

Praise for Programming Collective Intelligence

“I review a few books each year, and naturally, I read a fair number during the course of
my work. And I have to admit that I have never had quite as much fun reading a
preprint of a book as I have in reading this. Bravo! I cannot think of a better way for a
developer to first learn these algorithms and methods, nor can I think of a better way for
me (an old AI dog) to reinvigorate my knowledge of the details.”

— Dan Russell, Uber Tech Lead, Google

“Toby’s book does a great job of breaking down the complex subject matter of machine-
learning algorithms into practical, easy-to-understand examples that can be used directly
to analyze social interaction across the Web today. If I had this book two years ago, it
would have saved me precious time going down some fruitless paths.”

— Tim Wolters, CTO, Collective Intellect

“Programming Collective Intelligence is a stellar achievement in providing a comprehensive
collection of computational methods for relating vast amounts of data. Specifically, it
applies these techniques in context of the Internet, finding value in otherwise isolated data
islands. If you develop for the Internet, this book is a must-have.”

— Paul Tyma, Senior Software Engineer, Google

Programming Collective Intelligence

Other resources from O’Reilly

Related titles Web 2.0 Report

Learning Python

Mastering Algorithms with C

AI for Game Developers

Mastering Algorithms with
Perl

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit
conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

Programming Collective
Intelligence

Building Smart Web 2.0 Applications

Toby Segaran

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Programming Collective Intelligence
by Toby Segaran

Copyright © 2007 Toby Segaran. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mary Treseler O’Brien
Production Editor: Sarah Schneider
Copyeditor: Amy Thomson
Proofreader: Sarah Schneider

Indexer: Julie Hawks
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Jessamyn Read

Printing History:

August 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming Collective Intelligence, the image of King penguins, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-52932-5

ISBN-13: 978-0-596-52932-1

[M]

http://safari.oreilly.com
mailto:corporate@oreilly.com

vii

Table of Contents

Preface . xiii

1. Introduction to Collective Intelligence . 1
What Is Collective Intelligence? 2
What Is Machine Learning? 3
Limits of Machine Learning 4
Real-Life Examples 5
Other Uses for Learning Algorithms 5

2. Making Recommendations . 7
Collaborative Filtering 7
Collecting Preferences 8
Finding Similar Users 9
Recommending Items 15
Matching Products 17
Building a del.icio.us Link Recommender 19
Item-Based Filtering 22
Using the MovieLens Dataset 25
User-Based or Item-Based Filtering? 27
Exercises 28

3. Discovering Groups . 29
Supervised versus Unsupervised Learning 29
Word Vectors 30
Hierarchical Clustering 33
Drawing the Dendrogram 38
Column Clustering 40

viii | Table of Contents

K-Means Clustering 42
Clusters of Preferences 44
Viewing Data in Two Dimensions 49
Other Things to Cluster 53
Exercises 53

4. Searching and Ranking . 54
What’s in a Search Engine? 54
A Simple Crawler 56
Building the Index 58
Querying 63
Content-Based Ranking 64
Using Inbound Links 69
Learning from Clicks 74
Exercises 84

5. Optimization . 86
Group Travel 87
Representing Solutions 88
The Cost Function 89
Random Searching 91
Hill Climbing 92
Simulated Annealing 95
Genetic Algorithms 97
Real Flight Searches 101
Optimizing for Preferences 106
Network Visualization 110
Other Possibilities 115
Exercises 116

6. Document Filtering . 117
Filtering Spam 117
Documents and Words 118
Training the Classifier 119
Calculating Probabilities 121
A Naïve Classifier 123
The Fisher Method 127
Persisting the Trained Classifiers 132
Filtering Blog Feeds 134

Table of Contents | ix

Improving Feature Detection 136
Using Akismet 138
Alternative Methods 139
Exercises 140

7. Modeling with Decision Trees . 142
Predicting Signups 142
Introducing Decision Trees 144
Training the Tree 145
Choosing the Best Split 147
Recursive Tree Building 149
Displaying the Tree 151
Classifying New Observations 153
Pruning the Tree 154
Dealing with Missing Data 156
Dealing with Numerical Outcomes 158
Modeling Home Prices 158
Modeling “Hotness” 161
When to Use Decision Trees 164
Exercises 165

8. Building Price Models . 167
Building a Sample Dataset 167
k-Nearest Neighbors 169
Weighted Neighbors 172
Cross-Validation 176
Heterogeneous Variables 178
Optimizing the Scale 181
Uneven Distributions 183
Using Real Data—the eBay API 189
When to Use k-Nearest Neighbors 195
Exercises 196

9. Advanced Classification: Kernel Methods and SVMs 197
Matchmaker Dataset 197
Difficulties with the Data 199
Basic Linear Classification 202
Categorical Features 205
Scaling the Data 209

x | Table of Contents

Understanding Kernel Methods 211
Support-Vector Machines 215
Using LIBSVM 217
Matching on Facebook 219
Exercises 225

10. Finding Independent Features . 226
A Corpus of News 227
Previous Approaches 231
Non-Negative Matrix Factorization 232
Displaying the Results 240
Using Stock Market Data 243
Exercises 248

11. Evolving Intelligence . 250
What Is Genetic Programming? 250
Programs As Trees 253
Creating the Initial Population 257
Testing a Solution 259
Mutating Programs 260
Crossover 263
Building the Environment 265
A Simple Game 268
Further Possibilities 273
Exercises 276

12. Algorithm Summary . 277
Bayesian Classifier 277
Decision Tree Classifier 281
Neural Networks 285
Support-Vector Machines 289
k-Nearest Neighbors 293
Clustering 296
Multidimensional Scaling 300
Non-Negative Matrix Factorization 302
Optimization 304

Table of Contents | xi

A. Third-Party Libraries . 309

B. Mathematical Formulas . 316

Index . 323

xiii

Preface1

The increasing number of people contributing to the Internet, either deliberately or
incidentally, has created a huge set of data that gives us millions of potential insights
into user experience, marketing, personal tastes, and human behavior in general.
This book provides an introduction to the emerging field of collective intelligence. It
covers ways to get hold of interesting datasets from many web sites you’ve probably
heard of, ideas on how to collect data from users of your own applications, and
many different ways to analyze and understand the data once you’ve found it.

This book’s goal is to take you beyond simple database-backed applications and
teach you how to write smarter programs to take advantage of the information you
and others collect every day.

Prerequisites
The code examples in this book are written in Python, and familiarity with Python
programming will help, but I provide explanations of all the algorithms so that pro-
grammers of other languages can follow. The Python code will be particularly easy to
follow for those who know high-level languages like Ruby or Perl. This book is not
intended as a guide for learning programming, so it’s important that you’ve done
enough coding to be familiar with the basic concepts. If you have a good understand-
ing of recursion and some basic functional programming, you’ll find the material
even easier.

This book does not assume you have any prior knowledge of data analysis, machine
learning, or statistics. I’ve tried to explain mathematical concepts in as simple a
manner as possible, but having some knowledge of trigonometry and basic statistics
will be help you understand the algorithms.

xiv | Preface

Style of Examples
The code examples in each section are written in a tutorial style, which encourages
you to build the applications in stages and get a good appreciation for how the algo-
rithms work. In most cases, after creating a new function or method, you’ll use it in
an interactive session to understand how it works. The algorithms are mostly simple
variants that can be extended in many ways. By working through the examples and
testing them interactively, you’ll get insights into ways that you might improve them
for your own applications.

Why Python?
Although the algorithms are described in words with explanations of the formulae
involved, it’s much more useful (and probably easier to follow) to have actual code
for the algorithms and example problems. All the example code in this book is
written in Python, an excellent, high-level language. I chose Python because it is:

Concise
Code written in dynamically typed languages such as Python tends to be shorter
than code written in other mainstream languages. This means there’s less typing
for you when working through the examples, but it also means that it’s easier to
fit the algorithm in your head and really understand what it’s doing.

Easy to read
Python has at times been referred to as “executable pseudocode.” While this is
clearly an exaggeration, it makes the point that most experienced programmers
can read Python code and understand what it is supposed to do. Some of the less
obvious constructs in Python are explained in the “Python Tips” section below.

Easily extensible
Python comes standard with many libraries, including those for mathematical
functions, XML (Extensible Markup Language) parsing, and downloading web
pages. The nonstandard libraries used in the book, such as the RSS (Really
Simple Syndication) parser and the SQLite interface, are free and easy to down-
load, install, and use.

Interactive
When working through an example, it’s useful to try out the functions as you
write them without writing another program just for testing. Python can run
programs directly from the command line, and it also has an interactive prompt
that lets you type in function calls, create objects, and test packages interactively.

Multiparadigm
Python supports object-oriented, procedural, and functional styles of program-
ming. Machine-learning algorithms vary greatly, and the clearest way to

Preface | xv

implement one may use a different paradigm than another. Sometimes it’s use-
ful to pass around functions as parameters and other times to capture state in an
object. Python supports both approaches.

Multiplatform and free
Python has a single reference implementation for all the major platforms and is
free for all of them. The code described in this book will work on Windows,
Linux, and Macintosh.

Python Tips
For beginners interested in learning about programming in Python, I recommend
reading Learning Python by Mark Lutz and David Ascher (O’Reilly), which gives an
excellent overview. Programmers of other languages should find the Python code rel-
atively easy to follow, although be aware that throughout this book I use some of
Python’s idiosyncratic syntax because it lets me more directly express the algorithm
or fundamental concepts. Here’s a quick overview for those of you who aren’t
Python programmers:

List and dictionary constructors

Python has a good set of primitive types and two that are used heavily throughout
this book are list and dictionary. A list is an ordered list of any type of value, and it is
constructed with square brackets:

number_list=[1,2,3,4]
string_list=['a', 'b', 'c', 'd']
mixed_list=['a', 3, 'c', 8]

A dictionary is an unordered set of key/value pairs, similar to a hash map in other
languages. It is constructed with curly braces:

ages={'John':24,'Sarah':28,'Mike':31}

The elements of lists and dictionaries can be accessed using square brackets after the
list name:

string_list[2] # returns 'b'
ages['Sarah'] # returns 28

Significant Whitespace

Unlike most languages, Python actually uses the indentation of the code to define
code blocks. Consider this snippet:

if x==1:
 print 'x is 1'
 print 'Still in if block'
print 'outside if block'

xvi | Preface

The interpreter knows that the first two print statements are executed when x is 1
because the code is indented. Indentation can be any number of spaces, as long as it
is consistent. This book uses two spaces for indentation. When entering the code
you’ll need to be careful to copy the indentation correctly.

List comprehensions

A list comprehension is a convenient way of converting one list to another by filtering
and applying functions to it. A list comprehension is written as:

[expression for variable in list]

or:

[expression for variable in list if condition]

For example, the following code:

l1=[1,2,3,4,5,6,7,8,9]
print [v*10 for v in l1 if v1>4]

would print this list:

[50,60,70,80,90]

List comprehensions are used frequently in this book because they are an extremely
concise way to apply a function to an entire list or to remove bad items. The other
manner in which they are often used is with the dict constructor:

l1=[1,2,3,4,5,6,7,8,9]
timesten=dict([(v,v*10) for v in l1])

This code will create a dictionary with the original list being the keys and each item
multiplied by 10 as the value:

{1:10,2:20,3:30,4:40,5:50,6:60,7:70,8:80,9:90}

Open APIs
The algorithms for synthesizing collective intelligence require data from many users.
In addition to machine-learning algorithms, this book discusses a number of Open
Web APIs (application programming interfaces). These are ways that companies
allow you to freely access data from their web sites by means of a specified protocol;
you can then write programs that download and process the data. This data usually
consists of contributions from the site’s users, which can be mined for new insights.
In some cases, there is a Python library available to access these APIs; if not, it’s
pretty straightforward to create your own interface to access the data using Python’s
built-in libraries for downloading data and parsing XML.

Here are some of the web sites with open APIs that you’ll see in this book:

Preface | xvii

del.icio.us
A social bookmarking application whose open API lets you download links by
tag or from a specific user.

Kayak
A travel site with an API for conducting searches for flights and hotels from
within your own programs.

eBay
An online auction site with an API that allows you to query items that are cur-
rently for sale.

Hot or Not
A rating and dating site with an API to search for people and get their ratings
and demographic information.

Akismet
An API for collaborative spam filtering.

A huge number of potential applications can be built by processing data from a
single source, by combining data from multiple sources, and even by combining
external information with input from your own users. The ability to harness data cre-
ated by people in a variety of ways on different sites is a principle element of creating
collective intelligence. A good starting point for finding more web sites with open
APIs is ProgrammableWeb (http://www.programmableweb.com).

Overview of the Chapters
Every algorithm in the book is motivated by a realistic problem that can, I hope, be
easily understood by all readers. I have tried to avoid problems that require a great
deal of domain knowledge, and I have focused on problems that, while complex, are
easy for most people to relate to.

Chapter 1, Introduction to Collective Intelligence
Explains the concepts behind machine learning, how it is applied in many differ-
ent fields, and how it can be used to draw new conclusions from data gathered
from many different people.

Chapter 2, Making Recommendations
Introduces the collaborative filtering techniques used by many online retailers to
recommend products or media. The chapter includes a section on recommend-
ing links to people from a social bookmarking site, and building a move
recommendation system from the MovieLens dataset.

Chapter 3, Discovering Groups
Builds on some of the ideas in Chapter 2 and introduces two different methods
of clustering, which automatically detect groups of similar items in a large
dataset. This chapter demonstrates the use of clustering to find groups on a set
of popular weblogs and on people’s desires from a social networking web site.

http://www.programmableweb.com

xviii | Preface

Chapter 4, Searching and Ranking
Describes the various parts of a search engine including the crawler, indexer, and
query engine. It covers the PageRank algorithm for scoring pages based on
inbound links and shows you how to create a neural network that learns which
keywords are associated with different results.

Chapter 5, Optimization
Introduces algorithms for optimization, which are designed to search millions of
possible solutions to a problem and choose the best one. The wide variety of
uses for these algorithms is demonstrated with examples that find the best flights
for a group of people traveling to the same location, find the best way of match-
ing students to dorms, and lay out a network with the minimum number of
crossed lines.

Chapter 6, Document Filtering
Demonstrates Bayesian filtering, which is used in many free and commercial
spam filters for automatically classifying documents based on the type of words
and other features that appear in the document. This is applied to a set of RSS
search results to demonstrate automatic classification of the entries.

Chapter 7, Modeling with Decision Trees
Introduces decision trees as a method not only of making predictions, but also of
modeling the way the decisions are made. The first decision tree is built with
hypothetical data from server logs and is used to predict whether or not a user is
likely to become a premium subscriber. The other examples use data from real
web sites to model real estate prices and “hotness.”

Chapter 8, Building Price Models
Approaches the problem of predicting numerical values rather than classifica-
tions using k-nearest neighbors techniques, and applies the optimization
algorithms from Chapter 5. These methods are used in conjunction with the
eBay API to build a system for predicting eventual auction prices for items based
on a set of properties.

Chapter 9, Advanced Classification: Kernel Methods and SVMs
Shows how support-vector machines can be used to match people in online dat-
ing sites or when searching for professional contacts. Support-vector machines
are a fairly advanced technique and this chapter compares them to other methods.

Chapter 10, Finding Independent Features
Introduces a relatively new technique called non-negative matrix factorization,
which is used to find the independent features in a dataset. In many datasets the
items are constructed as a composite of different features that we don’t know in
advance; the idea here is to detect these features. This technique is demon-
strated on a set of news articles, where the stories themselves are used to detect
themes, one or more of which may apply to a given story.

Preface | xix

Chapter 11, Evolving Intelligence
Introduces genetic programming, a very sophisticated set of techniques that goes
beyond optimization and actually builds algorithms using evolutionary ideas to
solve a particular problem. This is demonstrated by a simple game in which the
computer is initially a poor player that improves its skill by improving its own
code the more the game is played.

Chapter 12, Algorithm Summary
Reviews all the machine-learning and statistical algorithms described in the book
and compares them to a set of artificial problems. This will help you understand
how they work and visualize the way that each of them divides data.

Appendix A, Third-Party Libraries
Gives information on third-party libraries used in the book, such as where to
find them and how to install them.

Appendix B, Mathematical Formulas
Contains formulae, descriptions, and code for many of the mathematical concepts
introduced throughout the book.

Exercises at the end of each chapter give ideas of ways to extend the algorithms and
make them more powerful.

Conventions
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, XML tags, HTML tags, macros, the contents of
files, or the output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

xx | Preface

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Programming Collective Intelligence
by Toby Segaran. Copyright 2007 Toby Segaran, 978-0-596-52932-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596529321

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

mailto:permissions@oreilly.com
http://www.oreilly.com/catalog/9780596529321
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Preface | xxi

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments
I’d like to express my gratitude to everyone at O’Reilly involved in the development
and production of this book. First, I’d like to thank Nat Torkington for telling me
that the idea had merit and was worth pitching, Mike Hendrickson and Brian Jep-
son for listening to my pitch and getting me excited to write the book, and especially
Mary O’Brien who took over as editor from Brian and could always assuage my fears
that the project was too much for me.

On the production team, I want to thank Marlowe Shaeffer, Rob Romano, Jessamyn
Read, Amy Thomson, and Sarah Schneider for turning my illustrations and writing
into something you might actually want to look at.

Thanks to everyone who took part in the review of the book, specifically Paul Tyma,
Matthew Russell, Jeff Hammerbacher, Terry Camerlengo, Andreas Weigend, Daniel
Russell, and Tim Wolters.

Thanks to my parents.

Finally, I owe so much gratitude to several of my friends who helped me brainstorm
ideas for the book and who were always understanding when I had no time for them:
Andrea Matthews, Jeff Beene, Laura Miyakawa, Neil Stroup, and Brooke Blumen-
stein. Writing this book would have been much harder without your support and I
certainly would have missed out on some of the more entertaining examples.

http://safari.oreilly.com

1

Chapter 1 CHAPTER 1

Introduction to Collective Intelligence1

Netflix is an online DVD rental company that lets people choose movies to be sent to
their homes, and makes recommendations based on the movies that customers have
previously rented. In late 2006 it announced a prize of $1 million to the first person
to improve the accuracy of its recommendation system by 10 percent, along with
progress prizes of $50,000 to the current leader each year for as long as the contest
runs. Thousands of teams from all over the world entered and, as of April 2007, the
leading team has managed to score an improvement of 7 percent. By using data
about which movies each customer enjoyed, Netflix is able to recommend movies to
other customers that they may never have even heard of and keep them coming back
for more. Any way to improve its recommendation system is worth a lot of money to
Netflix.

The search engine Google was started in 1998, at a time when there were already sev-
eral big search engines, and many assumed that a new player would never be able to
take on the giants. The founders of Google, however, took a completely new
approach to ranking search results by using the links on millions of web sites to
decide which pages were most relevant. Google’s search results were so much better
than those of the other players that by 2004 it handled 85 percent of searches on the
Web. Its founders are now among the top 10 richest people in the world.

What do these two companies have in common? They both drew new conclusions
and created new business opportunities by using sophisticated algorithms to com-
bine data collected from many different people. The ability to collect information
and the computational power to interpret it has enabled great collaboration
opportunities and a better understanding of users and customers. This sort of work
is happening all over the place—dating sites want to help people find their best
match more quickly, companies that predict changes in airplane ticket prices are
cropping up, and just about everyone wants to understand their customers better in
order to create more targeted advertising.

2 | Chapter 1: Introduction to Collective Intelligence

These are just a few examples in the exciting field of collective intelligence, and the
proliferation of new services means there are new opportunities appearing every day.
I believe that understanding machine learning and statistical methods will become
ever more important in a wide variety of fields, but particularly in interpreting and
organizing the vast amount of information that is being created by people all over the
world.

What Is Collective Intelligence?
People have used the phrase collective intelligence for decades, and it has become
increasingly popular and more important with the advent of new communications
technologies. Although the expression may bring to mind ideas of group conscious-
ness or supernatural phenomena, when technologists use this phrase they usually
mean the combining of behavior, preferences, or ideas of a group of people to create
novel insights.

Collective intelligence was, of course, possible before the Internet. You don’t need
the Web to collect data from disparate groups of people, combine it, and analyze it.
One of the most basic forms of this is a survey or census. Collecting answers from a
large group of people lets you draw statistical conclusions about the group that no
individual member would have known by themselves. Building new conclusions
from independent contributors is really what collective intelligence is all about.

A well-known example is financial markets, where a price is not set by one individ-
ual or by a coordinated effort, but by the trading behavior of many independent
people all acting in what they believe is their own best interest. Although it seems
counterintuitive at first, futures markets, in which many participants trade contracts
based on their beliefs about future prices, are considered to be better at predicting
prices than experts who independently make projections. This is because these mar-
kets combine the knowledge, experience, and insight of thousands of people to
create a projection rather than relying on a single person’s persepective.

Although methods for collective intelligence existed before the Internet, the ability to
collect information from thousands or even millions of people on the Web has
opened up many new possibilities. At all times, people are using the Internet for
making purchases, doing research, seeking out entertainment, and building their
own web sites. All of this behavior can be monitored and used to derive information
without ever having to interrupt the user’s intentions by asking him questions. There
are a huge number of ways this information can be processed and interpreted. Here
are a couple of key examples that show the contrasting approaches:

• Wikipedia is an online encyclopedia created entirely from user contributions.
Any page can be created or edited by anyone, and there are a small number of
administrators who monitor repeated abuses. Wikipedia has more entries than
any other encyclopedia, and despite some manipulation by malicious users, it is

What Is Machine Learning? | 3

generally believed to be accurate on most subjects. This is an example of collec-
tive intelligence because each article is maintained by a large group of people and
the result is an encyclopedia far larger than any single coordinated group has
been able to create. The Wikipedia software does not do anything particularly
intelligent with user contributions—it simply tracks the changes and displays the
latest version.

• Google, mentioned earlier, is the world’s most popular Internet search engine,
and was the first search engine to rate web pages based on how many other
pages link to them. This method of rating takes information about what
thousands of people have said about a particular web page and uses that
information to rank the results in a search. This is a very different example of
collective intelligence. Where Wikipedia explicitly invites users of the site to
contribute, Google extracts the important information from what web-content
creators do on their own sites and uses it to generate scores for its users.

While Wikipedia is a great resource and an impressive example of collective intelli-
gence, it owes its existence much more to the user base that contributes information
than it does to clever algorithms in the software. This book focuses on the other end
of the spectrum, covering algorithms like Google’s PageRank, which take user data
and perform calculations to create new information that can enhance the user experi-
ence. Some data is collected explicitly, perhaps by asking people to rate things, and
some is collected casually, for example by watching what people buy. In both cases,
the important thing is not just to collect and display the information, but to process
it in an intelligent way and generate new information.

This book will show you ways to collect data through open APIs, and it will cover a
variety of machine-learning algorithms and statistical methods. This combination
will allow you to set up collective intelligence methods on data collected from your
own applications, and also to collect and experiment with data from other places.

What Is Machine Learning?
Machine learning is a subfield of artificial intelligence (AI) concerned with algo-
rithms that allow computers to learn. What this means, in most cases, is that an
algorithm is given a set of data and infers information about the properties of the
data—and that information allows it to make predictions about other data that it
might see in the future. This is possible because almost all nonrandom data contains
patterns, and these patterns allow the machine to generalize. In order to generalize, it
trains a model with what it determines are the important aspects of the data.

To understand how models come to be, consider a simple example in the otherwise
complex field of email filtering. Suppose you receive a lot of spam that contains the
words “online pharmacy.” As a human being, you are well equipped to recognize pat-
terns, and you quickly determine that any message with the words “online pharmacy”

4 | Chapter 1: Introduction to Collective Intelligence

is spam and should be moved directly to the trash. This is a generalization—you have,
in fact, created a mental model of what is spam. After you report several of these
messages as spam, a machine-learning algorithm designed to filter spam should be
able to make the same generalization.

There are many different machine-learning algorithms, all with different strengths
and suited to different types of problems. Some, such as decision trees, are transpar-
ent, so that an observer can totally understand the reasoning process undertaken by
the machine. Others, such as neural networks, are black box, meaning that they pro-
duce an answer, but it’s often very difficult to reproduce the reasoning behind it.

Many machine-learning algorithms rely heavily on mathematics and statistics.
According to the definition I gave earlier, you could even say that simple correlation
analysis and regression are both basic forms of machine learning. This book does not
assume that the reader has a lot of knowledge of statistics, so I have tried to explain
the statistics used in as straightforward a manner as possible.

Limits of Machine Learning
Machine learning is not without its weaknesses. The algorithms vary in their ability
to generalize over large sets of patterns, and a pattern that is unlike any seen by the
algorithm before is quite likely to be misinterpreted. While humans have a vast
amount of cultural knowledge and experience to draw upon, as well as a remarkable
ability to recognize similar situations when making decisions about new informa-
tion, machine-learning methods can only generalize based on the data that has
already been seen, and even then in a very limited manner.

The spam-filtering method you’ll see in this book is based on the appearance of
words or phrases without any regard to what they mean or to sentence structures.
Although it’s theoretically possible to build an algorithm that would take grammar
into account, this is rarely done in practice because the effort required would be
disproportionately large compared to the improvement in the algorithm. Under-
standing the meaning of words or their relevance to a person’s life would require far
more information than spam filters, in their current incarnation, can access.

In addition, although they vary in their propensity for doing so, all machine-learning
methods suffer from the possibility of overgeneralizing. As with most things in life,
strong generalizations based on a few examples are rarely entirely accurate. It’s cer-
tainly possible that you could receive an important email message from a friend that
contains the words “online pharmacy.” In this case, you would tell the algorithm
that the message is not spam, and it might infer that messages from that particular
friend are acceptable. The nature of many machine-learning algorithms is that they
can continue to learn as new information arrives.

Other Uses for Learning Algorithms | 5

Real-Life Examples
There are many sites on the Internet currently collecting data from many different
people and using machine learning and statistical methods to benefit from it. Google
is likely the largest effort—it not only uses web links to rank pages, but it constantly
gathers information on when advertisements are clicked by different users, which
allows Google to target the advertising more effectively. In Chapter 4 you’ll learn
about search engines and the PageRank algorithm, an important part of Google’s
ranking system.

Other examples include web sites with recommendation systems. Sites like Amazon
and Netflix use information about the things people buy or rent to determine which
people or items are similar to one another, and then make recommendations based
on purchase history. Other sites like Pandora and Last.fm use your ratings of differ-
ent bands and songs to create custom radio stations with music they think you will
enjoy. Chapter 2 covers ways to build recommendation systems.

Prediction markets are also a form of collective intelligence. One of the most well
known of these is the Hollywood Stock Exchange (http://hsx.com), where people
trade stocks on movies and movie stars. You can buy or sell a stock at the current
price knowing that its ultimate value will be one millionth of the movie’s actual
opening box office number. Because the price is set by trading behavior, the value is
not chosen by any one individual but by the behavior of the group, and the current
price can be seen as the whole group’s prediction of box office numbers for the
movie. The predictions made by the Hollywood Stock Exchange are routinely better
than those made by individual experts.

Some dating sites, such as eHarmony, use information collected from participants to
determine who would be a good match. Although these companies tend to keep their
methods for matching people secret, it is quite likely that any successful approach
would involve a constant reevaluation based on whether the chosen matches were
successful or not.

Other Uses for Learning Algorithms
The methods described in this book are not new, and although the examples focus
on Internet-based collective intelligence problems, knowledge of machine-learning
algorithms can be helpful for software developers in many other fields. They are
particularly useful in areas that deal with large datasets that can be searched for
interesting patterns, for example:

Biotechnology
Advances in sequencing and screening technology have created massive datasets
of many different kinds, such as DNA sequences, protein structures, compound

http://hsx.com

6 | Chapter 1: Introduction to Collective Intelligence

screens, and RNA expression. Machine-learning techniques are applied exten-
sively to all of these kinds of data in an effort to find patterns that can increase
understanding of biological processes.

Financial fraud detection
Credit card companies are constantly searching for new ways to detect if transac-
tions are fraudulent. To this end, they have employed such techniques as neural
networks and inductive logic to verify transactions and catch improper usage.

Machine vision
Interpreting images from a video camera for military or surveillance purposes is
an active area of research. Many machine-learning techniques are used to try to
automatically detect intruders, identify vehicles, or recognize faces. Particularly
interesting is the use of unsupervised techniques like independent component
analysis, which finds interesting features in large datasets.

Product marketing
For a very long time, understanding demographics and trends was more of an art
form than a science. Recently, the increased ability to collect data from consumers
has opened up opportunities for machine-learning techniques such as clustering to
better understand the natural divisions that exist in markets and to make better
predictions about future trends.

Supply chain optimization
Large organizations can save millions of dollars by having their supply chains
run effectively and accurately predict demand for products in different areas.
The number of ways in which a supply chain can be constructed is massive, as is
the number of factors that can potentially affect demand. Optimization and
learning techniques are frequently used to analyze these datasets.

Stock market analysis
Ever since there has been a stock market, people have tried to use mathematics
to make more money. As participants have become ever more sophisticated, it
has become necessary to analyze larger sets of data and use advanced techniques
to detect patterns.

National security
A huge amount of information is collected by government agencies around the
world, and the analysis of this data requires computers to detect patterns and
associate them with potential threats.

These are just a few examples of where machine learning is now used heavily. Since
the trend is toward the creation of more information, it is likely that more fields will
come to rely on machine learning and statistical techniques as the amount of infor-
mation stretches beyond people’s ability to manage in the old ways.

Given how much new information is being made available every day, there are
clearly many more possibilities. Once you learn about a few machine-learning
algorithms, you’ll start seeing places to apply them just about everywhere.

7

Chapter 2 CHAPTER 2

Making Recommendations2

To begin the tour of collective intelligence, I’m going to show you ways to use the
preferences of a group of people to make recommendations to other people. There
are many applications for this type of information, such as making product recom-
mendations for online shopping, suggesting interesting web sites, or helping people
find music and movies. This chapter shows you how to build a system for finding
people who share tastes and for making automatic recommendations based on things
that other people like.

You’ve probably come across recommendation engines before when using an online
shopping site like Amazon. Amazon tracks the purchasing habits of all its shoppers,
and when you log onto the site, it uses this information to suggest products you
might like. Amazon can even suggest movies you might like, even if you’ve only
bought books from it before. Some online concert ticket agencies will look at the his-
tory of shows you’ve seen before and alert you to upcoming shows that might be of
interest. Sites like reddit.com let you vote on links to other web sites and then use
your votes to suggest other links you might find interesting.

From these examples, you can see that preferences can be collected in many differ-
ent ways. Sometimes the data are items that people have purchased, and opinions
about these items might be represented as yes/no votes or as ratings from one to five.
In this chapter, we’ll look at different ways of representing these cases so that they’ll
all work with the same set of algorithms, and we’ll create working examples with
movie critic scores and social bookmarking.

Collaborative Filtering
You know that the low-tech way to get recommendations for products, movies, or
entertaining web sites is to ask your friends. You also know that some of your friends
have better “taste” than others, something you’ve learned over time by observing
whether they usually like the same things as you. As more and more options become

8 | Chapter 2: Making Recommendations

available, it becomes less practical to decide what you want by asking a small group
of people, since they may not be aware of all the options. This is why a set of
techniques called collaborative filtering was developed.

A collaborative filtering algorithm usually works by searching a large group of peo-
ple and finding a smaller set with tastes similar to yours. It looks at other things they
like and combines them to create a ranked list of suggestions. There are several dif-
ferent ways of deciding which people are similar and combining their choices to
make a list; this chapter will cover a few of these.

The term collaborative filtering was first used by David Goldberg at
Xerox PARC in 1992 in a paper called “Using collaborative filtering to
weave an information tapestry.” He designed a system called Tapestry
that allowed people to annotate documents as either interesting or
uninteresting and used this information to filter documents for other
people.

There are now hundreds of web sites that employ some sort of collab-
orative filtering algorithm for movies, music, books, dating, shopping,
other web sites, podcasts, articles, and even jokes.

Collecting Preferences
The first thing you need is a way to represent different people and their preferences.
In Python, a very simple way to do this is to use a nested dictionary. If you’d like to
work through the example in this section, create a file called recommendations.py,
and insert the following code to create the dataset:

A dictionary of movie critics and their ratings of a small
set of movies
critics={'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5,
 'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5,
 'The Night Listener': 3.0},
'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5,
 'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0,
 'You, Me and Dupree': 3.5},
'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0,
 'Superman Returns': 3.5, 'The Night Listener': 4.0},
'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0,
 'The Night Listener': 4.5, 'Superman Returns': 4.0,
 'You, Me and Dupree': 2.5},
'Mick LaSalle': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
 'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0,
 'You, Me and Dupree': 2.0},
'Jack Matthews': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
 'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5},
'Toby': {'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}}

Finding Similar Users | 9

You will be working with Python interactively in this chapter, so you should save
recommendations.py somewhere where the Python interactive interpreter can find it.
This could be in the python/Lib directory, but the easiest way to do it is to start the
Python interpreter in the same directory in which you saved the file.

This dictionary uses a ranking from 1 to 5 as a way to express how much each of
these movie critics (and I) liked a given movie. No matter how preferences are
expressed, you need a way to map them onto numerical values. If you were building
a shopping site, you might use a value of 1 to indicate that someone had bought an
item in the past and a value of 0 to indicate that they had not. For a site where peo-
ple vote on news stories, values of –1, 0, and 1 could be used to represent “disliked,”
“didn’t vote,” and “liked,” as shown in Table 2-1.

Using a dictionary is convenient for experimenting with the algorithms and for illus-
trative purposes. It’s easy to search and modify the dictionary. Start your Python
interpreter and try a few commands:

c:\code\collective\chapter2> python
Python 2.4.1 (#65, Mar 30 2005, 09:13:57) [MSC v.1310 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>
>> from recommendations import critics
>> critics['Lisa Rose']['Lady in the Water']
2.5
>> critics['Toby']['Snakes on a Plane']=4.5
>> critics['Toby']
{'Snakes on a Plane':4.5,'You, Me and Dupree':1.0}

Although you can fit a large number of preferences in memory in a dictionary, for
very large datasets you’ll probably want to store preferences in a database.

Finding Similar Users
After collecting data about the things people like, you need a way to determine how
similar people are in their tastes. You do this by comparing each person with every
other person and calculating a similarity score. There are a few ways to do this, and
in this section I’ll show you two systems for calculating similarity scores: Euclidean
distance and Pearson correlation.

Table 2-1. Possible mappings of user actions to numerical scores

Concert tickets Online shopping Site recommender

Bought 1 Bought 2 Liked 1

Didn’t buy 0 Browsed 1 No vote 0

Didn’t buy 0 Disliked –1

10 | Chapter 2: Making Recommendations

Euclidean Distance Score
One very simple way to calculate a similarity score is to use a Euclidean distance
score, which takes the items that people have ranked in common and uses them as
axes for a chart. You can then plot the people on the chart and see how close
together they are, as shown in Figure 2-1.

This figure shows the people charted in preference space. Toby has been plotted at
4.5 on the Snakes axis and at 1.0 on the Dupree axis. The closer two people are in
the preference space, the more similar their preferences are. Because the chart is two-
dimensional, you can only look at two rankings at a time, but the principle is the
same for bigger sets of rankings.

To calculate the distance between Toby and LaSalle in the chart, take the difference
in each axis, square them and add them together, then take the square root of the
sum. In Python, you can use the pow(n,2) function to square a number and take the
square root with the sqrt function:

>> from math import sqrt
>> sqrt(pow(5-4,2)+pow(4-1,2))
3.1622776601683795

This formula calculates the distance, which will be smaller for people who are more
similar. However, you need a function that gives higher values for people who are
similar. This can be done by adding 1 to the function (so you don’t get a division-by-
zero error) and inverting it:

>> 1/(1+sqrt(pow(5-4,2)+pow(4-1,2)))
0.2402530733520421

Figure 2-1. People in preference space

Snakes

Dupree

5

4

3

2

1

1 2 3 4 5

Toby

LaSalle Matthews

SeymourRose
Puig

Finding Similar Users | 11

This new function always returns a value between 0 and 1, where a value of 1 means
that two people have identical preferences. You can put everything together to create
a function for calculating similarity. Add the following code to recommendations.py:

from math import sqrt

Returns a distance-based similarity score for person1 and person2
def sim_distance(prefs,person1,person2):
 # Get the list of shared_items
 si={}
 for item in prefs[person1]:
 if item in prefs[person2]:
 si[item]=1

 # if they have no ratings in common, return 0
 if len(si)==0: return 0

 # Add up the squares of all the differences
 sum_of_squares=sum([pow(prefs[person1][item]-prefs[person2][item],2)
 for item in prefs[person1] if item in prefs[person2]])

 return 1/(1+sum_of_squares)

This function can be called with two names to get a similarity score. In your Python
interpreter, run the following:

>>> reload(recommendations)
>>> recommendations.sim_distance(recommendations.critics,
... 'Lisa Rose','Gene Seymour')
0.148148148148

This gives you a similarity score between Lisa Rose and Gene Seymour. Try it with
other names to see if you can find people who have more or less in common.

Pearson Correlation Score
A slightly more sophisticated way to determine the similarity between people’s inter-
ests is to use a Pearson correlation coefficient. The correlation coefficient is a mea-
sure of how well two sets of data fit on a straight line. The formula for this is more
complicated than the Euclidean distance score, but it tends to give better results in
situations where the data isn’t well normalized—for example, if critics’ movie rank-
ings are routinely more harsh than average.

To visualize this method, you can plot the ratings of two of the critics on a chart, as
shown in Figure 2-2. Superman was rated 3 by Mick LaSalle and 5 by Gene Seymour,
so it is placed at (3,5) on the chart.

12 | Chapter 2: Making Recommendations

You can also see a straight line on the chart. This is called the best-fit line because it
comes as close to all the items on the chart as possible. If the two critics had identi-
cal ratings for every movie, this line would be diagonal and would touch every item
in the chart, giving a perfect correlation score of 1. In the case illustrated, the critics
disagree on a few movies, so the correlation score is about 0.4. Figure 2-3 shows an
example of a much higher correlation, one of about 0.75.

Figure 2-2. Comparing two movie critics on a scatter plot

Figure 2-3. Two critics with a high correlation score

Gene Seymour

Mick LaSalle

5

4

3

2

1

1 2 3 4 5

Just My Luck

Dupree Snakes

Superman

Lady
Night Listener

Lisa Rose

Jack Matthews

5

4

3

2

1

1 2 3 4 5

Dupree

Snakes Superman

Night Listener

Lady

Finding Similar Users | 13

One interesting aspect of using the Pearson score, which you can see in the figure, is
that it corrects for grade inflation. In this figure, Jack Matthews tends to give higher
scores than Lisa Rose, but the line still fits because they have relatively similar prefer-
ences. If one critic is inclined to give higher scores than the other, there can still be
perfect correlation if the difference between their scores is consistent. The Euclidean
distance score described earlier will say that two critics are dissimilar because one is
consistently harsher than the other, even if their tastes are very similar. Depending
on your particular application, this behavior may or may not be what you want.

The code for the Pearson correlation score first finds the items rated by both critics.
It then calculates the sums and the sum of the squares of the ratings for the two crit-
ics, and calculates the sum of the products of their ratings. Finally, it uses these
results to calculate the Pearson correlation coefficient, shown in bold in the code
below. Unlike the distance metric, this formula is not very intuitive, but it does tell
you how much the variables change together divided by the product of how much
they vary individually.

To use this formula, create a new function with the same signature as the sim_
distance function in recommendations.py:

Returns the Pearson correlation coefficient for p1 and p2
def sim_pearson(prefs,p1,p2):
 # Get the list of mutually rated items
 si={}
 for item in prefs[p1]:
 if item in prefs[p2]: si[item]=1

 # Find the number of elements
 n=len(si)

 # if they are no ratings in common, return 0
 if n==0: return 0

 # Add up all the preferences
 sum1=sum([prefs[p1][it] for it in si])
 sum2=sum([prefs[p2][it] for it in si])

 # Sum up the squares
 sum1Sq=sum([pow(prefs[p1][it],2) for it in si])
 sum2Sq=sum([pow(prefs[p2][it],2) for it in si])

 # Sum up the products
 pSum=sum([prefs[p1][it]*prefs[p2][it] for it in si])

 # Calculate Pearson score
 num=pSum-(sum1*sum2/n)
 den=sqrt((sum1Sq-pow(sum1,2)/n)*(sum2Sq-pow(sum2,2)/n))
 if den==0: return 0

 r=num/den

 return r

14 | Chapter 2: Making Recommendations

This function will return a value between –1 and 1. A value of 1 means that the two
people have exactly the same ratings for every item. Unlike with the distance metric,
you don’t need to change this value to get it to the right scale. Now you can try
getting the correlation score for Figure 2-3:

>>> reload(recommendations)
>>> print recommendations.sim_pearson(recommendations.critics,
... 'Lisa Rose','Gene Seymour')
0.396059017191

Which Similarity Metric Should You Use?
I’ve introduced functions for two different metrics here, but there are actually many
more ways to measure similarity between two sets of data. The best one to use will
depend on your application, and it is worth trying Pearson, Euclidean distance, or
others to see which you think gives better results.

The functions in the rest of this chapter have an optional similarity parameter, which
points to a function to make it easier to experiment: specify sim_pearson or sim_
vector to choose which similarity parameter to use. There are many other functions
such as the Jaccard coefficient or Manhattan distance that you can use as your similar-
ity function, as long as they have the same signature and return a float where a higher
value means more similar.

You can read about other metrics for comparing items at http://en.wikipedia.org/wiki/
Metric_%28mathematics%29#Examples.

Ranking the Critics
Now that you have functions for comparing two people, you can create a function
that scores everyone against a given person and finds the closest matches. In this
case, I’m interested in learning which movie critics have tastes simliar to mine so that
I know whose advice I should take when deciding on a movie. Add this function to
recommendations.py to get an ordered list of people with similar tastes to the speci-
fied person:

Returns the best matches for person from the prefs dictionary.
Number of results and similarity function are optional params.
def topMatches(prefs,person,n=5,similarity=sim_pearson):
 scores=[(similarity(prefs,person,other),other)
 for other in prefs if other!=person]

 # Sort the list so the highest scores appear at the top
 scores.sort()
 scores.reverse()
 return scores[0:n]

http://en.wikipedia.org/wiki/Metric_%28mathematics%29#Examples
http://en.wikipedia.org/wiki/Metric_%28mathematics%29#Examples

Recommending Items | 15

This function uses a Python list comprehension to compare me to every other user in
the dictionary using one of the previously defined distance metrics. Then it returns
the first n items of the sorted results.

Calling this function with my own name gives me a list of movie critics and their
similarity scores:

>> reload(recommendations)
>> recommendations.topMatches(recommendations.critics,'Toby',n=3)
[(0.99124070716192991, 'Lisa Rose'), (0.92447345164190486, 'Mick LaSalle'),
 (0.89340514744156474, 'Claudia Puig')]

From this I know that I should be reading reviews by Lisa Rose, as her tastes tend to
be similar to mine. If you’ve seen any of these movies, you can try adding yourself to
the dictionary with your preferences and see who your favorite critic should be.

Recommending Items
Finding a good critic to read is great, but what I really want is a movie recommenda-
tion right now. I could just look at the person who has tastes most similar to mine
and look for a movie he likes that I haven’t seen yet, but that would be too permis-
sive. Such an approach could accidentally turn up reviewers who haven’t reviewed
some of the movies that I might like. It could also return a reviewer who strangely
liked a movie that got bad reviews from all the other critics returned by topMatches.

To solve these issues, you need to score the items by producing a weighted score that
ranks the critics. Take the votes of all the other critics and multiply how similar they
are to me by the score they gave each movie. Table 2-2 shows how this process
works.

Table 2-2. Creating recommendations for Toby

Critic Similarity Night S.xNight Lady S.xLady Luck S.xLuck

Rose 0.99 3.0 2.97 2.5 2.48 3.0 2.97

Seymour 0.38 3.0 1.14 3.0 1.14 1.5 0.57

Puig 0.89 4.5 4.02 3.0 2.68

LaSalle 0.92 3.0 2.77 3.0 2.77 2.0 1.85

Matthews 0.66 3.0 1.99 3.0 1.99

Total 12.89 8.38 8.07

Sim. Sum 3.84 2.95 3.18

Total/Sim. Sum 3.35 2.83 2.53

16 | Chapter 2: Making Recommendations

This table shows correlation scores for each critic and the ratings they gave the three
movies (The Night Listener, Lady in the Water, and Just My Luck) that I haven’t
rated. The columns beginning with S.x give the similarity multiplied by the rating, so
a person who is similar to me will contribute more to the overall score than a person
who is different from me. The Total row shows the sum of all these numbers.

You could just use the totals to calculate the rankings, but then a movie reviewed by
more people would have a big advantage. To correct for this, you need to divide by
the sum of all the similarities for critics that reviewed that movie (the Sim. Sum row
in the table). Because The Night Listener was reviewed by everyone, its total is
divided by the sum of all the similarities. Lady in the Water, however, was not
reviewed by Puig, so the movie’s score is divided by the sum of all the other similari-
ties. The last row shows the results of this division.

The code for this is pretty straightforward, and it works with either the Euclidean
distance or the Pearson correlation score. Add it to recommendations.py:

Gets recommendations for a person by using a weighted average
of every other user's rankings
def getRecommendations(prefs,person,similarity=sim_pearson):
 totals={}
 simSums={}
 for other in prefs:
 # don't compare me to myself
 if other==person: continue
 sim=similarity(prefs,person,other)

 # ignore scores of zero or lower
 if sim<=0: continue
 for item in prefs[other]:

 # only score movies I haven't seen yet
 if item not in prefs[person] or prefs[person][item]==0:
 # Similarity * Score
 totals.setdefault(item,0)

totals[item]+=prefs[other][item]*sim
 # Sum of similarities
 simSums.setdefault(item,0)
 simSums[item]+=sim

 # Create the normalized list
 rankings=[(total/simSums[item],item) for item,total in totals.items()]

 # Return the sorted list
 rankings.sort()
 rankings.reverse()
 return rankings

This code loops through every other person in the prefs dictionary. In each case, it
calculates how similar they are to the person specified. It then loops through every
item for which they’ve given a score. The line in bold shows how the final score for
an item is calculated—the score for each item is multiplied by the similarity and

Matching Products | 17

these products are all added together. At the end, the scores are normalized by divid-
ing each of them by the similarity sum, and the sorted results are returned.

Now you can find out what movies I should watch next:

>>> reload(recommendations)
>>> recommendations.getRecommendations(recommendations.critics,'Toby')
[(3.3477895267131013, 'The Night Listener'), (2.8325499182641614, 'Lady in the
Water'), (2.5309807037655645, 'Just My Luck')]
>>> recommendations.getRecommendations(recommendations.critics,'Toby',
... similarity=recommendations.sim_distance)
[(3.5002478401415877, 'The Night Listener'), (2.7561242939959363, 'Lady in the
Water'), (2.4619884860743739, 'Just My Luck')]

Not only do you get a ranked list of movies, but you also get a guess at what my rat-
ing for each movie would be. This report lets me decide if I want to watch a movie at
all, or if I’d rather do something else entirely. Depending on your application, you
may decide not to give a recommendation if there’s nothing that would meet a given
user’s standards. You’ll find that the results are only affected very slightly by the
choice of similarity metric.

You’ve now built a complete recommendation system, which will work with any
type of product or link. All you have to do is set up a dictionary of people, items, and
scores, and you can use this to create recommendations for any person. Later in this
chapter you’ll see how you can use the del.icio.us API to get real data for recom-
mending web sites to people.

Matching Products
Now you know how to find similar people and recommend products for a given per-
son, but what if you want to see which products are similar to each other? You may
have encountered this on shopping web sites, particularly when the site hasn’t col-
lected a lot of information about you. A section of Amazon’s web page for the book
Programming Python is shown in Figure 2-4.

Figure 2-4. Amazon shows products that are similar to Programming Python

18 | Chapter 2: Making Recommendations

In this case, you can determine similarity by looking at who liked a particular item
and seeing the other things they liked. This is actually the same method we used ear-
lier to determine similarity between people—you just need to swap the people and
the items. So you can use the same methods you wrote earlier if you transform the
dictionary from:

{'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5},
'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5}}

to:

{'Lady in the Water':{'Lisa Rose':2.5,'Gene Seymour':3.0},
'Snakes on a Plane':{'Lisa Rose':3.5,'Gene Seymour':3.5}} etc..

Add a function to recommendations.py to do this transformation:

def transformPrefs(prefs):
 result={}
 for person in prefs:
 for item in prefs[person]:
 result.setdefault(item,{})

 # Flip item and person
 result[item][person]=prefs[person][item]
 return result

And now call the topMatches function used earlier to find the set of movies most sim-
ilar to Superman Returns:

>> reload(recommendations)
>> movies=recommendations.transformPrefs(recommendations.critics)
>> recommendations.topMatches(movies,'Superman Returns')
[(0.657, 'You, Me and Dupree'), (0.487, 'Lady in the Water'), (0.111, 'Snakes on a
Plane'), (-0.179, 'The Night Listener'), (-0.422, 'Just My Luck')]

Notice that in this example there are actually some negative correlation scores, which
indicate that those who like Superman Returns tend to dislike Just My Luck, as
shown in Figure 2-5.

To twist things around even more, you can get recommended critics for a movie.
Maybe you’re trying to decide whom to invite to a premiere?

>> recommendations.getRecommendations(movies,'Just My Luck')
[(4.0, 'Michael Phillips'), (3.0, 'Jack Matthews')]

It’s not always clear that flipping people and items will lead to useful results, but in
many cases it will allow you to make interesting comparisons. An online retailer
might collect purchase histories for the purpose of recommending products to indi-
viduals. Reversing the products with the people, as you’ve done here, would allow
them to search for people who might buy certain products. This might be very useful
in planning a marketing effort for a big clearance of certain items. Another potential
use is making sure that new links on a link-recommendation site are seen by the
people who are most likely to enjoy them.

Building a del.icio.us Link Recommender | 19

Building a del.icio.us Link Recommender
This section shows you how to retrieve data from one of the most popular online
bookmarking sites, and how to use that data to find similar users and recommend
links they haven’t seen before. This site, which you can access at http://del.icio.us,
allows people to set up an account and post links that interest them for later refer-
ence. You can visit the site and look at links that other people have posted, and also
browse “popular” links that have been posted by many different people. A sample
page from del.icio.us is shown in Figure 2-6.

Figure 2-5. Superman Returns and Just My Luck have a negative correlation

Figure 2-6. The del.icio.us popular page for programming

Superman Returns

Just My Luck

5

4

3

2

1

1 2 3 4 5

Puig

LaSalle

Seymour

Rose

http://del.icio.us

20 | Chapter 2: Making Recommendations

Unlike some link-sharing sites, del.icio.us doesn’t (at the time of writing) include any
way to find similar people or recommend links you might like. Fortunately, you can
use the techniques discussed in this chapter to add that functionality yourself.

The del.icio.us API
Data from del.icio.us is made available through an API that returns data in XML
format. To make things even easier for you, there is a Python API that you can down-
load from http://code.google.com/p/pydelicious/source or http://oreilly.com/catalog/
9780596529321.

To work through the example in this section, you’ll need to download the latest ver-
sion of this library and put it in your Python library path. (See Appendix A for more
information on installing this library.)

This library has several simple calls to get links that people have submitted. For
example, to get a list of recent popular posts about programming, you can use the
get_popular call:

>> import pydelicious
>> pydelicious.get_popular(tag='programming')
[{'count': '', 'extended': '', 'hash': '', 'description': u'How To Write
Unmaintainable Code', 'tags': '', 'href': u'http://thc.segfault.net/root/phun/
unmaintain.html', 'user': u'dorsia', 'dt': u'2006-08-19T09:48:56Z'}, {'count': '',
'extended': '', 'hash': '', 'description': u'Threading in C#', 'tags': '', 'href':
u'http://www.albahari.com/threading/', 'user': u'mmihale', 'dt': u'2006-05-17T18:09:
24Z'},
...etc...

You can see that it returns a list of dictionaries, each one containing a URL, descrip-
tion, and the user who posted it. Since you are working from live data, your results
will look different from the examples. There are two other calls you’ll be using, get_
urlposts, which returns all the posts for a given URL, and get_userposts, which
returns all the posts for a given user. The data for these calls is returned in the same
way.

Building the Dataset
It’s not possible to download the full set of all user posts from del.icio.us, so you’ll
need to choose a subset of them. You could do this any way you like, but to make
the example show interesting results, it would be good to find people who post fre-
quently and have some similar posts.

One way to do this is to get a list of users who recently posted a popular link with a
specified tag. Create a new file called deliciousrec.py and enter the following code:

from pydelicious import get_popular,get_userposts,get_urlposts

def initializeUserDict(tag,count=5):
 user_dict={}

http://code.google.com/p/pydelicious/source
http://oreilly.com/catalog/9780596529321
http://oreilly.com/catalog/9780596529321

Building a del.icio.us Link Recommender | 21

 # get the top count' popular posts
 for p1 in get_popular(tag=tag)[0:count]:
 # find all users who posted this
 for p2 in get_urlposts(p1['href']):
 user=p2['user']
 user_dict[user]={}
 return user_dict

This will give you a dictionary with some users, each referencing an empty dictio-
nary waiting to be filled with links. The API only returns the last 30 people to post
the link, so the function gathers users from the first 5 links to build a larger set.

Unlike the movie critic dataset, there are only two possible ratings in this case: 0 if
the user did not post this link, and 1 if he did. Using the API, you can now create a
function to fill in ratings for all the users. Add this code to deliciousrec.py:

def fillItems(user_dict):
 all_items={}
 # Find links posted by all users
 for user in user_dict:
 for i in range(3):
 try:
 posts=get_userposts(user)
 break
 except:
 print "Failed user "+user+", retrying"
 time.sleep(4)
 for post in posts:
 url=post['href']
 user_dict[user][url]=1.0
 all_items[url]=1

 # Fill in missing items with 0
 for ratings in user_dict.values():
 for item in all_items:
 if item not in ratings:
 ratings[item]=0.0

This can be used to build a dataset similar to the critics dictionary you created by
hand at the beginning of this chapter:

>> from deliciousrec import *
>> delusers=initializeUserDict('programming')
>> delusers ['tsegaran']={} # Add yourself to the dictionary if you use delicious
>> fillItems(delusers)

The third line adds the user tsegaran to the list. You can replace tsegaran with your
own username if you use del.icio.us.

The call to fillItems may take several minutes to run, as it is making a few hundred
requests to the site. Sometimes the API blocks requests that are repeated too rapidly.
In this case, the code pauses and retries the user up to three times.

22 | Chapter 2: Making Recommendations

Recommending Neighbors and Links
Now that you’ve built a dataset, you can apply the same functions that you used
before on the movie critic dataset. To select a user at random and find other users
who have tastes similar to his, enter this code in your Python session:

>> import random
>> user=delusers.keys()[random.randint(0,len(delusers)-1)]
>> user
u'veza'
>> recommendations.topMatches(delusers,user)
[(0.083, u'kuzz99'), (0.083, u'arturoochoa'), (0.083, u'NickSmith'), (0.083,
u'MichaelDahl'), (0.050, u'zinggoat')]

You can also get recommendations for links for this user by calling getRecommendations.
This will return all the items in order, so it’s better to restrict it to the top 10:

>> recommendations.getRecommendations(delusers,user)[0:10]
[(0.278, u'http://www.devlisting.com/'),
(0.276, u'http://www.howtoforge.com/linux_ldap_authentication'),
(0.191, u'http://yarivsblog.com/articles/2006/08/09/secret-weapons-for-startups'),
(0.191, u'http://www.dadgum.com/james/performance.html'),
(0.191, u'http://www.codinghorror.com/blog/archives/000666.html')]

Of course, as demonstrated earlier, the preferences list can be transposed, allowing
you to frame your searches in terms of links rather than people. To find a set of links
similar to one that you found particularly interesting, you can try:

>> url=recommendations.getRecommendations(delusers,user)[0][1]
>> recommendations.topMatches(recommendations.transformPrefs(delusers),url)
[(0.312, u'http://www.fonttester.com/'),
(0.312, u'http://www.cssremix.com/'),
(0.266, u'http://www.logoorange.com/color/color-codes-chart.php'),
(0.254, u'http://yotophoto.com/'),
(0.254, u'http://www.wpdfd.com/editorial/basics/index.html')]

That’s it! You’ve successfully added a recommendation engine to del.icio.us. There’s
a lot more that could be done here. Since del.icio.us supports searching by tags, you
can look for tags that are similar to each other. You can even search for people try-
ing to manipulate the “popular” pages by posting the same links with multiple
accounts.

Item-Based Filtering
The way the recommendation engine has been implemented so far requires the use
of all the rankings from every user in order to create a dataset. This will probably
work well for a few thousand people or items, but a very large site like Amazon has
millions of customers and products—comparing a user with every other user and
then comparing every product each user has rated can be very slow. Also, a site that
sells millions of products may have very little overlap between people, which can
make it difficult to decide which people are similar.

Item-Based Filtering | 23

The technique we have used thus far is called user-based collaborative filtering. An
alternative is known as item-based collaborative filtering. In cases with very large
datasets, item-based collaborative filtering can give better results, and it allows many
of the calculations to be performed in advance so that a user needing recommenda-
tions can get them more quickly.

The procedure for item-based filtering draws a lot on what we have already dis-
cussed. The general technique is to precompute the most similar items for each item.
Then, when you wish to make recommendations to a user, you look at his top-rated
items and create a weighted list of the items most similar to those. The important dif-
ference here is that, although the first step requires you to examine all the data,
comparisons between items will not change as often as comparisons between users. This
means you do not have to continuously calculate each item’s most similar items—you
can do it at low-traffic times or on a computer separate from your main application.

Building the Item Comparison Dataset
To compare items, the first thing you’ll need to do is write a function to build the
complete dataset of similar items. Again, this does not have to be done every time a
recommendation is needed—instead, you build the dataset once and reuse it each
time you need it.

To generate the dataset, add the following function to recommendations.py:

def calculateSimilarItems(prefs,n=10):
 # Create a dictionary of items showing which other items they
 # are most similar to.
 result={}

 # Invert the preference matrix to be item-centric
 itemPrefs=transformPrefs(prefs)
 c=0
 for item in itemPrefs:
 # Status updates for large datasets
 c+=1
 if c%100==0: print "%d / %d" % (c,len(itemPrefs))
 # Find the most similar items to this one
 scores=topMatches(itemPrefs,item,n=n,similarity=sim_distance)
 result[item]=scores
 return result

This function first inverts the score dictionary using the transformPrefs function
defined earlier, giving a list of items along with how they were rated by each user. It
then loops over every item and passes the transformed dictionary to the topMatches
function to get the most similar items along with their similarity scores. Finally, it
creates and returns a dictionary of items along with a list of their most similar items.

24 | Chapter 2: Making Recommendations

In your Python session, build the item similarity dataset and see what it looks like:

>>> reload(recommendations)
>>> itemsim=recommendations.calculateSimilarItems(recommendations.critics)
>>> itemsim
{'Lady in the Water': [(0.40000000000000002, 'You, Me and Dupree'),
 (0.2857142857142857, 'The Night Listener'),...
 'Snakes on a Plane': [(0.22222222222222221, 'Lady in the Water'),
 (0.18181818181818182, 'The Night Listener'),...
etc.

Remember, this function only has to be run frequently enough to keep the item simi-
larities up to date. You will need to do this more often early on when the user base
and number of ratings is small, but as the user base grows, the similarity scores
between items will usually become more stable.

Getting Recommendations
Now you’re ready to give recommendations using the item similarity dictionary with-
out going through the whole dataset. You’re going to get all the items that the user
has ranked, find the similar items, and weight them according to how similar they
are. The items dictionary can easily be used to get the similarities.

Table 2-3 shows the process of finding recommendations using the item-based
approach. Unlike Table 2-2, the critics are not involved at all, and instead there is a
grid of movies I’ve rated versus movies I haven’t rated.

Each row has a movie that I have already seen, along with my personal rating for it.
For every movie that I haven’t seen, there’s a column that shows how similar it is to
the movies I have seen—for example, the similarity score between Superman and The
Night Listener is 0.103. The columns starting with R.x show my rating of the movie
multiplied by the similarity—since I rated Superman 4.0, the value next to Night in
the Superman row is 4.0 × 0.103 = 0.412.

The total row shows the total of the similarity scores and the total of the R.x columns
for each movie. To predict what my rating would be for each movie, just divide the
total for the R.x column by the total for the similarity column. My predicted rating for
The Night Listener is thus 1.378/0.433 = 3.183.

Table 2-3. Item-based recommendations for Toby

Movie Rating Night R.xNight Lady R.xLady Luck R.xLuck

Snakes 4.5 0.182 0.818 0.222 0.999 0.105 0.474

Superman 4.0 0.103 0.412 0.091 0.363 0.065 0.258

Dupree 1.0 0.148 0.148 0.4 0.4 0.182 0.182

Total 0.433 1.378 0.713 1.764 0.352 0.914

Normalized 3.183 2.598 2.473

Using the MovieLens Dataset | 25

You can use this functionality by adding one last function to recommendations.py:

def getRecommendedItems(prefs,itemMatch,user):
 userRatings=prefs[user]
 scores={}
 totalSim={}

 # Loop over items rated by this user
 for (item,rating) in userRatings.items():

 # Loop over items similar to this one
 for (similarity,item2) in itemMatch[item]:

 # Ignore if this user has already rated this item
 if item2 in userRatings: continue

 # Weighted sum of rating times similarity
 scores.setdefault(item2,0)
 scores[item2]+=similarity*rating

 # Sum of all the similarities
 totalSim.setdefault(item2,0)
 totalSim[item2]+=similarity

 # Divide each total score by total weighting to get an average
 rankings=[(score/totalSim[item],item) for item,score in scores.items()]

 # Return the rankings from highest to lowest
 rankings.sort()
 rankings.reverse()
 return rankings

You can try this function with the similarity dataset you built earlier to get the new
recommendations for Toby:

>> reload(recommendations)
>> recommendations.getRecommendedItems(recommendations.critics,itemsim,'Toby')
[(3.182, 'The Night Listener'),
 (2.598, 'Just My Luck'),
 (2.473, 'Lady in the Water')]

The Night Listener still comes in first by a significant margin, and Just My Luck and
Lady in the Water have changed places although they are still close together. More
importantly, the call to getRecommendedItems did not have to calculate the similarities
scores for all the other critics because the item similarity dataset was built in advance.

