pid1 ! {earth,20}.
{earth,20}
On earth, a fall of 20 meters yields a velocity of 44.289078952755766 mph.

For these purposes, the simple mnesia:read is enough. You can tell Mnesia to build
indexes for fields other than the key, and query those with mnesia:index_read as well.

If you want to delete records, you can run mnesia:delete/2, also inside
of a transaction.

Query List Comprehensions
If Mnesia is really a database, it should be able to do more than key-value querying,
right? It definitely can. You can use Erlang match specifications (as you can with ETS),
but Query List Comprehensions (QLCs) are much more readable. They look like list
comprehensions, which you saw in Chapter 7, but operate on Mnesia tables rather than
lists.

Suppose you want to find all the planemos with gravity less than that of earth. You could
traverse the table with the mnesia:first and mnesia:next methods, but that seems like
a lot of extra work. Instead, you can use the qlc:q function to hold a list comprehension
and the qlc:e (or the equivalent but longer qlc:eval) function to process it. Then you
run that inside of an mnesia:transaction call.

You can run query list comprehensions in the shell, but if you want to
use them in modules you need to add -include_lib("stdlib/
include/qlc.hrl"). to the declarations at the top of your module.

The simplest query list comprehension just returns all the values in the table. I’ve broken
it out here on separate lines so that you can see how they interact:

mnesia:transaction(
 fun() ->
 qlc:e(

146 | Chapter 10: Storing Structured Data

 qlc:q([X || X <- mnesia:table(planemo)])
)
 end
)

As always, the mnesia:transaction function takes a fun as its argument. In this case,
the fun contains a qlc:e function, which then contains a qlc:q function, where the real
query is. It will build a list from the contents of the planemo table.

If you compact this a bit and run it in the shell, you’ll see that the resulting list—wrapped
in a transaction result tuple—contains the entire table.

10> mnesia:transaction(fun() -> qlc:e(qlc:q([X || X <- mnesia:table(planemo)]))
 end).
{atomic,[#planemo{name = pluto,gravity = 0.6,
 diameter = 2300,distance_from_sun = 5913.0},
 #planemo{name = saturn,gravity = 9.0,diameter = 120660,
 distance_from_sun = 1427.0},
 #planemo{name = moon,gravity = 1.6,diameter = 3475,
 distance_from_sun = 149.6},
 #planemo{name = mercury,gravity = 3.7,diameter = 4878,
 distance_from_sun = 57.9},
 #planemo{name = earth,gravity = 9.8,diameter = 12756,
 distance_from_sun = 149.6},
 #planemo{name = neptune,gravity = 11.0,diameter = 30200,
 distance_from_sun = 4497.1},
 #planemo{name = makemake,gravity = 0.5,diameter = 1500,
 distance_from_sun = 6850.0},
 #planemo{name = uranus,gravity = 8.7,diameter = 51118,
 distance_from_sun = 2871.0},
 #planemo{name = ceres,gravity = 0.27,diameter = 950,
 distance_from_sun = 413.7},
 #planemo{name = venus,gravity = 8.9,diameter = 12104,
 distance_from_sun = 108.2},
 #planemo{name = mars,gravity = 3.7,diameter = 6787,
 distance_from_sun = 227.9},
 #planemo{name = eris,gravity = 0.8,diameter = 2400,
 distance_from_sun = 10210.0},
 #planemo{name = jupiter,gravity = 23.1,diameter = 142796,
 distance_from_sun = 778.3},
 #planemo{name = haumea,gravity = 0.44,diameter = 1150,
 distance_from_sun = 6484.0}]}

You can add conditions to the query list comprehension. You might want to know all of
the planemos with gravity less than that of Earth’s 9.8. That could look like the following:

mnesia:transaction(
 fun() ->
 qlc:e(
 qlc:q([X || X <- mnesia:table(planemo),

Storing Records in Mnesia | 147

 X#planemo.gravity < 9.8])
)
 end
)

Compress and run that in the shell, and you’ll get a shorter list of planemos where
everything feels a little lighter.

11> mnesia:transaction(fun() -> qlc:e(qlc:q([X || X <- mnesia:table(planemo),
 X#planemo.gravity < 9.8])) end).
{atomic,[#planemo{name = pluto,gravity = 0.6,
 diameter = 2300,distance_from_sun = 5913.0},
 #planemo{name = saturn,gravity = 9.0,diameter = 120660,
 distance_from_sun = 1427.0},
 #planemo{name = moon,gravity = 1.6,diameter = 3475,
 distance_from_sun = 149.6},
 #planemo{name = mercury,gravity = 3.7,diameter = 4878,
 distance_from_sun = 57.9},
 #planemo{name = makemake,gravity = 0.5,diameter = 1500,
 distance_from_sun = 6850.0},
 #planemo{name = uranus,gravity = 8.7,diameter = 51118,
 distance_from_sun = 2871.0},
 #planemo{name = ceres,gravity = 0.27,diameter = 950,
 distance_from_sun = 413.7},
 #planemo{name = venus,gravity = 8.9,diameter = 12104,
 distance_from_sun = 108.2},
 #planemo{name = mars,gravity = 3.7,diameter = 6787,
 distance_from_sun = 227.9},
 #planemo{name = eris,gravity = 0.8,diameter = 2400,
 distance_from_sun = 10210.0},
 #planemo{name = haumea,gravity = 0.44,diameter = 1150,
 distance_from_sun = 6484.0}]}

That still contains more information than might be necessary. You can modify the left
side of the comprehension to cut things down, creating a tuple that is just the name and
gravity of the planemo:

mnesia:transaction(
 fun() ->
 qlc:e(
 qlc:q([{X#planemo.name, X#planemo.gravity} ||
 X <- mnesia:table(planemo),
 X#planemo.gravity < 9.8])
)
 end
)

The result is much trimmer:

12> mnesia:transaction(fun() -> qlc:e(qlc:q([{X#planemo.name, X#planemo.gravi
ty}||
 X <- mnesia:table(planemo), X#planemo.gravity < 9.8])) end).
{atomic,[{pluto,0.6},

148 | Chapter 10: Storing Structured Data

 {saturn,9.0},
 {moon,1.6},
 {mercury,3.7},
 {makemake,0.5},
 {uranus,8.7},
 {ceres,0.27},
 {venus,8.9},
 {mars,3.7},
 {eris,0.8},
 {haumea,0.44}]}

There are ways to reduce at least some of the syntax overhead here. It’s not difficult, for
example, to move the mnesia:transaction, fun definition, and qlc:e call to a function
that takes the qlc:q function as its argument. In Programming Erlang, Joe Armstrong
does just that to create a do function. You may want to break things up differently
depending on how you’re working with data and your coding style.

You can use query list comprehensions on more than one table at a time,
which is how you can create the equivalent of joins between tables, and
it is also possible to use them on ETS tables.

This is just a brief introduction to Mnesia. It gets some coverage in all of the Erlang
books, but eventually I hope it will get a book of its own, about as long as this one.

Storing Records in Mnesia | 149

CHAPTER 11

Getting Started with OTP

At this point, it might seem like you have all you need to create process-oriented projects
with Erlang. You know how to create useful functions, can work with recursion, know
the data structures Erlang offers, and probably most important, know how to create and
manage processes. What more could you need?

Process-oriented programming is great, but the details matter. The basic Erlang tools
are powerful, but can also bring you to frustrating mazes debugging race conditions that
happen only once in a while. Mixing different programming styles can lead to incom‐
patible expectations, and code that worked well in one environment may prove harder
to integrate in another.

Ericsson encountered these problems early, and created a set of libraries that eases them.
OTP, the Open Telecom Platform, is useful for pretty much any large-scale project you
want to do with Erlang, not just telecom work. It’s included with Erlang, and though it
isn’t precisely part of the language, it is definitely part of Erlang culture. The boundaries
of where Erlang ends and OTP begins aren’t always clear, but the entrypoint is definitely
behaviors. You’ll combine processes built with behaviors and managed by supervisors
into an OTP application.

So far, the lifecycle of the processes shown in the previous chapters has been pretty
simple. If needed, they set up other resources or processes to get started. Once running,
they listen for messages and process them, collapsing if they fail. Some of them might
restart a failed process if needed.

