

JUMPSTARTING
the Raspberry Pi
Zero W
CONTROL THE WORLD AROUND
YOU WITH A $10 COMPUTER

Akkana Peck

Copyright © 2017 Akkana Peck. All rights reserved.

Published by Maker Media, Inc., 1700 Montgomery Street, Suite 240, San
Francisco, CA 94111

Maker Media books may be purchased for educational, business, or
sales promotional use. Online editions are also available for most titles
(safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Publisher: Roger Stewart
Editor: Patrick DiJusto
Copy Editor: Elizabeth Welch, Happenstance Type-O-Rama
Proofreader: Scout Festa, Happenstance Type-O-Rama
Interior Designer and Compositor: Maureen Forys, Happenstance
Type-O-Rama
Cover Designer: Maureen Forys, Happenstance Type-O-Rama
Indexer: Valerie Perry, Happenstance Type-O-Rama

All the circuit and component diagrams in this book are created using Fritz-
ing (http://fritzing.org/home).

August 2017: First Edition

Revision History for the First Edition
2017-08-28 First Release

See oreilly.com/catalog/errata.csp?isbn=9781680453911 for release details.

Make:, Maker Shed, and Maker Faire are registered trademarks of Maker
Media, Inc. The Maker Media logo is a trademark of Maker Media, Inc. Jump-
starting the Raspberry Pi Zero W and related trade dress are trademarks
of Maker Media, Inc. Many of the designations used by manufacturers and
sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and Maker Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.
While the publisher and the author have used good faith efforts to ensure
that the information and instructions contained in this work are accurate,
the publisher and the author disclaim all responsibility for errors or omis-
sions, including without limitation responsibility for damages resulting from
the use of or reliance on this work. Use of the information and instructions
contained in this work is at your own risk. If any code samples or other tech-
nology this work contains or describes is subject to open source licenses or
the intellectual property rights of others, it is your responsibility to ensure
that your use thereof complies with such licenses and/or rights.

978-1-680-45-391-1

mailto:corporate@oreilly.com
http://fritzing.org/home
oreilly.com/catalog/errata.csp?isbn=9781680453911

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers expert
content in both book and video form from the world’s leading authors in
technology and business. Technology professionals, software developers,
web designers, and business and creative professionals use Safari Books
Online as their primary resource for research, problem solving, learning,
and certification training. Safari Books Online offers a range of plans and
pricing for enterprise, government, education, and individuals. Members
have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly
Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft
Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley &
Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course
Technology, and hundreds more. For more information about Safari Books
Online, please visit us online.

How to Contact Us
Please address comments and questions to the publisher:

Maker Media
1700 Montgomery St.
Suite 240
San Francisco, CA 94111

You can send comments and questions to us by email at
 books@ makermedia.com.

Maker Media unites, inspires, informs, and entertains a growing community
of resourceful people who undertake amazing projects in their backyards,
basements, and garages. Maker Media celebrates your right to tweak, hack,
and bend any Technology to your will. The Maker Media audience continues
to be a growing culture and community that believes in bettering ourselves,
our environment, our educational system—our entire world. This is much
more than an audience, it’s a worldwide movement that Maker Media is
leading. We call it the Maker Movement.

To learn more about Make: visit us at makezine.com. You can learn more
about the company at the following websites:

Maker Media: makermedia.com

Maker Faire: makerfaire.com

Maker Shed: makershed.com

mailto:books@�makermedia.com
makezine.com
makermedia.com
makerfaire.com
makershed.com

iv

DEDICATION

 To Dave: husband, friend, life companion…plus editor and
proofreader

 v

CONTENTS

Acknowledgments vii

1 Getting Started 1

Hardware Requirements 2
About the Raspberry Pi Zero W 2
Installing Raspbian 4
Connecting to a Monitor, Keyboard, and Mouse 6
Headless: Connecting Without a Monitor 9
Finding Your Pi on the Local Network 12
SSHing to Your Raspberry Pi 13
Logging In and Changing the Default Password 14
Basic Configuration 15
The PIXEL Desktop 17
Introducing the Linux Command Line 18
Installing Software 20
Getting Help 21

2 Blink an LED 23

Hardware Requirements 24
What Is GPIO? 25
Headers: Hooking Up to the Pi Zero W 25
Wiring an LED on a Breadboard 28
The Raspberry Pi Pin Layout 31
Controlling an LED from the Command Line 33
Blinking an LED from the Command Line 35
Blinking an LED from a Python Program 36
Fade an LED 39
Python Blink Using RPi-gpio 40

vi

Python Fade using RPi-gpio 42
Reading Input: A Pushbutton 43
Other Languages, Other Interfaces 46

3 A Temperature Notifier and Fan Control 47

Hardware Requirements 48
What Is I2C? 49
Choosing a Sensor 50
A Temperature Tweeter 59
Controlling a Fan or Air Conditioner 65

4 A Wearable News Alert Light Show 73

Hardware Requirements 74
DotStars 77
NeoPixels 82
Searching for Twitter Keywords 89
Web Scraping in Python 95
Making It Portable: Batteries 98

 vii

ACKNOWLEDGMENTS

Any book represents the work of a team, not just a single author.
I’d like to thank my husband Dave for his endless work review-

ing each draft and helping rein in my prolixity—not to mention
putting up with my angst and bellyaching when things didn’t
work as expected.

The staff at Maker Media—Liz, Maureen, and especially my
editor, Patrick—were ever helpful and patient, putting up with
my constant stream of rewrites and trying to work through the
various software problems we encountered.

And let’s not forget all the folks who share open source code
and libraries. Without them, the Pi Zero W would never light a
single LED.

The wiring diagrams in the book were made with Fritzing, a ter-
rific free tool for sharing circuit information (http://fritzing.org/). The
images were edited with GIMP, the premiere open source image
editing tool. The Fritzing .fzz and GIMP .xcf files are on the book’s
GitHub repository, https://github.com/akkana/pi-zero-w-book.

http://fritzing.org/
https://github.com/akkana/pi-zero-w-book

Getting Started

Why choose the Raspberry Pi Zero W? It’s small. It’s cheap.
It’s power efficient. It has WiFi and Bluetooth Low Energy (BLE)
built in. And it has the same general-purpose input/output
(GPIO) header that bigger Raspberry Pis have: the gateway to
controlling all sorts of hardware.

It’s easy to build gizmos that use hardware and networking
in fun ways. In this book, you’ll build three projects using the Pi
Zero W:

 * Blinking LEDs

 * An environmental monitor that can keep track of the tem-
perature in your house, and even turn on your fan or air
conditioner before you get home from work

 * A wearable light string that monitors news feeds and websites
to alert you when there’s something interesting going on

You don’t need much prior experience with either hardware
or programming—though knowing how to solder will help.

1

Jumpstarting the Raspberry Pi Zero W2

With what you learn from these projects, you can extend the
Pi’s power to hundreds of other hardware and software projects.

HARDWARE REQUIREMENTS

Each chapter opens with a list of hardware required to finish
the project. That makes it easy to know you have what you need
without running to the electronics store every half hour, or if you
live in a remote area, waiting several days for mail order.

Here’s the hardware you’ll need for this introductory chapter:

 * The Raspberry Pi Zero W itself (though you can follow
along on any Raspberry Pi)

 * A power source: 5 volts, at least 1 amp, with a MicroUSB plug

 * A microSD card, preferably at least 8 GB, to use with a monitor
(you can get by with 4 GB if you only want to run “headless”)

 * Another computer with WiFi and a MicroSD writer

To use the PIXEL desktop, you’ll need the following:

 * A monitor, keyboard, and mouse

 * A cable that connects mini-HDMI to your monitor

 * A USB hub, ideally one with external power and not USB 3:
either a hub that plugs into MicroUSB, or a regular hub plus
a USB On-the-Go (OTG) adapter

Now let’s look at the board itself.

ABOUT THE RASPBERRY PI ZERO W

The technical specs of the Pi Zero W are as follows:

 * 1 GHz, single-core ARM11 Broadcom CPU

Getting Started 3

 * 512 MB of RAM

 * MicroSD card slot

 * MicroUSB power connector

 * Mini-HDMI video port

 * MicroUSB On-the-Go (OTG) port

 * Hardware Attached on Top (HAT)-compatible 40-pin
header

 * Composite video and reset headers

 * CSI camera connector

 * 802.11n wireless LAN

 * Bluetooth Low Energy 4.0

Quarter

Pi camera
port

Power In
Micro USB OTG

Micro
SD card

GPIO
ports

Mini-HDMI

FIGURE 1.1: The small but mighty Raspberry Pi Zero W

Jumpstarting the Raspberry Pi Zero W4

The Pi Zero W sports a fairly punchy processor for such a small,
inexpensive device—not as hot as the larger Pi 3, but faster than
the original Raspberry Pi—and it can run a full version of Linux.
That means you have hundreds of programs and libraries already
available, and you can write your own software for it in any lan-
guage of your choice. Most examples in this book will use Python:
it’s the most flexible, the easiest to learn, and very well supported.

The Pi Zero W doesn’t arrive with an operating system, or
even any built-in storage. It has to boot from a MicroSD card with
an OS installed.

The most popular OS for the Raspberry Pi family is Raspbian,
a version of Debian Linux. It’s built for the ARM CPU and custom-
ized for the Raspberry Pi, so that’s what you’ll use with this book.
You can also run other versions of Linux, such as Arch or Gentoo,
as well as specialized distributions optimized for tasks like play-
ing video on your TV. But the Zero W isn’t the best choice for
such heavy lifting; for TV you’re better off choosing the faster
Raspberry Pi 3.

You can buy MicroSD cards that already have Raspbian
installed, but it’s easy to download and install yourself. You’ll need
a computer (not the Pi itself) that can write to an SD card.

INSTALLING RASPBIAN

Since you can’t boot your Pi Zero W until you install an OS to the
SD card, you’ll do this step with your existing computer.

You can download Raspbian from the Raspberry Pi Founda-
tion: https://www.raspberrypi.org/downloads/raspbian/

It gives you two options: install just Raspbian, or install some-
thing called NOOBS (which stands for New Out Of the Box
Software). NOOBS gives you links to install several different OS
options, including Raspbian, but it’s a larger download and takes
longer to install. For this book, choose Raspbian.

https://www.raspberrypi.org/downloads/raspbian/

Getting Started 5

FIGURE 1.2: The Raspbian download page

On the Raspbian download page, you’ll see two options:

 * Raspbian Jessie with PIXEL

 * Raspbian Jessie Lite

Raspbian is a version of Debian, and Debian versions are
named after characters from the Toy Story movies. Raspbian is
currently based on the last version of Debian, named Jessie—the
Yodeling Cowgirl from Toy Story 2 and 3. As this book was being
written, Debian released a newer version, named Stretch, after a
stretchy purple octopus from Toy Story 3. Raspbian will eventu-
ally upgrade to Stretch, but there shouldn’t be much difference
on the surface.

PIXEL is the name of the desktop Raspbian uses—the inter-
face and menus you see on the screen when you connect a mon-
itor to the Pi. If you plan to connect your Pi to a monitor, you

Jumpstarting the Raspberry Pi Zero W6

definitely want the full version with PIXEL. If you’re planning on
using it for lightweight hardware projects, never want to run a
desktop, and want to save space on the SD card, you can choose
Jessie Lite. In that case, after you’ve finished installing Raspbian
to your SD card, you can skip ahead to the section “Headless:
Connecting Without a Monitor.”

Whichever image you download, unzip it to get a file with
a name like 2017-04-10-raspbian-jessie.img. (The date might be
different.) Follow the directions linked from the Raspbian Down-
load page. For the full Raspbian, if your unzip program is old and
can’t handle zip files larger than 4 GB, you may need to install a
newer one.

Then write the unzipped file directly to your SD card. You need
to overwrite the whole card, not just copy the file onto a partition.
The Raspbian folks recommend using a tool called Etcher, which
you can find at https://etcher.io/. But they also have instructions
for people who want more control over the process: Windows
users can use Win32DiskImager, and Mac and Linux people can
use dd. If you’re a Chromebook user, Raspbian doesn’t have a page
for you, but if you use developer mode and bring up a terminal,
you can follow the dd instructions meant for Linux users.

CONNECTING TO A MONITOR,
KEYBOARD, AND MOUSE

You now have Raspbian installed and you’re ready to try it. If you
don’t have a monitor handy and want to run headless, skip ahead
to the section “Headless: Connecting Without a Monitor.”

The Pi Zero W has a built-in mini-HDMI video port. So you
will need a cable that connects from mini-HDMI to whatever your
monitor requires, like HDMI or DVI, or you’ll have to use adapters
on a regular HDMI cable.

https://etcher.io/

Getting Started 7

FIGURE 1.3: An HDMI cable with a mini-HDMI adapter

FIGURE 1.4: Adapters galore! A video adapter from mini-HDMI to regular
HDMI, and then to DVI, plus a USB OTG adapter. The Pi Zero W also has a
ribbon cable attached to it.

Jumpstarting the Raspberry Pi Zero W8

You’ll also need a USB hub. The Pi Zero W has only a single
MicroUSB port (plus a power port that uses the same connec-
tor), but you’ll need a place to plug in both a keyboard and a
mouse. The hub can be a little tricky: Pis have known problems
connecting to some cheap unpowered hubs and trouble driving
slow hardware like a mouse or keyboard off a USB 3 hub. Your
best bet is a USB 2 hub with an external power supply.

FIGURE 1.5: The powered USB 2 hub is plugged in to the Pi via a USB OTG
adapter. The author’s DVI KVM is connected via two adapters to the Zero
W’s mini HDMI, and the mouse and keyboard cables from the KVM plug
into the USB hub. Whew!

You might also need a special USB cable. Most hubs have a
regular USB A plug. But you need a hub specifically intended
for computers with MicroUSB, or an adapter that goes from
MicroUSB to your hub. One option is a MicroUSB-to-USB A

Getting Started 9

female adapter, sometimes called a USB OTG adapter; they’re
inexpensive and will probably be useful for a variety of purposes
on the Pi Zero W.

FIGURE 1.6: A USB On-the-Go (OTG) adapter

Got your mini-HDMI and USB hub all set up? It’s time to try
booting the Pi Zero W with a monitor. Skip ahead to “Logging In
and Changing the Default Password.”

HEADLESS: CONNECTING WITHOUT A
MONITOR

The Raspberry Pi Zero W is a great hardware controller. It’s small
and power efficient, and it has all those hardware outputs. You
might have bought it purely for that purpose and have no inten-
tion of connecting it to a monitor.