Using the MovieLens Dataset
For the final example, let’s look at a real dataset of movie ratings called MovieLens.
MovieLens was developed by the GroupLens project at the University of Minnesota.
You can download the dataset from http://www.grouplens.org/node/12. There are two
datasets here. Download the 100,000 dataset in either tar.gz format or zip format,
depending on your platform.

http://www.grouplens.org/node/12

26 | Chapter 2: Making Recommendations

The archive contains several files, but the ones of interest are u.item, which contains
a list of movie IDs and titles, and u.data, which contains actual ratings in this format:

196 242 3 881250949
186 302 3 891717742
22 377 1 878887116
244 51 2 880606923
166 346 1 886397596
298 474 4 884182806

Each line has a user ID, a movie ID, the rating given to the movie by the user, and a
timestamp. You can get the movie titles, but the user data is anonymous, so you’ll
just be working with user IDs in this section. The set contains ratings of 1,682 movies
by 943 users, each of whom rated at least 20 movies.

Create a new method called loadMovieLens in recommendations.py to load this
dataset:

def loadMovieLens(path='/data/movielens'):

 # Get movie titles
 movies={}
 for line in open(path+'/u.item'):
 (id,title)=line.split('|')[0:2]
 movies[id]=title

 # Load data
 prefs={}
 for line in open(path+'/u.data'):
 (user,movieid,rating,ts)=line.split('\t')
 prefs.setdefault(user,{})
 prefs[user][movies[movieid]]=float(rating)
 return prefs

In your Python session, load the data and look at some ratings for any arbitrary user:

>>> reload(recommendations)
>>> prefs=recommendations.loadMovieLens()
>>> prefs['87']
{'Birdcage, The (1996)': 4.0, 'E.T. the Extra-Terrestrial (1982)': 3.0,
 'Bananas (1971)': 5.0, 'Sting, The (1973)': 5.0, 'Bad Boys (1995)': 4.0,
 'In the Line of Fire (1993)': 5.0, 'Star Trek: The Wrath of Khan (1982)': 5.0,
'Speechless (1994)': 4.0, etc...

Now you can get user-based recommendations:

>>> recommendations.getRecommendations(prefs,'87')[0:30]
[(5.0, 'They Made Me a Criminal (1939)'), (5.0, 'Star Kid (1997)'),
 (5.0, 'Santa with Muscles (1996)'), (5.0, 'Saint of Fort Washington (1993)'),
 etc...]

Depending on the speed of your computer, you may notice a pause when getting
recommendations this way. This is because you’re working with a much larger
dataset now. The more users you have, the longer user-based recommendations will
take. Now try doing item-based recommendations instead:

User-Based or Item-Based Filtering? | 27

>>> itemsim=recommendations.calculateSimilarItems(prefs,n=50)
100 / 1664
200 / 1664
etc...
>>> recommendations.getRecommendedItems(prefs,itemsim,'87')[0:30]
[(5.0, "What's Eating Gilbert Grape (1993)"), (5.0, 'Vertigo (1958)'),
 (5.0, 'Usual Suspects, The (1995)'), (5.0, 'Toy Story (1995)'),etc...]

Although building the item similarity dictionary takes a long time, recommenda-
tions are almost instantaneous after it’s built. Furthermore, the time it takes to get
recommendations will not increase as the number of users increases.

This is a great dataset to experiment with to see how different scoring methods affect
the outcomes, and to understand how item-based and user-based filtering perform
differently. The GroupLens web site has a few other datasets to play with, including
books, jokes, and more movies.

User-Based or Item-Based Filtering?
Item-based filtering is significantly faster than user-based when getting a list of rec-
ommendations for a large dataset, but it does have the additional overhead of main-
taining the item similarity table. Also, there is a difference in accuracy that depends
on how “sparse” the dataset is. In the movie example, since every critic has rated
nearly every movie, the dataset is dense (not sparse). On the other hand, it would be
unlikely to find two people with the same set of del.icio.us bookmarks—most book-
marks are saved by a small group of people, leading to a sparse dataset. Item-based
filtering usually outperforms user-based filtering in sparse datasets, and the two per-
form about equally in dense datasets.

To learn more about the difference in performance between these
algorithms, check out a paper called “Item-based Collaborative Filter-
ing Recommendation Algorithms” by Sarwar et al. at http://citeseer.ist.
psu.edu/sarwar01itembased.html.

Having said that, user-based filtering is simpler to implement and doesn’t have the
extra steps, so it is often more appropriate with smaller in-memory datasets that
change very frequently. Finally, in some applications, showing people which other
users have preferences similar to their own has its own value—maybe not something
you would want to do on a shopping site, but possibly on a link-sharing or music
recommendation site.

You’ve now learned how to calculate similarity scores and how to use these to
compare people and items. This chapter covered two different recommendation algo-
rithms, user-based and item-based, along with ways to persist people’s preferences
and use the del.icio.us API to build a link recommendation system. In Chapter 2,

http://citeseer.ist.psu.edu/sarwar01itembased.html
http://citeseer.ist.psu.edu/sarwar01itembased.html

28 | Chapter 2: Making Recommendations

you’ll see how to build on some of the ideas from this chapter by finding groups of
similar people using unsupervised clustering algorithms. Chapter 9 will look at
alternative ways to match people when you already know the sort of people they like.

Exercises
1. Tanimoto score. Find out what a Tanimoto similarity score is. In what cases

could this be used as the similarity metric instead of Euclidean distance or
Pearson coefficient? Create a new similarity function using the Tanimoto score.

2. Tag similarity. Using the del.icio.us API, create a dataset of tags and items. Use
this to calculate similarity between tags and see if you can find any that are
almost identical. Find some items that could have been tagged “programming”
but were not.

3. User-based efficiency. The user-based filtering algorithm is inefficient because it
compares a user to all other users every time a recommendation is needed. Write
a function to precompute user similarities, and alter the recommendation code
to use only the top five other users to get recommendations.

4. Item-based bookmark filtering. Download a set of data from del.icio.us and add it
to the database. Create an item-item table and use this to make item-based
recommendations for various users. How do these compare to the user-based
recommendations?

5. Audioscrobbler. Take a look at http://www.audioscrobbler.net, a dataset contain-
ing music preferences for a large set of users. Use their web services API to get a
set of data for making and building a music recommendation system.

http://www.audioscrobbler.net

29

Chapter 3 CHAPTER 3

Discovering Groups3

Chapter 2 discussed ways to find things that are closely related, so, for example, you
could find someone who shares your taste in movies. This chapter expands on those
ideas and introduces data clustering, a method for discovering and visualizing groups
of things, people, or ideas that are all closely related. In this chapter, you’ll learn:
how to prepare data from a variety of sources; two different clustering algorithms;
more on distance metrics; simple graphical visualization code for viewing the gener-
ated groups; and finally, a method for projecting very complicated datasets into two
dimensions.

Clustering is used frequently in data-intensive applications. Retailers who track
customer purchases can use this information to automatically detect groups of cus-
tomers with similar buying patterns, in addition to regular demographic informa-
tion. People of similar age and income may have vastly different styles of dress, but
with the use of clustering, “fashion islands” can be discovered and used to develop a
retail or marketing strategy. Clustering is also heavily used in computational biology
to find groups of genes that exhibit similar behavior, which might indicate that they
respond to a treatment in the same way or are part of the same biological pathway.

Since this book is about collective intelligence, the examples in this chapter come
from sources in which many people contribute different information. The first
example will look at blogs, the topics they discuss, and their particular word usage to
show that blogs can be grouped according to their text and that words can be
grouped by their usage. The second example will look at a community site where
people list things they own and things they would like to own, and we will use this
information to show how people’s desires can be grouped into clusters.

Supervised versus Unsupervised Learning
Techniques that use example inputs and outputs to learn how to make predictions
are known as supervised learning methods. We’ll explore many supervised learning
methods in this book, including neural networks, decision trees, support-vector
machines, and Bayesian filtering. Applications using these methods “learn” by

30 | Chapter 3: Discovering Groups

examining a set of inputs and expected outputs. When we want to extract informa-
tion using one of these methods, we enter a set of inputs and expect the application
to produce an output based on what it has learned so far.

Clustering is an example of unsupervised learning. Unlike a neural network or a deci-
sion tree, unsupervised learning algorithms are not trained with examples of correct
answers. Their purpose is to find structure within a set of data where no one piece of
data is the answer. In the fashion example given earlier, the clusters don’t tell the
retailers what an individual is likely to buy, nor do they make predictions about
which fashion island a new person fits into. The goal of clustering algorithms is to
take the data and find the distinct groups that exist within it. Other examples of unsu-
pervised learning include non-negative matrix factorization, which will be discussed in
Chapter 10, and self-organizing maps.

Word Vectors
The normal way of preparing data for clustering is to determine a common set of
numerical attributes that can be used to compare the items. This is very similar to
what was shown in Chapter 2, when critics’ rankings were compared over a com-
mon set of movies, and when the presence or absence of a bookmark was translated
to a 1 or a 0 for del.icio.us users.

Pigeonholing the Bloggers
This chapter will work through a couple of example datasets. In the first dataset, the
items that will be clustered are a set of 120 of the top blogs, and the data they’ll be
clustered on is the number of times a particular set of words appears in each blog’s
feed. A small subset of what this looks like is shown in Table 3-1.

By clustering blogs based on word frequencies, it might be possible to determine if
there are groups of blogs that frequently write about similar subjects or write in simi-
lar styles. Such a result could be very useful in searching, cataloging, and discovering
the huge number of blogs that are currently online.

To generate this dataset, you’ll be downloading the feeds from a set of blogs, extract-
ing the text from the entries, and creating a table of word frequencies. If you’d like to
skip the steps for creating the dataset, you can download it from http://kiwitobes.com/
clusters/blogdata.txt.

Table 3-1. Subset of blog word frequencies

“china” “kids” “music” “yahoo”

Gothamist 0 3 3 0

GigaOM 6 0 0 2

Quick Online Tips 0 2 2 22

http://kiwitobes.com/clusters/blogdata.txt
http://kiwitobes.com/clusters/blogdata.txt

Word Vectors | 31

Counting the Words in a Feed
Almost all blogs can be read online or via their RSS feeds. An RSS feed is a simple
XML document that contains information about the blog and all the entries. The
first step in generating word counts for each blog is to parse these feeds. Fortu-
nately, there is an excellent module for doing this called Universal Feed Parser,
which you can download from http://www.feedparser.org.

This module makes it easy to get the title, links, and entries from any RSS or Atom
feed. The next step is to create a function that will extract all the words from a feed.
Create a new file called generatefeedvector.py and insert the following code:

import feedparser
import re

Returns title and dictionary of word counts for an RSS feed
def getwordcounts(url):
 # Parse the feed
 d=feedparser.parse(url)
 wc={}

 # Loop over all the entries
 for e in d.entries:
 if 'summary' in e: summary=e.summary
 else: summary=e.description

 # Extract a list of words
 words=getwords(e.title+' '+summary)
 for word in words:
 wc.setdefault(word,0)
 wc[word]+=1
 return d.feed.title,wc

RSS and Atom feeds always have a title and a list of entries. Each entry usually has
either a summary or description tag that contains the actual text of the entries. The
getwordcounts function passes this summary to getwords, which strips out all of the
HTML and splits the words by nonalphabetical characters, returning them as a list.
Add getwords to generatefeedvector.py:

def getwords(html):
 # Remove all the HTML tags
 txt=re.compile(r'<[^>]+>').sub('',html)

 # Split words by all non-alpha characters
 words=re.compile(r'[^A-Z^a-z]+').split(txt)

 # Convert to lowercase
 return [word.lower() for word in words if word!='']

Now you’ll need a list of feeds to work from. If you like, you can generate a list of
feed URLs for a set of blogs yourself, or you can use a prebuilt list of 100 RSS URLs.
This list was created by taking the feeds for all of the most highly referenced blogs

http://www.feedparser.org

32 | Chapter 3: Discovering Groups

and removing those that did not contain the full text of their entries or were mostly
images. You can download the list at http://kiwitobes.com/clusters/feedlist.txt.

This is a plain text file with a URL on each line. If you have your own blog or some
particular favorites and you would like to see how they compare to some of the most
popular blogs out there, you can add them to this file.

The code for looping over the feeds and generating the dataset will be the main code
in generatefeedvector.py (that is, not in a function). The first part of the code loops
over every line in feedlist.txt and generates the word counts for each blog, as well as
the number of blogs each word appeared in (apcount). Add this code to the end of
generatefeedvector.py:

apcount={}
wordcounts={}
for feedurl in file('feedlist.txt'):
 title,wc=getwordcounts(feedurl)
 wordcounts[title]=wc
 for word,count in wc.items():
 apcount.setdefault(word,0)
 if count>1:
 apcount[word]+=1

The next step is to generate the list of words that will actually be used in the counts
for each blog. Since words like “the” will appear in almost all of them, and others
like “flim-flam” might only appear in one, you can reduce the total number of words
included by selecting only those words that are within maximum and minimum
percentages. In this case, you can start with 10 percent as the lower bound and 50
percent as the upper bound, but it’s worth experimenting with these numbers if you
find too many common words or too many strange words appearing:

wordlist=[]
for w,bc in apcount.items():
 frac=float(bc)/len(feedlist)
 if frac>0.1 and frac<0.5: wordlist.append(w)

The final step is to use the list of words and the list of blogs to create a text file con-
taining a big matrix of all the word counts for each of the blogs:

out=file('blogdata.txt','w')
out.write('Blog')
for word in wordlist: out.write('\t%s' % word)
out.write('\n')
for blog,wc in wordcounts.items():
 out.write(blog)
 for word in wordlist:
 if word in wc: out.write('\t%d' % wc[word])
 else: out.write('\t0')
 out.write('\n')

To generate the word count file, run generatefeedvector.py from the command line:

c:\code\blogcluster>python generatefeedvector.py

http://kiwitobes.com/clusters/feedlist.txt

Hierarchical Clustering | 33

Downloading all those feeds may take a few minutes, but this will eventually
generate an output file called blogdata.txt. Open this file to verify that it contains a
tab-separated table with columns of words and rows of blogs. This file format will be
used by the functions in this chapter, so that later you can create a different dataset
or even save a properly formatted spreadsheet as a tab-separated text file on which to
use these clustering algorithms.

Hierarchical Clustering
Hierarchical clustering builds up a hierarchy of groups by continuously merging the
two most similar groups. Each of these groups starts as a single item, in this case an
individual blog. In each iteration this method calculates the distances between every
pair of groups, and the closest ones are merged together to form a new group. This is
repeated until there is only one group. Figure 3-1 shows this process.

In the figure, the similarity of the items is represented by their relative locations—the
closer two items are, the more similar they are. At first, the groups are just individual
items. In the second step, you can see that A and B, the two items closest together,
have merged to form a new group whose location is halfway between the two. In the
third step, this new group is merged with C. Since D and E are now the two closest
items, they form a new group. The final step unifies the two remaining groups.

Figure 3-1. Hierarchical clustering in action

A B

C

D E

A B

C

D E

A B

C

D E

A B

C

D E

A B

C

D E

34 | Chapter 3: Discovering Groups

After hierarchical clustering is completed, you usually view the results in a type of
graph called a dendrogram, which displays the nodes arranged into their hierarchy.
The dendrogram for the example above is shown in Figure 3-2.

This dendrogram not only uses connections to show which items ended up in each
cluster, it also uses the distance to show how far apart the items were. The AB cluster
is a lot closer to the individual A and B items than the DE cluster is to the individual
D and E items. Rendering the graph this way can help you determine how similar the
items within a cluster are, which could be interpreted as the tightness of the cluster.

This section will show you how to cluster the blogs dataset to generate a hierarchy of
blogs, which, if successful, will group them thematically. First, you’ll need a method
to load in the data file. Create a file called clusters.py and add this function to it:

def readfile(filename):
 lines=[line for line in file(filename)]

 # First line is the column titles
 colnames=lines[0].strip().split('\t')[1:]
 rownames=[]
 data=[]
 for line in lines[1:]:
 p=line.strip().split('\t')
 # First column in each row is the rowname
 rownames.append(p[0])
 # The data for this row is the remainder of the row
 data.append([float(x) for x in p[1:]])
 return rownames,colnames,data

This function reads the top row into the list of column names and reads the leftmost
column into a list of row names, then puts all the data into a big list where every item
in the list is the data for that row. The count for any cell can be referenced by its row
and column in data, which also corresponds to the indices of the rownames and
colnames lists.

Figure 3-2. A dendrogram is a visualization of hierarchical clustering

A

B

C

D

E

Hierarchical Clustering | 35

The next step is to define closeness. We discussed this in Chapter 2, using Euclidean
distance and Pearson correlation as examples of ways to determine how similar two
movie critics are. In the present example, some blogs contain more entries or much
longer entries than others, and will thus contain more words overall. The Pearson
correlation will correct for this, since it really tries to determine how well two sets of
data fit onto a straight line. The Pearson correlation code for this module will take
two lists of numbers and return their correlation score:

from math import sqrt
def pearson(v1,v2):
 # Simple sums
 sum1=sum(v1)
 sum2=sum(v2)

 # Sums of the squares
 sum1Sq=sum([pow(v,2) for v in v1])
 sum2Sq=sum([pow(v,2) for v in v2])

 # Sum of the products
 pSum=sum([v1[i]*v2[i] for i in range(len(v1))])

 # Calculate r (Pearson score)
 num=pSum-(sum1*sum2/len(v1))
 den=sqrt((sum1Sq-pow(sum1,2)/len(v1))*(sum2Sq-pow(sum2,2)/len(v1)))
 if den==0: return 0

 return 1.0-num/den

Remember that the Pearson correlation is 1.0 when two items match perfectly, and is
close to 0.0 when there’s no relationship at all. The final line of the code returns 1.0
minus the Pearson correlation to create a smaller distance between items that are
more similar.

Each cluster in a hierarchical clustering algorithm is either a point in the tree with
two branches, or an endpoint associated with an actual row from the dataset (in this
case, a blog). Each cluster also contains data about its location, which is either the
row data for the endpoints or the merged data from its two branches for other node
types. You can create a class called bicluster that has all of these properties, which
you’ll use to represent the hierarchical tree. Create the cluster type as a class in
cluster.py:

class bicluster:
 def __init_ _(self,vec,left=None,right=None,distance=0.0,id=None):
 self.left=left
 self.right=right
 self.vec=vec
 self.id=id
 self.distance=distance

The algorithm for hierarchical clustering begins by creating a group of clusters that
are just the original items. The main loop of the function searches for the two best

36 | Chapter 3: Discovering Groups

matches by trying every possible pair and calculating their correlation. The best pair
of clusters is merged into a single cluster. The data for this new cluster is the average
of the data for the two old clusters. This process is repeated until only one cluster
remains. It can be very time consuming to do all these calculations, so it’s a good
idea to store the correlation results for each pair, since they will have to be calcu-
lated again and again until one of the items in the pair is merged into another cluster.

Add the hcluster algorithm to clusters.py:

def hcluster(rows,distance=pearson):
 distances={}
 currentclustid=-1

 # Clusters are initially just the rows
 clust=[bicluster(rows[i],id=i) for i in range(len(rows))]

 while len(clust)>1:
 lowestpair=(0,1)
 closest=distance(clust[0].vec,clust[1].vec)

 # loop through every pair looking for the smallest distance
 for i in range(len(clust)):
 for j in range(i+1,len(clust)):
 # distances is the cache of distance calculations
 if (clust[i].id,clust[j].id) not in distances:
 distances[(clust[i].id,clust[j].id)]=distance(clust[i].vec,clust[j].vec)

 d=distances[(clust[i].id,clust[j].id)]

 if d<closest:
 closest=d
 lowestpair=(i,j)

 # calculate the average of the two clusters
 mergevec=[
 (clust[lowestpair[0]].vec[i]+clust[lowestpair[1]].vec[i])/2.0
 for i in range(len(clust[0].vec))]

 # create the new cluster
 newcluster=bicluster(mergevec,left=clust[lowestpair[0]],
 right=clust[lowestpair[1]],
 distance=closest,id=currentclustid)

 # cluster ids that weren't in the original set are negative
 currentclustid-=1
 del clust[lowestpair[1]]
 del clust[lowestpair[0]]
 clust.append(newcluster)

 return clust[0]

Because each cluster references the two clusters that were merged to create it, the
final cluster returned by this function can be searched recursively to recreate all
the clusters and their end nodes.

Hierarchical Clustering | 37

To run the hierarchical clustering, start up a Python session, load in the file, and call
hcluster on the data:

$ python
>> import clusters
>> blognames,words,data=clusters.readfile('blogdata.txt')
>> clust=clusters.hcluster(data)

This may take a few minutes to run. Storing the distances increases the speed signifi-
cantly, but it’s still necessary for the algorithm to calculate the correlation between
every pair of blogs. This process can be made faster by using an external library to
calculate the distances. To view your results, you can create a simple function that
traverses the clustering tree recursively and prints it like a filesystem hierarchy. Add
the function printclust to clusters.py:

def printclust(clust,labels=None,n=0):
 # indent to make a hierarchy layout
 for i in range(n): print ' ',
 if clust.id<0:
 # negative id means that this is branch
 print '-'
 else:
 # positive id means that this is an endpoint
 if labels==None: print clust.id
 else: print labels[clust.id]

 # now print the right and left branches
 if clust.left!=None: printclust(clust.left,labels=labels,n=n+1)
 if clust.right!=None: printclust(clust.right,labels=labels,n=n+1)

The output from this doesn’t look very fancy and it’s a little hard to read with a large
dataset like the blog list, but it does give a good overall sense of whether clustering is
working. In the next section, we’ll look at creating a graphical version that is much
easier to read and is drawn to scale to show the overall spread of each cluster.

In your Python session, call this function on the clusters you just built:

>> reload(clusters)
>> clusters.printclust(clust,labels=blognames)

The output listing will contain all 100 blogs and will thus be quite long. Here’s an
example of a cluster that I found when running this dataset:

John Battelle's Searchblog
-
 Search Engine Watch Blog
 -
 Read/WriteWeb
 -
 Official Google Blog
 -
 Search Engine Roundtable
 -
 Google Operating System
 Google Blogoscoped

38 | Chapter 3: Discovering Groups

The original items in the set are shown. The dashes represent a cluster of two or
more merged items. Here you see a great example of finding a group; it’s also
interesting to see that there is such a large chunk of search-related blogs in the most
popular feeds. Looking through, you also should be able to spot clusters of political
blogs, technology blogs, and blogs about blogging.

You’ll also probably notice some anomalies. These writers may not have written on
the same themes, but the clustering algorithm says that their word frequencies are
correlated. This might be a reflection of their writing style or could simply be a
coincidence based on the day that the data was downloaded.

Drawing the Dendrogram
You can interpret the clusters more clearly by viewing them as a dendrogram. Hierar-
chical clustering results are usually viewed this way, since dendrograms pack a lot of
information into a relatively small space. Since the dendrograms will be graphical
and saved as JPGs, you’ll need to download the Python Imaging Library (PIL), which
is available at http://pythonware.com.

This library comes with an installer for Windows and source distributions for other
platforms. More information on downloading and installing the PIL is available in
Appendix A. The PIL makes it very easy to generate images with text and lines, which
is all you’ll really need to construct a dendrogram. Add the import statement to the
beginning of clusters.py:

from PIL import Image,ImageDraw

The first step is to use a function that returns the total height of a given cluster.
When determining the overall height of the image, and where to put the various
nodes, it’s necessary to know their total heights. If this cluster is an endpoint (i.e., it
has no branches), then its height is 1; otherwise, its height is the sum of the heights
of its branches. This is easily defined as a recursive function, which you can add to
clusters.py:

def getheight(clust):
 # Is this an endpoint? Then the height is just 1
 if clust.left==None and clust.right==None: return 1

 # Otherwise the height is the same of the heights of
 # each branch
 return getheight(clust.left)+getheight(clust.right)

The other thing you need to know is the total error of the root node. Since the length
of the lines will be scaled to how much error is in each node, you’ll be generating a
scaling factor based on how much total error there is. The error depth of a node is
just the maximum possible error from each of its branches:

def getdepth(clust):
 # The distance of an endpoint is 0.0
 if clust.left==None and clust.right==None: return 0

http://pythonware.com

Drawing the Dendrogram | 39

 # The distance of a branch is the greater of its two sides
 # plus its own distance
 return max(getdepth(clust.left),getdepth(clust.right))+clust.distance

The drawdendrogram function creates a new image allowing 20 pixels in height and a
fixed width for each final cluster. The scaling factor is determined by dividing the
fixed width by the total depth. The function creates a draw object for this image and
then calls drawnode on the root node, telling it that its location should be halfway
down the left side of the image.

def drawdendrogram(clust,labels,jpeg='clusters.jpg'):
 # height and width
 h=getheight(clust)*20
 w=1200
 depth=getdepth(clust)

 # width is fixed, so scale distances accordingly
 scaling=float(w-150)/depth

 # Create a new image with a white background
 img=Image.new('RGB',(w,h),(255,255,255))
 draw=ImageDraw.Draw(img)

 draw.line((0,h/2,10,h/2),fill=(255,0,0))

 # Draw the first node
 drawnode(draw,clust,10,(h/2),scaling,labels)
 img.save(jpeg,'JPEG')

The important function here is drawnode, which takes a cluster and its location. It
takes the heights of the child nodes, calculates where they should be, and draws lines
to them—one long vertical line and two horizontal lines. The lengths of the horizon-
tal lines are determined by how much error is in the cluster. Longer lines show that
the two clusters that were merged to create the cluster weren’t all that similar, while
shorter lines show that they were almost identical. Add the drawnode function to
clusters.py:

def drawnode(draw,clust,x,y,scaling,labels):
 if clust.id<0:
 h1=getheight(clust.left)*20
 h2=getheight(clust.right)*20
 top=y-(h1+h2)/2
 bottom=y+(h1+h2)/2
 # Line length
 ll=clust.distance*scaling
 # Vertical line from this cluster to children
 draw.line((x,top+h1/2,x,bottom-h2/2),fill=(255,0,0))

 # Horizontal line to left item
 draw.line((x,top+h1/2,x+ll,top+h1/2),fill=(255,0,0))

 # Horizontal line to right item
 draw.line((x,bottom-h2/2,x+ll,bottom-h2/2),fill=(255,0,0))

40 | Chapter 3: Discovering Groups

 # Call the function to draw the left and right nodes
 drawnode(draw,clust.left,x+ll,top+h1/2,scaling,labels)
 drawnode(draw,clust.right,x+ll,bottom-h2/2,scaling,labels)
 else:
 # If this is an endpoint, draw the item label
 draw.text((x+5,y-7),labels[clust.id],(0,0,0))

To generate the image, go to your Python session and enter:

>> reload(clusters)
>> clusters.drawdendrogram(clust,blognames,jpeg='blogclust.jpg')

This will generate a file called blogclust.jpg with the dendrogram. The dendrogram
should look similar to the one shown in Figure 3-3. If you like, you can change the
height and width settings to make it easier to print or less cluttered.

Column Clustering
It’s often necessary to cluster on both the rows and the columns. In a marketing
study, it can be interesting to group people to find demographics and products, or
perhaps to determine shelf locations of items that are commonly bought together. In
the blog dataset, the columns represent words, and it’s potentially interesting to see
which words are commonly used together.

The easiest way to do this using the functions you’ve written thus far is to rotate the
entire dataset so that the columns (the words) become rows, each with a list of num-
bers indicating how many times that particular word appears in each of the blogs.
Add this function to clusters.py:

def rotatematrix(data):
 newdata=[]
 for i in range(len(data[0])):
 newrow=[data[j][i] for j in range(len(data))]
 newdata.append(newrow)
 return newdata

You can now rotate the matrix and run the same operations for clustering and draw-
ing the dendrogram. As there are many more words than blogs, this will take longer
than running the blog clustering. Remember that since the matrix has been rotated,
the words rather than the blogs are now the labels.

>> reload(clusters)
>> rdata=clusters.rotatematrix(data)
>> wordclust=clusters.hcluster(rdata)
>> clusters.drawdendrogram(wordclust,labels=words,jpeg='wordclust.jpg')

One important thing to realize about clustering is that if you have many more items
than variables, the likelihood of nonsensical clusters increases. There are many more
words than there are blogs, so you’ll notice more reasonable patterns in the blog
clustering than in the word clustering. However, some interesting clusters definitely
emerge, as shown in Figure 3-4.

Column Clustering | 41

Figure 3-3. Dendrogram showing blog clusters

42 | Chapter 3: Discovering Groups

The cluster obviously shows that a set of words is often used together in blogs to dis-
cuss online services or Internet-related topics. It’s possible to find clusters elsewhere
that reflect usage patterns, such as “fact,” “us,” “say,” “very,” and “think,” which
indicate that a blog writes in an opinionated style.

K-Means Clustering
Hierarchical clustering gives a nice tree as a result, but it has a couple of disadvan-
tages. The tree view doesn’t really break the data into distinct groups without
additional work, and the algorithm is extremely computationally intensive. Because
the relationship between every pair of items must be calculated and then recalculated
when items are merged, the algorithm will run slowly on very large datasets.

An alternative method of clustering is K-means clustering. This type of algorithm is
quite different from hierarchical clustering because it is told in advance how many
distinct clusters to generate. The algorithm will determine the size of the clusters
based on the structure of the data.

K-means clustering begins with k randomly placed centroids (points in space that
represent the center of the cluster), and assigns every item to the nearest one. After
the assignment, the centroids are moved to the average location of all the nodes
assigned to them, and the assignments are redone. This process repeats until the
assignments stop changing. Figure 3-5 shows this process in action for five items and
two clusters.

In the first frame, the two centroids (shown as dark circles) are placed randomly.
Frame 2 shows that each of the items is assigned to the nearest centroid—in this
case, A and B are assigned to the top centroid and C, D, and E are assigned to the
bottom centroid. In the third frame, each centroid has been moved to the average
location of the items that were assigned to it. When the assignments are calculated
again, it turns out that C is now closer to the top centroid, while D and E remain
closest to the bottom one. Thus, the final result is reached with A, B, and C in one
cluster, and D and E in the other.

The function for doing K-means clustering takes the same data rows as input as does
the hierarchical clustering algorithm, along with the number of clusters (k) that the
caller would like returned. Add this code to clusters.py:

Figure 3-4. Word cluster showing online-service-related words

users

web

yahoo

internet

online

K-Means Clustering | 43

import random

def kcluster(rows,distance=pearson,k=4):
 # Determine the minimum and maximum values for each point
 ranges=[(min([row[i] for row in rows]),max([row[i] for row in rows]))
 for i in range(len(rows[0]))]

 # Create k randomly placed centroids
 clusters=[[random.random()*(ranges[i][1]-ranges[i][0])+ranges[i][0]
 for i in range(len(rows[0]))] for j in range(k)]

 lastmatches=None
 for t in range(100):
 print 'Iteration %d' % t
 bestmatches=[[] for i in range(k)]

 # Find which centroid is the closest for each row
 for j in range(len(rows)):
 row=rows[j]
 bestmatch=0
 for i in range(k):
 d=distance(clusters[i],row)
 if d<distance(clusters[bestmatch],row): bestmatch=i
 bestmatches[bestmatch].append(j)

 # If the results are the same as last time, this is complete
 if bestmatches==lastmatches: break
 lastmatches=bestmatches

Figure 3-5. K-means clustering with two clusters

A B

C

D E

A B

C

D E

A B

C

D E

A B

C

D E

A B

C

D E

44 | Chapter 3: Discovering Groups

 # Move the centroids to the average of their members
 for i in range(k):
 avgs=[0.0]*len(rows[0])
 if len(bestmatches[i])>0:
 for rowid in bestmatches[i]:
 for m in range(len(rows[rowid])):
 avgs[m]+=rows[rowid][m]
 for j in range(len(avgs)):
 avgs[j]/=len(bestmatches[i])
 clusters[i]=avgs

 return bestmatches

This code randomly creates a set of clusters within the ranges of each of the vari-
ables. With every iteration, the rows are each assigned to one of the centroids, and
the centroid data is updated to the average of all its assignees. When the assign-
ments are the same as they were the previous time, the process ends and the k lists,
each representing a cluster, are returned. The number of iterations it takes to pro-
duce the final result is quite small compared to hierarchical clustering.

Because this function uses random centroids to start with, the order of the results
returned will almost always be different. It’s also possible for the contents of the
clusters to be different depending on the initial locations of the centroids.

You can try this function on the blog dataset. It should run quite a bit faster than the
hierarchical clustering:

>> reload(clusters)
>> kclust=clusters.kcluster(data,k=10)
Iteration 0
...
>> [rownames[r] for r in k[0]]
['The Viral Garden', 'Copyblogger', 'Creating Passionate Users', 'Oilman',
'ProBlogger Blog Tips', "Seth's Blog"]
>> [rownames[r] for r in k[1]]
etc..

kclust now contains an list of IDs for each cluster. Try the clustering with different
values of k and see how it affects the results.

Clusters of Preferences
One of the best things about the growing interest in social networking sites is that big
sets of data are becoming available, all contributed voluntarily by people. One such
site is called Zebo (http://www.zebo.com), which encourages people to create accounts
and make lists of things that they own and things that they would like to own. From
an advertiser’s or social critic’s perspective, this is very interesting information, as it
can allow them to determine the way that expressed preferences naturally group
together.

Clusters of Preferences | 45

Getting and Preparing the Data
This section will go through the process of creating a dataset from the Zebo web site.
It involves downloading many pages from the site and parsing them to extract what
each user says they want. If you would like to skip this section, you can download a
precreated dataset from http://kiwitobes.com/clusters/zebo.txt.

Beautiful Soup
Beautiful Soup is an excellent library for parsing a web page and building a struc-
tured representation. It allows you to access any element of the page by type, ID, or
any of its properties, and get a string representation of its contents. Beautiful Soup is
also very tolerant of web pages with broken HTML, which is useful when generating
datasets from web sites.

You can download Beautiful Soup from http://crummy.com/software/BeautifulSoup. It
comes as a single Python file, which you can put in your Python library path or in the
path where you’ll be working and starting the Python interpreter.

Once you’ve installed Beautiful Soup, you can see it in action in your interpreter:

>> import urllib2
>> from BeautifulSoup import BeautifulSoup
>> c=urllib2.urlopen('http://kiwitobes.com/wiki/Programming_language.html')
>> soup=BeautifulSoup(c.read())
>> links=soup('a')
>> links[10]
algorithms
>> links[10]['href']
u'/wiki/Algorithm.html'

To construct a soup, which is Beautiful Soup’s way of representing a web page, just
initialize it with the contents of the page. You can call the soup with a tag type, such
as a, and it will return a list of objects with that type. Each of these is also address-
able, allowing you to drill down into properties and other objects beneath them in
the hierarchy.

Scraping the Zebo Results
The structure of the search page on Zebo is fairly complex, but it’s easy to determine
which parts of the page are the lists of items because they all have the class
bgverdanasmall. You can take advantage of this to extract the important data from
the page. Create a new file called downloadzebodata.py and insert the following code:

from BeautifulSoup import BeautifulSoup
import urllib2
import re
chare=re.compile(r'[!-\.&]')
itemowners={}

http://kiwitobes.com/clusters/zebo.txt
http://crummy.com/software/BeautifulSoup

46 | Chapter 3: Discovering Groups

Words to remove
dropwords=['a','new','some','more','my','own','the','many','other','another']

currentuser=0
for i in range(1,51):
 # URL for the want search page
 c=urllib2.urlopen(
 'http://member.zebo.com/Main?event_key=USERSEARCH&wiowiw=wiw&keyword=car&page=%d'
 % (i))
 soup=BeautifulSoup(c.read())
 for td in soup('td'):
 # Find table cells of bgverdanasmall class
 if ('class' in dict(td.attrs) and td['class']=='bgverdanasmall'):
 items=[re.sub(chare,'',a.contents[0].lower()).strip() for a in td('a')]
 for item in items:
 # Remove extra words
 txt=' '.join([t for t in item.split(' ') if t not in dropwords])
 if len(txt)<2: continue
 itemowners.setdefault(txt,{})
 itemowners[txt][currentuser]=1
 currentuser+=1

This code will download and parse the first 50 pages of the “want” search from
Zebo. Since all the items are entered as free text, there’s a significant amount of
cleanup to be done, including removing words like “a” and “some,” getting rid of
punctuation, and making everything lowercase.

Once this is done, the code first has to create a list of items that more than five peo-
ple want, then it must build a matrix with anonymized users as columns and items as
rows, and finally, it has to write the matrix to a file. Add this to the end of
downloadzebodata.py:

out=file('zebo.txt','w')
out.write('Item')
for user in range(0,currentuser): out.write('\tU%d' % user)
out.write('\n')
for item,owners in itemowners.items():
 if len(owners)>10:
 out.write(item)
 for user in range(0,currentuser):
 if user in owners: out.write('\t1')
 else: out.write('\t0')
 out.write('\n')

Run the following from the command line to generate a file called zebo.txt, with the
same format as the blog dataset. The only difference is that instead of counts, there is
a 1 if a person wants a particular item and a 0 if he doesn’t:

c:\code\cluster>python downloadzebodata.py

Clusters of Preferences | 47

Defining a Distance Metric
The Pearson correlation works well for the blog dataset where the values are actual
word counts. However, this dataset just has 1s and 0s for presence or absence, and it
would be more useful to define some measure of overlap between the people who
want two items. For this, there is a measure called the Tanimoto coefficient, which is
the ratio of the intersection set (only the items that are in both sets) to the union set
(all the items in either set). This is easily defined for two vectors like this:

def tanamoto(v1,v2):
 c1,c2,shr=0,0,0

 for i in range(len(v1)):
 if v1[i]!=0: c1+=1 # in v1
 if v2[i]!=0: c2+=1 # in v2
 if v1[i]!=0 and v2[i]!=0: shr+=1 # in both

 return 1.0-(float(shr)/(c1+c2-shr))

This will return a value between 1.0 and 0.0. A value of 1.0 indicates that nobody
who wants the first item wants the second one, and 0.0 means that exactly the same
set of people want the two items.

Clustering Results
Because the data is in the same format as before, the same functions can be used to
generate and draw the hierarchical clusters. This is easily defined for two vectors
with this function; add it to clusters.py:

>> reload(clusters)
>> wants,people,data=clusters.readfile('zebo.txt')
>> clust=clusters.hcluster(data,distance=clusters.tanamoto)
>> clusters.drawdendrogram(clust,wants)

This will create a new file, clusters.jpg, with the clusters of desired possessions. The
results with the downloadable dataset are shown in Figure 3-6. There’s nothing
earth-shattering here in terms of marketing information—the same people want an
Xbox, a PlayStation Portable, and a PlayStation 3—but there are some clear groups
that emerge, such as the very ambitious (boat, plane, island) and the soul-searchers
(friends, love, happiness). It’s also interesting to notice that people who want
“money” merely want a “house,” while those who want “lots of money” would pre-
fer a “nice house.”

By altering the initial search, changing the number of pages retrieved, or getting the
data from an “I own” search rather than an “I want” search, you can probably find
other interesting groups of items. You can also try transposing the matrix and group-
ing the users, which would be made more interesting by collecting their ages to see
how age divides people.

48 | Chapter 3: Discovering Groups

Figure 3-6. Clusters of things that people want

Viewing Data in Two Dimensions | 49

Viewing Data in Two Dimensions
The clustering algorithms in this chapter have been demonstrated using a stylized
visualization of data in two dimensions, with the difference between the various
items indicated by how far apart they are in the diagram. Since most real-life exam-
ples of items you would want to cluster have more than two numbers, you can’t just
take the data as-is and plot it in two dimensions. However, to understand the rela-
tionship between the various items, it would be very useful to see them charted on a
page with closer distances indicating similarity.

This section will introduce a technique called multidimensional scaling, which will be
used to find a two-dimensional representation of the dataset. The algorithm takes
the difference between every pair of items and tries to make a chart in which the dis-
tances between the items match those differences. To do this, the algorithm first
calculates the target distances between all the items. In the blog dataset, Pearson
correlation was used to compare the items. An example of this is shown in
Table 3-2.

Next, all the items (blogs, in this case) are placed randomly on the two-dimensional
chart, as shown in Figure 3-7.

The current distances between all the items are calculated using the actual distance
(the sum of the differences of the squares), as shown in Figure 3-8.

Table 3-2. Sample distance matrix

A B C D

A 0.0 0.2 0.8 0.7

B 0.2 0.0 0.9 0.8

C 0.8 0.9 0.0 0.1

D 0.7 0.8 0.1 0.0

Figure 3-7. Starting locations of the 2D projection

A

B

C

D

50 | Chapter 3: Discovering Groups

For every pair of items, the target distance is compared to the current distance and
an error term is calculated. Every item is moved a small amount closer or further in
proportion to the error between the two items. Figure 3-9 shows the forces acting on
item A. The distance between A and B in the chart is 0.5, but the target distance is
only 0.2, so A has to be moved closer to B. At the same time, A is also being pushed
away by C and D because it is too close.

Every node is moved according to the combination of all the other nodes pushing and
pulling on it. Each time this happens, the difference between the current distances
and the target distances gets a bit smaller. This procedure is repeated many times
until the total amount of error cannot be reduced by moving the items any more.

The function for doing this takes the data vector and returns one with only two col-
umns, the X and Y coordinates of the items on the two-dimensional chart. Add this
function to clusters.py:

def scaledown(data,distance=pearson,rate=0.01):
 n=len(data)

 # The real distances between every pair of items
 realdist=[[distance(data[i],data[j]) for j in range(n)]
 for i in range(0,n)]

 outersum=0.0

Figure 3-8. Distances between items

Figure 3-9. Forces acting on item A

A

B

C

D

0.4

0.5

0.4

0.7

0.7

0.6

A

B

C

D

Viewing Data in Two Dimensions | 51

 # Randomly initialize the starting points of the locations in 2D
 loc=[[random.random(),random.random()] for i in range(n)]
 fakedist=[[0.0 for j in range(n)] for i in range(n)]

 lasterror=None
 for m in range(0,1000):
 # Find projected distances
 for i in range(n):
 for j in range(n):
 fakedist[i][j]=sqrt(sum([pow(loc[i][x]-loc[j][x],2)
 for x in range(len(loc[i]))]))

 # Move points
 grad=[[0.0,0.0] for i in range(n)]

 totalerror=0
 for k in range(n):
 for j in range(n):
 if j==k: continue
 # The error is percent difference between the distances
 errorterm=(fakedist[j][k]-realdist[j][k])/realdist[j][k]

 # Each point needs to be moved away from or towards the other
 # point in proportion to how much error it has
 grad[k][0]+=((loc[k][0]-loc[j][0])/fakedist[j][k])*errorterm
 grad[k][1]+=((loc[k][1]-loc[j][1])/fakedist[j][k])*errorterm

 # Keep track of the total error
 totalerror+=abs(errorterm)
 print totalerror

 # If the answer got worse by moving the points, we are done
 if lasterror and lasterror<totalerror: break
 lasterror=totalerror

 # Move each of the points by the learning rate times the gradient
 for k in range(n):
 loc[k][0]-=rate*grad[k][0]
 loc[k][1]-=rate*grad[k][1]

 return loc

To view this, you can use the PIL again to generate an image with all the labels of all
the different items plotted at the new coordinates of that item.

def draw2d(data,labels,jpeg='mds2d.jpg'):
 img=Image.new('RGB',(2000,2000),(255,255,255))
 draw=ImageDraw.Draw(img)
 for i in range(len(data)):
 x=(data[i][0]+0.5)*1000
 y=(data[i][1]+0.5)*1000
 draw.text((x,y),labels[i],(0,0,0))
 img.save(jpeg,'JPEG')

52 | Chapter 3: Discovering Groups

To run this algorithm, call scaledown to get the two-dimensional dataset and then
call draw2d to plot it:

>> reload(clusters)
>> blognames,words,data=clusters.readfile('blogdata.txt')
>> coords=clusters.scaledown(data)
...
>> clusters.draw2d(coords,blognames,jpeg='blogs2d.jpg')

Figure 3-10 shows the outcome of the multidimensional scaling algorithm. The clus-
ters don’t break out quite as well as they do on the dendrogram, but there’s still
clearly some topical grouping, such as the search-engine-related set near the top.
These ended up very far away from the political and celebrity blogs. Had this repre-
sentation been done in three dimensions, the clusters would be even better, but
obviously this would be difficult to visualize on paper.

Figure 3-10. Portion of 2D representation of blog space

Exercises | 53

Other Things to Cluster
This chapter has looked at two datasets, but there are many other things that can be
done. The del.icio.us dataset from Chapter 2 can also be clustered to find groups of
users or bookmarks. In the same way that the blog feeds were transformed into word
vectors, any set of pages that is download can be reduced to just the words.

These ideas can be extended to many different areas to find interesting things—
message boards based on word usage, companies from Yahoo! Finance based on var-
ious statistics, or top reviewers on Amazon according to what they like. It would also
be interesting to look at a large social network like MySpace and cluster people
according to who their friends are, or possibly use other information they provide
about themselves (favorite bands, foods, etc.).

The concept of imagining items in space depending on their parameters will be a
recurring theme in this book. Using multidimensional scaling is an effective way to
take a dataset and actually view it in a way that’s easy to interpret. It’s important to
realize that some information is lost in the process of scaling, but the result should
help you understand the algorithms better.

Exercises
1. Using the del.icio.us API from Chapter 2, create a dataset of bookmarks suitable

for clustering. Run hierarchical and K-means clustering on it.

2. Modify the blog parsing code to cluster individual entries instead of entire blogs.
Do entries from the same blog cluster together? What about entries from the
same date?

3. Try using actual (Pythagorean) distance for blog clustering. How does this
change the results?

4. Find out what Manhattan distance is. Create a function for it and see how it
changes the results for the Zebo dataset.

5. Modify the K-means clustering function to return, along with the cluster results,
the total distance between all the items and their respective centroids.

6. After completing Exercise 5, create a function that runs K-means clustering over
different values of k. How does the total distance change as the number of clus-
ters increases? At what point does the improvement from having more clusters
become very small?

7. Multidimensional scaling in two dimensions is easy to print, but scaling can be
done in any number of dimensions. Try changing the code to scale in one dimen-
sion (all the points on a line). Now try making it work for three dimensions.

54

Chapter 4CHAPTER 4

Searching and Ranking 4

This chapter covers full-text search engines, which allow people to search a large set
of documents for a list of words, and which rank results according to how relevant
the documents are to those words. Algorithms for full-text searches are among the
most important collective intelligence algorithms, and many fortunes have been made
by new ideas in this field. It is widely believed that Google’s rapid rise from an aca-
demic project to the world’s most popular search engine was based largely on the
PageRank algorithm, a variation that you’ll learn about in this chapter.

Information retrieval is a huge field with a long history. This chapter will only be able
to cover a few key concepts, but we’ll go through the construction of a search engine
that will index a set of documents and leave you with ideas on how to improve things
further. Although the focus will be on algorithms for searching and ranking rather
than on the infrastructure requirements for indexing large portions of the Web, the
search engine you build should have no problem with collections of up to 100,000
pages. Throughout this chapter, you’ll learn all the necessary steps to crawl, index,
and search a set of pages, and even rank their results in many different ways.

What’s in a Search Engine?
The first step in creating a search engine is to develop a way to collect the docu-
ments. In some cases, this will involve crawling (starting with a small set of docu-
ments and following links to others) and in other cases it will begin with a fixed
collection of documents, perhaps from a corporate intranet.

After you collect the documents, they need to be indexed. This usually involves cre-
ating a big table of the documents and the locations of all the different words.
Depending on the particular application, the documents themselves do not necessar-
ily have to be stored in a database; the index simply has to store a reference (such as
a file system path or URL) to their locations.

What’s in a Search Engine? | 55

The final step is, of course, returning a ranked list of documents from a query.
Retrieving every document with a given set of words is fairly straightforward once
you have an index, but the real magic is in how the results are sorted. A huge number
of metrics can be generated, and there is no shortage of ways you can tweak them to
change the sort order. Just learning all the different metrics might make you wish
that the big search engines would let you control more of them (“Why can’t I tell
Google that my words must be close together?”). This chapter will look at several
metrics based on the content of the page, such as word frequency, and then cover
metrics based on information external to the content of the page, such as the Page-
Rank algorithm, which looks at how other pages link to the page in question.

Finally, you’ll build a neural network for ranking queries. The neural network will
learn to associate searches with results based on what links people click on after they
get a list of search results. The neural network will use this information to change the
ordering of the results to better reflect what people have clicked on in the past.

To work through the examples in this chapter, you’ll need to create a Python mod-
ule called searchengine, which has two classes: one for crawling and creating the
database, and the other for doing full-text searches by querying the database. The
examples will use SQLite, but they can easily be adapted to work with a traditional
client-server database.

To start, create a new file called searchengine.py and add the following crawler class
and method signatures, which you’ll be filling in throughout this chapter:

class crawler:
 # Initialize the crawler with the name of database
 def __init_ _(self,dbname):
 pass

 def __del_ _(self):
 pass
 def dbcommit(self):
 pass

 # Auxilliary function for getting an entry id and adding
 # it if it's not present
 def getentryid(self,table,field,value,createnew=True):
 return None

 # Index an individual page
 def addtoindex(self,url,soup):
 print 'Indexing %s' % url

 # Extract the text from an HTML page (no tags)
 def gettextonly(self,soup):
 return None

 # Separate the words by any non-whitespace character
 def separatewords(self,text):
 return None

56 | Chapter 4: Searching and Ranking

 # Return true if this url is already indexed
 def isindexed(self,url):
 return False

 # Add a link between two pages
 def addlinkref(self,urlFrom,urlTo,linkText):
 pass

 # Starting with a list of pages, do a breadth
 # first search to the given depth, indexing pages
 # as we go
 def crawl(self,pages,depth=2):
 pass

 # Create the database tables
 def createindextables(self):
 pass

A Simple Crawler
I’ll assume for now that you don’t have a big collection of HTML documents sitting
on your hard drive waiting to be indexed, so I’ll show you how to build a simple
crawler. It will be seeded with a small set of pages to index and will then follow any
links on that page to find other pages, whose links it will also follow. This process is
called crawling or spidering.

To do this, your code will have to download the pages, pass them to the indexer
(which you’ll build in the next section), and then parse the pages to find all the links
to the pages that have to be crawled next. Fortunately, there are a couple of libraries
that can help with this process.

For the examples in this chapter, I have set up a copy of several thousand files from
Wikipedia, which will remain static at http://kiwitobes.com/wiki.

You’re free to run the crawler on any set of pages you like, but you can use this site if
you want to compare your results to those in this chapter.

Using urllib2
urllib2 is a library bundled with Python that makes it easy to download pages—all
you have to do is supply the URL. You’ll use it in this section to download the pages
that will be indexed. To see it in action, start up your Python interpreter and try this:

>> import urllib2
>> c=urllib2.urlopen('http://kiwitobes.com/wiki/Programming_language.html')
>> contents=c.read()
>> print contents[0:50]
'<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Trans'

All you have to do to store a page’s HTML code into a string is create a connection
and read its contents.

http://kiwitobes.com/wiki

A Simple Crawler | 57

Crawler Code
The crawler will use the Beautiful Soup API that was introduced in Chapter 3, an
excellent library that builds a structured representation of web pages. It is very toler-
ant of web pages with broken HTML, which is useful when constructing a crawler
because you never know what pages you might come across. For more information
on downloading and installing Beautiful Soup, see Appendix A.

Using urllib2 and Beautiful Soup you can build a crawler that will take a list of URLs
to index and crawl their links to find other pages to index. First, add these import
statements to the top of searchengine.py:

import urllib2
from BeautifulSoup import *
from urlparse import urljoin

Create a list of words to ignore
ignorewords=set(['the','of','to','and','a','in','is','it'])

Now you can fill in the code for the crawler function. It won’t actually save anything
it crawls yet, but it will print the URLs as it goes so you can see that it’s working.
You need to put this at the end of the file (so it’s part of the crawler class):

 def crawl(self,pages,depth=2):
 for i in range(depth):
 newpages=set()
 for page in pages:
 try:
 c=urllib2.urlopen(page)
 except:
 print "Could not open %s" % page
 continue
 soup=BeautifulSoup(c.read())
 self.addtoindex(page,soup)

 links=soup('a')
 for link in links:
 if ('href' in dict(link.attrs)):
 url=urljoin(page,link['href'])
 if url.find("'")!=-1: continue
 url=url.split('#')[0] # remove location portion
 if url[0:4]=='http' and not self.isindexed(url):
 newpages.add(url)
 linkText=self.gettextonly(link)
 self.addlinkref(page,url,linkText)

 self.dbcommit()

 pages=newpages

This function loops through the list of pages, calling addtoindex on each one (right
now this does nothing except print the URL, but you’ll fill it in the next section). It

58 | Chapter 4: Searching and Ranking

then uses Beautiful Soup to get all the links on that page and adds their URLs to a set
called newpages. At the end of the loop, newpages becomes pages, and the process
repeats.

This function can be defined recursively so that each link calls the function again,
but doing a breadth-first search allows for easier modification of the code later,
either to keep crawling continuously or to save a list of unindexed pages for later
crawling. It also avoids the risk of overflowing the stack.

You can test this function in the Python interpreter (there’s no need to let it finish, so
press Ctrl-C when you get bored):

>> import searchengine
>> pagelist=['http://kiwitobes.com/wiki/Perl.html']
>> crawler=searchengine.crawler('')
>> crawler.crawl(pagelist)
Indexing http://kiwitobes.com/wiki/Perl.html
Could not open http://kiwitobes.com/wiki/Module_%28programming%29.html
Indexing http://kiwitobes.com/wiki/Open_Directory_Project.html
Indexing http://kiwitobes.com/wiki/Common_Gateway_Interface.html

You may notice that some pages are repeated. There is a placeholder in the code for
another function, isindexed, which will determine if a page has been indexed
recently before adding it to newpages. This will let you run this function on any list of
URLs at any time without worrying about doing unnecessary work.

Building the Index
The next step is to set up the database for the full-text index. As I mentioned earlier,
the index is a list of all the different words, along with the documents in which they
appear and their locations in the documents. In this example, you’ll be looking at the
actual text on the page and ignoring nontext elements. You’ll also be indexing
individual words with all the punctuation characters removed. The method for
separating words is not perfect, but it will suffice for building a basic search engine.

Because covering different database software or setting up a database server is out-
side the scope of this book, this chapter will show you how to store the index using
SQLite. SQLite is an embedded database that is very easy to set up and stores a whole
database in one file. SQLite uses SQL for queries, so it shouldn’t be too difficult to
convert the sample code to use a different database. The Python implementation is
called pysqlite, and you can download it from http://initd.org/tracker/pysqlite.

There is a Windows installer as well as instructions for installing it on other operating
systems. Appendix A contains more information on getting and installing pysqlite.

Once you have SQLite installed, add this line to the start of searchengine.py:

from pysqlite2 import dbapi2 as sqlite

http://initd.org/tracker/pysqlite

Building the Index | 59

You’ll also need to change the __init__, __del__, and dbcommit methods to open and
close the database:

 def __init_ _(self,dbname):
 self.con=sqlite.connect(dbname)

 def __del_ _(self):
 self.con.close()

 def dbcommit(self):
 self.con.commit()

Setting Up the Schema
Don’t run the code just yet—you still need to prepare the database. The schema for
the basic index is five tables. The first table (urllist) is the list of URLs that have
been indexed. The second table (wordlist) is the list of words, and the third table
(wordlocation) is a list of the locations of words in the documents. The remaining
two tables specify links between documents. The link table stores two URL IDs,
indicating a link from one table to another, and linkwords uses the wordid and
linkid columns to store which words are actually used in that link. The schema is
shown in Figure 4-1.

All tables in SQLite have a field called rowid by default, so there’s no need to explic-
itly specify an ID for these tables. To create a function for adding all the tables, add
this code to the end of searchengine.py so that it’s part of the crawler class:

 def createindextables(self):
 self.con.execute('create table urllist(url)')
 self.con.execute('create table wordlist(word)')
 self.con.execute('create table wordlocation(urlid,wordid,location)')
 self.con.execute('create table link(fromid integer,toid integer)')
 self.con.execute('create table linkwords(wordid,linkid)')
 self.con.execute('create index wordidx on wordlist(word)')
 self.con.execute('create index urlidx on urllist(url)')
 self.con.execute('create index wordurlidx on wordlocation(wordid)')

Figure 4-1. Schema for the search engine

link

rowid
fromid
toid

urllist

rowid
url wordlocation

urlid
wordid
location

wordlist

rowid
word

linkwords

wordid
linkid

60 | Chapter 4: Searching and Ranking

 self.con.execute('create index urltoidx on link(toid)')
 self.con.execute('create index urlfromidx on link(fromid)')
 self.dbcommit()

This function will create the schema for all the tables that you will be using, along
with some indices to speed up searching. These indices are important, since the
dataset can potentially get very large. Enter these commands in your Python session
to create a database called searchindex.db:

>> reload(searchengine)
>> crawler=searchengine.crawler('searchindex.db')
>> crawler.createindextables()

Later you’ll be adding an additional table to the schema for a scoring metric based on
counting inbound links.

Finding the Words on a Page
The files that you’re downloading from the Web are HTML and thus contain a lot of
tags, properties, and other information that doesn’t belong in the index. The first
step is to extract all the parts of the page that are text. You can do this by searching
the soup for text nodes and collecting all their content. Add this code to your
gettextonly function:

 def gettextonly(self,soup):
 v=soup.string
 if v==None:
 c=soup.contents
 resulttext=''
 for t in c:
 subtext=self.gettextonly(t)
 resulttext+=subtext+'\n'
 return resulttext
 else:
 return v.strip()

The function returns a long string containing all the text on the page. It does this by
recursively traversing down the HTML document object model, looking for text
nodes. Text that was in separate sections is separated into different paragraphs. It’s
important to preserve the order of the sections for some of the metrics you’ll be
calculating later.

Next is the separatewords function, which splits a string into a list of separate words
so that they can be added to the index. It’s not as easy as you might think to do this
perfectly, and there has been a lot of research into improving the technique. However,
for these examples it will suffice to consider anything that isn’t a letter or a number to
be a separator. You can do this using a regular expression. Replace the definition of
separatewords with the following:

Building the Index | 61

 def separatewords(self,text):
 splitter=re.compile('\\W*')
 return [s.lower() for s in splitter.split(text) if s!='']

Because this function considers anything nonalphanumeric to be a separator, it will
have no problem extracting English words, but it won’t properly handle terms like
“C++” (no trouble searching for “python,” though). You can experiment with the
regular expression to make it work better for different kinds of searches.

Another possibility is to remove suffixes from the words using a
stemming algorithm. These algorithms attempt to convert the words to
their stems. For example, the word “indexing” becomes “index” so
that people searching for the word “index” are also shown documents
containing the word “indexing.” To do this, stem the words while
crawling documents and also stem the words in the search query. A full
discussion of stemming is outside the scope of this chapter, but you
can find a Python implementation of the well-known Porter Stemmer at
http://www.tartarus.org/~martin/PorterStemmer/index.html.

Adding to the Index
You’re ready to fill in the code for the addtoindex method. This method will call the
two functions that were defined in the previous section to get a list of words on the
page. Then it will add the page and all the words to the index, and will create links
between them with their locations in the document. For this example, the location
will be the index within the list of words.

Here is the code for addtoindex:

 def addtoindex(self,url,soup):
 if self.isindexed(url): return
 print 'Indexing '+url

 # Get the individual words
 text=self.gettextonly(soup)
 words=self.separatewords(text)

 # Get the URL id
 urlid=self.getentryid('urllist','url',url)

 # Link each word to this url
 for i in range(len(words)):
 word=words[i]
 if word in ignorewords: continue
 wordid=self.getentryid('wordlist','word',word)
 self.con.execute("insert into wordlocation(urlid,wordid,location) \
 values (%d,%d,%d)" % (urlid,wordid,i))

You’ll also need this to update the helper function getentryid. All this does is return
the ID of an entry. If the entry doesn’t exist, it is created and the ID is returned:

http://www.tartarus.org/~martin/PorterStemmer/index.html

62 | Chapter 4: Searching and Ranking

 def getentryid(self,table,field,value,createnew=True):
 cur=self.con.execute(
 "select rowid from %s where %s='%s'" % (table,field,value))
 res=cur.fetchone()
 if res==None:
 cur=self.con.execute(
 "insert into %s (%s) values ('%s')" % (table,field,value))
 return cur.lastrowid
 else:
 return res[0]

Finally, you’ll need to fill in the code for isindexed, which determines whether the
page is already in the database, and if so, whether there are any words associated
with it:

 def isindexed(self,url):
 u=self.con.execute \
 ("select rowid from urllist where url='%s'" % url).fetchone()
 if u!=None:
 # Check if it has actually been crawled
 v=self.con.execute(
 'select * from wordlocation where urlid=%d' % u[0]).fetchone()
 if v!=None: return True
 return False

Now you can rerun the crawler and have it actually index the pages as it goes. You
can do this in your interactive session:

>> reload(searchengine)
>> crawler=searchengine.crawler('searchindex.db')
>> pages= \
.. ['http://kiwitobes.com/wiki/Categorical_list_of_programming_languages.html']
>> crawler.crawl(pages)

The crawler will probably take a long time to run. Instead of waiting for it to finish, I
recommend that you download a preloaded copy of searchindex.db from http://
kiwitobes.com/db/searchindex.db and save it in the directory with your Python code.