OTP formalizes those activities, and a few more, into a set of behaviors (or behaviours
—this was originally created with British spelling). The most common behaviors are
gen_server (generic server) and supervisor, though gen_fsm (finite state machine)
and gen_event are also available. The application behavior lets you package your OTP
code into a single runnable (and updatable) system.

151

The behaviors pre-define the mechanisms you’ll use to create and interact with pro‐
cesses, and the compiler will warn you if you’re missing some of them. Your code will
handle the callbacks, specifying how to respond to particular kinds of events, and you
will need to decide upon a structure for your application.

If you’d like a free one-hour video introduction to OTP, see Steve Vi‐
noski’s “Erlang’s Open Telecom Platform (OTP) Framework” at http://
www.infoq.com/presentations/Erlang-OTP-Behaviors. You probably al‐
ready know the first half hour or so of it, but the review is excellent. In
a very different style, if you’d like an explanation of why it’s worth learn‐
ing OTP and process-oriented development in general, Francesco
Cesarini’s slides at https://www.erlang-factory.com/upload/presenta
tions/719/francesco-otp.pdf work even without narration, especially the
second half.

Creating Services with gen_server
Much of the work you think of as the core of a program—calculating results, storing
information, and preparing replies—will fit neatly into the gen_server behavior. It
provides a core set of methods that let you set up a process, respond to requests, end the
process gracefully, and even pass state to a new process if this one needs to be upgraded
in place.

Table 11-1 shows the methods you need to implement in a service that uses the
gen_server behavior. For a simple service, the first two or three are the most important,
and you may just use placeholder code for the rest.

Table 11-1. What calls and gets called in gen_server
Method Triggered by Does

init/1 gen_server:start_link Sets up the process

handle_call/3 gen_server:call Handles synchronous calls

handle_cast/2 gen_server:cast Handles asynchronous calls

handle_info/2 random messages Deals with non-OTP messages

terminate/2 failure or shutdown signal from supervisor Cleans up the process

code_change/3 system libraries for code upgrades Lets you switch out code without losing state

Appendix B shows a complete gen_server template from the Erlang emacs-mode,
which is worth exploring in particular for the models it offers for the return value.
However, it’s pretty big. Example 11-1, which you can find in ch11/ex1-drop, shows a
less verbose example (based on the template) that you can use to get started. It mixes a
simple calculation from way back in Example 2-1 with a counter like that in Example 8-4.

152 | Chapter 11: Getting Started with OTP

http://www.infoq.com/presentations/Erlang-OTP-Behaviors
http://www.infoq.com/presentations/Erlang-OTP-Behaviors
https://www.erlang-factory.com/upload/presentations/719/francesco-otp.pdf
https://www.erlang-factory.com/upload/presentations/719/francesco-otp.pdf

Example 11-1. A simple gen_server example based on the template from the Erlang
mode for Emacs
-module(drop).
-behaviour(gen_server).
-export([start_link/0]). % convenience call for startup
-export([init/1,
 handle_call/3,
 handle_cast/2,
 handle_info/2,
 terminate/2,
 code_change/3]). % gen_server callbacks
-define(SERVER, ?MODULE). % macro that just defines this module as server
-record(state, {count}). % simple counter state

%%% convenience method for startup
start_link() ->
 gen_server:start_link({local, ?SERVER}, ?MODULE, [], []).

%%% gen_server callbacks
init([]) ->
 {ok, #state{count=0}}.

handle_call(_Request, _From, State) ->
 Distance = _Request,
 Reply = {ok, fall_velocity(Distance)},
 NewState=#state{ count = State#state.count+1 },
 {reply, Reply, NewState}.

handle_cast(_Msg, State) ->
 io:format("So far, calculated ~w velocities.~n", [State#state.count]),
 {noreply, State}.

handle_info(_Info, State) ->
 {noreply, State}.

terminate(_Reason, _State) ->
 ok.

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

%%% Internal functions

fall_velocity(Distance) -> math:sqrt(2 * 9.8 * Distance).

The module name (drop) should be familiar from past examples. The second line is a
-behaviour declaration specifying that this is going to be using the gen_server behav‐
ior. That declaration tells Erlang that it can expect this code to support the core callback
functions of that behavior.

Creating Services with gen_server | 153

You can spell the -behaviour declaration -behavior if you prefer
American spellings. Erlang doesn’t mind.

The -export declarations are pretty standard, though they break out the start_link/0
method into a separate declaration from the core gen_server methods. This isn’t nec‐
essary, but it’s a nice reminder that start_link isn’t required for the gen_server be‐
havior to work. (It calls gen_server code, but isn’t a callback itself.)

The -define declaration is probably unfamiliar. Erlang lets you declare macros using
-define. Macros are simple text replacements. This declaration tells the compiler that
any time it encounters ?SERVER, it should replace it with ?MODULE. What is ?MODULE?
That’s a built-in macro that always refers to the name of the module it appears in. In this
case, that means it will be processed into drop. (You may find cases where you might
want to register the server under a name other than the module name, but this is a
workable default.)

The -record declaration should be familiar, though it contains only one field, to keep
a count of the number of calls made. Many services will have more fields, including
things like database connections, references to other processes, perhaps network infor‐
mation, and metadata specific to this particular service. It is also possible to have services
with no state, which would be represented by an empty tuple here. As you’ll see further
down, every single gen_server function will reference the state.

The state record declaration is a good example of a record declaration
you should make inside of a module and not declare through an in‐
cluded file. It is possible that you’ll want to share state models across
different gen_server processes, but it’s easier to see what State should
contain if the information is right there.

The first function in the sample, start_link/0, is not one of the required gen_server
functions. Instead, it calls gen_server’s start_link function to start up the process.
When you’re just getting started, this is useful for testing. As you move toward produc‐
tion code, you may find it easier to leave these out and use other mechanisms.

The start_link/0 function uses the ?SERVER macro defined in the -define declaration
as well as the built-in ?MODULE declaration.

%%% convenience method for startup
start_link() ->
 gen_server:start_link({local, ?SERVER}, ?MODULE, [], []).

The first argument, a tuple, opens with an atom that must be local or global, depending
on whether you want the name of the process registered just with the local Erlang

154 | Chapter 11: Getting Started with OTP

instance or with all associated nodes. The ?SERVER macro will be expanded to ?MOD
ULE which will itself be expanded to the name of the current module, and that will be
used as the name for this process. The second argument is the name of the module, here
identified with the ?MODULE macro, and then lists for arguments and options follow. In
this case, they’re both empty. Options can specify things like debugging, timeouts, and
options for spawning the process.

You may also see a form of gen_server:start_link with via as the
atom in the first tuple. This lets you set up custom process registries, of
which gproc is the best known. For more on that, see https://github.com/
uwiger/gproc.

All of the remaining functions are part of the gen_server behavior. init/1 creates a
new state record instance and sets its count field to zero—no velocities have yet been
calculated. The two functions that do much here are handle_call/3 and handle_cast/
2. For this demonstration, handle_call/3 expects to receive a distance in meters and
returns a velocity for a fall from that height on earth, while handle_cast/2 is a trigger
to report the number of velocities calculated.

handle_call/3 makes synchronous communications between Erlang processes simple.

handle_call(_Request, _From, State) ->
 Distance = _Request,
 Reply = {ok, fall_velocity(Distance)},
 NewState=#state{ count = State#state.count+1 },
 {reply, Reply, NewState}.

This extracts the Distance from the _Request, which isn’t necessary except that I wanted
to leave the variable names for the function the same as they were in the template.
(handle_call(Distance, _From, State) would have been fine.) Your _Request is
more likely to be a tuple or a list rather than a bare value, but this works for simple calls.

It then creates a reply based on sending that Distance to the simple fall_velocity/1
function at the end of the module. It then creates a NewState containing an incremented
count. Then the atom reply, the Reply tuple containing the velocity, and the NewS
tate containing the count get passed back.

Because the calculation is really simple, treating the drop as a simple synchronous call
is perfectly acceptable. For more complex situations where you can’t predict how long
a response might take, you may want to considering responding with a noreply response
and using the _From argument to send a response later. (There is also a stop response
available that will trigger the terminate/2 method and halt the process.)