But how do you get your software on it or test it?
Fortunately, there are several ways to connect over the Pi Zero

W’s built-in WiFi. The easiest is Secure Shell, or SSH. But before
you can do that, you have to set up wireless on the SD card so that
the Pi will boot and automatically connect itself to the network.

Jumpstarting the Raspberry Pi Zero W10

Start by plugging your Raspbian SD card into your computer.
If you’ve just finished copying Raspbian to the card, eject the
card and reinsert it to force the computer to read and mount the
new partitions you just wrote onto the card.

Normal Raspbian (not NOOBS) uses two partitions on the SD
card. The first is the boot partition: it contains a Linux kernel and
some startup files like drivers for hardware the Pi can’t do with-
out. The second is the root partition, where most of Raspbian’s
files are. The root partition is formatted as the native Linux ext4
filesystem, and you probably won’t be able to mount it except
from another Linux computer. Fortunately, you can do the con-
figuration you’re most likely to need using only the boot partition,
which you can mount on any computer. Mount that partition now.

Configuring SSH and WiFi from
Another Computer
Raspbian has SSH out of the box, but it’s disabled by default. To
enable it, create a file called ssh on the SD card’s boot partition.
The file can be empty; all that matters is that it’s named ssh. Now
Raspbian will start SSH the next time you boot.

That’s the easy part. Next you have to set up the Pi’s network
connection.

If your WiFi network uses Dynamic Host Configuration Proto-
col, or DHCP (which handles automatic addressing), and doesn’t
have a password or any browser authentication screens, the Pi
should connect on its own. In that case, skip ahead to “Find-
ing Your Pi on the Local Network.” Otherwise, you can config-
ure networking by creating a file on the boot partition called
wpa_ supplicant.conf.

You’ll need the name of your network, called the service set
identifier (SSID). That’s what you normally see in your computer’s
menus when you connect. Of course, you’ll need your network
password if you have one.

Getting Started 11

If your network requires browser authentication—in other
words, if you connect to the network without a password, then
go to a web page where you type in a password—you’re probably
out of luck. There’s no easy way to set up a computer to do that
automatically. If plugging in a monitor isn’t possible, you have a
couple more options. You can use a USB Ethernet dongle with
an OTG adapter. Or you can buy a USB serial cable made for a
Raspberry Pi, in which case you’ll need to edit config.txt on the
SD card’s boot partition and add these two lines to enable a serial
console and disable Bluetooth:

enable_uart=1
dtoverlay=pi3-disable-bt

But back to configuring WiFi.
Got your SSID and password ready? Create wpa_supplicant.conf

by opening it with whatever text editor you prefer. You must use a
plain text editor, not a word processor like Word. If you don’t already
have a text editor you use regularly, try Notepad on Windows, Tex-
tEdit on Mac, or nano on Linux.

Enter this:

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1

country=US
network={
 ssid="YOUR SSID"
 psk="YOUR PASSWORD"
}

in which YOUR SSID is replaced by the SSID of your network, and
YOUR PASSWORD is replaced by your network password. If your net-
work doesn’t have a password, use this instead:

network={
 ssid="YOUR SSID"
 key_mgmt=NONE
}

Jumpstarting the Raspberry Pi Zero W12

If your SSID is hidden (it doesn’t show up automatically when
you scan for networks), it might help to add this line after the
key_mgmt line:

 scan_ssid=1

Save the file and exit.
To use a static IP address, rather than one dynamically config-

ured with DHCP, you need an extra step. (If you aren’t sure, you
probably won’t need this step.)

You’ll need to mount the Raspbian partition, the second par-
tition on the hard drive. It’s an ext4 format filesystem, so you’ll
probably need access to a Linux machine for this part. In etc on
the Raspbian partition, edit the file dhcpcd.conf. Add a section at
the bottom with your static network information:

interface wlan0
static ip_address=192.168.1.x
static routers=192.168.1.1
static domain_name_servers=192.168.1.1

Replace 192.168.1.x and, if needed, the other addresses with
the ones for your network. Save the file and exit. You’re ready to
try booting.

FINDING YOUR PI ON THE LOCAL
NETWORK

If you’re connecting to your Pi over the network rather than using
a monitor and you’re not using a static IP address, you’ll have
to figure out what address it ended up using. That will be four
numbers separated by dots, like 192.168.1.125.

If you’re on your own home network and you can log in to your WiFi
router (usually by using a browser to navigate to http://192.168.1.1),
there’s probably a Devices tab that shows all devices currently on

http://192.168.1.1

Getting Started 13

the network. Look for a new or unfamiliar device: that’s probably
your Pi. It might even show a hostname of raspberrypi.

If you do a web search, you’ll find utilities to search for Rasp-
berry Pis on the local network, like the Adafruit-Pi-Finder. But
here are some lower-level ways to search for your Pi.

Using arp and fping
If you can install the fping program, here’s a fast way to find Rasp-
berry Pis on your network:

fping -a -r1 -g 192.168.1.0/24 &> /dev/null
arp -n | fgrep " b8:27:eb"

Raspberry Pi WiFi chips have Ethernet addresses that start
with b8:27:eb, so this looks only for Raspberry Pis on the network.

If you can’t install fping, try the arp command anyway. It might
not see a newly booted Pi, but it’s worth a try.

If it doesn’t find anything, a more reliable program is nmap.

Using nmap
You can find all the machines on your local network with the com-
mand nmap. Linux machines probably have nmap already, but on a
Mac or Windows machine you can get it from https://nmap.org/
download.html. If your network is 192.168.1:

sudo nmap -sn 192.168.1.0/24

You can search for only Raspberry Pi devices this way:

$ sudo nmap -sn 192.168.1.0/24 | grep -i -B 2 B8:27:EB

SSHING TO YOUR RASPBERRY PI

Once your Pi is up and running, and you know its network address,
you can log in using SSH. On Mac and Linux, and Chromebooks
with developer mode, get a terminal and type

https://nmap.org/

Jumpstarting the Raspberry Pi Zero W14

ssh ADDRESS-OF-YOUR-PI

Windows doesn’t have SSH installed by default, but there are
plenty of good SSH programs available. The most popular is a
graphical program called PuTTY. You can download graphical
SSH programs for Mac and Chrome OS, too.

SSH even lets you run desktop programs on your Pi, using a
technique called X forwarding. That requires an X server pro-
gram on your local computer. Linux comes with X already; on Mac
you can download X11 from Apple; on Windows there are various
X servers available, such as Xming.

Once you’re running X on your local computer, log in to your
Pi with ssh -X (that’s a capital X) from Mac or Linux, or in PuTTY,
enable Connection > SSH > X11 in the PuTTY configuration. Then
you can run graphical programs from that shell and they will dis-
play on your local machine.

LOGGING IN AND CHANGING THE
DEFAULT PASSWORD

You’ve booted your Pi Zero W and you’re ready to log in, whether
it’s in PIXEL or over SSH. The first time you log in, use the user-
name pi, and the password raspberry.

If you’ve enabled SSH, you will see a warning:

SSH is enabled and the default password for the 'pi' user has not
been changed.
This is a security risk - please login as the 'pi' user and type
'passwd' to set a new password.

You should change the default password!
You can change the password right now using the command

line. Bring up a terminal by clicking on the terminal icon at the
top of the screen, as shown in Figure 1.7, or by choosing Acces-
sories > Terminal.

Getting Started 15

FIGURE 1.7: The PIXEL desktop showing a terminal

You’ll be working a lot more with the terminal and the com-
mand line in later chapters, but for now, just type passwd at the
prompt:

$ passwd
Changing password for pi.
(current) UNIX password:

Type the current password, raspberry. Then, when prompted,
enter your new password.

BASIC CONFIGURATION

The raspi-config program can do a lot of basic configuration. In
the terminal, type

sudo raspi-config

Navigate around this screen by using the up and down arrow
keys. Hit Enter to choose one of the categories or to choose an
option.

You can change the password (if you didn’t already do so from
the command line) or set a hostname.

Jumpstarting the Raspberry Pi Zero W16

Under Boot Options, you can choose whether to start in the
graphical desktop, or skip it and just boot into the command-line
interface (CLI) if you’re running headless. For each option, you
have a choice of whether the user pi will be logged in automat-
ically, or whether you’ll have to log in with a password. If you’re
connecting over the network with SSH, that setting doesn’t mat-
ter much; you’ll have to log in no matter what (though there are
ways of using SSH without a password).

Under Localisation Options, you can use Change Locale
to change the language and country you use. For instance, if
you’re in the United States I recommend changing your locale to
en_US.UTF-8. The default is en_GB.UTF-8.

When you’re finished with Change Locale, press the Tab key.
The highlight will jump to Ok and you can press Enter to accept
the new locale(s). Next you’ll be taken to a screen where you
configure the system locale. People in the United States should
choose en_US.UTF-8.

The Interfacing Options section lets you enable hardware such
as a Pi Camera, if you have one; enable services like SSH or virtual
network computing (VNC); or enable hardware options like SPI or
I2C (more about those in Chapter 3) Serial, 1-Wire, or Remote GPIO.

FIGURE 1.8: raspi-config, running in the PIXEL desktop

Getting Started 17

If you’re running a headless Pi, be sure to enable SSH here.
The trick of creating a file named ssh on the boot partition works
only once. You don’t want to have to do that every time you use
your Pi!

There are other sections, like Overclocking and Advanced
Options, but you shouldn’t need to adjust those options.

When you’re done configuring, press Tab to get to Finish.
raspi-config will prompt you to reboot if you’ve changed any
settings that require a reboot.

THE PIXEL DESKTOP

The Raspberry Pi desktop is called PIXEL. Clicking the raspberry
icon in the top left opens a set of menus you can explore. Next to
that are icons for a web browser, file manager, and terminal (you’ll
be using the terminal for most of this book).

The final two icons on the top bar are Wolfram and Mathe-
matica. Wolfram Research made these tools available to Rasp-
berry Pi users free of charge, though you’ll probably find them
frustratingly slow on the Pi Zero W. If you want to explore the
Wolfram world, you’re better off with a Raspberry Pi 3.

At the upper right is a networking icon, showing whether your
Pi W is connected to WiFi. If you didn’t already configure WiFi,
you can do it now—the easy way. Click on the WiFi icon in the
upper right, choose your network, and set your password.

FIGURE 1.9: Configuring WiFi in PIXEL

Jumpstarting the Raspberry Pi Zero W18

Exploring PIXEL
Once WiFi is working, doodle to your heart’s content. There are lots
of other interesting options under Preferences: you can customize
the fonts and colors and the background image, change the behav-
ior of the mouse and keyboard, and add new items to the menu.

You can also install new software. Click the raspberry icon,
go to Preferences, and look for Add/Remove Software. There
are hundreds of packages you can install, organized by category.
You’ll install a few of those packages in later chapters.

INTRODUCING THE LINUX
COMMAND LINE

A lot of programming requires the command line, so you’ll be
using the terminal and typing commands a lot with this book. (It’s
also handy when you’re running without a monitor, or debugging
something on a device that’s at the other side of the house or
out in the back yard.)

The program that reads your commands and executes them
is called the shell. You’ll be using a shell called Bash, short for the
Bourne-Again Shell. The name is a pun: the original Unix shell was
written by someone named Bourne, but it wasn’t open source
and couldn’t be used in free operating systems like Linux, so
the new shell rewritten to replace the Bourne shell was dubbed
“Bourne Again.”

The first word you type at the shell prompt is a command,
and all the words after the command are called arguments. If
you want to see the contents of the current directory, type ls (a
command, short for “list” the contents of the directory). If you
want to see the contents of the directory called python_games,
type ls python_games. ls is still the command, and python_games
is the argument.

Getting Started 19

Some commands require “root privilege,” which is like the
Administrator account on Windows. For those, you can type sudo
before the command (sudo is short for Super User DO—in other
words, do this command as the super user). Earlier in this chapter
you typed sudo raspi-config to reconfigure the system.

WARNING Typing commands with sudo can remove files,
remove software, or otherwise damage the Raspbian install.
Don’t use sudo unless you’re doing something that really
needs it.

Editing Command Lines
The normal Backspace, Delete, arrow keys, Home, and End work
when you’re editing commands. But there are some other nice
features too.

One example is autocomplete. You hardly ever have to type a
whole command; you can hit the Tab key to see what options you
have. For instance, typing ls py and pressing Tab completes to
ls python_games/. (The slash at the end indicates that python_games
is a directory, which is the same thing as a folder: it isn’t a file; it
contains files.)

If there’s more than one match, Tab will only complete as far
as it can. Typing ras and pressing Tab completes to raspi because
there are a bunch of different commands that start with raspi.
But if you keep hitting Tab (two more times), it will show you the
list of everything that matches:

pi@raspberrypi:~ $ raspi
raspi-config raspistill raspividyuv
raspi-gpio raspivid raspiyuv
pi@raspberrypi:~ $ raspi

Jumpstarting the Raspberry Pi Zero W20

At this point, if you type -c, the command will expand to
 raspi-config; if you type v instead, it will expand to raspivid,
which would let you take videos with a camera module if you
have one installed.

Some other useful editing shortcuts:

 * The up arrow shows you the previous command you typed,
which you can edit or change.

 * Ctrl-W deletes the last word.

 * Ctrl-U deletes back to the beginning of the line.

 * Ctrl-K deletes to the end of the line.

 * Ctrl-A goes to the beginning of the line, Ctrl-E to the end,
Ctrl-B moves backward, Ctrl-F moves forward, Ctrl-H
deletes the previous character, and Ctrl-D deletes the next
character. These do the same thing as Home, End, Left,
Right, Backspace, and Delete, but you can type them with-
out moving your hands from the normal typing position.

 * If you need to page up to see earlier commands you typed,
use Shift-PageUp.

INSTALLING SOFTWARE

You can install software from the command line as well as from
the PIXEL menus. The Debian installation software is called APT
(for Advanced Package Tool), and most of the software instal-
lation and search commands start with apt. You can search for
packages with aptitude search:

pi@raspberrypi:~ $ aptitude search camera
p camera.app - GNUstep application for digital still came
p cameramonitor - Webcam monitoring in system tray
p libomxil-bellagio0-components-c - Motorola Camera components for
 Bellagio Op

Getting Started 21

i python-picamera - Pure Python interface to the Raspberry Pi’
p python-picamera-docs - Documentation for the Python interface to
i python3-picamera - Pure Python interface to the Raspberry Pi
p python3-snap-camera - A camera that uses PiFace Control and Disp

The lines that start with i—python-picamera and python3-
picamera—mean those programs are already installed. The others
are available for installation. You can install them with sudo apt-
get install:

sudo apt-get install cameramonitor

APT will figure out what other packages that package
requires, and ask you whether it should install them all. If you type
y (or just press Enter), it will install all the necessary packages.