If you’d like to make sure that the crawl worked properly, you can try checking the
entries for a word by querying the database:

>> [row for row in crawler.con.execute(
.. 'select rowid from wordlocation where wordid=1')]
[(1,), (46,), (330,), (232,), (406,), (271,), (192,),...

The list that is returned is the list of all the URL IDs containing “word,” which
means that you’ve successfully run a full-text search. This is a great start, but it will
only work with one word at a time, and will just return the documents in the order in
which they were loaded. The next section will show you how to expand this func-
tionality by doing these searches with multiple words in the query.

http://kiwitobes.com/db/searchindex.db
http://kiwitobes.com/db/searchindex.db

Querying | 63

Querying
You now have a working crawler and a big collection of documents indexed, and
you’re ready to set up the search part of the search engine. First, create a new class in
searchengine.py that you’ll use for searching:

class searcher:
 def __init_ _(self,dbname):
 self.con=sqlite.connect(dbname)

 def __del_ _(self):
 self.con.close()

The wordlocation table gives an easy way to link words to tables, so it is quite easy to
see which pages contain a single word. However, a search engine is pretty limited
unless it allows multiple-word searches. To do this, you’ll need a query function that
takes a query string, splits it into separate words, and constructs a SQL query to find
only those URLs containing all the different words. Add this function to the
definition for the searcher class:

 def getmatchrows(self,q):
 # Strings to build the query
 fieldlist='w0.urlid'
 tablelist=''
 clauselist=''
 wordids=[]

 # Split the words by spaces
 words=q.split(' ')
 tablenumber=0

 for word in words:
 # Get the word ID
 wordrow=self.con.execute(
 "select rowid from wordlist where word='%s'" % word).fetchone()
 if wordrow!=None:
 wordid=wordrow[0]
 wordids.append(wordid)
 if tablenumber>0:
 tablelist+=','
 clauselist+=' and '
 clauselist+='w%d.urlid=w%d.urlid and ' % (tablenumber-1,tablenumber)
 fieldlist+=',w%d.location' % tablenumber
 tablelist+='wordlocation w%d' % tablenumber
 clauselist+='w%d.wordid=%d' % (tablenumber,wordid)
 tablenumber+=1

 # Create the query from the separate parts
 fullquery='select %s from %s where %s' % (fieldlist,tablelist,clauselist)
 cur=self.con.execute(fullquery)
 rows=[row for row in cur]

 return rows,wordids

64 | Chapter 4: Searching and Ranking

This function looks a bit complicated, but it’s just creating a reference to the
wordlocation table for each word in the list and joining them all on their URL IDs
(Figure 4-2).

So a query for two words with the IDs 10 and 17 becomes:

select w0.urlid,w0.location,w1.location
from wordlocation w0,wordlocation w1
where w0.urlid=w1.urlid
and w0.wordid=10
and w1.wordid=17

Try calling this function with your first multiple-word search:

>> reload(searchengine)
>> e=searchengine.searcher('searchindex.db')
>> e.getmatchrows('functional programming')
([(1, 327, 23), (1, 327, 162), (1, 327, 243), (1, 327, 261),
 (1, 327, 269), (1, 327, 436), (1, 327, 953),..

You’ll notice that each URL ID is returned many times with different combinations
of word locations. The next few sections will cover some ways to rank the results.
Content-based ranking uses several possible metrics with just the content of the page
to determine the relevance of the query. Inbound-link ranking uses the link structure
of the site to determine what’s important. We will also explore a way to look at what
people actually click on when they search in order to improve the rankings over time.

Content-Based Ranking
So far you’ve managed to retrieve pages that match the queries, but the order in
which they are returned is simply the order in which they were crawled. In a large set
of pages, you would be stuck sifting through a lot of irrelevant content for any men-
tion of each of the query terms in order to find the pages that are really related to
your search. To address this issue, you need ways to give pages a score for a given
query, as well as the ability to return them with the highest scoring results first.

This section will look at several ways to calculate a score based only on the query
and the content of the page. These scoring metrics include:

Word frequency
The number of times the words in the query appear in the document can help
determine how relevant the document is.

Figure 4-2. Table joins for getmatchrows

wordlocation w0

wordid = word0id

urlid

wordlocation w1

wordid = word1id

urlid

wordlocation w2

wordid = word2id

urlid

Content-Based Ranking | 65

Document location
The main subject of a document will probably appear near the beginning of the
document.

Word distance
If there are multiple words in the query, they should appear close together in the
document.

The earliest search engines often worked with only these types of metrics and were
able to give usable results. Later sections will cover ways to improve results with
information external to the page, such as the number and quality of incoming links.

First, you’ll need a new method that will take a query, get the rows, put them in a
dictionary, and display them in a formatted list. Add these functions to your
searcher class:

 def getscoredlist(self,rows,wordids):
 totalscores=dict([(row[0],0) for row in rows])

 # This is where you'll later put the scoring functions
 weights=[]

 for (weight,scores) in weights:
 for url in totalscores:
 totalscores[url]+=weight*scores[url]

 return totalscores

 def geturlname(self,id):
 return self.con.execute(
 "select url from urllist where rowid=%d" % id).fetchone()[0]

 def query(self,q):
 rows,wordids=self.getmatchrows(q)
 scores=self.getscoredlist(rows,wordids)
 rankedscores=sorted([(score,url) for (url,score) in scores.items()],reverse=1)
 for (score,urlid) in rankedscores[0:10]:
 print '%f\t%s' % (score,self.geturlname(urlid))

Right now the query method doesn’t apply any scoring to the results, but it does
display the URLs along with a placeholder for their scores:

>> reload(searchengine)
>> e=searchengine.searcher('searchindex.db')
>> e.query('functional programming')
0.000000 http://kiwitobes.com/wiki/XSLT.html
0.000000 http://kiwitobes.com/wiki/XQuery.html
0.000000 http://kiwitobes.com/wiki/Unified_Modeling_Language.html
...

The important function here is getscoredlist, which you’ll be filling in throughout
this section. As you add scoring functions, you can add calls to the weights list (the
line in bold) and start to get some real scores.

66 | Chapter 4: Searching and Ranking

Normalization Function
All the scoring methods introduced here return dictionaries of the URL IDs and a
numerical score. To complicate things, sometimes a larger score is better and
sometimes a smaller score is better. In order to compare the results from different
methods, you need a way to normalize them; that is, to get them all within the same
range and direction.

The normalization function will take a dictionary of IDs and scores and return a new
dictionary with the same IDs, but with scores between 0 and 1. Each score is scaled
according to how close it is to the best result, which will always have a score of 1. All
you have to do is pass the function a list of scores and indicate whether a lower or
higher score is better:

 def normalizescores(self,scores,smallIsBetter=0):
 vsmall=0.00001 # Avoid division by zero errors
 if smallIsBetter:
 minscore=min(scores.values())
 return dict([(u,float(minscore)/max(vsmall,l)) for (u,l) \
 in scores.items()])
 else:
 maxscore=max(scores.values())
 if maxscore==0: maxscore=vsmall
 return dict([(u,float(c)/maxscore) for (u,c) in scores.items()])

Each of the scoring functions calls this function to normalize its results and return a
value between 0 and 1.

Word Frequency
The word frequency metric scores a page based on how many times the words in the
query appear on that page. If I search for “python,” I’d rather get a page about
Python (or pythons) with many mentions of the word, and not a page about a
musician who happens to mention near the end that he has a pet python.

The word frequency function looks like this. You can add it to your searcher class:

 def frequencyscore(self,rows):
 counts=dict([(row[0],0) for row in rows])
 for row in rows: counts[row[0]]+=1
 return self.normalizescores(counts)

This function creates a dictionary with an entry for every unique URL ID in rows,
and counts how many times each item appears. It then normalizes the scores (bigger
is better, in this case) and returns the result.

To activate frequency scoring in your results, change the weights line in
getscoredlist to read:

 weights=[(1.0,self.frequencyscore(rows))]

Now you can try another search and see how well this works as a scoring metric:

Content-Based Ranking | 67

>> reload(searchengine)
>> e=searchengine.searcher('searchindex.db')
>> e.query('functional programming')
1.000000 http://kiwitobes.com/wiki/Functional_programming.html
0.262476 http://kiwitobes.com/wiki/Categorical_list_of_programming_languages.html
0.062310 http://kiwitobes.com/wiki/Programming_language.html
0.043976 http://kiwitobes.com/wiki/Lisp_programming_language.html
0.036394 http://kiwitobes.com/wiki/Programming_paradigm.html
...

This returns the page on “Functional programming” in first place, followed by sev-
eral other relevant pages. Notice that “Functional programming” scored four times
better than the result directly below it. Most search engines don’t report scores to
end users, but these scores can be very useful for some applications. For instance,
you might want to take the user directly to the top result if it exceeds a certain
threshold, or display results in a font size proportional to the relevance of the result.

Document Location
Another simple metric for determining a page’s relevance to a query is the search
term’s location in the page. Usually, if a page is relevant to the search term, it will
appear closer to the top of the page, perhaps even in the title. To take advantage of
this, the search engine can score results higher if the query term appears early in the
document. Fortunately for us, when the pages were indexed earlier, the locations of
the words were recorded, and the title of the page is first in the list.

Add this method to searcher:

 def locationscore(self,rows):
 locations=dict([(row[0],1000000) for row in rows])
 for row in rows:
 loc=sum(row[1:])
 if loc<locations[row[0]]: locations[row[0]]=loc

 return self.normalizescores(locations,smallIsBetter=1)

Remember that the first item in each row element is the URL ID, followed by the
locations of all the different search terms. Each ID can appear multiple times, once
for every combination of locations. For each row, the method sums the locations of
all the words and determines how this result compares to the best result for that URL
so far. It then passes the final results to the normalize function. Note that
smallIsBetter means that the URL with the lowest location sum gets a score of 1.0.

To see what the results look like using only the location score, change the weights
line to this:

 weights=[(1.0,self.locationscore(rows))]

Now try the query again in your interpreter:

>> reload(searchengine)
>> e=searchengine.searcher('searchindex.db')
>> e.query('functional programming')

68 | Chapter 4: Searching and Ranking

You’ll notice that “Functional programming” is still the winner, but the other top
results are now examples of functional programming languages. The previous search
returned results in which the words were mentioned several times, but these tended to
be discussions about programming languages in general. With this search, however,
the presence of the words in the opening sentence (e.g., “Haskell is a standardized
pure functional programming language”) gave them a much higher score.

It’s important to realize that neither one of the metrics shown so far is better in every
case. Both of these lists are valid depending on the searcher’s intent, and different
combinations of weights are required to give the best results for a particular set of
documents and applications. You can try experimenting with different weights for
the two metrics by changing your weights line to something like this:

 weights=[(1.0,self.frequencyscore(rows)),
 (1.5,self.locationscore(rows))]

Experiment with different weights and queries and see how your results are affected.

Location is a more difficult metric to cheat than word frequency, since page authors
can only put one word first in a document and repeating it doesn’t make any differ-
ence to the results.

Word Distance
When a query contains multiple words, it is often useful to seek results in which the
words in the query are close to each other in the page. Most of the time, when peo-
ple make multiple-word queries, they are interested in a page that conceptually
relates the different words. This is a little looser than the quoted-phrase searches
supported by most search engines where the words must appear in the correct order
with no additional words—in this case, the metric will tolerate a different order and
additional words between the query words.

The distancescore function looks pretty similar to locationscore:

 def distancescore(self,rows):
 # If there's only one word, everyone wins!
 if len(rows[0])<=2: return dict([(row[0],1.0) for row in rows])

 # Initialize the dictionary with large values
 mindistance=dict([(row[0],1000000) for row in rows])

 for row in rows:
 dist=sum([abs(row[i]-row[i-1]) for i in range(2,len(row))])
 if dist<mindistance[row[0]]: mindistance[row[0]]=dist
 return self.normalizescores(mindistance,smallIsBetter=1)

The main difference here is that when the function loops through the locations (on
the line shown in bold), it takes the difference between each location and the previ-
ous location. Since every combination of distances is returned by the query, it is
guaranteed to find the smallest total distance.

Using Inbound Links | 69

You can try the word distance metric by itself if you like, but it really works better
when combined with other metrics. Try adding distancescore to the weights list and
changing the numbers to see how it affects the results of different queries.

Using Inbound Links
The scoring metrics discussed so far have all been based on the content of the page.
Although many search engines still work this way, the results can often be improved
by considering information that others have provided about the page, specifically,
who has linked to the page and what they have said about it. This is particularly use-
ful when indexing pages of dubious value or pages that might have been created by
spammers, as these are less likely to be linked than pages with real content.

The crawler that you built at the beginning of the chapter already captures all the
important information about the links, so there’s no need to change it. The links
table has the URL IDs for the source and target of every link that it has encountered,
and the linkwords table connects the words with the links.

Simple Count
The easiest thing to do with inbound links is to count them on each page and use the
total number of links as a metric for the page. Academic papers are often rated in this
way, with their importance tied to the number of other papers that reference them.
The scoring function below creates a dictionary of counts by querying the link table
for every unique URL ID in rows, and then it returns the normalized scores:

 def inboundlinkscore(self,rows):
 uniqueurls=set([row[0] for row in rows])
 inboundcount=dict([(u,self.con.execute(\
 'select count(*) from link where toid=%d' % u).fetchone()[0]) \
 for u in uniqueurls])
 return self.normalizescores(inboundcount)

Obviously, using this metric by itself will simply return all the pages containing the
search terms, ranked solely on how many inbound links they have. In the dataset,
“Programming language” has many more inbound links than “Python,” but you’d
rather see “Python” first in the results if that’s what you searched for. To combine
relevance with ranking, you need to use the inbound-links metric in combination
with one of the metrics shown earlier.

This algorithm also weights every inbound link equally, which, while nice and egali-
tarian, is open to manipulation because someone can easily set up several sites
pointing to a page whose score they want to increase. It’s also possible that people
are more interested in results that have attracted the attention of very popular sites.
Next, you’ll see how to make links from popular pages worth more in calculating
rankings.

70 | Chapter 4: Searching and Ranking

The PageRank Algorithm
The PageRank algorithm was invented by the founders of Google, and variations on
the idea are now used by all the large search engines. This algorithm assigns every
page a score that indicates how important that page is. The importance of the page is
calculated from the importance of all the other pages that link to it and from the
number of links each of the other pages has.

In theory, PageRank (named after one of its inventors, Larry Page) cal-
culates the probability that someone randomly clicking on links will
arrive at a certain page. The more inbound links the page has from
other popular pages, the more likely it is that someone will end up
there purely by chance. Of course, if the user keeps clicking forever,
they’ll eventually reach every page, but most people stop surfing after
a while. To capture this, PageRank also uses a damping factor of 0.85,
indicating that there is an 85 percent chance that a user will continue
clicking on links at each page.

Figure 4-3 shows an example set of pages and links.

Pages B, C, and D all link to A, and they already have their PageRanks calculated. B
also links to three other pages and C links to four other pages. D only links to A. To
get A’s PageRank, take the PageRank (PR) of each of the pages that links to A divided
by the total number of links on that page, then multiply this by a damping factor of
0.85, and add a minimum value of 0.15. The calculation for PR(A) is:

PR(A) = 0.15 + 0.85 * (PR(B)/links(B) + PR(C)/links(C) + PR(D)/links(D))
 = 0.15 + 0.85 * (0.5/4 + 0.7/5 + 0.2/1)
 = 0.15 + 0.85 * (0.125 + 0.14 + 0.2)
 = 0.15 + 0.85 * 0.465
 = 0.54525

Figure 4-3. Calculating the PageRank of A

B

.5

A

?

C

.7

D

.2

Using Inbound Links | 71

You’ll notice that D actually contributes more to A’s PageRank than either B or C
does, even though it has a lower PageRank of its own, because it links exclusively to
A and is able to contribute its entire score.

Pretty easy, right? Well, there’s a small catch—in this example, all the pages linking
to A already had PageRanks. You can’t calculate a page’s score until you know the
scores of all the pages that link there, and you can’t calculate their scores without
doing the same for all the pages that link to them. How is it possible to calculate
PageRanks for a whole set of pages that don’t already have PageRanks?

The solution is to set all the PageRanks to an initial arbitrary value (the code will use
1.0, but the actual value doesn’t make any difference), and repeat the calculation
over several iterations. After each iteration, the PageRank for each page gets closer to
its true PageRank value. The number of iterations needed varies with the number of
pages, but in the small set you’re working with, 20 should be sufficient.

Because the PageRank is time-consuming to calculate and stays the same no matter
what the query is, you’ll be creating a function that precomputes the PageRank for
every URL and stores it in a table. This function will recalculate all the PageRanks
every time it is run. Add this function to the crawler class:

 def calculatepagerank(self,iterations=20):
 # clear out the current PageRank tables
 self.con.execute('drop table if exists pagerank')
 self.con.execute('create table pagerank(urlid primary key,score)')

 # initialize every url with a PageRank of 1
 self.con.execute('insert into pagerank select rowid, 1.0 from urllist')
 self.dbcommit()

 for i in range(iterations):
 print "Iteration %d" % (i)
 for (urlid,) in self.con.execute('select rowid from urllist'):
 pr=0.15

 # Loop through all the pages that link to this one
 for (linker,) in self.con.execute(
 'select distinct fromid from link where toid=%d' % urlid):
 # Get the PageRank of the linker
 linkingpr=self.con.execute(
 'select score from pagerank where urlid=%d' % linker).fetchone()[0]

 # Get the total number of links from the linker
 linkingcount=self.con.execute(
 'select count(*) from link where fromid=%d' % linker).fetchone()[0]
 pr+=0.85*(linkingpr/linkingcount)
 self.con.execute(
 'update pagerank set score=%f where urlid=%d' % (pr,urlid))
 self.dbcommit()

72 | Chapter 4: Searching and Ranking

This function initially sets the PageRank of every page to 1.0. It then loops over every
URL and gets the PageRank and the total number of links for every inbound link.
The line in bold shows the formula being applied for each of the inbound links.

Running this function will take a few minutes, but you only need to do it when you
update the index.

>> reload(searchengine)
>> crawler=searchengine.crawler('searchindex.db')
>> crawler.calculatepagerank()
Iteration 0
Iteration 1
...

If you’re curious about which pages from the example dataset have the highest Page-
Ranks, you can query the database directly:

>> cur=crawler.con.execute('select * from pagerank order by score desc')
>> for i in range(3): print cur.next()
(438, 2.5285160000000002)
(2, 1.1614640000000001)
(543, 1.064252)
>> e.geturlname(438)
u'http://kiwitobes.com/wiki/Main_Page.html'

“Main Page” has the highest PageRank, which is not surprising since every other
page in Wikipedia links to it. Now that you have a table of PageRank scores, using
them is just a matter of creating a function to retrieve them from the database and to
normalize the scores. Add this method to the searcher class:

 def pagerankscore(self,rows):
 pageranks=dict([(row[0],self.con.execute('select score from pagerank where
urlid=%d' % row[0]).fetchone()[0]) for row in rows])
 maxrank=max(pageranks.values())
 normalizedscores=dict([(u,float(l)/maxrank) for (u,l) in pageranks.items()])
 return normalizedscores

Once again, you should modify the weights list to include PageRank. For example,
try:

 weights=[(1.0,self.locationscore(rows)),
 (1.0,self.frequencyscore(rows)),
 (1.0,self.pagerankscore(rows))]

The results for your searches will take into account content and ranking scores. The
results for “Functional programming” now look even better:

2.318146 http://kiwitobes.com/wiki/Functional_programming.html
1.074506 http://kiwitobes.com/wiki/Programming_language.html
0.517633 http://kiwitobes.com/wiki/Categorical_list_of_programming_languages.html
0.439568 http://kiwitobes.com/wiki/Programming_paradigm.html
0.426817 http://kiwitobes.com/wiki/Lisp_programming_language.html

http://kiwitobes.com/wiki/Lisp_programming_language.html

Using Inbound Links | 73

The value of the PageRank score is a little harder to see with this closed, tightly con-
trolled set of documents, which likely contains fewer useless pages or pages intended
solely to get attention than you’d find on the Web. However, even in this case, it’s
clear that PageRank is a useful metric for returning higher-level, more general pages.

Using the Link Text
Another very powerful way to rank searches is to use the text of the links to a page to
decide how relevant the page is. Many times you will get better information from what
the links to a page say about it than from the linking page itself, as site developers tend
to include a short description of whatever it is they are linking to.

The method for scoring the pages by their link text takes an additional argument,
which is the list of word IDs produced when you perform a query. You can add this
method to searcher:

 def linktextscore(self,rows,wordids):
 linkscores=dict([(row[0],0) for row in rows])
 for wordid in wordids:
 cur=self.con.execute('select link.fromid,link.toid from linkwords,link where
wordid=%d and linkwords.linkid=link.rowid' % wordid)
 for (fromid,toid) in cur:
 if toid in linkscores:
 pr=self.con.execute('select score from pagerank where urlid=%d' % fromid).
fetchone()[0]
 linkscores[toid]+=pr
 maxscore=max(linkscores.values())
 normalizedscores=dict([(u,float(l)/maxscore) for (u,l) in linkscores.items()])
 return normalizedscores

This code loops through all the words in wordids looking for links containing these
words. If the target of the link matches one of the search results, then the PageRank
of the source of the link is added to the destination page’s final score. A page with a
lot of links from important pages that contain the query terms will get a very high
score. Many of the pages in the results will have no links with the correct text, and
will get a score of 0.

To enable link-text ranking, just add the following anywhere in your weights list:

(1.0,self.linktextscore(rows,wordids))

There is no standard set of weightings for these metrics that will work in all cases.
Even the major search sites frequently change their methods of ranking results. The
metrics you’ll use and the weights you’ll give them are highly dependent on the
application you’re trying to build.

http://kiwitobes.com/wiki/Lisp_programming_language.html

74 | Chapter 4: Searching and Ranking

Learning from Clicks
One of the major advantages of online applications is that they receive constant feed-
back in the form of user behavior. In the case of a search engine, each user will
immediately provide information about how much he likes the results for a given
search by clicking on one result and choosing not to click on the others. This section
will look at a way to record when a user clicks on a result after a query, and how that
record can be used to improve the rankings of the results.

To do this, you’re going to build an artificial neural network that you’ll train by
giving it the words in the query, the search results presented to the user, and what
the user decided to click. Once the network has been trained with many different
queries, you can use it to change the ordering of the search results to better reflect
what users actually clicked on in the past.

Design of a Click-Tracking Network
While there are many different kinds of neural networks, they all consist of a set of
nodes (the neurons) and connections between them. The network you’ll learn how to
build is called a multilayer perceptron (MLP) network. This type of network consists
of multiple layers of neurons, the first of which takes the input—in this case, the
words entered by the user. The last layer gives the output, which in this example is a
list of weightings for the different URLs that were returned.

There can be multiple middle layers, but the network in this example will just use a
single one. This is called the hidden layer because the outside world never interacts
with it directly, and it responds to combinations of inputs. In this case, a combina-
tion of inputs is a set of words, so you could also think of this as the query layer.
Figure 4-4 shows the structure of the network. All the nodes in the input layer are
connected to all the nodes in the hidden layer, and all the nodes in the hidden layer
are connected to all the nodes in the output layer.

Figure 4-4. Design of a click-tracking neural network

word1 hidden1 url1

word2 hidden2 url2

word3 hidden3 url3

Learning from Clicks | 75

To ask the neural network to get the best results for a query, the input nodes for the
words in that query have their values set to 1. The outputs of those nodes are turned
on and they attempt to activate the hidden layer. In turn, the nodes in the hidden
layer that get a strong enough input will turn on their outputs and try to activate
nodes in the output layer.

The nodes in the output layer then become active in various degrees, and their activity
level can be used to determine how strongly a URL is associated with the words in the
original query. Figure 4-5 shows a query for “world bank.” The solid lines indicate
strong connections, and the bold text indicates that a node has become very active.

This, of course, depends on the connection strengths being correct. This is achieved
by training the network every time someone performs a search and chooses one of
the links out of the results. In the network pictured in Figure 4-5, a number of peo-
ple had previously clicked the World Bank result after a search for “world bank,”
and this strengthened the associations between the words and the URL. This section
will show you how the network is trained with an algorithm called backpropagation.

You might be wondering why you would need a sophisticated technique like a neural
network instead of just remembering the query and counting how many times each
result was clicked. The power of the neural network you’re going to build is that it
can make reasonable guesses about results for queries it has never seen before, based
on their similarity to other queries. Also, neural networks are useful for a wide variety
of applications and will be a great addition to your collective intelligence toolbox.

Setting Up the Database
Since the neural network will have to be trained over time as users perform queries,
you’ll need to store a representation of the network in the database. The database
already has a table of words and URLs, so all that’s needed is a table for the hidden
layer (which will be called hiddennode) and two tables of connections (one from the
word layer to the hidden layer, and one that links the hidden layer to the output
layer).

Figure 4-5. Neural network response to “world bank”

world hidden1 World Bank

river hidden2 River

bank hidden3 Earth

76 | Chapter 4: Searching and Ranking

Create a new file called nn.py, and create a new class in it called searchnet:

from math import tanh
from pysqlite2 import dbapi2 as sqlite

class searchnet:
 def __init_ _(self,dbname):
 self.con=sqlite.connect(dbname)

 def __del_ _(self):
 self.con.close()

 def maketables(self):
 self.con.execute('create table hiddennode(create_key)')
 self.con.execute('create table wordhidden(fromid,toid,strength)')
 self.con.execute('create table hiddenurl(fromid,toid,strength)')
 self.con.commit()

The tables currently have no indices, but you can add them later if speed is an issue.

You’ll need to create a couple of methods to access the database. The first method,
called getstrength, determines the current strength of a connection. Because new
connections are only created when necessary, this method has to return a default
value if there are no connections. For links from words to the hidden layer, the
default value will be –0.2 so that, by default, extra words will have a slightly negative
effect on the activation level of a hidden node. For links from the hidden layer to
URLs, the method will return a default value of 0.

 def getstrength(self,fromid,toid,layer):
 if layer==0: table='wordhidden'
 else: table='hiddenurl'
 res=self.con.execute('select strength from %s where fromid=%d and toid=%d' %
(table,fromid,toid)).fetchone()
 if res==None:
 if layer==0: return -0.2
 if layer==1: return 0
 return res[0]

You’ll also need a setstrength method to determine if a connection already exists,
and to update or create the connection with the new strength. This will be used by
the code that trains the network:

 def setstrength(self,fromid,toid,layer,strength):
 if layer==0: table='wordhidden'
 else: table='hiddenurl'
 res=self.con.execute('select rowid from %s where fromid=%d and toid=%d' %
(table,fromid,toid)).fetchone()
 if res==None:
 self.con.execute('insert into %s (fromid,toid,strength) values (%d,%d,%f)' %
(table,fromid,toid,strength))
 else:
 rowid=res[0]
 self.con.execute('update %s set strength=%f where rowid=%d' %
(table,strength,rowid))

Learning from Clicks | 77

Most of the time, when building a neural network, all the nodes in the network are
created in advance. You could create a huge network up front with thousands of
nodes in the hidden layer and all the connections already in place, but in this case, it
will be faster and simpler to create new hidden nodes as they are needed.

This function will create a new node in the hidden layer every time it is passed a
combination of words that it has never seen together before. The function then
creates default-weighted links between the words and the hidden node, and between
the query node and the URL results returned by this query.

 def generatehiddennode(self,wordids,urls):
 if len(wordids)>3: return None
 # Check if we already created a node for this set of words
 createkey='_'.join(sorted([str(wi) for wi in wordids]))
 res=self.con.execute(
 "select rowid from hiddennode where create_key='%s'" % createkey).fetchone()

 # If not, create it
 if res==None:
 cur=self.con.execute(
 "insert into hiddennode (create_key) values ('%s')" % createkey)
 hiddenid=cur.lastrowid
 # Put in some default weights
 for wordid in wordids:
 self.setstrength(wordid,hiddenid,0,1.0/len(wordids))
 for urlid in urls:
 self.setstrength(hiddenid,urlid,1,0.1)
 self.con.commit()

In the Python interpreter, try creating a database and generating a hidden node with
some example word and URL IDs:

>> import nn
>> mynet=nn.searchnet('nn.db')
>> mynet.maketables()
>> wWorld,wRiver,wBank =101,102,103
>> uWorldBank,uRiver,uEarth =201,202,203
>> mynet.generatehiddennode([wWorld,wBank],[uWorldBank,uRiver,uEarth])
>> for c in mynet.con.execute('select * from wordhidden'): print c
(101, 1, 0.5)
(103, 1, 0.5)
>> for c in mynet.con.execute('select * from hiddenurl'): print c
(1, 201, 0.1)
(1, 202, 0.1)
...

A new node has been created in the hidden layer, and links to the new node have
been created with default values. The function will initially respond whenever
“world” and “bank” are entered together, but these connections may weaken over
time.

78 | Chapter 4: Searching and Ranking

Feeding Forward
You’re now ready to make functions that will take the words as inputs, activate the
links in the network, and give a set of outputs for the URLs.

First, choose a function that indicates how much each node should respond to its
input. The neural network described here will use the hyperbolic tangent (tanh) func-
tion, shown in Figure 4-6.

The x-axis is the total input to the node. As the input approaches 0, the output starts
to climb quickly. With an input of 2, the output is almost at 1 and doesn’t get much
higher. This is a type of sigmoid function, all types of which have this S shape. Neu-
ral networks almost always use sigmoid functions to calculate the outputs of the
neurons.

Before running the feedforward algorithm, the class will have to query the nodes and
connections in the database, and build, in memory, the portion of the network that
is relevant to a specific query. The first step is to create a function that finds all the
nodes from the hidden layer that are relevant to a specific query—in this case, they
must be connected to one of the words in the query or to one of the URLs in the
results. Since the other nodes will not be used either to determine an outcome or to
train the network, it’s not necessary to include them:

 def getallhiddenids(self,wordids,urlids):
 l1={}
 for wordid in wordids:
 cur=self.con.execute(
 'select toid from wordhidden where fromid=%d' % wordid)
 for row in cur: l1[row[0]]=1
 for urlid in urlids:
 cur=self.con.execute(
 'select fromid from hiddenurl where toid=%d' % urlid)
 for row in cur: l1[row[0]]=1
 return l1.keys()

Figure 4-6. The tanh function

tanh

1

0.5

- 0.5

- 1

42- 2- 4

Learning from Clicks | 79

You will also need a method for constructing the relevant network with all the cur-
rent weights from the database. This function sets a lot of instance variables for this
class—the list of words, query nodes and URLs, the output level of every node, and
the weights of every link between nodes. The weights are taken from the database
using the functions that were defined earlier.

 def setupnetwork(self,wordids,urlids):
 # value lists
 self.wordids=wordids
 self.hiddenids=self.getallhiddenids(wordids,urlids)
 self.urlids=urlids

 # node outputs
 self.ai = [1.0]*len(self.wordids)
 self.ah = [1.0]*len(self.hiddenids)
 self.ao = [1.0]*len(self.urlids)

 # create weights matrix
 self.wi = [[self.getstrength(wordid,hiddenid,0)
 for hiddenid in self.hiddenids]
 for wordid in self.wordids]
 self.wo = [[self.getstrength(hiddenid,urlid,1)
 for urlid in self.urlids]
 for hiddenid in self.hiddenids]

You’re finally ready to create the feedforward algorithm. This takes a list of inputs,
pushes them through the network, and returns the output of all the nodes in the out-
put layer. In this case, since you’ve only constructed a network with words in the
query, the output from all the input nodes will always be 1:

 def feedforward(self):
 # the only inputs are the query words
 for i in range(len(self.wordids)):
 self.ai[i] = 1.0

 # hidden activations
 for j in range(len(self.hiddenids)):
 sum = 0.0
 for i in range(len(self.wordids)):
 sum = sum + self.ai[i] * self.wi[i][j]
 self.ah[j] = tanh(sum)

 # output activations
 for k in range(len(self.urlids)):
 sum = 0.0
 for j in range(len(self.hiddenids)):
 sum = sum + self.ah[j] * self.wo[j][k]
 self.ao[k] = tanh(sum)

 return self.ao[:]

80 | Chapter 4: Searching and Ranking

The feedforward algorithm works by looping over all the nodes in the hidden layer
and adding together all the outputs from the input layer multiplied by the strengths
of the links. The output of each node is the tanh function of the sum of all the inputs,
which is passed on to the output layer. The output layer does the same thing, multi-
plying the outputs of the previous layer by their strengths, and applies the tanh
function to produce the final output. It is easy to extend the network to have more
layers by continually using the output of one layer as the input to the next layer.

Now you can write a short function that will set up the network and use feedforward
to get the outputs for a set of words and URLs:

 def getresult(self,wordids,urlids):
 self.setupnetwork(wordids,urlids)
 return self.feedforward()

You can use Python to try this in the network:

>> reload(nn)
>> mynet=nn.searchnet('nn.db')
>> mynet.getresult([wWorld,wBank],[uWorldBank,uRiver,uEarth])
[0.76,0.76,0.76]

The numbers in the returned list correspond to the relevance of the input URLs. Not
surprisingly, because it hasn’t yet had any training, the neural network gives the
same answer for every URL.

Training with Backpropagation
Here’s where things get interesting. The network will take inputs and give outputs,
but because it hasn’t been taught what a good result looks like, the results are pretty
useless. You’re now going to train the network by showing it some actual examples
of what people searched for, which results were returned, and what the users decided
to click on.

For this to work, you need an algorithm that alters the weights of the links between
the nodes to better reflect what the network is being told is the right answer. The
weights have to be adjusted slowly because you can’t assume that the each user will
click on an answer that’s appropriate for everyone. The algorithm you’ll use is called
backpropagation because it moves backward through the network adjusting the
weights.

When training a network, you always know the desired output of each node in the
output layer. In this case, it should be pushed toward 1 if the user clicked on that
result, and pushed toward 0 if he did not. The only way to change the output of a
node is to change the total input to that node.

To determine how much the total input should be changed, the training algorithm
has to know the slope of the tanh function at its current level of output. In the
middle of the function, when the output is 0.0, the slope is very steep, so changing

Learning from Clicks | 81

the input by only a small amount gives a big change. As the outputs get closer to –1
or 1, changing the input has a smaller effect on the output. The slope of the function
for any output value is specified by this function, which you can add to the start of
nn.py:

def dtanh(y):
 return 1.0-y*y

Before running the backpropagation method, it’s necessary to run feedforward so
that the current output of every node will be stored in the instance variables. The
backpropagation algorithm then performs the following steps.

For each node in the output layer:

1. Calculate the difference between the node’s current output and what it should
be.

2. Use the dtanh function to determine how much the node’s total input has to
change.

3. Change the strength of every incoming link in proportion to the link’s current
strength and the learning rate.

For each node in the hidden layer:

1. Change the output of the node by the sum of the strength of each output link
multiplied by how much its target node has to change.

2. Use the dtanh function to determine how much the node’s total input has to
change.

3. Change the strength of every input link in proportion to the link’s current
strength and the learning rate.

The implementation of this algorithm actually calculates all the errors in advance
and then adjusts the weights, because all the calculations rely on knowing the cur-
rent weights rather than the updated weights. Here’s the code for the algorithm,
which you can add to the searchnet class:

 def backPropagate(self, targets, N=0.5):
 # calculate errors for output
 output_deltas = [0.0] * len(self.urlids)
 for k in range(len(self.urlids)):
 error = targets[k]-self.ao[k]
 output_deltas[k] = dtanh(self.ao[k]) * error

 # calculate errors for hidden layer
 hidden_deltas = [0.0] * len(self.hiddenids)
 for j in range(len(self.hiddenids)):
 error = 0.0
 for k in range(len(self.urlids)):
 error = error + output_deltas[k]*self.wo[j][k]
 hidden_deltas[j] = dtanh(self.ah[j]) * error

82 | Chapter 4: Searching and Ranking

 # update output weights
 for j in range(len(self.hiddenids)):
 for k in range(len(self.urlids)):
 change = output_deltas[k]*self.ah[j]
 self.wo[j][k] = self.wo[j][k] + N*change

 # update input weights
 for i in range(len(self.wordids)):
 for j in range(len(self.hiddenids)):
 change = hidden_deltas[j]*self.ai[i]
 self.wi[i][j] = self.wi[i][j] + N*change

Now all you need is a simple method that will set up the network, run feedforward,
and run the backpropagation. This method takes the list of wordids, urlids, and a
selected URL:

 def trainquery(self,wordids,urlids,selectedurl):
 # generate a hidden node if necessary
 self.generatehiddennode(wordids,urlids)

 self.setupnetwork(wordids,urlids)
 self.feedforward()
 targets=[0.0]*len(urlids)
 targets[urlids.index(selectedurl)]=1.0
 error = self.backPropagate(targets)
 self.updatedatabase()

To save the results, you’ll also need a method to update the database with the new
weights, which are stored in the wi and wo instance variables:

 def updatedatabase(self):
 # set them to database values
 for i in range(len(self.wordids)):
 for j in range(len(self.hiddenids)):
 self.setstrength(self.wordids[i],self. hiddenids[j],0,self.wi[i][j])
 for j in range(len(self.hiddenids)):
 for k in range(len(self.urlids)):
 self.setstrength(self.hiddenids[j],self.urlids[k],1,self.wo[j][k])
 self.con.commit()

Now you can do a simple test with the query you tried earlier to see how the net-
work responds to training:

>> reload(nn)
>> mynet=nn.searchnet('nn.db')
>> mynet.trainquery([wWorld,wBank],[uWorldBank,uRiver,uEarth],uWorldBank)
>> mynet.getresult([wWorld,wBank],[uWorldBank,uRiver,uEarth])
[0.335,0.055,0.055]

The output for the World Bank URL increased and the output for the other URLs
decreased after the network learned that a particular user made that selection. The
more users make this selection, the bigger the difference will get.

Learning from Clicks | 83

Training Test
So far you’ve seen that training with one sample result increases the output for that
result. Although that’s useful, it doesn’t really demonstrate what neural networks are
capable of—that is, reasoning about inputs they’ve never seen before. Try this code
in your interactive Python session:

>> allurls=[uWorldBank,uRiver,uEarth]
>> for i in range(30):
... mynet.trainquery([wWorld,wBank],allurls,uWorldBank)
... mynet.trainquery([wRiver,wBank],allurls,uRiver)
... mynet.trainquery([wWorld],allurls,uEarth)
...
>> mynet.getresult([wWorld,wBank],allurls)
[0.861, 0.011, 0.016]
>> mynet.getresult([wRiver,wBank],allurls)
[-0.030, 0.883, 0.006]
>> mynet.getresult([wBank],allurls)
[0.865, 0.001, -0.85]

Even though the network has never seen a query for “bank” by itself before, it gives a
reasonable guess. Not only that, it gives the World Bank URL a much better score
than the River URL, even though in the training sample queries “bank” was associ-
ated just as often with “river” as it was with World Bank. The network has not only
learned which URLs are related to which queries, it has also learned what the impor-
tant words are in a particular query—something that could not have been achieved
with a simple query-URL correlation.

Connecting to the Search Engine
The query method of the searcher class gets a list of URL IDs and word IDs in the
course of creating and printing the results. You can have the method return these
results by adding the following line to the end of the query in searchengine.py:

 return wordids,[r[1] for r in rankedscores[0:10]]

These can be passed directly to the trainquery method of searchnet.

The method for capturing which of the results the user liked best is specific to the
design of your application. It’s possible that a web page could include an intermedi-
ate page that captures the click and calls trainquery before redirecting to the actual
search, or you could even let users vote on the relevance of search results to help
improve your algorithm.

The final step in building the artificial neural network is creating a new method in
the searcher class to allow you to weight the results. This function looks pretty simi-
lar to the other weighting functions. The first thing you’ll need to do is import the
neural network class in searchengine.py:

import nn
mynet=nn.searchnet('nn.db')

84 | Chapter 4: Searching and Ranking

And add this method to the searcher class:

 def nnscore(self,rows,wordids):
 # Get unique URL IDs as an ordered list
 urlids=[urlid for urlid in set([row[0] for row in rows])]
 nnres=mynet.getresult(wordids,urlids)
 scores=dict([(urlids[i],nnres[i]) for i in range(len(urlids))])
 return self.normalizescores(scores)

Again, you can experiment by including this in your weights list with various
weights. In practice, it’s better to hold off on including it as part of your scoring until
the network has been trained on a large number of different examples.

This chapter has covered a wide range of possibilities for developing a search engine,
but it’s still very limited compared to what’s possible. The exercises will explore
some further ideas. This chapter has not focused on performance—which would
require work to index millions of pages—but what you’ve built will perform
adequately on a set of 100,000 pages, enough for a news site or corporate intranet.

Exercises
1. Word separation. The separatewords method currently considers any nonalpha-

numeric character to be a separator, meaning it will not properly index entries
like “C++,” “$20,” “Ph.D.,” or “617-555-1212.” What is a better way to sepa-
rate words? Does using whitespace as a separator work? Write a better word
separation function.

2. Boolean operations. Many search engines support Boolean queries, which allow
users to construct searches like “python OR perl.” An OR search can work by
doing the queries separately and combining the results, but what about “python
AND (program OR code)”? Modify the query methods to support some basic
Boolean operations.

3. Exact matches. Search engines often support “exact match” queries, where the
words in the page must match the words in the query in the same order with no
additional words in between. Create a new version of getrows that only returns
results that are exact matches. (Hint: you can use subtraction in SQL to get the
difference between the word locations.)

4. Long/short document search. Sometimes the length of a page will be a determin-
ing factor in whether it is relevant to a particular search application or user. A
user may be interested in finding a long article about a difficult subject or a
quick reference page for a command-line tool. Write a weighting function that
will give preference to longer or shorter documents depending on its parameters.

5. Word frequency bias. The “word count” metric is biased to favor longer docu-
ments, since a long document has more words and can therefore contain the tar-
get words more often. Write a new metric that calculates frequency as a
percentage of the number of words in the document.

Exercises | 85

6. Inbound link searching. Your code can rank items based on the text of the
inbound links, but they must already be results based on the content of the page.
Sometimes the most relevant page doesn’t contain the query text at all, but
rather a lot of links with the text pointing to it—this is often the case with links
to images. Modify the search code to also include results where an inbound link
contains some of the search terms.

7. Different training options. The neural network is trained with a set of 0s for all
the URLs that a user did not click, and a 1 for the URL that she did click. Alter
the training function so that it works instead for an application where users get
to rate results from 1 to 5.

8. Additional layers. Your neural network has only one hidden layer. Update the
class to support an arbitrary number of hidden layers, which can be specified
upon initialization.

86

Chapter 5CHAPTER 5

Optimization 5

This chapter will look at how to solve collaboration problems using a set of tech-
niques called stochastic optimization. Optimization techniques are typically used in
problems that have many possible solutions across many variables, and that have
outcomes that can change greatly depending on the combinations of these variables.
These optimization techniques have a wide variety of applications: we use them in
physics to study molecular dynamics, in biology to predict protein structures, and
in computer science to determine the worst possible running time of an algorithm.
NASA even uses optimization techniques to design antennas that have the right oper-
ating characteristics, which look unlike anything a human designer would create.

Optimization finds the best solution to a problem by trying many different solutions
and scoring them to determine their quality. Optimization is typically used in cases
where there are too many possible solutions to try them all. The simplest but least
effective method of searching for solutions is just trying a few thousand random
guesses and seeing which one is best. More effective methods, which will be dis-
cussed in this chapter, involve intelligently modifying the solutions in a way that is
likely to improve them.

The first example in this chapter concerns group travel planning. Anyone who has
planned a trip for a group of people, or perhaps even for an individual, realizes that
there are a lot of different inputs required, such as what everyone’s flight schedule
should be, how many cars should be rented, and which airport is easiest. Many out-
puts must also be considered, such as total cost, time spent waiting at airports, and
time taken off work. Because the inputs can’t be mapped to the outputs with a sim-
ple formula, the problem of finding the best solution lends itself to optimization.

The other examples in the chapter show the flexibility of optimization by considering
two completely different problems: how to allocate limited resources based on peo-
ple’s preferences, and how to visualize a social network with minimal crossed lines.
By the end of the chapter, you’ll be able to spot other types of problems that can be
solved using optimization.

Group Travel | 87

Group Travel
Planning a trip for a group of people (the Glass family in this example) from different
locations all arriving at the same place is always a challenge, and it makes for an
interesting optimization problem. To begin, create a new file called optimization.py
and insert the following code:

import time
import random
import math

people = [('Seymour','BOS'),
 ('Franny','DAL'),
 ('Zooey','CAK'),
 ('Walt','MIA'),
 ('Buddy','ORD'),
 ('Les','OMA')]

LaGuardia airport in New York
destination='LGA'

The family members are from all over the country and wish to meet up in New York.
They will all arrive on the same day and leave on the same day, and they would like
to share transportation to and from the airport. There are dozens of flights per day to
New York from any of the family members’ locations, all leaving at different times.
The flights also vary in price and in duration.

You can download a sample file of flight data from http://kiwitobes.com/optimize/
schedule.txt.

This file contains origin, destination, departure time, arrival time, and price for a set
of flights in a comma-separated format:

LGA,MIA,20:27,23:42,169
MIA,LGA,19:53,22:21,173
LGA,BOS,6:39,8:09,86
BOS,LGA,6:17,8:26,89
LGA,BOS,8:23,10:28,149

Load this data into a dictionary with the origin and destination (dest) as the keys
and a list of potential flight details as the values. Add this code to load the data into
optimization.py:

flights={}
#
for line in file('schedule.txt'):
 origin,dest,depart,arrive,price=line.strip().split(',')
 flights.setdefault((origin,dest),[])

 # Add details to the list of possible flights
 flights[(origin,dest)].append((depart,arrive,int(price)))

http://kiwitobes.com/optimize/schedule.txt
http://kiwitobes.com/optimize/schedule.txt

88 | Chapter 5: Optimization

It’s also useful at this point to define a utility function, getminutes, which calculates
how many minutes into the day a given time is. This makes it easy to calculate flight
times and waiting times. Add this function to optimization.py:

def getminutes(t):
 x=time.strptime(t,'%H:%M')
 return x[3]*60+x[4]

The challenge now is to decide which flight each person in the family should take. Of
course, keeping total price down is a goal, but there are many other possible factors
that the optimal solution will take into account and try to minimize, such as total
waiting time at the airport or total flight time. These other factors will be discussed
in more detail shortly.

Representing Solutions
When approaching a problem like this, it’s necessary to determine how a potential
solution will be represented. The optimization functions you’ll see later are generic
enough to work on many different types of problems, so it’s important to choose a
simple representation that’s not specific to the group travel problem. A very common
representation is a list of numbers. In this case, each number can represent which
flight a person chooses to take, where 0 is the first flight of the day, 1 is the second,
and so on. Since each person needs an outbound flight and a return flight, the length
of this list is twice the number of people.

For example, the list:

[1,4,3,2,7,3,6,3,2,4,5,3]

Represents a solution in which Seymour takes the second flight of the day from Bos-
ton to New York, and the fifth flight back to Boston on the day he returns. Franny
takes the fourth flight from Dallas to New York, and the third flight back.

Because it will be difficult to interpret solutions from this list of numbers, you’ll need
a routine that prints all the flights that people decide to take in a nice table. Add this
function to optimization.py:

def printschedule(r):
 for d in range(len(r)/2):
 name=people[d][0]
 origin=people[d][1]
 out=flights[(origin,destination)][r[d]]
 ret=flights[(destination,origin)][r[d+1]]
 print '%10s%10s %5s-%5s $%3s %5s-%5s $%3s' % (name,origin,
 out[0],out[1],out[2],
 ret[0],ret[1],ret[2])

The Cost Function | 89

This will print a line containing each person’s name and origin, as well as the depar-
ture time, arrival time, and price for the outgoing and return flights. Try this function
in your Python session:

>>> import optimization
>>> s=[1,4,3,2,7,3,6,3,2,4,5,3]
>>> optimization.printschedule(s)
 Seymour Boston 12:34-15:02 $109 12:08-14:05 $142
 Franny Dallas 12:19-15:25 $342 9:49-13:51 $229
 Zooey Akron 9:15-12:14 $247 15:50-18:45 $243
 Walt Miami 15:34-18:11 $326 14:08-16:09 $232
 Buddy Chicago 14:22-16:32 $126 15:04-17:23 $189
 Les Omaha 15:03-16:42 $135 6:19- 8:13 $239

Even disregarding price, this schedule has some problems. In particular, since the
family members are traveling to and from the airport together, everyone has to arrive
at the airport at 6 a.m. for Les’s return flight, even though some of them don’t leave
until nearly 4 p.m. To determine the best combination, the program needs a way of
weighting the various properties of different schedules and deciding which is the
best.

The Cost Function
The cost function is the key to solving any problem using optimization, and it’s usu-
ally the most difficult thing to determine. The goal of any optimization algorithm is
to find a set of inputs—flights, in this case—that minimizes the cost function, so the
cost function has to return a value that represents how bad a solution is. There is no
particular scale for badness; the only requirement is that the function returns larger
values for worse solutions.

Often it is difficult to determine what makes a solution good or bad across many vari-
ables. Consider a few of the things that can be measured in the group travel example:

Price
The total price of all the plane tickets, or possibly a weighted average that takes
financial situations into account.

Travel time
The total time that everyone has to spend on a plane.

Waiting time
Time spent at the airport waiting for the other members of the party to arrive.

Departure time
Flights that leave too early in the morning may impose an additional cost by
requiring travelers to miss out on sleep.

Car rental period
If the party rents a car, they must return it earlier in the day than when they
rented it, or be forced to pay for a whole extra day.

90 | Chapter 5: Optimization

It’s not too hard to think of even more aspects of a particular schedule that could
make the experience more or less pleasant. Any time you’re faced with finding the
best solution to a complicated problem, you’ll need to decide what the important
factors are. Although this can be difficult, the big advantage is that once it’s done,
you can use the optimization algorithms in this chapter on almost any problem with
minimal modification.

After choosing some variables that impose costs, you’ll need to determine how to
combine them into a single number. In this example, it’s necessary to decide, for
instance, how much money that time on the plane or time waiting in the airport is
worth. You might decide that it’s worth spending $1 for every minute saved on air
travel (this translates into spending an extra $90 for a direct flight that saves an hour
and a half), and $0.50 for every minute saved waiting in the airport. You could also
add the cost of an extra day of car rental if everyone returns to the airport at a later
time of the day than when they first rented the car.

There are a huge number of possibilities for the getcost function defined here. This
function takes into account the total cost of the trip and the total time spent waiting
at airports for the various members of the family. It also adds a penalty of $50 if the
car is returned at a later time of the day than when it was rented. Add this function
to optimization.py, and feel free to add additional costs or to tweak the relative
importance of money and time:

def schedulecost(sol):
 totalprice=0
 latestarrival=0
 earliestdep=24*60

 for d in range(len(sol)/2):
 # Get the inbound and outbound flights
 origin=people[d][1]
 outbound=flights[(origin,destination)][int(sol[d])]
 returnf=flights[(destination,origin)][int(sol[d+1])]

 # Total price is the price of all outbound and return flights
 totalprice+=outbound[2]
 totalprice+=returnf[2]

 # Track the latest arrival and earliest departure
 if latestarrival<getminutes(outbound[1]): latestarrival=getminutes(outbound[1])
 if earliestdep>getminutes(returnf[0]): earliestdep=getminutes(returnf[0])

 # Every person must wait at the airport until the latest person arrives.
 # They also must arrive at the same time and wait for their flights.
 totalwait=0
 for d in range(len(sol)/2):
 origin=people[d][1]
 outbound=flights[(origin,destination)][int(sol[d])]
 returnf=flights[(destination,origin)][int(sol[d+1])]
 totalwait+=latestarrival-getminutes(outbound[1])
 totalwait+=getminutes(returnf[0])-earliestdep

Random Searching | 91

 # Does this solution require an extra day of car rental? That'll be $50!
 if latestarrival>earliestdep: totalprice+=50

 return totalprice+totalwait

The logic in this function is quite simplistic, but it illustrates the point. It can be
enhanced in several ways—right now, the total wait time assumes that all the family
members will leave the airport together when the last person arrives, and will all go
to the airport for the earliest departure. This can be modified so that anyone facing a
two-hour or longer wait rents his own car instead, and the prices and waiting time
can be adjusted accordingly.

You can try this function in your Python session:

>>> reload(optimization)
>>> optimization.schedulecost(s)
5285

Now that the cost function has been created, it should be clear that the goal is to
minimize cost by choosing the correct set of numbers. In theory, you could try every
possible combination, but in this example there are 16 flights, all with 9 possibilities,
giving a total of 916 (around 300 billion) combinations. Testing every combination
would guarantee you’d get the best answer, but it would take a very long time on
most computers.

Random Searching
Random searching isn’t a very good optimization method, but it makes it easy to
understand exactly what all the algorithms are trying to do, and it also serves as a
baseline so you can see if the other algorithms are doing a good job.

The function takes a couple of parameters. Domain is a list of 2-tuples that specify the
minimum and maximum values for each variable. The length of the solution is the
same as the length of this list. In the current example, there are nine outbound flights
and nine inbound flights for every person, so the domain in the list is (0,8) repeated
twice for each person.

The second parameter, costf, is the cost function, which in this example will be
schedulecost. This is passed as a parameter so that the function can be reused for
other optimization problems. This function randomly generates 1,000 guesses and
calls costf on them. It keeps track of the best guess (the one with the lowest cost)
and returns it. Add it to optimization.py:

def randomoptimize(domain,costf):
 best=999999999
 bestr=None
 for i in range(1000):
 # Create a random solution
 r=[random.randint(domain[i][0],domain[i][1])
 for i in range(len(domain))]

92 | Chapter 5: Optimization

 # Get the cost
 cost=costf(r)

 # Compare it to the best one so far
 if cost<best:
 best=cost
 bestr=r
 return r

Of course, 1,000 guesses is a very small fraction of the total number of possibilities.
However, this example has many possibilities that are good (if not the best), so with
a thousand tries, the function will likely come across a solution that isn’t awful. Try
it in your Python session:

>>> reload(optimization)
>>> domain=[(0,8)]*(len(optimization.people)*2)
>>> s=optimization.randomoptimize(domain,optimization.schedulecost)
>>> optimization.schedulecost(s)
3328
>>> optimization.printschedule(s)
 Seymour Boston 12:34-15:02 $109 12:08-14:05 $142
 Franny Dallas 12:19-15:25 $342 9:49-13:51 $229
 Zooey Akron 9:15-12:14 $247 15:50-18:45 $243
 Walt Miami 15:34-18:11 $326 14:08-16:09 $232
 Buddy Chicago 14:22-16:32 $126 15:04-17:23 $189
 Les Omaha 15:03-16:42 $135 6:19- 8:13 $239

Due to the random element, your results will be different from the results here. The
results shown are not great, as they have Zooey waiting at the airport for six hours
until Walt arrives, but they could definitely be worse. Try running this function
several times to see if the cost changes very much, or try increasing the loop size to
10,000 to see if you find better results that way.

Hill Climbing
Randomly trying different solutions is very inefficient because it does not take advan-
tage of the good solutions that have already been discovered. In our example, a
schedule with a low overall cost is probably similar to other schedules that have a
low cost. Because random optimization jumps around, it won’t automatically look at
similar schedules to locate the good ones that have already been found.

An alternate method of random searching is called hill climbing. Hill climbing starts
with a random solution and looks at the set of neighboring solutions for those that
are better (have a lower cost function). This is analogous to going down a hill, as
shown in Figure 5-1.

Imagine you are the person shown in the figure, having been randomly dropped into
this landscape. You want to reach the lowest point to find water. To do this, you
might look in each direction and walk toward wherever the land slopes downward

Hill Climbing | 93

most steeply. You would continue to walk in the most steeply sloping direction until
you reached a point where the terrain was flat or began sloping uphill.

You can apply this hill climbing approach to the task of finding the best travel
schedule for the Glass family. Start with a random schedule and find all the neigh-
boring schedules. In this case, that means finding all the schedules that have one per-
son on a slightly earlier or slightly later flight. The cost is calculated for each of the
neighboring schedules, and the one with the lowest cost becomes the new solution.
This process is repeated until none of the neighboring schedules improves the cost.

To implement this, add hillclimb to optimization.py:

def hillclimb(domain,costf):
 # Create a random solution
 sol=[random.randint(domain[i][0],domain[i][1])
 for i in range(len(domain))]

 # Main loop
 while 1:

 # Create list of neighboring solutions
 neighbors=[]
 for j in range(len(domain)):

 # One away in each direction
 if sol[j]>domain[j][0]:
 neighbors.append(sol[0:j]+[sol[j]+1]+sol[j+1:])
 if sol[j]<domain[j][1]:
 neighbors.append(sol[0:j]+[sol[j]-1]+sol[j+1:])

 # See what the best solution amongst the neighbors is
 current=costf(sol)
 best=current
 for j in range(len(neighbors)):
 cost=costf(neighbors[j])
 if cost<best:
 best=cost
 sol=neighbors[j]

Figure 5-1. Seeking the lowest cost on a hill

Lower cost Higher cost

94 | Chapter 5: Optimization

 # If there's no improvement, then we've reached the top
 if best==current:
 break

 return sol

This function generates a random list of numbers within the given domain to create
the initial solution. It finds all the neighbors for the current solution by looping over
every element in the list and then creating two new lists with that element increased
by one and decreased by one. The best of these neighbors becomes the new solution.

Try this function in your Python session to see how it compares to randomly
searching for a solution:

>>> s=optimization.hillclimb(domain,optimization.schedulecost)
>>> optimization.schedulecost(s)
3063
>>> optimization.printschedule(s)
 Seymour BOS 12:34-15:02 $109 10:33-12:03 $ 74
 Franny DAL 10:30-14:57 $290 10:51-14:16 $256
 Zooey CAK 10:53-13:36 $189 10:32-13:16 $139
 Walt MIA 11:28-14:40 $248 12:37-15:05 $170
 Buddy ORD 12:44-14:17 $134 10:33-13:11 $132
 Les OMA 11:08-13:07 $175 18:25-20:34 $205

This function runs quickly and usually finds a better solution than randomly search-
ing. There is, however, one major drawback to hill climbing. Look at Figure 5-2.

From this figure it’s clear that simply moving down the slope will not necessarily lead
to the best solution overall. The final solution will be a local minimum, a solution
better than those around it but not the best overall. The best overall is called the
global minimum, which is what optimization algorithms are ultimately supposed to
find. One approach to this dilemma is called random-restart hill climbing, where the
hill climbing algorithm is run several times with random starting points in the hope
that one of them will be close to the global minimum. The next two sections, “Simu-
lated Annealing” and “Genetic Algorithms,” show other ways to avoid getting stuck
in a local minimum.

Figure 5-2. Stuck in a local minimum

Cost

Simulated Annealing | 95

Simulated Annealing
Simulated annealing is an optimization method inspired by physics. Annealing is the
process of heating up an alloy and then cooling it down slowly. Because the atoms
are first made to jump around a lot and then gradually settle into a low energy state,
the atoms can find a low energy configuration.

The algorithm version of annealing begins with a random solution to the problem. It
uses a variable representing the temperature, which starts very high and gradually
gets lower. In each iteration, one of the numbers in the solution is randomly chosen
and changed in a certain direction. In our example, Seymour’s return flight might be
moved from the second of the day to the third. The cost is calculated before and after
the change, and the costs are compared.

Here’s the important part: if the new cost is lower, the new solution becomes the
current solution, which is very much like the hill-climbing method. However, if the
cost is higher, the new solution can still become the current solution with a certain
probability. This is an attempt to avoid the local minimum problem shown in
Figure 5-2.

In some cases, it’s necessary to move to a worse solution before you can get to a bet-
ter one. Simulated annealing works because it will always accept a move for the
better, and because it is willing to accept a worse solution near the beginning of the
process. As the process goes on, the algorithm becomes less and less likely to accept
a worse solution, until at the end it will only accept a better solution. The probabil-
ity of a higher-cost solution being accepted is given by this formula:

p=e((-highcost–lowcost)/temperature)

Since the temperature (the willingness to accept a worse solution) starts very high,
the exponent will always be close to 0, so the probability will almost be 1. As the
temperature decreases, the difference between the high cost and the low cost
becomes more important—a bigger difference leads to a lower probability, so the
algorithm will favor only slightly worse solutions over much worse ones.

Create a new function in optimization.py called annealingoptimize, which implements
this algorithm:

def annealingoptimize(domain,costf,T=10000.0,cool=0.95,step=1):
 # Initialize the values randomly
 vec=[float(random.randint(domain[i][0],domain[i][1]))
 for i in range(len(domain))]

 while T>0.1:
 # Choose one of the indices
 i=random.randint(0,len(domain)-1)

 # Choose a direction to change it
 dir=random.randint(-step,step)

96 | Chapter 5: Optimization

 # Create a new list with one of the values changed
 vecb=vec[:]
 vecb[i]+=dir
 if vecb[i]<domain[i][0]: vecb[i]=domain[i][0]
 elif vecb[i]>domain[i][1]: vecb[i]=domain[i][1]

 # Calculate the current cost and the new cost
 ea=costf(vec)
 eb=costf(vecb)
 p=pow(math.e,(-eb-ea)/T)

 # Is it better, or does it make the probability
 # cutoff?
 if (eb<ea or random.random()<p):
 vec=vecb

 # Decrease the temperature
 T=T*cool
 return vec

To do annealing, this function first creates a random solution of the right length with
all the values in the range specified by the domain parameter. The temperature and
the cooling rate are optional parameters. In each iteration, i is set to a random index
of the solution, and dir is set to a random number between –step and step. It calcu-
lates the current function cost and the cost if it were to change the value at i by dir.