Creating Services with gen_server | 155

https://github.com/uwiger/gproc
https://github.com/uwiger/gproc

By default, Erlang will time out any synchronous calls that take longer
than five seconds to calculate. You can override this by making your call
using gen_server:call/3 to specify a timeout (in milliseconds) ex‐
plicitly, or by using the atom infinity.

The handle_cast/2 function supports asynchronous communications. It isn’t supposed
to return anything directly, though it does report noreply (or stop) and updated state.
In this case, it takes a very weak approach, but one that does well for a demonstration,
calling io:format/2 to report on the number of calls.

handle_cast(_Msg, State) ->
 io:format("So far, calculated ~w velocities.~n", [State#state.count]),
 {noreply, State}.

The state doesn’t change, because asking for the number of times the process has cal‐
culated a fall velocity is not the same thing as actually calculating a fall velocity.

Until you have good reason to change them, you can leave handle_info/2, terminate/
2, and code_change/3 alone.

Making a gen_server process run and calling it looks a little different than starting the
processes you saw in Chapter 8.

1> c(drop).
{ok,drop}
2> drop:start_link().
{ok,<0.33.0>}
3> gen_server:call(drop, 20).
{ok,19.79898987322333}
4> gen_server:call(drop, 40).
{ok,28.0}
5> gen_server:call(drop, 60).
{ok,34.292856398964496}
6> gen_server:cast(drop, {}).
So far, calculated 3 velocities.
ok

The call to drop:start_link() sets up the process and makes it available. Then, you’re
free to use gen_server:call or gen_server:cast to send it messages and get responses.

While you can capture the pid, you don’t have to keep it around to use
the process. Because start_link returns a tuple, if you want to capture
the pid you can do something like {ok, Pid} = drop:start_link().

156 | Chapter 11: Getting Started with OTP

Because of the way OTP calls gen_server functions, there’s an additional bonus—or
perhaps a hazard—in that you can update code on the fly. For example, I tweaked the
fall_velocity/1 function to lighten Earth’s gravity a little, using 9.1 as a constant in‐
stead of 9.8. Recompiling the code and asking for a velocity returns a different answer:

7> c(drop).
{ok,drop}
8> gen_server:call(drop, 60).
{ok,33.04542328371661}

This can be very convenient during the development phase, but be careful doing any‐
thing like this on a production machine. OTP has other mechanisms for updating code
on the fly. There is also a built-in limitation to this approach: init gets called only when
start_link sets up the service. It does not get called if you recompiled the code. If your
new code requires any changes to the structure of its state, your code will break the next
time it’s called.

A Simple Supervisor
When you started the drop module from the shell, you effectively made the shell the
supervisor for the module—though the shell doesn’t really do any supervision. You can
break the module easily:

9> gen_server:call(drop, -60).

=ERROR REPORT==== 2-Dec-2012::21:14:51 ===
** Generic server drop terminating
** Last message in was -60
** When Server state == {state,0}
** Reason for termination ==
** {badarith,[{math,sqrt,[-1176.0],[]},
 {drop,fall_velocity,1,[{file,"drop.erl"},{line,42}]},
 {drop,handle_call,3,[{file,"drop.erl"},{line,23}]},
 {gen_server,handle_msg,5,[{file,"gen_server.erl"},{line,588}]},
 {proc_lib,init_p_do_apply,3,
 [{file,"proc_lib.erl"},{line,227}]}]}
** exception exit: badarith
 in function math:sqrt/1
 called as math:sqrt(-1176.0)
 in call from drop:fall_velocity/1 (drop.erl, line 42)
 in call from drop:handle_call/3 (drop.erl, line 23)
 in call from gen_server:handle_msg/5 (gen_server.erl, line 588)
 in call from proc_lib:init_p_do_apply/3 (proc_lib.erl, line 227)
10> gen_server:call(drop, 60).
** exception exit: {noproc,{gen_server,call,[drop,60]}}
 in function gen_server:call/2 (gen_server.erl, line 180)

A Simple Supervisor | 157

The error message is nicely complete, even telling you the last message and the state,
but when you go to call the service again on line 10, it isn’t there. You can restart it with
drop:start_link/0 again, but you’re not always going to be watching your processes
personally.

Instead, you want something that can watch over your processes and make sure they
restart (or not) as appropriate. OTP formalizes the process management you saw in
Example 8-10 with its supervisor behavior. Example B-2 in Appendix B shows a full
template (again, from the Erlang mode for Emacs), but you can create a less verbose
supervisor.

A basic supervisor needs to support only one callback function, init/1, and can also
have a start_link function to fire it up. The return value of that init/1 function tells
OTP which child processes your supervisor manages and how how you want to handle
their failures. A supervisor for the drop module might look like Example 11-2, which is
in ch11/ex2-drop-sup.

Example 11-2. A simple supervisor
-module(drop_sup).
-behaviour(supervisor).
-export([start_link/0]). % convenience call for startup
-export([init/1]). % supervisor calls
-define(SERVER, ?MODULE).

%%% convenience method for startup
start_link() ->
 supervisor:start_link({local, ?SERVER}, ?MODULE, []).

%%% supervisor callback
init([]) ->
 RestartStrategy = one_for_one,
 MaxRestarts = 1, % one restart every
 MaxSecondsBetweenRestarts = 5, % five seconds

 SupFlags = {RestartStrategy, MaxRestarts, MaxSecondsBetweenRestarts},

 Restart = permanent, % or temporary, or transient
 Shutdown = 2000, % milliseconds, could be infinity or brutal_kill
 Type = worker, % could also be supervisor

 Drop = {drop, {drop, start_link, []},
 Restart, Shutdown, Type, [drop]},

 {ok, {SupFlags, [Drop]}}.

%%% Internal functions (none here)

158 | Chapter 11: Getting Started with OTP

The init/1 function’s job is to assemble a fairly complex data structure. The first few
variables from the template define how the supervisor should handle failure.

The RestartStrategy of one_for_one tells OTP that it should create a new child process
every time a process that is supposed to be permanent fails. You can also go with
one_for_all, which terminates and restarts all of the processes the supervisor oversees
when one fails, or rest_for_one, which restarts the process and any processes that began
after the failed process had started.

When you’re ready to take more direct control of how your processes
respond to their environment, you might explore working with the
dynamic functions supervisor:start/2, supervisor:termi

nate_child/2, supervisor:restart_child/2, and supervisor:de
lete_child/2, as well as the restart strategy simple_one_for_one.

The next two values define how often the worker processes can crash before terminating
the supervisor itself. In this case, it’s one restart every five seconds. Customizing these
values lets you handle a variety of conditions, but probably won’t affect you much ini‐
tially. (Setting MaxRestarts to zero means that the supervisor will just terminate if a
worker has an error.)

Those values, which here get combined into the tuple contained in SupFlags, apply to
all of the workers managed by this supervisor. The next few lines define properties that
apply to only one worker process, in this case the gen_server specified by Drop. It is to
be a permanent service, so the supervisor should restart it when it fails. The supervisor
can wait two seconds before shutting it off completely, and this worker is only a worker,
not itself a supervisor. More complex OTP applications can contain trees of supervisors
managing other supervisors, which themselves manage other supervisors or workers.

The Drop variable assignment might seem a bit repetitive, but it creates a complete set
of information for that process. First it specifies a name, and then a tuple containing the
name of the module containing the code, the function to use to start the process and a
list of arguments. (Here there aren’t any arguments.) Then the Restart, Shutdown, and
Type are specified, and the final list identifies all the modules on which this process will
depend. In this case, it all fits into a single module, so the list contains only the name of
that module.

OTP wants to know the dependencies so that it can help you upgrade
software in place. It’s all part of the magic of keeping systems running
without ever bringing them to a full stop.

A Simple Supervisor | 159

Now that you have a supervisor process, you can set up the drop function by just calling
the supervisor. However, running a supervisor from the shell using the start_link/0
function call creates its own set of problems; the shell is itself a supervisor, and will
terminate processes that report errors. After a long error report, you’ll find that both
your worker and the supervisor have vanished.

In practice this means that there are two ways to test supervised OTP processes (that
aren’t yet part of an application) directly from the shell. The first explicitly breaks the
bond between the shell and the supervisor process by catching the pid of the supervisor
(line 2) and then using the unlink/1 function to remove the link (line 3). Then you can
call the process as usual with gen_server:call/2 and get answers. If you get an error
(line 6), it’ll be okay. The supervisor will restart the worker, and you can make new calls
(line 7) successfully. The calls to whereis(drop) on lines 5 and 8 demonstrate that the
supervisor has restarted drop with a new pid.