Some of the packages are downright silly. For instance, type
sudo apt-get install cowsay and then run it:

pi@raspberrypi:~ $ cowsay Raspberry Pi is cool

< Raspberry Pi is cool >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

Another fun program is sl: it’s there so that if you mean to
type ls but accidentally reverse the characters, you get some-
thing besides a boring error message. Install it and try it yourself
if you want to see what it does.

GETTING HELP

One more useful command is man, which shows the built-in
man(ual) pages. man ls tells you all about the ls command. (Press
the spacebar to advance to the next page, and press Q to quit.)
Unfortunately, a lot of the Raspbian-specific commands, like

Jumpstarting the Raspberry Pi Zero W22

raspi-config, don’t have man pages, but you can learn a lot about
basic Linux commands this way.

The apropos command helps you find man pages. So, for exam-
ple, apropos gpio tells you about some man pages where you can
read about the GPIO pins on the Raspberry Pi—if you didn’t have
this book to tell you about them.

Some commands also have built-in help. If you’re wondering
how to run a program, try running it with -h or --help (that’s one
dash with h or two dashes with help). Some of the raspi commands
are nonstandard and take just help as an argument—as you’ll see
in the next chapter when you progress to blinking an LED.

Blink an LED

In the hardware world, the traditional first program most peo-
ple write makes an LED blink. It’s simple, and who doesn’t like a
light show?

The Raspberry Pi’s GPIO headers let you interface with all
sorts of hardware. In this chapter, you’ll connect an LED to one
of the GPIO pins and learn several ways of controlling it, turn-
ing it on and off and changing its brightness. You can even con-
nect a pushbutton and modify what your LED does according to
whether the button is pushed.

2

Jumpstarting the Raspberry Pi Zero W24

HARDWARE REQUIREMENTS

Here’s a list of what you need for this chapter:

 * An LED

 * A small resistor. The exact value doesn’t matter; something
around 200–500 ohm is best.

 * A large resistor, like 10 kΩ–100 kΩ. Again, the exact value
doesn’t matter.

I strongly recommended you have the following:

 * A solderless breadboard, any size

 * A 2×20 pin male header you can solder to the Pi, plus a
2×20 ribbon cable

or

 * A 2×20 female header you can solder to the Pi

 * Soldering equipment

The following are optional:

 * A pushbutton or switch that plugs into your breadboard

 * A Pi GPIO extension, like the Adafruit Pi Cobbler or the
SparkFun Pi Wedge

WARNING If this is your first time soldering, practice on
other components before soldering a header to the Raspberry
Pi. Header pins are close together, and if you make a mistake

it’s not easy to recover.

Blink an LED 25

WHAT IS GPIO?

Those holes down the side of the Pi Zero W are for general-purpose
input/output (GPIO). That’s a way of controlling hardware directly;
the Pi can set pins to high or low voltages to control a device, and
it can read incoming high or low voltages coming from a sensor.

But first, you’ve got to connect something to the GPIO.

HEADERS: HOOKING UP TO THE
PI ZERO W

The Raspberry Pi Zero W is sold with bare “through-holes” for
the GPIO connections, whereas larger Raspberry Pi models have
pins. That makes sense—the Pi Zero line is great for hardware
control, and someone buying a batch of them might want to sol-
der wires to just a few of those connections rather than using
a bulky set of pins. But it makes it a little inconvenient to start
playing with your Pi Zero W.

You have several options. The classic choice is to solder a
2×20 male header, like the one shown in Figure 2.1, onto the Pi.

FIGURE 2.1: A Pi Zero W and male headers, ready to be soldered

Jumpstarting the Raspberry Pi Zero W26

A male header makes the Pi Zero W compatible with a wide
range of add-ons sold for larger Raspberry Pi models.

If you’re not comfortable with soldering, or if you eventually
plan to use your Pi Zero in a very small box where there isn’t room
for headers, you could opt for a solderless “hammer header.”
These are mostly available from dealers in the United Kingdom,
but Adafruit resells them in the United States.

If you use a male header, you’ll need either a 40-wire ribbon
cable that plugs into it or a few female-to-male wire leads.

FIGURE 2.2: Male header with female-to-male leads

Blink an LED 27

You could also choose a female 2×20 pin header. It isn’t as
compatible with other Pi hardware, but it makes plugging in wires
super easy. You don’t need a ribbon cable or any special wire
leads—just regular hook-up wire.

Finally, it is possible to get by temporarily without any sol-
dering to the board if you wedge wires diagonally into the Pi’s
through-holes, as shown in Figure 2.3.

FIGURE 2.3: Look, Ma, no headers!

You can even use headers this way, and if you bend the ends
of the wires a little where they emerge underneath the Pi Zero,
they might stay in place a little better.

That said, I don’t recommend working this way. The wires won’t
make a good connection, and you may waste time debugging

Jumpstarting the Raspberry Pi Zero W28

projects that don’t work because of a flaky connection. If you’re
excited to get started but don’t have any 2×20 headers on hand,
go ahead and try it for this chapter, but I highly recommend you
order something better before you move on to Chapter 3.

In the hardware list at the beginning of this chapter, I also
recommended that you get one of the Raspberry Pi GPIO exten-
sions. These aren’t necessary, but they’re inexpensive and give
you an easy way of making the Pi’s GPIO pins accessible on a
breadboard. Even better, they include labels reminding you
which pin is which. They typically include a ribbon cable that
connects the extension to a male header on the Pi.

FIGURE 2.4: A GPIO extension, with ribbon cable and a breadboard

WIRING AN LED ON A BREADBOARD

An LED (which stands for light-emitting diode) is an electronics
component that can only pass electricity in one direction. So to
hook up an LED, you have to know which pin is positive.

Most LEDs have one pin longer than the other. The long pin
goes to the positive terminal, whereas the short pin goes to

Blink an LED 29

ground. An easy way to remember this is that the “plus” side has
had some length added to it.

FIGURE 2.5: An LED. The
long lead is the positive side.

When you wire up an LED, you should always include a resis-
tor in the circuit to limit the current. Otherwise, too much current
will flow through the LED and will probably burn it out, with a pop
and a little smoke. (Ask me how I know that!)

The smaller the value of the resistor, the brighter the LED will
shine. Most small LEDs only need a small resistor, around 200–
500 ohms, and it’s generally not critical what exact value you use.

You’ll have to connect the LED to the resistor somehow. You
can twist wires together or use alligator clips, but when you’re

Jumpstarting the Raspberry Pi Zero W30

testing circuits it saves a lot of time to use a solderless bread-
board (Figure 2.6).

Ground
Power

Ground
Power

FIGURE 2.6: Solderless breadboard. The yellow indicates which holes are
connected.

A breadboard has rows of five holes into which you can push
wires. Each row of five holes is connected, as indicated by the
yellow lines in Figure 2.6. So if you push a lead of the resistor
and a lead of the LED into holes in the same row, they’ll make
electrical contact.

Some breadboards, like the one pictured, include long strips
intended for power and ground connections. When you’re build-
ing a circuit, it’s fairly common to have lots of devices that need
to connect directly to power and ground, so it’s useful to have the
longer strips. By convention, you’d connect the strip marked red
to power and the strip marked blue to ground. For the circuits
in this book, you won’t need a power or ground strip, so any sort
of breadboard is fine.

Blink an LED 31

THE RASPBERRY PI PIN LAYOUT

The Raspberry Pi’s output pins are numbered starting in the
upper left: pin 1 has a pad that’s a square rather than a circle. The
pin assignments are fairly chaotic (Figure 2.7)

FIGURE 2.7: The Raspberry Pi’s GPIO pins

So pin 1 is 3.3 volts of power, whereas pin 2 is 5 volts. Pin
3 is called GPIO 2, pin 6 is Ground, and so on to the final pin,
40, or GPIO 21. The GPIO numbers are all out of order and you
aren’t expected to remember this crazy layout; you might want
to bookmark this page while you work on projects that use GPIO.

Jumpstarting the Raspberry Pi Zero W32

A Raspberry Pi can provide 5 volts of power from pins 2 and
4, but its logic circuitry (on the GPIO pins) works at 3.3 volts. If
you’re buying hardware you want to drive from a Pi, make sure
it can work with 3.3V and doesn’t require 5V. (The 5V pins are
provided in case you need to power hardware that needs more
than 3.3 volts.)

To test your LED circuit, connect the long lead of the LED
to one of the GPIO 3.3V connections, like pin 1. Connect one
lead of the resistor to a ground pin, like pin 6. Then connect
the short lead of the LED to the other lead of the resistor. See
Figure 2.8.

FIGURE 2.8: LED wired to 3.3V power

The LED should light up.

Blink an LED 33

CONTROLLING AN LED FROM THE
COMMAND LINE

Unplug your LED’s positive lead from the Pi’s pin 1 and connect it
to GPIO 14, which is pin 8, the fourth pin in the outer row. Leave
your resistor plugged into Ground. Now you’re ready to control
the LED from software.

FIGURE 2.9: An LED hooked up to GPIO 14

You don’t have to write any code to light an LED on a Rasp-
berry Pi. All you need is the raspi-gpio command. In a terminal
window connected to your Raspberry Pi, type

raspi-gpio set 14 op dh

Jumpstarting the Raspberry Pi Zero W34

The LED should come on.

FIGURE 2.10: All wired up, using a Pi Cobbler extension

The pin number is 14, and the op (operation) is dh, which stands
for “Driving High.”

Now replace that dh with dl for “Driving Low”:

raspi-gpio set 14 op dl

TIP Remember that pressing the up arrow key will display
your last shell command. Then all you have to do is press Back-

space to delete the h, then type l, and press Enter.)

The LED should turn off.
That’s all you need to know about raspi-gpio. But if you want the

gory details, you can learn more than you ever wanted by typing

raspi-gpio help

Blink an LED 35

BLINKING AN LED FROM THE
COMMAND LINE

The Bash shell is programmable. You wouldn’t want to write a
long program in it, but it’s fine for little snippets. Type the follow-
ing into the shell:

pi@raspberrypi:~ $ while true; do
> raspi-gpio set 14 op dh
> sleep 1
> raspi-gpio set 14 op dl
> sleep 1
> done

NOTE The > at the beginning of each line is the prompt the
shell gives you; don’t type that part.

You’ve written your first blinking LED program! First, you tell
the Pi to turn on pin 14; then you tell the Pi to “sleep” (that is, not
to perform any other commands) for one second. The next lines
tell the Pi to turn off pin 14 and sleep for another second. The
while true command tells the Pi to loop these commands. The
light should blink on and off forever. That was almost too easy.

When you’re tired of watching it, Ctrl-C will kill the program
and give you your prompt back. (That’s true of most programs
in Linux.)

GPIO from the Command Line via Sysfs
There’s another way to access GPIO from the command line:
using an interface called sysfs. Sysfs lets you talk directly to the
Linux kernel by writing to and reading from files.

Jumpstarting the Raspberry Pi Zero W36

The sysfs interface makes GPIO pins available via files inside
the /sys/class/gpio directory (folder). It requires one line of
setup for each pin you plan to use:

echo 14 > /sys/class/gpio/export

The echo command just prints its arguments. Adding > makes
it print to a file rather than to the terminal. So this command
writes 14 to the file /sys/class/gpio/export. In response, the ker-
nel will create a new directory called /sys/class/gpio/gpio14/,
containing several files you can write to control GPIO pin 14.

echo out > /sys/class/gpio/gpio14/direction

writes “out” to the file named direction inside the gpio14 direc-
tory you just created. That tells the kernel you want to use that
pin as output (you’d use in to use a pin for input).

echo 1 > /sys/class/gpio/gpio14/value

A value of 1 turns pin 14’s voltage high (3.3 volts). The LED should
go on. Echo 0 instead of 1 to turn it off again.

Of course, you can use this inside a while true; do loop, just
as you did with raspi-gpio:

pi@raspberrypi:~ $ while true; do
> echo 1 > /sys/class/gpio/gpio14/value
> sleep 1
> echo 0 > /sys/class/gpio/gpio14/value
> sleep 1
> done

BLINKING AN LED FROM A PYTHON
PROGRAM

Now it’s time to use a real programming language: Python.
If you’re using the desktop, you can run the IDLE Python

development environment by choosing the following:

Menu > Programming > Python 3 (IDLE)

Blink an LED 37

If you’re using the command line, run the Python shell:

python3

Either way, you’ll get a >>> prompt.

NOTE Raspbian comes with both Python 2 and Python 3
installed. The examples in this book should work with either
one, except as noted. If you’re just getting started with Python,
I recommend starting with 3.

Controlling an LED is easy with the GPIOzero library. Type
these lines at the >>> Python prompts:

from gpiozero import LED
led = LED(14)
led.on()

You can make that into a blink program, sleeping for half a
second between blinks:

from time import sleep
while True:
 led.on()
 sleep(.5)
 led.off()
 sleep(.5)

The spaces beginning each of the last four lines are import-
ant; they tell Python that the indented lines are part of the while
True loop. It doesn’t matter how many spaces you include as
long as you use the same number for all four lines. If you use
a different number of spaces, or don’t indent at all, you’ll get
an IndentationError. The Python style guide recommends four
spaces as being the most readable.

As with the shell, pressing Ctrl-C will stop the program.

Jumpstarting the Raspberry Pi Zero W38

Saving Your Program: Text Editors
Of course, you don’t want to have to type your whole program
into the Python console every time you run it. You’ll want to save
it to a file.

You can’t use a word processor, like Word or LibreOffice, to
edit programs. You need something that can edit plain text.

You have plenty of options for text editors on Linux, and Inter-
net flame wars have been fought over which is best (most pro-
grammers prefer emacs or vim). If you don’t already have a text
editor you favor, try nano if you’re using SSH and the command
line. If you’re using the graphical desktop, IDLE has a File > New
option with a built-in editor, or you can use Leafpad (Accesso-
ries > Text Editor).