The line of code in bold shows the probability calculation, which gets lower as T gets
lower. If a random float between 0 and 1 is less than this value, or if the new solu-
tion is better, the function accepts the new solution. The function loops until the
temperature has almost reached 0, each time multiplying it by the cooling rate.

Now you can try to optimize with simulated annealing in your Python session:

>>> reload(optimization)
>>> s=optimization.annealingoptimize(domain,optimization.schedulecost)
>>> optimization.schedulecost(s)
2278
>>> optimization.printschedule(s)
 Seymour Boston 12:34-15:02 $109 10:33-12:03 $ 74
 Franny Dallas 10:30-14:57 $290 10:51-14:16 $256
 Zooey Akron 10:53-13:36 $189 10:32-13:16 $139
 Walt Miami 11:28-14:40 $248 12:37-15:05 $170
 Buddy Chicago 12:44-14:17 $134 10:33-13:11 $132
 Les Omaha 11:08-13:07 $175 15:07-17:21 $129

This optimization did a good job of reducing the overall wait times while keeping the
costs down. Obviously, your results will be different, and there is a chance that they
will be worse. For any given problem, it’s a good idea to experiment with different
parameters for the initial temperature and the cooling rate. You can also vary the
possible step size for the random movements.

Genetic Algorithms | 97

Genetic Algorithms
Another set of techniques for optimization, also inspired by nature, is called genetic
algorithms. These work by initially creating a set of random solutions known as the
population. At each step of the optimization, the cost function for the entire popula-
tion is calculated to get a ranked list of solutions. An example is shown in Table 5-1.

After the solutions are ranked, a new population—known as the next generation—is
created. First, the top solutions in the current population are added to the new
population as they are. This process is called elitism. The rest of the new population
consists of completely new solutions that are created by modifying the best
solutions.

There are two ways that solutions can be modified. The simpler of these is called
mutation, which is usually a small, simple, random change to an existing solution. In
this case, a mutation can be done simply by picking one of the numbers in the
solution and increasing or decreasing it. A couple of examples are shown in
Figure 5-3.

The other way to modify solutions is called crossover or breeding. This method
involves taking two of the best solutions and combining them in some way. In this
case, a simple way to do crossover is to take a random number of elements from one
solution and the rest of the elements from another solution, as illustrated in
Figure 5-4.

A new population, usually the same size as the old one, is created by randomly
mutating and breeding the best solutions. Then the process repeats—the new popula-
tion is ranked and another population is created. This continues either for a fixed
number of iterations or until there has been no improvement over several generations.

Table 5-1. Ranked list of solutions and costs

Solution Cost

[7, 5, 2, 3, 1, 6, 1, 6, 7, 1, 0, 3] 4394

[7, 2, 2, 2, 3, 3, 2, 3, 5, 2, 0, 8] 4661

… …

[0, 4, 0, 3, 8, 8, 4, 4, 8, 5, 6, 1] 7845

[5, 8, 0, 2, 8, 8, 8, 2, 1, 6, 6, 8] 8088

Figure 5-3. Examples of mutating a solution

[7, 5, 2, 3, 1, 6, 1, 6, 7, 1, 0, 3]

[7, 2, 2, 2, 3, 3, 2, 3, 5, 2, 0, 8]

[7, 5, 2, 3, 1, 6, 1, 5, 7, 1, 0, 3]

[7, 2, 2, 2, 3, 3, 2, 3, 5, 2, 1, 8]

98 | Chapter 5: Optimization

Add geneticoptimize to optimization.py:

def geneticoptimize(domain,costf,popsize=50,step=1,
 mutprod=0.2,elite=0.2,maxiter=100):
 # Mutation Operation
 def mutate(vec):
 i=random.randint(0,len(domain)-1)
 if random.random()<0.5 and vec[i]>domain[i][0]:
 return vec[0:i]+[vec[i]-step]+vec[i+1:]
 elif vec[i]<domain[i][1]:
 return vec[0:i]+[vec[i]+step]+vec[i+1:]

 # Crossover Operation
 def crossover(r1,r2):
 i=random.randint(1,len(domain)-2)
 return r1[0:i]+r2[i:]

 # Build the initial population
 pop=[]
 for i in range(popsize):
 vec=[random.randint(domain[i][0],domain[i][1])
 for i in range(len(domain))]
 pop.append(vec)

 # How many winners from each generation?
 topelite=int(elite*popsize)

 # Main loop
 for i in range(maxiter):
 scores=[(costf(v),v) for v in pop]
 scores.sort()
 ranked=[v for (s,v) in scores]

 # Start with the pure winners
 pop=ranked[0:topelite]

 # Add mutated and bred forms of the winners
 while len(pop)<popsize:
 if random.random()<mutprob:

Figure 5-4. Example of crossover

[7, 5, 2, 3, 1, 6, 1, 6, 7, 1, 0, 3]

[7, 2, 2, 2, 3, 3, 2, 3, 5, 2, 0, 8]

[7, 5, 2, 3, 1, 6, 1, 6, 5, 2, 0, 8]

Genetic Algorithms | 99

 # Mutation
 c=random.randint(0,topelite)
 pop.append(mutate(ranked[c]))
 else:

 # Crossover
 c1=random.randint(0,topelite)
 c2=random.randint(0,topelite)
 pop.append(crossover(ranked[c1],ranked[c2]))

 # Print current best score
 print scores[0][0]

 return scores[0][1]

This function takes several optional parameters:

popsize
The size of the population

mutprob
The probability that a new member of the population will be a mutation rather
than a crossover

elite
The fraction of the population that are considered good solutions and are
allowed to pass into the next generation

maxiter
The number of generations to run

Try optimizing the travel plans using the genetic algorithm in your Python session:

>>> s=optimization.geneticoptimize(domain,optimization.schedulecost)
3532
3503
...
2591
2591
2591
>>> optimization.printschedule(s)
 Seymour BOS 12:34-15:02 $109 10:33-12:03 $ 74
 Franny DAL 10:30-14:57 $290 10:51-14:16 $256
 Zooey CAK 10:53-13:36 $189 10:32-13:16 $139
 Walt MIA 11:28-14:40 $248 12:37-15:05 $170
 Buddy ORD 12:44-14:17 $134 10:33-13:11 $132
 Les OMA 11:08-13:07 $175 11:07-13:24 $171

In Chapter 11, you’ll see an extension of genetic algorithms called genetic program-
ming, where similar ideas are used to create entirely new programs.

100 | Chapter 5: Optimization

The computer scientist John Holland is widely considered to be the
father of genetic algorithms because of his 1975 book, Adaptation in
Natural and Artificial Systems (University of Michigan Press). Yet the
work goes back to biologists in the 1950s who were attempting to
model evolution on computers. Since then, genetic algorithms and
other optimization methods have been used for a huge variety of
problems, including:

• Finding which concert hall shape gives the best acoustics

• Designing an optimal wing for a supersonic aircraft

• Suggesting the best library of chemicals to research as potential
drugs

• Automatically designing a chip for voice recognition

Potential solutions to these problems can be turned into lists of num-
bers. This makes it easy to apply genetic algorithms or simulated
annealing.

Whether a particular optimization method will work depends very much on the
problem. Simulated annealing, genetic optimization, and most other optimization
methods rely on the fact that, in most problems, the best solution is close to other
good solutions. To see a case where optimization might not work, look at Figure 5-5.

The cost is actually lowest at a very steep point on the far right of the figure. Any
solution that is close by would probably be dismissed from consideration because of
its high cost, and you would never find your way to the global minimum. Most
algorithms would settle in one of the local minima on the left side of the figure.

The flight scheduling example works because moving a person from the second to
the third flight of the day would probably change the overall cost by a smaller
amount than moving that person to the eighth flight of the day would. If the flights
were in random order, the optimization methods would work no better than a
random search—in fact, there’s no optimization method that will consistently work
better than a random search in that case.

Figure 5-5. Poor problem for optimization

Real Flight Searches | 101

Real Flight Searches
Now that everything is working with the sample data, it’s time to try getting real
flight data to see if the same optimizations can be used. You’ll be downloading data
from Kayak, which provides an API for doing flight searches. The main difference
between real flight data and the sample you’ve been working with is that in the real
flight data, there are many more than nine flights per day between most major cities.

The Kayak API
Kayak, shown in Figure 5-6, is a popular vertical search engine for travel. Although
there are lots of travel sites online, Kayak is useful for this example because it has a
nice XML API that can be used to perform real travel searches from within a Python
program. To use the API, you’ll need to sign up for a developer key by going to
http://www.kayak.com/labs/api/search.

The developer key is a long string of numbers and letters that you’ll use to do flight
searches in Kayak (it can also be used for hotel searches, but that won’t be covered
here). At the time of writing, there is not a specific Python API for Kayak like there is

Figure 5-6. Screenshot of the Kayak travel search interface

http://www.kayak.com/labs/api/search

102 | Chapter 5: Optimization

for del.icio.us, but the XML interface is very well explained. This chapter will show
you how to create searches using the Python packages urllib2 and xml.dom.minidom,
both of which are included with the standard Python distribution.

The minidom Package
The minidom package is part of the standard Python distribution. It is a lightweight
implementation of the Document Object Model (DOM) interface, a standard way of
treating an XML document as a tree of objects. The package takes strings or open
files containing XML and returns an object that you can use to easily extract infor-
mation. For example, enter the following in a Python session:

>>> import xml.dom.minidom
>>> dom=xml.dom.minidom.parseString('<data><rec>Hello!</rec></data>')
>>> dom
<xml.dom.minidom.Document instance at 0x00980C38>
>>> r=dom.getElementsByTagName('rec')
>>> r
[<DOM Element: rec at 0xa42350>]
>>> r[0].firstChild
<DOM Text node "Hello!">
>>> r[0].firstChild.data
u'Hello!'

Because many web sites now offer a way to access information through an XML
interface, learning how to use the Python XML packages is very useful for collective
intelligence programming. Here are the important methods of DOM objects that
you’ll be using for the Kayak API:

getElementsByTagName(name)
Returns a list of all DOM nodes by searching throughout the whole document
for elements whose tag matches name.

firstChild
Returns the first child node of this object. In the above example, the first child of
r is the node representing the text “Hello.”

data
Returns the data associated with this object, which in most cases is a Unicode
string of the text that the node contains.

Flight Searches
Begin by creating a new file called kayak.py and adding the following statements:

import time
import urllib2
import xml.dom.minidom

kayakkey='YOURKEYHERE'

Real Flight Searches | 103

The first thing you’ll need is code to get a new Kayak session using your developer
key. The function to do this sends a request to apisession with the token parameter
set to your developer key. The XML returned by this URL will contain a tag sid, with
a session ID inside it:

<sid>1-hX4lII_wS$8b06aO7kHj</sid>

The function just has to parse the XML to extract the contents of the sid tag. Add
this function to kayak.py:

def getkayaksession():
 # Construct the URL to start a session
 url='http://www.kayak.com/k/ident/apisession?token=%s&version=1' % kayakkey

 # Parse the resulting XML
 doc=xml.dom.minidom.parseString(urllib2.urlopen(url).read())

 # Find <sid>xxxxxxxx</sid>
 sid=doc.getElementsByTagName('sid')[0].firstChild.data
 return sid

The next step is to create a function to start the flight search. The URL for this search
is very long because it contains all the parameters for the flight search. The impor-
tant parameters for this search are sid (the session ID returned by getkayaksession),
destination, and depart_date.

The resulting XML has a tag called searchid, which the function will extract in the
same manner as getkayaksession. Since the search may take a long time, this call
doesn’t actually return any results—it just begins the search and returns an ID that
can be used to poll for the results.

Add this function to kayak.py:

def flightsearch(sid,origin,destination,depart_date):

 # Construct search URL
 url='http://www.kayak.com/s/apisearch?basicmode=true&oneway=y&origin=%s' % origin
 url+='&destination=%s&depart_date=%s' % (destination,depart_date)
 url+='&return_date=none&depart_time=a&return_time=a'
 url+='&travelers=1&cabin=e&action=doFlights&apimode=1'
 url+='&_sid_=%s&version=1' % (sid)

 # Get the XML
 doc=xml.dom.minidom.parseString(urllib2.urlopen(url).read())

 # Extract the search ID
 searchid=doc.getElementsByTagName('searchid')[0].firstChild.data

 return searchid

104 | Chapter 5: Optimization

Finally, you’ll need a function that requests the results until there are no more.
Kayak provides another URL, flight, which gives these results. In the returned
XML, there is a tag called morepending, which contains the word “true” until the
search is complete. The function has to request the page until morepending is no
longer true, and then the functions gets the complete results.

Add this function to kayak.py:

def flightsearchresults(sid,searchid):

 # Removes leading $, commas and converts number to a float
 def parseprice(p):
 return float(p[1:].replace(',',''))

 # Polling loop
 while 1:
 time.sleep(2)

 # Construct URL for polling
 url='http://www.kayak.com/s/basic/flight?'
 url+='searchid=%s&c=5&apimode=1&_sid_=%s&version=1' % (searchid,sid)
 doc=xml.dom.minidom.parseString(urllib2.urlopen(url).read())

 # Look for morepending tag, and wait until it is no longer true
 morepending=doc.getElementsByTagName('morepending')[0].firstChild
 if morepending==None or morepending.data=='false': break

 # Now download the complete list
 url='http://www.kayak.com/s/basic/flight?'
 url+='searchid=%s&c=999&apimode=1&_sid_=%s&version=1' % (searchid,sid)
 doc=xml.dom.minidom.parseString(urllib2.urlopen(url).read())

 # Get the various elements as lists
 prices=doc.getElementsByTagName('price')
 departures=doc.getElementsByTagName('depart')
 arrivals=doc.getElementsByTagName('arrive')

 # Zip them together
 return zip([p.firstChild.data.split(' ')[1] for p in departures],
 [p.firstChild.data.split(' ')[1] for p in arrivals],
 [parseprice(p.firstChild.data) for p in prices])

Notice that at the end the function just gets all the price, depart, and arrive tags.
There will be an equal number of them—one for each flight—so the zip function can
be used to join them all together into tuples in a big list. The departure and arrival
information is given as date and time separated by a space, so the function splits the
string to get only the time. The function also converts the price to a float by passing
it to parseprice.

Real Flight Searches | 105

You can try a real flight search in your Python session to make sure everything is
working (remember to change the date to some time in the future):

>>> import kayak
>>> sid=kayak.getkayaksession()
>>> searchid=kayak.flightsearch(sid,'BOS','LGA','11/17/2006')
>>> f=kayak.flightsearchresults(sid,searchid)
>>> f[0:3]
[(u'07:00', u'08:25', 60.3),
 (u'08:30', u'09:49', 60.3),
 (u'06:35', u'07:54', 65.0)]

Flights are conveniently returned in order of price, and for flights that are the same
price, in order of time. This works out well since, like before, it means that similar
solutions are close together. The only requirement to integrate this with the rest of
the code is to create a full schedule for all the different people in the Glass family
with the same structure that was originally loaded in from the file. This is just a mat-
ter of looping over the people in the list and performing the flight search for their
outbound and return flights. Add the createschedule function to kayak.py:

def createschedule(people,dest,dep,ret):
 # Get a session id for these searches
 sid=getkayaksession()
 flights={}

 for p in people:
 name,origin=p
 # Outbound flight
 searchid=flightsearch(sid,origin,dest,dep)
 flights[(origin,dest)]=flightsearchresults(sid,searchid)

 # Return flight
 searchid=flightsearch(sid,dest,origin,ret)
 flights[(dest,origin)]=flightsearchresults(sid,searchid)

 return flights

Now you can try to optimize the flights for the family using actual flight data. The
Kayak searches can take a while, so limit the search to just the first two family mem-
bers to start with. Enter this in your Python session:

>>> reload(kayak)
>>> f=kayak.createschedule(optimization.people[0:2],'LGA',
... '11/17/2006','11/19/2006')
>>> optimization.flights=f
>>> domain=[(0,30)]*len(f)
>>> optimization.geneticoptimize(domain,optimization.schedulecost)
770.0
703.0
...
>>> optimization.printschedule(s)
 Seymour BOS 16:00-17:20 $85.0 19:00-20:28 $65.0
 Franny DAL 08:00-17:25 $205.0 18:55-00:15 $133.0

106 | Chapter 5: Optimization

Congratulations! You’ve just run an optimization on real live flight data. The search
space is much bigger, so it’s a good idea to experiment with the maximum velocity
and learning rate.

There are many ways this can be expanded. You might combine it with a weather
search to optimize for combinations of prices and warm temperatures at potential
destinations, or with a hotel search to find destinations with a reasonable combina-
tion of flight and hotel prices. There are thousands of sites on the Internet that
provide travel destination data that can be used as part of an optimization.

The Kayak API has a limit on searches per day, but it does return links to purchase
any flight or hotel directly, which means you can easily incorporate the API into any
application.

Optimizing for Preferences
You’ve seen one example of a problem that optimization can be used to solve, but
there are many seemingly unrelated problems that can be attacked using the same
methods. Remember, the primary requirements for solving with optimization are
that the problem has a defined cost function and that similar solutions tend to yield
similar results. Not every problem with these properties will be solvable with optimi-
zation, but there’s a good chance that optimization will return some interesting
results that you hadn’t considered.

This section will consider a different problem, one that clearly lends itself to optimi-
zation. The general problem is how to allocate limited resources to people who have
expressed preferences and make them all as happy as possible (or, depending on
their dispositions, annoy them as little as possible).

Student Dorm Optimization
The example problem in this section is that of assigning students to dorms depend-
ing on their first and second choices. Although this is a very specific example, it’s
easy to generalize this case to other problems—the exact same code can be used to
assign tables to players in an online card game, assign bugs to developers in a large
coding project, or even to assign housework to household members. Once again, the
purpose is to take information from individuals and combine it to produce the opti-
mal result.

There are five dorms in our example, each with two spaces available and ten stu-
dents vying for spots. Each student has first and second choices. Create a new file
called dorm.py and add the list of dorms and the list of people, along with their top
two choices:

Optimizing for Preferences | 107

import random
import math

The dorms, each of which has two available spaces
dorms=['Zeus','Athena','Hercules','Bacchus','Pluto']

People, along with their first and second choices
prefs=[('Toby', ('Bacchus', 'Hercules')),
 ('Steve', ('Zeus', 'Pluto')),
 ('Andrea', ('Athena', 'Zeus')),
 ('Sarah', ('Zeus', 'Pluto')),
 ('Dave', ('Athena', 'Bacchus')),
 ('Jeff', ('Hercules', 'Pluto')),
 ('Fred', ('Pluto', 'Athena')),
 ('Suzie', ('Bacchus', 'Hercules')),
 ('Laura', ('Bacchus', 'Hercules')),
 ('Neil', ('Hercules', 'Athena'))]

You can see immediately that every person can’t have his top choice, since there are
only two spots in Bacchus and three people want them. Putting any of these people
in their second choice would mean there wouldn’t be enough space in Hercules for
the people who chose it.

This problem is deliberately small so it’s easy to follow, but in real life, this problem
might include hundreds or thousands of students competing for many more spots in
a larger selection of dorms. Since this example only has about 100,000 possible
solutions, it’s possible to try them all and see which one is the best. But the number
quickly grows to trillions of possibilities when there are four slots in each dorm.

The representation for solutions is a bit trickier for this problem than for the flight
problem. You could, in theory, create a list of numbers, one for each student, where
each number represents the dorm in which you’ve put the student. The problem is
that this representation doesn’t constrain the solution to only two students in each
dorm. A list of all zeros would indicate that everyone had been placed in Zeus, which
isn’t a real solution at all.

One way to resolve this is to make the cost function return a very high value for
invalid solutions, but this makes it very difficult for the optimization algorithm to
find better solutions because it has no way to determine if it’s close to other good or
even valid solutions. In general, it’s better not to waste processor cycles searching
among invalid solutions.

A better way to approach the issue is to find a way to represent solutions so that
every one is valid. A valid solution is not necessarily a good solution; it just means
that there are exactly two students assigned to each dorm. One way to do this is to
think of every dorm as having two slots, so that in the example there are ten slots in
total. Each student, in order, is assigned to one of the open slots—the first person
can be placed in any one of the ten, the second person can be placed in any of the
nine remaining slots, and so on.

108 | Chapter 5: Optimization

The domain for searching has to capture this restriction. Add this line to dorm.py:

[(0,9),(0,8),(0,7),(0,6),...,(0,0)]
domain=[(0,(len(dorms)*2)-i-1) for i in range(0,len(dorms)*2)]

The code to print the solution illustrates how the slots work. This function first
creates a list of slots, two for each dorm. It then loops over every number in the solu-
tion and finds the dorm number at that location in the slots list, which is the dorm
that a student is assigned to. It prints the student and the dorm, and then it removes
that slot from the list so no other student will be given that slot. After the final itera-
tion, the slots list is empty and every student and dorm assignment has been printed.
Add this function to dorm.py:

def printsolution(vec):
 slots=[]
 # Create two slots for each dorm
 for i in range(len(dorms): slots+=[i,i]

 # Loop over each students assignment
 for i in range(len(vec)):
 x=int(vec[i])

 # Choose the slot from the remaining ones
 dorm=dorms[slots[x]]
 # Show the student and assigned dorm
 print prefs[i][0],dorm
 # Remove this slot
 del slots[x]

In your Python session, you can import this and try printing a solution:

>>> import dorm
>>> dorm.printsolution([0,0,0,0,0,0,0,0,0,0])
Toby Zeus
Steve Zeus
Andrea Athena
Sarah Athena
Dave Hercules
Jeff Hercules
Fred Bacchus
Suzie Bacchus
Laura Pluto
Neil Pluto

If you change the numbers around to view different solutions, remember that each
number must stay in the appropriate range. The first item in the list can be between
0 and 9, the second between 0 and 8, etc. If you set one of the numbers outside the
appropriate range, the function will throw an exception. Since the optimization func-
tions will keep the numbers in the ranges specified in the domain parameter, this
won’t be a problem when optimizing.

Optimizing for Preferences | 109

The Cost Function
The cost function works in a way that is similar to the print function. A list of slots is
constructed and slots are removed as they are used up. The cost is calculated by
comparing a student’s current dorm assignment to his top two choices. The total
cost will increase by 0 if the student is currently assigned to his top choice, by 1 if he
is assigned to his second choice, and by 3 if he is not assigned to either of his choices:

def dormcost(vec):
 cost=0
 # Create list a of slots
 slots=[0,0,1,1,2,2,3,3,4,4]

 # Loop over each student
 for i in range(len(vec)):
 x=int(vec[i])
 dorm=dorms[slots[x]]
 pref=prefs[i][1]
 # First choice costs 0, second choice costs 1
 if pref[0]==dorm: cost+=0
 elif pref[1]==dorm: cost+=1
 else: cost+=3
 # Not on the list costs 3

 # Remove selected slot
 del slots[x]

 return cost

A useful rule when creating a cost function is, if possible, to make the perfect solu-
tion (which in this example is everyone being assigned to their top choice) have a
cost of zero. In this case, you’ve already determined that the perfect solution is
impossible, but knowing that its cost is zero gives you an idea of how close you are
to it. The other advantage of this rule is that you can tell an optimization algorithm
to stop searching for better solutions if it ever finds a perfect solution.

Running the Optimization
With a solution representation, a cost function, and a function to print the results,
you have enough to run the optimization functions that you defined earlier. Enter the
following in your Python session:

>>> reload(dorm)
>>> s=optimization.randomoptimize(dorm.domain,dorm.dormcost)
>>> dorm.dormcost(s)
18
>>> optimization.geneticoptimize(dorm.domain,dorm.dormcost)
13
10
...
4
>>> dorm.printsolution(s)

110 | Chapter 5: Optimization

Toby Athena
Steve Pluto
Andrea Zeus
Sarah Pluto
Dave Hercules
Jeff Hercules
Fred Bacchus
Suzie Bacchus
Laura Athena
Neil Zeus

Again, you can tweak the parameters to see if you can make the genetic optimization
find a good solution more quickly.

Network Visualization
The final example in this chapter shows another way in which optimization can be
used on problems that are completely unrelated to one another. In this case, the
problem is the visualization of networks. A network in this case is any set of things
that are connected together. A good example in online applications is a social net-
work like MySpace, Facebook, or LinkedIn, where people are connected because
they are friends or have a professional relationship. Each member of the site chooses
to whom they are connected, and collectively this creates a network of people. It is
interesting to visualize such networks to determine their structure, perhaps in order
to find the people who are connectors (those who know a lot of people or who serve
as a link between otherwise self-contained cliques).

The Layout Problem
When drawing a network to visualize a big group of people and the links between
them, one problem is deciding where each name (or icon) should be placed in the
picture. For example, consider the network in Figure 5-7.

Figure 5-7. A confusing network layout

Miranda

Willy

Charlie

Joe

Augustus

Mike

Violet

Network Visualization | 111

In this figure, you can see that Augustus is friends with Willy, Violet, and Miranda.
But the layout of the network is a bit messy, and adding more people would make it
very confusing. A much cleaner layout is shown in Figure 5-8.

This section will look at how optimization can be used to create better, less confus-
ing visuals. To begin, create a new file called socialnetwork.py and add some facts
about a subsection of the social network:

import math

people=['Charlie','Augustus','Veruca','Violet','Mike','Joe','Willy','Miranda']

links=[('Augustus', 'Willy'),
 ('Mike', 'Joe'),
 ('Miranda', 'Mike'),
 ('Violet', 'Augustus'),
 ('Miranda', 'Willy'),
 ('Charlie', 'Mike'),
 ('Veruca', 'Joe'),
 ('Miranda', 'Augustus'),
 ('Willy', 'Augustus'),
 ('Joe', 'Charlie'),
 ('Veruca', 'Augustus'),
 ('Miranda', 'Joe')]

The goal here is to create a program that can take a list of facts about who is friends
with whom and generate an easy-to-interpret network diagram. This is usually done
with a mass-and-spring algorithm. This type of algorithm is modeled on physics
because the different nodes exert a push on each other and try to move apart, while
the links try to pull connected nodes closer together. Thus, the network slowly
assumes a layout where unconnected nodes are pushed apart and connected nodes
are pulled close together—but not too close together.

Unfortunately, the mass-and-spring algorithm doesn’t stop lines from crossing. In a
network with a great number of links, this makes it difficult to see which nodes are
connected because visually tracking the lines as they cross can be tricky. However,

Figure 5-8. A clean network layout

Miranda

Willy

Charlie

Joe

Augustus
Mike

Violet

112 | Chapter 5: Optimization

when you use optimization to create the layout, all you need to do is decide on a cost
function and then try to minimize it. In this case, one interesting cost function to try
is the number of lines that cross each other.

Counting Crossed Lines
In order to use the same optimizing functions that were defined earlier, it’s neces-
sary to represent a solution as a list of numbers. Fortunately, this particular problem
is represented as a list of numbers very easily—every node has an x and y coordi-
nate, so the coordinates for all the nodes can be put into a long list:

sol=[120,200,250,125 ...

In this solution, Charlie is placed at (120,200), Augustus at (250,125), and so on.

Right now, the new cost function will simply count the number of lines that cross
each other. The derivation of the formula for two lines crossing is a bit beyond the
scope of this chapter, but the basic idea is to calculate the fraction of the line where
each line is crossed. If this fraction is between 0 (one end of the line) and 1 (the other
end), for both lines, then they cross each other. If the fraction is not between 0 and 1,
then the lines do not cross.

This function loops through every pair of links and uses the current coordinates of
their endpoints to determine whether they cross. If they do, the function adds 1 to
the total score. Add crosscount to socialnetwork.py:

def crosscount(v):
 # Convert the number list into a dictionary of person:(x,y)
 loc=dict([(people[i],(v[i*2],v[i*2+1])) for i in range(0,len(people))])
 total=0

 # Loop through every pair of links
 for i in range(len(links)):
 for j in range(i+1,len(links)):

 # Get the locations
 (x1,y1),(x2,y2)=loc[links[i][0]],loc[links[i][1]]
 (x3,y3),(x4,y4)=loc[links[j][0]],loc[links[j][1]]

 den=(y4-y3)*(x2-x1)-(x4-x3)*(y2-y1)

 # den==0 if the lines are parallel
 if den==0: continue

 # Otherwise ua and ub are the fraction of the
 # line where they cross
 ua=((x4-x3)*(y1-y3)-(y4-y3)*(x1-x3))/den
 ub=((x2-x1)*(y1-y3)-(y2-y1)*(x1-x3))/den

Network Visualization | 113

 # If the fraction is between 0 and 1 for both lines
 # then they cross each other
 if ua>0 and ua<1 and ub>0 and ub<1:
 total+=1
 return total

The domain for this search is the range for each coordinate. For this example, you can
assume that the network will be laid out in a 400 × 400 image, so the domain will be
a little less than that to allow for a slight margin. Add this line to the end of
socialnetwork.py:

domain=[(10,370)]*(len(people)*2)

Now you can try actually running some of the optimizations to find a solution where
very few lines cross. Import socialnetwork.py to your Python session and try a couple
of the optimization algorithms:

>>> import socialnetwork
>>> import optimization
>>> sol=optimization.randomoptimize(socialnetwork.domain,socialnetwork.crosscount)
>>> socialnetwork.crosscount(sol)
12
>>> sol=optimization.annealingoptimize(socialnetwork.domain,

socialnetwork.crosscount,step=50,cool=0.99)
>>> socialnetwork.crosscount(sol)
1
>>> sol
[324, 190, 241, 329, 298, 237, 117, 181, 88, 106, 56, 10, 296, 370, 11, 312]

Simulated annealing is likely to find a solution where very few of the lines cross, but
the list of coordinates is difficult to interpret. The next section will show you how to
automatically draw the network.

Drawing the Network
You’ll need the Python Imaging Library that was used in Chapter 3. If you haven’t
installed it yet, please consult Appendix A for instructions on getting the latest ver-
sion and installing it with your Python instance.

The code for drawing the network is quite straightforward. All the code has to do is
create an image, draw the links between the different people, and then draw the
nodes for the people. The people’s names are drawn afterward so that the lines don’t
cover them. Add this function to socialnetwork.py:

def drawnetwork(sol):
 # Create the image
 img=Image.new('RGB',(400,400),(255,255,255))
 draw=ImageDraw.Draw(img)

 # Create the position dict
 pos=dict([(people[i],(sol[i*2],sol[i*2+1])) for i in range(0,len(people))])

114 | Chapter 5: Optimization

 # Draw Links
 for (a,b) in links:
 draw.line((pos[a],pos[b]),fill=(255,0,0))

 # Draw people
 for n,p in pos.items():
 draw.text(p,n,(0,0,0))

 img.show()

To run this function in your Python session, just reload the module and call this
function on your solution:

>>> reload(socialnetwork)
>>> drawnetwork(sol)

Figure 5-9 shows one possible outcome of the optimization.

Of course, your solution will look different from this. Sometimes the solution will
look pretty wacky—since the objective is just to minimize the number of crossed
lines, the cost function never penalizes the layout for things like very tight angles
between the lines or two nodes being very close together. In this respect,

Figure 5-9. Layout resulting from a no-crossed-lines optimization

Miranda

Willy

Charlie

Joe

Augustus

Mike

Violet

Veruca

Other Possibilities | 115

optimization is like a genie who grants your wishes very literally, so it’s always
important to be clear about what you want. There is often a solution that fits the
original criteria of “best” but looks nothing like what you had in mind.

A simple way to penalize a solution that has put two nodes too close together is to cal-
culate the distance between the nodes and divide by a desired minimum distance. You
can add this code to the end of crosscount (before the return statement) to provide an
additional penalty.

 for i in range(len(people)):
 for j in range(i+1,len(people)):
 # Get the locations of the two nodes
 (x1,y1),(x2,y2)=loc[people[i]],loc[people[j]]

 # Find the distance between them
 dist=math.sqrt(math.pow(x1-x2,2)+math.pow(y1-y2,2))
 # Penalize any nodes closer than 50 pixels
 if dist<50:
 total+=(1.0-(dist/50.0))

This creates a higher cost for every pair of nodes that is less than 50 pixels apart, in
proportion to how close together they are. If they are in exactly the same place, the
penalty is 1. Run the optimization again to see if this results in a more spread-out
layout.

Other Possibilities
This chapter has shown three completely different applications for optimization
algorithms, but that’s only a small fraction of what is possible. As stated throughout
the chapter, the important steps are deciding on a representation and a cost func-
tion. If you can do these things, there’s a good chance you can use optimization to
find solutions to your problem.

An interesting activity might be to take a large group of people and divide them into
teams in which the skills of the members are evenly divided. In a trivia contest, it
might be desirable to create teams from a set of people so that each team has ade-
quate knowledge of sports, history, literature, and television. Another possibility is to
assign tasks in group projects by taking a combination of people’s skills into account.
Optimization can determine the best way to divide the tasks so that the task list is
completed in the shortest possible time.

Given a long list of web sites tagged with keywords, it might be interesting to find an
optimal group of web sites for a user-supplied set of keywords. The optimal group
would contain a set of web sites that don’t have many keywords in common with
each other but represent as many of the user-supplied keywords as possible.

116 | Chapter 5: Optimization

Exercises
1. Group travel cost function. Add total flight time as a cost equal to $0.50 per

minute on the plane. Next try adding a penalty of $20 for making anyone get to
the airport before 8 a.m.

2. Annealing starting points. The outcome of simulated annealing depends heavily
on the starting point. Build a new optimization function that does simulated
annealing from multiple starting solutions and returns the best one.

3. Genetic optimization stopping criteria. A function in this chapter runs the genetic
optimizer for a fixed number of iterations. Change it so that it stops when there
has been no improvement in any of the best solutions for 10 iterations.

4. Round-trip pricing. The function for getting flight data from Kayak right now only
looks for one-way flights. Prices are probably cheaper when buying round-trip
tickets. Modify the code to get round-trip prices, and modify the cost function to
use a price lookup for a particular pair of flights instead of just summing their
one-way prices.

5. Pairing students. Imagine if instead of listing dorm preferences, students had to
express their preferences for a roommate. How would you represent solutions to
pairing students? What would the cost function look like?

6. Line angle penalization. Add an additional cost to the network layout algorithm
cost function when the angle between two lines attached to the same person is
very small. (Hint: you can use the vector cross-product.)

117

Chapter 6 CHAPTER 6

Document Filtering6

This chapter will demonstrate how to classify documents based on their contents, a
very practical application of machine intelligence and one that is becoming more
widespread. Perhaps the most useful and well-known application of document filter-
ing is the elimination of spam. A big problem with the wide availability of email and
the extremely low cost of sending email messages is that anyone whose address gets
into the wrong hands is likely to receive unsolicited commercial email messages,
making it difficult for them to read the messages that are actually of interest.

The problem of spam does not just apply to email, of course. Web sites have gotten
more interactive over time, soliciting comments from users or asking them to create
original content, which has compounded the spam problem. Public message boards
like Yahoo! Groups and Usenet have long been victims of postings that are unrelated
to the board’s subject or that hawk dubious products. Blogs and Wikis are now
experiencing the same problem. When building an application that allows the general
public to contribute, you should always have a strategy for dealing with spam.

The algorithms described in this chapter are not specific to dealing with spam. Since
they solve the more general problem of learning to recognize whether a document
belongs in one category or another, they can be used for less unsavory purposes. One
example might be automatically dividing your inbox into social and work-related
email, based on the contents of the messages. Another possibility is identifying email
messages that request information and automatically forwarding them to the most
competent person to answer them. The example at the end of this chapter will
demonstrate automatically filtering entries from an RSS feed into different categories.

Filtering Spam
Early attempts to filter spam were all rule-based classifiers, where a person would
design a set of rules that was supposed to indicate whether or not a message was
spam. Rules typically included things like overuse of capital letters, words related to
pharmaceutical products, or particularly garish HTML colors. The problems with

118 | Chapter 6: Document Filtering

rule-based classifiers quickly became apparent—spammers learned all the rules and
stopped exhibiting the obvious behaviors to get around the filters, while people
whose parents never learned to turn off the Caps Lock key found their good email
messages being classified as spam.

The other problem with rule-based filters is that what can be considered spam varies
depending on where it’s being posted and for whom it is being written. Keywords
that would strongly indicate spam for one particular user, message board, or Wiki
may be quite normal for others. To solve this problem, this chapter will look at pro-
grams that learn, based on you telling them what is spam email and what isn’t, both
initially and as you receive more messages. By doing this, you can create separate
instances and datasets for individual users, groups, or sites that will each develop
their own ideas about what is spam and what isn’t.

Documents and Words
The classifier that you will be building needs features to use for classifying different
items. A feature is anything that you can determine as being either present or absent
in the item. When considering documents for classification, the items are the docu-
ments and the features are the words in the document. When using words as fea-
tures, the assumption is that some words are more likely to appear in spam than in
nonspam, which is the basic premise underlying most spam filters. Features don’t
have to be individual words, however; they can be word pairs or phrases or anything
else that can be classified as absent or present in a particular document.

Create a new file called docclass.py, and add a function called getwords to extract the
features from the text:

import re
import math

def getwords(doc):
 splitter=re.compile('\\W*')
 # Split the words by non-alpha characters
 words=[s.lower() for s in splitter.split(doc)
 if len(s)>2 and len(s)<20]

 # Return the unique set of words only
 return dict([(w,1) for w in words])

This function breaks up the text into words by dividing the text on any character
that isn’t a letter. This leaves only actual words, all converted to lowercase.

Determining which features to use is both very tricky and very important. The fea-
tures must be common enough that they appear frequently, but not so common that
they appear in every single document. In theory, the entire text of the document

Training the Classifier | 119

could be a feature, but that would almost certainly be useless unless you receive the
exact same email message over and over. At the other extreme, the features could be
individual characters, but since they would all likely appear in every email message,
they would do a poor job of separating wanted from unwanted documents. Even the
choice to use words as features poses questions of exactly how to divide words,
which punctuation to include, and whether header information should be included.

The other thing to consider when deciding on features is how well they will divide
the set of documents into the target categories. For example, the code for getwords
above reduces the total number of features by converting them to lowercase. This
means it will recognize that a capitalized word at the start of a sentence is the same
as when that word is all lowercase in the middle of a sentence—a good thing, since
words with different capitalization usually have the same meaning. However, this
function will completely miss the SHOUTING style used in many spam messages,
which may be vital for dividing the set into spam and nonspam. Another alternative
might be to have a feature that is deemed present if more than half the words are
uppercase.

As you can see, the choice of feature set involves many tradeoffs and is subject to
endless tweaking. For now, you can use the simple getwords function given; later in
the chapter, you’ll see some ideas for improving the extraction of features.

Training the Classifier
The classifiers discussed in this chapter learn how to classify a document by being
trained. Many of the other algorithms in this book, such as the neural network you
saw in Chapter 4, learn by reading examples of correct answers. The more examples
of documents and their correct classifications it sees, the better the classifier will get
at making predictions. The classifier is also specifically designed to start off very
uncertain and increase in certainty as it learns which features are important for mak-
ing a distinction.

The first thing you’ll need is a class to represent the classifier. This class will encap-
sulate what the classifier has learned so far. The advantage of structuring the module
this way is that you can instantiate multiple classifiers for different users, groups, or
queries, and train them differently to respond to a particular group’s needs. Create a
class called classifier in docclass.py:

class classifier:
 def __init_ _(self,getfeatures,filename=None):
 # Counts of feature/category combinations
 self.fc={}
 # Counts of documents in each category
 self.cc={}
 self.getfeatures=getfeatures

120 | Chapter 6: Document Filtering

The three instance variables are fc, cc, and getfeatures. The fc variable will store the
counts for different features in different classifications. For example:

{'python': {'bad': 0, 'good': 6}, 'the': {'bad': 3, 'good': 3}}

This indicates that the word “the” has appeared in documents classified as bad three
times, and in documents that were classified as good three times. The word “Python”
has only appeared in good documents.

The cc variable is a dictionary of how many times every classification has been used.
This is needed for the probability calculations that we’ll discuss shortly. The final
instance variable, getfeatures, is the function that will be used to extract the fea-
tures from the items being classified—in this example, it is the getwords function you
just defined.

The methods in the class won’t use the dictionaries directly because this restricts
potential options for storing the training data in a file or database. Create these
helper methods to increment and get the counts:

 # Increase the count of a feature/category pair
 def incf(self,f,cat):
 self.fc.setdefault(f,{})
 self.fc[f].setdefault(cat,0)
 self.fc[f][cat]+=1

 # Increase the count of a category
 def incc(self,cat):
 self.cc.setdefault(cat,0)
 self.cc[cat]+=1

 # The number of times a feature has appeared in a category
 def fcount(self,f,cat):
 if f in self.fc and cat in self.fc[f]:
 return float(self.fc[f][cat])
 return 0.0

 # The number of items in a category
 def catcount(self,cat):
 if cat in self.cc:
 return float(self.cc[cat])
 return 0

 # The total number of items
 def totalcount(self):
 return sum(self.cc.values())

 # The list of all categories
 def categories(self):
 return self.cc.keys()

Calculating Probabilities | 121

The train method takes an item (a document in this case) and a classification. It uses
the getfeatures function of the class to break the item into its separate features. It
then calls incf to increase the counts for this classification for every feature. Finally,
it increases the total count for this classification:

 def train(self,item,cat):
 features=self.getfeatures(item)
 # Increment the count for every feature with this category
 for f in features:
 self.incf(f,cat)

 # Increment the count for this category
 self.incc(cat)

You can check to see if your class is working properly by starting a new Python ses-
sion and importing this module:

$ python
>>> import docclass
>>> cl=docclass.classifier(docclass.getwords)
>>> cl.train('the quick brown fox jumps over the lazy dog','good')
>>> cl.train('make quick money in the online casino','bad')
>>> cl.fcount('quick','good')
1.0
>>> cl.fcount('quick','bad')
1.0

At this point, it’s useful to have a method to dump some sample training data into
the classifier so that you don’t have to train it manually every time you create it. Add
this function to the start of docclass.py:

def sampletrain(cl):
 cl.train('Nobody owns the water.','good')
 cl.train('the quick rabbit jumps fences','good')
 cl.train('buy pharmaceuticals now','bad')
 cl.train('make quick money at the online casino','bad')
 cl.train('the quick brown fox jumps','good')

Calculating Probabilities
You now have counts for how often an email message appears in each category, so
the next step is to convert these numbers into probabilities. A probability is a num-
ber between 0 and 1, indicating how likely an event is. In this case, you can calculate
the probability that a word is in a particular category by dividing the number of times
the word appears in a document in that category by the total number of documents
in that category.

Add a method called fprob to the classifier class:

 def fprob(self,f,cat):
 if self.catcount(cat)==0: return 0

122 | Chapter 6: Document Filtering

 # The total number of times this feature appeared in this
 # category divided by the total number of items in this category
 return self.fcount(f,cat)/self.catcount(cat)

This is called conditional probability, and is usually written as Pr(A | B) and spoken
“the probability of A given B.” In this example, the numbers you have now are
Pr(word | classification); that is, for a given classification you calculate the probabil-
ity that a particular word appears.

You can test this function in your Python session:

>>> reload(docclass)
<module 'docclass' from 'docclass.py'>
>>> cl=docclass.classifier(docclass.getwords)
>>> docclass.sampletrain(cl)
>>> cl.fprob('quick','good')
0.66666666666666663

You can see that the word “quick” appears in two of the three documents classified
as good, which means there’s a probability of Pr(quick | good) = 0.666 (a 2/3 chance)
that a good document will contain that word.

Starting with a Reasonable Guess
The fprob method gives an accurate result for the features and classifications it has
seen so far, but it has a slight problem—using only the information it has seen so far
makes it incredibly sensitive during early training and to words that appear very
rarely. In the sample training data, the word “money” only appears in one document
and is classified as bad because it is a casino ad. Since the word “money” is in one
bad document and no good ones, the probability that it will appear in the good cate-
gory using fprob is now 0. This is a bit extreme, since “money” might be a perfectly
neutral word that just happens to appear first in a bad document. It would be much
more realistic for the value to gradually approach zero as a word is found in more
and more documents with the same category.

To get around this, you’ll need to decide on an assumed probability, which will be
used when you have very little information about the feature in question. A good
number to start with is 0.5. You’ll also need to decide how much to weight the
assumed probability—a weight of 1 means the assumed probability is weighted the
same as one word. The weighted probability returns a weighted average of
getprobability and the assumed probability.

In the “money” example, the weighted probability for the word “money” starts at 0.5
for all categories. After the classifier is trained with one bad document and finds that
“money” fits into the bad category, its probability becomes 0.75 for bad. This is
because:

(weight*assumedprob + count*fprob)/(count+weight)
= (1*1.0+1*0.5)/(1.0 + 1.0)
= 0.75

A Naïve Classifier | 123

Add the method for weightedprob to your classifier class:

 def weightedprob(self,f,cat,prf,weight=1.0,ap=0.5):
 # Calculate current probability
 basicprob=prf(f,cat)

 # Count the number of times this feature has appeared in
 # all categories
 totals=sum([self.fcount(f,c) for c in self.categories()])

 # Calculate the weighted average
 bp=((weight*ap)+(totals*basicprob))/(weight+totals)
 return bp

You can now test the function in your Python session. Reload the module and rerun
the sampletrain method, since creating a new instance of the class will wipe out its
existing training:

>>> reload(docclass)
<module 'docclass' from 'docclass.pyc'>
>>> cl=docclass.classifier(docclass.getwords)
>>> docclass.sampletrain(cl)
>>> cl.weightedprob('money','good',cl.fprob)
0.25
>>> docclass.sampletrain(cl)
>>> cl.weightedprob('money','good',cl.fprob)
0.16666666666666666

As you can see, rerunning the sampletrain method makes the classifier even more
confident of the various word probabilities as they get pulled further from their
assumed probability.

The assumed probability of 0.5 was chosen simply because it is halfway between 0
and 1. However, it’s possible that you might have better background information
than that, even on a completely untrained classifier. For example, one person who
begins training a spam filter can use probabilities from other people’s already-trained
spam filters as the assumed probabilities. The user still gets a spam filter personal-
ized for him, but the filter is better able to handle words that it has come across very
infrequently.

A Naïve Classifier
Once you have the probabilities of a document in a category containing a particular
word, you need a way to combine the individual word probabilities to get the proba-
bility that an entire document belongs in a given category. This chapter will consider
two different classification methods. Both of them work in most situations, but they
vary slightly in their level of performance for specific tasks. The classifier covered in
this section is called a naïve Bayesian classifier.

124 | Chapter 6: Document Filtering

This method is called naïve because it assumes that the probabilities being combined
are independent of each other. That is, the probability of one word in the document
being in a specific category is unrelated to the probability of the other words being in
that category. This is actually a false assumption, since you’ll probably find that doc-
uments containing the word “casino” are much more likely to contain the word
“money” than documents about Python programming are.

This means that you can’t actually use the probability created by the naïve Bayesian
classifier as the actual probability that a document belongs in a category, because the
assumption of independence makes it inaccurate. However, you can compare the
results for different categories and see which one has the highest probability. In real
life, despite the underlying flawed assumption, this has proven to be a surprisingly
effective method for classifying documents.

Probability of a Whole Document
To use the naïve Bayesian classifier, you’ll first have to determine the probability of
an entire document being given a classification. As discussed earlier, you’re going to
assume the probabilities are independent, which means you can calculate the proba-
bility of all of them by multiplying them together.

For example, suppose you’ve noticed that the word “Python” appears in 20 percent
of your bad documents—Pr(Python | Bad) = 0.2—and that the word “casino”
appears in 80 percent of your bad documents (Pr(Casino | Bad) = 0.8). You would
then expect the independent probability of both words appearing in a bad docu-
ment—Pr(Python & Casino | Bad)—to be 0.8 × 0.2 = 0.16. From this you can see
that calculating the entire document probability is just a matter of multiplying
together all the probabilities of the individual words in that document.

In docclass.py, create a subclass of classifier called naivebayes, and create a docprob
method that extracts the features (words) and multiplies all their probabilities
together to get an overall probability:

class naivebayes(classifier):
 def docprob(self,item,cat):
 features=self.getfeatures(item)

 # Multiply the probabilities of all the features together
 p=1
 for f in features: p*=self.weightedprob(f,cat,self.fprob)
 return p

You now know how to calculate Pr(Document | Category), but this isn’t very useful
by itself. In order to classify documents, you really need Pr(Category | Document). In
other words, given a specific document, what’s the probability that it fits into this
category? Fortunately, a British mathematician named Thomas Bayes figured out
how to do this about 250 years ago.

A Naïve Classifier | 125

A Quick Introduction to Bayes’ Theorem
Bayes’ Theorem is a way of flipping around conditional probabilities. It’s usually
written as:

Pr(A | B) = Pr(B | A) x Pr(A)/Pr(B)

In the example, this becomes:

Pr(Category | Document) = Pr(Document | Category) x Pr(Category) /
Pr(Document)

The previous section showed how to calculate Pr(Document | Category), but what
about the other two values in the equation? Well, Pr(Category) is the probability that
a randomly selected document will be in this category, so it’s just the number of doc-
uments in the category divided by the total number of documents.

As for Pr(Document), you could calculate it, but that would be unnecessary effort.
Remember that the results of this calculation will not be used as a real probability.
Instead, the probability for each category will be calculated separately, and then all
the results will be compared. Since Pr(Document) is the same no matter what cate-
gory the calculation is being done for, it will scale the results by the exact same
amount, so you can safely ignore that term.

The prob method calculates the probability of the category, and returns the product
of Pr(Document | Category) and Pr(Category). Add this method to the naivebayes
class:

 def prob(self,item,cat):
 catprob=self.catcount(cat)/self.totalcount()
 docprob=self.docprob(item,cat)
 return docprob*catprob

Try this function in Python to see how the numbers vary for different strings and
categories:

>>> reload(docclass)
<module 'docclass' from 'docclass.pyc'>
>>> cl=docclass.naivebayes(docclass.getwords)
>>> docclass.sampletrain(cl)
>>> cl.prob('quick rabbit','good')
0.15624999999999997
>>> cl.prob('quick rabbit','bad')
0.050000000000000003

Based on the training data, the phrase “quick rabbit” is considered a much better
candidate for the good category than the bad.

126 | Chapter 6: Document Filtering

Choosing a Category
The final step in building the naïve Bayes classifier is actually deciding in which
category a new item belongs. The simplest approach would be to calculate the proba-
bility of this item being in each of the different categories and to choose the category
with the best probability. If you were just trying to decide the best place to put some-
thing, this would be a feasible strategy, but in many applications the categories can’t
be considered equal, and in some applications it’s better for the classifier to admit
that it doesn’t know the answer than to decide that the answer is the category with a
marginally higher probability.

In the case of spam filtering, it’s much more important to avoid having good email
messages classified as spam than it is to catch every single spam message. The occa-
sional spam message in your inbox can be tolerated, but an important email that is
automatically filtered to junk mail might get overlooked completely. If you have to
search through your junk mail folder for important email messages, there’s really no
point in having a spam filter.

To deal with this problem, you can set up a minimum threshold for each category.
For a new item to be classified into a particular category, its probability must be a
specified amount larger than the probability for any other category. This specified
amount is the threshold. For spam filtering, the threshold to be filtered to bad could
be 3, so that the probability for bad would have to be 3 times higher than the proba-
bility for good. The threshold for good could be set to 1, so anything would be good
if the probability were at all better than for the bad category. Any message where the
probability for bad is higher, but not 3 times higher, would be classified as unknown.

To set up these thresholds, add a new instance variable to classifier by modifying
the initialization method:

 def __init_ _(self,getfeatures):
 classifier.__init_ _(self,getfeatures)
 self.thresholds={}

Add some simple methods to set and get the values, returning 1.0 as the default:

 def setthreshold(self,cat,t):
 self.thresholds[cat]=t

 def getthreshold(self,cat):
 if cat not in self.thresholds: return 1.0
 return self.thresholds[cat]

Now you can build the classify method. It will calculate the probability for each
category, and will determine which one is the largest and whether it exceeds the next
largest by more than its threshold. If none of the categories can accomplish this, the
method just returns the default values. Add this method to classifier:

 def classify(self,item,default=None):
 probs={}
 # Find the category with the highest probability

The Fisher Method | 127

 max=0.0
 for cat in self.categories():
 probs[cat]=self.prob(item,cat)
 if probs[cat]>max:
 max=probs[cat]
 best=cat

 # Make sure the probability exceeds threshold*next best
 for cat in probs:
 if cat==best: continue
 if probs[cat]*self.getthreshold(best)>probs[best]: return default
 return best

You’re done! You’ve now built a complete system for classifying documents. This
can also be extended to classify other things by creating different methods for getting
the features. Try out the classifier in your Python session:

>>> reload(docclass)
<module 'docclass' from 'docclass.pyc'>
>>> cl=docclass.naivebayes(docclass.getwords)
>>> docclass.sampletrain(cl)
>>> cl.classify('quick rabbit',default='unknown')
'good'
>>> cl.classify('quick money',default='unknown')
'bad'
>>> cl.setthreshold('bad',3.0)
>>> cl.classify('quick money',default='unknown')
'unknown'
>>> for i in range(10): docclass.sampletrain(cl)
...
>>> cl.classify('quick money',default='unknown')
'bad'

Of course, you can alter the thresholds and see how the results are affected. Some
spam-filtering plug-ins give users control over the thresholds so they can be adjusted
if they’re letting too much spam into the inbox or categorizing good messages as
spam. The thresholds will also be different for other applications that involve docu-
ment filtering; sometimes all categories will be equal, or filtering to “unknown” will
be unacceptable.

The Fisher Method
The Fisher method, named for R. A. Fisher, is an alternative method that’s been
shown to give very accurate results, particularly for spam filtering. This is the
method used by SpamBayes, an Outlook plug-in written in Python. Unlike the naïve
Bayesian filter, which uses the feature probabilities to create a whole document
probability, the Fisher method calculates the probability of a category for each
feature in the document, then combines the probabilities and tests to see if the set of

128 | Chapter 6: Document Filtering

probabilities is more or less likely than a random set. This method also returns a
probability for each category that can be compared to the others. Although this is a
more complex method, it is worth learning because it allows much greater flexibility
when choosing cutoffs for categorization.

Category Probabilities for Features
With the naïve Bayesian filter discussed earlier, you combined all of the Pr(feature |
category) results to get an overall document probability, and then flipped it around at
the end. In this section, you’ll begin by calculating how likely it is that a document
fits into a category given that a particular feature is in that document—that is,
Pr(category | feature). If the word “casino” appears in 500 documents, and 499 of
those are in the bad category, “casino” will get a score very close to 1 for bad.

The normal way to calculate Pr(category | feature) would be:

(number of documents in this category with the feature) / (total number of
documents with the feature)

This calculation doesn’t take into account the possibility that you may have received
far more documents in one category than in another. If you have many good docu-
ments and only a few bad ones, a word that appears in all your bad documents will
likely have a high probability for bad, even though the message is just as likely to be
good. The methods perform better when they assume that in the future you will
receive equal numbers of documents in each category, because this allows them to
take advantage of the features that distinguish the categories.

To perform this normalization, the method calculates three things:

• clf = Pr(feature | category) for this category

• freqsum = Sum of Pr(feature | category) for all the categories

• cprob = clf / (clf+nclf)

Create a new subclass of classifier called fisherclassifier in docclass.py and add
this method:

class fisherclassifier(classifier):
 def cprob(self,f,cat):
 # The frequency of this feature in this category
 clf=self.fprob(f,cat)
 if clf==0: return 0

 # The frequency of this feature in all the categories
 freqsum=sum([self.fprob(f,c) for c in self.categories()])

 # The probability is the frequency in this category divided by
 # the overall frequency
 p=clf/(freqsum)

 return p

The Fisher Method | 129

This function will return the probability that an item with the specified feature
belongs in the specified category, assuming there will be an equal number of items in
each category. You can see what these numbers actually look like in your Python
session:

>>> reload(docclass)
>>> cl=docclass.fisherclassifier(docclass.getwords)
>>> docclass.sampletrain(cl)
>>> cl.cprob('quick','good')
0.57142857142857151
>>> cl.cprob('money','bad')
1.0

This method shows us that documents containing the word “casino” have a 0.9
probability of being spam. This matches the training data, but again it suffers from
the problem of only having been exposed to the words a small number of times, and
it might be greatly overestimating the probabilities. So, like last time, it’s better to use
the weighted probability, which starts all probabilities at 0.5 and allows them to
move toward other probabilities as the class is trained.

>>> cl.weightedprob('money','bad',cl.cprob)
0.75

Combining the Probabilities
You now have to combine the probabilities of the individual features to come up with
an overall probability. In theory, you can just multiply them all together, which gives
you a probability that you can use to compare this category with other categories. Of
course, since the features aren’t independent, this won’t be a real probability, but it
works much like the Bayesian classifier that you built in the previous section. The
value returned by the Fisher method is a much better estimate of probability, which
can be very useful when reporting results or deciding cutoffs.

The Fisher method involves multiplying all the probabilities together, then taking the
natural log (math.log in Python), and then multiplying the result by –2. Add this
method to fisherclassifier to do this calculation:

 def fisherprob(self,item,cat):
 # Multiply all the probabilities together
 p=1
 features=self.getfeatures(item)
 for f in features:
 p*=(self.weightedprob(f,cat,self.cprob))

 # Take the natural log and multiply by -2
 fscore=-2*math.log(p)

 # Use the inverse chi2 function to get a probability
 return self.invchi2(fscore,len(features)*2)

130 | Chapter 6: Document Filtering

Fisher showed that if the probabilities were independent and random, the result of
this calculation would fit a chi-squared distribution. You would expect an item that
doesn’t belong in a particular category to contain words of varying feature probabili-
ties for that category (which would appear somewhat random), and an item that
does belong in that category to have many features with high probabilities. By feed-
ing the result of the Fisher calculation to the inverse chi-square function, you get the
probability that a random set of probabilities would return such a high number.

Add the inverse chi-square function to the fisherclassifier class:

 def invchi2(self,chi,df):
 m = chi / 2.0
 sum = term = math.exp(-m)
 for i in range(1, df//2):
 term *= m / i
 sum += term
 return min(sum, 1.0)

Again, you can try this function in your Python session and see how the Fisher
method scores some example strings:

>>> reload(docclass)
>>> cl=docclass.fisherclassifier(docclass.getwords)
>>> docclass.sampletrain(cl)
>>> cl.cprob('quick','good')
0.57142857142857151
>>> cl.fisherprob('quick rabbit','good')
0.78013986588957995
>>> cl.fisherprob('quick rabbit','bad')
0.35633596283335256

As you can see, these results are always between 0 and 1. They are, on their own, a
good measure of how well a document fits into a category. Because of this, the classi-
fier itself can be more sophisticated.

Classifying Items
You can use the values returned by fisherprob to determine the classification. Rather
than having multiplication thresholds like the Bayesian filter, you can specify the
lower bounds for each classification. The classifier will then return the highest value
that’s within its bounds. In the spam filter, you might set the minimum for the bad
classification quite high, perhaps 0.6. You might set the minimum for the good clas-
sification a lot lower, perhaps 0.2. This would minimize the chance of good email
messages being classified as bad, and allow a few spam email messages into the
inbox. Anything that scores lower than 0.2 for good and lower than 0.6 for bad
would be classified as unknown.

The Fisher Method | 131

Create an init method in fisherclassifier with another variable to store the cutoffs:

 def __init_ _(self,getfeatures):
 classifier.__init_ _(self,getfeatures)
 self.minimums={}

Add a couple of methods for getting and setting these values, with a default value of 0:

 def setminimum(self,cat,min):
 self.minimums[cat]=min

 def getminimum(self,cat):
 if cat not in self.minimums: return 0
 return self.minimums[cat]

Finally, add a method to calculate the probabilities for each category and determine
the best result that exceeds the specified minimum:

 def classify(self,item,default=None):
 # Loop through looking for the best result
 best=default
 max=0.0
 for c in self.categories():
 p=self.fisherprob(item,c)
 # Make sure it exceeds its minimum
 if p>self.getminimum(c) and p>max:
 best=c
 max=p
 return best

Now you can try the classifier on the test data using the Fisher scoring method. Enter
the following in your Python session:

>>> reload(docclass)
<module 'docclass' from 'docclass.py'>
>>> docclass.sampletrain(cl)
>>> cl.classify('quick rabbit')
'good'
>>> cl.classify('quick money')
'bad'
>>> cl.setminimum('bad',0.8)
>>> cl.classify('quick money')
'good'
>>> cl.setminimum('good',0.4)
>>> cl.classify('quick money')
>>>

The results are similar to those of the naïve Bayesian classifier. The Fisher classifier is
believed to perform better for spam filtering in practice; however, this is unlikely to
be apparent with such a small training set. The classifier you should use depends on
your application, and there’s no easy way to predict in advance which will perform
better or what cutoffs you should use. Fortunately, the code given here should make
it very easy to experiment with the two algorithms and with different settings.

132 | Chapter 6: Document Filtering

Persisting the Trained Classifiers
In any real-world application, it’s unlikely that all the training and classification will
be done entirely in one session. If the classifier is used as part of a web-based applica-
tion, it will probably have to save any training that the user does while using the
application, and then restore the training data the next time the user logs on.

Using SQLite
This section will show you how to persist the training information for your classifier
using a database, in this case, SQLite. If your application involves many users con-
currently training and querying the classifier, it’s probably wise to store the counts in
a database. SQLite is the same database we used in Chapter 4. You’ll need to
download and install pysqlite if you haven’t already; details on how to do this are in
Appendix A. Accessing SQLite from Python is similar to accessing other databases,
so this should adapt quite easily.