1> c(drop_sup).
{ok,drop_sup}
2>{ok, Pid} = drop_sup:start_link().
{ok,<0.38.0>}
3> unlink(Pid).
true
4> gen_server:call(drop, 60).
{ok,34.292856398964496}
5> whereis(drop).
<0.39.0>
6> gen_server:call(drop, -60).

=ERROR REPORT==== 2-Dec-2012::21:17:19 ===
** Generic server drop terminating
** Last message in was -60
** When Server state == {state,1}
** Reason for termination ==
** {badarith,[{math,sqrt,[-1176.0],[]},
 {drop,fall_velocity,1,[{file,"drop.erl"},{line,42}]},
 {drop,handle_call,3,[{file,"drop.erl"},{line,23}]},
 {gen_server,handle_msg,5,[{file,"gen_server.erl"},{line,588}]},
 {proc_lib,init_p_do_apply,3,
 [{file,"proc_lib.erl"},{line,227}]}]}
** exception exit: {{badarith,
 [{math,sqrt,[-1176.0],[]},
 {drop,fall_velocity,1,
 [{file,"drop.erl"},{line,42}]},
 {drop,handle_call,3,
 [{file,"drop.erl"},{line,23}]},
 {gen_server,handle_msg,5,
 [{file,"gen_server.erl"},{line,588}]},
 {proc_lib,init_p_do_apply,3,
 [{file,"proc_lib.erl"},{line,227}]}]},
 {gen_server,call,[drop,-60]}}
 in function gen_server:call/2 (gen_server.erl, line 180)

160 | Chapter 11: Getting Started with OTP

7> gen_server:call(drop, 60).
{ok,34.292856398964496}
8> whereis(drop).
<0.44.0>

The other approach leaves the link in place, but wraps the calls to gen_server/2 in a
catch statement. In this case, using catch just keeps the shell from ever receiving the
exception, so the supervisor remains untouched. You don’t have to use catch to make
a call, as line 8 shows, but if the call fails, you’ll have to restart the supervisor process
yourself. (Line 6 is also a bit split by the error message. Sometimes the timing will make
it look like the prompt disappeared. Don’t worry.)

1> c(drop_sup).
{ok,drop_sup}
2> drop_sup:start_link().
{ok,<0.38.0>}
3> whereis(drop).
<0.39.0>
4> catch gen_server:call(drop, 60).
{ok,34.292856398964496}
5>
5> catch gen_server:call(drop, -60).
{'EXIT',{{badarith,[{math,sqrt,[-1176.0],[]},
 {drop,fall_velocity,1,[{file,"drop.erl"},{line,42}]},
 {drop,handle_call,3,[{file,"drop.erl"},{line,23}]},
 {gen_server,handle_msg,5,
 [{file,"gen_server.erl"},{line,588}]},
 {proc_lib,init_p_do_apply,3,
 [{file,"proc_lib.erl"},{line,227}]}]},
 {gen_server,call,[drop,-60]}}}
6>
=ERROR REPORT==== 2-Dec-2012::21:21:10 ===
** Generic server drop terminating
** Last message in was -60
** When Server state == {state,1}
** Reason for termination ==
** {badarith,[{math,sqrt,[-1176.0],[]},
 {drop,fall_velocity,1,[{file,"drop.erl"},{line,42}]},
 {drop,handle_call,3,[{file,"drop.erl"},{line,23}]},
 {gen_server,handle_msg,5,[{file,"gen_server.erl"},{line,588}]},
 {proc_lib,init_p_do_apply,3,
 [{file,"proc_lib.erl"},{line,227}]}]}
catch gen_server:call(drop, 60).
{ok,34.292856398964496}
7> whereis(drop).
<0.43.0>
8> gen_server:call(drop, 60).
{ok,34.292856398964496}

A Simple Supervisor | 161

You can also tell the shell to stop worrying about such exceptions by
issuing the shell command catch_exception(true). However, that
turns off the behavior for the entire shell, which may not be what you
want. (It will return false, the previous setting for that property. Don’t
worry, it did set it to true.)

You can also open Process Manager or Observer and whack away at worker processes
through the Kill option on the Trace menu and watch them reappear.

This works, but is the tiniest taste of what supervisors can do. They can create child
processes dynamically, and manage their lifecycle in greater detail.

Packaging an Application
OTP also lets you package sets of components into an application. While stopping and
starting OTP workers and supervisors may be easier than dealing with processes directly,
OTP’s facilities for describing applications will lead you down a path to much easier
starting, stopping (if you must), updating, and administering your projects.

Erlang applications include two extra components beyond the workers, supervisors, and
related files they need. The application resource file, or app file, provides a lot of met‐
adata about your application. You’ll also need a module with the behavior applica
tion to define starting and stopping.

If you’re on a Mac, the file extension for the .app file will disappear and
the operating system will think it’s some kind of broken Mac application.
Don’t worry. It’ll still work in Erlang, though the Mac won’t know what
to do if you double-click on it.

The app file is a large tuple, though easier to read than the one returned by a supervisor’s
init/1 functions. Example 11-3, in ch11/ex3-drop-app, shows a minimal app file, placed
in an ebin subdirectory, that sets up this simple drop application.

Example 11-3. drop.app, an application resource file, or app file, for the drop program
{application, drop,
[{description, "Dropping objects from towers"},
{vsn, "0.0.1"},
{modules, [drop, drop_sup,drop_app]},
{registered,[drop, drop_sup]},
{applications, [kernel,stdlib]},
{mod, {drop_app,[]} }]}.

162 | Chapter 11: Getting Started with OTP

The first line identifies this as an application named drop, and then a list of arguments
provides more information:

• The description is a (sometimes) human-friendly description of what’s here. vsn
is a version number, which in this case is tiny.

• modules lists the modules that make up the application, in this case drop,
drop_sup, and drop_app.

• registered lists modules that are publicly visible, again drop and drop_sup.
• applications lists the required applications on which this application depends,

and the kernel and stdlib seem to be the minimal standard set.
• mod has a tuple that points to the module with the application behavior. It can take

a list of arguments that will go to the start/2 function of the module, though there
aren’t any here.

That module is trivial even compared to the other OTP code you’ve seen, as shown in
Example 11-4, which is also in ch11/ex3-drop-app. (Example B-3 shows a fuller tem‐
plate.)

Example 11-4. The application module for the drop program
-module(drop_app).
-behaviour(application).
-export([start/2, stop/1]).

start(_Type, _StartArgs) ->
 drop_sup:start_link().

stop(_State) ->
 ok.

The only thing you really have to do is start up the supervisors for your application in
the start/2 function. In this case there’s only one, and the _Type and _StartArgs don’t
matter.

Running this application from the shell will require one bit of extra effort on your part.
You’ll need to compile drop_app, of course, but you’ll also need to tell Erlang about the
ebin directory containing the drop.app file, as shown on line 2. (OTP expects it to be
there, but will give you "no such file or directory" errors if you don’t tell Erlang
about the directory.)

1> c(drop_app).
{ok,drop_app}
2> code:add_path("ebin/").
true
3> application:load(drop).
ok
4> application:loaded_applications().

Packaging an Application | 163

[{kernel,"ERTS CXC 138 10","2.15.2"},
 {drop,"Dropping objects from towers","0.0.1"},
 {stdlib,"ERTS CXC 138 10","1.18.2"}]
5> application:start(drop).
ok
6> gen_server:call(drop, 60).
{ok,34.292856398964496}

Once Erlang knows where to look, you can use the application module’s functions to
load the application and check that Erlang found it. Once you start the application,
you can go ahead and make calls to it with gen_server:call. Because the supervisor is
bound to an application, you don’t need to worry about the shell shutting you down.
You can go ahead and break the drop calculation process with a negative value, and the
supervisor will just fire it back up.

7> whereis(drop).
<0.45.0>
8> gen_server:call(drop, -60).