Save your LED blinking program to a file with a name like
blink.py (you can copy and paste from the lines you typed into
the Python console, or from this book’s GitHub repository at
https://github.com/akkana/pi-zero-w-book):

from gpiozero import LED
from time import sleep

led = LED(14)

while True:
 led.on()
 sleep(.5)
 led.off()
 sleep(.5)

Save the program (in IDLE or Leafpad, choose File > Save
or press Ctrl-S; in nano, press Ctrl-O and then press Enter to
confirm the filename). Now run it, either from IDLE’s Run button
or from a shell:

python blink.py

and your LED should start blinking.

https://github.com/akkana/pi-zero-w-book):

Blink an LED 39

NOTE If you’re SSHed into your Pi, you can either exit nano
(Ctrl-X) to get your shell prompt back or open a second SSH
window, where you can type shell commands while keeping your
nano window open. I like to use separate windows.

FADE AN LED

The GPIOzero library also lets you set LEDs to partial brightness,
using a technique called pulse width modulation, or PWM.

A Raspberry Pi can’t actually set its GPIO pins to anything
besides 1 or 0 (3.3 volts or 0 volts). What it can do is pulse the pin
(and therefore the LED connected to it) between 1 and 0 rapidly.
The more time it spends at 1, the brighter the LED will appear.
Fortunately, you don’t have to manage this in your program; you
can let GPIOzero’s PWMLED class do it for you.

Instead of creating an LED object with led = LED(14), use
PWMLED(14). Then use a variable called value to manage the LED’s
brightness, starting at 0 and ramping up to 1, then starting again
at 0:

from gpiozero import PWMLED
from time import sleep

led = PWMLED(14)

value = 0
increment = .02
sleeptime = .03

try:
 while True:
 value += increment
 if value > 1:
 value = 0
 led.value = value

Jumpstarting the Raspberry Pi Zero W40

 sleep(sleeptime)

except KeyboardInterrupt:
 print("Bye!")

By the way, GPIOzero has fairly good documentation at http://
gpiozero.readthedocs.io/. It supports a curious but incomplete
collection of hardware, and in some cases it’s hard to tell what
hardware is needed to use specific Python classes. If you happen
to be using hardware it supports, GPIOzero makes things very
easy, but if you’re using anything else, it won’t help you.

With that in mind, it’s good to know something about the
more general library that sits underneath GPIOzero: RPi-gpio.

PYTHON BLINK USING RPI-GPIO

 RPi-gpio has been around almost since the first Raspberry Pi,
and by now it’s mature and powerful. Using it directly requires a
couple of lines of setup beyond that needed for GPIOzero, after
which it’s just as easy:

import RPi.GPIO as GPIO
from time import sleep

GPIO.setmode(GPIO.BCM)
GPIO.setup(14, GPIO.OUT)

while True:
 GPIO.output(14, GPIO.HIGH)
 sleep(.5)
 GPIO.output(14, GPIO.LOW)
 sleep(.5)

GPIO.setmode(GPIO.BCM) tells the RPi-gpio library to use
the names of the pins. If you’re using GPIO 14, you pass 14 to
 GPIO.output. BCM stands for BroadCoM, because the pin numbers
come from the Broadcom-made chip used in the Raspberry Pi.
The library can also use physical pin numbers, if you pass BOARD

http://gpiozero.readthedocs.io/
http://gpiozero.readthedocs.io/

Blink an LED 41

instead of BCM. If you look at the pin diagram in Figure 2.7, GPIO
14 is on physical pin 8, so this would also have worked:

GPIO.setmode(GPIO.BOARD)
GPIO.setup(8, GPIO.OUT)
GPIO.output(8, GPIO.HIGH)

You may see a warning like blink-rpi-gpio.py:8: Runtime-
Warning: This channel is already in use, continuing anyway.

Use GPIO.setwarnings(False) to disable warnings. You’d see this
warning if the other programs you’ve been running didn’t clean
up after themselves. When they stopped using the Pi’s GPIO,
they left the GPIO pins active, potentially causing problems for
programs that might run later.

Ideally, you should clean up after your program has run, but
interrupting it with Ctrl-C makes that more difficult. You could
avoid the Ctrl-C by blinking only a fixed number of times, instead
of forever:

for i in range(10):
 GPIO.output(14, GPIO.HIGH)
 sleep(.5)
 GPIO.output(14, GPIO.LOW)
 sleep(.5)

GPIO.cleanup()

Note that the GPIO.cleanup() line isn’t indented. That way,
Python knows it’s not part of the loop, and it won’t run until the
ten blink cycles have finished.

If you want to keep the infinite loop and interrupt it with
Ctrl-C as you’ve been doing but still clean up afterward, you
could “catch” the interrupt like this:

import RPi.GPIO as GPIO
from time import sleep

GPIO.setmode(GPIO.BCM)
GPIO.setup(14, GPIO.OUT)

Jumpstarting the Raspberry Pi Zero W42

try:
 while True:
 GPIO.output(14, GPIO.HIGH)
 sleep(.5)
 GPIO.output(14, GPIO.LOW)
 sleep(.5)

except KeyboardInterrupt:
 GPIO.cleanup()

You could have caught KeyboardInterrupt in your earlier
GPIOzero blink program, and GPIOzero would have cleaned up
automatically. With GPIOzero, you don’t have to call a cleanup
function explicitly; just add pass inside the except section to
make sure the keyboard interrupt was caught.

try:
 while True:
 led.on()
 sleep(.5)
 led.off()
 sleep(.5)
except KeyboardInterrupt:
 pass

PYTHON FADE USING RPI-GPIO

Of course you can fade with RPi-gpio PWM as well. Anything to
the right of a # character is a Python comment and not part of
the running code.

import RPi.GPIO as GPIO
from time import sleep

GPIO.setmode(GPIO.BCM)

GPIO.setup(14, GPIO.OUT)
pwm = GPIO.PWM(14, 100) # Set up PWM on pin 14 at 100 Hz

value = 0
pwm.start(value) # Start at 0

Blink an LED 43

increment = 2 # How smooth is the fade?
sleeptime = .03 # How fast is the fade?

try:
 while True:
 value += increment
 if value > 100:
 value = 0
 pwm.ChangeDutyCycle(value)
 sleep(sleeptime)

except KeyboardInterrupt:
 pwm.stop()
 GPIO.cleanup()

READING INPUT: A PUSHBUTTON

You can read input from pins with RPi-gpio as well as set pin values.

FIGURE 2.11: Wiring an LED plus a pushbutton. Notice that
both resistors are tied to Ground on the Pi.

Jumpstarting the Raspberry Pi Zero W44

Leave your LED connected, and wire up a pushbutton. If you
don’t have a pushbutton handy or can’t find one that plugs into
your breadboard, you can fake it using two bare wires that you’ll
touch together. That’s really all a pushbutton is.

 1. Wire one side of the button to pin 1, 3.3v power.

 2. Wire the other side of the button to pin 10, GPIO 15. Then
attach a high-value resistor, like 10 kΩ or more, to that same
side of the switch. The other side of the resistor goes to
ground.

This is what’s known as a “pull-down” resistor. Without the
resistor, when the switch is open, GPIO 15 isn’t connected to
anything. It’s not definitely high or definitely low, so if you read
its value, there’s no telling what you might see. With the resistor
in place, if the switch is open, GPIO is tied to ground through the
resistor. But when you push the button (or touch the two wires
together if you don’t have a button), it’s much easier for current
to flow from the 3.3v pin through the switch to GPIO 15 than to
go through that big 10 kΩ resistor. So GPIO 15 reads high.

Now you can read the value at GPIO 15 from Python:

GPIO.setup(15, GPIO.IN)

print("button:" + GPIO.input(buttonpin))

Let’s try doing something with it in the blinking loop. For
instance, you could make the LED blink slowly most of the time,
but make it blink faster when you press the button.

To make the code a little cleaner, I’ll make variables for the
LED pin and the button pin—that makes it easier to change them
if you decide to use different pins—and for the sleep durations.

Here’s the program written for GPIOzero:

from gpiozero import LED, Button

Blink an LED 45

from time import sleep

led = LED(14)
button = Button(15)

Blink times in seconds:
shortblink = .1
longblink = .7

for i in range(100):
 # Set the LED pin to high for odd numbers, low for even.
 if i % 2:
 led.on()
 else:
 led.off()

 if button.is_pressed:
 sleep(shortblink)
 else:
 sleep(longblink)

The program loops 100 times. i % 2 is called a modulo—it
divides i by 2 and takes the remainder. So when i is odd, i % 2
will be 1, and the LED will come on. When i is even, i % 2 will be
0 and the LED will turn off.

Then each time around, if the button is pressed, we’ll only
sleep for a short time; if the button isn’t pressed, we’ll sleep
longer.

Here’s an RPi-gpio version:

import RPi.GPIO as GPIO
from time import sleep

Use Raspberry Pi board pin numbers:
GPIO.setmode(GPIO.BCM)

ledpin = 14
buttonpin = 15

Blink times in seconds:
shortblink = .1
longblink = .7

Jumpstarting the Raspberry Pi Zero W46

set up GPIO output channel
GPIO.setup(ledpin, GPIO.OUT)
GPIO.setup(buttonpin, GPIO.IN)

for i in range(100):
 # Set the LED pin to high for odd numbers, low for even.
 if i % 2:
 GPIO.output(ledpin, GPIO.HIGH)
 else:
 GPIO.output(ledpin, GPIO.LOW)

 # Sleep for a short time if the button is pressed, otherwise a
long time:
 if GPIO.input(buttonpin):
 sleep(shortblink)
 else:
 sleep(longblink)

Done: clean up!
GPIO.cleanup()

OTHER LANGUAGES, OTHER
INTERFACES

There are lots of options for programming the GPIO on a Rasp-
berry Pi. You’ve already seen a shell script and Python. But if you
have another favorite language, don’t despair: you can control
the Pi’s GPIO from C or C++, Ruby, Perl, Java, C#, Pascal, BASIC,
Gambas (similar to Visual Basic), and even Scratch. There’s no
shortage of options!

Now you have the basics of both input and output with the
Raspberry Pi’s GPIO. LEDs and switches are simple, but a lot of
hardware works pretty much the same way.

But some hardware is more complicated. In Chapters 3
and 4, we’ll take a look at interfacing with other types of hard-
ware, as well as some things you can do with the Zero W’s Wi-Fi
capabilities.

A Temperature
Notifier and
Fan Control

Do you hate to come home to a hot house? Or do you just want
to know what the temperature is in your office so you can dress
appropriately?

In this project, you’ll set up your Pi to monitor the tempera-
ture and make it available via Twitter. The Pi can even turn on a
fan or an air conditioner before you get home, based on tempera-
ture limits you set or a Twitter message you send it.

3

Jumpstarting the Raspberry Pi Zero W48

HARDWARE REQUIREMENTS

Here’s a list of what you need for this chapter:

 * An I2C temperature sensor, such as the Si7021, MCP9808,
or BME280

 * Four hookup wires

 * A PowerSwitch Tail (optional, for switching on a fan or air
conditioner)

FIGURE 3.1: Testing an automated fan with a PowerSwitch

Tail and three different temperature sensors on the I2C bus

A Temperature Notifier and Fan Control 49

NOTE If you want to copy and paste rather than typing the
code by hand, you can find working examples at the book’s
GitHub repository: https://github.com/akkana/pi-zero-w-book.
You can even check it out on your Pi: git clone https://github
.com/akkana/pi-zero-w-book.git.

The first thing you’ll need is a temperature sensor board. These
are inexpensive, around $5 to $10, depending on accuracy and the
other features they offer, such as the ability to measure humidity
or barometric pressure. Most of them use a protocol called I2C.

WHAT IS I2C?

I2C (pronounced “eye squared see” or “eye two see”) stands for
inter-integrated circuit. It’s a protocol for reading information
from, and writing to, low-power devices like sensors. It uses
two wires (for clock and data) plus another pair for power and
ground. You’ll sometimes see references to “two-wire” interfaces,
which are more or less the same thing as I2C.

Each I2C device has an address, and you can have multiple
devices connected to your Pi at the same time as long as they
have different addresses.

The System Management Bus (SMBus) is a slightly simpler
subset of I2C. That’s worth knowing mostly because one of the
ways of talking to I2C devices using Python is called smbus. The
smbus library is fairly simple to use despite an almost complete
lack of documentation; fortunately, you can find lots of examples
on the web. (The GPIOzero library has no support—yet—for I2C.
RPi-gpio has some support, but it’s a lot more fiddly than smbus.)

If you’re using Raspbian-lite, you’ll have to install a couple of
packages first. On the full version of Raspbian, these packages

https://github.com/akkana/pi-zero-w-book
https://github

Jumpstarting the Raspberry Pi Zero W50

are probably already installed, but it doesn’t hurt to run this com-
mand anyway to be sure:

sudo apt-get install i2c-tools python-smbus

Enabling I2C

Raspbian comes with support for I2C built in, but it’s disabled by
default. Fortunately, it’s easy to enable.

In a terminal, type sudo raspi-config, move down to Inter-
facing Options, and press Enter. Then move down to I2C and
press Enter again. Use the Tab or left-arrow key and press Enter
to answer Yes to “Would you like the ARM I2C interface to be
enabled?”

Or, if you prefer using the GUI, choose Preferences > Rasp-
berry Pi Configuration and click the OK button to enable I2C.

Either way, once you exit you should have I2C enabled. To
verify that, in a terminal, type this:

ls /dev/i2c*

Note the asterisk at the end of the command: it’s a wildcard
that means you want to show any file in /dev that starts with i2c.
The Pi should respond with this:

/dev/i2c-1

If you see /dev/i2c-1, you’re set. (On early Raspberry Pis, it
was called i2c-0 instead of 1.)

If you see i2cdetect: command not found, it means you didn’t
install i2c-tools and python-smbus (see the section “What Is I2C?”
earlier).

CHOOSING A SENSOR

A wide variety of inexpensive temperature sensors are available
that “speak” I2C. Since the chips themselves are tiny, they’re often

A Temperature Notifier and Fan Control 51

available mounted on “breakout boards” that make it easy to plug
the sensor into a breadboard and wire it to your Raspberry Pi.
Many temperature sensors also measure other quantities, such
as atmospheric pressure or humidity.