To import pysqlite, add this statement to the top of docclass.py:

from pysqlite2 import dbapi2 as sqlite

The code in this section will replace the dictionary structures currently in the
classifier class with a persistent data store. Add a classifier method that opens a
database for this classifier and creates tables if necessary. The tables match the struc-
ture of the dictionaries that they replace:

 def setdb(self,dbfile):
 self.con=sqlite.connect(dbfile)
 self.con.execute('create table if not exists fc(feature,category,count)')
 self.con.execute('create table if not exists cc(category,count)')

If you’re planning to adapt this for another database, you may need to modify the
create table statements to work with the system you’re using.

You’ll have to replace all the helper methods for getting and incrementing the
counts:

 def incf(self,f,cat):
 count=self.fcount(f,cat)
 if count==0:
 self.con.execute("insert into fc values ('%s','%s',1)"
 % (f,cat))
 else:
 self.con.execute(
 "update fc set count=%d where feature='%s' and category='%s'"
 % (count+1,f,cat))

 def fcount(self,f,cat):
 res=self.con.execute(
 'select count from fc where feature="%s" and category="%s"'
 %(f,cat)).fetchone()

Persisting the Trained Classifiers | 133

 if res==None: return 0
 else: return float(res[0])

 def incc(self,cat):
 count=self.catcount(cat)
 if count==0:
 self.con.execute("insert into cc values ('%s',1)" % (cat))
 else:
 self.con.execute("update cc set count=%d where category='%s'"
 % (count+1,cat))

 def catcount(self,cat):
 res=self.con.execute('select count from cc where category="%s"'
 %(cat)).fetchone()
 if res==None: return 0
 else: return float(res[0])

The methods that get the list of all the categories and the total number of documents
should also be replaced:

 def categories(self):
 cur=self.con.execute('select category from cc');
 return [d[0] for d in cur]

 def totalcount(self):
 res=self.con.execute('select sum(count) from cc').fetchone();
 if res==None: return 0
 return res[0]

Finally, you’ll need to add a commit after training so that the data is stored after all
the counts have been updated. Add this line to the end of the train method in
classifier:

 self.con.commit()

That’s it! After you initialize a classifier, you need to call the setdb method with the
name of a database file. All training will be automatically stored and can be used by
anyone else. You can even use the training from one type of classifier to do classifica-
tions in another type:

>>> reload(docclass)
<module 'docclass' from 'docclass.py'>
>>> cl=docclass.fisherclassifier(docclass.getwords)
>>> cl.setdb('test1.db')
>>> docclass.sampletrain(cl)
>>> cl2=docclass.naivebayes(docclass.getwords)
>>> cl2.setdb('test1.db')
>>> cl2.classify('quick money')
u'bad'

134 | Chapter 6: Document Filtering

Filtering Blog Feeds
To try out the classifier on real data and show the different ways it can be used, you
can apply it to entries from a blog or other RSS feed. To do this, you’ll need to get
the Universal Feed Parser, which we used in Chapter 3. If you haven’t already down-
loaded it, you can get it from http://feedparser.org. More information on installing
the Feed Parser is given in Appendix A.

Although a blog will not necessarily contain spam in its entries, many blogs contain
some articles that interest you and some that don’t. This can be because you only
want to read articles in a certain category or by a certain writer, but it’s often more
complicated than that. Again, you can set up specific rules for things that do and do
not interest you—maybe you read a gadget blog and are not interested in entries that
contain the word “cell phone”—but it’s much less work to use the classifier you’ve
built to figure out these rules for you.

A benefit of classifying entries in an RSS feed is that if you use a blog-searching tool
like Google Blog Search, you can set up the results of your searches in a feed reader.
Many people do this to track products, things that interest them, even their own
names. You’ll find, though, that spam-based or useless blogs trying to make money
from blog traffic can also appear in these searches.

For this example, you can use any feed you like, although many feeds have too few
entries to do any effective training. This particular example uses the results of a Goo-
gle Blog Search for the word “Python” in RSS format. You can download these
results from http://kiwitobes.com/feeds/python_search.xml.

Create a new file called feedfilter.py and add the following code:

import feedparser
import re

Takes a filename of URL of a blog feed and classifies the entries
def read(feed,classifier):
 # Get feed entries and loop over them
 f=feedparser.parse(feed)
 for entry in f['entries']:
 print
 print '-----'
 # Print the contents of the entry
 print 'Title: '+entry['title'].encode('utf-8')
 print 'Publisher: '+entry['publisher'].encode('utf-8')
 print
 print entry['summary'].encode('utf-8')

 # Combine all the text to create one item for the classifier
 fulltext='%s\n%s\n%s' % (entry['title'],entry['publisher'],entry['summary'])

http://feedparser.org
http://kiwitobes.com/feeds/python_search.xml

Filtering Blog Feeds | 135

 # Print the best guess at the current category
 print 'Guess: '+str(classifier.classify(fulltext))

 # Ask the user to specify the correct category and train on that
 cl=raw_input('Enter category: ')
 classifier.train(fulltext,cl)

This function loops over all the entries and uses the classifier to get a best guess at
the classification. It shows this best guess to the user and then asks what the correct
category should have been. When you run this with a new classifier, the guesses will
at first be random, but they should improve over time.

The classifier you have built is completely generic. Although spam filtering was used
as an example to help explain what each piece of code does, the categories can be
anything. If you’re using python_search.xml, you might have four categories—one
for the programming language, one for Monty Python, one for python snakes, and
one for everything else. Try running the interactive filter in your Python session by
setting up a classifier and passing it to feedfilter:

>>> import feedfilter
>>> cl=docclass.fisherclassifier(docclass.getwords)
>>> cl.setdb('python_feed.db') # Only if you implemented SQLite
>>> feedfilter.read('python_search.xml',cl)

Title: My new baby boy!
Publisher: Shetan Noir, the zombie belly dancer! - MySpace Blog

This is my new baby, Anthem. He is a 3 and half month old ball python,
orange shaded normal pattern. I have held him about 5 times since I brought him
home tonight at 8:00pm...
Guess: None
Enter category: snake

Title: If you need a laugh...
Publisher: Kate's space

Even does 'funny walks' from Monty Python. He talks about all the ol'
Guess: snake
Enter category: monty

Title: And another one checked off the list..New pix comment ppl
Publisher: And Python Guru - MySpace Blog

Now the one of a kind NERD bred Carplot male is in our possesion. His name is Broken
(not because he is sterile) lol But check out the pic and leave one
Guess: snake
Enter category: snake

136 | Chapter 6: Document Filtering

You’ll see the guesses improving over time. There aren’t many samples for snakes, so
the classifier often gets them wrong, especially since they are further divided into pet
snakes and fashion-related posts. After you’ve run through the training, you can get
probabilities for a specific feature—both the probability of a word given a category
and the probability of a category given a word:

>>> cl.cprob('python','prog')
0.33333333333333331
>>> cl.cprob('python','snake')
0.33333333333333331
>>> cl.cprob('python','monty')
0.33333333333333331
>>> cl.cprob('eric','monty')
1.0
>>> cl.fprob('eric','monty')
0.25

The probabilities for the word “python” are evenly divided, since every entry con-
tains that word. The word “Eric” occurs in 25 percent of entries related to Monty
Python and does not occur at all in other entries. Thus, the probability of the word
given the category is 0.25, and the probability for the category given the word is 1.0.

Improving Feature Detection
In all the examples so far, the function for creating the list of features uses just a sim-
ple nonalphanumeric split to break up the words. The function also converts all
words to lowercase, so there’s no way to detect the overuse of uppercase words.
There are several different ways this can be improved:

• Without actually making uppercase and lowercase tokens completely distinct,
use the fact that there are many uppercase words as a feature.

• Use sets of words in addition to individual words.

• Capture more metainformation, such as who sent an email message or what cat-
egory a blog entry was posted under, and annotate it as metainformation.

• Keep URLs and numbers intact.

Remember that it’s not simply a matter of making the features more specific. Fea-
tures have to occur in multiple documents for them to be of any use to the classifier.

The classifier class will take any function as getfeatures and run it on the items
passed in, expecting a list or dictionary of all the features for that item to be
returned. Because it is so generic, you can easily create a function that works on
types more complicated than just strings. For example, when classifying entries in a
blog feed, you can use a function that takes the whole entry instead of the extracted
text and annotates where the different words come from. You can also pull out word
pairs from the body of the text and only the individual words from the subject. It’s

Improving Feature Detection | 137

also probably pointless to tokenize the creator field, since the postings of someone
named “John Smith” will not likely tell you anything about the postings of someone
else with the first name John.

Add this new feature-extraction function to feedfilter.py. Notice that it expects a feed
entry and not a string as its parameter:

def entryfeatures(entry):
 splitter=re.compile('\\W*')
 f={}

 # Extract the title words and annotate
 titlewords=[s.lower() for s in splitter.split(entry['title'])
 if len(s)>2 and len(s)<20]
 for w in titlewords: f['Title:'+w]=1

 # Extract the summary words
 summarywords=[s.lower() for s in splitter.split(entry['summary'])
 if len(s)>2 and len(s)<20]

 # Count uppercase words
 uc=0
 for i in range(len(summarywords)):
 w=summarywords[i]
 f[w]=1
 if w.isupper(): uc+=1

 # Get word pairs in summary as features
 if i<len(summarywords)-1:
 twowords=' '.join(summarywords[i:i+1])
 f[twowords]=1

 # Keep creator and publisher whole
 f['Publisher:'+entry['publisher']]=1

 # UPPERCASE is a virtual word flagging too much shouting
 if float(uc)/len(summarywords)>0.3: f['UPPERCASE']=1

 return f

This function extracts the words from the title and the summary, just like getwords
did earlier. It marks all the words in the title as such and adds them as features. The
words in the summary are added as features, and then pairs of consecutive words are
added as well. The function adds the creator and publisher as features without divid-
ing them up, and finally, it counts the number of words in the summary that are
uppercase. If more than 30 percent of the words are uppercase, the function adds an
additional feature called UPPERCASE to the set. Unlike a rule that says uppercase
words mean a particular thing, this is just an additional feature that the classifier can
use for training—in some cases, it may decide it’s completely useless to distinguish
document categories.

138 | Chapter 6: Document Filtering

If you want to use this new version with filterfeed, you’ll have to change the func-
tion to pass the entries to the classifier rather than to fulltext. Just change the end to:

 # Print the best guess at the current category
 print 'Guess: '+str(classifier.classify(entry))

 # Ask the user to specify the correct category and train on that
 cl=raw_input('Enter category: ')
 classifier.train(entry,cl)

You can then initialize the classifier to use entryfeatures as its feature-extraction
function:

>>> reload(feedfilter)
<module 'feedfilter' from 'feedfilter.py'>
>>> cl=docclass.fisherclassifier(feedfilter.entryfeatures)
>>> cl.setdb('python_feed.db') # Only if using the DB version
>>> feedfilter.read('python_search.xml',cl)

There’s a lot more you can do with features. The basic framework you’ve built
allows you to define a function for extracting features and set up the classifier to use
the function. It will classify any object you pass to it as long as the feature-extraction
function you specify can return a set of features from the object.

Using Akismet
Akismet is a slight detour from the study of text-classification algorithms, but for a
specific class of applications, it may solve your spam-filtering needs with minimal
effort and eliminate the need for you to build your own classifier.

Akismet started out as a WordPress plug-in that allowed people to report spam com-
ments posted on their blogs, and to filter new comments based on their similarity to
spam reported by other people. Now the API is open and you can query Akismet
with any string to find out if Akismet thinks the string is spam.

The first thing you’ll need is an Akismet API key, which you can get at http://akismet.
com. These keys are free for personal use and there are several options available for
commercial use. The Akismet API is called with regular HTTP requests, and librar-
ies have been written for various languages. The one used in this section is available
at http://kemayo.wordpress.com/2005/12/02/akismet-py. Download akismet.py and
put it in your code directory or in your Python Libraries directory.

Using the API is very simple. Create a new file called akismettest.py and add this
function:

import akismet

defaultkey = "YOURKEYHERE"
pageurl="http://yoururlhere.com"

http://akismet.com
http://akismet.com
http://kemayo.wordpress.com/2005/12/02/akismet-py

Alternative Methods | 139

defaultagent="Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.0.7) "
defaultagent+="Gecko/20060909 Firefox/1.5.0.7"

def isspam(comment,author,ipaddress,
 agent=defaultagent,
 apikey=defaultkey):
 try:
 valid = akismet.verify_key(apikey,pageurl)
 if valid:
 return akismet.comment_check(apikey,pageurl,
 ipaddress,agent,comment_content=comment,
 comment_author_email=author,comment_type="comment")
 else:
 print 'Invalid key'
 return False
 except akismet.AkismetError, e:
 print e.response, e.statuscode
 return False

You now have a method you can call with any string to see if it is similar to those in
blog comments. Try it in your Python session:

>>> import akismettest
>>> msg='Make money fast! Online Casino!'
>>> akismettest.isspam(msg,'spammer@spam.com','127.0.0.1')
True

Experiment with different usernames, agents, and IP addresses to see how the results
vary.

Because Akismet is primarily used for spam comments posted on blogs, it may not
perform well on other types of documents, such as email messages. Also, unlike the
classifier, it doesn’t allow any tweaking of parameters, nor does it let you see the
calculations it uses to come up with the answer. It is, however, very accurate for
spam-comment filtering, and it’s worth trying on your applications if you are receiv-
ing a similar kind of spam because Akismet has a far larger collection of documents
for comparison than you are likely to have gathered.

Alternative Methods
Both of the classifiers built in this chapter are examples of supervised learning
methods, methods that are trained with correct results and gradually get better at
making predictions. The artificial neural network described in Chapter 4 for weight-
ing search results for ranking purposes was another example of supervised learning.
That neural network can be adapted to work on the same problems in this chapter
by using the features as inputs and having outputs representing each of the possible
classifications. Likewise, support vector machines, which are described in Chapter 9,
can be applied to the problems in this chapter.

140 | Chapter 6: Document Filtering

The reason Bayesian classifiers are often used for document classification is that they
require far less computing power than other methods do. An email message might
have hundreds or even thousands of words in it, and simply updating the counts
takes vastly less memory and processor cycles than training a neural network of that
size does; as shown, it can be done entirely within a database. Depending on the
speed required for training and querying, and on the environment in which it is run,
a neural network may be a viable alternative. The complexity of a neural network
also brings with it a lack of interpretability; in this chapter you were able to look at
the word probabilities and see exactly how much they contribute to the final score,
while the connection strengths between the neurons in a network has no equally
simple interpretation.

On the other hand, neural networks and support-vector machines have one big
advantage over the classifiers presented in this chapter: they can capture more
complex relationships between the input features. In a Bayesian classifier, every
feature has a probability for each category, and you combine the probabilities to get
an overall likelihood. In a neural network, the probability of a feature can change
depending on the presence or absence of other features. It may be that you’re trying
to block online-casino spam but you’re also interested in horse betting, in which case
the word “casino” is bad unless the word “horse” is somewhere else in the email
message. Naïve Bayesian classifiers cannot capture this interdependence, and neural
networks can.

Exercises
1. Varying assumed probabilities. Change the classifier class so it supports differ-

ent assumed probabilities for different features. Change the init method so that
it will take another classifier and start with a better guess than 0.5 for the
assumed probabilities.

2. Calculate Pr(Document). In the naïve Bayesian classifier, the calculation of
Pr(Document) was skipped since it wasn’t required to compare the probabilities.
In cases where the features are independent, it can actually be used to calculate
the overall probability. How would you calculate Pr(Document)?

3. A POP-3 email filter. Python comes with a library called poplib for downloading
email messages. Write a script that downloads email messages from a server and
attempts to classify them. What are the different properties of an email message,
and how might you build a feature-extraction function to take advantage of
these?

4. Arbitrary phrase length. This chapter showed you how to extract word pairs as
well as individual words. Make the feature extraction configurable to extract up
to a specified number of words as a single feature.

Exercises | 141

5. Preserving IP addresses. IP addresses, phone numbers, and other numerical infor-
mation can be helpful in identifying spam. Modify the feature-extraction
function to return these items as features. (IP addresses have periods embedded
in them, but you still need to get rid of the periods between sentences.)

6. Other virtual features. There are many virtual features like UPPERCASE that can
be useful in classifying documents. Documents of excessive length or with a pre-
ponderance of long words may also be clues. Implement these as features. Can
you think of any others?

7. Neural network classifier. Modify the neural network from Chapter 4 to be used
for document classification. How do its results compare? Write a program that
classifies and trains on documents thousands of times. Time how long it takes
with each of the algorithms. How do they compare?

142

Chapter 7CHAPTER 7

Modeling with Decision Trees 7

You’ve now seen a few different automatic classifiers, and this chapter will expand
on them by introducing a very useful method called decision tree learning. Unlike
most other classifiers, the models produced by decision trees are easy to interpret—
the list of numbers in a Bayesian classifier will tell you how important each word is,
but you really have to do the calculation to know what the outcome will be. A neural
network is even more difficult to interpret, since the weight of the connection
between two neurons has very little meaning on its own. You can understand the
reasoning process of a decision tree just by looking at it, and you can even convert it
to a simple series of if-then statements.

This chapter will cover three different examples that employ decision trees. The first
shows how to predict which of a site’s users are likely to pay for premium access.
Many online applications that are priced by subscription or on a per-use basis offer
users a way to try the applications before spending money. In the case of subscrip-
tions, the sites usually offer a time-limited free trial or a feature-limited free version.
Sites that employ per-use pricing may offer a free session or similar incentive.

The other examples, covered later in the chapter, will use decision trees to model
housing prices and “hotness.”

Predicting Signups
Sometimes when a high-traffic site links to a new application that offers free
accounts and subscription accounts, the application will get thousands of new users.
Many of these users are driven by curiosity and are not really looking for that
particular type of application, so there is a very low likelihood that they will become
paying customers. This makes it difficult to distinguish and follow up with likely
customers, so many sites resort to mass-emailing everyone who has signed up, rather
than using a more targeted approach.

Predicting Signups | 143

To help with this problem, it would be useful to be able to predict the likelihood that
a user will become a paying customer. You know by now that you can use a Bayesian
classifier or neural network to do this. However, clarity is very important in this
case—if you know the factors that indicate a user will become a customer, you can
use that information to guide an advertising strategy, to make certain aspects of the
site more accessible, or to use other strategies that will help increase the number of
paying customers.

For this example, imagine an online application that offers a free trial. Users sign up
for the trial and use the site for a certain number of days, after which they can choose
to upgrade to a basic or premium service. As users sign up for the free trial, informa-
tion about them is collected, and at the end of the trial, the site owners note which
users chose to become paying customers.

To minimize annoyance for users and sign them up as quickly as possible, the site
doesn’t ask them a lot of questions about themselves—instead, it collects information
from the server logs, such as the site that referred them, their geographical location,
how many pages they viewed before signing up, and so on. If you collect the data and
put it in a table, it might look like Table 7-1.

Arrange the data in a list of rows, with each row being a list of columns. The final
column in each row indicates whether or not the user signed up; this Service column
is the value you want to be able to predict. Create a new file called treepredict.py to
work with throughout this chapter. If you’d like to enter the data manually, add this
to the top of the file:

Table 7-1. User behavior and final purchase decision for a web site

Referrer Location Read FAQ Pages viewed Service chosen

Slashdot USA Yes 18 None

Google France Yes 23 Premium

Digg USA Yes 24 Basic

Kiwitobes France Yes 23 Basic

Google UK No 21 Premium

(direct) New Zealand No 12 None

(direct) UK No 21 Basic

Google USA No 24 Premium

Slashdot France Yes 19 None

Digg USA No 18 None

Google UK No 18 None

Kiwitobes UK No 19 None

Digg New Zealand Yes 12 Basic

Google UK Yes 18 Basic

Kiwitobes France Yes 19 Basic

144 | Chapter 7: Modeling with Decision Trees

my_data=[['slashdot','USA','yes',18,'None'],
 ['google','France','yes',23,'Premium'],
 ['digg','USA','yes',24,'Basic'],
 ['kiwitobes','France','yes',23,'Basic'],
 ['google','UK','no',21,'Premium'],
 ['(direct)','New Zealand','no',12,'None'],
 ['(direct)','UK','no',21,'Basic'],
 ['google','USA','no',24,'Premium'],
 ['slashdot','France','yes',19,'None'],
 ['digg','USA','no',18,'None'],
 ['google','UK','no',18,'None'],
 ['kiwitobes','UK','no',19,'None'],
 ['digg','New Zealand','yes',12,'Basic'],
 ['slashdot','UK','no',21,'None'],
 ['google','UK','yes',18,'Basic'],
 ['kiwitobes','France','yes',19,'Basic']]

If you’d prefer to download the dataset, it’s available at http://kiwitobes.com/tree/
decision_tree_example.txt.

To load in the file, add this line to the top of treepredict.py:

my_data=[line.split('\t') for line in file('decision_tree_example.txt')]

You now have information about users’ locations, where they connected from, and
how much time they spent on your site before signing up; you just need a way to fill
in the Service column with a good guess.

Introducing Decision Trees
Decision trees are one of the simpler machine-learning methods. They are a com-
pletely transparent method of classifying observations, which, after training, look
like a series of if-then statements arranged into a tree. Figure 7-1 shows an example
of a decision tree for classifying fruit.

Once you have a decision tree, it’s quite easy to see how it makes all of its decisions.
Just follow the path down the tree that answers each question correctly and you’ll
eventually arrive at an answer. Tracing back from the node where you ended up gives
a rationale for the final classification.

This chapter will look at a way to represent a decision tree, at code for constructing
the tree from real data, and at code for classifying new observations. The first step is
to create a representation of a tree. Create a new class called decisionnode, which
represents each node in the tree:

class decisionnode:
 def __init_ _(self,col=-1,value=None,results=None,tb=None,fb=None):
 self.col=col
 self.value=value
 self.results=results
 self.tb=tb
 self.fb=fb

http://kiwitobes.com/tree/decision_tree_example.txt
http://kiwitobes.com/tree/decision_tree_example.txt

Training the Tree | 145

Each node has five instance variables, all of which may be set in the initializer:

• col is the column index of the criteria to be tested.

• value is the value that the column must match to get a true result.

• tb and fb are decisionnodes, which are the next nodes in the tree if the result is
true or false, respectively.

• results stores a dictionary of results for this branch. This is None for everything
except endpoints.

The functions that create a tree return the root node, which can be traversed by
following its True or False branches until a branch with results is reached.

Training the Tree
This chapter uses an algorithm called CART (Classification and Regression Trees).
To build the decision tree, the algorithm first creates a root node. By considering all
the observations in the table, it chooses the best variable to divide up the data. To do
this, it looks at all the different variables and decides which condition (for example,
“Did the user read the FAQ?”) would separate the outcomes (which service the user
signed up for) in a way that makes it easier to guess what the user will do.

divideset is a function that divides the rows into two sets based on the data in a spe-
cific column. This function takes a list of rows, a column number, and a value to
divide into the column. In the case of Read FAQ, the possible values are Yes or No,
and for Referrer, there are several possibilities. It then returns two lists of rows: the
first containing the rows where the data in the specified column matches the value,
and the second containing the rows where it does not.

Figure 7-1. Example decision tree

color = green?

color = red?

shape = round?

diameter > 4in?

diameter > 6in?

No Yes

No Yes

diameter > 2in? diameter > 2in?

No Yes

Watermelon

No Yes

stone = true? Apple

No Yes

Banana

No Yes

AppleGrape

No Yes

GrapefruitLemon

No Yes

CherryGrape

146 | Chapter 7: Modeling with Decision Trees

Divides a set on a specific column. Can handle numeric
or nominal values
def divideset(rows,column,value):
 # Make a function that tells us if a row is in
 # the first group (true) or the second group (false)
 split_function=None
 if isinstance(value,int) or isinstance(value,float):
 split_function=lambda row:row[column]>=value
 else:
 split_function=lambda row:row[column]==value

 # Divide the rows into two sets and return them
 set1=[row for row in rows if split_function(row)]
 set2=[row for row in rows if not split_function(row)]
 return (set1,set2)

The code creates a function to divide the data called split_function, which depends
on knowing if the data is numerical or not. If it is, the true criterion is that the value
in this column is greater than value. If the data is not numeric, split_function sim-
ply determines whether the column’s value is the same as value. It uses this function
to divide the data into two sets, one where split_function returns true and one
where it returns false.

Start a Python session and try dividing the results by the Read FAQ column:

$ python
>>> import treepredict
>>> treepredict.divideset(treepredict.my_data,2,'yes')
([['slashdot', 'USA', 'yes', 18, 'None'], ['google', 'France', 'yes', 23,
'Premium'],...]]
[['google', 'UK', 'no', 21, 'Premium'], ['(direct)', 'New Zealand', 'no', 12,
'None'],...])

Table 7-2 shows the division.

This doesn’t look like a good variable for separating the outcomes at this stage, since
both sides seem pretty well mixed. We need a way to choose the best variable.

Table 7-2. Outcomes based on Read FAQ column values

True False

None

Premium

Basic

Basic

None

Basic

Basic

Premium

None

Basic

Premium

None

None

None

Choosing the Best Split | 147

Choosing the Best Split
Our casual observation that the chosen variable isn’t very good may be accurate, but
to choose which variable to use in a software solution, you need a way to measure
how mixed a set is. What you want to do is find the variable that creates the two sets
with the least possible mixing. The first function you’ll need is one to get the counts
of each result in a set. Add this to treepredict.py:

Create counts of possible results (the last column of
each row is the result)
def uniquecounts(rows):
 results={}
 for row in rows:
 # The result is the last column
 r=row[len(row)-1]
 if r not in results: results[r]=0
 results[r]+=1
 return results

uniquecounts finds all the different possible outcomes and returns them as a dictio-
nary of how many times they each appear. This is used by the other functions to
calculate how mixed a set is. There are a few different metrics for measuring this, and
two will be considered here: Gini impurity and entropy.

Gini Impurity
Gini impurity is the expected error rate if one of the results from a set is randomly
applied to one of the items in the set. If every item in the set is in the same category,
the guess will always be correct, so the error rate is 0. If there are four possible results
evenly divided in the group, there’s a 75 percent chance that the guess would be
incorrect, so the error rate is 0.75.

The function for Gini impurity looks like this:

Probability that a randomly placed item will
be in the wrong category
def giniimpurity(rows):
 total=len(rows)
 counts=uniquecounts(rows)
 imp=0
 for k1 in counts:
 p1=float(counts[k1])/total
 for k2 in counts:
 if k1==k2: continue
 p2=float(counts[k2])/total
 imp+=p1*p2
 return imp

This function calculates the probability of each possible outcome by dividing the
number of times that outcome occurs by the total number of rows in the set. It then
adds up the products of all these probabilities. This gives the overall chance that a

148 | Chapter 7: Modeling with Decision Trees

row would be randomly assigned to the wrong outcome. The higher this probability,
the worse the split. A probability of zero is great because it tells you that everything is
already in the right set.

Entropy
Entropy, in information theory, is the amount of disorder in a set—basically, how
mixed a set is. Add this function to treepredict.py:

Entropy is the sum of p(x)log(p(x)) across all
the different possible results
def entropy(rows):
 from math import log
 log2=lambda x:log(x)/log(2)
 results=uniquecounts(rows)
 # Now calculate the entropy
 ent=0.0
 for r in results.keys():
 p=float(results[r])/len(rows)
 ent=ent-p*log2(p)
 return ent

The entropy function calculates the frequency of each item (the number of times it
appears divided by the total number of rows), and applies these formulas:

p(i) = frequency(outcome) = count(outcome) / count(total rows)
Entropy = sum of p(i) x log(p(i)) for all outcomes

This is a measurement of how different the outcomes are from each other. If they’re
all the same (e.g., if you were really lucky and everyone became a premium sub-
scriber), then the entropy is 0. The more mixed up the groups are, the higher their
entropy. Our goal in dividing the data into two new groups is to reduce the entropy.

Try testing the Gini impurity and entropy metrics in your Python session:

>>> reload(treepredict)
<module 'treepredict' from 'treepredict.py'>
>>> treepredict.giniimpurity(treepredict.my_data)
0.6328125
>>> treepredict.entropy(treepredict.my_data)
1.5052408149441479
>>> set1,set2=treepredict.divideset(treepredict.my_data,2,'yes')
>>> treepredict.entropy(set1)
1.2987949406953985
>>> treepredict.giniimpurity(set1)
0.53125

The main difference between entropy and Gini impurity is that entropy peaks more
slowly. Consequently, it tends to penalize mixed sets a little more heavily. The rest of
this chapter will use entropy as the metric because it is used more commonly, but it’s
easy to swap it out for the Gini impurity.

Recursive Tree Building | 149

Recursive Tree Building
To see how good an attribute is, the algorithm first calculates the entropy of the
whole group. Then it tries dividing up the group by the possible values of each
attribute and calculates the entropy of the two new groups. To determine which
attribute is the best to divide on, the information gain is calculated. Information gain
is the difference between the current entropy and the weighted-average entropy of
the two new groups. The algorithm calculates the information gain for every
attribute and chooses the one with the highest information gain.

After the condition for the root node has been decided, the algorithm creates two
branches corresponding to true or false for that condition, as shown in Figure 7-2.

The observations are divided into those that meet the condition and those that don’t.
For each branch, the algorithm then determines if the branch can be divided further
or if it has reached a solid conclusion. If one of the new branches can be divided, the
same method as above is used to determine which variable to use. The second
division is shown in Figure 7-3.

The branches keep dividing, creating a tree by calculating the best attribute for each
new node. A branch stops dividing when the information gain from splitting a node
is not more than zero.

Create a new function called buildtree in treepredict.py. This is a recursive function
that builds the tree by choosing the best dividing criteria for the current set:

Figure 7-2. Decision tree after a single split

Figure 7-3. Decision tree after two splits

referrer = slashdot?

No Yes

Google,France,yes,23,Premium
Digg,USA,yes,24,Basic
kiwitobes,France,yes,23,Basic
Digg,USA,no,18,None

Slashdot,USA,yes,18,None
Slashdot,France,yes,19,None
Slashdot,UK,no,21,None

referrer = slashdot?

pages > 20? service = None

No Yes

No Yes

150 | Chapter 7: Modeling with Decision Trees

def buildtree(rows,scoref=entropy):
 if len(rows)==0: return decisionnode()
 current_score=scoref(rows)

 # Set up some variables to track the best criteria
 best_gain=0.0
 best_criteria=None
 best_sets=None

 column_count=len(rows[0])-1
 for col in range(0,column_count):
 # Generate the list of different values in
 # this column
 column_values={}
 for row in rows:
 column_values[row[col]]=1
 # Now try dividing the rows up for each value
 # in this column
 for value in column_values.keys():
 (set1,set2)=divideset(rows,col,value)

 # Information gain
 p=float(len(set1))/len(rows)
 gain=current_score-p*scoref(set1)-(1-p)*scoref(set2)
 if gain>best_gain and len(set1)>0 and len(set2)>0:
 best_gain=gain
 best_criteria=(col,value)
 best_sets=(set1,set2)
 # Create the subbranches
 if best_gain>0:
 trueBranch=buildtree(best_sets[0])
 falseBranch=buildtree(best_sets[1])
 return decisionnode(col=best_criteria[0],value=best_criteria[1],
 tb=trueBranch,fb=falseBranch)
 else:
 return decisionnode(results=uniquecounts(rows))

This function is first called with the list of rows. It loops through every column
(except the last one, which has the result in it), finds every possible value for that
column, and divides the dataset into two new subsets. It calculates the weighted-
average entropy for every pair of new subsets by multiplying each set’s entropy by
the fraction of the items that ended up in each set, and remembers which pair has the
lowest entropy.

If the best pair of subsets doesn’t have a lower weighted-average entropy than the
current set, that branch ends and the counts of the possible outcomes are stored.
Otherwise, buildtree is called on each set and they are added to the tree. The results
of the calls on each subset are attached to the True and False branches of the nodes,
eventually constructing an entire tree.

Displaying the Tree | 151

Now you can finally apply the algorithm to the original dataset. The code above is
flexible enough to handle both text and numeric data. It also assumes that the last
row is the target value, so you can simply pass the rows of data to build the tree:

>>> reload(treepredict)
<module 'treepredict' from 'treepredict.py'>
>>> tree=treepredict.buildtree(treepredict.my_data)

tree now holds a trained decision tree. In a moment you’ll learn how to look at the
tree, and later, how to use it to make predictions.

Displaying the Tree
So now that you have a tree, what should you do with it? Well, one thing you’ll
definitely want to do is look at it. printtree is a simple function for displaying the
tree in plain text. The output isn’t pretty, but it’s a simple way to view small trees:

def printtree(tree,indent=''):
 # Is this a leaf node?
 if tree.results!=None:
 print str(tree.results)
 else:
 # Print the criteria
 print str(tree.col)+':'+str(tree.value)+'? '

 # Print the branches
 print indent+'T->',
 printtree(tree.tb,indent+' ')
 print indent+'F->',
 printtree(tree.fb,indent+' ')

This is another recursive function. It takes a tree returned by buildtree and traverses
down it, and it knows it has reached the end of a branch when it reaches the node
with results. Until it reaches that point, it prints the criteria for the True and False
branches and calls printtree on each of them, each time increasing the indent string.

Call this function with the tree you just built, and you’ll get something like this:

>>> reload(treepredict)
>>> treepredict.printtree(tree)
0:google?
T-> 3:21?
 T-> {'Premium': 3}
 F-> 2:yes?
 T-> {'Basic': 1}
 F-> {'None': 1}
F-> 0:slashdot?
 T-> {'None': 3}
 F-> 2:yes?
 T-> {'Basic': 4}
 F-> 3:21?
 T-> {'Basic': 1}
 F-> {'None': 3}

152 | Chapter 7: Modeling with Decision Trees

This is a visual representation of the process that the decision tree will go through
when trying to make a new classification. The condition on the root node is “is
Google in column 0?” If this condition is met, it proceeds to the T-> branch and finds
that anyone referred from Google will become a paid subscriber if they have viewed
21 pages or more. If the condition is not met, it jumps to the F-> branch and evalu-
ates the condition “is Slashdot in column 0?” This continues until it reaches a branch
that has a result. As mentioned earlier, the ability to view the logic behind the rea-
soning process is one of the big advantages of decision trees.

Graphical Display
The textual display of the tree is fine for small trees, but as they get larger, visually
tracking your way through the tree can be quite difficult. Here you’ll see how to
make a graphical representation of the tree that will be useful for viewing trees you’ll
build in later sections.

The code for drawing the tree is similar to the code for drawing dendrograms in
Chapter 3. Both involve drawing a binary tree with nodes of arbitrary depth, so
you’ll first need functions to decide how much space a given node will take up—
both the total width of all its children and how deep the node goes, which tells you
much vertical space it will need for all its branches. The total width of a branch is the
combined width of its child branches, or 1 if it doesn’t have any child branches:

def getwidth(tree):
 if tree.tb==None and tree.fb==None: return 1
 return getwidth(tree.tb)+getwidth(tree.fb)

The depth of a branch is 1 plus the total depth of its longest child branch:

def getdepth(tree):
 if tree.tb==None and tree.fb==None: return 0
 return max(getdepth(tree.tb),getdepth(tree.fb))+1

To actually draw the tree, you’ll need to have the Python Imaging Library installed.
You can get this library from http://pythonware.com, and Appendix A has more infor-
mation on installing it. Add this import statement at the beginning of treepredict.py:

from PIL import Image,ImageDraw

The drawtree function determines the appropriate total size and sets up a canvas. It
then passes this canvas and the top node of the tree to drawnode. Add this function to
treepredict.py:

def drawtree(tree,jpeg='tree.jpg'):
 w=getwidth(tree)*100
 h=getdepth(tree)*100+120

 img=Image.new('RGB',(w,h),(255,255,255))
 draw=ImageDraw.Draw(img)

 drawnode(draw,tree,w/2,20)
 img.save(jpeg,'JPEG')

http://pythonware.com

Classifying New Observations | 153

The drawnode function actually draws the decision nodes of the tree. It works recur-
sively, first drawing the current node and calculating the positions of the child nodes,
then calling drawnode on each of the child nodes. Add this function to treepredict.py:

def drawnode(draw,tree,x,y):
 if tree.results==None:
 # Get the width of each branch
 w1=getwidth(tree.fb)*100
 w2=getwidth(tree.tb)*100

 # Determine the total space required by this node
 left=x-(w1+w2)/2
 right=x+(w1+w2)/2

 # Draw the condition string
 draw.text((x-20,y-10),str(tree.col)+':'+str(tree.value),(0,0,0))

 # Draw links to the branches
 draw.line((x,y,left+w1/2,y+100),fill=(255,0,0))
 draw.line((x,y,right-w2/2,y+100),fill=(255,0,0))

 # Draw the branch nodes
 drawnode(draw,tree.fb,left+w1/2,y+100)
 drawnode(draw,tree.tb,right-w2/2,y+100)
 else:
 txt=' \n'.join(['%s:%d'%v for v in tree.results.items()])
 draw.text((x-20,y),txt,(0,0,0))

You can now try drawing the current tree in your Python session:

>>> reload(treepredict)
<module 'treepredict' from 'treepredict.pyc'>
>>> treepredict.drawtree(tree,jpeg='treeview.jpg')

This should produce a new file called treeview.jpg, which is shown in Figure 7-4.

The code does not print the True and False branch labels, and they would likely just
contribute to the clutter of larger diagrams. In the generated tree diagrams, the True
branch is always the righthand branch, so you can follow the reasoning process
through.

Classifying New Observations
Now you’ll need a function that takes a new observation and classifies it according to
the decision tree. Add this function to treepredict.py:

def classify(observation,tree):
 if tree.results!=None:
 return tree.results
 else:
 v=observation[tree.col]
 branch=None
 if isinstance(v,int) or isinstance(v,float):

154 | Chapter 7: Modeling with Decision Trees

 if v>=tree.value: branch=tree.tb
 else: branch=tree.fb
 else:
 if v==tree.value: branch=tree.tb
 else: branch=tree.fb
 return classify(observation,branch)

This function traverses the tree in much the same manner as printtree. After each
call, it checks to see if it has reached the end of this branch by looking for results. If
not, it evaluates the observation to see if the column matches the value. If it does, it
calls classify again on the True branch; if not, it calls classify on the False branch.

Now you can call classify to get the prediction for a new observation:

>>> reload(treepredict)
<module 'treepredict' from 'treepredict.pyc'>
>>> treepredict.classify(['(direct)','USA','yes',5],tree)
{'Basic': 4}

You now have functions for creating a decision tree from any dataset, for displaying
and interpreting the tree, and for classifying new results. These functions can be
applied to any dataset that consists of multiple rows, each containing a set of
observations and an outcome.

Pruning the Tree
One problem with training the tree using the methods described so far is that it can
become overfitted—that is, it can become too specific to the training data. An overfit-
ted tree may give an answer as being more certain than it really is by creating
branches that decrease entropy slightly for the training set, but whose conditions are
actually completely arbitrary.

Figure 7-4. Decision tree for predicting subscribers

0:google

0:slashdot 3:21

2:yes

3:21

None:3 2:yes Premium:3

Basic:4 None:1 Basic:1

None:3 Basic:1

Pruning the Tree | 155

Since the algorithm above continually splits the branches until it can’t reduce the
entropy any further, one possibility is to stop splitting when the entropy is not
reduced by a minimum amount. This strategy is employed frequently, but it suffers
from a minor drawback—it is possible to have a dataset where the entropy is not
reduced much by one split but is reduced greatly by subsequent splits. An alterna-
tive strategy is to build the entire tree as described earlier, and then try to eliminate
superfluous nodes. This process is known as pruning.

Pruning involves checking pairs of nodes that have a common parent to see if merg-
ing them would increase the entropy by less than a specified threshold. If so, the
leaves are merged into a single node with all the possible outcomes. This helps avoid
overfitting and stops the tree from making predictions that are more confident than
what can really be gleaned from the data.

Add a new function to treepredict.py for pruning the tree:

def prune(tree,mingain):
 # If the branches aren't leaves, then prune them
 if tree.tb.results==None:
 prune(tree.tb,mingain)
 if tree.fb.results==None:
 prune(tree.fb,mingain)

 # If both the subbranches are now leaves, see if they
 # should merged
 if tree.tb.results!=None and tree.fb.results!=None:
 # Build a combined dataset
 tb,fb=[],[]
 for v,c in tree.tb.results.items():
 tb+=[[v]]*c
 for v,c in tree.fb.results.items():
 fb+=[[v]]*c

 # Test the reduction in entropy
 delta=entropy(tb+fb)-(entropy(tb)+entropy(fb)/2)

Decision Trees in the Real World
Because decision trees are so easy to interpret, they are among the most widely used
data-mining methods in business analysis, medical decision-making, and policy-
making. Often, a decision tree is created automatically, and an expert uses it to under-
stand the key factors and then refines it to better match her beliefs. This process allows
machines to assist experts and to clearly show the reasoning process so that individuals
can judge the quality of the prediction.

Decision trees have been used in this manner for such wide-ranging applications as
customer profiling, financial risk analysis, assisted diagnosis, and traffic prediction.

156 | Chapter 7: Modeling with Decision Trees

 if delta<mingain:
 # Merge the branches
 tree.tb,tree.fb=None,None
 tree.results=uniquecounts(tb+fb)

When this function is called on the root node, it will traverse all the way down the
tree to the nodes that only have leaf nodes as children. It will create a combined list
of results from both of the leaves and will test the entropy. If the change in entropy is
less than the mingain parameter, the leaves will be deleted and all their results moved
to their parent node. The combined node then becomes a possible candidate for
deletion and merging with another node.

Try it on your current dataset to see if it merges any of the nodes:

>>> reload(treepredict)
<module 'treepredict' from 'treepredict.pyc'>
>>> treepredict.prune(tree,0.1)
>>> treepredict.printtree(tree)
0:google?
T-> 3:21?
 T-> {'Premium': 3}
 F-> 2:yes?
 T-> {'Basic': 1}
 F-> {'None': 1}
F-> 0:slashdot?
 T-> {'None': 3}
 F-> 2:yes?
 T-> {'Basic': 4}
 F-> 3:21?
 T-> {'Basic': 1}
 F-> {'None': 3}
>>> treepredict.prune(tree,1.0)
>>> treepredict.printtree(tree)
0:google?
T-> 3:21?
 T-> {'Premium': 3}
 F-> 2:yes?
 T-> {'Basic': 1}
 F-> {'None': 1}
F-> {'None': 6, 'Basic': 5}

In the example, the data divides quite easily, so pruning with a reasonable minimum
gain doesn’t really do anything. Only when the minimum gain is turned up very high
does one of the leaves get merged. As you’ll see later, real datasets tend not to break
as cleanly as this one does, so pruning is much more effective in those cases.

Dealing with Missing Data
Another advantage of decision trees is their ability to deal with missing data. Your
dataset may be missing some piece of information—in the current example, for
instance, the geographical location of a user may not be discernable from her IP

Dealing with Missing Data | 157

address, so the field may be blank. To adapt the decision tree to handle this, you’ll
need to implement a different prediction function.

If you are missing a piece of data that is required to decide which branch of the tree
to follow, you can actually follow both branches. However, instead of counting the
results equally, the results from either side are weighted. In the basic decision tree,
everything has an implied weight of 1, meaning that the observations count fully for
the probability that an item fits into a certain category. If you are following multiple
branches instead, you can give each branch a weight equal to the fraction of all the
other rows that are on that side.

The function for doing this, mdclassify, is a simple modification of classify. Add it
to treepredict.py:

def mdclassify(observation,tree):
 if tree.results!=None:
 return tree.results
 else:
 v=observation[tree.col]
 if v==None:
 tr,fr=mdclassify(observation,tree.tb),mdclassify(observation,tree.fb)
 tcount=sum(tr.values())
 fcount=sum(fr.values())
 tw=float(tcount)/(tcount+fcount)
 fw=float(fcount)/(tcount+fcount)
 result={}
 for k,v in tr.items(): result[k]=v*tw
 for k,v in fr.items(): result[k]=v*fw
 return result
 else:
 if isinstance(v,int) or isinstance(v,float):
 if v>=tree.value: branch=tree.tb
 else: branch=tree.fb
 else:
 if v==tree.value: branch=tree.tb
 else: branch=tree.fb
 return mdclassify(observation,branch)

The only difference is at the end where, if the important piece of data is missing, the
results for each branch are calculated and then combined with their respective
weightings.

Try out mdclassify on a row with a crucial piece of information missing and see how
your results look:

>>> reload(treepredict)
<module 'treepredict' from 'treepredict.py'>
>>> treepredict.mdclassify(['google',None,'yes',None],tree)
{'Premium': 1.5, 'Basic': 1.5}
>>> treepredict2.mdclassify(['google','France',None,None],tree)
{'None': 0.125, 'Premium': 2.25, 'Basic': 0.125}

158 | Chapter 7: Modeling with Decision Trees

As expected, leaving out the Pages variable returns a strong chance of Premium and a
slight chance of Basic. Leaving out the Read FAQ variable yields a different distribu-
tion, with each possibility in the end weighted by how many items were placed on
each side.

Dealing with Numerical Outcomes
The user behavior example and the fruit tree were both classification problems, since
the outcomes were categories rather than numbers. The remaining examples in this
chapter, home prices and hotness, are both problems with numerical outcomes.

While it’s possible to run buildtree on a dataset with numbers as outcomes, the
result probably won’t be very good. If all the numbers are treated as different catego-
ries, the algorithm won’t take into account the fact that some numbers are close
together and others are far apart; they will all be treated as completely separate. To
deal with this, when you have a tree with numerical outcomes, you can use variance
as a scoring function instead of entropy or Gini impurity. Add the variance function
to treepredict.py:

def variance(rows):
 if len(rows)==0: return 0
 data=[float(row[len(row)-1]) for row in rows]
 mean=sum(data)/len(data)
 variance=sum([(d-mean)**2 for d in data])/len(data)
 return variance

This function is a possible parameter for buildtree, and it calculates the statistical
variance for a set of rows. A low variance means that the numbers are all very close
together, and a high variance means that they are widely dispersed. When building a
tree using variance as the scoring function, node criteria will be picked that split the
numbers so that higher values are on one side and lower values are on the other.
Splitting the data this way reduces the overall variance on the branches.

Modeling Home Prices
There are many potential uses for decision trees, but they are most useful when there
are several possible variables and you’re interested in the reasoning process. In some
cases, you already know the outcomes, and the interesting part is modeling the
outcomes to understand why they are as they are. One area in which this is
potentially very interesting is understanding prices of goods, particularly those that
have a lot of variability in measurable ways. This section will look at building deci-
sion trees for modeling real estate prices, because houses vary greatly in price and
have many numerical and nominal variables that are easily measured.

Modeling Home Prices | 159

The Zillow API
Zillow is a free web service that tracks real estate prices and uses this information to
create price estimates for other houses. It works by looking at comps (similar houses)
and using their values to predict a new value, which is similar to what real estate
appraisers do. A section of a Zillow web page showing information about a house
and its estimate value is shown in Figure 7-5.

Fortunately, Zillow also has an API that lets you get details and the estimated value
of houses. The page for the Zillow API is http://www.zillow.com/howto/api/
APIOverview.htm.

You’ll need to get a developer key to access the API, which is free and available from
the web site. The API itself is quite simple—it involves requesting a URL with all your
search parameters in the query, and then parsing the returned XML to get details like
number of bedrooms and estimated price. Create a new file called zillow.py and add
the following code:

import xml.dom.minidom
import urllib2

zwskey="X1-ZWz1chwxis15aj_9skq6"

As you did in Chapter 5, you’re going to use the minidom API to parse XML results
of your queries. The function getaddressdata takes an address and a city, and con-
structs the URL to query Zillow for property information. It parses the results and

Figure 7-5. Screenshot from zillow.com

http://www.zillow.com/howto/api/APIOverview.htm
http://www.zillow.com/howto/api/APIOverview.htm

160 | Chapter 7: Modeling with Decision Trees

extracts the important information, which it returns as a tuple of results. Add this
function to zillow.py:

def getaddressdata(address,city):
 escad=address.replace(' ','+')

 # Construct the URL
 url='http://www.zillow.com/webservice/GetDeepSearchResults.htm?'
 url+='zws-id=%s&address=%s&citystatezip=%s' % (zwskey,escad,city)

 # Parse resulting XML
 doc=xml.dom.minidom.parseString(urllib2.urlopen(url).read())
 code=doc.getElementsByTagName('code')[0].firstChild.data

 # Code 0 means success; otherwise, there was an error
 if code!='0': return None

 # Extract the info about this property
 try:
 zipcode=doc.getElementsByTagName('zipcode')[0].firstChild.data
 use=doc.getElementsByTagName('useCode')[0].firstChild.data
 year=doc.getElementsByTagName('yearBuilt')[0].firstChild.data
 bath=doc.getElementsByTagName('bathrooms')[0].firstChild.data
 bed=doc.getElementsByTagName('bedrooms')[0].firstChild.data
 rooms=doc.getElementsByTagName('totalRooms')[0].firstChild.data
 price=doc.getElementsByTagName('amount')[0].firstChild.data
 except:
 return None

 return (zipcode,use,int(year),float(bath),int(bed),int(rooms),price)

The tuple returned by this function is suitable to put in a list as an observation, since
the “result,” the price bucket, is at the end. To use this function to generate an entire
dataset, you’ll need a list of addresses. You can generate this yourself or download a
list of randomly generated addresses in Cambridge, MA at http://kiwitobes.com/
addresslist.txt.

Create a new function called getpricelist to read this file and generate a list of data:

def getpricelist():
 l1=[]
 for line in file('addresslist.txt'):
 data=getaddressdata(line.strip(),'Cambridge,MA')
 l1.append(data)
 return l1

You can now use these functions to generate a dataset and build a decision tree. Try
this in your Python session:

>>> import zillow
>>> housedata=zillow.getpricelist()
>>> reload(treepredict)
>>> housetree=treepredict.buildtree(housedata,scoref=treepredict.variance)
>>> treepredict.drawtree(housetree,'housetree.jpg')

http://kiwitobes.com/addresslist.txt
http://kiwitobes.com/addresslist.txt

Modeling “Hotness” | 161

One possible generated file, housetree.jpg, is shown in Figure 7-6.

Of course, if you were only interested in guessing the price of particular property,
you could just use the Zillow API to get an estimate. What’s interesting here is that
you actually built a model of the factors to be considered in determining housing
prices. Notice that the top of the tree is Bathrooms, which means that you reduce the
variance the most by dividing the dataset on the total number of bathrooms. The
main deciding factor in the price of a house in Cambridge is whether or not it has
three or more bathrooms (usually this indicates that the property is a large
multifamily house).

The obvious downside of using a decision tree here is that it’s necessary to create
buckets of price data, since they’re all different and have to be grouped in some way
to create useful endpoints. It’s possible that a different prediction technique would
have worked better on the actual price data. Chapter 8 discusses a different method
for making price predictions.

Modeling “Hotness”
Hot or Not is a site that allows users to upload photos of themselves. Its original con-
cept was to let users rank other users on their physical appearance, and to aggregate
the results to create a score between 1 and 10 for each person. It has since evolved
into a dating site, and now has an open API that allows you to get demographic
information about members along with their “hotness” rating. This makes it an
interesting test case for a decision tree model because there is a set of input vari-
ables, an output variable, and a possibly interesting reasoning process. The site itself
is also a good example of what might be considered collective intelligence.

Again, you’ll need to get an application key to access the API. You can sign up and
get one at http://dev.hotornot.com/signup.

Figure 7-6. Decision tree for house prices

3:3:0

2:1900 2:1903

0:02139 0:02138 1:Duplex 1:Triplex

etc.

http://dev.hotornot.com/signup

162 | Chapter 7: Modeling with Decision Trees

The Hot or Not API works in much the same way as the other APIs that have been
covered. You simply pass the parameters of a query to a URL and parse the XML
that is returned. To get started, create a new file called hotornot.py and add the
import statements and your key definition:

import urllib2
import xml.dom.minidom

api_key="479NUNJHETN"

Next, get a list of random people to make up the dataset. Fortunately, Hot or Not
provides an API call that returns a list of people with specified criteria. In this exam-
ple, the only criteria will be that the people have “meet me” profiles, since only from
these profiles can you get other information like location and interests. Add this
function to hotornot.py:

def getrandomratings(c):
 # Construct URL for getRandomProfile
 url="http://services.hotornot.com/rest/?app_key=%s" % api_key
 url+="&method=Rate.getRandomProfile&retrieve_num=%d" % c
 url+="&get_rate_info=true&meet_users_only=true"

 f1=urllib2.urlopen(url).read()

 doc=xml.dom.minidom.parseString(f1)

 emids=doc.getElementsByTagName('emid')
 ratings=doc.getElementsByTagName('rating')

 # Combine the emids and ratings together into a list
 result=[]
 for e,r in zip(emids,ratings):
 if r.firstChild!=None:
 result.append((e.firstChild.data,r.firstChild.data))
 return result

Once you’ve generated a list of user IDs and ratings, you’ll need another function to
download information about people—in this case, gender, age, location, and key-
words. Having all 50 states as possible location variables will lead to too many
branching possibilities. In order to reduce the number of possibilities for location,
you can divide the states into regions. Add the following code to specify regions:

stateregions={'New England':['ct','mn','ma','nh','ri','vt'],
 'Mid Atlantic':['de','md','nj','ny','pa'],
 'South':['al','ak','fl','ga','ky','la','ms','mo',
 'nc','sc','tn','va','wv'],
 'Midwest':['il','in','ia','ks','mi','ne','nd','oh','sd','wi'],
 'West':['ak','ca','co','hi','id','mt','nv','or','ut','wa','wy']}

The API provides a method to download demographic data for individuals, so the
function getpeopledata just loops through all the results of the first search and
queries the API for their details. Add this function to hotornot.py:

Modeling “Hotness” | 163

def getpeopledata(ratings):
 result=[]
 for emid,rating in ratings:
 # URL for the MeetMe.getProfile method
 url="http://services.hotornot.com/rest/?app_key=%s" % api_key
 url+="&method=MeetMe.getProfile&emid=%s&get_keywords=true" % emid

 # Get all the info about this person
 try:
 rating=int(float(rating)+0.5)
 doc2=xml.dom.minidom.parseString(urllib2.urlopen(url).read())
 gender=doc2.getElementsByTagName('gender')[0].firstChild.data
 age=doc2.getElementsByTagName('age')[0].firstChild.data
 loc=doc2.getElementsByTagName('location')[0].firstChild.data[0:2]

 # Convert state to region
 for r,s in stateregions.items():
 if loc in s: region=r

 if region!=None:
 result.append((gender,int(age),region,rating))
 except:
 pass
 return result

You can now import this module into your Python session and generate a dataset:

>>> import hotornot
>>> l1=hotornot.getrandomratings(500)
>>> len(l1)
442
>>> pdata=hotornot.getpeopledata(l1)
>>> pdata[0]
(u'female', 28, 'West', 9)

The list contains information about each user with their rating as the last field. This
data structure can be passed directly to the buildtree method to build a tree:

>>> hottree=treepredict.buildtree(pdata,scoref=treepredict.variance)
>>> treepredict.prune(hottree,0.5)
>>> treepredict.drawtree(hottree,'hottree.jpg')

A possible output for the final tree is shown in Figure 7-7.

The central node at the top that divides the dataset the best is gender. The remain-
der of the tree is actually quite complicated and difficult to read. However, you can
certainly use it to make predictions about previously unseen people. Also, because
the algorithms support missing data, you can aggregate people across large vari-
ables. For example, maybe you want to compare the hotness of everyone in the
South against everyone in the Mid-Atlantic:

>>> south=treepredict2.mdclassify((None,None,'South'),hottree)
>>> midat=treepredict2.mdclassify((None,None,'Mid Atlantic'),hottree)

164 | Chapter 7: Modeling with Decision Trees

>>> south[10]/sum(south.values())
0.055820815183261735
>>> midat[10]/sum(midat.values())
0.048972797320600864

For this dataset, there are slightly more super-hot people in the South. You can try
other things like considering age groups, or testing whether men get better scores
than women.

When to Use Decision Trees
Probably the biggest advantage of decision trees is how easy it is to interpret a trained
model. After running the algorithm on our example problem, we not only end up
with a tree that can make predictions about new users, we also get the list of ques-
tions used to make those determinations. From this you can see that, for instance,
users who find the site through Slashdot never become paid subscribers, but users
who find the site through Google and view at least 20 pages are likely to become
premium subscribers. This, in turn, might allow you to alter your advertising strategy
to target sites that give you the highest quality traffic. We also learn that certain
variables, such as the user’s country of origin, are not important in determining the
outcome. If data is difficult or expensive to collect and we learn that it is not impor-
tant, we know that we can stop collecting it.

Unlike some other machine-learning algorithms, decision trees can work with both
categorical and numerical data as inputs. In the first example problem, we used a
combination of pages viewed with several categorical inputs. Furthermore, while
many algorithms require you to prepare or normalize data before you can run them,
the code in this chapter will take any list of data containing category or numerical
data and build the appropriate decision tree.

Figure 7-7. Decision tree model of hotness

1:22

2:New England 2:New England

0:male 9.5 6.2 1:23 1:34

etc.

Exercises | 165

Decision trees also allow for probabilistic assignment of data. With some problems,
there is not enough information to always make a correct distinction—a decision
tree may have a node that has several possibilities and can’t be divided any more.
The code in this chapter returns a dictionary of the counts of different outcomes, and
this information can help us decide how confident we are in the results. Not all
algorithms can estimate the probability of an uncertain result.

However, there are definitely drawbacks to the decision tree algorithm used here.
While it can be very effective for problems with only a few possible results, it can’t be
used effectively on datasets with many possibilities. In the first example, the only
outcomes are none, basic, and premium. If there were hundreds of outcomes
instead, the decision tree would grow very complicated and would probably make
poor predictions.

The other big disadvantage of the decision trees described here is that while they can
handle simple numerical data, they can only create greater-than/less-than decision
points. This makes it difficult for decision trees to classify data where the class is
determined by a more complex combination of the variables. For instance, if the
results were determined by the differences of two variables, the tree would get very
large and would quickly become inaccurate.

In sum, decision trees are probably not a good choice for problems with many
numerical inputs and outputs, or with many complex relationships between numeri-
cal inputs, such as in interpreting financial data or image analysis. Decision trees are
great for datasets with a lot of categorical data and numerical data that has break-
points. These trees are the best choice if understanding the decision-making process
is important; as you’ve observed, seeing the reasoning can be as important as
knowing the final prediction.

Exercises
1. Result probabilities. Currently, the classify and mdclassify functions give their

results as total counts. Modify them to give the probabilities of the results being
one of the categories.

2. Missing data ranges. mdclassify allows the use of “None” to specify a missing
value. For numerical values the result may not be completely unknown, but may
be known to be in a range. Modify mdclassify to allow a tuple such as (20,25) in
place of a value and traverse down both branches when necessary.

3. Early stopping. Rather than pruning the tree, buildtree can just stop dividing
when it reaches a point where the entropy is not reduced enough. This may not
be ideal in some cases, but it does save an extra step. Modify buildtree to take a
minimum gain parameter and stop dividing the branch if this condition is not
met.

166 | Chapter 7: Modeling with Decision Trees

4. Building with missing data. You built a function that can classify a row with miss-
ing data, but what if there is missing data in the training set? Modify buildtree
so that it will check for missing data and, in cases where it’s not possible to send
a result down a particular branch, will send it down both branches.

5. Multiway splits. (Hard) All the trees built in this chapter are binary decision
trees. However, some datasets might create simpler trees if they allowed a node
to split into more than two branches. How would you represent this? How
would you train the tree?

167

Chapter 8 CHAPTER 8

Building Price Models8

So far we have examined several classifiers, most of which are well suited for predict-
ing to which category a new piece of data belongs. However, Bayesian classifiers,
decision trees, and support-vector machines (which you’ll see in the next chapter)
are not the best algorithms for making predictions about numerical data based on
many different attributes, such as prices. This chapter will look at algorithms that
can be trained to make numerical predictions based on examples they have seen
before, and even display probability distributions for the predictions to help the user
interpret how the prediction is being made.

We’ll be looking at how to use these algorithms for building models that predict
prices. Economists consider prices, particularly auction prices, to be a good method
of using collective intelligence to determine the real value of something; in a large
market with many buyers and sellers, the price will usually reach the optimal value
for both sides of the transaction. Price prediction is also a good test for algorithms of
this kind, since there are usually many different factors to consider when determin-
ing a price. When considering bidding on a laptop, for example, you have to take
into account processor speed, installed RAM, hard drive size, screen resolution, and
other factors.

An important part of making numerical predictions is determining which variables
are important and in what combinations. In the laptop example, there are likely to be
several variables that will barely, if at all, affect the price, such as free accessories or
some bundled software. Further, the screen size may have a greater effect on the final
price than the hard drive size. You’ll be using the optimization techniques developed
in Chapter 5 to automatically determine the best weights for the variables.

Building a Sample Dataset
A challenging dataset for testing a numerical prediction algorithm should have a few
properties that make the dataset more difficult to make predictions from. If you are
looking at TVs, it’s easy to infer that bigger is better, and such problems can more

168 | Chapter 8: Building Price Models

easily be solved with traditional statistical techniques. For this reason, it’s more
interesting to look at a dataset where price doesn’t simply increase in proportion to
size or the number of characteristics.

In this section, you’ll create a dataset of wine prices based on a simple artificial model.
The prices are based on a combination of the rating and the age of the wine. The
model assumes that wine has a peak age, which is older for good wines and almost
immediate for bad wines. A high-rated wine will start at a high price and increase in
value until its peak age, and a low-rated wine will start cheap and get cheaper.