=ERROR REPORT==== 2-Dec-2012::21:25:38 ===
** Generic server drop terminating
** Last message in was -60
** When Server state == {state,1}
** Reason for termination ==
** {badarith,[{math,sqrt,[-1176.0],[]},
 {drop,fall_velocity,1,[{file,"drop.erl"},{line,42}]},
 {drop,handle_call,3,[{file,"drop.erl"},{line,23}]},
 {gen_server,handle_msg,5,[{file,"gen_server.erl"},{line,588}]},
 {proc_lib,init_p_do_apply,3,
 [{file,"proc_lib.erl"},{line,227}]}]}
** exception exit: {{badarith,
 [{math,sqrt,[-1176.0],[]},
 {drop,fall_velocity,1,
 [{file,"drop.erl"},{line,42}]},
 {drop,handle_call,3,
 [{file,"drop.erl"},{line,23}]},
 {gen_server,handle_msg,5,
 [{file,"gen_server.erl"},{line,588}]},
 {proc_lib,init_p_do_apply,3,
 [{file,"proc_lib.erl"},{line,227}]}]},
 {gen_server,call,[drop,-60]}}
 in function gen_server:call/2 (gen_server.erl, line 180)
9> gen_server:call(drop, 60).
{ok,34.292856398964496}
10> whereis(drop).
<0.49.0>

There is much, much more to learn. OTP deserves a book or several all on its own.
Hopefully this chapter provides you with enough information to try some things out
and understand those books. However, the gap between what this chapter can reason‐
ably present and what you need to know to write solid OTP-based programs is… vast.

164 | Chapter 11: Getting Started with OTP

CHAPTER 12

Next Steps Through Erlang

Hopefully you now feel comfortable writing basic Erlang programs, and understand
roughly how modules and processes build into programs. You should be ready to ex‐
periment with writing Erlang code, but more importantly, you should be ready to explore
other resources for mastering Erlang and its many powerful libraries. There’s a lot to
explore!

Moving Beyond the Shell
The Erlang shell is a great place to test code, and to poke and prod Erlang code. You’ll
likely spend a lot more time in the shell if you keep using Erlang, but the way you use it
may change.

You can compile and run Erlang code outside of the shell, and this makes it much easier
to integrate Erlang work with tools you typically use to manage code and related re‐
sources. Erlang’s make module is a common place to start, letting you create Emakefile
files that provide instruction to the erl -make command.

If you want to automate your Erlang builds further, there are many ways to integrate
Erlang with the classic Make toolset. For a more thoroughly Erlang-centric build expe‐
rience, you may want to explore rebar, at https://github.com/rebar/rebar. You can even
mix Make and rebar to apply the strengths of each.

If you want to use Erlang from an IDE, you may want to explore http://erlide.org/, a set
of tools for working with Erlang in Eclipse. Emacs users will want to explore the Erlang
mode.

165

https://github.com/rebar/rebar
http://erlide.org/

Distributed Computing
Almost everything you’ve learned in this book points toward a computing model that
makes it easy to distribute programs across a network of Erlang nodes. Setting up a set
of nodes isn’t that difficult. It may even be too easy in some ways to let security-obsessed
administrators sleep easily.

Before you set up large sets of nodes, you’ll want to know much more about how Erlang
schedules code to run, how messages get passed among nodes, and how to administer
Erlang nodes remotely. All of that is out there, providing the foundation on which tools
like OTP and Mnesia can build.

Processing Binary Data
Erlang includes a binary data type, binary operators, and a variety of libraries for pro‐
cessing binary data. If you need to build network protocols that handle bits on the wire,
or ASN.1 data, for example, Erlang offers powerful tools for getting information into
and out of binary form. If you see numbers or strings enclosed in << and >>, you’ve
encountered Erlang’s tools for handling binary data. They allow you to specify, pattern
match, and process binary data structures.

Input and Output
Chapter 4 and Chapter 5 introduced you to the io:format functions in the context of
presenting information in the shell. The io module offers much more, however, for
reading and writing data, and the file, filename, filelib, and io_lib modules give
you the tools you need to get into and out of files. If networking is more your style, you’ll
want to explore the gen_tcp, gen_udp, and inet modules.

Testing, Analyzing, and Refactoring
Functional programming approaches should, once you get used to them, make it easier
to create clean code. However, it is always possible to tie yourself in knots, especially as
you move toward solving more complex problems than the ones presented in this book.

Unit testing is one approach to making sure that your code keeps working as you move
forward. Focused on small components of your programs that should be able to reliably
return a set of correct outputs from a given set of inputs, unit testing can both help to
tell you when you’ve made your code work and warn you when it breaks. Erlang includes
the EUnit framework for unit testing and the Common Test framework for system test‐
ing.

166 | Chapter 12: Next Steps Through Erlang

Erlang also includes Dialyzer, the Discrepancy Analyzer for Erlang, which can help you
catch basic errors of sending wrongly typed data, code that never gets called, and similar
issues that compilers for statically typed languages are usually good at catching. Erlang
also includes profilers and coverage tools; you should explore the eprof, fprof, and
cover modules, and the cprof tool.

If you’re excited about refactoring code—once you have more of it—you may want to
explore Wrangler, at http://www.cs.kent.ac.uk/projects/forse/wrangler/doc/overview-
summary.html. It allows you to explore your code and automate a wide variety of com‐
mon program modifications.

Networking and the Web
Erlang is a natural match for a world of web programming in which the number of users
is constantly increasing, data needs to move smoothly among nodes, and customers are
starting to expect critical web applications to work as reliably as the telephone system.
Most web applications are large pipelines of data, well-suited for Erlang’s strengths.

Several Erlang frameworks let you build web applications. Yaws (http://
yaws.hyber.org/), a web server itself written in Erlang, offers an environment that should
be fairly familiar to anyone building web applications. Yaws lets you mix Erlang code
with HTML (and other) templates, making it fairly easy to get a website or application
together on an Erlang foundation. If Yaws doesn’t look like it’s for you, you may also
want to explore Mochiweb (https://github.com/mochi/mochiweb) or Cowboy (https://
github.com/extend/cowboy). For a more comprehensive framework that can run with
any of these, take a look at Nitrogen (http://nitrogenproject.com/).

If you have fallen for the siren song of REST-based service development, you may also
want to explore Webmachine (http://wiki.basho.com/Webmachine.html), a toolkit for
HTTP processing that brings you very close to the core of the Web’s foundation protocol.
Even if you don’t end up using it, exploring its flow diagram at http://wiki.basho.com/
Webmachine-Diagram.html will teach you a lot about what’s involved in processing a
web request.

Data Storage
You already have ETS, DETS, and Mnesia. What else might you need?

Many people are using Erlang without knowing they are using it, as they interact with
the popular NoSQL databases CouchDB (http://couchdb.apache.org/) and Riak (http://
basho.com/products/riak-overview/). Their Erlang underpinnings make them easy to
distribute and manage, and they’ve both reached large and growing audiences. For a

Networking and the Web | 167

http://www.cs.kent.ac.uk/projects/forse/wrangler/doc/overview-summary.html
http://www.cs.kent.ac.uk/projects/forse/wrangler/doc/overview-summary.html
http://yaws.hyber.org/
http://yaws.hyber.org/
https://github.com/mochi/mochiweb
https://github.com/extend/cowboy
https://github.com/extend/cowboy
http://nitrogenproject.com/
http://wiki.basho.com/Webmachine.html
http://wiki.basho.com/Webmachine-Diagram.html
http://wiki.basho.com/Webmachine-Diagram.html
http://couchdb.apache.org/
http://basho.com/products/riak-overview/
http://basho.com/products/riak-overview/

great brief intro to them (and five other database options), you should explore Seven
Databases in Seven Weeks (Pragmatic Programmers). It won’t teach you much about
using them with Erlang, but it will give you a solid foundation that will help you explore
their Erlang interfaces once their broad approaches make sense to you.

Many other databases have Erlang interfaces, and there is support for the classic ODBC
connections.

Extending Erlang
If you need to wring out every drop of performance on a complex task, or want to avoid
rewriting a library written in a language other than Erlang, you’ll want to explore Erlang’s
tools for connecting with other programming languages. Erlang Programming explores
Java, C, and Ruby connections, but also notes approaches you can use to connect
with .NET languages, Python, Perl, PHP, Haskell, Scheme, and Emacs Lisp. You’ll want
to examine native implemented functions (NIFs) and drivers.