Whichever sensor you choose, you’ll need to figure out how
to talk to it from the Pi. Each I2C device has a different address
and speaks a slightly different language. The details for each chip
are in its datasheet (a PDF that you can find with a web search;
for example, search for “Si7021 datasheet”), but extracting the
details from a datasheet isn’t always easy. I recommend starting
with a web search for the chip name plus “python” or even “rasp-
berry pi python” to see if someone has already done that work
for you. Ideally, do this before you order a sensor, so you’ll know
ahead of time if a sensor is difficult to use with Python on the Pi.

Let’s start with the simple and accurate MCP9808 chip.

The MCP9808 I2C Temperature Sensor
The breakout board has eight holes, but you’ll only need four of
them for basic I2C: Vdd (input voltage, 3.3 volts), Gnd (ground),
SCL (clock), and SDA (data).

FIGURE 3.2: MCP9808 temperature sensor wiring

Jumpstarting the Raspberry Pi Zero W52

You’ll probably need to solder a header onto your breakout
board, or use test leads with clips that can make good contact
with the through-holes on the board.

If you have hookup wires in a selection of colors, I suggest
a color code convention: use red for power, black for ground,
orange or yellow for clock (remember this as “clock works
orange”), and green or blue for data. If you don’t have that many
wire colors, don’t worry—the Pi and the chip won’t care; a color
code just makes it easier for humans to see at a glance what’s
wired to what.

On the Pi Zero end, wire the 3.3v power (red) wire to pin 1
on the Pi, and the ground (black) wire to any of the Pi’s ground
connections, such as pin 6 or pin 9. Refer to Figure 2.7, in the
previous chapter, if you need to check pin numbers. Wire SDA to
the Pi’s pin 3 (GPIO 2), and CLK (clock) to pin 5 (GPIO 3).

FIGURE 3.3: MCP9808 wired up to the Pi Zero W, ready to test

A Temperature Notifier and Fan Control 53

Now check to make sure your Pi sees the new I2C device. In
a shell, type

pi@raspberrypi:~ $ i2cdetect -y 1

In that command, 1 is the number of the I2C bus you’re using.
Modern Raspberry Pis, including the Zero W, have two I2C buses,
and bus 1 uses pins 3 and 5; older Pis have only one, bus 0.

You should see the following:

0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- 18 -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

The output shows that the Pi detected a device at address (10 +
8) = 18—the address the MCP9808 uses. If you don’t see anything
there, check your wiring and don’t proceed until ic2detect -y 1
gives the right output. If you see a number other than 18 and you
don’t have anything else plugged into your Pi, it might be that your
MCP9808 is using a different address; try using the address you
see instead of 0x18 when you write your program.

If you’re sure your wires are plugged into all the right places
but i2cdetect still doesn’t see the sensor, try connecting A0, A1,
and A2 on the sensor to ground on the Pi. Those lines set the
address of the MCP9808, and some breakout boards may need
the address lines grounded.

Measuring the Temperature

You can read data from an I2C device with smbus:

import smbus
bus = smbus.SMBus(1)
bus.read_i2c_block_data(address, cmd)

Jumpstarting the Raspberry Pi Zero W54

For this sensor, address is 18 in base 16. In Python, you can rep-
resent a hexadecimal number by putting 0x in front of it, so it’s
0x18. cmd is the command you’re sending to the chip to tell it to
give you a temperature reading: for the MCP9808, that’s 0x05.

The trick is interpreting the bytes it sends back. The
MCP9808 sends 2 bytes (data[0] and data[1] in the Python
code), and its datasheet helpfully gives example code to trans-
late these 2 bytes into a temperature in Celsius. Translated into
Python, that code sample looks like this:

Read temperature from an MCP9808 using I2C.

import smbus

MCP9808 = 0x18 # The default I2C address of the MCP9808
temp_reg = 0x05 # The temperature register

bus = smbus.SMBus(1)

def read_temperature_c():
 data = bus.read_i2c_block_data(MCP9808, temp_reg)

 # Calculate temperature (see 5.1.3.1 in the datasheet):
 upper_byte = data[0] & 0x1f # clear flag bits
 lower_byte = data[1]
 if upper_byte & 0x10 == 0x10: # less than 0C
 upper_byte &= 0x0f
 return 256 - (upper_byte * 16.0 + lower_byte / 16.0)
 else:
 return upper_byte * 16.0 + lower_byte / 16.0

if __name__ == '__main__':
 ctemp = read_temperature_c()
 ftemp = ctemp * 1.8 +32
 print("Temperature: %.2f F (%.2f C)" % ftemp, ctemp)

Run it, either from IDLE or in the shell:

python MCP9808.py

and it should print the temperature in both Fahrenheit and Celsius.

A Temperature Notifier and Fan Control 55

Here’s one more neat feature of the MCP9808: it can use
addresses besides 0x18. That’s what those extra pins on the
board are for. So if you want to have multiple MCP9808 sensors
attached to your Pi at the same time, you can—as long as you wire
their addresses so they’re all different.

Measuring Temperature and Humidity
with an Si7021
Another popular sensor is the Si7021, which measures humid-
ity as well as temperature. It has an older sibling, the HTU21d,
that uses the same address and works with the same code. Its
hookup is similar to the MCP9808 and it uses the same four
wires: power, ground, data, and clock. You can see a wiring dia-
gram in Figure 3.4.

FIGURE 3.4: Si7021 temperature and humidity sensor

The software side is a little more complicated than the other
chip, since the Si7021 handles several commands. Aside from
measuring both temperature and humidity, it has “hold” and “no
hold” modes.

Jumpstarting the Raspberry Pi Zero W56

But that’s just the start of the problems. It turns out that when
you read 2 bytes from an Si7021 using the smbus library, the
second byte is always the same as the first. So you’re really only
reading one byte, and you won’t get the full accuracy of the chip.

NOTE When you work with hardware, you’ll hit problems like
this all too often. Chips don’t do quite what they claim, docu-
mentation is missing, libraries have bugs, and quirks need to be
worked around. That’s all normal, and if you start feeling a little
frustrated, don’t feel like it’s just you.

The duplicated byte seems to be a bug in the smbus library,
and I never did find a way to get smbus to read that second byte.
Fortunately, there are other solutions. For instance, you can read
from and write to the /dev/i2c-1 device directly, and use an inter-
face called fcntl (short for “file control”).

Here’s a program that does that:

import time, array
import io, fcntl

class Si7021:
 ADDRESS = 0x40
 I2C_SLAVE=0x0703
 READ_TEMP_NOHOLD = b"\xF3"
 READ_HUM_NOHOLD = b"\xF5"
 SOFT_RESET = b"\xFE"

 def __init__(self, bus):
 # Open the I2C bus:
 self.fread = io.open("/dev/i2c-%d" % bus, "rb",
 buffering=0)
 self.fwrite = io.open("/dev/i2c-%d" % bus, "wb",
 buffering=0)

 # initialize the device as a slave:
 fcntl.ioctl(self.fread, self.I2C_SLAVE, self.ADDRESS)
 fcntl.ioctl(self.fwrite, self.I2C_SLAVE, self.ADDRESS)

A Temperature Notifier and Fan Control 57

 self.fwrite.write(self.SOFT_RESET)
 time.sleep(.1)

 def close(self):
 self.fread.close()
 self.fwrite.close()

 def readI2C(self, cmd):
 self.fwrite.write(cmd)
 time.sleep(.1)

 data = self.fread.read(3)
 buf = array.array('B', data)

 if self.crc8check(buf):
 return buf
 else:
 return None

 def read_temperature_c(self):
 buf = self.readI2C(self.READ_TEMP_NOHOLD)
 if not buf:
 return -273.15 # absolute zero

 return (((buf[0] << 8 | buf [1]) & 0xFFFC)
 * 175.72 / 65536.0 - 46.85)

 def read_humidity(self):
 buf = self.readI2C(self.READ_HUM_NOHOLD)
 if not buf:
 return -1

 return (((buf[0] << 8 | buf [1]) & 0xFFFC)
 * 125.0 / 65536.0 - 6.0)

 def crc8check(self, value):
 remainder = ((value[0] << 8) + value[1]) << 8
 remainder |= value[2]
 divisor = 0x988000

 for i in range(0, 16):
 if(remainder & 1 << (23 - i)):
 remainder ^= divisor
 divisor = divisor >> 1

Jumpstarting the Raspberry Pi Zero W58

 if remainder == 0:
 return True
 else:
 return False

if __name__ == '__main__':
 sensor = Si7021(1)
 ctemp = sensor.read_temperature_c()
 print("Temperature: %.2f F (%.2f C)"
 % ctemp * 1.8 + 32, ctemp)
 print("Relative Humidity: %.1f %%"
 % sensor.read_humidity())
 sensor.close()

Reading Temperature and Pressure from
a BME280
The final temperature sensor we’ll cover here is the BME280, which
lets you read barometric pressure as well as temperature. The pres-
sure sensor is said to be accurate enough that you can use it as
an altimeter—though for that, you’d need to calibrate it, since air
pressure varies according to the weather as well as with altitude.

It wires up pretty much the same as the other two chips, as
you can see in Figure 3.5.

FIGURE 3.5: Wiring the BME280 temperature and
pressure sensor

A Temperature Notifier and Fan Control 59

However, in software the BME is quite a bit more complicated
than the other two sensors. It needs to be initialized, and then
you have to read several values and turn them into temperature
and pressure.

Fortunately, other people have already done that for you, and
there are several libraries that work well. So rather than trying to
reproduce pages of code here, do a web search for “raspberry
pi python bme280,” or check this book’s GitHub repo, https://
github.com/akkana/pi-zero-w-book, for example code that you
can use with the BME280.

A TEMPERATURE TWEETER

One of the nifty features of the Raspberry Pi Zero W is that it
has WiFi built in. So you could, say, set up a Twitter account to
tweet the temperature.

Registering with Twitter
The hard work is registration. In order to use Twitter from a program,
you have to register your program with Twitter and jump through
some hoops to set up what’s known as OAuth authentication.

Go to https://apps.twitter.com/ (on any computer—you don’t
have to do this part on the Pi), log in to Twitter if you haven’t
already, and click Create New App. If you’re setting up a spe-
cial Twitter account for your temperature tweeter, log in as that
account rather than your normal account.

NOTE Registering a Twitter app requires registering a
mobile phone number with Twitter. If that’s not an option, you
won’t be able to use the Twitter API. In that case, skip ahead to
“Controlling a Fan or Air Conditioner.”

https://github.com/akkana/pi-zero-w-book
https://github.com/akkana/pi-zero-w-book
https://apps.twitter.com/

Jumpstarting the Raspberry Pi Zero W60

FIGURE 3.6: Twitter’s page for registering a new app

In the Application Details page, the hard part is the first entry,
Name. Your app name has to be unique in the universe of everyone
who’s ever registered a Twitter app. You may have to try quite a
few times to come up with a name no one else has ever thought
of. Good luck!

The rest of the fields are easier. Description is a short descrip-
tion of what your app does. When you’re first registering it, you
probably don’t know yet what it will do, so this isn’t too critical.
You can change it later. Website is a URL for a website describing
the app. If you have a web page or a GitHub repository where
you’ll describe it, use that. If not, make something up.

Callback URL applies mostly to web apps; you can leave it
blank for a Python app.

Of course, you have to click that you’ve read the Developer
Agreement and understood all the clauses about firstborn chil-
dren and blood sacrifices. You did notice those parts, right?

A Temperature Notifier and Fan Control 61

Click Create Your Twitter Application. If you found a name
that’s not taken, Twitter will take you to the Application Settings
page. Otherwise, try another name.

In Application Settings, click the Permissions tab and check
the access permissions; by default, the setting may be Read or
Read, Write but you may want to change it to Read, Write and
Access Direct Messages. (In Chapter 4, you will use Twitter’s
direct messages.) Changing the permissions will change your
secret keys, so set the permissions first.

The secret keys? They’re the point of this whole exercise.
Once you have the permissions the way you want them, click the
Keys And Access Tokens tab at the top of the page.

You’ll see Consumer Key and Consumer Secret there. But you
need two other tokens as well: Access Token and Access Token
Secret. Even though it sounds like some of them are secret and
some aren’t, all four of the tokens are secret and you shouldn’t put
them in your Python program or share them with other people.

To generate the other two tokens, scroll down and click “Cre-
ate my access token” at the bottom of page.

FIGURE 3.7: Click “Create my access token” to generate the third and
fourth tokens.

Jumpstarting the Raspberry Pi Zero W62

Now you’re on a page that shows all four tokens. Copy and
paste them to a file. Linux generally stores configurations in
directories named ~/.config/APPNAME/ (on Linux, the tilde char-
acter, ~, is short for your home directory, /home/pi, so this is really
/home/pi/.config/APPNAME). Create that directory. Then, from the
shell, type

mkdir ~/.config/YOUR_APP_NAME

Replace YOUR_APP_NAME appropriately (but it’s best to avoid using
spaces).

Then in your editor, create a file in that directory called auth.
For instance, if you’re using nano to edit files, use this:

nano ~/.config/YOUR_APP_NAME/auth

Store your four Twitter tokens in it so it looks like this:

consumer YOUR_CONSUMER_KEY
consumer_secret YOUR_CONSUMER_SECRET_KEY
access_token YOUR_ACCESS_TOKEN
access_token_secret YOUR_SECRET_ACCESS_TOKEN

Of course, replace YOUR_CONSUMER_KEY and the other three
variables with the actual keys you copy from the Twitter page.

Now your Python programs will be able to read the keys from
that file without any risk of people seeing your secret keys when
you share your code.

Python Twitter Libraries
There are lots of Python wrappers for the Twitter API. The two
most popular are Python-Twitter and Tweepy. They’re similar
enough that if you learn one, you can probably learn the other
without too much difficulty. I’ll use Python-Twitter here. Install it
with this command:

sudo apt-get install python-twitter

A Temperature Notifier and Fan Control 63

If you prefer to use the graphical installer in PIXEL, that’s
fine too.

NOTE The Python-Twitter in the Raspbian repositories only
works with Python 2, which is the default Python in Raspbian.
If you prefer Python 3, you’ll need to install Python-Twitter
with pip3.

Python-Twitter depends on several other packages. The installer
will ask you to confirm that it’s okay to install those packages too.