To model this, create a new file called numpredict.py and add the wineprice function:

from random import random,randint
import math

def wineprice(rating,age):
 peak_age=rating-50

 # Calculate price based on rating
 price=rating/2
 if age>peak_age:
 # Past its peak, goes bad in 5 years
 price=price*(5-(age-peak_age))
 else:
 # Increases to 5x original value as it
 # approaches its peak
 price=price*(5*((age+1)/peak_age))
 if price<0: price=0
 return price

You’ll also need a function to build a dataset of wine prices. The following function
generates 200 bottles of wine and calculates their prices from the model. It then ran-
domly adds or subtracts 20 percent to capture things like taxes and local variations
in prices, and also to make the numerical prediction a bit more difficult. Add
wineset1 to numpredict.py:

def wineset1():
 rows=[]
 for i in range(300):
 # Create a random age and rating
 rating=random()*50+50
 age=random()*50

 # Get reference price
 price=wineprice(rating,age)

 # Add some noise
 price*=(random()*0.4+0.8)

 # Add to the dataset
 rows.append({'input':(rating,age),
 'result':price})
 return rows

k-Nearest Neighbors | 169

Start up a Python session, and test some wine prices and build a new dataset:

$ python
>>> import numpredict
>>> numpredict.wineprice(95.0,3.0)
21.111111111111114
>>> numpredict.wineprice(95.0,8.0)
47.5
>>> numpredict.wineprice(99.0,1.0)
10.102040816326529
>>> data=numpredict.wineset1()
>>> data[0]
{'input': (63.602840187200407, 21.574120872184949), 'result': 34.565257353086487}
>>> data[1]
{'input': (74.994980945756794, 48.052051269308649), 'result': 0.0}

In the dataset shown, the second bottle is too old and has expired, while the first has
aged well. The interplay of variables makes this a good dataset on which to test
algorithms.

k-Nearest Neighbors
The easiest approach to our wine pricing problem is the same one you would use if
you were trying to price something manually—that is, to find a few of the most
similar items and assume the prices will be roughly the same. By finding a set of
items similar to the item that interests you, the algorithm can average their prices
and make a guess at what the price should be for this item. This approach is called
k-nearest neighbors (kNN).

Number of Neighbors
The k in kNN refers to the number of items that will be averaged to get the final
result. If the data were perfect, you could use k=1, meaning you would just pick the
nearest neighbor and use its price as the answer. But in real-world situations, there
are always aberrations. In the example, you deliberately add “noise” to simulate this
(the random addition or subtraction of 20 percent). Someone might get a great deal,
or an uninformed customer might drastically overpay for the nearest neighbor. For
this reason, it’s better to take a few neighbors and average them to reduce any noise.

To visualize the problem of choosing too few neighbors, consider a problem where
there’s only one descriptive variable, say, age. Figure 8-1 shows a graph of price (on
the y-axis) versus age (on the x-axis). Also on the graph is the line that you get if you
only use a single nearest neighbor.

Notice how the predicted price is far too dependent on random variations. If you
were using the squiggly line to make a prediction, you would decide that there’s a big
price jump between wine that is 15 years old and wine that is 16 years old, when
that’s really just the result of variation in the prices of two particular bottles.

170 | Chapter 8: Building Price Models

On the other hand, choosing too many neighbors will reduce accuracy because the
algorithm will be averaging in data from items that are not at all similar to the query.
Figure 8-2 shows the same dataset; the line averages 20 of the nearest neighbors.

It’s clear that averaging too many prices greatly underestimates the prices of wine
around the 25-year mark. Choosing the correct number of neighbors can be done
manually for different datasets, or it can be done with optimization.

Figure 8-1. kNN using too few neighbors

Figure 8-2. kNN using too many neighbors

k-Nearest Neighbors | 171

Defining Similarity
The first thing you’ll need for the kNN algorithm is a way to measure how similar
two items are. You’ve seen a few different metrics for measuring this throughout the
book. For now, you’ll be using Euclidean distance, a function that we covered in
several earlier chapters. Add the euclidian function to numpredict.py:

def euclidean(v1,v2):
 d=0.0
 for i in range(len(v1)):
 d+=(v1[i]-v2[i])**2
 return math.sqrt(d)

In your Python session, try the function on some of the points in your dataset, along
with a new data point:

>>> reload(numpredict)
<module 'numpredict' from 'numpredict.py'>
>>> data[0]['input']
(82.720398223643514, 49.21295829683897)
>>> data[1]['input']
(98.942698715228076, 25.702723509372749)
>>> numpredict.euclidean(data[0]['input'],data[1]['input'])
28.56386131112269

You’ll notice that this function treats both age and rating the same when calculating
distance, even though in almost any real problem, some of variables have a greater
impact on the final price than others. This is a well-known weakness of kNN, and
ways to correct for this problem will be shown later in this chapter.

Code for k-Nearest Neighbors
kNN is a relatively simple algorithm to implement. It is computationally intensive,
but it does have the advantage of not requiring retraining every time new data is
added. Add the getdistances function to numpredict.py to get the distances between
a given item and every item in the original dataset:

def getdistances(data,vec1):
 distancelist=[]
 for i in range(len(data)):
 vec2=data[i]['input']
 distancelist.append((euclidean(vec1,vec2),i))
 distancelist.sort()
 return distancelist

This function calls the distance function on the vector given against every other vec-
tor in the dataset and puts them in a big list. The list is sorted so that the closest item
is at the top.

The kNN function uses the list of distances and averages the top k results. Add
knnestimate to numpredict.py:

172 | Chapter 8: Building Price Models

def knnestimate(data,vec1,k=3):
 # Get sorted distances
 dlist=getdistances(data,vec1)
 avg=0.0

 # Take the average of the top k results
 for i in range(k):
 idx=dlist[i][1]
 avg+=data[idx]['result']
 avg=avg/k
 return avg

You can now get a price estimate for a new item:

>>> reload(numpredict)
>>> numpredict.knnestimate(data,(95.0,3.0))
29.176138546872018
>>> numpredict.knnestimate(data,(99.0,3.0))
22.356856188108672
>>> numpredict.knnestimate(data,(99.0,5.0))
37.610888778473793
>>> numpredict.wineprice(99.0,5.0) # Get the actual price
30.306122448979593
>>> numpredict.knnestimate(data,(99.0,5.0),k=1) # Try with fewer neighbors
38.078819347238685

Try different parameters and different values for k to see how the results are affected.

Weighted Neighbors
One way to compensate for the fact that the algorithm may be using neighbors that
are too far away is to weight them according to their distance. This is similar to the
method used in Chapter 2, where people’s preferences were weighted according to
how similar they were to the preferences of a person seeking a recommendation.

The more similar the items are, the smaller the distance between them, so you’ll need
a way of converting distances to weights. There are a few different ways of doing
this, each with advantages and drawbacks. This section will look at three functions
that you can use.

Inverse Function
The function you used in Chapter 4 to convert distances to weights was an inverse
function. Figure 8-3 shows what this looks like if you plot weight on one axis and
price on the other.

The simplest form of this function returns 1 divided by the distance. However, in
some cases, items are exactly the same or very close, leading to a very high or infinite
weight. For this reason, it’s necessary to add a small number to the distance before
inverting it.

Weighted Neighbors | 173

Add the inverseweight function to numpredict.py:

def inverseweight(dist,num=1.0,const=0.1):
 return num/(dist+const)

This function is fast and easy to implement, and you can experiment with different
values of num to see what produces good results. Its main potential drawback is that it
applies very heavy weights to items that are close and falls off quickly after that. This
may be desirable, but in some cases it will make the algorithm much more sensitive
to noise.

Subtraction Function
A second option is a subtraction function, the graph for which is shown in Figure 8-4.

This is a simple function that subtracts the distance from a constant. The weight is
the result of this subtraction if the result is greater than zero; otherwise, the result is
zero. Add the subtractweight function to numpredict.py:

def subtractweight(dist,const=1.0):
 if dist>const:
 return 0
 else:
 return const-dist

This function overcomes the potential issue of overweighting close items, but it has
its own limitation. Because the weight eventually falls to 0, it’s possible that there
will be nothing close enough to be considered a close neighbor, which means that for
some items the algorithm won’t make a prediction at all.

Figure 8-3. Inverse weight function

174 | Chapter 8: Building Price Models

Gaussian Function
The final function to consider is a Gaussian function, also known as a bell curve. It is
a little more complex that the other functions considered here, but as you’ll see, it
overcomes some of their limitations. The Gaussian function is shown in Figure 8-5.

The weight in this function is 1 when the distance is 0, and the weight declines as the
distance increases. However, unlike the subtraction function, the weight never falls
all the way to 0, so it will always be possible to make a prediction. The code for this
function is more complex and will not evaluate as quickly as the other two functions.

Figure 8-4. Subtraction weight function

Figure 8-5. Gaussian weight function

Weighted Neighbors | 175

Add gaussian to numpredict.py:

def gaussian(dist,sigma=10.0):
 return math.e**(-dist**2/(2*sigma**2))

You can now try the different functions on some of the items with varying parameters
and see how they differ:

>>> reload(numpredict)
<module 'numpredict' from 'numpredict.py'>
>>> numpredict.subtractweight(0.1)
0.9
>>> numpredict.inverseweight(0.1)
5.0
>>> numpredict.gaussian(0.1)
0.99501247919268232
>>> numpredict.gaussian(1.0)
0.60653065971263342
>>> numpredict.subtractweight(1)
0.0
>>> numpredict.inverseweight(1)
0.90909090909090906
>>> numpredict.gaussian(3.0)
0.01110899653824231

You can see that all the functions have their highest values at 0.0 and decrease in
different ways from there.

Weighted kNN
The code for doing weighted kNN works the same way as the regular kNN function,
by first getting the sorted distances and taking the k closest elements. The important
difference is that instead of just averaging them, the weighted kNN calculates a
weighted average. The weighted average is calculated by multiplying each item’s
weight by its value before adding them together. After the sum is calculated, it is
divided by the sum of all the weights.

Add weightedknn to numpredict.py:

def weightedknn(data,vec1,k=5,weightf=gaussian):
 # Get distances
 dlist=getdistances(data,vec1)
 avg=0.0
 totalweight=0.0

 # Get weighted average
 for i in range(k):
 dist=dlist[i][0]
 idx=dlist[i][1]
 weight=weightf(dist)
 avg+=weight*data[idx]['result']
 totalweight+=weight
 avg=avg/totalweight
 return avg

176 | Chapter 8: Building Price Models

The function loops over the k nearest neighbors and passes each of their distances to
one of the weight functions you defined earlier. The avg variable is calculated by
multiplying these weights by the neighbor’s value. The totalweight variable is the
sum of the weights. At the end, avg is divided by totalweight.

You can try this function in your Python session and compare its performance to that
of the regular kNN function:

>>> reload(numpredict)
<module 'numpredict' from 'numpredict.py'>
>>> numpredict.weightedknn(data,(99.0,5.0))
32.640981119354301

In this example, the results show that weightedknn gets closer to the correct answer
than knnestimate. However, this is just for a couple of samples. A rigorous test
would involve a lot of different items from the dataset, which you could actually use
to decide the best algorithm and best parameters. Next you’ll see ways to perform a
test like this.

Cross-Validation
Cross-validation is the name given to a set of techniques that divide up data into
training sets and test sets. The training set is given to the algorithm, along with the
correct answers (in this case, prices), and becomes the set used to make predictions.
The algorithm is then asked to make predictions for each item in the test set. The
answers it gives are compared to the correct answers, and an overall score for how
well the algorithm did is calculated.

Usually this procedure is performed several times, dividing the data up differently
each time. Typically, the test set will be a small portion, perhaps 5 percent of the all
the data, with the remaining 95 percent making up the training set. To start, create a
function called dividedata in numpredict.py, which divides up the dataset into two
smaller sets given a ratio that you specify:

def dividedata(data,test=0.05):
 trainset=[]
 testset=[]
 for row in data:
 if random()<test:
 testset.append(row)
 else:
 trainset.append(row)
 return trainset,testset

The next step is to test the algorithm by giving it a training set and calling it with
each item in the test set. The function calculates the differences and combines them
to create an aggregate score for how far off it was in general. This is usually done by
adding up the squares of all the differences.

Cross-Validation | 177

Add a new function, testalgorithm, to numpredict.py:

def testalgorithm(algf,trainset,testset):
 error=0.0
 for row in testset:
 guess=algf(trainset,row['input'])
 error+=(row['result']-guess)**2
 return error/len(testset)

testalgorithm takes an algorithm, algf, which accepts a dataset and query. It loops
over every row in the test set and then calculates the best guess by applying algf. It
then subtracts the guess from the real result.

Squaring the numbers is common practice because it makes large differences count
for even more. This means an algorithm that is very close most of the time but far off
occasionally will fare worse than an algorithm that is always somewhat close. This is
often desired behavior, but there are situations in which making a big mistake is
occasionally acceptable if accuracy is very high the rest of the time. When this is the
case, you can modify the function to just add up the absolute values of the
differences.

The final step is to create a function that makes several different divisions of data and
runs testalgorithm on each, adding up all the results to get a final score. Add
crossvalidate to numpredict.py:

def crossvalidate(algf,data,trials=100,test=0.05):
 error=0.0
 for i in range(trials):
 trainset,testset=dividedata(data,test)
 error+=testalgorithm(algf,trainset,testset)
 return error/trials

The code that you’ve built so far has many possible variations to compare. You can
try, for example, testing knnestimate with different values of k.

>>> reload(numpredict)
<module 'numpredict' from 'numpredict.py'>
>>> numpredict.crossvalidate(numpredict.knnestimate,data)
254.06864176819553
>>> def knn3(d,v): return numpredict.knnestimate(d,v,k=3)
...
>>> numpredict.crossvalidate(knn3,data)
166.97339783733005
>>> def knn1(d,v): return numpredict.knnestimate(d,v,k=1)
...
>>> numpredict.crossvalidate(knn1,data)
209.54500183486215

As expected, using too few neighbors or too many neighbors leads to poor results. In
this example, a value of 3 performs better than a value of 1 or 5. You can also try the
different weighting functions that you defined for weighted kNN to see which one
gives the best results:

178 | Chapter 8: Building Price Models

>>> numpredict.crossvalidate(numpredict.weightedknn,data)
200.34187674254176
>>> def knninverse(d,v):
... return numpredict.weightedknn(d,v,\\

weightf=numpredict.inverseweight)
>>> numpredict.crossvalidate(knninverse,data)
148.85947702660616

When the parameters are set properly, weighted kNN seems to give better results for
this dataset. Choosing the correct parameters may be time consuming, but you only
have to do it once for a particular training set, possibly updating them occasionally
as the training set grows. In the “Optimizing the Scale” section later in the chapter,
you’ll be looking at ways to determine some of the parameters automatically.

Heterogeneous Variables
The dataset you built at the start of this chapter was designed to be artificially
simple—specifically, all the variables used to predict the price are roughly
comparable and are all important to the final result.

Since all the variables fall within the same range, it’s meaningful to calculate dis-
tances using all of them at once. Imagine, however, if you introduced a new variable
that influenced the price, such as the size of the bottle in milliliters. Unlike the
variables you’ve used so far, which were between 0 and 100, its range would be up to
1,500. Look at Figure 8-6 to see how this would affect the nearest neighbor or
distance-weighting calculations.

Clearly, this new variable has a far greater impact on the calculated distances than
the original ones do—it will overwhelm any distance calculation, which essentially
means that the other variables are not taken into account.

A different problem is the introduction of entirely irrelevant variables. If the dataset
also included the number of the aisle in which you found the wine, this variable
would be included in the distance calculations. Two items identical in every respect
but with very different aisles would be considered very far apart, which would badly
hinder the ability of the algorithms to make accurate predictions.

Adding to the Dataset
In order to simulate these effects, you’re going to add some new variables to your
dataset. You can copy the code in wineset1 to create a new function called wineset2
and modify it by adding the parts shown in bold:

def wineset2():
 rows=[]
 for i in range(300):
 rating=random()*50+50
 age=random()*50

Heterogeneous Variables | 179

aisle=float(randint(1,20))
 bottlesize=[375.0,750.0,1500.0,3000.0][randint(0,3)]
 price=wineprice(rating,age)

price*=(bottlesize/750)
 price*=(random()*0.9+0.2)
 rows.append({'input':(rating,age,aisle,bottlesize),
 'result':price})
 return rows

Now you can create new datasets with aisles and bottle sizes:

>>> reload(numpredict)
<module 'numpredict' from 'numpredict.py'>
>>> data=numpredict.wineset2()

To see how this affects the kNN predictors, try them out on the new datasets with
the best parameters you managed to find earlier:

>>> numpredict.crossvalidate(knn3,data)
1427.3377833596137
>>> numpredict.crossvalidate(numpredict.weightedknn,data)
1195.0421231227463

You’ll notice that even though the dataset now contains even more information and
less noise than it did before (which should theoretically lead to better predictions),
the values returned by crossvalidate have actually gotten a lot worse. This is
because the algorithms do not yet know how to treat the variables differently.

Figure 8-6. Heterogeneous variables cause distance problems

180 | Chapter 8: Building Price Models

Scaling Dimensions
What we need here is not a way to base distance on the actual values, but a way to
normalize the values so that it makes sense to consider them all in the same space. It
would also be helpful to find a way to eliminate the superfluous variables or to at
least reduce their impact on the calculations. One way to accomplish both things is
to rescale the dimensions before performing any of the calculations.

The simplest form of rescaling is multiplying the values in each dimension by a
constant for that dimension. An example of rescaling is shown in Figure 8-7.

You can see that the bottle-size axis has been scaled down by a factor of 10, and
consequently the nearest neighbors for several of the items have changed. This solves
the problem of some variables being naturally much larger than others, but what
about unimportant variables? Consider what happens if every item’s value in a
dimension is multiplied by 0, as shown in Figure 8-8.

Notice how everything is now in the same place in the aisle dimension, so the
distances between the items are entirely dependent on their placement in the age
dimension. That is, aisle has become totally meaningless in the calculation of the
nearest neighbors, and has been entirely eliminated from consideration. If all the
unimportant variables are collapsed to 0, the algorithms will be far more accurate.

The rescale function takes a list of items and a parameter called scale, which is a list
of real numbers. It returns a new dataset with all the values multiplied by the values
in scale. Add rescale to numpredict.py:

def rescale(data,scale):
 scaleddata=[]
 for row in data:

Figure 8-7. Scaling the axes fixes the distance problem

Optimizing the Scale | 181

 scaled=[scale[i]*row['input'][i] for i in range(len(scale))]
 scaleddata.append({'input':scaled,'result':row['result']})
 return scaleddata

You can try this out by rescaling a dataset by some cleverly chosen parameters and
see if this makes for good predictions:

>>> reload(numpredict)
<module 'numpredict' from 'numpredict.py'>
>>> sdata=numpredict.rescale(data,[10,10,0,0.5])
>>> numpredict.crossvalidate(knn3,sdata)
660.9964024835578
>>> numpredict.crossvalidate(numpredict.weightedknn,sdata)
852.32254222973802

The results are pretty good for those few examples; certainly better than before. Try
changing the scale parameter and see if you can improve the results even more.

Optimizing the Scale
In this case, it’s not difficult to choose good parameters for scaling because you
know in advance which variables are important. However, most of the time you’ll be
working with datasets that you didn’t build yourself, and you won’t necessarily
know which variables are unimportant and which ones have a significant impact.

In theory, you could try out a lot of numbers in different combinations until you
found one that worked well enough, but there might be hundreds of variables to
consider and it would be very tedious. Fortunately, if you worked through
Chapter 5, you already know how to automatically find a good solution when there
are many input variables to consider—by using optimization.

Figure 8-8. Unimportant axes are scaled to 0

182 | Chapter 8: Building Price Models

You’ll recall that optimization simply requires you to specify a domain that gives the
number of variables, a range, and a cost function. The crossvalidate function
returns a higher value for a worse solution, so it’s already essentially a cost function.
The only thing you need to do is wrap it so that it takes a list of values as its
parameter, rescales the data, and calculates the cross-validation error. Add
createcostfunction to numpredict.py:

def createcostfunction(algf,data):
 def costf(scale):
 sdata=rescale(data,scale)
 return crossvalidate(algf,sdata,trials=10)
 return costf

The domain is the range of weights for each dimension. In this case, the lowest
possible value is 0 because negative numbers will just create a mirror image of the
data, which for distance calculations doesn’t change anything. In theory, the weights
can be as high as you want, but for practical purposes, let’s restrict them to 20 for
now. Add this line to numpredict.py:

weightdomain=[(0,20)]*4

You now have everything you need to automatically optimize the weights. Make sure
optimization.py, the file you created in Chapter 5, is in your current directory and try
an annealing optimization in your Python session:

>>> import optimization
>>> reload(numpredict)
<module 'numpredict' from 'numpredict.pyc'>
>>> costf=numpredict.createcostfunction(numpredict.knnestimate,data)
>>> optimization.annealingoptimize(numpredict.weightdomain,costf,step=2)
[11,18,0,6]

Perfect! The algorithm not only determines that aisle is a useless variable and reduces
its scale almost to 0, but it also figures out that bottle size is disproportionately large
compared to its impact, and increases the scales of the other two variables
accordingly.

You can also try the slower but often more accurate geneticoptimize function and
see if it returns similar results:

>>> optimization.geneticoptimize(numpredict.weightdomain,costf,popsize=5,\\
lrate=1,maxv=4,iters=20)

[20,18,0,12]

An advantage of optimizing the variable scales in this way is that you immediately
see which variables are important and how important they are. In some cases, some
of the data may be difficult or expensive to collect, and if you determine that it’s not
very valuable, you can avoid the extra cost. In other cases, just knowing which vari-
ables are important—particularly in determining price—may affect what you choose
to emphasize as part of a marketing effort, or may reveal how products can be
designed differently to fetch the highest prices.

Uneven Distributions | 183

Uneven Distributions
So far we’ve been assuming that if you take an average or weighted average of the
data, you’ll get a pretty good estimate of the final price. In many cases this will be
accurate, but in some situations there may be an unmeasured variable that can have
a big effect on the outcome. Imagine that in the wine example there were buyers
from two separate groups: people who bought from the liquor store, and people who
bought from a discount store and received a 50 percent discount. Unfortunately, this
information isn’t tracked in the dataset.

The createhiddendataset function creates a dataset that simulates these properties. It
drops some of the complicating variables and just focuses on the original ones. Add
this function to numericalpredictor.py:

def wineset3():
 rows=wineset1()
 for row in rows:
 if random()<0.5:
 # Wine was bought at a discount store
 row['result']*=0.6
 return rows

Consider what will happen if you ask for an estimate of the price of a different item
using the kNN or weighted kNN algorithms. Since the dataset doesn’t actually
contain any information about whether the buyer bought from the liquor store or a
discount store, the algorithm won’t be able to take this into account, so it will bring
in the nearest neighbors regardless of where the purchase was made. The result is
that it will give the average of items from both groups, perhaps representing a 25
percent discount. You can verify this by trying it in your Python session:

>>> reload(numpredict)
<module 'numpredict' from 'numpredict.py'>
>>> data=numpredict.wineset3()
>>> numpredict.wineprice(99.0,20.0)
106.07142857142857
>>> numpredict.weightedknn(data,[99.0,20.0])
83.475441632209339
>>> numpredict.crossvalidate(numpredict.weightedknn,data)
599.51654107008562

While this is not a bad way to make an estimate if you just want a single number, it
does not accurately reflect what someone will actually end up paying for an item. In
order to get beyond averages, you need a way to look closer at the data at that point.

Estimating the Probability Density
Rather than taking the weighted average of the neighbors and getting a single price
estimate, it might be interesting in this case to know the probability that an item falls

184 | Chapter 8: Building Price Models

within a certain price range. In the example, given inputs of 99 percent and 20 years,
you’d like a function that tells you there’s a 50 percent chance that the price is
between $40 and $80, and a 50 percent chance that it’s between $80 and $100.

To do this, you need a function that returns a value between 0 and 1 representing the
probability. The function first calculates the weights of the neighbors within that
range, and then calculates the weights of all the neighbors. The probability is the sum
of the neighbor weights within the range divided by the sum of all the weights. Create
a new function called probguess in numpredict.py to perform this calculation:

def probguess(data,vec1,low,high,k=5,weightf=gaussian):
 dlist=getdistances(data,vec1)
 nweight=0.0
 tweight=0.0

 for i in range(k):
 dist=dlist[i][0]
 idx=dlist[i][1]
 weight=weightf(dist)
 v=data[idx]['result']

 # Is this point in the range?
 if v>=low and v<=high:
 nweight+=weight
 tweight+=weight
 if tweight==0: return 0

 # The probability is the weights in the range
 # divided by all the weights
 return nweight/tweight

Like kNN, this function sorts the data by the distance from vec1 and determines the
weights of the nearest neighbors. It adds the weights of all the neighbors together to
get tweight. It also considers whether each neighbor’s price is within the range
(between low and high); if so, it adds the weight to nweight. The probability that the
price for vec1 is between low and high is nweight divided by tweight.

Now try this function on your dataset:

>>> reload(numpredict)
<module 'numpredict' from 'numpredict.py'>
>>> numpredict.probguess(data,[99,20],40,80)
0.62305988451497296
>>> numpredict.probguess(data,[99,20],80,120)
0.37694011548502687
>>> numpredict.probguess(data,[99,20],120,1000)
0.0
>>> numpredict.probguess(data,[99,20],30,120)
1.0

Uneven Distributions | 185

The function gives good results. The ranges that are well outside the actual prices
have probabilities of 0, and the ones that capture the full range of possibilities are
close to 1. By breaking it down into smaller buckets, you can determine the actual
ranges in which things tend to cluster. However, this requires that you guess at the
ranges and enter them until you have a clear picture of the structure of the data. In
the next section, you’ll see ways to get an overall picture of the probability
distribution.

Graphing the Probabilities
To avoid having to guess which ranges to try, you can create a graphical representa-
tion of the probability density. An excellent free library for making mathematical
graphs in Python is matplotlib, which you can download from http://matplotlib.
sourceforge.net.

Installation instructions are on the web site, and there is more information on
matplotlib in Appendix A. This library is very powerful and has a huge number of
features, only a few of which you’ll be using in this chapter. After you install it, you
can try creating a simple graph in your Python session:

>>> from pylab import *
>>> a=array([1,2,3,4])
>>> b=array([4,2,3,1])
>>> plot(a,b)
>>> show()
>>> t1=arange(0.0,10.0,0.1)
>>> plot(t1,sin(t1))
[<matplotlib.lines.Line2D instance at 0x00ED9300>]
>>> show()

This should give you a simple graph like the one shown in Figure 8-9. The arange
function creates a list of numbers as an array in much the same way as the range
function. In this case, you are plotting a sine curve from 0 to 10.

This section will show two different ways at looking at a probability distribution.
The first is called the cumulative probability. A graph of cumulative probability
shows the probability that the result is less than a given value. With prices, the graph
starts with 0 probability that the price is less than 0, and increases as it hits groups of
items at a certain price. At the maximum price, the graph reaches 1 because there’s a
100 percent chance that the actual price is less than or equal to the maximum
possible price.

Creating the data for the cumulative probability graph is simply a matter of looping
over a range of prices that call the probabilityguess function with 0 as the lower
bound and a specified price as the upper bound. The results of these calls can be
passed to the plot function to create a graph. Add cumulativegraph to numpredict.py:

http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net

186 | Chapter 8: Building Price Models

def cumulativegraph(data,vec1,high,k=5,weightf=gaussian):
 t1=arange(0.0,high,0.1)
 cprob=array([probguess(data,vec1,0,v,k,weightf) for v in t1])
 plot(t1,cprob)
 show()

You can now call this from your Python session to create the graph:

>>> reload(numpredict)
<module 'numpredict' from 'numpredict.py'>
>>> numpredict.cumulativegraph(data,(1,1),6)

The graph will look something like Figure 8-10. As expected, the cumulative proba-
bility starts at 0 and increases all the way to 1. What’s interesting about the graph is
the way it increases. The probability value stays at 0 until around $50 and then
climbs fairly quickly, settling at 0.6 until the price hits $110, where it jumps again.

It’s clear from reading the graph that the probabilities are grouped around $60 and
$110, since that’s where the cumulative probability jumps. Knowing this in advance
allows you to do the probability calculation without having to guess.

The other option is to try to graph the actual probabilities for different price points.
This is trickier because the probability that any item will be an exact price is very
low. Graphing this would show 0 almost everywhere with spikes at the predicted
prices. Instead, you’ll need a way to combine probabilities over certain windows.

Figure 8-9. Sample use of matplotlib

Uneven Distributions | 187

One way to do this is to assume the probability at each point is a weighted average of
the surrounding probabilities, much the same as the weighted kNN algorithm.

To see this in action, add probabilitygraph to numpredict.py:

def probabilitygraph(data,vec1,high,k=5,weightf=gaussian,ss=5.0):
 # Make a range for the prices
 t1=arange(0.0,high,0.1)

 # Get the probabilities for the entire range
 probs=[probguess(data,vec1,v,v+0.1,k,weightf) for v in t1]

 # Smooth them by adding the gaussian of the nearby probabilites
 smoothed=[]
 for i in range(len(probs)):
 sv=0.0
 for j in range(0,len(probs)):
 dist=abs(i-j)*0.1
 weight=gaussian(dist,sigma=ss)
 sv+=weight*probs[j]
 smoothed.append(sv)
 smoothed=array(smoothed)

 plot(t1,smoothed)
 show()

Figure 8-10. A cumulative probability graph

188 | Chapter 8: Building Price Models

This function creates a range from 0 to high and then calculates the probabilities for
every point. Because this would normally be very jagged, the function loops over the
array and creates a smoothed array by adding close probabilities together. Each point
on the smoothed probability is the Gaussian-weighted sum of its neighbors. The ss
parameter specifies how much the probabilities should be smoothed.

Try it in your Python session:

>>> reload(numpredict)
<module 'numpredict' from 'numpredict.py'>
>>> numpredict.probabilitygraph(data,(1,1),6)

You should get a graph similar to the one shown in Figure 8-11.

This graph makes it even easier to see where the results are grouped together. Try
varying the window ss and see how the results change. This probability distribution
makes it clear that in guessing prices for a bottle of wine, you are missing a key piece
of data about how some people get better deals than others. In some cases, you’ll be
able to figure out what this data is, but in others, you’ll simply see that you need to
shop around for items in the lower price range.

Figure 8-11. A probability density graph

Using Real Data—the eBay API | 189

Using Real Data—the eBay API
eBay is an online auction site and one of the most popular sites on the Internet. It has
millions of listings and millions of users bidding and jointly setting prices, making it
a great example of collective intelligence. As it happens, eBay also has a free XML-
based API that you can use to perform searches, get detailed item information, and
even post items for sale. In this section, you’ll see how to use the eBay API to get
price data and convert the data so that the algorithms in this chapter can be used for
prediction.

Getting a Developer Key
The process of accessing eBay’s API takes several steps, but it’s relatively simple and
automatic. A good overview of the process is in the Quick Start Guide, which is
online at http://developer.ebay.com/quickstartguide.

This guide will take you through the process of creating a developer account, getting
your production keys, and creating a token. When you’re finished, you should have
four strings that will be needed for the example in this chapter:

• A developer key

• An application key

• A certificate key

• An authentication token, which is very long

Create a new file called ebaypredict.py and add the following code, which imports
some modules and includes the abovementioned strings:

import httplib
from xml.dom.minidom import parse, parseString, Node

devKey = 'developerkey'
appKey = 'applicationkey'
certKey = 'certificatekey'
userToken = 'token'
serverUrl = 'api.ebay.com'

There is no official Python API for eBay, but there is an XML API that you can access
using httplib and minidom. This section will only cover two calls to this API,
GetSearchResults and GetItem, but much of the code given here can be reused for
other calls, too. For more information on all the calls supported by the API, you can
look at the full documentation at http://developer.ebay.com/DevZone/XML/docs/
WebHelp/index.htm.

http://developer.ebay.com/quickstartguide
http://developer.ebay.com/DevZone/XML/docs/WebHelp/index.htm
http://developer.ebay.com/DevZone/XML/docs/WebHelp/index.htm

190 | Chapter 8: Building Price Models

Setting Up a Connection
Once you have your keys, it’s time to set up a connection to the eBay API. The API
requires that you pass a lot of headers, which include the keys and the call you’re
going to make. To do this, create a function called getHeaders to take the call name
and return a dictionary of headers that can be passed to httplib. Add this function to
ebaypredict.py:

def getHeaders(apicall,siteID="0",compatabilityLevel = "433"):
 headers = {"X-EBAY-API-COMPATIBILITY-LEVEL": compatabilityLevel,
 "X-EBAY-API-DEV-NAME": devKey,
 "X-EBAY-API-APP-NAME": appKey,
 "X-EBAY-API-CERT-NAME": certKey,
 "X-EBAY-API-CALL-NAME": apicall,
 "X-EBAY-API-SITEID": siteID,
 "Content-Type": "text/xml"}
 return headers

In addition to the headers, the eBay API requires you to send XML with parameters
for your request. It returns an XML document that can be parsed with the parseString
from the minidom library.

The function to send the request opens a connection to the server, posts the
parameters’ XML, and parses the result. Add sendrequest to ebaypredict.py:

def sendRequest(apicall,xmlparameters):
 connection = httplib.HTTPSConnection(serverUrl)
 connection.request("POST", '/ws/api.dll', xmlparameters, getHeaders(apicall))
 response = connection.getresponse()
 if response.status != 200:
 print "Error sending request:" + response.reason
 else:
 data = response.read()
 connection.close()
 return data

These functions can be used to make any call to the eBay API. For the different API
calls, you’ll need to generate the request XML and a way to interpret the parsed
results.

Because DOM parsing can be tedious, you should also create a simple convenience
method, getSingleValue, which finds a node and returns its contents:

def getSingleValue(node,tag):
 nl=node.getElementsByTagName(tag)
 if len(nl)>0:
 tagNode=nl[0]
 if tagNode.hasChildNodes():
 return tagNode.firstChild.nodeValue
 return '-1'

Using Real Data—the eBay API | 191

Performing a Search
Performing a search is just a matter of creating the XML parameters for the
GetSearchResults API call and passing them to the sendrequest function that you
defined previously. The XML parameters are in the form:

<GetSearchResultsRequest xmlns="urn:ebay:apis:eBLBaseComponents">
<RequesterCredentials><eBayAuthToken>token</eBayAuthToken></RequesterCredentials>
<parameter1>value</parameter1>
<parameter2>value</parameter2>
</GetSearchResultsRequest>

Dozens of parameters can be passed to this API call, but for this example we’ll just
consider two of them:

Query
A string containing the search terms. Using this parameter is exactly like typing
in a search from the eBay home page.

CategoryID
A numerical value specifying the category you wish to search. eBay has a large
hierarchy of categories, which you can request with the GetCategories API call.
This can be used alone or in combination with Query.

The doSearch function takes these two parameters and performs a search. It then
returns a list of the item IDs (which you’ll use later with the GetItem call), along with
their descriptions and current prices. Add doSearch to ebaypredict.py:

def doSearch(query,categoryID=None,page=1):
 xml = "<?xml version='1.0' encoding='utf-8'?>"+\
 "<GetSearchResultsRequest xmlns=\"urn:ebay:apis:eBLBaseComponents\">"+\
 "<RequesterCredentials><eBayAuthToken>" +\
 userToken +\
 "</eBayAuthToken></RequesterCredentials>" + \
 "<Pagination>"+\
 "<EntriesPerPage>200</EntriesPerPage>"+\
 "<PageNumber>"+str(page)+"</PageNumber>"+\
 "</Pagination>"+\
 "<Query>" + query + "</Query>"
 if categoryID!=None:
 xml+="<CategoryID>"+str(categoryID)+"</CategoryID>"
 xml+="</GetSearchResultsRequest>"

 data=sendRequest('GetSearchResults',xml)
 response = parseString(data)
 itemNodes = response.getElementsByTagName('Item');
 results = []
 for item in itemNodes:
 itemId=getSingleValue(item,'ItemID')
 itemTitle=getSingleValue(item,'Title')
 itemPrice=getSingleValue(item,'CurrentPrice')
 itemEnds=getSingleValue(item,'EndTime')
 results.append((itemId,itemTitle,itemPrice,itemEnds))
 return results

192 | Chapter 8: Building Price Models

In order to use the category parameter, you’ll also need a function to retrieve the cat-
egory hierarchy. This is another straightforward API call, but the XML file for all the
category data is very large, takes a long time to download, and is very difficult to
parse. For this reason, you’ll want to limit the category data to the general area in
which you’re interested.

The getCategory function takes a string and a parent ID and returns all the catego-
ries containing that string within that top-level category. If the parent ID is missing,
the function simply displays a list of all the top-level categories. Add this function to
ebaypredict.py:

def getCategory(query='',parentID=None,siteID='0'):
 lquery=query.lower()
 xml = "<?xml version='1.0' encoding='utf-8'?>"+\
 "<GetCategoriesRequest xmlns=\"urn:ebay:apis:eBLBaseComponents\">"+\
 "<RequesterCredentials><eBayAuthToken>" +\
 userToken +\
 "</eBayAuthToken></RequesterCredentials>"+\
 "<DetailLevel>ReturnAll</DetailLevel>"+\
 "<ViewAllNodes>true</ViewAllNodes>"+\
 "<CategorySiteID>"+siteID+"</CategorySiteID>"
 if parentID==None:
 xml+="<LevelLimit>1</LevelLimit>"
 else:
 xml+="<CategoryParent>"+str(parentID)+"</CategoryParent>"
 xml += "</GetCategoriesRequest>"
 data=sendRequest('GetCategories',xml)
 categoryList=parseString(data)
 catNodes=categoryList.getElementsByTagName('Category')
 for node in catNodes:
 catid=getSingleValue(node,'CategoryID')
 name=getSingleValue(node,'CategoryName')
 if name.lower().find(lquery)!=-1:
 print catid,name

You can now try this function in your Python session:

>>> import ebaypredict
>>> laptops=ebaypredict.doSearch('laptop')
>>> laptops[0:10]
[(u'110075464522', u'Apple iBook G3 12" 500MHZ Laptop , 30 GB HD ', u'299.99',
u'2007-01-11T03:16:14.000Z'),
(u'150078866214', u'512MB PC2700 DDR Memory 333MHz 200-Pin Laptop SODIMM', u'49.99',
u'2007-01-11T03:16:27.000Z'),
 (u'120067807006', u'LAPTOP USB / PS2 OPTICAL MOUSE 800 DPI SHIP FROM USA', u
'4.99', u'2007-01-11T03:17:00.000Z'),
...

Oops, it looks like the search for “laptop” returns all sorts of vaguely laptop-related
accessories. Fortunately, you can search for the “Laptops, Notebooks” category and
limit your search to results that are really laptops. You’ll need to get the top-level list
first, and then search within “Computers and Networking” to find the category ID
for laptops, then you can search for “laptop” within the correct category:

Using Real Data—the eBay API | 193

>>> ebaypredict.getCategory('computers')
58058 Computers & Networking
>>> ebaypredict.getCategory('laptops',parentID=58058)
25447 Apple Laptops, Notebooks
...
31533 Drives for Laptops
51148 Laptops, Notebooks...
>>> laptops=ebaypredict.doSearch('laptop',categoryID=51148)
>>> laptops[0:10]
[(u'150078867562', u'PANASONIC TOUGHBOOK Back-Lit KeyBoard 4 CF-27 CF-28',
 u'49.95', u'2007-01-11T03:19:49.000Z'),
 (u'270075898309', u'mini small PANASONIC CFM33 CF M33 THOUGHBOOK ! libretto',
 u'171.0', u'2007-01-11T03:19:59.000Z'),
 (u'170067141814', u'Sony VAIO "PCG-GT1" Picturebook Tablet Laptop MINT ',
 u'760.0', u'2007-01-11T03:20:06.000Z'),...

As of this writing, the ID for the “Laptops, Notebooks” category is 51148. You can
see that limiting the search to the “iPod” category eliminates many of the unrelated
results that are returned by using just the query “iPod.” Having more consistency
makes this a much better dataset to use for a price model.

Getting Details for an Item
The listings in the search results give the title and price, and it may be possible to
extract details such as capacity or color from the text of the title. eBay also provides
attributes specific to different item types. A laptop is listed with attributes like
processor type and installed RAM, while an iPod has attributes like capacity. In
addition to these details, it’s also possible to get details such as the seller’s rating, the
number of bids, and the starting price.

To get these details, you need to make an eBay API call to GetItem, passing the item’s
ID as returned by the search function. To do this, create a function called getItem in
ebaypredict.py:

def getItem(itemID):
 xml = "<?xml version='1.0' encoding='utf-8'?>"+\
 "<GetItemRequest xmlns=\"urn:ebay:apis:eBLBaseComponents\">"+\
 "<RequesterCredentials><eBayAuthToken>" +\
 userToken +\
 "</eBayAuthToken></RequesterCredentials>" + \
 "<ItemID>" + str(itemID) + "</ItemID>"+\
 "<DetailLevel>ItemReturnAttributes</DetailLevel>"+\
 "</GetItemRequest>"
 data=sendRequest('GetItem',xml)
 result={}
 response=parseString(data)
 result['title']=getSingleValue(response,'Title')
 sellingStatusNode = response.getElementsByTagName('SellingStatus')[0];
 result['price']=getSingleValue(sellingStatusNode,'CurrentPrice')
 result['bids']=getSingleValue(sellingStatusNode,'BidCount')
 seller = response.getElementsByTagName('Seller')
 result['feedback'] = getSingleValue(seller[0],'FeedbackScore')

194 | Chapter 8: Building Price Models

 attributeSet=response.getElementsByTagName('Attribute');
 attributes={}
 for att in attributeSet:
 attID=att.attributes.getNamedItem('attributeID').nodeValue
 attValue=getSingleValue(att,'ValueLiteral')
 attributes[attID]=attValue
 result['attributes']=attributes
 return result

This function retrieves the item’s XML using sendrequest and then parses out the
interesting data. Since attributes are different for each item, they are all returned in a
dictionary. Try this function on one of the results you get from your search:

>>> reload(ebaypredict)
>>> ebaypredict.getItem(laptops[7][0])
{'attributes': {u'13': u'Windows XP', u'12': u'512', u'14': u'Compaq',
 u'3805': u'Exchange', u'3804': u'14 Days',
 u'41': u'-', u'26445': u'DVD+/-RW', u'25710': u'80.0',
 u'26443': u'AMD Turion 64', u'26444': u'1800', u'26446': u'15',
 u'10244': u'-'},
'price': u'515.0', 'bids': u'28', 'feedback': u'2797',
'title': u'COMPAQ V5210US 15.4" AMD Turion 64 80GB Laptop Notebook'}

From these results, it looks like attribute 26444 represents processor speed, 26446
represents screen size, 12 represents installed RAM, and 25710 represents hard-drive
size. Along with the seller rating, the number of bids, and the starting price, this
makes a potentially interesting dataset for doing price predictions.

Building a Price Predictor
To use the predictor you built in this chapter, you’ll need to take a set of items from
eBay and turn them into lists of numbers that can be used as a dataset to be passed
to the cross-validate function. To do this, the makeLaptopDataset function first calls
doSearch to get a list of laptops, and then requests each one individually. Using the
attributes determined in the previous section, the function creates a list of numbers
that can be used for prediction, and puts data in the structure appropriate for the
kNN functions.

Add makeLaptopDataset to ebaypredict.py:

def makeLaptopDataset():
 searchResults=doSearch('laptop',categoryID=51148)
 result=[]
 for r in searchResults:
 item=getItem(r[0])
 att=item['attributes']
 try:
 data=(float(att['12']),float(att['26444']),
 float(att['26446']),float(att['25710']),
 float(item['feedback'])
)
 entry={'input':data,'result':float(item['price'])}

When to Use k-Nearest Neighbors | 195

 result.append(entry)
 except:
 print item['title']+' failed'
 return result

The function ignores any items that do not have the necessary attributes. Download-
ing and processing all the results will take a little while, but you’ll have an interesting
dataset of real prices and attributes to play with. To get the data, call the function
from your Python session:

>>> reload(ebaypredict)
<module 'ebaypredict' from 'ebaypredict.py'>
>>> set1=ebaypredict.makeLaptopDataset()
...

You can now try some kNN estimates for various configurations:

>>> numpredict.knnestimate(set1,(512,1000,14,40,1000))
667.89999999999998
>>> numpredict.knnestimate(set1,(1024,1000,14,40,1000))
858.42599999999982
>>> numpredict.knnestimate(set1,(1024,1000,14,60,0))
482.02600000000001
>>> numpredict.knnestimate(set1,(1024,2000,14,60,1000))
1066.8

These show some of the impact from differing amounts of RAM, processor speed,
and feedback score. Now you can try experimenting with different variables, scaling
the data, and plotting the probability distributions.

When to Use k-Nearest Neighbors
The k-nearest neighbors method has a few disadvantages. Making predictions is very
computationally intensive because the distance to every point has to be calculated.
Furthermore, in a dataset with many variables, it can be difficult to determine the
appropriate weights or whether some variables should be eliminated. Optimization
can help with this, but it can take a very long time to find a good solution with big
datasets.

Still, as you’ve seen in this chapter, kNN offers a number of advantages over other
methods. The flip side to the computational intensity of making a prediction is that
new observations can be added to the data without any computational effort. It’s
also easy to interpret exactly what’s happening because you know it’s using the
weighted value of other observation to make its predictions.

Although determining weights can be tricky, once the best weights have been deter-
mined, you can use them to better understand the characteristics of the dataset.
Finally, you can create probability functions for times when you suspect there are
other unmeasured variables in the dataset.

196 | Chapter 8: Building Price Models

Exercises
1. Optimizing the number of neighbors. Create a cost function for optimization that

determines the ideal number of neighbors for a simple dataset.

2. Leave-one-out cross-validation. Leave-one-out cross-validation is an alternative
method of calculating prediction error that treats every row in the dataset individ-
ually as a test set, and treats the rest of the data as a training set. Implement a
function to do this. How does it compare to the method described in this chapter?

3. Eliminating variables. Rather than trying to optimize variable scales for a large
set of variables that are probably useless, you could try to eliminate variables
that make the prediction much worse before doing anything else. Can you think
of a way to do this?

4. Varying ss for graphing probability. The ss parameter in probabilityguess dic-
tates how smoothly the probability is graphed. What happens if this number is
too high? Too low? Can you think of any way to determine what a good value
will be without looking at the graph?

5. The laptop dataset. Try running the optimization on the laptop dataset from
eBay. Which variables are important? Now try running the functions for graph-
ing probability density. Are there any noticeable peaks?

6. Other item types. Which other items on eBay have suitable numerical attributes?
iPods, cell phones, and cars all have a lot of interesting information. Try build-
ing another dataset for numerical prediction.

7. Search attributes. The eBay API has a lot of functionality that was not covered in
this chapter. The GetSearchResults call has many options, including the ability
to restrict searches to certain attributes. Modify the function to support this and
try finding only Core Duo laptops.

197

Chapter 9 CHAPTER 9

Advanced Classification:
Kernel Methods and SVMs9

Previous chapters have considered several classifiers, including decision trees,
Bayesian classifiers, and neural networks. This chapter will introduce the concept of
linear classifiers and kernel methods as a prelude to covering one of the most
advanced classifiers, and one that remains an active area of research, called support-
vector machines (SVMs).

The dataset used throughout much of the chapter pertains to matching people on a
dating site. Given information about two people, can we predict whether they will be
a good match? This is an interesting problem because there are many variables, both
numerical and nominal, and many nonlinear relationships. This dataset will be used
to demonstrate some of the weaknesses of the previously described classifiers, and to
show how the dataset can be tweaked to work better with these algorithms. An
important thing to take away from this chapter is that it’s rarely possible to throw a
complex dataset at an algorithm and expect it to learn how to classify things accu-
rately. Choosing the right algorithm and preprocessing the data appropriately is
often required to get good results. I hope that going through the process of tweaking
this dataset will give you ideas for how to modify others in the future.

At the end of the chapter, you’ll learn how to build a dataset of real people from
Facebook, a popular social networking site, and you’ll use the algorithms to predict
whether people with certain characteristics are likely to be friends.

Matchmaker Dataset
The dataset you’ll use in this chapter is based on an imaginary online dating site.
Most dating sites collect a lot of interesting information about their members,
including demographic information, interests, and behavior. Imagine that this site
collects the following information:

• Age

• Smoker?

198 | Chapter 9: Advanced Classification: Kernel Methods and SVMs

• Want children?

• List of interests

• Location

Furthermore, this site collects information about whether two people have made a
good match, whether they initially made contact, and if they decided to meet in
person. This data is used to create the matchmaker dataset. There are two files to
download:

http://kiwitobes.com/matchmaker/agesonly.csv
http://kiwitobes.com/matchmaker/matchmaker.csv

The matchmaker.csv file looks like this:

39,yes,no,skiing:knitting:dancing,220 W 42nd St New York
 NY,43,no,yes,soccer:reading:scrabble,824 3rd Ave New York NY,0
23,no,no,football:fashion,102 1st Ave New York
 NY,30,no,no,snowboarding:knitting:computers:shopping:tv:travel,
 151 W 34th St New York NY,1
50,no,no,fashion:opera:tv:travel,686 Avenue of the Americas
 New York NY,49,yes,yes,soccer:fashion:photography:computers:
 camping:movies:tv,824 3rd Ave New York NY,0

Each row has information about a man and a woman and, in the final column, a 1 or
a 0 to indicate whether or not they are considered a good match. (Your author is
aware of the simplifying assumption made here; computer models are never quite as
complicated as real life.) For a site with a large number of profiles, this information
might be used to build a predictive algorithm that assists users in finding other peo-
ple who are likely to be good matches. It might also indicate particular types of
people that the site is lacking, which would be useful in strategies for promoting the
site to new members. The agesonly.csv file has match information based only on age,
which we will use to illustrate how the classifiers work, since two variables are much
easier to visualize.

The first step is to build a function for loading this dataset. This is just a matter of
reading all the fields into a list, but for experimental purposes, the function will have
one optional parameter to load only in certain fields. Create a new file called
advancedclassify.py and add the matchrow class and the loadmatch function:

class matchrow:
 def __init_ _(self,row,allnum=False):
 if allnum:
 self.data=[float(row[i]) for i in range(len(row)-1)]
 else:
 self.data=row[0:len(row)-1]
 self.match=int(row[len(row)-1])

def loadmatch(f,allnum=False):
 rows=[]
 for line in file(f):
 rows.append(matchrow(line.split(','),allnum))
 return rows

http://kiwitobes.com/matchmaker/agesonly.csv
http://kiwitobes.com/matchmaker/matchmaker.csv

Difficulties with the Data | 199

loadmatch creates a list of matchrow classes, each containing the raw data and whether
or not there was a match. Use this function to load both the ages-only dataset and
the full matchmaker set:

>>> import advancedclassify
>>> agesonly=advancedclassify.loadmatch('agesonly.csv',allnum=True)
>>> matchmaker=advancedclassify.loadmatch('matchmaker.csv')

Difficulties with the Data
Two interesting aspects of this dataset are the nonlinearity and the interplay of the
variables. If you installed matplotlib (http://matplotlib.sourceforge.net) in Chapter 8
you can visualize some of the variables using advancedclassify and generating a
couple of lists from it. (This step is not necessary to work through the rest of the
chapter.) Try this in your Python session:

from pylab import *
def plotagematches(rows):
 xdm,ydm=[r.data[0] for r in rows if r.match==1],\
 [r.data[1] for r in rows if r.match==1]
 xdn,ydn=[r.data[0] for r in rows if r.match==0],\
 [r.data[1] for r in rows if r.match==0]

 plot(xdm,ydm,'go')
 plot(xdn,ydn,'ro')

 show()

Call this method from your Python session:

>>> reload(advancedclassify)
<module 'advancedclassify' from 'advancedclassify.py'>
>>> advancedclassify.plotagematches(agesonly)

This will generate a scatter plot of the man’s age versus the woman’s age. The points
will be O if the people are a match and X if they are not. You’ll get a window like the
one shown in Figure 9-1.

Although there are obviously many other factors that determine whether two people
are a match, this figure is based on the simplified age-only dataset, and it shows an
obvious boundary that indicates people do not go far outside their own age range.
The boundary also appears to curve and become less defined as people get older,
showing that people will tolerate greater age differences as they get older.

Decision Tree Classifier
Chapter 7 covered decision tree classifiers, which try to automatically classify data
using a tree. The decision tree algorithm described there will split the data based on
numerical boundaries. This presents a problem when the dividing line can be
expressed more accurately as a function of two variables. In this case, the difference

http://matplotlib.sourceforge.net

200 | Chapter 9: Advanced Classification: Kernel Methods and SVMs

between the ages is a much better variable for prediction. You can imagine that
training a decision directly on the data would give you a result like the one shown in
Figure 9-2.

Figure 9-1. Generated age-age scatter plot

Figure 9-2. Decision tree for curved boundary

Man’s age > 25

Woman’s age > 33

Man’s age > 23

Man’s age > 47

No Yes

No match Man’s age > 30

No Yes

etc. etc.

Woman’s age > 25

etc.

Difficulties with the Data | 201

This is obviously quite useless for interpretation. It may work for automatic classifi-
cation, but it is very messy and rigid. Had the other variables besides age been
considered, the result would have been even more confusing. To understand what
the decision tree is doing, consider the scatter plot and the decision boundary that has
been created by the decision tree, as shown in Figure 9-3.

The decision boundary is the line at which every point on one side will be assigned to
one category and every point on the other side will be assigned to the other category.
It’s clear from the figure that the constraints on the decision tree have forced the
boundaries to be vertical or horizontal.

There are two main points here. The first is that it’s not a good idea to naïvely use
the data you’re given without considering what it means and how it can be trans-
formed to be easier to interpret. Creating a scatter plot can help you find out how
data is really divided. The second point is that despite their strengths, the decision
trees described in Chapter 7 are often a poor way to determine the class in problems
with multiple numerical inputs that don’t exhibit simple relationships.

Figure 9-3. Boundary created by a decision tree

202 | Chapter 9: Advanced Classification: Kernel Methods and SVMs

Basic Linear Classification
This is one of the simplest classifiers to construct, but it’s a good basis for further
work. It works by finding the average of all the data in each class and constructing a
point that represents the center of the class. It can then classify new points by
determining to which center point they are closest.

To do this, you’ll first need a function that calculates the average point in the classes.
In this case, the classes are just 0 and 1. Add lineartrain to advancedclassify.py:

def lineartrain(rows):
 averages={}
 counts={}

 for row in rows:
 # Get the class of this point
 cl=row.match

 averages.setdefault(cl,[0.0]*(len(row.data)))
 counts.setdefault(cl,0)

 # Add this point to the averages
 for i in range(len(row.data)):
 averages[cl][i]+=float(row.data[i])

 # Keep track of how many points in each class
 counts[cl]+=1

 # Divide sums by counts to get the averages
 for cl,avg in averages.items():
 for i in range(len(avg)):
 avg[i]/=counts[cl]

 return averages

You can run this function in your Python session to get the averages:

>>> reload(advancedclassify)
<module 'advancedclassify' from 'advancedclassify.pyc'>
>>> avgs=advancedclassify.lineartrain(agesonly)

To see why this is useful, consider again the plot of the age data, shown in
Figure 9-4.

The Xs in the figure represent the average points as calculated by lineartrain. The
line dividing the data is halfway between the two Xs. This means that all the points
on the left side of the line are closer to the “no match” average point, and all the
points on the right side are closer to the “match” average. Whenever you have a new
pair of ages and want to guess if two people will be a match, you can just imagine the
point on this chart and see to which average it’s closer.

Basic Linear Classification | 203

There are a couple of ways to determine the closeness of a new point. You learned
about Euclidean distance in previous chapters; one approach would be to calculate
the distance from the point to the averages for each of the classes, and choose the one
with the smaller distance. While this approach will work for this classifier, in order to
extend it later, you’ll need to take a different approach using vectors and dot-products.

A vector has a magnitude and a direction, and it’s often drawn as an arrow in a plane
or written as a set of numbers. Figure 9-5 shows an example of a vector. The figure
also shows how subtracting one point from another gives the vector that joins them.

A dot-product gives a single number from two vectors by multiplying each value in
the first vector by the corresponding value in the second vector and adding them all
together. Create a new function called dotproduct in advancedclassify.py:

def dotproduct(v1,v2):
 return sum([v1[i]*v2[i] for i in range(len(v1))])

The dot-product is also equal to the lengths of the two vectors multiplied together
times the cosine of the angle between them. Most importantly, the cosine of an angle
is negative if the angle is greater than 90 degrees, which means the dot-product will
also be negative in this case. To see how you can take advantage of this, take a look
at Figure 9-6.

Figure 9-4. Linear classifier using averages

204 | Chapter 9: Advanced Classification: Kernel Methods and SVMs

In the diagram you see the two average points for “match” (M0) and “no match”
(M1), and C, which is the halfway point between them. There are two other points,
X0 and X1, which are examples that have to be classified. The vector joining M0 to
M1 is shown, as are the vectors joining X1 and X2 to C.

In this figure, X1 is closer to M0, so it should be classified as being a match. You’ll
notice that the angle between the vectors X1→C and M0→M1 is 45 degrees, which is
less than 90 degrees, so the dot-product of X1→C and M0→M1 is positive.

On the other hand, the angle between X2→C and M0→M1 is more than 90 degrees
because the vectors point in opposing directions. This means that the dot-product of
X2→C and M0→M1 is negative.

The dot-product is negative for the big angle and positive for the small angle, so you
only need to look at the sign of the dot-product to see in which class the new point
belongs.

Figure 9-5. Vector examples

Figure 9-6. Using dot-products to determine distance

0

1

2

3

4

5

1 2 3 4 5

2
3

3, 3

3 – 4
3 – 5 = –1

–2

4, 5

M0

M1

C

X1

X2

105º

45º

Categorical Features | 205

The point C is the average of M0 and M1, or (M0+M1)/2, so the formula for finding
the class is:

class=sign((X – (M0+M1)/2) . (M0-M1))

Multiplying this out gives:

class=sign(X.M0 – X.M1 + (M0.M0 – M1.M1)/2)

This is the formula we will use to determine the class. Add a new function called
dpclassify to advancedclassify.py:

def dpclassify(point,avgs):
 b=(dotproduct(avgs[1],avgs[1])-dotproduct(avgs[0],avgs[0]))/2
 y=dotproduct(point,avgs[0])-dotproduct(point,avgs[1])+b
 if y>0: return 0
 else: return 1

Now you can use the classifier to try to get some results for the data in your Python
session:

>>> reload(advancedclassify)
<module 'advancedclassify' from 'advancedclassify.py'>
>>> advancedclassify.dpclassify([30,30],avgs)
1
>>> advancedclassify.dpclassify([30,25],avgs)
1
>>> advancedclassify.dpclassify([25,40],avgs)
0
>>> advancedclassify.dpclassify([48,20],avgs)
1

Remember that this is a linear classifier, so it just finds a dividing line. This means
that if there isn’t a straight line dividing the data or if there are multiple sections, as
there are with the age-age comparison, the classifier will get some of the answers
incorrect. In this example, the age comparison of 48 versus 20 really should have
been a mismatch, but since only one line was found and this point falls to the right of
it, the function decides that this is a match. In the “Understanding Kernel Methods”
section later in this chapter, you’ll see how to improve this classifier to do nonlinear
classification.

Categorical Features
The matchmaker dataset contains numerical data and categorical data. Some classifi-
ers, like the decision tree, can handle both types without any preprocessing, but the
classifiers in the remainder of this chapter work only with numerical data. To handle
this, you’ll need a way to turn data into numbers so that it will be useful to the
classifier.

206 | Chapter 9: Advanced Classification: Kernel Methods and SVMs

Yes/No Questions
The simplest thing to convert to a number is a yes/no question because you can turn
a “yes” into 1 and a “no” into –1. This also leaves the option of converting missing
or ambiguous data (such as “I don’t know”) to 0. Add the yesno function to
advancedclassify.py to do this conversion for you:

def yesno(v):
 if v=='yes': return 1
 elif v=='no': return -1
 else: return 0

Lists of Interests
There are a couple of different ways you can record people’s interests in the dataset.
The simplest is to treat every possible interest as a separate numerical variable, and
assign a 0 if the person has that interest and a 1 if he doesn’t. If you are dealing with
individual people, that is the best approach. In this case, however, you have pairs of
people, so a more intuitive approach is to use the number of common interests as a
variable.

Add a new function called matchcount to advancedclassify.py, which returns the num-
ber of matching items in a list as a float:

def matchcount(interest1,interest2):
 l1=interest1.split(':')
 l2=interest2.split(':')
 x=0
 for v in l1:
 if v in l2: x+=1
 return x

The number of common interests is an interesting variable, but it definitely elimi-
nates some potentially useful information. It’s possible that certain combinations of
different interests work well together, such as skiing and snowboarding or drinking
and dancing. A classifier that wasn’t trained on the original data would never be able
to learn these combinations.

An alternative to creating a new variable for every interest, leading to a lot of variables
and thus to much more complex classifiers, is to arrange interests in a hierarchy. You
could say, for example, that skiing and snowboarding are both examples of snow
sports, which is a subcategory of sports; a pair who are both interested in snow sports
but not in the same one might get 0.8 added to their matchcount instead of a full point.
The farther up the hierarchy you have to go to find a match, the smaller fraction of a
point it would be worth. Although the matchmaker dataset doesn’t have this
hierarchy, it’s something you can consider when similar problems arise.

Categorical Features | 207

Determining Distances Using Yahoo! Maps
The most difficult thing to deal with in this dataset is the location. It’s certainly
arguable that people living closer together are more likely to be a match, but the
locations in the data file are given as a mix of addresses and zip codes. A very simple
approach would be to use “live in the same zip code” as a variable, but this would be
extremely limiting—it’s quite possible for people to live on adjacent blocks that are
in different zip codes. Ideally, you could create a new variable based on distance.