Languages Built on Erlang
Erlang may put the fun in functional programming, but its structures may feel brittle if
you’re used to the focus on flexibility that many other languages provide. Elixir (http://
elixir-lang.org/) combines the Erlang Runtime System with a very different syntax more
focused on polymorphism, meta-programming, and associative data structures. (One
of Erlang’s creators, Joe Armstrong, is also working in similar directions with his Erl2
work, which you can find at https://github.com/joearms/erl2.)

Erlang’s runtime model and tools are powerful and unique, and there may be other great
ideas coming that will let you apply them to work that might not seem on the surface
to be written in Erlang.

Community
As you learn more about Erlang, you’ll find a community happy to help you at every
level. The erlang-questions mailing list is at its heart, and welcomes beginners. During
the writing of this book, I found its archives incredibly valuable. You can find subscrip‐
tion and archive information at http://erlang.org/mailman/listinfo/erlang-questions, and
you will probably run into its archives regularly if you do searches on Erlang. If you
prefer live chat to email, there is also an #erlang IRC channel on freenode (http://free
node.net).

168 | Chapter 12: Next Steps Through Erlang

http://elixir-lang.org/
http://elixir-lang.org/
https://github.com/joearms/erl2
http://erlang.org/mailman/listinfo/erlang-questions
http://freenode.net
http://freenode.net

If you prefer “real” live chat to the Internet, Erlang has a thriving conference circuit. For
completely Erlang-focused venues, check out Erlang Factory (http://www.erlang-
factory.com/), which produces a number of shows around the world, including the Er‐
lang User Conference. The Association for Computing Machinery (ACM)’s Special In‐
terest Group on Programming Languages (SIGPLAN) also holds an Erlang Workshop,
about which you can learn more at http://www.erlang.org/workshop/.

There are also a lot of more informal “Erlounges” in a wide variety of locations, and
many larger conferences, like O’Reilly’s own Open Source Conference (OSCON), in‐
clude Erlang sessions and tutorials.

If you want to explore Erlang code, there’s lots of it on github; you can look around at
the most active projects by visiting https://github.com/languages/Erlang.

Sharing the Gospel of Erlang
It may seem easy to argue for Erlang. The broad shift from single computers to net‐
worked and distributed systems of multiprocessor-based computing gives the Erlang
environment a tremendous advantage over practically every other environment out
there. More and more of the computing world is starting to face exactly the challenges
that Erlang was built to address. Veterans of those challenges may find themselves
breathing a sigh of relief as they can stop pondering toolsets that tried too hard to carry
single-system approaches into a multi-system world.

At the same time, though, I’d encourage you to consider a bit of wisdom from Joe Arm‐
strong: “New technologies have their best chance a) immediately after a disaster or b)
at the start of a new project.” (http://erlang.org/pipermail/erlang-questions/2012-
October/069626.html)

While it is possible you’re reading this because a project you’re working on has had a
disaster (or you suspect it will have one soon), it’s easiest to apply Erlang to new projects,
preferably projects where the inevitable beginner’s mistakes won’t create new disasters.

Find projects that look like fun to you, and that you can share within your organization
or with the world. There’s no better way to show off the power of a programming lan‐
guage and environment than to build great things with it!

Sharing the Gospel of Erlang | 169

http://www.erlang-factory.com/
http://www.erlang-factory.com/
http://www.erlang.org/workshop/
https://github.com/languages/Erlang
http://erlang.org/pipermail/erlang-questions/2012-October/069626.html
http://erlang.org/pipermail/erlang-questions/2012-October/069626.html

APPENDIX A

An Erlang Parts Catalog

Like every language, Erlang has drawers full of parts that are fun to peruse. These are a
very few of the more common ones. If you want much much more, see http://
www.erlang.org/doc/reference_manual/users_guide.html.

Shell Commands
You can use most Erlang functions from the shell, but these are ones that are exclusive
to the shell.

Table A-1. Erlang shell commands
Command Action

q() Quits the shell and the Erlang runtime.

c(file) Compiles the specified Erlang file.

b() Displays all variable bindings.

f() Clears all variable bindings.

f(X) Clears specified variable binding.

h() Prints the history list of commands.

e(N) Repeats the command on line N.

v(N) The return value of line N.

catch_exception(boolean) Sets how strict the shell will be in passing errors.

rd(Name,Definition) Defines a record type Name with contents specified by Definition.

rr(File) Defines record types based on the contents of File.

rf() Clears all record definitions. Can also clear specific definitions.

rl() Lists all current record definitions.

pwd() Gets the present working directory.

171

http://www.erlang.org/doc/reference_manual/users_guide.html
http://www.erlang.org/doc/reference_manual/users_guide.html

Command Action

ls() Lists files at the current location.

cd(Directory) Changes to the specified Directory.

Reserved Words
There are a few Erlang terms you can’t use outside of their intended context.

The Erlang compiler will wonder what you’re trying to do if you use certain keywords
as atoms or function names. It will try to treat your atoms as if they were code, and you
can get very strange errors. After all, you should be able to have something called
band, right?

Table A-2. Reserved words, which require careful use
after and andalso band begin bnot bor bsl bsr bxor

case catch cond div end fun if let not of

or orelse query receive rem try when xor

For function names, the answer is simple: use something else. If you want to use these
as atoms, however, you can. You just need to enclose the offending reserved word in
single quotes: 'received', for example.

While they aren’t reserved words, there are also a few atoms commonly used in return
values. It’s probably best to use them only in the circumstances where they’re normally
expected.

Table A-3. Commonly used return value atoms
Atom Means

ok Normal exit to a method. (Does not mean that whatever you asked for succeeded.)

error Something went wrong. Typically accompanied by a larger explanation.

undefined A value hasn’t been assigned yet. Common in record instances.

reply A reply is included with some kind of return value.

noreply No return value is included. A response of some sort may come, however, from other communication.

stop Used in OTP to signal that a server should stop, and triggers the terminate function.

ignore Returned by OTP supervisor process that can’t start a child.

172 | Appendix A: An Erlang Parts Catalog

Operators
Table A-4. Logical (Boolean) Operators

Operator Description

and logical and

or logical or

xor logical xor

not unary logical not

The not operator is processed first.

andalso and orelse are also boolean operators for logical and and logical or, but they
are short-circuit operators. If they don’t need to process all the possibilities in their
arguments, they stop at the first one that gives them a definite answer.

Table A-5. Term Comparison Operators
Operator Description

== equal to

/= not equal to

=< less than or equal to

< less than

>= greater than or equal to

> greater than

=:= exactly equal to

=/= exactly not equal to

You can compare elements of different types in Erlang. The relationship of types from
“least” to “greatest” is:

number < atom < reference < fun < port < pid < tuple < list < bit string

Within number, you can compare integers and floats except with the more specific =:=
and =/= operators, both of which will return false when you compare numbers of
different types.

You can also compare tuples even when they contain different numbers of values. Erlang
will go through the tuples from left to right and evaluate on the first value that returns
a clear answer.

Operators | 173

Table A-6. Arithmetic Operators
Operator Description

+ unary + (positive)

- unary - (negative)

+ addition

- subtraction

* multiplication

/ floating point division

div integer division

rem integer remainder of X/Y

Table A-7. Binary Operators
Operator Description

bnot unary bitwise not

band bitwise and

bor bitwise or

bxor arithmetic bitwise xor

bsl arithmetic bitshift left

bsr bitshift right

Table A-8. Operator Precedence, from highest to lowest
Operator Associativity

:

#

Unary + - bnot not

/ * div rem band and Left associative

+ - bor bxor bsl bsr or xor Left associative

++ -- Right associative

== /= =< < >= > =:= =/=+

andalso

orelse

= ! Right associative

catch

The highest priority operator in an expression is evaluated first. Erlang evaluates oper‐
ators with the same priority by following associative paths. (Left associative operators
go left to right, right associative operators go right to left.)