You’re ready to start coding. At the beginning of your tem-
perature-sensing program, import the twitter module (that’s
Python-Twitter, which you just installed). Read in the four tokens
from the file, examining each line to figure out which token is
which and storing them in a dictionary called oauthtokens. Then
call twitter.Api() to log in and get a twitter.Api object.

import twitter

def init_twitter():
 conffile = "/home/pi/.config/YOUR_APP_NAME/auth"
 oauthtokens = {}
 with open(conffile) as conf:
 for line in conf:
 line = line.split()
 oauthtokens[line[0]] = line[1]

 return twitter.Api(
 consumer_key=oauthtokens["consumer"],
 consumer_secret=oauthtokens["consumer_secret"],
 access_token_key=oauthtokens["access_token"],
 access_token_secret=oauthtokens["access_token_secret"])

Once you’re logged in, you can call Twitter functions to get
the timeline, check direct messages, post tweets, and so forth.
At first, though, all you’ll need is the ability to post a new tweet.

Jumpstarting the Raspberry Pi Zero W64

Tweeting the Temperature
If you’ve already initialized the Twitter API, all you need to post a
tweet is PostUpdate("Whatever you want to say"). You can easily
add that to your temperature monitoring program:

if __name__ == '__main__':
 twitapi = init_twitter()

 ctemp = read_temperature_c()
 ftemp = ctemp * 1.8 + 32
 twitapi.PostUpdate("The temperature is %.1f degrees!" % ftemp)

In practice, though, this approach can fail in various ways.
For instance, if you run this code inside a while True loop and
the temperature hasn’t changed since last time, you’ll be trying
to post the exact same tweet as last time, and your program will
die with a Twitter error, since Twitter assumes that if you try to
post the same tweet twice, it must be a mistake. To guard against
that, check for Twitter exceptions:

 while True:
 ctemp = read_temperature_c()
 ftemp = ctemp * 1.8 + 32
 try:
 tempx = "The temperature is %.1f degrees!"
 twitapi.PostUpdate(tempx % ftemp)
 except twitter.TwitterError as e:
 print("Twitter error: %s" % str(e))

Of course, you can do variations, such as posting only if the
temperature is above a certain value:

 try:
 if ftemp>90:
 tempx = "It's too hot!! %.1f degrees!"
 twitapi.PostUpdate(tempx % ftemp)
 except twitter.TwitterError as e:
 print("Twitter error: %s" % str(e))

A Temperature Notifier and Fan Control 65

CONTROLLING A FAN OR AIR
CONDITIONER

In Chapter 2, “Blink an LED,” you turned LEDs on and off. But
what if you want to control something big? For instance, wouldn’t
it be nice to be able to switch on your air conditioner automati-
cally when the temperature rises above 85 degrees?

You can’t do that directly; if you tried to send 120 volts of alter-
nating current through a Raspberry Pi you’d have crispy burned
Pi. You need something that can take input at one voltage and use
it to switch a circuit running at a completely different voltage. You
can buy relays that will do the job, but there’s a device that makes
it much easier: the PowerSwitch Tail (see Figure 3.8).

FIGURE 3.8: The PowerSwitch Tail

Jumpstarting the Raspberry Pi Zero W66

The manufacturer calls the PowerSwitch Tail “an opto- isolated
solid-state relay.” The important part of that is “isolated”; it means
there’s no electrical connection between the 120-volt AC your
house devices use and the delicate 3.3–5-volt DC innards of your
Raspberry Pi. (And yes, there’s a 220-volt version for use outside
the United States.)

To wire up the PowerSwitch Tail, you’ll need two or three bare
wires and a slim flat-bladed screwdriver to anchor the wires. On
the Pi Zero W, use the same pin you used for the LED in Chap-
ter 2: pin 8 or GPIO 14 (though nearly any GPIO pin will work).

FIGURE 3.9: Two ways of wiring the PowerSwitch Tail

The PowerSwitch Tail has three terminals, labeled +in, -in, and
Ground. There are two ways to hook it up. First, you can connect
-in to a ground connection on your Pi, and connect +in to the
GPIO signal line you’ll control with software. A second option is

A Temperature Notifier and Fan Control 67

to connect Ground on the PowerSwitch Tail to ground on the Pi,
connect +in to 3.3v on the Pi, and connect -in to your GPIO line.

Whichever route you choose, set the GPIO line to high or
low the same way you did with the blinking LED in Chapter 2.
Depending on what model of PowerSwitch Tail you have, the
logic may be reversed; you might need to set the GPIO line to
high to make AC flow through the PowerSwitch Tail, or you might
need to set it to low.

You don’t need to have anything plugged in to the Power-
Switch Tail to test it; it has an LED that lights up when power
would be flowing, and you can hear it click whenever it switches
on or off. You can test it with your LED code from Chapter 2—
except now, instead of controlling a single LED, you can control
a desk lamp, fan, air conditioner, or anything else you can plug
into house current. Of course, with a fan or air conditioner, you
probably don’t want to blink it on and off every second!

Switching a Fan Automatically by
Temperature
I’ll use the MCP9808 sensor since its code is the smallest, but
you can replace the code inside get_temperature_f() with code
for any sensor you have.

Control a fan or air conditioner using temperature sensor readings

import RPi.GPIO as GPIO
import smbus
from time import sleep

Constants:
MCP9808 = 0x18 # The default I2C address of the MCP9808
TEMP_REG = 0x05 # The temperature register
POWERSWITCH = 14 # GPIO pin for the PowerSwitch Tail

Depending on your model, you might need to reverse these:
FAN_ON = GPIO.HIGH

Jumpstarting the Raspberry Pi Zero W68

FAN_OFF = GPIO.LOW

How hot does it have to get before turning on a fan?
TOO_HOT = 80

How many seconds should we sleep between temp checks?
SLEEPTIME = 60 * 5

bus = smbus.SMBus(1)

def initialize():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(POWERSWITCH, GPIO.OUT)

def get_temperature_f():
 '''Return temperature in Fahrenheit'''
 data = bus.read_i2c_block_data(MCP9808, TEMP_REG)

 # Calculate temperature (see 5.1.3.1 in the datasheet):
 upper_byte = data[0] & 0x1f # clear flag bits
 lower_byte = data[1]
 if upper_byte & 0x10 == 0x10: # less than 0C
 upper_byte &= 0x0f
 ctemp = 256 - (upper_byte * 16.0 + lower_byte / 16.0)
 else:
 ctemp = upper_byte * 16.0 + lower_byte / 16.0

 print(ctemp * 1.8 + 32)
 return ctemp * 1.8 + 32

if __name__ == '__main__':
 initialize()

 try:
 while True:
 temp = get_temperature_f()
 if temp >= TOO_HOT:
 GPIO.output(POWERSWITCH, FAN_ON)
 else:
 GPIO.output(POWERSWITCH, FAN_OFF)

 sleep(SLEEPTIME)
 except KeyboardInterrupt:
 GPIO.cleanup()

A Temperature Notifier and Fan Control 69

Adjust the constants as needed, like which pins you’re using,
whether you need a HIGH or LOW signal to turn your fan on, and
what temperature should trigger the fan to come on.

Switching via Internet Messaging
If you don’t want to use automatic temperature sensing, you can
send a message over the Internet to switch your AC on and off
remotely from work or wherever you might be. I’ll use Twitter mes-
saging as an example, but you could check email messages, or use
a service that receives SMS messages you send from your phone.

For instance, you could send your Pi a direct message with
a special code, like “FAN ON.” Then your Pi could check for
messages inside the code from the earlier listing in the section
“Tweeting the Temperature.” Add import calendar to the Python
imports at the top of the file, and then add a check_for_command
function:

import twitter
import calendar
import time
import RPi.GPIO as GPIO

def init_twitter():
 # THE SAME CODE YOU USED IN PREVIOUS EXAMPLES

twitapi = init_twitter()
messages_seen = set()

def check_for_command(twitapi, code, recentminutes):
 '''Check for the last msg that starts with code
 and was sent in the specified number of minutes.
 Look for the command after the code, e.g., FAN ON.
 Returns (cmd, user) if there was a command,
 cmd is a string like "ON", user is a screen name.
 Returns (None, None) if there was no command.
 '''
 DMs = twitapi.GetDirectMessages(count=5, skip_status=True)
 now = time.time()
 for msg in DMs:

Jumpstarting the Raspberry Pi Zero W70

 # Have we already seen this message?
 if msg.id in messages_seen:
 break
 messages_seen.add(msg.id)

 if msg.text.startswith(code):
 # strip off the code part to get the ON or OFF command:
 cmd = msg.text[len(code):].strip()

 # Parse the creation time for the message,
 # make sure it was sent recently
 t = time.strptime(msg.created_at,
 '%a %b %d %H:%M:%S +0000 %Y')
 # How old is the message?
 minutesold = (now - calendar.timegm(t)) / 60
 if minutesold > recentminutes:
 break

 # We have a valid command.
 return cmd, msg.sender_screen_name

 # Didn't see a command:
 return None, None

A lot of the code has to do with parsing the time to be sure
you’re not responding to a command you sent three weeks ago.
Twitter sends times that look like “Wed Jul 05 19:15:12 +0000
2017” in GMT, so you have to turn that into a Python time in order
to compare it to the current time.

You’ll probably want to add some extra checking inside the
if msg.text.startswith(code) section for security, to make sure
the message comes from your account. You don’t want just any
Twitter user to be able to message your Pi and switch your home
appliances on or off!

Add the Twitter code to your PowerSwitch Tail program, and
in the while True: loop, instead of (or in addition to) checking
whether temp >= TOO_HOT, check for a Twitter message:

if __name__ == '__main__':
 twitapi = init_twitter()

A Temperature Notifier and Fan Control 71

 powerswitch = 14
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(powerswitch, GPIO.OUT)

 try:
 while True:
 cmd, user = check_for_command(twitapi, "FAN", 30)
 if cmd == "ON":
 GPIO.output(powerswitch, GPIO.HIGH)
 twitapi.PostDirectMessage("Turned fan ON",
 screen_name=user)
 elif cmd == "OFF":
 GPIO.output(powerswitch, GPIO.LOW)
 twitapi.PostDirectMessage("Turned fan OFF",
 screen_name=user)
 elif cmd:
 twitapi.PostDirectMessage("Unknown command %s"
 % cmd,
 screen_name=user)

 time.sleep(60 * 5) # sleep 5 minutes between checks

 except KeyboardInterrupt:
 GPIO.cleanup()

Then all you have to do is send yourself (or your Pi, if you’ve
set up a different Twitter account for it) a direct message saying
“FAN ON,” and the Pi will see the ON command and switch on
the fan for you, and then message you back to tell you it saw the
command. If you want to turn it off again, send another message,
“FAN OFF.”

Pretty cool—literally!

A Wearable News
Alert Light Show

You know how to make a single LED blink. By using several
GPIO pins, you could make a few LEDs blink together. But how
about a ring of twelve multicolored LEDs, or a string of thirty, all
changing colors at once? That makes for a much prettier light
display—especially when you can pin it on your jacket or wear it
as a belt, which is no problem with a computer as small and power
efficient as the Pi Zero W.

This chapter will introduce a couple of kinds of addressable
colored LEDs and show how to wire, power, and program them.
You’ll be able to monitor your Twitter feed and change the pat-
tern of the lights according to what’s happening on Twitter. Or, if
you don’t use Twitter, you can scrape any website you follow and
display it as a light show.

4

Jumpstarting the Raspberry Pi Zero W74

FIGURE 4.1: A NeoPixel Jewel showing off its colors

HARDWARE REQUIREMENTS

Here’s a list of what you need for this chapter:

 * An addressable RGB light string. There are two types: the
WS2812B or the SK6812, sold under the name “NeoPixel,”
and a newer type, the APA102C, sold by Adafruit under the
name “DotStar.” DotStars are a little more expensive and
aren’t available in as many shapes, but they’re easier to use
and capable of more lighting effects.

 * A power supply for the lights, with a jack to match its plug.
You can get a plug-in “wall wart,” a battery if you want
to make it wearable, or both. See “Power Supplies” in a
moment, or check out the section “Making It Portable: Bat-
teries” at the end of this chapter if you want battery details.

A Wearable News Alert Light Show 75

 * A 3.3- to 5-volt active level shifter chip such as a 74AHCT125
or a 74AHCT245. You can get by without a level shifter,
but if you’re ordering parts and paying for shipping any-
way, spend the extra buck and a half and buy one. See the
section “Logic Level Shifters” later in this chapter for more
information.

 * Soldering equipment. Most light strings come without wires
attached, so you’ll have to solder on some wires.

Recommended:

 * A multimeter (a cheap one is fine)

 * A large capacitor (1000 µF, 6.3V or higher)

Since it’s important for all the hardware to work together,
let’s talk in more detail about some of it so you know that you’re
ordering the right parts.

Power Supplies
Light strings take a lot of power—more than they can draw from
the Pi. A Raspberry Pi’s GPIO pins are rated for 16 milliamps per
pin, or 50 mA across the whole GPIO header. A single NeoPixel
or DotStar (just one pixel, not a string of them) draws 60 mA at
full brightness. You could fry your Pi’s GPIO if you tried to power
multiple pixels that way.

You could tap into the 5-volt power supply you’re using to
power your Pi if it’s a 2-amp or better supply and if you’re not
powering more than about 15 lights. But tapping into a USB cable
is a pain; it’s easier to use a separate supply, at least while you’re
testing. I like the cheap adjustable “wall warts.”

Jumpstarting the Raspberry Pi Zero W76

FIGURE 4.2: Adjustable “wall wart” power supply, along with a matching
jack with bare wire leads to plug into a breadboard

They typically come with a selection of plugs, and you can
either turn a dial or change plugs to get different voltages and
polarities. You’ll also need a jack that matches one of the plugs
on the wall wart and can connect to your breadboard (bare wires)
or directly to your light string.

Both NeoPixels and DotStars are nominally powered at 5
volts, though less is fine. Don’t exceed 5 volts: they’re reportedly
very sensitive to over-voltage and you might damage your light
string. If you can set your power supply to around 4.5 volts, that’s
perfect, but anything from 3.5 to 5 should work as long as it

A Wearable News Alert Light Show 77

provides enough current to power your light string (60 mA times
the number of lights). Use a voltmeter to make sure the power
supply is producing what it claims—though the voltage may drop
quite a bit once you add a load like a light string. A voltmeter can
also ensure you don’t have power and ground reversed.

Also, if you want to very safe about your light strings, connect
a large capacitor (1000 µF, 6.3V or higher) between the power
and ground terminals to protect against any voltage spikes your
power supply might generate.

I’ll address batteries and battery plugs at the end of this
chapter.