Of course, it’s not possible to figure out the distances between two addresses with-
out additional information. Fortunately, Yahoo! Maps provides an API service called
Geocoding, which takes an address in the United States and returns its longitude and
latitude. By doing this for pairs of addresses, you can calculate an approximate
distance between them.

If for any reason you can’t use the Yahoo! API, just add a dummy function for
milesdistance to advancedclassify.py:

def milesdistance(a1,a2):
 return 0

Getting a Yahoo! Application Key

To use the Yahoo! API, you’ll first need to get an application key that is used in your
queries to identify your application. You can get a key by going to http://api.search.
yahoo.com/webservices/register_application and answering a few questions. If you
don’t already have a Yahoo! account, you’ll have to create one. You’ll get the key
right away, so you won’t have to wait for an email response.

Using the Geocoding API

The Geocoding API requires that you request a URL of the form. You can do this at
http://api.local.yahoo.com/MapsService/V1/geocode?appid=appid&location=location.

The location is free text and can be an address, a zip code, or even just a city and
state. The returned result is an XML file that looks like this:

<ResultSet>
<Result precision="address">
<Latitude>37.417312</Latitude>
<Longitude>-122.026419</Longitude>
<Address>755 FIRST AVE</Address>
<City>SUNNYVALE</City>
<State>CA</State>
<Zip>94089-1019</Zip>
<Country>US</Country>
</Result>
</ResultSet>

The fields you’re interested in are longitude and latitude. To parse this, you’ll use the
minidom API you used in previous chapters. Add getlocation to advancedclassify.py:

http://api.search.yahoo.com/webservices/register_application
http://api.search.yahoo.com/webservices/register_application
http://api.local.yahoo.com/MapsService/V1/geocode?appid=appid&location=location

208 | Chapter 9: Advanced Classification: Kernel Methods and SVMs

yahookey="Your Key Here"
from xml.dom.minidom import parseString
from urllib import urlopen,quote_plus

loc_cache={}
def getlocation(address):
 if address in loc_cache: return loc_cache[address]
 data=urlopen('http://api.local.yahoo.com/MapsService/V1/'+\
 'geocode?appid=%s&location=%s' %
 (yahookey,quote_plus(address))).read()
 doc=parseString(data)
 lat=doc.getElementsByTagName('Latitude')[0].firstChild.nodeValue
 long=doc.getElementsByTagName('Longitude')[0].firstChild.nodeValue
 loc_cache[address]=(float(lat),float(long))
 return loc_cache[address]

This function creates the URL with your application key and the location, and it
returns and extracts the longitude and latitude. Although this is the only informa-
tion you’ll need for calculating distance, you can use the Yahoo! Geocoding API for
other things as well, such as determining the zip code of a given address or finding
out where a certain zip code is.

Calculating the Distance

Converting the longitudes and latitudes of two points into a distance in miles is
actually quite tricky if you require complete accuracy. However, the distances in this
case are very small and you’re only calculating them for the sake of comparison, so
you can use an approximation instead. The approximation is similar to the Euclidean
distance you’ve seen in previous chapters, except that the difference between the
latitudes is first multiplied by 69.1, and the difference between the longitudes is
multiplied by 53.

Add the milesdistance function to advancedclassify.py:

def milesdistance(a1,a2):
 lat1,long1=getlocation(a1)
 lat2,long2=getlocation(a2)
 latdif=69.1*(lat2-lat1)
 longdif=53.0*(long2-long1)
 return (latdif**2+longdif**2)**.5

This function calls the previously defined getlocation on both addresses and then cal-
culates the distance between them. If you like, you can try it in your Python session:

>>> reload(advancedclassify)
<module 'advancedclassify' from 'advancedclassify.py'>
>>> advancedclassify.getlocation('1 alewife center, cambridge, ma')
(42.398662999999999, -71.140512999999999)
>>> advancedclassify.milesdistance('cambridge, ma','new york,ny')
191.77952424273104

The distances calculated by the approximation will generally be less than 10 percent
off, which is fine for this application.

Scaling the Data | 209

Creating the New Dataset
You now have all the parts required to create a dataset for training the classifier. What
you need now is a function that puts them all together. This function will load the
dataset from the data file using the loadmatch function, and will apply the appropriate
transformations to the columns. Add loadnumerical to advancedclassify.py:

def loadnumerical():
 oldrows=loadmatch('matchmaker.csv')
 newrows=[]
 for row in oldrows:
 d=row.data
 data=[float(d[0]),yesno(d[1]),yesno(d[2]),
 float(d[5]),yesno(d[6]),yesno(d[7]),
 matchcount(d[3],d[8]),
 milesdistance(d[4],d[9]),
 row.match]
 newrows.append(matchrow(data))
 return newrows

This function generates a new data row for every row in the original set. It calls the
functions you defined previously to convert all the data to numbers, including the
distance calculation and the interest overlap count.

Call this function from your Python session to create the new dataset:

>>> reload(advancedclassify)
>>> numericalset=advancedclassify.loadnumerical()
>>> numericalset[0].data
[39.0, 1, -1, 43.0, -1, 1, 0, 0.90110601059793416]

Again, it’s easy to create subsets by specifying the columns that interest you. This is
useful for visualizing the data and understanding how the classifiers work on
different variables.

Scaling the Data
When you were only making comparisons based on people’s ages, it was fine to keep
the data as it was and to use averages and distances, since it makes sense to compare
variables that mean the same thing. However, now you’ve introduced some new
variables that aren’t really comparable to age, since their values are much smaller.
Having differing opinions about children—a gap of 2, between 1 and –1—may be
much more significant in reality than having an age gap of six years, but if you used
the data as is, the age difference would count for three times as much.

To resolve this issue, it’s a good idea to put all the data on a common scale so that
differences are comparable in every variable. You can do this by determining the low-
est and highest values for every variable, and scaling the data so that the lowest value
is now 0 and the highest value is now 1, with all the other values somewhere
between 0 and 1.

210 | Chapter 9: Advanced Classification: Kernel Methods and SVMs

Add scaledata to advancedclassifier.py:

def scaledata(rows):
 low=[999999999.0]*len(rows[0].data)
 high=[-999999999.0]*len(rows[0].data)
 # Find the lowest and highest values
 for row in rows:
 d=row.data
 for i in range(len(d)):
 if d[i]<low[i]: low[i]=d[i]
 if d[i]>high[i]: high[i]=d[i]

 # Create a function that scales data
 def scaleinput(d):
 return [(d.data[i]-low[i])/(high[i]-low[i])
 for i in range(len(low))]

 # Scale all the data
 newrows=[matchrow(scaleinput(row.data)+[row.match])
 for row in rows]

 # Return the new data and the function
 return newrows,scaleinput

This function defines an internal function, scaleinput, which finds the lowest value
and subtracts that amount from all the values to bring the range to a 0 starting point.
It then divides the values by the difference between the lowest and highest values to
convert them all to values between 0 and 1. The function applies scaleinput to every
row in the dataset and returns the new dataset along with the function so you can
also scale your queries.

Now you can try the linear classifier on a bigger set of variables:

>>> reload(advancedclassify)
<module 'advancedclassify' from 'advancedclassify.py'>
>>> scaledset,scalef=advancedclassify.scaledata(numericalset)
>>> avgs=advancedclassify.lineartrain(scaledset)
>>> numericalset[0].data
[39.0, 1, -1, 43.0, -1, 1, 0, 0.90110601059793416]
>>> numericalset[0].match
0
>>> advancedclassify.dpclassify(scalef(numericalset[0].data),avgs)
1
>>> numericalset[11].match
1
>>> advancedclassify.dpclassify(scalef(numericalset[11].data),avgs)
1

Notice that you need to scale the numerical examples first to fit them into the new
space. Although the classifier works for some examples, the limitations of simply try-
ing to find a dividing line now become clearer. To improve the results, you’ll need to
get beyond linear classification.

Understanding Kernel Methods | 211

Understanding Kernel Methods
Consider what would happen if you tried to use the linear classifier on a dataset
similar to the one in Figure 9-7.

Where would the average points be for each class? They would both be in exactly the
same place! Even though it’s clear to you and me that anything inside the circle is an
X and everything outside the circle is an O, the linear classifier is unable to
distinguish these two classes.

But consider what happens if you square every x and y value first. A point that was at
(–1,2) would now be at (1,4), a point that was at (0.5,1) would now be at (0.25,1),
and so on. The new plot would look like Figure 9-8.

All the Xs have moved into the corner and all the Os are outside that corner. It’s now
very easy to divide the Xs and Os with a straight line, and any time a new piece of
data has to be classified, you can just square its x and y values and see on which side
of the line it falls.

This example shows that by transforming the points first, it’s possible to create a
new dataset that can be divided with a straight line. However, this example was
chosen precisely because it can be transformed very easily; in real problems, the
transformation will likely be a lot more complicated and will involve transforming

Figure 9-7. A class encircling another class

212 | Chapter 9: Advanced Classification: Kernel Methods and SVMs

the data into more dimensions. For example, you might take a dataset of x and y
coordinates and create a new dataset with a, b, and c coordinates where a=x^2,
b=x*y, and c=y^2. Once the data has been put into more dimensions, it’s easier to
find the dividing line between two classes.

The Kernel Trick
While you could write code to transform the data into a new space like this, it isn’t
usually done in practice because finding a dividing line when working with real
datasets can require casting the data into hundreds or thousands of dimensions, and
this is quite impractical to implement. However, with any algorithm that uses
dot-products—including the linear classifier—you can use a technique called the
kernel trick.

The kernel trick involves replacing the dot-product function with a new function that
returns what the dot-product would have been if the data had first been transformed
to a higher dimensional space using some mapping function. There is no limit to the
number of possible transformations, but only a few are actually used in practice. The
one that is usually recommended (and the one that you’ll use here) is called the
radial-basis function.

Figure 9-8. Moving the points into a different space

Understanding Kernel Methods | 213

The radial-basis function is like the dot-product in that it takes two vectors and
returns a value. Unlike the dot-product, it is not linear and can thus map more com-
plex spaces. Add rbf to advancedclassify.py:

def rbf(v1,v2,gamma=20):
 dv=[v1[i]-v2[i] for i in range(len(v1))]
 l=veclength(dv)
 return math.e**(-gamma*l)

This function takes a single parameter, gamma, which can be adjusted to get the best
linear separation for a given dataset.

You now need a new function that calculates the distances from the average points in
the transformed space. Unfortunately, the averages were calculated in the original
space, so they can’t be used here—in fact, the averages can’t be calculated at all
because you won’t actually be calculating the locations of the points in the new
space. Thankfully, averaging a set of vectors and taking the dot-product of the
average with vector A gives the same result as averaging the dot-products of vector A
with every vector in the set.

So, instead of calculating the dot-product between the point you’re trying to classify
and the average point for a class, you calculate the dot-product or the radial-basis
function between the point and every other point in the class, and then average
them. Add nonlinearclassify to advancedclassify.py:

def nlclassify(point,rows,offset,gamma=10):
 sum0=0.0
 sum1=0.0
 count0=0
 count1=0

 for row in rows:
 if row.match==0:
 sum0+=rbf(point,row.data,gamma)
 count0+=1
 else:
 sum1+=rbf(point,row.data,gamma)
 count1+=1
 y=(1.0/count0)*sum0-(1.0/count1)*sum1+offset

 if y<0: return 0
 else: return 1

def getoffset(rows,gamma=10):
 l0=[]
 l1=[]
 for row in rows:
 if row.match==0: l0.append(row.data)
 else: l1.append(row.data)
 sum0=sum(sum([rbf(v1,v2,gamma) for v1 in l0]) for v2 in l0)
 sum1=sum(sum([rbf(v1,v2,gamma) for v1 in l1]) for v2 in l1)

 return (1.0/(len(l1)**2))*sum1-(1.0/(len(l0)**2))*sum0

214 | Chapter 9: Advanced Classification: Kernel Methods and SVMs

The offset value is also different in the transformed space and can be a little slow to
calculate. For this reason, you should calculate it once for a dataset and pass it to
nlclassify each time.

Try using this new classifier with just the ages and see if it fixes the problem that you
identified earlier:

>>> advancedclassify.nlclassify([30,30],agesonly,offset)
1
>>> advancedclassify.nlclassify([30,25],agesonly,offset)
1
>>> advancedclassify.nlclassify([25,40],agesonly,offset)
0
>>> advancedclassify.nlclassify([48,20],agesonly,offset)
0

Excellent! The transformation allows the classifier to recognize that there is a band of
matches where the ages are close together, and that on either side of the band a
match is very unlikely. Now it recognizes that 48 versus 20 is not a good match. Try
it again with the other data included:

>>> ssoffset=advancedclassify.getoffset(scaledset)
>>> numericalset[0].match
0
>>> advancedclassify.nlclassify(scalef(numericalset[0].data),scaledset,ssoffset)
0
>>> numericalset[1].match
1
>>> advancedclassify.nlclassify(scalef(numericalset[1].data),scaledset,ssoffset)
1
>>> numericalset[2].match
0
>>> advancedclassify.nlclassify(scalef(numericalset[2].data),scaledset,ssoffset)
0
>>> newrow=[28.0,-1,-1,26.0,-1,1,2,0.8] # Man doesn't want children, woman does
>>> advancedclassify.nlclassify(scalef(newrow),scaledset,ssoffset)
0
>>> newrow=[28.0,-1,1,26.0,-1,1,2,0.8] # Both want children
>>> advancedclassify.nlclassify(scalef(newrow),scaledset,ssoffset)
1

The performance of the classifier has improved a lot. In the session above, you can
see that if the man doesn’t want children and the woman does, it’s a deal breaker,
even though they are close in age and have two common interests. Try changing the
other variables to see what affects the outcome.

Support-Vector Machines | 215

Support-Vector Machines
Consider again the challenge of finding a straight line that divides two classes.
Figure 9-9 illustrates an example. The averages for each class are shown in the figure,
along with the dividing line that they imply.

Notice that the dividing line calculated by using the averages misclassifies two of the
points because they are much closer to the line than the majority of the data. The
problem is that since most of the data is far away from the line, it’s not relevant for
including in the dividing line.

Support-vector machines are a well known set of methods for creating classifiers that
solve this problem. They do this by trying to find the line that is as far away as possi-
ble from each of the classes. This line is called the maximum-margin hyperplane, and
is shown in Figure 9-10.

The dividing line has been chosen so that the parallel lines that touch the items from
each class are as far from it as possible. Again, you can determine into which class a
new data point fits simply by seeing which side of the line it is on. Notice that only
the points at the margin are needed to determine the placement of the dividing line;
you could get rid of all the other data and the line would be in the same place. The

Figure 9-9. Linear average classifier misclassifies points

216 | Chapter 9: Advanced Classification: Kernel Methods and SVMs

points near the line are called the support vectors. The algorithm that finds the
support vectors and uses them to find the dividing line is the support-vector machine.

You have already seen how a linear classifier can be turned into a nonlinear classifier
by using the kernel trick, as long as it uses dot-products for comparisons. Support-
vector machines also use dot-products so they can be used with kernels to perform
nonlinear classification.

Figure 9-10. Finding the best dividing line

Applications of Support-Vector Machines
Because support-vector machines work well with high-dimensional datasets, they are
most often applied to data-intensive scientific problems and other problems that deal
with very complex sets of data. Some examples include:

• Classifying facial expressions

• Detecting intruders using military datasets

• Predicting the structure of proteins from their sequences

• Handwriting recognition

• Determining the potential for damage during earthquakes

Using LIBSVM | 217

Using LIBSVM
The explanation in the previous section should help you understand how and why
support-vector machines work, but the algorithm for training a support-vector
machine involves mathematical concepts that are very computationally intensive and
are beyond the scope of this chapter. For these reasons, this section will introduce an
open-source library called LIBSVM, which can train an SVM model, make predic-
tions, and test the predictions within a dataset. It even has built-in support for the
radial-basis function and other kernel methods.

Getting LIBSVM
You can download LIBSVM from http://www.csie.ntu.edu.tw/~cjlin/libsvm.

LIBSVM is written in C++ and includes a version written in Java. The download
package includes a Python wrapper called svm.py. In order to use svm.py, you need
compiled versions of LIBSVM for your platform. If you’re using Windows, a DLL
called svmc.dll is included. (Python 2.5 requires that you rename this file to svmc.pyd
because it can’t import libraries with DLL extensions.) The documentation for LIB-
SVM explains how to compile the library for other platforms.

A Sample Session
Once you have a compiled version of LIBSVM, put it and svm.py in your Python path
or working directory. You can now import the library in your Python session and try
a simple problem:

>>> from svm import *

The first step is to create a simple dataset. LIBSVM reads the data from a tuple con-
taining two lists. The first list contains the classes and the second list contains the
input data. Try creating a simple dataset with two possible classes:

>>> prob = svm_problem([1,-1],[[1,0,1],[-1,0,-1]])

You also need to specify which kernel you want to use by creating svm_parameter:

>>> param = svm_parameter(kernel_type = LINEAR, C = 10)

Next, you can train the model:

>>> m = svm_model(prob, param)
*
optimization finished, #iter = 1
nu = 0.025000
obj = -0.250000, rho = 0.000000
nSV = 2, nBSV = 0
Total nSV = 2

http://www.csie.ntu.edu.tw/~cjlin/libsvm

218 | Chapter 9: Advanced Classification: Kernel Methods and SVMs

And finally, use it to create predictions about new classes:

>>> m.predict([1, 1, 1])
1.0

This shows all the functionality of LIBSVM that you need to create a model from
training data and use it to make predictions. LIBSVM includes another very nice fea-
ture, the ability to load and save the trained models you’ve built:

>>> m.save(test.model)
>>> m=svm_model(test.model)

Applying SVM to the Matchmaker Dataset
In order to use LIBSVM on the matchmaker dataset, you must convert it to the tuple
of lists required by svm_model. This is a simple transformation from the scaledset;
you can do it in one line in your Python session:

>>> answers,inputs=[r.match for r in scaledset],[r.data for r in scaledset]

Again, we’re using the scaled data to prevent overweighting of variables, as this
improves the performance of the algorithm. Use this new function to generate the
new dataset and build a model using a radial-basis function as the kernel:

>>> param = svm_parameter(kernel_type = RBF)
>>> prob = svm_problem(answers,inputs)
>>> m=svm_model(prob,param)
*
optimization finished, #iter = 319
nu = 0.777538
obj = -289.477708, rho = -0.853058
nSV = 396, nBSV = 380
Total nSV = 396

Now you can make predictions about whether people with a given set of attributes
will be a match or not. You’ll need to use the scale function to scale the data you
want predictions for, so that the variables are on the same scale as the ones with
which you built the model:

>>> newrow=[28.0,-1,-1,26.0,-1,1,2,0.8] # Man doesn't want children, woman does
>>> m.predict(scalef(newrow))
0.0
>>> newrow=[28.0,-1,1,26.0,-1,1,2,0.8] # Both want children
>>> m.predict(scalef(newrow))
1.0

Although this appears to give good predictions, it would be nice to know how good
they really are so that you can choose the best parameters for your basis function.
LIBSVM also includes functionality for cross-validating the models. You saw how
this works in Chapter 8—the dataset is automatically divided into training sets and
test sets. The training sets are used to build the model, and the test sets are used to
test the model to see how well it makes predictions.

Matching on Facebook | 219

You can test the quality of the model using the cross-validation function. This func-
tion takes a parameter, n, and divides the dataset into n subsets. It then uses each
subset as a test set and trains the model with all the other subsets. It returns a list of
answers that you can compare to the original list.

>>> guesses = cross_validation(prob, param, 4)
...
>>> guesses
[0.0, 0.0, 0.0, 0.0, 1.0, 0.0,...
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...
 1.0, 1.0, 0.0, 0.0, 0.0, 0.0,...
...]
>>> sum([abs(answers[i]-guesses[i]) for i in range(len(guesses))])
116.0

The number of differences between the answers and the guesses is 116. Since there
were 500 rows in the original dataset, this means that the algorithm got 384 matches
correct. If you like, you can look at other kernels and parameters in the LIBSVM doc-
umentation and see if you can get any improvement by changing param.

Matching on Facebook
Facebook is a popular social networking site that was originally for college students
but eventually opened up to a larger audience. Like other social networking sites, it
allows users to make profiles, enter demographic information about themselves, and
connect to their friends on the site. Facebook also includes an API that lets you query
information about people and find out if two people are friends or not. By doing this,
you can build a set similar to the matchmaker dataset using real people.

As of this writing, Facebook has remained very committed to privacy, so you can
only view the profiles of people who are your friends. The API applies the same rules,
requiring a user to log in and only allowing queries, so unfortunately, you’ll only be
able to work through this section if you have a Facebook account and have
connected to at least 20 people.

Getting a Developer Key
If you have a Facebook account, you can sign up for a developer key on the Face-
book developer site at http://developers.facebook.com.

You’ll get two strings, an API key and a “secret” key. The API key is used to identify
you, and the secret key is used to encrypt your requests in the hash function that
you’ll see later. To start, create a new file called facebook.py, import some modules
you’ll need, and set up some constants:

import urllib,md5,webbrowser,time
from xml.dom.minidom import parseString

http://developers.facebook.com

220 | Chapter 9: Advanced Classification: Kernel Methods and SVMs

apikey="Your API Key"
secret="Your Secret Key"
FacebookSecureURL = "https://api.facebook.com/restserver.php"

There are two convenience methods to add: getsinglevalue gets the next value from
inside a named node, and callid returns a number based on the system time.

def getsinglevalue(node,tag):
 nl=node.getElementsByTagName(tag)
 if len(nl)>0:
 tagNode=nl[0]
 if tagNode.hasChildNodes():
 return tagNode.firstChild.nodeValue
 return ''

def callid():
 return str(int(time.time()*10))

Some of the Facebook calls require that you send a sequence number, which can be
any number as long as it is higher than the last sequence number you used. Using the
system time is an easy way to get consistently higher numbers.

Creating a Session
The procedure for creating a session on Facebook is actually intended for you to
create an application for other people to use without ever learning their login
information. This is accomplished in several steps:

1. Use the Facebook API to request a token.

2. Send the user a URL to the Facebook login page, with the token in the URL.

3. Wait until the user has logged in.

4. Request a session from the Facebook API using the token.

Because several variables are used by all the calls, it’s better to wrap the Facebook
functionality in a class. Create a new class in facebook.py called fbsession and add
an __init__ method that carries out the steps listed above:

class fbsession:
 def __init_ _(self):
 self.session_secret=None
 self.session_key=None
 self.token=self.createtoken()
 webbrowser.open(self.getlogin())
 print "Press enter after logging in:",
 raw_input()
 self.getsession()

There are several methods used by __init__ that have to be added to the class for it
to work. The first thing you’ll need is a way to send requests to the Facebook API.
The sendrequest method opens a connection to Facebook and posts the arguments.

Matching on Facebook | 221

An XML file is returned and parsed using the minidom parser. Add this method to
your class:

 def sendrequest(self, args):
 args['api_key'] = apikey
 args['sig'] = self.makehash(args)
 post_data = urllib.urlencode(args)
 url = FacebookURL + "?" + post_data
 data=urllib.urlopen(url).read()
 return parseString(data)

The line shown in bold generates the signature of the request. This is accomplished
with the makehash method, which joins all the arguments together in a string and
hashes them with the secret key. You’ll see shortly that the secret key changes once
you get a session, so the method checks to see if you already have a session secret
key. Add makehash to your class:

 def makehash(self,args):
 hasher = md5.new(''.join([x + '=' + args[x] for x in sorted(args.keys())]))
 if self.session_secret: hasher.update(self.session_secret)
 else: hasher.update(secret)
 return hasher.hexdigest()

Now you’re ready to write some actual Facebook API calls. Begin with createtoken,
which creates and stores a token to use in the login page:

 def createtoken(self):
 res = self.sendrequest({'method':"facebook.auth.createToken"})
 self.token = getsinglevalue(res,'token')

Also add getlogin, which just returns the user login page URL:

 def getlogin(self):
 return "http://api.facebook.com/login.php?api_key="+apikey+\
 "&auth_token=" + self.token

After the user has logged in, getsession should be called to get a session key and the
session secret key that will be used to hash future requests. Add this method to your
class:

 def getsession(self):
 doc=self.sendrequest({'method':'facebook.auth.getSession',
 'auth_token':self.token})
 self.session_key=getsinglevalue(doc,'session_key')
 self.session_secret=getsinglevalue(doc,'secret')

It’s a lot of work to set up a Facebook session, but after going through the process,
the future calls are pretty simple. This chapter only looks at getting information
about people, but if you look at the documentation, you’ll see that it’s easy to call
methods to download photos and events.

222 | Chapter 9: Advanced Classification: Kernel Methods and SVMs

Download Friend Data
Now you can actually start creating some useful methods. The getfriends method
downloads the list of friend IDs for the currently logged-in user and returns them as
a list. Add this method to fbsession:

 def getfriends(self):
 doc=self.sendrequest({'method':'facebook.friends.get',
 'session_key':self.session_key,'call_id':callid()})
 results=[]
 for n in doc.getElementsByTagName('result_elt'):
 results.append(n.firstChild.nodeValue)
 return results

Since getfriends only returns IDs, you’ll need another method to actually download
information about the people. The getinfo method calls Facebook’s getInfo with a
list of user IDs. It requests a small number of selected fields, but you can extend this
by adding more fields to fields and modifying the parsing code to extract the relevant
information. A complete list of fields is in the Facebook developer documentation:

 def getinfo(self,users):
 ulist=','.join(users)

 fields='gender,current_location,relationship_status,'+\
 'affiliations,hometown_location'

 doc=self.sendrequest({'method':'facebook.users.getInfo',
 'session_key':self.session_key,'call_id':callid(),
 'users':ulist,'fields':fields})

 results={}
 for n,id in zip(doc.getElementsByTagName('result_elt'),users):
 # Get the location
 locnode=n.getElementsByTagName('hometown_location')[0]
 loc=getsinglevalue(locnode,'city')+', '+getsinglevalue(locnode,'state')

 # Get school
 college=''
 gradyear='0'
 affiliations=n.getElementsByTagName('affiliations_elt')
 for aff in affiliations:
 # Type 1 is college
 if getsinglevalue(aff,'type')=='1':
 college=getsinglevalue(aff,'name')
 gradyear=getsinglevalue(aff,'year')

 results[id]={'gender':getsinglevalue(n,'gender'),
 'status':getsinglevalue(n,'relationship_status'),
 'location':loc,'college':college,'year':gradyear}
 return results

Matching on Facebook | 223

The results are in the form of a dictionary that maps the user IDs to a subset of the
information. You can use this to create a new matchmaker dataset. If you like, you
can try out your new Facebook class in your Python session:

>>> import facebook
>>> s=facebook.fbsession()
Press enter after logging in:
>>> friends=s.getfriends()
>>> friends[1]
u'iY5TTbS-0fvs.'
>>> s.getinfo(friends[0:2])
{u'iA810MUfhfsw.': {'gender': u'Female', 'location': u'Atlanta, '},
 u'iY5TTbS-0fvs.': {'gender': u'Male', 'location': u'Boston, '}}

Building a Match Dataset
The final Facebook API call required for our exercise is one that determines whether
or not two people are friends. This will be used as the “answer” in our new dataset.
The call allows you to pass two equal-length lists of IDs, and returns a list with a
number for every pair—1 if the people are friends, and 0 if they are not. Add this
method to your class:

 def arefriends(self,idlist1,idlist2):
 id1=','.join(idlist1)
 id2=','.join(idlist2)
 doc=self.sendrequest({'method':'facebook.friends.areFriends',
 'session_key':self.session_key,'call_id':callid(),
 'id1':id1,'id2':id2})
 results=[]
 for n in doc.getElementsByTagName('result_elt'):
 results.append(n.firstChild.nodeValue)
 return results

And finally, you can put it all together to create a dataset that works with LIBSVM.
This gets a list of all the friends of the logged-in user, downloads information about
them, and creates a row for every pair of people. It then checks every pair to see if
they are friends. Add makedataset to the class:

 def makedataset(self):
 from advancedclassify import milesdistance
 # Get all the info for all my friends
 friends=self.getfriends()
 info=self.getinfo(friends)
 ids1,ids2=[],[]
 rows=[]

 # Nested loop to look at every pair of friends
 for i in range(len(friends)):
 f1=friends[i]
 data1=info[f1]

224 | Chapter 9: Advanced Classification: Kernel Methods and SVMs

 # Start at i+1 so we don't double up
 for j in range(i+1,len(friends)):
 f2=friends[j]
 data2=info[f2]
 ids1.append(f1)
 ids2.append(f2)

 # Generate some numbers from the data
 if data1['college']==data2['college']: sameschool=1
 else: sameschool=0
 male1=(data1['gender']=='Male') and 1 or 0
 male2=(data2['gender']=='Male') and 1 or 0

 row=[male1,int(data1['year']),male2,int(data2['year']),sameschool]
 rows.append(row)
 # Call arefriends in blocks for every pair of people
 arefriends=[]
 for i in range(0,len(ids1),30):
 j=min(i+20,len(ids1))
 pa=self.arefriends(ids1[i:j],ids2[i:j])
 arefriends+=pa
 return arefriends,rows

This method changes gender and status to numbers so that the dataset can be used
directly by LIBSVM. The final loop requests the friend status of every pair of people
in blocks, since Facebook restricts how large a single request can be.

Creating an SVM Model
To try building an SVM on your data, reload the class, create a new session, and
build the dataset:

>>> reload(facebook)
<module 'facebook' from 'facebook.pyc'>
>>> s=facebook.fbsession()
Press enter after logging in:
>>> answers,data=s.makedataset()

You should be able to run the svm methods on it directly:

>>> param = svm_parameter(kernel_type = RBF)
>>> prob = svm_problem(answers,data)
>>> m=svm_model(prob,param)
>>> m.predict([1,2003,1,2003,1]) # Two men, same year, same school
1.0
>>> m.predict([1,2003,1,1996,0]) # Different years, different schools
0.0

Of course, your results will vary, but typically the model will determine that people
who went to the same college or had the same hometown are likely to be friends.

Exercises | 225

Exercises
1. Bayesian classifier. Can you think of ways that the Bayesian classifier you built in

Chapter 6 could be used on the matchmaker dataset? What would be good
examples of features?

2. Optimizing a dividing line. Do you think it’s possible to choose a dividing line
using the optimization methods you learned in Chapter 5, instead of just using
the averages? What cost function would you use?

3. Choosing the best kernel parameters. Write a function that loops over different
values for gamma and determines what the best value for a given dataset is.

4. Hierarchy of interests. Design a simple hierarchy of interests, along with a data
structure to represent it. Alter the matchcount function to use the hierarchy to give
partial points for matches.

5. Other LIBSVM kernels. Look through the LIBSVM documentation and see what
other kernels are available. Try a polynomial kernel. Does the prediction quality
improve?

6. Other Facebook predictions. Look at all the fields available through the Face-
book API. What datasets can be built for individuals? Could you use an SVM
model to predict if someone listed a movie as a favorite based on the school she
went to? What other things could you make predictions about?

226

Chapter 10CHAPTER 10

Finding Independent Features 10

Most of the chapters so far have focused primarily on supervised classifiers, except
Chapter 3, which was about unsupervised techniques called clustering. This chapter
will look at ways to extract the important underlying features from sets of data that
are not labeled with specific outcomes. Like clustering, these methods do not seek to
make predictions as much as they try to characterize the data and tell you interesting
things about it.

You’ll recall from Chapter 3 that clustering assigns every row in a dataset to a group
or point in a hierarchy—each item fits into exactly one group that represents the
average of the members. Feature extraction is a more general form of this idea; it tries
to find new data rows that can be used in combination to reconstruct rows of the
original dataset. Rather than belonging to one cluster, each row is created from a
combination of the features.

One of the classic problems illustrating the need to find independent features is
known as the cocktail party problem, the problem of interpreting conversation when
many people are talking. A remarkable feature of the human auditory system is our
ability to focus on a single voice in a room full of people talking, despite the fact that
a mixture of all the different voices is reaching our ears. The brain is quite adept at
separating the independent sounds that create all the noise it’s hearing. By using
algorithms like the one described in this chapter, and getting the input from multi-
ple microphones placed in a room, it’s possible for a computer to do the same
thing—take a cacophony of sounds and separate them without any prior knowledge
of what they are.

Another interesting use of feature extraction is identifying recurring word-usage
patterns in a corpus of documents, which can help identify themes that are indepen-
dently present in various combinations. In this chapter, you’ll build a system that
downloads news articles from a variety of feeds and identifies the key themes that
emerge from a set of articles. You may find that articles contain more than one
theme, and you will certainly find that themes apply to more than one article.

A Corpus of News | 227

The second example in this chapter concerns stock market data, which is presumed
to have multiple underlying causes that combine to create results. The same
algorithm can be applied to this data to search for these causes and their independent
effects.

A Corpus of News
To begin, you’ll need a set of news articles to work with. These should be from a
variety of sources so that the themes being discussed in different places are easier to
discern. Fortunately, most of the major news services and web sites provide RSS or
Atom feeds, either for all the articles or for individual categories. You’ve used the
Universal Feed Parser in previous chapters to parse RSS and Atom feeds for blogs,
and you can use the same parser to download news. If you don’t already have the
parser, you can download it from http://feedparser.org.

Selecting Sources
There are thousands of sources of what can be considered “news,” from major news
wires and newspapers to political blogs. Some ideas include:

• Reuters

• The Associated Press

• The New York Times

• Google News

• Salon.com

• Fox News

• Forbes magazine

• CNN International

This is just a small sample of the possibilities. Combining sources from different
points on the political spectrum and those that use different writing styles is a better
test for the algorithm, since it should be able to find the important features and
ignore irrelevant sections. It’s also possible, given the right set of data, for a feature-
extraction algorithm to identify a feature that is present in stories with a particular
political slant and assign that feature to the story, in addition to the features that
describe the subject of the story.

Create a new file called newsfeatures.py and add the following code to import some
libraries and give a list of sources:

import feedparser
import re

feedlist=['http://today.reuters.com/rss/topNews',
 'http://today.reuters.com/rss/domesticNews',

http://feedparser.org

228 | Chapter 10: Finding Independent Features

 'http://today.reuters.com/rss/worldNews',
 'http://hosted.ap.org/lineups/TOPHEADS-rss_2.0.xml',
 'http://hosted.ap.org/lineups/USHEADS-rss_2.0.xml',
 'http://hosted.ap.org/lineups/WORLDHEADS-rss_2.0.xml',
 'http://hosted.ap.org/lineups/POLITICSHEADS-rss_2.0.xml',
 'http://www.nytimes.com/services/xml/rss/nyt/HomePage.xml',
 'http://www.nytimes.com/services/xml/rss/nyt/International.xml',
 'http://news.google.com/?output=rss',
 'http://feeds.salon.com/salon/news',
 'http://www.foxnews.com/xmlfeed/rss/0,4313,0,00.rss',
 'http://www.foxnews.com/xmlfeed/rss/0,4313,80,00.rss',
 'http://www.foxnews.com/xmlfeed/rss/0,4313,81,00.rss',
 'http://rss.cnn.com/rss/edition.rss',
 'http://rss.cnn.com/rss/edition_world.rss',
 'http://rss.cnn.com/rss/edition_us.rss']

The feed list includes a variety of sources, drawing primarily from the Top News,
World News, and U.S. News sections. You can modify the feed list to include what-
ever you like, but you should aim to have some overlapping themes. If none of the
articles have anything in common, it will be very difficult for the algorithm to extract
important features, and you’ll end up with features that don’t really mean anything.

Downloading Sources
The feature-extraction algorithm, like the clustering algorithm, takes a big matrix of
numbers, with each row representing an item and each column representing a
property. In this case, the different articles will be the rows, and words will be the
columns. The numbers will represent the number of times a word appears in a given
article. Thus, the following matrix tells you that article A contains the word “hurri-
cane” three times, article B contains the word “democrats” twice, and so on.

articles = ['A','B','C',...
words = ['hurricane','democrats','world',...
matrix = [[3,0,1,...]
 [1,2,0,...]
 [0,0,2,...]
 ...]

To get from a feed to a matrix of this kind, you’ll need a couple of methods similar to
those used in previous chapters. The first method removes any images and markup
from the articles. Add stripHTML to newsfeatures.py:

def stripHTML(h):
 p=''
 s=0
 for c in h:
 if c=='<': s=1
 elif c=='>':
 s=0
 p+=' '
 elif s==0: p+=c
 return p

A Corpus of News | 229

You’ll also need a way to separate the words in the text, as you’ve done in previous
chapters. If you created a more sophisticated way to separate words than the simple
alphanumeric regular expression, you can reuse that function here; otherwise, add
this function to newsfeatures.py:

def separatewords(text):
 splitter=re.compile('\\W*')
 return [s.lower() for s in splitter.split(text) if len(s)>3]

The next function loops over all the feeds, parses them with the feedparser, strips
out the HTML, and extracts the individual words using the previously defined func-
tions. It keeps track of how many times each word is used overall, as well as how
many times it is used in each individual article.

Add this function to newsfeatures.py:

def getarticlewords():
 allwords={}
 articlewords=[]
 articletitles=[]
 ec=0
 # Loop over every feed
 for feed in feedlist:
 f=feedparser.parse(feed)

 # Loop over every article
 for e in f.entries:
 # Ignore identical articles
 if e.title in articletitles: continue

 # Extract the words
 txt=e.title.encode('utf8')+stripHTML(e.description.encode('utf8'))
 words=separatewords(txt)
 articlewords.append({})
 articletitles.append(e.title)

 # Increase the counts for this word in allwords and in articlewords
 for word in words:
 allwords.setdefault(word,0)
 allwords[word]+=1
 articlewords[ec].setdefault(word,0)
 articlewords[ec][word]+=1
 ec+=1
 return allwords,articlewords,articletitles

The function has three variables:

• allwords keeps a count of word usage across all the different articles. This will be
used to determine which words should be considered parts of features.

• articlewords are the counts of the words in each article.

• articletitles is a list of the titles of the articles.

230 | Chapter 10: Finding Independent Features

Converting to a Matrix
Now you have dictionaries of counts for the words in all articles, as well as counts
for each article, all of which have to be converted into the matrix that was described
earlier. The first step is to create a list of words to be used as the columns of the
matrix. To reduce the size of the matrix, you can eliminate words that appear in only
a couple of articles (which probably won’t be useful for finding features), and also
those that appear in too many articles.

To start, try only including words that appear in more than three articles but fewer
than 60 percent of the total. You can then use a nested list comprehension to create
the matrix, which right now is just a list of lists. Each of the nested lists is created by
looping over wordvec and looking up the word in the dictionary—if the word is
absent, a 0 is added; otherwise, the word count for that article and word is added.

Add the makematrix function to newsfeatures.py:

def makematrix(allw,articlew):
 wordvec=[]

 # Only take words that are common but not too common
 for w,c in allw.items():
 if c>3 and c<len(articlew)*0.6:
 wordvec.append(w)

 # Create the word matrix
 l1=[[(word in f and f[word] or 0) for word in wordvec] for f in articlew]
 return l1,wordvec

Start a Python session and import newsfeatures. You can then try parsing the feeds
and creating the matrix.

$ python
>>> import newsfeatures
>>> allw,artw,artt= newsfeatures.getarticlewords()
>>> wordmatrix,wordvec= newsfeatures.makematrix(allw,artw)
>>> wordvec[0:10]
['increase', 'under', 'regan', 'rise', 'announced', 'force',
 'street', 'new', 'men', 'reported']
>>> artt[1]
u'Fatah, Hamas men abducted freed: sources'
>>> wordmatrix[1][0:10]
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0]

In this example, the first 10 words of the word vector are displayed. The second arti-
cle’s title is shown, followed by the first 10 values of its row in the word matrix. You
can see that the article contains the word “men” once and none of the other words in
the first 10 values.

Previous Approaches | 231

Previous Approaches
In previous chapters, you’ve looked at different ways of dealing with word counts for
textual data. For purposes of comparison, it’s useful to try these first and see what
sort of results you get, then compare them with the results of feature extraction. If
you have the code that you wrote for those chapters, you can import those modules
and try them here on your feeds. If not, don’t worry—this section illustrates how
these methods work on the sample data.

Bayesian Classification
Bayesian classification is, as you’ve seen, a supervised learning method. If you were to
try to use the classifier built in Chapter 6, you would first be required to classify sev-
eral examples of stories to train the classifier. The classifier would then be able to put
later stories into your predefined categories. Besides the obvious downside of having
to do the initial training, this approach also suffers from the limitation that the devel-
oper has to decide what all the different categories are. All the classifiers you’ve seen
so far, such as decision trees and support-vector machines, will have this same
limitation when applied to a dataset of this kind.

If you’d like to try the Bayesian classifier on this dataset, you’ll need to place the mod-
ule you built in Chapter 6 in your working directory. You can use the articlewords
dictionary as is for the feature set of each article.

Try this in your Python session:

>>> def wordmatrixfeatures(x):
... return [wordvec[w] for w in range(len(x)) if x[w]>0]
...
>>> wordmatrixfeatures(wordmatrix[0])
['forces', 'said', 'security', 'attacks', 'iraq', 'its', 'pentagon',...]
>>> import docclass
>>> classifier=docclass.naivebayes(wordmatrixfeatures)
>>> classifier.setdb('newstest.db')
>>> artt[0]
u'Attacks in Iraq at record high: Pentagon'
>>> # Train this as an 'iraq' story
>>> classifier.train(wordmatrix[0],'iraq')
>>> artt[1]
u'Bush signs U.S.-India nuclear deal'
>>> # Train this as an 'india' story
>>> classifier.train(wordmatrix[1],'india')
>>> artt[2]
u'Fatah, Hamas men abducted freed: sources'
>>> # How is this story classified?
>>> classifier.classify(wordmatrix[1])
u'iraq'

232 | Chapter 10: Finding Independent Features

With the examples used, there are many possible themes and only a few stories in
each one. The Bayesian classifier will eventually learn all the themes, but since it
requires training on several examples per theme, this classifier is better suited to
fewer categories with more examples in each category.

Clustering
The other unsupervised approach you’ve seen so far is clustering, which we covered
in Chapter 3.

The data in Chapter 3 was arranged in a matrix identical to the one you’ve just cre-
ated. If you still have the code from that chapter, you can import it into your Python
session and run the clustering algorithm on the matrix:

>>> import clusters
>>> clust=clusters.hcluster(wordmatrix)
>>> clusters.drawdendrogram(clust,artt,jpeg='news.jpg')

Figure 10-1 shows a potential result of this clustering, which will now be saved in a
file called news.jpg.

As expected, similar news stories are grouped together. This works even better than
the blog example in Chapter 3 because various publications tend to report on exactly
the same stories using similar language. However, a couple of examples in
Figure 10-1 illustrate the point that you don’t always get an accurate picture by put-
ting news stories in “buckets.” For instance, “The Nose Knows Better,” a health arti-
cle, is grouped with an article about the Suffolk Strangler. Sometimes news articles,
like people, can’t be pigeonholed and have to be considered unique.

If you like, you can rotate the matrix to see how the words in the stories cluster
together. In this example, words like “station,” “solar,” and “astronauts” group
closely together.

Non-Negative Matrix Factorization
The technique for extracting the important features of the data is called non-negative
matrix factorization (NMF). This is one of the most sophisticated techniques covered
in this book, and it requires a bit more explanation and a quick introduction to linear
algebra. Everything you need to know will be covered in this section.

A Quick Introduction to Matrix Math
To understand what NMF is doing, you’ll first need to understand a bit about matrix
multiplication. If you’re already familiar with linear algebra, you can safely skip this
section.

An example of matrix multiplication is shown in Figure 10-2.

Non-Negative Matrix Factorization | 233

Figure 10-1. Dendrogram showing the clustered news stories

234 | Chapter 10: Finding Independent Features

This figure shows how two matrices are multiplied together. When multiplying
matrices, the first matrix (Matrix A in the figure) must have the same number of
columns as the second matrix (Matrix B) has rows. In this case, Matrix A has two
columns and Matrix B has two rows. The resulting matrix (Matrix C) will have the
same number of rows as Matrix A and the same number of columns as Matrix B.

The value for each cell in Matrix C is calculated by multiplying the values from the
same row in Matrix A by the values from the same column in Matrix B and adding
all the products together. Looking at the value in the top left corner of Matrix C, you
can see that the values from the first row of Matrix A are multiplied by the corre-
sponding values from the first column of Matrix B. These are added together to get
the final value. The other cells in Matrix C are all calculated in the same way.

Another common matrix operation is transposing. This means that the columns
become rows and the rows become columns. It’s usually indicated with a “T,” as
shown in Figure 10-3.

You’ll be using the transpose and multiplication operations in the implementation of
the NMF algorithm.

What Does This Have to Do with the Articles Matrix?
So far, what you have is a matrix of articles with word counts. The goal is to factorize
this matrix, which means finding two smaller matrices that can be multiplied
together to reconstruct this one. The two smaller matrices are:

The features matrix
This matrix has a row for each feature and a column for each word. The values
indicate how important a word is to a feature. Each feature should represent a
theme that emerged from a set of articles, so you might expect an article about a
new TV show to have a high weight for the word “television.”

Figure 10-2. Example of matrix multiplication

Figure 10-3. Transposing a matrix

1 4
0 3

A

X
0 3 0
2 1 4

B

=
1*0 + 4*2
0*0 + 3*2

1*3 + 4*1
0*3 + 3*1

1*0 + 4*4
0*0 + 3*4

=
8 7 16
6 3 12

=
a d
b e
c f

T
a b c
d e f

Non-Negative Matrix Factorization | 235

The weights matrix
This matrix maps the features to the articles matrix. Each row is an article and
each column is a feature. The values state how much each feature applies to each
article.

The features matrix, like the articles matrix, has one column for every word. Each
row of the matrix is a different feature, so a feature is a list of word weights.
Figure 10-4 shows an example portion of a feature matrix.

Since each row is a feature that consists of a combination of words, it should become
clear that reconstructing the articles matrix is a matter of combining rows from the
features matrix in different amounts. The weights matrix, an example of which is
shown in Figure 10-5, maps the features to the articles. It has one column for every
feature and one row for every article.

Figure 10-6 shows how the articles matrix is reconstructed by multiplying the
weights matrix by the features matrix.

If the number of features are the same as the number of articles, the best answer is to
have one feature that perfectly matches each article. However, the purpose of using
matrix factorization here is to reduce a large set of observations (the articles, in this
case) to a smaller set that captures their common features. Ideally, this smaller set of

Figure 10-4. Portion of a features matrix

Figure 10-5. Portion of weights matrix

Figure 10-6. Multiplying the weights matrix by the features matrix

2
hurricane

0
democrats

3
florida

0
elections

feature 1

0 2 0 1feature 2

0 0 1 1feature 3

10
feature 1

0
feature 2

0
feature 3

hurricane in Florida

0 8 1Democrats sweep elections

0 5 6Democrats dispute Florida ballots

10
feature 1

0
feature 2

0
feature 3

hurricane…

0 8 1…sweep…

0 5 6Florida ballots

2
hurricane

0
democrats

3
florida

0
elections

F1

0 2 0 1F2

0 0 1 1F3

X =
hurricane…

…sweep…

Florida ballots

hurricane democrats florida elections

236 | Chapter 10: Finding Independent Features

features could be combined with different weights to perfectly reproduce the original
dataset, but in practice this is very unlikely, so the algorithm aims to reproduce it as
closely as possible.

The reason it’s called non-negative matrix factorization is that it returns features and
weights with no negative values. In practice, this means that all the features must
have positive values, which is true for our example because an article cannot have
negative occurrences of words. It also means that features cannot take away pieces of
other features—NMF will not find results that explicitly exclude certain words.
Although this restriction may prevent the algorithm from coming up with the best
possible factorization, the results are often easier to interpret.

Using NumPy
Python does not come standard with functions for matrix operations. While it’s possi-
ble to code them yourself, a better option is to install a package called NumPy, which
not only provides a matrix object and all the necessary matrix operations, but is com-
parable in performance to commercial mathematical software. You can download
NumPy from http://numpy.scipy.org.

For more information on installing NumPy, see Appendix A.

NumPy provides a matrix object that can be instantiated with nested lists and is very
much like the one you created for the articles. To see this in action, you can import
NumPy into your Python session and create a matrix:

>>> from numpy import *
>>> l1=[[1,2,3],[4,5,6]]
>>> l1
[[1, 2, 3], [4, 5, 6]]
>>> m1=matrix(l1)
>>> m1
matrix([[1, 2, 3],
 [4, 5, 6]])

The matrix objects support mathematical operations such as multiplication and
addition using standard operators. Transposing the matrix is accomplished with the
transpose function:

>>> m2=matrix([[1,2],[3,4],[5,6]])
>>> m2
matrix([[1, 2],
 [3, 4],
 [5, 6]])
>>> m1*m2
matrix([[22, 28],
 [49, 64]])

http://numpy.scipy.org

Non-Negative Matrix Factorization | 237

The shape function returns the number of rows and columns in the matrix, which is
useful for looping over all the elements in a matrix:

>>> shape(m1)
(2, 3)
>>> shape(m2)
(3, 2)

Finally, NumPy also provides a fast array object, which, like a matrix, can be multi-
dimensional. Matrices can be easily converted to arrays and vice versa. An array
behaves differently from a matrix when doing multiplication; arrays can only be
multiplied if they have exactly the same shape, and every value is multiplied by the
corresponding value in the other array. Thus:

>>> a1=m1.A
>>> a1
array([[1, 2, 3],
 [4, 5, 6]])
>>> a2=array([[1,2,3],[1,2,3]])
>>> a1*a2
array([[1, 4, 9],
 [4, 10, 18]])

The fast performance of NumPy is necessary for the NMF algorithm you’ll see next,
which requires many matrix operations.

The Algorithm
The algorithm you’ll be using to factorize the matrix was first published in the late
1990s, making it the newest algorithm covered by this book. It has been shown to
perform very well on certain problems, such as automatically determining different
facial features from a collection of photographs.

The algorithm tries to reconstruct the articles matrix as closely as possible by calcu-
lating the best features and weights matrices. It’s useful in this case to have a way to
measure just how close the result is. The difcost function loops over every value in
two equal-sized matrices and sums the squares of the differences between them.

Create a new file called nmf.py and add the difcost function:

from numpy import *

def difcost(a,b):
 dif=0
 # Loop over every row and column in the matrix
 for i in range(shape(a)[0]):
 for j in range(shape(a)[1]):
 # Add together the differences
 dif+=pow(a[i,j]-b[i,j],2)
 return dif

238 | Chapter 10: Finding Independent Features

Now you need a way to gradually update the matrices to reduce the cost function. If
you’ve read Chapter 5, you’ll notice that you have a cost function and can definitely
use annealing or swarm optimization to search for a good solution. However, a more
efficient way to search for good solutions is to use multiplicative update rules.

The derivation of these rules is beyond the scope of this chapter, but if you’re inter-
ested in reading more about it, you can find the original paper at http://hebb.mit.edu/
people/seung/papers/nmfconverge.pdf.

The rules generate four new update matrices. In these descriptions, the original
articles matrix is referred to as the data matrix:

hn
The transposed weight matrix multiplied by the data matrix

hd
The transposed weights matrix multiplied by the weights matrix multiplied by
the features matrix

wn
The data matrix multiplied by the transposed features matrix

wd
The weights matrix multiplied by the features matrix multiplied by the trans-
posed features matrix

To update the features and weights matrices, all these matrices are converted to
arrays. Every value in the features matrix is multiplied by the corresponding value in
hn and divided by the corresponding value in hd. Likewise, every value in the weights
matrix is multiplied by the value in wn and divided by the value in wd.

The factorize function performs these calculations. Add factorize to nmf.py:

def factorize(v,pc=10,iter=50):
 ic=shape(v)[0]
 fc=shape(v)[1]

 # Initialize the weight and feature matrices with random values
 w=matrix([[random.random() for j in range(pc)] for i in range(ic)])
 h=matrix([[random.random() for i in range(fc)] for i in range(pc)])

 # Perform operation a maximum of iter times
 for i in range(iter):
 wh=w*h

 # Calculate the current difference
 cost=difcost(v,wh)

 if i%10==0: print cost

 # Terminate if the matrix has been fully factorized
 if cost==0: break

http://hebb.mit.edu/people/seung/papers/nmfconverge.pdf
http://hebb.mit.edu/people/seung/papers/nmfconverge.pdf

Non-Negative Matrix Factorization | 239

 # Update feature matrix
 hn=(transpose(w)*v)
 hd=(transpose(w)*w*h)

 h=matrix(array(h)*array(hn)/array(hd))

 # Update weights matrix
 wn=(v*transpose(h))
 wd=(w*h*transpose(h))

 w=matrix(array(w)*array(wn)/array(wd))

 return w,h

The function to factorize the matrix requires you to specify the number of features
you want to find. In some cases, you’ll know how many features you want to find
(two voices in a recording or five major news themes of the day), and in other cases,
you’ll have no idea how many to specify. There’s generally no way to automatically
determine the correct number of components, but experimentation can help find the
appropriate range.

You can try running this on the matrix m1*m2 from your session to see if the
algorithm finds a solution similar to the original matrix:

>>> import nmf
>>> w,h= nmf.factorize(m1*m2,pc=3,iter=100)
7632.94395925
0.0364091326734
...
1.12810164789e-017
6.8747907867e-020
>>> w*h
matrix([[22., 28.],
 [49., 64.]])
>>> m1*m2
matrix([[22, 28],
 [49, 64]])

The algorithm manages to find a weights and features matrix that multiplies together
perfectly to match the original. You can also try this on the articles matrix to see how
well it can extract the important features (this may take some time):

>>> v=matrix(wordmatrix)
>>> weights,feat=nmf.factorize(v,pc=20,iter=50)
1712024.47944
2478.13274637
2265.75996871
2229.07352131
2211.42204622

The variable feat now holds the features of the news articles, and weights holds the
values that indicate how much each feature applies to each article. Looking at the
matrix won’t do you much good, however, so you’ll need a way to view and interpret
the results.

240 | Chapter 10: Finding Independent Features

Displaying the Results
Exactly how you view the results is a little complicated. Every feature in the features
matrix has a weighting that indicates how strongly each word applies to that feature,
so you can try displaying the top five or ten words in each feature to see what the
most important words are in that feature. The equivalent column in the weights
matrix tells you how much this particular feature applies to each of the articles, so
it’s also interesting to show the top three articles and see how strongly this feature
applies to all of them.

Add a new function called showfeatures to newsfeatures.py:

from numpy import *
def showfeatures(w,h,titles,wordvec,out='features.txt'):
 outfile=file(out,'w')
 pc,wc=shape(h)
 toppatterns=[[] for i in range(len(titles))]
 patternnames=[]

 # Loop over all the features
 for i in range(pc):
 slist=[]
 # Create a list of words and their weights
 for j in range(wc):
 slist.append((h[i,j],wordvec[j]))
 # Reverse sort the word list
 slist.sort()
 slist.reverse()

 # Print the first six elements
 n=[s[1] for s in slist[0:6]]
 outfile.write(str(n)+'\n')
 patternnames.append(n)

 # Create a list of articles for this feature
 flist=[]
 for j in range(len(titles)):
 # Add the article with its weight
 flist.append((w[j,i],titles[j]))
 toppatterns[j].append((w[j,i],i,titles[j]))

 # Reverse sort the list
 flist.sort()
 flist.reverse()

 # Show the top 3 articles
 for f in flist[0:3]:
 outfile.write(str(f)+'\n')
 outfile.write('\n')

 outfile.close()
 # Return the pattern names for later use
 return toppatterns,patternnames

Displaying the Results | 241

This function loops over each of the features and creates a list of all the word weights
and words from the word vector. It sorts the list so that the most heavily weighted
words for the feature appear at the start of the list, and then it prints the first 10 of
these words. This should give you a good idea of the theme represented by this par-
ticular feature. The function returns the top patterns and pattern names, so they only
have to be calculated once and can be used again in the showarticles function below.

After displaying the feature, the function loops over the article titles and sorts them
according to their value in the weights matrix for that article and feature. It then
prints the three articles that are most strongly linked to the feature, along with the
value from the weights matrix. You’ll see that sometimes a feature is important for
several related articles, and sometimes it only applies to one.

You can now call this function to view the features:

>>> reload(newsfeatures)
<module 'newsfeatures' from 'newsfeatures.py'>
>>> topp,pn= newsfeatures.showfeatures(weights,feat,artt,wordvec)

Because the results are quite long, the code will save them to a text file. The function
was told to create 20 different features. There are obviously more than 20 themes
among the hundreds of articles, but the most prominent ones have, we hope, been
discovered. For example, consider:

[u'palestinian', u'elections', u'abbas', u'fatah', u'monday', u'new']
(14.189453058041485, u'US Backs Early Palestinian Elections - ABC News')
(12.748863898714507, u'Abbas Presses for New Palestinian Elections Despite Violence')
(11.286669969240645, u'Abbas Determined to Go Ahead With Vote')

This feature clearly shows a set of words pertaining to Palestinian elections and a
nice set of related articles. Because the results are driven by a portion of the body of
the article as well as the titles, you can see the first and third articles are both associ-
ated with this feature even though they share no title words. Also, since the most
important terms are derived from words that are used in many articles, the words
“palestinian” and “elections” appear first.

Some features do not have such a clear set of articles associated with them, but they
still show interesting results. Consider this example:

[u'cancer', u'fat', u'low', u'breast', u'news', u'diet']
(29.808285029040864, u'Low-Fat Diet May Help Breast Cancer')
(2.3737882572527238, u'Big Apple no longer Fat City')
(2.3430261571622881, u'The Nose Knows Better')

Clearly, the feature is very strongly tied to an article about breast cancer. However,
the weaker associations are also health-related articles that have some words in
common with the first article.

242 | Chapter 10: Finding Independent Features

Displaying by Article
An alternative way to display the data is to show each article and the top three fea-
tures that apply to it. This allows you to see if an article consists of equal amounts of
several themes or a single strong theme.

Add a new function, showarticles, to newsfeatures.py:

def showarticles(titles,toppatterns,patternnames,out='articles.txt'):
 outfile=file(out,'w')

 # Loop over all the articles
 for j in range(len(titles)):
 outfile.write(titles[j].encode('utf8')+'\n')

 # Get the top features for this article and
 # reverse sort them
 toppatterns[j].sort()
 toppatterns[j].reverse()

 # Print the top three patterns
 for i in range(3):
 outfile.write(str(toppatterns[j][i][0])+' '+
 str(patternnames[toppatterns[j][i][1]])+'\n')
 outfile.write('\n')

 outfile.close()

Since the top features for each article were calculated by showfeatures, this function
simply loops over all the article titles, prints them, and then displays the top patterns
for each article.

To use this function, reload newsfeatures.py and call it with the titles and the results
from showfeatures:

>>> reload(newsfeatures)
<module 'newsfeatures' from 'newsfeatures.py'>
>>> newsfeatures.showarticles(artt,topp,pn)

This will produce a file called articles.txt, which contains articles along with the most
closely associated patterns. Here is a good example of an article that contains equal
parts of two features:

Attacks in Iraq at record high: Pentagon
5.4890098003 [u'monday', u'said', u'oil', u'iraq', u'attacks', u'two']
5.33447632219 [u'gates', u'iraq', u'pentagon', u'washington', u'over', u'report']
0.618495842404 [u'its', u'iraqi', u'baghdad', u'red', u'crescent', u'monday']

Clearly, both of the features relate to Iraq, but not this article specifically, since it
does not mention “oil” or “gates.” By creating patterns that can be applied in combi-
nation, but that aren’t specifically tailored to one article, the algorithm can cover
many more articles with fewer patterns.

Using Stock Market Data | 243

Here is an example of an article with a strong single feature that can’t really be
applied to anything else:

Yogi Bear Creator Joe Barbera Dies at 95
11.8474089735 [u'barbera', u'team', u'creator', u'hanna', u'dies', u'bear']
2.21373704749 [u'monday', u'said', u'oil', u'iraq', u'attacks', u'two']
0.421760994361 [u'man', u'was', u'year', u'his', u'old', u'kidnapping']

Since the number of patterns used is quite low, there will also likely be several
orphan articles that are not similar to anything else and didn’t get patterns of their
own. Here is one example:

U.S. Files Charges in Fannie Mae Accounting Case
0.856087848533 [u'man', u'was', u'year', u'his', u'old', u'kidnapping']
0.784659717694 [u'climbers', u'hood', u'have', u'their', u'may', u'deaths']
0.562439763693 [u'will', u'smith', u'news', u'office', u'box', u'all']

You can see that the top features for this example are unrelated and appear to be
almost random. Fortunately, the weights here are very small, so it’s easy to see that
the features don’t really apply to this article.

Using Stock Market Data
As well as dealing with somewhat nominal data like word counts, NMF is suited for
problems involving true numerical data. This section will show how the same algo-
rithm can be applied to trading volume in the United States stock market using data
downloaded from Yahoo! Finance. This data may show patterns of important trad-
ing days or the ways that underlying factors can drive the volume of multiple stocks.

Financial markets are considered a quintessential example of collective intelligence
because they have a great number of participants acting independently based on dif-
ferent information and biases and producing a small set of outputs, such as price and
volume. It has proven extremely difficult for individuals to do a better job than the
collective in predicting future prices. There is a large body of academic research on
the ways that groups of people are more successful at setting prices in a financial
market than any individual could possibly be.

What Is Trading Volume?
The trading volume for a specific stock is the number of shares that are bought and
sold within a given period, usually one day. Figure 10-8 shows a chart of Yahoo!
stock, which has the ticker symbol YHOO. The line at the top is the closing price, the
price of the last transaction of the day. The bar chart below shows the trading volume.