174 | Appendix A: An Erlang Parts Catalog

Guard Components
Erlang allows only a limited subset of functions and other features in guard expressions,
going well beyond a “no side effects” rule to keep a simple subset of possibilities. The
list of allowed components includes the following:

• true

• Other constants (regarded as false)
• Term comparisons (Table A-5)
• Arithmetic expressions (Table A-6 and Table A-7)
• Boolean expressions and short-circuit expressions (andalso and orelse)
• The following functions: hd/1, is_atom/1, is_binary/1, is_bitstring/1,
is_boolean/1, is_float/1, is_function/1, is_function/2, is_integer/1,
is_list/1, is_number/1, is_pid/1, is_port/1, is_record/2, is_record/3,
is_reference/1, is_tuple/1

Common Functions
Table A-9. Mathematical functions

Function Use

math:pi/0 The constant pi

math:sin/1 Sine

math:cos/1 Cosine

math:tan/1 Tangent

math:asin/1 Inverse sine (arcsine)

math:acos/1 Inverse cosine (arcosine)

math:atan/1 Inverse tangent (arctangent)

math:atan2/2 Arctangent that understands quadrants

math:sinh/1 Hyperbolic sine

math:cosh/1 Hyperbolic cosine

math:tanh/1 Hyperbolic tangent

math:asinh/1 Hyperbolic arcsine

math:acosh/1 Hyperbolic arccosine

math:atanh/1 Hyperbolic arctangent

math:exp/1 Exponential function

math:log/1 Natural logarithm (base e)

Guard Components | 175

Function Use

math:log10/1 Logarithm (base 10)

math:pow/2 First argument to the second argument power

math:sqrt/1 Square root

math:erf/1 Error function

math:erfc/1 Complementary error function

Arguments for all trigonometric functions are expressed in radians. To convert degrees
to radians, divide by 180 and multiply by pi.

The erf/1 and erfc/1 functions may not be implemented in Windows.
The Erlang documentation also warns more broadly that “Not all func‐
tions are implemented on all platforms,” but these come directly from
the C language libraries.

Table A-10. Approachable higher-order functions for processing lists
function Returns Use

lists:foreach/2 ok Side effects specified in function

lists:map/2 new list Apply function to list values

lists:filter/2 subset Creating list where function returns true

lists:all/2 boolean Returns true if function true for all values, otherwise false

lists:any/2 boolean Returns true if function true for any values, otherwise false

lists:takewhile/2 subset Collects the head of the list until the function is true

lists:dropwhile/2 subset Deletes the head of the list until the function is true

lists:foldl/3 accumulator Passes function list value and accumulator, forward through list

lists:foldr/3 accumulator Passes function list value and accumulator, backward through list

lists:partition/3 Tuple of two lists Split list based on function

Chapter 7 describes these in greater detail.

Strings and Formatting
Table A-11. Simple control sequences for io:format and error_logger functions

Sequence Produces

~p Value, pretty-printed

~w Value, no indentation

~s Contents of a string

~c ASCII character corresponding to a number

176 | Appendix A: An Erlang Parts Catalog

Sequence Produces

~tc Unicode character corresponding to a number

~i Ignores that item

~n Newline (doesn’t reference argument list)

Table A-12. Escape sequences for strings
Sequence Produces

\" double quote

\' single quote

\\ backslash

\b backspace

\d delete

\e escape

\f form feed

\n newline

\r carriage return

\s space

\t tab

\v vertical tab

\XYZ, \YZ, \Z character with octal representation XYZ, YZ or Z

\xXY character in hex

\x{X…} characters in hex, where X… is one or more hexadecimal characters

^a…^z or ^A…\^Z control-A to control-Z

Table A-13. Common string processing functions
Function Returns

string:len/1 Length of the string. (Traverses string, so slows with big ones.)

length/1 Length of the string. (Traverses string, so slows with big ones.)

string:concat/2 A single string containing the two parts from the arguments.

lists:concat/1 A single string containing all the parts from the arguments.

lists:append/1-2 A single string containing all the parts from the arguments.

lists:nth/2 The character at the specified position.

hd/1 First character of the string.

string:chr/2 The position where the specified character first appears.

string:str/2 The position of a substring in a string.

string:substr/2-3 A segment from a string at a given position of a given length.

string:sub_string/2-3 A segment from a string between two positions.

Strings and Formatting | 177

Function Returns

string:tokens/2 A list of pieces from a string broken at the specified separators.

string:join/2 A string made from the list of pieces with specified separators added.

string:words/1-2 The number of words in the string.

string:chars/2-3 A string that repeats a given character a given number of times.

string:copies/2 A string that repeats a given string a given number of times.

string:strip/1-3 A string with leading and/or trailing whitespace (or specified characters) removed.

string:left/2-3 A string of a specified length, padded with spaces on the right if needed.

string:right/2-3 A string of a specified length, padded with spaces on the left if needed.

string:centre/2-3 A string of a specified length, padded with spaces on the left and right if needed.

lists:reverse/1-2 A string in backwards order.

string:to_float/1 The float contents of the string, plus leftovers, or an error tuple.

string:to_integer/1 The integer contents of the string, plus leftovers, or an error tuple.

string:to_lower/1 A version of the string with all uppercase (Latin-1) characters converted to lowercase.

string:to_upper/1 A version of the string with all lowercase (Latin-1) characters converted to uppercase.

integer_to_list/1-2 A string version of an integer, optionally in a specified base.

float_to_list/1 A string version of a float.

erlang:fun_to_list/1 A string version of a fun.

list_to_atom/1 An atom version of a string.

Note: I’m working on creating a single wrapper module that assembles Erlang’s tools for
working with strings into one place. For more, visit https://github.com/simonstl/erlang-
simple-string.

Data Types for Documentation and Analysis
Table A-14. Basic Data Types for -spec and EDoc
atom() binary() float() fun() integer() list() tuple()

union() node() number() string() char() byte() [] (nil)

any() none() pid() port() reference()

For more, see http://www.erlang.org/doc/reference_manual/typespec.html .

178 | Appendix A: An Erlang Parts Catalog

https://github.com/simonstl/erlang-simple-string
https://github.com/simonstl/erlang-simple-string
http://www.erlang.org/doc/reference_manual/typespec.html

APPENDIX B

OTP Templates

These are the full templates for gen_server, supervisor, and application from the
Emacs mode for Erlang. Some pieces are more useful than others, but seeing the full set
of expected responses can be useful.

Remember, the noreply atom doesn’t mean “there will never be a reply”
but rather that “this response isn’t a reply.”

Example B-1. A gen_server template from the Erlang mode for Emacs
%%%---
%%% @author $author
%%% @copyright (C) $year, $company
%%% @doc
%%%
%%% @end
%%% Created : $fulldate
%%%---
-module($basename).

-behaviour(gen_server).

%% API
-export([start_link/0]).

%% gen_server callbacks
-export([init/1,
 handle_call/3,
 handle_cast/2,
 handle_info/2,
 terminate/2,

179

 code_change/3]).

-define(SERVER, ?MODULE).

-record(state, {}).

%%%===
%%% API
%%%===

%%--
%% @doc
%% Starts the server
%%
%% @spec start_link() -> {ok, Pid} | ignore | {error, Error}
%% @end
%%--
start_link() ->
 gen_server:start_link({local, ?SERVER}, ?MODULE, [], []).

%%%===
%%% gen_server callbacks
%%%===

%%--
%% @private
%% @doc
%% Initializes the server
%%
%% @spec init(Args) -> {ok, State} |
%% {ok, State, Timeout} |
%% ignore |
%% {stop, Reason}
%% @end
%%--
init([]) ->
 {ok, #state{}}.

%%--
%% @private
%% @doc
%% Handling call messages
%%
%% @spec handle_call(Request, From, State) ->
%% {reply, Reply, State} |
%% {reply, Reply, State, Timeout} |
%% {noreply, State} |
%% {noreply, State, Timeout} |
%% {stop, Reason, Reply, State} |
%% {stop, Reason, State}
%% @end
%%--

180 | Appendix B: OTP Templates

handle_call(_Request, _From, State) ->
 Reply = ok,
 {reply, Reply, State}.

%%--
%% @private
%% @doc
%% Handling cast messages
%%
%% @spec handle_cast(Msg, State) -> {noreply, State} |
%% {noreply, State, Timeout} |
%% {stop, Reason, State}
%% @end
%%--
handle_cast(_Msg, State) ->
 {noreply, State}.