DOTSTARS

APA102C light strings, also called DotStars, use a protocol called
“two-wire SPI” to let your Raspberry Pi set color and brightness
for every LED in the string. SPI stands for Serial Peripheral Inter-
face bus; two-wire means, in this case, that you have one wire for
data and a second wire for a “clock” signal to tell the light string
when new data is available. That’s a good thing: it’s easy to drive
the light string from a Raspberry Pi, much easier than with the
older one-wire NeoPixel strings.

Of course, all electronic devices also have a power and
ground wire as well. Connect the ground wire to the ground
on your Pi, but remember, don’t power the light string from the
Pi’s GPIO pins. Use a separate 3- to 5-volt power supply for the
DotStar’s power line.

DotStar strings have a direction: you need to attach your sig-
nal wires at the input end of the string, not the output end. If you
look closely, the string probably has arrows indicating direction,
from input to output. There may already be wires attached at
one end or the other, but don’t be fooled—some strings come
with wires attached at the wrong end, in which case you should

Jumpstarting the Raspberry Pi Zero W78

ignore them and solder your own wires to the input end. (If your
string comes with wires at the output end, you can keep them
in case you want to add a second DotStar string, or you can just
cut them off.)

FIGURE 4.3: The arrows show the direction of the DotStar string.

If you’re powering your DotStar at 3 to 4 volts, there’s an easy
way to wire it (Figure 4.4): connect your power supply’s positive
wire to the light string’s +5V connection. Connect both grounds,
from the Pi and the light string, to ground on your power supply.

Then connect Data Input (it might be labeled DI) to GPIO 10.
If you’re using a GPIO breadboard extension, GPIO 10 might be
labeled MOSI, for “Master Out, Slave In.” Your Pi is the master,
and it’s sending data out through MOSI to the slave, the light
string. Connect the clock input wire (CI) to GPIO 11, also called
SCLK. This wiring should work as long as the DotStar’s input
voltage is similar to the Pi’s 3.3 volts. It might not work at 5 volts.

To test it, you’ll need to download some software. Using a
prewritten library is easiest so you don’t have to handle all the
details of SPI. In this case, the best supported library is provided
by Adafruit. It’s hosted on GitHub, and you can use git to down-
load it. Bring up a terminal on your Pi.

If you’re running headless, you may not have git yet. Type this
command to be sure:

sudo apt-get install git

A Wearable News Alert Light Show 79

FIGURE 4.4: The simplest wiring for a DotStar string

Then download and install the DotStar library, with three
more commands:

git clone https://github.com/adafruit/Adafruit_DotStar_Pi.git
cd Adafruit_DotStar_Pi
sudo python setup.py install

Time to test it! Edit the file strandtest.py with nano, Leafpad,
or whatever text editor you prefer. Look near the beginning of
the file for the line where numpixels is set.

FIGURE 4.5: Edit strandtest.py and look for numpixels.

https://github.com/adafruit/Adafruit_DotStar_Pi.git

Jumpstarting the Raspberry Pi Zero W80

Change numpixels to the number of pixels in your string. A
few lines down from that, look for the line that says

strip = Adafruit_DotStar(numpixels, datapin, clockpin)

(the first strip = line, the one that’s not commented out), and
change it to

strip = Adafruit_DotStar(numpixels, 12000000)

That’s 12 followed by six zeros. Save the file, then run

sudo python strandtest.py

With any luck, you’ll see beautiful bars of color pulsing down
your strip.

NOTE SPI programs generally have to run with root permis-
sion, which is what sudo does for you. That means you should run
light string programs from the terminal with sudo, even if you’ve
been using IDLE for your other Python programs.

FIGURE 4.6: DotStar, wired up and running. The chip on the breadboard is
a 74LVC245 level shifter.

A Wearable News Alert Light Show 81

If the LEDs don’t light up, especially if you’re powering the
light strip at close to 5 volts, you may need a level shifter.

Logic Level Shifters
The Raspberry Pi’s GPIO signals are only 3.3 volts. Since the
DotStar expects 5V, sometimes the Pi’s signals may not be strong
enough, and you might need to boost them.

A logic level shifter can take input at 3.3 volts and convert it
to 5. You can buy passive level shifters, sold under names like “Bi-
Directional Level Shifter,” but unfortunately those boards aren’t fast
enough to handle this job. You need an active level shifter. These
chips have a lot of confusing names, but the names often include
terms like “line driver” or “bus transceiver,” sometimes with “3-state”
or “tri-state” thrown in. The two most popular level shifting chips
known to work with addressable LED strings are the 74LVC245
and the 74AHCT125. Figures 4.7 and 4.8 show wiring diagrams.

FIGURE 4.7: Wiring a DotStar string with the 74LVC245 Octal Bus Trans-
ceiver with 3-State Outputs

Jumpstarting the Raspberry Pi Zero W82

FIGURE 4.8: Wiring a DotStar string with the 74AHCT125 Quad Buffer/
Line Driver, 3-State

Once the wiring is ready, run sudo python strandtest.py again.
If low signal voltage was the problem, a level shifter will get your
DotStars glowing. If not, recheck your wiring.

NEOPIXELS

WS2812B or SK6812 light strings, sold by Adafruit under the
name NeoPixels, have been around for years. They’re less expen-
sive than DotStars, and you can get them in all sorts of config-
urations: strings, jewels, circles, sticks, matrices, and individual
pixels.

A Wearable News Alert Light Show 83

Unfortunately, they’re a lot trickier to use with a Pi. Why?
They need precise timing. They only have a data line, whereas
DotStars have a data line and a clock line. Since there’s no clock,
the controller expects to get its data in a prompt, orderly fashion.
That’s easy with a microcontroller like an Arduino, but it’s more
difficult from a computer running Linux. A real operating system
might be busy with other things just at the time when a signal
needs to be sent to the light controller.

NeoPixels are also a little pickier than DotStars about input
voltage. They have the same overvoltage problems as DotStars
(try not to exceed 5 volts), but unlike DotStars, if you go too low,
below 4 volts, you may see strange behavior.

The Simplest Hookup
As with DotStars, there’s a simple hookup that might work if
you’re running around 4 volts to your light string. First, run power
and ground from your power source to the light string. You’ll also
need a connection from the power source’s ground to one of the
Pi’s ground pins.

WARNING Be careful not to connect the external power
source’s positive terminal to any of the Pi’s pins! You could burn
out your Pi.

For signaling, run a wire from the light string’s Data In to
GPIO 18 (pin 12). You’ll be using PWM to talk to the light string,
and PWM is only available on a few Raspberry Pi pins, including
GPIO 18.

Jumpstarting the Raspberry Pi Zero W84

FIGURE 4.9: The simplest NeoPixel hookup. It may not work,
depending on your voltage source.

The Software
For a long time, there was no way of driving NeoPixels directly
from a Raspberry Pi. Then along came a library called rpi_ws281x.
It even comes with Python bindings.

The library is written in the C language and uses a build sys-
tem called scons, so you’ll need to install some prerequisites to
build it:

sudo apt-get install build-essential python-dev git scons swig

Once those are installed, build and install the library. At the
prompt, type the following five commands:

git clone https://github.com/jgarff/rpi_ws281x.git
cd rpi_ws281x
scons
cd python
sudo python setup.py install

All that installation and building takes a little while, but once
it’s ready, you can change into the examples directory, where

https://github.com/jgarff/rpi_ws281x.git

A Wearable News Alert Light Show 85

the Python example scripts are (in Linux, cd stands for “change
directory”):

cd examples
ls

You should see the following:

SK6812_lowlevel.py SK6812_white_test.py multistrandtest.py
strandtest.py
SK6812_strandtest.py lowlevel.py neopixelclock.py

These are all example programs you can run. Start by edit-
ing strandtest.py in nano, Leafpad, or whatever text editor you
prefer.

FIGURE 4.10: Editing strandtest.py

Change LED_COUNT to the number of LEDs you have in your
string. Notice that LED_PIN is also set; if you want to fiddle with
different pins later, you can do so here (but stick with 18 for now).

Jumpstarting the Raspberry Pi Zero W86

Save the file. Then, back in the shell, type

sudo python strandtest.py

(you have to use sudo because PWM, like SPI, requires root per-
mission) and cross your fingers. If all goes well, you’ll see a beau-
tiful light show.

Troubleshooting
What if you don’t see anything, or you see a few lights turn on
but no light show? There are several things that could go wrong.
These light strings are finicky.

Check your voltage level with a voltmeter and make sure it’s
around 4.5–5 volts and the right polarity (you don’t have V+ and
ground mixed up).

If voltage is good, it’s possible the Pi’s audio hardware is
interfering—it uses some of the same PWM resources the light
string needs. You can disable it. First, create a file named /etc
/ modprobe.d/snd-blacklist.conf. You’ll need sudo permission to
edit that file. Try this:

sudo leafpad /etc/modprobe.d/snd-blacklist.conf

(or nano instead of leafpad if you’re running headless). Add this line:

blacklist snd_bcm2835

Then reboot.

NOTE If you use your Pi to play music or other sounds,
remove the snd-blacklist.com file when you’re done with your
NeoPixels. You can’t do both at the same time.

A Wearable News Alert Light Show 87

For more information on this and other things that can go
wrong, see the GitHub page for the library: https://github.com/
jgarff/rpi_ws281x.

The next likely culprit is logic levels—that pesky requirement
that the WS2812B wants 5 volts and the Pi only provides 3.3.

To get around that, you might need a logic level shifter. For
background on them, see “Logic Level Shifters” earlier.

Figures 4.11 and 4.12 show wiring diagrams for NeoPixels with
the two most popular level-shifting chips.

With any luck, if your light string wasn’t working before, a
level shifter will get you going.

FIGURE 4.11: Wiring a NeoPixel light string with the 74LVC245 Octal Bus
Transceiver with 3-State Outputs

https://github.com/

Jumpstarting the Raspberry Pi Zero W88

FIGURE 4.12: Wiring a NeoPixel light string with the 74AHCT125
Quad Buffer/Line Driver, 3-state

One last comment about NeoPixels. It’s theoretically possible
to drive them using one-wire SPI, similar to the two-wire SPI the
DotStars use, rather than PWM. For SPI, use the Pi’s GPIO 10,
labeled “MOSI,” rather than GPIO 18, and change the pin spec-
ified in strandtest.py. On the face of it, SPI sounds like it ought
to be a more reliable method, but in practice, I’ve had no luck
using SPI with NeoPixels. Feel free to try it, and drop me a line
if you get it to work.

A Wearable News Alert Light Show 89

SEARCHING FOR TWITTER
KEYWORDS

I know that it’s tempting just to run strandtest.py forever. Ooh,
shiny! But why not make the LEDs show something useful instead?

How about monitoring keywords on your Twitter stream so
you can see trends visually with changing colors? (If you skipped
the Twitter discussion in Chapter 3, “A Temperature Notifier and
Fan Control,” don’t despair; skim this section, then skip ahead to
“Web Scraping in Python” for a non-Twitter option.)

If you’re still in the NeoPixel or DotStar library after running
strandtest.py, get out of it: cd with no other arguments will get
you back to your home directory. Create a file called twit.py that
includes your Twitter code (import twitter and the init_twitter()
function) from Chapter 3.

In Python-Twitter, GetHomeTimeline() will get your timeline—
the list of recent tweets from everyone you follow. You can make
a loop that checks your timeline every couple of minutes and
prints any new tweet you haven’t seen before. To try that, add
this section to twit.py:

import time

if __name__ == '__main__':
 twitapi = init_twitter()

 tweets_seen = set() # The set of tweets already seen

 while True:
 timeline = twitapi.GetHomeTimeline()
 print("\n==========================")
 for tweet in timeline:
 if tweet.id in tweets_seen:
 continue

 print("\n=== %s (%s) ===" % (tweet.user.screen_name,
 tweet.user.name))
 print(tweet.text)

Jumpstarting the Raspberry Pi Zero W90

 print(" %s" % tweet.created_at)
 tweets_seen.add(tweet.id)
 time.sleep(120) # Wait two minutes

GetHomeTimeline() returns a list, and each tweet in the list is a
twitter.Status object. The online documentation for Python-Twit-
ter isn’t very complete, but the library has built-in help you can
get in the Python console or in IDLE:

>>> import twitter
>>> help(twitter.Api.GetHomeTimeline)

If you try that, it will tell you that GetHomeTimeline returns a
sequence of twitter.Status instances, one for each message.
Then you can find out what a Status includes:

>>> help(twitter.Status)

The important part of a twitter.Status is .text: that’s the con-
tent of the tweet, so you can print tweet.text, and tweet.text is
where you should look for keywords.

In the listing, tweets_seen is a set of all the tweets you’ve
already seen, so you can check whether you’ve seen each tweet
before and print it only the first time.

String Searches and Python Dictionaries
Once you have the text of a tweet, Python makes string searches
super easy. For example, if you want to know whether a Twitter
status includes “raspberry pi,” you can use this:

 if "raspberry pi" in tweet.text.lower():
 print "Another Raspberry Pi tweet!"

The .lower() function converts the status text to all lower-
case, so you can search for “raspberry pi” without needing to
worry whether it might be “Raspberry Pi” or “RASPBERRY PI.”

Pick a few topics you want to match and keywords that tell
you somebody’s tweeting about each topic. For instance, I follow

A Wearable News Alert Light Show 91

a lot of science and tech people. I also follow people who tweet
about nature and the outdoors. How many tweets are related
to Raspberry Pi or open source, compared to the ones about
nature? You could set up a Python dictionary like this:

topicwords = {
 'tech': ['raspberry pi', 'linux', 'maker', 'open source'],
 'nature': ['bike', 'hike', 'bird', 'bear', 'trail']
 }

A Python dictionary lets you index by keywords. topicwords
is the dictionary. topicwords['tech'] gets you the list of techie
words. topicwords['tech'][2] gets you the third word in that list,
or maker[2] (2 gives you the third word in the list, and not the
second, because Python, like most computer languages, starts
lists with 0).

You could use any categories, such as emotion words like
“happy,” “smile,” “rofl,” “sad,” or “angry”; sports terms; terms
related to politics; and so forth, depending on what you see in
your Twitter stream. Adjust the list for your own preferences and
experiment. You can use a lot more keywords than this example,
though I recommend sticking to only two or three topics initially.
Note that all the terms are lowercase, even those that are usually
capitalized, like “ROFL”; that’s because we’re converting every-
thing to lowercase before comparing the strings.

Now you can get your home timeline. Look through all the
Status.texts and see if any of the keywords are there. To do that,
loop over the statuses; then for each status, loop over the topics
(tech and nature); then for each topic, loop over the keywords in
that topic and see if that keyword is in that Status.text. Put this
in your twit.py script, after the end of init_twitter() and before
if __name__ == '__main__'::

def match_keywords(twitapi, topicwords):
 timeline = twitapi.GetHomeTimeline(50)

Jumpstarting the Raspberry Pi Zero W92

 matches = {} # Build up a new dictionary of matches to return

 for tweet in timeline:
 text = tweet.text.lower()
 for topic in topicwords:
 for word in topicwords[topic]:
 if word in text: # Got a match! Add it.
 if topic in matches: # saw this topic already
 matches[topic] += 1
 else: # first time we've seen this topic
 matches[topic] = 1
 return matches

match_keywords returns a new dictionary that looks something
like this: { 'nature': 3, 'tech': 6. This indicates that there were
three tweets with nature keywords and six that were techie. You
can test it by printing its output from if __name__ == '__main__':.

 print(match_keywords(twitapi, topicwords))

Displaying Twitter Information on a
Light String
You have the new dictionary returned from match_keywords. How
do you show it on a light string?

How about showing a pixel for each tweet that matches a
keyword, with a different color for each topic? The colors can
cycle across the string or around the circle so it won’t be boring
to look at.

In the same directory where you have twit.py, edit a new file
called twitterlights.py and make the first line import twit so it
can use the Twitter code you already wrote. Add import time so
you can sleep between updates.

Then include the module for whichever light string you’re
using, and set up the values it needs. Fortunately, Adafruit
wrote their NeoPixel and DotStar libraries to have similar calls:
they both have a Color type, and they both have strip.begin(),

A Wearable News Alert Light Show 93

strip.setPixelColor(i, Color(*color)), and strip.show(). So
after you initialize the light string, you can use the same code to
control it whether it’s a DotStar or a NeoPixel.

To initialize the string, you’ll need the basic definition of the
light strip, plus a way to define colors. So import Color as well as
the strip itself (for NeoPixels, you’ll also need to import ws), define
your number of pixels as num_pixels, and initialize your strip. You
can copy and paste from whatever worked in strandtest.py:

import twit
import time

For DotStars:
from dotstar import Adafruit_DotStar, Color
num_pixels = 30
strip = Adafruit_DotStar(num_pixels, 12000000)
strip.begin()

or

import twit
import time

For NeoPixels:
from neopixel import Adafruit_NeoPixel, Color, ws

LED strip configuration:
LED_PIN = 18 # GPIO pin (18 uses PWM!).
LED_FREQ_HZ = 800000 # LED signal frequency (usually 800khz)
LED_DMA = 5 # DMA channel to use (try 5)
LED_BRIGHTNESS = 256 # 0 for darkest, 255 for brightest
LED_INVERT = False # True to invert the signal
LED_CHANNEL = 0 # set to '1' for GPIOs 13, 19, 41, 45 or 53
LED_STRIP = ws.WS2811_STRIP_GRB # Strip type, color ordering

num_pixels = 7

strip = Adafruit_NeoPixel(num_pixels, LED_PIN,
 LED_FREQ_HZ, LED_DMA, LED_INVERT,
 LED_BRIGHTNESS, LED_CHANNEL, LED_STRIP)
strip.begin()

Jumpstarting the Raspberry Pi Zero W94

That takes care of initializing the light string. Now how do you
use it to show the Twitter keywords?

Let’s specify a color for each topic. Colors are specified as a
list of (Red, Green, Blue), with each primary color going from 0
to 255. (0, 0, 0) is black (all colors off), (255, 255, 255) is white
at full brightness (all three colors on), (255, 0, 0) is bright red,
(0, 32, 0) is dim green, and so on. To show tech as purple and
nature as green:

topiccolors = {
 'nature': Color(0, 255, 0),
 'tech': Color(255, 0, 255),
 }

The following code will display as many pixels of each color
as there are tweets seen. If you see seven nature tweets and five
tech tweets, it’ll show seven green pixels and five purple pixels,
advancing down the light strip or around the circle.

TWITTER_CHECK_TIME = 120 # How often to check Twitter
TIME_BETWEEN_PIXELS = .02 # Seconds from one pixel to the next
led_number = 0 # Which LED are we setting right now?
tot_time = TWITTER_CHECK_TIME # So we'll check immediately

twitapi = init_twitter()

while True:
 if tot_time >= TWITTER_CHECK_TIME:
 keywords_found = twit.match_keywords(twitapi, topicwords)
 tot_time = 0
 print(keywords_found)

 # Loop over the topics:
 for topic in keywords_found:
 # keywords_found[topic] is the number of keywords
 # we matched on Twitter. Show that number of pixels.
 # The color for this topic is topiccolors[topic].
 for i in range(keywords_found[topic]):
 strip.setPixelColor(led_number, topiccolors[topic])
 strip.show()

A Wearable News Alert Light Show 95

 led_number = (led_number + 1) % num_pixels
 time.sleep(TIME_BETWEEN_PIXELS)
 tot_time += TIME_BETWEEN_PIXELS

That looks good most of the time, but there’s one more
tweak to make it look even better. If the total number of Twitter
hits over all the topics divides evenly into the number of pixels,
or vice versa—suppose you have 20 pixels, and you saw seven
tech tweets and three nature tweets, for a total of ten—then
the colors will just stay in the same place rather than advancing
around the string, and the display will look static. You can guard
against that by taking the sum of the keywords found for each
topic and using the modulo operator (%) to check for divisions
with no remainder, and then adding a blank pixel in that case.
Put this code right after print(keywords_found), indented only
four spaces, not eight:

 tot_hits = sum(keywords_found[i] for i in keywords_found)
 if num_pixels % tot_hits == 0 or tot_hits % num_pixels == 0:
 keywords_found['blank'] = 1

Whew! Lots of steps, but the result is pretty. Once it’s work-
ing, try adding more topics in different colors.

WEB SCRAPING IN PYTHON

Don’t care for Twitter, or just more interested in following some
other website? No problem—you can write a web scraper.

“Scraping” means downloading a web page and searching
through the text. Here’s a very simple Python web scraper that
accepts the same list of topic words as in the Twitter example and
returns the same dictionary of matches:

import requests

def match_keywords(url, topicwords):
 r = requests.get(url)

Jumpstarting the Raspberry Pi Zero W96

 matches = {}

 for line in r.text.splitlines():
 line = line.lower() # convert it to lowercase
 for topic in topicwords:
 for word in topicwords[topic]:
 if word in line:
 # Add it to matches
 if topic in matches:
 matches[topic] += 1
 else:
 matches[topic] = 1
 return matches

This code splits the output into lines and counts the number of
lines where there was a keyword match. You can test it with this:

if __name__ == '__main__':
 topicwords = {
 # Set up your topic words here, as in the Twitter section
 }

 print(match_keywords('http://WEBSITE_TO_SCRAPE', topicwords))

Of course, replace WEBSITE_TO_SCRAPE with whatever website
you want to try.

This scraper isn’t ideal, though, because 90 percent of a typ-
ical web page consists of menus, sidebars, ads, and JavaScript,
and you don’t want to scrape that. You only want to look at the
text you’d see if you viewed the page in a browser. For that, you
need to parse the web page’s source, which you can do with a
Python module called BeautifulSoup. First you have to install it
(this covers both Python 2 and Python 3):

sudo apt-get install python-bs4 python-lxml python3-bs4

Then you can parse the web page and remove all that
 JavaScript. (Removing menus and sidebars is harder and is left

http://WEBSITE_TO_SCRAPE

A Wearable News Alert Light Show 97

as an exercise for the reader.) You can search for <script> tags,
remove (“extract”) them from the page, get only the text part
of what’s left, convert it to lowercase, split it into lines, and then
run your keyword search. The if __name__ == '__main__': part
doesn’t change.

import requests
from bs4 import BeautifulSoup

def match_keywords(url, topicwords):
 r = requests.get(url)
 soup = BeautifulSoup(r.text, "lxml")

 # Remove javascript:
 for script in soup(["script"]):
 script.extract() # Remove all <script> tags

 matches = {}

 for line in soup.text.lower().splitlines():
 for topic in topicwords:
 for word in topicwords[topic]:
 if word in line:
 if topic in matches:

 matches[topic] += 1
 else:
 matches[topic] = 1
 return matches

You can get as fancy as you want to with BeautifulSoup and
look only for certain tags, only for headlines, and so forth. When
you’re happy with your scraper, you can import it into a light
string program, just as you would have with twit.py, except that
you’ll import scrape rather than twit, and instead of initializing
the Twitter API, you’ll call scrape.match_keywords('THE-WEBSITE-
TO-SCRAPE’, topicwords.

Jumpstarting the Raspberry Pi Zero W98

NOTE The legality of web scraping still isn’t a settled issue
in most countries. There have been lawsuits in cases where a
company scraped a competitor’s website for commercial gain,
but generally no one cares about individual scraping that isn’t
posted anywhere public. And of course, no one objects to
 Google scraping their websites to index them. When you’re
scraping websites, be nice and don’t flood the site’s connection;
make sure your program sleeps a reasonable amount of time (a
few minutes) between fetches.

MAKING IT PORTABLE: BATTERIES

Once you have your light string working, wouldn’t it be nice to
get it off your desk and make it wearable?

Since you’ll be running the Pi as well as the light string off bat-
teries, calculate the amps you expect your lights will draw: about
60 mA at full brightness times the number of pixels. Then add
about an amp for the Pi, though you can probably get by with as
little as 0.2 amps if it’s idling most of the time, or a little more if it’s
going to be doing heavy computation. Batteries are rated by “amp
hours,” so if you can estimate the amps your project needs, you
can make a first guess as to how long any given battery will run it.

One easy option is a portable USB charger with a lithium-ion
battery.

These are sold as emergency chargers for cellphones, but
they can power any device that expects to be plugged into a USB
port. Typically they come with a USB A jack, so you can plug in a
normal USB A to MicroUSB cable to get power to your Pi.

A Wearable News Alert Light Show 99

FIGURE 4.13: A couple of portable USB chargers

To power a light string in addition to a Pi, you’ll probably
have to make a Y connector that goes from the battery’s USB
plug to the light string. Even if you use separate batteries for
the Pi and the light string, you’ll still need a Y connector to
link the two batteries’ grounds together. Be sure to check the
current output limitations (amps) on any battery you buy; small
batteries may not have enough juice to power a Pi or a light
string, let alone both.

You can use AA or AAA battery packs, but I don’t recom-
mend it. Three AA alkaline batteries provide 4.5 volts, and four
nickel-metal hydride (NiMH) rechargeables provide 4.8. Either of
those is within the acceptable voltage range, but the batteries
won’t last very long, and when they get tired the voltage will
fall off steeply, to the point where your Pi might start behaving
erratically.

Another option is lithium-polymer batteries, sold in hobby
shops for powering radio control airplanes and cars.

Jumpstarting the Raspberry Pi Zero W100

WARNING Lithium-polymer batteries require a special
charger and are finicky about how they’re charged. If you over-
charge them or accidentally short them, they can easily start a
fire. Lots of model airplane geeks use and love li- po batteries,
but read up on them before committing.

A lot of NeoPixel tutorials recommend a single-cell li-po,
which delivers 3.7 volts, a nice safe voltage for the light strings.
But that’s not enough voltage to power the Pi, so you’ll need a
separate battery or a step-up power converter.

If you use a two-cell li-po, available in hobby shops that sell
model airplane supplies, you get 7.4 volts—far too high for either
the Pi or the light string—but you can use a voltage regulator or
step-down power converter to bring the voltage down to 5 volts.
A voltage regulator might need a heat sink, so read up on the
details of the regulator you choose. Step-down power converters
are more efficient and might not need a heat sink. Either way,
make sure it can handle several amps.

FIGURE 4.14: 5V voltage regulator used with a battery of higher voltage

A Wearable News Alert Light Show 101

Plugs for Portable Projects
No matter what battery you use, you’ll most likely have to solder
a cable with connectors. If you use one battery to power both the
Pi and the light string, you’ll need a Y connector that has power
and ground from the battery going both to the Pi and to the light
string. Even if you use two batteries with separate connectors,
you’ll still need some form of Y to connect the Pi’s ground to the
light string. Just like people, electronic gizmos need common
ground to communicate.

FIGURE 4.15: Running both the Pi Zero W and a NeoPixel Jewel off a
USB backup battery, with a MicroSD plug (made from a spare USB OTG
adapter) for the Pi and a mini-Deans connector for the NeoPixel

Jumpstarting the Raspberry Pi Zero W102

On the Pi’s side, it’s best to use a MicroUSB plug for power.
You can provide 5V input power via GPIO pin 2 (the one labeled
5v), but there’s no protection against voltage spikes as there is
on the Pi’s normal MicroUSB Power In jack. If you bought a pack
of USB OTG adapters to get your USB hub working (Chapter 1),
they also make nice solderable MicroUSB connectors.

For the light string (and the battery, if you’re not using one
that comes with a connector), you have your choice. There are
lots of options: various types of connectors, Deans and mini-
Deans, phone plugs (meant for audio), car and motorcycle plugs…
the list is endless, and there’s no standard. Use whatever you can
find easily, especially if you have a local store that carries them.
(No matter how many connectors you think you bought, you will
run short on a Friday night when you’re working on that last-min-
ute project for the weekend.) Hobby shops that sell radio control
planes and cars are good hunting grounds.

FIGURE 4.16: Connectors galore!

A Wearable News Alert Light Show 103

Whatever connectors you decide to use, get several of them,
both male and female, so you can make adapters for several bat-
teries, adapters from your wall wart to your wearable device, and
so on.

There you have it: a wearable device that is not only pretty,
but actually shows you useful information, updated in real time.

And that’s it! Now you’ve built a selection of projects using
the Raspberry Pi Zero W. You can use these projects as a basis
for further adventures with the Pi. Don’t forget to check out the
GitHub repo, https://github.com/akkana/pi-zero-w-book, where
you’ll find all the code in the book (so you don’t have to type it in
yourself), wiring diagrams, and maybe a few additional examples
of what the Pi Zero W can do.

Have fun!

https://github.com/akkana/pi-zero-w-book

	Contents
	Acknowledgments
	Chapter 1: Getting Started
	Chapter 2: Blink an LED
	Chapter 3: A Temperature Notifier and Fan Control
	Chapter 4: A Wearable News Alert Light Show