%%--
%% @private
%% @doc
%% Handling all non call/cast messages
%%
%% @spec handle_info(Info, State) -> {noreply, State} |
%% {noreply, State, Timeout} |
%% {stop, Reason, State}
%% @end
%%--
handle_info(_Info, State) ->
 {noreply, State}.

%%--
%% @private
%% @doc
%% This function is called by a gen_server when it is about to
%% terminate. It should be the opposite of Module:init/1 and do any
%% necessary cleaning up. When it returns, the gen_server terminates
%% with Reason. The return value is ignored.
%%
%% @spec terminate(Reason, State) -> void()
%% @end
%%--
terminate(_Reason, _State) ->
 ok.

%%--
%% @private
%% @doc
%% Convert process state when code is changed
%%
%% @spec code_change(OldVsn, State, Extra) -> {ok, NewState}
%% @end
%%--

OTP Templates | 181

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

%%%===
%%% Internal functions
%%%===

Example B-2. A supervisor template from the Erlang mode for Emacs
%%%---
%%% @author $author
%%% @copyright (C) $year, $company
%%% @doc
%%%
%%% @end
%%% Created : $fulldate
%%%---
-module($basename).

-behaviour(supervisor).

%% API
-export([start_link/0]).

%% Supervisor callbacks
-export([init/1]).

-define(SERVER, ?MODULE).

%%%===
%%% API functions
%%%===

%%--
%% @doc
%% Starts the supervisor
%%
%% @spec start_link() -> {ok, Pid} | ignore | {error, Error}
%% @end
%%--
start_link() ->
 supervisor:start_link({local, ?SERVER}, ?MODULE, []).

%%%===
%%% Supervisor callbacks
%%%===

%%--
%% @private
%% @doc
%% Whenever a supervisor is started using supervisor:start_link/[2,3],
%% this function is called by the new process to find out about
%% restart strategy, maximum restart frequency and child

182 | Appendix B: OTP Templates

%% specifications.
%%
%% @spec init(Args) -> {ok, {SupFlags, [ChildSpec]}} |
%% ignore |
%% {error, Reason}
%% @end
%%--
init([]) ->
 RestartStrategy = one_for_one,
 MaxRestarts = 1000,
 MaxSecondsBetweenRestarts = 3600,

 SupFlags = {RestartStrategy, MaxRestarts, MaxSecondsBetweenRestarts},

 Restart = permanent,
 Shutdown = 2000,
 Type = worker,

 AChild = {'AName', {'AModule', start_link, []},
 Restart, Shutdown, Type, ['AModule']},

 {ok, {SupFlags, [AChild]}}.

%%%===
%%% Internal functions
%%%===

Example B-3. An application module template from the Erlang mode for Emacs
%%%---
%%% @author $author
%%% @copyright (C) $year, $company
%%% @doc
%%%
%%% @end
%%% Created : $fulldate
%%%---
-module($basename).

-behaviour(application).

%% Application callbacks
-export([start/2, stop/1]).

%%%===
%%% Application callbacks
%%%===

%%--
%% @private
%% @doc
%% This function is called whenever an application is started using
%% application:start/[1,2], and should start the processes of the

OTP Templates | 183

%% application. If the application is structured according to the OTP
%% design principles as a supervision tree, this means starting the
%% top supervisor of the tree.
%%
%% @spec start(StartType, StartArgs) -> {ok, Pid} |
%% {ok, Pid, State} |
%% {error, Reason}
%% StartType = normal | {takeover, Node} | {failover, Node}
%% StartArgs = term()
%% @end
%%--
start(_StartType, _StartArgs) ->
 case 'TopSupervisor':start_link() of
 {ok, Pid} ->
 {ok, Pid};
 Error ->
 Error
 end.

%%--
%% @private
%% @doc
%% This function is called whenever an application has stopped. It
%% is intended to be the opposite of Module:start/2 and should do
%% any necessary cleaning up. The return value is ignored.
%%
%% @spec stop(State) -> void()
%% @end
%%--
stop(_State) ->
 ok.

%%%===
%%% Internal functions
%%%===

184 | Appendix B: OTP Templates

About the Author
Simon St. Laurent is a web developer, network administrator, computer book author,
and XML troublemaker living in Ithaca, NY. His books include XML: A Primer, XML
Elements of Style, and Building XML Applications, Cookies, and Sharing Bandwidth. He
is a contributing editor to XMLhack.com and an occasional contributor to XML.com.

Colophon
The cover image is from Wood’s Animate Creation. The cover font is Adobe ITC Gara‐
mond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	Who This Book Is Not For
	What This Book Will Do For You
	How This Book Works
	Why I Wrote This Book
	Other Resources
	Are You Sure You Want Erlang?
	Erlang Will Change You
	Conventions Used in This Book
	A Note on Erlang Syntax
	Using Code Examples
	Help This Book Grow
	Please Use It For Good
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Getting Comfortable
	Installation
	Firing It Up
	First Steps: The Shell
	Moving through Text
	Moving through History
	Moving through Files

	Doing Something
	Calling Functions
	Numbers in Erlang
	Working with Variables in the Shell
	Seeing Your Bound Variables
	Clearing Bound Variables in the Shell

	Chapter 2. Functions and Modules
	Fun with fun
	Defining Modules
	From Module to Fun
	Functions and Variable Scope
	Module Directives

	Documenting Code
	Documenting Modules
	Documenting Functions
	Documenting Your Application

	Chapter 3. Atoms, Tuples, and Pattern Matching
	Atoms
	Pattern Matching with Atoms
	Atomic Booleans
	Guards
	Underscoring That You Don’t Care
	Adding Structure: Tuples
	Pattern Matching with Tuples
	Processing Tuples

	Chapter 4. Logic and Recursion
	Logic Inside of Functions
	Evaluating Cases
	If This, Then That
	Variable Assignment in case and if Constructs

	The Gentlest Side Effect: io:format
	Simple Recursion
	Counting Down
	Counting Up
	Recursing with Return Values

	Chapter 5. Communicating with Humans
	Strings
	Asking Users for Information
	Gathering Terms
	Gathering Characters
	Reading Lines of Text

	Chapter 6. Lists
	List Basics
	Splitting Lists into Heads and Tails
	Processing List Content
	Creating Lists with Heads and Tails
	Mixing Lists and Tuples
	Building a List of Lists

	Chapter 7. Higher-Order Functions and List Comprehensions
	Simple Higher-Order Functions
	Creating New Lists with Higher-Order Functions
	Reporting on a List
	Running List Values Through a Function
	Filtering List Values

	Beyond List Comprehensions
	Testing Lists
	Splitting Lists
	Folding Lists

	Chapter 8. Playing with Processes
	The Shell Is a Process
	Spawning Processes from Modules
	Lightweight Processes
	Registering a Process
	When Processes Break
	Processes Talking Amongst Themselves
	Watching Your Processes
	Breaking Things and Linking Processes

	Chapter 9. Exceptions, Errors, and Debugging
	Flavors of Errors
	Catching Runtime Errors as They Happen
	Raising Exceptions with throw
	Logging Progress and Failure
	Debugging through a GUI
	Tracing Messages
	Watching Function Calls

	Chapter 10. Storing Structured Data
	From Tuples to Records
	Setting Up Records
	Creating and Reading Records
	Using Records in Functions and Modules

	Storing Records in Erlang Term Storage
	Creating and Populating a Table
	Simple Queries
	A Key Feature: Overwriting Values
	ETS Tables and Processes
	Next Steps

	Storing Records in Mnesia
	Starting up Mnesia
	Creating Tables
	Reading Data
	Query List Comprehensions

	Chapter 11. Getting Started with OTP
	Creating Services with gen_server
	A Simple Supervisor
	Packaging an Application

	Chapter 12. Next Steps Through Erlang
	Moving Beyond the Shell
	Distributed Computing
	Processing Binary Data
	Input and Output
	Testing, Analyzing, and Refactoring
	Networking and the Web
	Data Storage
	Extending Erlang
	Languages Built on Erlang
	Community
	Sharing the Gospel of Erlang

	Appendix A. An Erlang Parts Catalog
	Shell Commands
	Reserved Words
	Operators
	Guard Components
	Common Functions
	Strings and Formatting
	Data Types for Documentation and Analysis

	Appendix B. OTP Templates
	About the Author