You’ll notice that the volume tends to be much higher on days when there is a big
change in the stock price. This often happens when a company makes a major
announcement or releases financial results. Spikes can also occur due to news about
the company or the industry. In the absence of external events, trading volume is
usually, but not always, constant for a given stock.

244 | Chapter 10: Finding Independent Features

In this section, you’ll be looking at volume for a set of stocks in a time series. This
will let you search for patterns of changes in volume that affect multiple stocks at
once, or for events that are so influential they become their own features. Volume is
used instead of closing price because NMF tries to find positive features that can be
added together; prices often move down in response to events, and NMF will not find
negative features. Volume, however, is more easily modeled as having a basal level
that can increase in response to outside influence, making it suitable for positive
matrices.

Downloading Data from Yahoo! Finance
Yahoo! Finance is an excellent resource for all kinds of financial data, including stock
prices, options, currency exchange rates, and bond interest rates. It also conve-
niently allows the downloading of historical stock volume and price data in an easy-
to-process CSV format. By accessing a URL such as http://ichart.finance.yahoo.com/
table.csv?s=YHOO&d=11&e=26&f=2006&g=d&a=3&b=12&c=1996&ignore=.csv,
you can download a list of daily data for the stock in a comma-separated file, the first
few lines of which look like this:

Date,Open,High,Low,Close,Volume,Adj. Close*
22-Dec-06,25.67,25.88,25.45,25.55,14666100,25.55
21-Dec-06,25.71,25.75,25.13,25.48,27050600,25.48
20-Dec-06,26.24,26.31,25.54,25.59,24905600,25.59
19-Dec-06,26.05,26.50,25.91,26.41,18973800,26.41
18-Dec-06,26.89,26.97,26.07,26.30,19431200,26.30

Figure 10-7. Stock chart showing price and trading volume

http://ichart.finance.yahoo.com/table.csv?s=YHOO&d=11&e=26&f=2006&
http://ichart.finance.yahoo.com/table.csv?s=YHOO&d=11&e=26&f=2006&

Using Stock Market Data | 245

Each line contains the date, open and close prices, high and low prices, volume, and
adjusted close. The adjusted close takes into account that the stock may have split or
paid dividends, and it can be used to calculate exactly how much money you would
have made if you owned the stock between two different dates.

For this example, you’ll get the volume data for a set of stocks. Create a new file
called stockvolume.py and add the following code, which downloads the comma-
separated files for a list of ticker symbols and puts them in a dictionary. It also tracks
which of them has the smallest number of days recorded, which will be used as the
vertical size of the observations matrix:

import nmf
import urllib2
from numpy import *

tickers=['YHOO','AVP','BIIB','BP','CL','CVX',
 'DNA','EXPE','GOOG','PG','XOM','AMGN']

shortest=300
prices={}
dates=None

for t in tickers:
 # Open the URL
 rows=urllib2.urlopen('http://ichart.finance.yahoo.com/table.csv?'+\
 's=%s&d=11&e=26&f=2006&g=d&a=3&b=12&c=1996'%t +\
 '&ignore=.csv').readlines()

 # Extract the volume field from every line
 prices[t]=[float(r.split(',')[5]) for r in rows[1:] if r.strip()!='']
 if len(prices[t])<shortest: shortest=len(prices[t])

 if not dates:
 dates=[r.split(',')[0] for r in rows[1:] if r.strip()!='']

This code opens the URL for each ticker symbol and downloads the data. It then
creates a list by splitting each line on commas and taking the float value of the fifth
element, which is the trading volume for that stock.

Preparing a Matrix
The next step is to turn this into a matrix of observations that can be fed to the NMF
function. This is simply a matter of creating a nested list in which each interior list
represents the total volume over a set of stocks for each day. For example, consider
the following:

[[4453500.0, 842400.0, 1396100.0, 1883100.0, 1281900.0,...]
 [5000100.0, 1486900.0, 3317500.0, 2966700.0, 1941200.0,...
 [5222500.0, 1383100.0, 3421500.0, 2885300.0, 1994900.0,...
 [6028700.0, 1477000.0, 8178200.0, 2919600.0, 2061000.0,...]
 ...]

246 | Chapter 10: Finding Independent Features

This list indicates that on the most recent day, 4,453,500 shares of AMGN were
traded, 842,400 shares of AVP were traded, and so on. On the previous day, the
numbers were 5,000,100 and 1,486,900, respectively. Compare this with the news
stories example; the articles are now days, the words are now shares, and the word
counts are trading volumes.

The matrix can be easily created with a list comprehension. The inner loop is over
the list of tickers, and the outer loop is over the list of observations (days). Add this
code to end of stockvolume.py:

l1=[[prices[tickers[i]][j]
 for i in range(len(tickers))]
 for j in range(shortest)]

Running NMF
Now all you have to do is call the factorize function from the nmf module. You’ll
need to specify the number of different features to search for; with a small set of
stocks, four or five is probably good.

Add this code to end of stockvolume.py:

w,h= nmf.factorize(matrix(l1),pc=5)

print h
print w

You can now run this from the command line to see if it works:

$ python stockvolume.py

The matrices you see represent the weights and features. Each row in the features
matrix is a feature, which is a set of trading volumes for the stocks that can be added
to other features to recreate the trading volume data for that day. Each row in the
weights matrix represents a specific day, and the values indicate how much each of
the features applies to that day.

Displaying the Results
It’s obviously difficult to interpret the matrices directly, so you’ll need some code to
display the features in a better way. What you’d like to see are the volume contribu-
tions of each feature to each stock, as well as the dates most strongly associated with
those features.

Add this code to the end of stockvolume.py:

Loop over all the features
for i in range(shape(h)[0]):
 print "Feature %d" %i

Using Stock Market Data | 247

 # Get the top stocks for this feature
 ol=[(h[i,j],tickers[j]) for j in range(shape(h)[1])]
 ol.sort()
 ol.reverse()
 for j in range(12):
 print ol[j]
 print

 # Show the top dates for this feature
 porder=[(w[d,i],d) for d in range(300)]
 porder.sort()
 porder.reverse()
 print [(p[0],dates[p[1]]) for p in porder[0:3]]
 print

Because there will be a lot of text, it’s probably best to redirect the output to a file.
On the command line, enter:

$ python stockvolume.py > stockfeatures.txt

The stockfeatures.txt file now has a list of features, including which stocks they apply
to most strongly and on which dates they appear most strongly. Here’s one example,
selected from the file because it shows a very high weight for a particular stock on a
single date:

Feature 4
(74524113.213559602, 'YHOO')
(6165711.6749675209, 'GOOG')
(5539688.0538382991, 'XOM')
(2537144.3952459987, 'CVX')
(1283794.0604679288, 'PG')
(1160743.3352889531, 'BP')
(1040776.8531969623, 'AVP')
(811575.28223116993, 'BIIB')
(679243.76923785623, 'DNA')
(377356.4897763988, 'CL')
(353682.37800343882, 'EXPE')
(0.31345784102699459, 'AMGN')

[(7.950090052903934, '19-Jul-06'),
 (4.7278341805021329, '19-Sep-06'),
 (4.6049947721971245, '18-Jan-06')]

You can see that this feature applies almost exclusively to YHOO, and applies very
strongly on July 19, 2006. As it happens, that was the day of a massive spike in
trading volume for Yahoo!, which issued earnings guidance on that day.

Another feature that applies more evenly to a couple of companies is this one:

Feature 2
(46151801.813632453, 'GOOG')
(24298994.720555616, 'YHOO')
(10606419.91092159, 'PG')
(7711296.6887903402, 'CVX')
(4711899.0067871698, 'BIIB')

248 | Chapter 10: Finding Independent Features

(4423180.7694432881, 'XOM')
(3430492.5096612777, 'DNA')
(2882726.8877627672, 'EXPE')
(2232928.7181202639, 'CL')
(2043732.4392455407, 'AVP')
(1934010.2697886101, 'BP')
(1801256.8664912341, 'AMGN')

[(2.9757765047938824, '20-Jan-06'),
 (2.8627791325829448, '28-Feb-06'),
 (2.356157903021133, '31-Mar-06'),

This feature represents large spikes in Google’s trading volume, which in the top
three cases were due to news events. The strongest day, January 20th, was the day
that Google announced it would not give information about its search engine usage
to the government. What’s really interesting about this feature is that events that
affect Google’s trading volume also seem to contribute heavily to Yahoo!’s trading
volume, even if they have little to do with Yahoo!. The second date on the list is a
volume spike that occurred when Google’s Chief Financial Officer announced that
growth was slowing; the chart shows that Yahoo! also had increased trading that
day, possibly as people considered how the information might affect Yahoo!.

It’s important to recognize the difference between what is being shown here and sim-
ply finding the correlations between stock volumes. The two features above show
that there are times when Google and Yahoo! have similar volume patterns and other
times when they move completely distinctly. Looking only at correlations would
average all these relationships and would not compensate for the fact that there were
simply a few days when Yahoo! made announcements that had a big impact.

This example uses a small selection of stocks to illustrate a simple point, but using a
larger selection of stocks and searching for more patterns would reveal even more
complex interactions.

Exercises
1. Varying news sources. The example in this chapter used mostly pure news

sources. Try adding some top political blogs. (http://technorati.com is a good
place to find blogs.) How does this affect the results? Are there features that apply
strongly to political commentary? Are news stories with related commentary
grouped easily?

2. K-means clustering. Hierarchical clustering was used on the articles matrix, but
what happens if you use K-means clustering? How many clusters do you need to
get good separation of different stories? How does this compare to the number
of features you need to use to extract all the themes?

http://technorati.com

Exercises | 249

3. Optimizing for factorization. Can you use the optimization code that you built in
Chapter 5 to factorize the matrix? Is this a lot faster or slower? How do the
results compare?

4. Stopping criteria. The NMF algorithm in this chapter stops when the cost has
dropped to 0 or when it reaches the maximum number of iterations. Sometimes
improvement will almost entirely stop once a very good though not perfect
solution has been reached. Modify the code so it stops when the cost is not
improving by more than one percent per iteration.

5. Alternative display methods. The functions given in this chapter for displaying
results are simple and show important features, but they lose a lot of context.
Can you think of other ways of displaying results? Try writing a function that
displays the articles in their original text with key words from each feature high-
lighted, or perhaps a trading volume chart with important dates clearly shown.

250

Chapter 11CHAPTER 11

Evolving Intelligence 11

Throughout this book you’ve seen a number of different problems, and in each case
you used an algorithm that was suited to solve that particular problem. In some of
the examples, you had to tweak the parameters or use optimization to search for a
good set of parameters. This chapter will look at a different way to approach
problems. Instead of choosing an algorithm to apply to a problem, you’ll make a
program that attempts to automatically build the best program to solve a problem.
Essentially, you’ll be creating an algorithm that creates algorithms.

To do this, you will use a technique called genetic programming. Since this is the last
chapter in which you’ll learn a completely new type of algorithm, I’ve picked a topic
that is new, exciting, and being actively researched. This chapter is a little different
from the others because it doesn’t use any open APIs or public datasets, and because
programs that can modify themselves based on their interactions with many people
are an interesting and different kind of collective intelligence. Genetic programming
is a very large topic about which many books have been written, so you’ll only get an
introduction here, but I hope it’s enough to get you excited about the possibilities
and perhaps to research and experiment on your own.

The two problems in this chapter are recreating a mathematical function given a
dataset, and automatically creating an AI (artificial intelligence) player for a simple
board game. This is just a very small sampling of the possibilities of genetic
programming—computational power is really the only constraint on the types of
problems it can be used to solve.

What Is Genetic Programming?
Genetic programming is a machine-learning technique inspired by the theory of bio-
logical evolution. It generally works by starting with a large set of programs (referred
to as the population), which are either randomly generated or hand-designed and are
known to be somewhat good solutions. The programs are then made to compete in
some user-defined task. This may be a game in which the programs compete against

What Is Genetic Programming? | 251

each other directly, or it may be an individual test to see which program performs
better. After the competition, a ranked list of the programs from best to worst can be
determined.

Next—and here’s where evolution comes in—the best programs are replicated and
modified in two different ways. The simpler way is mutation, in which certain parts
of the program are altered very slightly in a random manner in the hope that this will
make a good solution even better. The other way to modify a program is through
crossover (sometimes referred to as breeding), which involves taking a portion of one
of the best programs and replacing it with a portion of one of the other best pro-
grams. This replication and modification procedure creates many new programs that
are based on, but different from, the best programs.

At each stage, the quality of the programs is calculated using a fitness function. Since
the size of the population is kept constant, many of the worst programs are elimi-
nated from the population to make room for the new programs. The new popula-
tion is referred to as “the next generation,” and the whole procedure is then
repeated. Because the best programs are being kept and modified, it is expected that
with each generation they will get better and better, in much the same way that teen-
agers can be smarter than their parents.

New generations are created until a termination condition is reached, which,
depending on the problem, can be that:

• The perfect solution has been found.

• A good enough solution has been found.

• The solution has not improved for several generations.

• The number of generations has reached a specified limit.

For some problems, such as determining a mathematical function that correctly
maps a set of inputs to an output, a perfect solution is possible. For others, such as a
board game, there may not be a perfect solution, since the quality of a solution
depends on the strategy of the program’s adversary.

An overview of the genetic programming process is shown as a flowchart in
Figure 11-1.

Genetic Programming Versus Genetic Algorithms
Chapter 5 introduced a related set of algorithms known as genetic algorithms.
Genetic algorithms are an optimization technique that use the idea of evolutionary
pressure to choose the best result. With any form of optimization, you have already
selected an algorithm or metric and you’re simply trying to find the best parameters
for it.

252 | Chapter 11: Evolving Intelligence

Like optimization, genetic programming requires a way to measure how good a solu-
tion is; but unlike optimization, the solutions are not just a set of parameters being
applied to a given algorithm. Instead, the algorithm itself and all its parameters are
designed automatically by means of evolutionary pressure.

Figure 11-1. Genetic programming overview

Successes of Genetic Programming
Genetic programming has been around since the 1980s, but it is very computationally
intensive, and with the computing power that was available at the time, it couldn’t be
used for anything more than simple problems. As computers have gotten faster, how-
ever, people have been able to apply genetic programming to sophisticated problems.
Many previously patented inventions have been rediscovered or improved using
genetic programming, and recently several new patentable inventions have been
designed by computers.

The genetic programming technique has been applied in designing antennas for NASA,
and in photonic crystals, optics, quantum computing systems, and other scientific
inventions. It has also been used to develop programs for playing many games, such as
chess and backgammon. In 1998, researchers from Carnegie Mellon University entered
a robot team that was programmed entirely using genetic programming into the Robo-
Cup soccer contest, and placed in the middle of the pack.

Create random population

Rank individuals

Are any of them
good enough?

No

Yes
Done

Duplicate best individuals

Mutate Breed

New population

Programs As Trees | 253

Programs As Trees
In order to create programs that can be tested, mutated, and bred, you’ll need a way
to represent and run them from within your Python code. The representation has to
lend itself to easy modification and, more importantly, has to be guaranteed to be an
actual program—which means generating random strings and trying to treat them as
Python code won’t work. Researchers have come up with a few different ways to
represent programs for genetic programming, and the most commonly used is a tree
representation.

Most programming languages, when compiled or interpreted, are first turned into a
parse tree, which is very similar to what you’ll be working with here. (The program-
ming language Lisp and its variants are essentially ways of entering a parse tree
directly.) An example of a parse tree is shown in Figure 11-2.

Each node represents either an operation on its child nodes or an endpoint, such as a
parameter with a constant value. For example, the circular node is a sum operation
on its two branches, in this case, the values Y and 5. Once this point is evaluated, it
is given to the node above it, which in turn applies its own operation to its branches.
You’ll also notice that one of the nodes has the operation “if,” which specifies that if
its leftmost branch evaluates to true, return its center branch; if it doesn’t, return its
rightmost branch.

Traversing the complete tree, you can see that it corresponds to the Python function:

def func(x,y)
 if x>3:
 return y + 5
 else:
 return y - 2

At first, it might appear that these trees can only be used to build very simple
functions. There are two things to consider here—first, the nodes that compose the
tree can potentially be very complex functions, such as distance measures or

Figure 11-2. Example program tree

if

> –

Y 2X 3

+

Y 5

254 | Chapter 11: Evolving Intelligence

Gaussians. The second thing is that trees can be made recursive by referring to nodes
higher up in the tree. Creating trees like this allows for loops and other more compli-
cated control structures.

Representing Trees in Python
You’re now ready to construct tree programs in Python. The trees are made up of
nodes, which, depending on the functions associated with them, have some number
of child nodes. Some of the nodes will return parameters passed to the program, oth-
ers will return constants, and the most interesting ones will return operations on
their child nodes.

Create a new file called gp.py and create four new classes called fwrapper, node,
paramnode, and constnode:

from random import random,randint,choice
from copy import deepcopy
from math import log

class fwrapper:
 def __init_ _(self,function,childcount,name):
 self.function=function
 self.childcount=childcount
 self.name=name

class node:
 def __init_ _(self,fw,children):
 self.function=fw.function
 self.name=fw.name
 self.children=children

 def evaluate(self,inp):
 results=[n.evaluate(inp) for n in self.children]
 return self.function(results)

class paramnode:
 def __init_ _(self,idx):
 self.idx=idx

 def evaluate(self,inp):
 return inp[self.idx]

class constnode:
 def __init_ _(self,v):
 self.v=v
 def evaluate(self,inp):
 return self.v

Programs As Trees | 255

The classes here are:

fwrapper
A wrapper for the functions that will be used on function nodes. Its member
variables are the name of the function, the function itself, and the number of
parameters it takes.

node
The class for function nodes (nodes with children). This is initialized with an
fwrapper. When evaluate is called, it evaluates the child nodes and then applies
the function to their results.

paramnode
The class for nodes that only return one of the parameters passed to the program.
Its evaluate method returns the parameter specified by idx.

constnode
Nodes that return a constant value. The evaluate method simply returns the
value with which it was initialized.

You’ll also want some functions for the nodes to apply. To do this, you have to cre-
ate functions and then give them names and parameter counts using fwrapper. Add
this list of functions to gp.py:

addw=fwrapper(lambda l:l[0]+l[1],2,'add')
subw=fwrapper(lambda l:l[0]-l[1],2,'subtract')
mulw=fwrapper(lambda l:l[0]*l[1],2,'multiply')

def iffunc(l):
 if l[0]>0: return l[1]
 else: return l[2]
ifw=fwrapper(iffunc,3,'if')

def isgreater(l):
 if l[0]>l[1]: return 1
 else: return 0
gtw=fwrapper(isgreater,2,'isgreater')

flist=[addw,mulw,ifw,gtw,subw]

Some of the simpler functions such as add and subtract can be defined inline using
lambda, while others require you to define the function in a separate block. In each
case, they have been wrapped in an fwrapper with their names and the number of
parameters required. The last line creates a list of all the functions so that later they
can easily be chosen at random.

Building and Evaluating Trees
You can now construct the program tree shown in Figure 11-2 using the node class
you just created. Add the exampletree function to gp.py to create the tree:

256 | Chapter 11: Evolving Intelligence

def exampletree():
 return node(ifw,[
 node(gtw,[paramnode(0),constnode(3)]),
 node(addw,[paramnode(1),constnode(5)]),
 node(subw,[paramnode(1),constnode(2)]),
]
)

Start up a Python session to test your program:

>>> import gp
>>> exampletree=gp.exampletree()
>>> exampletree.evaluate([2,3])
1
>>> exampletree.evaluate([5,3])
8

The program successfully performs the same function as the equivalent code block,
so you’ve managed to build a mini tree-based language and interpreter within
Python. This language can be easily extended with more node types, and it will serve
as the basis for understanding genetic programming in this chapter. Try building a
few other simple program trees to make sure you understand how they work.

Displaying the Program
Because you’ll be creating program trees automatically and won’t know what their
structure looks like, it’s important to have a way to display them so that you can eas-
ily interpret them. Fortunately the design of the node class means every node has a
string representing the name of its function, so a display function simply has to
return that string and the display strings of the child nodes. To make it easier to read,
the display should also indent the child nodes so you can visually identify the parent-
child relationships in the tree.

Create a new method in the node class called display, which shows a string represen-
tation of the tree:

 def display(self,indent=0):
 print (' '*indent)+self.name
 for c in self.children:
 c.display(indent+1)

You’ll also need to create a display method for the paramnode class, which simply
prints the index of the parameter it returns:

 def display(self,indent=0):
 print '%sp%d' % (' '*indent,self.idx)

And finally, one for the constnode class:

 def display(self,indent=0):
 print '%s%d' % (' '*indent,self.v)

Creating the Initial Population | 257

Use these methods to print out the tree:

>>> reload(gp)
<module 'gp' from 'gp.py'>
>>> exampletree=gp.exampletree()
>>> exampletree.display()
if
 isgreater
 p0
 3
 add
 p1
 5
 subtract
 p1
 2

If you’ve read Chapter 7, you’ll notice that this is similar to the way in which deci-
sion trees were displayed in that chapter. Chapter 7 also shows how to display those
trees graphically for a cleaner, easier-to-read output. If you feel so inclined, you can
use the same idea to build a graphical display of your tree programs.

Creating the Initial Population
Although it’s possible to hand-create programs for genetic programming, most of the
time the initial population consists of a set of random programs. This makes the
process easier to start, since it’s not necessary to design several programs that almost
solve a problem. It also creates much more diversity in the initial population—a set
of programs designed by a single programmer to solve a problem are likely to be very
similar, and although they may give answers that are almost correct, the ideal solu-
tion make look quite different. You’ll learn more about the importance of diversity
shortly.

Creating a random program consists of creating a root node with a random associ-
ated function and then creating as many random child nodes as necessary, which in
turn may have their own associated random child nodes. Like most functions that
work with trees, this is most easily defined recursively. Add a new function,
makerandomtree, to gp.py:

def makerandomtree(pc,maxdepth=4,fpr=0.5,ppr=0.6):
 if random()<fpr and maxdepth>0:
 f=choice(flist)
 children=[makerandomtree(pc,maxdepth-1,fpr,ppr)
 for i in range(f.childcount)]
 return node(f,children)
 elif random()<ppr:
 return paramnode(randint(0,pc-1))
 else:
 return constnode(randint(0,10))

258 | Chapter 11: Evolving Intelligence

This function creates a node with a random function and then looks to see how
many child nodes this function requires. For every child node required, the function
calls itself to create a new node. In this way an entire tree is constructed, with
branches ending only if the function requires no more child nodes (that is, if the
function returns a constant or an input variable). The parameter pc, used throughout
this chapter, is the number of parameters that the tree will take as input. The param-
eter fpr gives the probability that the new node created will be a function node, and
ppr gives that probability that it will be a paramnode if it is not a function node.

Try out this function in your Python session to build a few programs, and see what
sort of results you get with different variables:

>>> random1=gp.makerandomtree(2)
>>> random1.evaluate([7,1])
7
>>> random1.evaluate([2,4])
2
>>> random2=gp.makerandomtree(2)
>>> random2.evaluate([5,3])
1
>>> random2.evaluate([5,20])
0

If all of a program’s terminating nodes are constants, the program will not actually
reference the input parameters at all, so the result will be the same no matter what
input you pass to it. You can use the function defined in the previous section to
display the randomly generated trees:

>>> random1.display()
p0
>>> random2.display()
subtract
 7
 multiply
 isgreater
 p0
 p1
 if
 multiply
 p1
 p1
 p0
 2

You’ll see that some of the trees get quite deep, since each branch will keep growing
until it hits a zero-child node. This is why it’s important that you include a
maximum depth constraint; otherwise, the trees can get very large and potentially
overflow the stack.

Testing a Solution | 259

Testing a Solution
You would now have everything you’d need to build programs automatically, if you
could just generate random programs until one is correct. Obviously, this would be
ridiculously impractical because there are infinite possible programs and it’s highly
unlikely that you would stumble across a correct one in any reasonable time frame.
However, at this point it is worth looking at ways to test a solution to see if it’s
correct, and if it’s not, to determine how close it is.

A Simple Mathematical Test
One of the easiest tests for genetic programming is to reconstruct a simple mathe-
matical function. Imagine you were given a table of inputs and an output that looked
like Table 11-1.

There is some function that maps X and Y to the result, but you’re not told what it
is. A statistician might see this and try to do a regression analysis, but that requires
guessing the structure of the formula first. Another option is to build a predictive
model using k-nearest neighbors as you did in Chapter 8, but that requires keeping
all the data. In some cases, you just need a formula, perhaps to codify in another
much simpler program or to describe to other people what’s going on.

I’m sure you’re in suspense, so I’ll tell you what the function is. Add hiddenfunction
to gp.py:

def hiddenfunction(x,y):
 return x**2+2*y+3*x+5

You’re going to use this function to build a dataset against which you can test your
generated programs. Add a new function, buildhiddenset, which creates the dataset:

def buildhiddenset():
 rows=[]
 for i in range(200):
 x=randint(0,40)
 y=randint(0,40)
 rows.append([x,y,hiddenfunction(x,y)])
 return rows

Table 11-1. Data and result for an unknown function

X Y Result

26 35 829

8 24 141

20 1 467

33 11 1215

37 16 1517

260 | Chapter 11: Evolving Intelligence

And use this to create a dataset in your Python session:

>>> reload(gp)
<module 'gp' from 'gp.py'>
>>> hiddenset=gp.buildhiddenset()

Of course, you know what the function used to generate the dataset looks like, but
the real test is whether genetic programming can reproduce it without being told.

Measuring Success
As with optimization, it’s necessary to come up with a way to measure how good a
solution is. In this case, you’re testing a program against a numerical outcome, so an
easy way to test a program is to see how close it gets to the correct answers for the
dataset. Add scorefunction to gp.py:

def scorefunction(tree,s):
 dif=0
 for data in s:
 v=tree.evaluate([data[0],data[1]])
 dif+=abs(v-data[2])
 return dif

This function checks every row in the dataset, calculating the output from the func-
tion and comparing it to the real result. It adds up all the differences, giving lower
values for better programs—a return value of 0 indicates that the program got every
result correct. You can now test some of your generated programs in your Python
session to see how they stack up:

>>> reload(gp)
<module 'gp' from 'gp.py'>
>>> gp.scorefunction(random2,hiddenset)
137646
>>> gp.scorefunction(random1,hiddenset)
125489

Since you only generated a few programs and they were generated completely ran-
domly, the chance that one of them is actually the correct function is vanishingly
small. (If one of your programs is the correct function, I suggest that you put the
book down and go buy yourself a lottery ticket.) However, you now have a way to
test how well a program performs on predicting a mathematical function, which is
important for deciding which programs make it to the next generation.

Mutating Programs
After the best programs are chosen, they are replicated and modified for the next
generation. As mentioned earlier, mutation takes a single program and alters it
slightly. The tree programs can be altered in a number of ways—by changing the
function on a node or by altering its branches. A function that changes the number
of required child nodes either deletes or adds new branches, as shown in Figure 11-3.

Mutating Programs | 261

The other way to mutate is by replacing a subtree with an entirely new one, as shown
in Figure 11-4.

Mutation is not something that should be done too much. You would not, for
instance, mutate the majority of nodes in a tree. Instead, you can assign a relatively
small probability that any node will be modified. Beginning at the top of the tree, if a
random number is lower than that probability, the node is mutated in one of the
ways described above; otherwise, the test is performed again on its child nodes.

To keep things simple, the code given here only performs the second kind of muta-
tion. Create a new function called mutate to perform this operation:

def mutate(t,pc,probchange=0.1):
 if random()<probchange:
 return makerandomtree(pc)
 else:
 result=deepcopy(t)
 if isinstance(t,node):
 result.children=[mutate(c,pc,probchange) for c in t.children]
 return result

Figure 11-3. Mutation by changing node functions

if

> –

Y 2X 3

+

Y 5

Original

+

–

Y 2

+

Y 5

Mutated

262 | Chapter 11: Evolving Intelligence

This function begins at the top of the tree and decides whether the node should be
altered. If not, it calls mutate on the child nodes of the tree. It’s possible that the
entire tree will be mutated, and it’s also possible to traverse the entire tree without
changing it.

Try running mutate a few times on the randomly generated programs you built
earlier, and see how it modifies the trees:

>>> random2.display()
subtract
 7
 multiply
 isgreater
 p0
 p1
 if
 multiply
 p1
 p1
 p0
 2

Figure 11-4. Mutation by replacing subtrees

if

> –

Y 2X 3

+

Y 5

Original

if

> *

X YX 3

+

Y 5

Mutated

Replaced

Crossover | 263

>>> muttree=gp.mutate(random2,2)
>>> muttree.display()
subtract
 7
 multiply
 isgreater
 p0
 p1
 if
 multiply
 p1
 p1
 p0
 p1

See if the result of scorefunction has changed significantly, for better or worse, after
the tree has been mutated:

>>> gp.scorefunction(random2,hiddenset)
125489
>>> gp.scorefunction(muttree,hiddenset)
125479

Remember that the mutations are random, and they aren’t necessarily directed
toward improving the solution. The hope is simply that some will improve the result.
These changes will be used to continue, and over several generations the best solu-
tion will eventually be found.

Crossover
The other type of program modification is crossover or breeding. This involves tak-
ing two successful programs and combining them to create a new program, usually
by replacing a branch from one with a branch from another. Figure 11-5 shows an
example of how this works.

The function for performing a crossover takes two trees as inputs and traverses down
both of them. If a randomly selected threshold is reached, the function returns a
copy of the first tree with one of its branches replaced by a branch in the second tree.
By traversing both trees at once, the crossover happens at approximately the same
level on each tree. Add the crossover function to gp.py:

def crossover(t1,t2,probswap=0.7,top=1):
 if random()<probswap and not top:
 return deepcopy(t2)
 else:
 result=deepcopy(t1)
 if isinstance(t1,node) and isinstance(t2,node):
 result.children=[crossover(c,choice(t2.children),probswap,0)
 for c in t1.children]
 return result

264 | Chapter 11: Evolving Intelligence

Try crossover on a few of the randomly generated programs. See what they look like
after the crossover, and see if crossing over two of the best programs occasionally
leads to a better program:

>>> random1=gp.makerandomtree(2)
>>> random1.display()
multiply
 subtract
 p0
 8
 isgreater
 p0
 isgreater
 p1
 5

Figure 11-5. Crossover operation

if

> –

Y 2X 3

+

Y 5

Parent 1

if

> –

Y 2X 3

–

* 2

Offspring

Remove

*

+ –

* 2X 3

Parent 2

Y 5

Add

Y 5

Building the Environment | 265

>>> random2=gp.makerandomtree(2)
>>> random2.display()
if
 8
 p1
 2
>>> cross=gp.crossover(random1,random2)
>>> cross.display()
multiply
 subtract
 p0
 8
 2

You’ll probably notice that swapping out branches can radically change what the
program does. You may also notice that programs may be close to being correct for
completely different reasons, so merging them produces a result that’s very different
from either of its predecessors. Again, the hope is that some crossovers will improve
the solution and be kept around for the next generation.

Building the Environment
Armed with a measure of success and two methods of modifying the best programs,
you’re now ready to set up a competitive environment in which programs can evolve.
The steps are shown in the flowchart in Figure 11-1. Essentially, you create a set of
random programs and select the best ones for replication and modification, repeat-
ing this process until some stopping criteria is reached.

Create a new function called evolve to carry out this procedure:

def evolve(pc,popsize,rankfunction,maxgen=500,
 mutationrate=0.1,breedingrate=0.4,pexp=0.7,pnew=0.05):
 # Returns a random number, tending towards lower numbers. The lower pexp
 # is, more lower numbers you will get
 def selectindex():
 return int(log(random())/log(pexp))

 # Create a random initial population
 population=[makerandomtree(pc) for i in range(popsize)]
 for i in range(maxgen):
 scores=rankfunction(population)
 print scores[0][0]
 if scores[0][0]==0: break

 # The two best always make it
 newpop=[scores[0][1],scores[1][1]]

266 | Chapter 11: Evolving Intelligence

 # Build the next generation
 while len(newpop)<popsize:
 if random()>pnew:
 newpop.append(mutate(
 crossover(scores[selectindex()][1],
 scores[selectindex()][1],
 probswap=breedingrate),
 pc,probchange=mutationrate))
 else:
 # Add a random node to mix things up
 newpop.append(makerandomtree(pc))

 population=newpop
 scores[0][1].display()
 return scores[0][1]

This function creates an initial random population. It then loops up to maxgen times,
each time calling rankfunction to rank the programs from best to worst. The best
program is automatically passed through to the next generation unaltered, which is
sometimes referred to as elitism. The rest of the next generation is constructed by
randomly choosing programs that are near the top of the ranking, and then breeding
and mutating them. This process repeats until either a program has a perfect score of
0 or maxgen is reached.

The function has several parameters, which are used to control various aspects of the
environment. They are:

rankfunction
The function used on the list of programs to rank them from best to worst.

mutationrate
The probability of a mutation, passed on to mutate.

breedingrate
The probability of crossover, passed on to crossover.

popsize
The size of the initial population.

probexp
The rate of decline in the probability of selecting lower-ranked programs. A
higher value makes the selection process more stringent, choosing only programs
with the best ranks to replicate.

probnew
The probability when building the new population that a completely new, ran-
dom program is introduced. probexp and probnew will be discussed further in the
upcoming section “The Importance of Diversity.”

Building the Environment | 267

The final thing you’ll need before beginning the evolution of your programs is a way
to rank programs based on the result of scorefunction. In gp.py, create a new
function called getrankfunction, which returns a ranking function for a given
dataset:

def getrankfunction(dataset):
 def rankfunction(population):
 scores=[(scorefunction(t,dataset),t) for t in population]
 scores.sort()
 return scores
 return rankfunction

You’re ready to automatically create a program that represents the formula for your
mathematical dataset. Try this in your Python session:

>>> reload(gp)
>>> rf=gp.getrankfunction(gp.buildhiddenset())
>>> gp.evolve(2,500,rf,mutationrate=0.2,breedingrate=0.1,pexp=0.7,pnew=0.1)
16749
10674
5429
3090
491
151
151
0
add
 multiply
 p0
 add
 2
 p0
 add
 add
 p0
 4
 add
 p1
 add
 p1
 isgreater
 10
 5

The numbers change slowly, but they should decrease until they finally reach 0.
Interestingly, the solution shown here gets everything correct, but it’s quite a bit
more complicated than the function used to create the dataset. (It’s very likely that
the solution you generated will also seem more complicated than it has to be.) How-
ever, a little algebra shows us that these functions are actually the same—remember
that p0 is X and p1 is Y. The first line is the function represented by this tree:

 (X*(2+X))+X+4+Y+Y+(10>5)
= 2*X+X*X+X+4+Y+Y+1
= X**2 + 3*X + 2*Y + 5

268 | Chapter 11: Evolving Intelligence

This demonstrates an important property of genetic programming: the solutions it
finds may well be correct or very good, but because of the way they are constructed,
they will often be far more complicated than anything a human programmer would
design. There will often be large sections of a program that don’t do anything or that
represent a complicated formula that returns the same value every time. Notice in the
above example that the node (10>5) is just an odd way of saying 1.

It is possible to force the programs to remain simple, but in many cases this will
make it more difficult to find a good solution. A better way to deal with this issue is
to allow the programs to evolve to a good solution and then remove and simplify
unnecessary portions of the tree. You can do this manually, and in some cases you
can do it automatically using a pruning algorithm.

The Importance of Diversity
Part of the evolve function ranks the programs from best to worst, so it’s tempting to
just take two or three of the programs at the top and replicate and modify them to
become the new population. After all, why would you bother allowing anything less
than the best to continue?

The problem is that choosing only a couple of the top solutions quickly makes the
population extremely homogeneous (or inbred, if you like), containing solutions that
are all pretty good but that won’t change much because crossover operations
between them lead to more of the same. This problem is called reaching a local
maxima, a state that is good but not quite good enough, and one in which small
changes don’t improve the result.

It turns out that having the very best solutions combined with a large number of
moderately good solutions tends to lead to better results. For this reason, the evolve
function has a couple of extra parameters that allow you to tune that amount of
diversity in the selection process. By lowering the probexp value, you allow weaker
solutions into the final result, turning the process from “survival of the fittest” to
“survival of the fittest and luckiest.” By increasing the probnew value, you allow com-
pletely new programs to be added to the mix occasionally. Both of these values
increase the amount of diversity in the evolution process but won’t disrupt it too
much, since the very worst programs will always be eliminated eventually.

A Simple Game
A more interesting problem for genetic programming is building an AI for a game.
You can force the programs to evolve by having them compete against each other
and against real people, and giving the ones that win the most a higher chance of
making it to the next generation. In this section, you’ll create a simulator for a very
simple game called Grid War, which is depicted in Figure 11-6.

A Simple Game | 269

The game has two players who take turns moving around on a small grid. Each
player can move in one of four directions, and the board is limited so if a player
attempts to move off one side, he forfeits his turn. The object of the game is to
capture the other player by moving onto the same square as his on your turn. The
only additional constraint is that you automatically lose if you try to move in the
same direction twice in a row. This game is very basic but since it pits two players
against each other, it will let you explore more competitive aspects of evolution.

The first step is to create a function that uses two players and simulates a game
between them. The function passes the location of the player and the opponent to
each program in turn, along with the last move made by the player, and takes the
return value as the move.

The move should be a number from 0 to 3, indicating one of four possible directions,
but since these are random programs that can return any integer, the function has to
handle values outside this range. To do this, it uses modulo 4 on the result. Random
programs are also liable to do things like create a player that moves in a circle, so the
number of moves is limited to 50 before a tie is declared.

Add gridgame to gp.py:

def gridgame(p):
 # Board size
 max=(3,3)

 # Remember the last move for each player
 lastmove=[-1,-1]

 # Remember the player's locations
 location=[[randint(0,max[0]),randint(0,max[1])]]

 # Put the second player a sufficient distance from the first
 location.append([(location[0][0]+2)%4,(location[0][1]+2)%4])

Figure 11-6. Grid War example

X

O

270 | Chapter 11: Evolving Intelligence

 # Maximum of 50 moves before a tie
 for o in range(50):

 # For each player
 for i in range(2):
 locs=location[i][:]+location[1-i][:]
 locs.append(lastmove[i])
 move=p[i].evaluate(locs)%4

 # You lose if you move the same direction twice in a row
 if lastmove[i]==move: return 1-i
 lastmove[i]=move
 if move==0:
 location[i][0]-=1
 # Board limits
 if location[i][0]<0: location[i][0]=0
 if move==1:
 location[i][0]+=1
 if location[i][0]>max[0]: location[i][0]=max[0]
 if move==2:
 location[i][1]-=1
 if location[i][1]<0: location[i][1]=0
 if move==3:
 location[i][1]+=1
 if location[i][1]>max[1]: location[i][1]=max[1]

 # If you have captured the other player, you win
 if location[i]==location[1-i]: return i
 return -1

The program will return 0 if player 1 is the winner, 1 if player 2 is the winner, and –1
in the event of a tie. You can try building a couple of random programs and having
them compete:

>>> reload(gp)
<module 'gp' from 'gp.py'>
>>> p1=gp.makerandomtree(5)
>>> p2=gp.makerandomtree(5)
>>> gp.gridgame([p1,p2])
1

These programs are totally unevolved, so they probably lose by moving in the same
direction twice in a row. Ideally, an evolved program will learn not to do this.

A Round-Robin Tournament
In keeping with collective intelligence, you would want the programs to test their fit-
ness by playing against real people, and force their evolution that way. This would be
a great way to capture the behavior of thousands of people and use it to develop a
more intelligent program. However, with a large population and many generations,

A Simple Game | 271

this could quickly add up to tens of thousands of games, and most of them would be
against very poor opponents. That’s impractical for our purposes, so you can first
have the programs evolve by competing against each other in a tournament.

The tournament function takes a list of players as its input and pits each one against
every other one, tracking how many times each program loses its game. Programs get
two points if they lose and one point if they tie. Add tournament to gp.py:

def tournament(pl):
 # Count losses
 losses=[0 for p in pl]

 # Every player plays every other player
 for i in range(len(pl)):
 for j in range(len(pl)):
 if i==j: continue

 # Who is the winner?
 winner=gridgame([pl[i],pl[j]])

 # Two points for a loss, one point for a tie
 if winner==0:
 losses[j]+=2
 elif winner==1:
 losses[i]+=2
 elif winner==-1:
 losses[i]+=1
 losses[i]+=1
 pass

 # Sort and return the results
 z=zip(losses,pl)
 z.sort()
 return z

At the end of the function, the results are sorted and returned with the programs that
have the fewest losses at the top. This is the return type needed by evolve to evaluate
programs, which means that tournament can be used as an argument to evolve and
that you’re now ready to evolve a program to play the game. Try it in your Python
session (this may take some time):

>>> reload(gp)
<module 'gp' from 'gp.py'>
>>> winner=gp.evolve(5,100,gp.tournament,maxgen=50)

As the programs evolve, notice that the loss numbers don’t strictly decrease like they
did with the mathematical function. Take a minute to think about why this is—after
all, the best player is always allowed into the next generation, right? As it turns out,
since the next generation consists entirely of newly evolved programs, the best
program in one generation might fare a lot worse in the next.

272 | Chapter 11: Evolving Intelligence

Playing Against Real People
Once you’ve evolved a program that performs well against its robotic competitors,
it’s time to battle against it yourself. To do this, you can create another class that also
has an evaluate method that displays the board to the user and asks what move they
want to make. Add the humanplayer class to gp.py:

class humanplayer:
 def evaluate(self,board):

 # Get my location and the location of other players
 me=tuple(board[0:2])
 others=[tuple(board[x:x+2]) for x in range(2,len(board)-1,2)]

 # Display the board
 for i in range(4):
 for j in range(4):
 if (i,j)==me:
 print 'O',
 elif (i,j) in others:
 print 'X',
 else:
 print '.',
 print

 # Show moves, for reference
 print 'Your last move was %d' % board[len(board)-1]
 print ' 0'
 print '2 3'
 print ' 1'
 print 'Enter move: ',

 # Return whatever the user enters
 move=int(raw_input())
 return move

In your Python session, you can take on your creation:

>>> reload(gp)
<module 'gp' from 'gp.py'>
>>> gp.gridgame([winner,gp.humanplayer()])
. O . .
. . . .
. . . .
. . . X
Your last move was -1
 0
2 3
 1
Enter move:

Further Possibilities | 273

Depending on how well your program evolved, you may find it easy or difficult to
beat. Your program will almost certainly have learned that it can’t make the same
move twice in a row, since that leads to instant death, but the extent to which it has
mastered other strategies will vary with each run of evolve.

Further Possibilities
This chapter is just an introduction to genetic programming, which is a huge and
rapidly advancing field. You’ve used it so far to approach simple problems in which
programs are built in minutes rather than days, but the principles can be extended to
much more complex problems. The number of programs in the populations here
have been very small compared to those used in more complex problems—a
population of thousands or tens of thousands is more typical. You are encouraged to
come up with more difficult problems and try larger population sizes, but you may
have to wait hours or days while the programs run.

The following section outlines a few ways in which the simple genetic programming
model can be extended for different applications.

More Numerical Functions
We have used a very small set of functions to construct the programs so far. This
limits the scope of what a simple program can do—for more complicated problems,
it’s necessary to greatly increase the number of functions available to build a tree.
Here are some possible functions to add:

• Trigonometric functions like sine, cosine, and tangent

• Other mathematical functions like power, square root, and absolute value

• Statistical distributions, such as a Gaussian

• Distance metrics, like Euclidean and Tanimoto distances

• A three-parameter function that returns 1 if the first parameter is between the
second and third

• A three-parameter function that returns 1 if the difference between the first two
parameters is less than the third

These can get as complicated as you like, and they are often tailored to specific
problems. Trigonometric functions may be a necessity when working in a field like
signal processing, but they are not much use in a game like the one you built in this
chapter.

274 | Chapter 11: Evolving Intelligence

Memory
The programs in this chapter are almost entirely reactive; they give a result based
solely on their inputs. This is the right approach for solving mathematical functions,
but it doesn’t allow the programs to work from a longer-term strategy. The chasing
game passes the programs the last move they made—mostly so the programs learn
they can’t make the same move twice in a row—but this is simply the output of the
program, not something they set themselves.

For a program to develop a longer-term strategy, it needs a way to store information
for use in the next round. One simple way to do this is to create new kinds of nodes
that can store and retrieve values from predefined slots. A store node has a single
child and an index of a memory slot; it gets the result from its child and stores it in
the memory slot and then passes this along to its parent. A recall node has no chil-
dren and simply returns the value in the appropriate slot. If a store node is at the top
of the tree, the final result is available to any part of the tree that has the appropriate
recall node.

In addition to individual memory, it’s also possible to set up shared memory that can
be read and written to by all the different programs. This is similar to individual
memory, except that there are a set of slots that all the programs can read from and
write to, creating the potential for higher levels of cooperation and competition.

Different Datatypes
The framework described in this chapter is for programs that take integer parameters
and return integers as results. It can easily be altered to work with float values, since
the operations are the same. To do this, simply alter makerandomtree to create the
constant nodes with a random float value instead of a random integer.

Building programs that handle other kinds of data will require more extensive modi-
fication, mostly changing the functions on the nodes. The basic framework can be
altered to handle types such as:

Strings
These would have operations like concatenate, split, indexing, and substrings.

Lists
These would have operations similar to strings.

Dictionaries
These would include operations like replacement and addition.

Objects
Any custom object could be used as an input to a tree, with the functions on the
nodes being method calls to the object.

Further Possibilities | 275

An important point that arises from these examples is that, in many cases, you’ll
require the nodes in the tree to process more than one type of return value. A sub-
string operation, for example, requires a string and two integers, which means that
one of its children would have to return a string and the other two would have to
return integers.

The naïve approach to this would be to randomly generate, mutate, and breed trees,
simply discarding the ones in which there is a mismatch in datatypes. However, this
would be computationally wasteful, and you’ve already seen how you can put a con-
straint on the way trees are constructed—every function in the integer trees knows
how many children it needs, and this can be easily extended to constrain the types of
children and their return types. For example, you might redefine the fwrapper class
like the following, where params is a list of strings specifying datatypes that can be
used for each parameter:

class fwrapper:
 def __init_ _(self,function,params,name):
 self.function=function
 self.childcount=param
 self.name=name

You’d also probably want to set up flist as a dictionary with return types. For
example:

flist={'str':[substringw,concatw],'int':[indexw,addw,subw]}

Then you could change the start of makerandomtree to something like:

def makerandomtree(pc,datatype,maxdepth=4,fpr=0.5,ppr=0.5):
 if random()<fpr and maxdepth>0:
 f=choice(flist[datatype])
 # Call makerandomtree with all the parameter types for f
 children=[makerandomtree(pc,type,maxdepth-1,fpr,ppr)
 for type in f.params]
 return node(f,children)
etc...

The crossover function would also have to be altered to ensure that swapped nodes
have the same return type.

Ideally, this section has given you some ideas about how genetic programming can
be extended from the simple model described here, and has inspired you to improve
it and to try automatically generating programs for more complex problems.
Although they may take a very long time to generate, once you find a good program,
you can use it again and again.

276 | Chapter 11: Evolving Intelligence

Exercises
1. More function types. We started with a very short list of functions. What other

functions can you think of? Implement a Euclidean distance node with four
parameters.

2. Replacement mutation. Implement a mutation procedure that chooses a random
node on the tree and changes it. Make sure it deals with function, constant, and
parameter nodes. How is evolution affected by using this function instead of the
branch replacement?

3. Random crossover. The current crossover function chooses branches from two
trees at the same level. Write a different crossover function that crosses any two
random branches. How does this affect evolution?

4. Stopping evolution. Add an additional criteria to evolve that stops the process
and returns the best result if the best score hasn’t improved within X generations.

5. Hidden functions. Try creating other mathematical functions for the programs to
guess. What sort of functions can be found easily, and which are more difficult?

6. Grid War player. Try to hand-design your own tree program that does well at
Grid War. If you find this easy, try to write another completely different one.
Instead of having a completely random initial population, make it mostly
random, with your hand-designed programs included. How do they compare to
random programs, and can they be improved with evolution?

7. Tic-tac-toe. Build a tic-tac-toe simulator for your programs to play. Set up a
tournament similar to the Grid War tournament. How well do the programs do?
Can they ever learn to play perfectly?

8. Nodes with datatypes. Some ideas were provided in this chapter about
implementing nodes with mixed datatypes. Implement this and see if you can
evolve a program that learns to return the second, third, sixth, and seventh
characters of a string (e.g., “genetic” becomes “enic”).

277

Chapter 12 CHAPTER 12

Algorithm Summary12

This book has introduced a number of different algorithms, and if you’ve been
working through the examples, you now have Python code that implements many of
them. The earlier chapters are structured around working through an example
problem with algorithms and variations introduced throughout the chapter. This
chapter will be a reference for the algorithms covered, so when you want to do some
data mining or machine learning on a new dataset, you can look at the algorithms
here, decide which one is appropriate, and use the code you’ve already written to
analyze your data.

To save you from going back through the book to find the details of an algorithm, I’ll
provide a description of each one, a high-level overview of how it works, what sort of
datasets you can apply it to, and how you would use the code you’ve previously
written to run it. I’ll also mention some of the strengths and weaknesses of each
algorithm (or, if you like, how to sell the idea to your boss). In some cases, I’ll use
examples to help explain the properties of the algorithm. These examples are greatly
simplified—most are so simple you can solve them just by looking at the data
yourself—but they are useful for illustration.

Supervised learning methods, which guess a classification or a value based on
training examples, will be covered first.

Bayesian Classifier
Bayesian classifiers were covered in Chapter 6. In that chapter, you saw how to
create a document classification system, such as those used for spam filtering or
dividing up a set of documents based on an ambiguous keyword search.

Although all the examples dealt with documents, the Bayesian classifier described in
Chapter 6 will work on any dataset that can be turned into lists of features. A feature
is simply something that is either present or absent for a given item. In the case of

278 | Chapter 12: Algorithm Summary

documents, the features are the words in the document, but they could also be char-
acteristics of an unidentified object, symptoms of a disease, or anything else that can
be said to be present of absent.

Training
Like all supervised methods, a Bayesian classifier is trained with examples. Each
example is a list of an item’s features and the classification for that item. Suppose
you’re trying to train a classifier to recognize if a document containing the word
“python” is about the programming language or the snake. A sample training set
might look like Table 12-1.

The classifier keeps track of all the features it has seen so far, along with numerical
probabilities that the features are associated with a particular classification. The clas-
sifier is trained by receiving examples one by one. After each example, the classifier
updates the probabilities for the features and classifier in that example, generating
the probability that a document about a certain category will contain a given word.
For example, trained on a set of documents like those in Table 12-1, you might end
up with a set of probabilities like those in Table 12-2.

This table shows that after training, features become more strongly associated with
the different categories. The word “constrictor” has a higher probability for snake,
and the word “dynamic” has a higher probability for the programming language.

Table 12-1. Features and classifications for a set of documents

Features Classification

Pythons are constrictors that feed on birds and mammals Snake

Python was originally developed as a scripting language Language

A 49-ft.-long python was found in Indonesia Snake

Python has a dynamic type system Language

Python with vivid scales Snake

Open source project Language

Table 12-2. Probabilities of words for a given category

Feature Language Snake

dynamic 0.6 0.1

constrictor 0.0 0.6

long 0.1 0.2

source 0.3 0.1

and 0.95 0.95

Bayesian Classifier | 279

Features that are ambiguous like the word “and” have similar probabilities for both
categories (the word “and” appears in almost every document, regardless of its
category). A trained classifier is nothing more than a list of features along with their
associated probabilities. Unlike some other classification methods, there is no need
to store the original data after it has been used for training.

Classifying
After a Bayesian classifier has been trained, it can be used to automatically classify
new items. Suppose you have a new document with the features “long,” “dynamic,”
and “source.” Table 12-2 shows a probability value for each of these, but this is just
for the individual words. If all of the words had a higher probability in one category,
then the answer would be clear. However, in this case “dynamic” is higher for the
language category, and “long” is higher for the snake category. To actually classify a
document, you need a way to combine the feature probabilities into a single
probability for the entire item.

One method of doing this, described in Chapter 6, is with a naïve Bayes classifier. It
combines probabilities with the following formula:

Pr(Category | Document) = Pr(Document | Category) * Pr(Category)

Where:

Pr (Document | Category) = Pr(Word1 | Category) * Pr(Word2 | Category) * …

The numbers for Pr(Word | Category) are the values from the table, for example, Pr
(dynamic | Language) = 0.6. The value of Pr(Category) is the overall frequency of the
category. Since “language” appears half the time, the value of Pr(Language) is 0.5.
Whichever category gets a higher score for Pr(Category | Document) is the predicted
category.

Using Your Code
To use the Bayesian classifier built in Chapter 6 on any dataset, all you need is a
feature-extraction function that turns the data you’re using for training or classifica-
tion into a list of features. That chapter worked with documents, so the function
split a string into words, but you can use any function that takes an object and
returns a list:

>>> docclass.getwords('python is a dynamic language')
{'python': 1, 'dynamic': 1, 'language': 1}

This function can be used to create a new classifier, which can then be trained on
strings:

>>> cl=docclass.naivebayes(docclass.getwords)
>>> cl.setdb('test.db')
>>> cl.train('pythons are constrictors','snake')

280 | Chapter 12: Algorithm Summary

>>> cl.train('python has dynamic types','language')
>>> cl.train('python was developed as a scripting language','language')

and classification:

>>> cl.classify('dynamic programming')
u'language'
>>> cl.classify('boa constrictors')
u'snake'

There is no limit to the number of different categories you can use, but for the
classifier to work well, you need to have plenty of examples for each category.

Strengths and Weaknesses
Perhaps the biggest advantage of naïve Bayesian classifiers over other methods is the
speed at which they can be trained and queried with large datasets. Even with a huge
training set, there are usually a relatively small number of features for each item, and
training and classifying items is just a mathematical manipulation of the probabilities
of these features.

This is particularly true when training is incremental—each new piece of training
data can be used to update the probabilities without using any of the old training
data. (You’ll notice that the code lets you train the Bayesian classifier with one item
at a time, while other methods like decision trees and support-vector machines need
the whole dataset at once.) This support for incremental training is very important
for an application like a spam filter, which is constantly trained on new email
messages that come in, has to be updated quickly, and may not even have access to
all the email messages that have been received.

Another big advantage of naïve Bayesian classifiers is the relative simplicity of
interpreting what the classifier has actually learned. Because the probabilities of each
feature are stored, you can look at your database at any time and see which features
are best at dividing spam and nonspam, or programming languages and snakes. This
information is interesting to look at, and it can potentially be used for other
applications or as a starting point for other applications.

The biggest downside to naïve Bayesian classifiers is their inability to deal with
outcomes that change based on combinations of features. Imagine the following
scenario in which you are trying to distinguish spam from nonspam email: let’s say
your job is building web applications, so the word “online” frequently appears in
your work-related email. Your best friend works at a pharmacy and likes sending you
funny stories about things that happen to him at work. Also, like most people who
haven’t closely guarded their email addresses, you occasionally receive spam
containing the words “online pharmacy.”

You can probably see the dilemma here already—the classifier is constantly being
told that “online” and “pharmacy” exist in nonspam email messages, so their proba-
bilities become higher for nonspam. When you tell the classifier that a certain email

Decision Tree Classifier | 281

message with the words “online pharmacy” is spam, those words are adjusted
slightly more toward spam, creating a constant battle. Since features are all given
probabilities separately, the classifier can never learn about combinations. In
document classification this is usually not a big deal, since an email message with the
words “online pharmacy” probably contains other spam indicators, but in other
problems, understanding feature combinations can be much more important.

Decision Tree Classifier
Decision trees were introduced in Chapter 7 to show you how to build a model of
user behavior from server logs. Decision trees are notable for being extremely easy to
understand and interpret. An example of a decision tree is shown in Figure 12-1.

It should be clear from the figure what a decision tree does when faced with the task
of classifying a new item. Beginning at the node at the top of the tree, it checks the
item against the node’s criteria—if the item matches the criteria, it follows the Yes
branch; otherwise, it follows the No branch. This process is repeated until an
endpoint is reached, which is the predicted category.

Training
Classifying in a decision tree is quite simple; training it is trickier. The algorithm
described in Chapter 7 built the tree from the top, choosing an attribute at each step
that would divide the data in the best possible manner. To illustrate this, consider
the fruit dataset shown in Table 12-3. This will be referred to as the original set.

Figure 12-1. Example decision tree

color = green?

color = red?

shape = round?

diameter > 4in?

diameter > 6in?

No Yes

No Yes

diameter > 2in? diameter > 2in?

No Yes

Watermelon

No Yes

stone = true? Apple

No Yes

Banana

No Yes

AppleGrape

No Yes

GrapefruitLemon

No Yes

CherryGrape

282 | Chapter 12: Algorithm Summary

There are two possible variables on which this data can be divided, either Diameter
or Color, to create the top node of the tree. The first step is to try each of them in
order to decide which of these variables divides the data best. Dividing the set on
Color gives the results shown in Table 12-4.

The data is still pretty mixed. However, if you divide the dataset by Diameter (less
than four inches and greater than or equal to four inches), the results divide much
more cleanly (referred to as Subset 1 on the left and Subset 2 on the right). This
division is shown in Table 12-5.

This is obviously a much better result, since Subset 1 contains all the Apple entries
from the original set. Although the better variable is clear in this example, larger
datasets will not always have such clean divisions. Chapter 7 introduced the concept
of entropy (the amount of disorder in a set) to measure how good a division is:

• p(i) = frequency(outcome) = count(outcome) / count(total rows)

• Entropy = sum of p(i) * log(p(i)) for all outcomes

A low entropy within a set tells you that the set is mostly homogeneous, and a value
of 0 means that it consists of entirely one type of item. Subset 1 (diameter ≥ 4) in
Table 12-5 has an entropy of 0. The entropy for each set is used to calculate the
information gain, which is defined as:

Table 12-3. Fruit data

Diameter Color Fruit

4 Red Apple

4 Green Apple

1 Red Cherry

1 Green Grape

5 Red Apple

Table 12-4. Fruit data divided by Color

Red Green

Apple

Cherry

Apple

Apple

Grape

Table 12-5. Fruit data divided by Diameter

Diameter < 4in Diameter ≥ 4in

Cherry

Grape

Apple

Apple

Decision Tree Classifier | 283

• weight1 = size of subset1 / size of original set

• weight2 = size of subset2 / size of original set

• gain = entropy(original) – weight1*entropy(set1) – weight2*entropy(set2)

So for each possible division, the information gain is calculated and used to deter-
mine the dividing variable. Once the dividing variable has been chosen, the first node
can be created, as shown in Figure 12-2.

The criteria is shown on the node, the data that doesn’t pass the criteria gets pushed
down the No branch, and the data that meets or passes the criteria is pushed down
the Yes branch. Since the Yes branch now has just one possible outcome, it becomes
an endpoint. The No branch still has a mixture, so it can be divided further using
exactly the same method that was used to choose the top node. In this case, color is
the best variable on which to divide the data. This process repeats until there is no
information gain from dividing up the data on a given branch.

Using Your Decision Tree Classifier
The code for the decision trees built in Chapter 7 was trained on a list of lists. Each
internal list has a set of values, with the final value in the list being the category. You
can create the simple fruit dataset above like this:

>>> fruit=[[4,'red','apple'],
... [4,'green','apple'],
... [1,'red','cherry'],
... [1,'green','grape'],
... [5,'red','apple']]

Now you can train the decision tree and use it to classify new examples:

>>> import treepredict
>>> tree=treepredict.buildtree(fruit)
>>> treepredict.classify([2,'red'],tree)
{'cherry': 1}
>>> treepredict.classify([5,'red'],tree)
{'apple': 3}
>>> treepredict.classify([1,'green'],tree)
{'grape': 1}
>>> treepredict.classify([120,'red'],tree)
{'apple': 3}

Figure 12-2. Root node of the fruit decision tree

diameter 4in?

Cherry (1, Red)
Grape (1, Green)

No Yes

Apple

284 | Chapter 12: Algorithm Summary

Obviously, something ten feet across and purple is not an apple, but the decision tree
is limited by what it has already seen. Finally, you can print or graph the tree to
understand its decision-making process:

>>> treepredict.printtree(tree)
0:4?
T-> {'apple': 3}
F-> 1:green?
 T-> {'grape': 1}
 F-> {'cherry': 1}

Strengths and Weaknesses
The most striking advantage of decision trees is how easy it is to interpret a trained
model and how well the algorithm brings important factors to the top of the tree.
This means that a decision tree is useful not just for classification, but also for inter-
pretation. Like the Bayesian classifier, you can look under the hood and understand
why it works the way it does, and this can help you make decisions outside the
classification process. For example, the model in Chapter 7 predicted which users
would become paying customers, and having a decision tree that shows which
variables are best at cleanly dividing the data could be useful for planning an
advertising strategy or deciding what other data should be collected.

Decision trees also work with numerical data as inputs, since they find the dividing
line that maximizes information gain. The ability to mix categorical and numerical
data is useful for many classes of problems—something that traditional statistical
methods like regression have trouble doing. On the other hand, decision trees are
not as good at making predictions for numerical results. A regression tree can divide
the data into mean values with the lowest variance, but if the data is complex, the
tree will have to get very large before it is able to make accurate decisions.

The main advantage that decision trees have over the Bayesian classifier is that they
can easily cope with interactions of variables. A spam filter built using a decision tree
would easily determine that “online” and “pharmacy” are fine in isolation but that
when they’re together they indicate spam.

Unfortunately, using the algorithm from Chapter 7 is not practical for a spam filter
for the simple reason that it does not support incremental training. (Alternative
algorithms for decision trees that support incremental training are an active area of
research.) You can take a big set of documents and build a decision tree for spam
filtering, but you can’t train it on individual new email messages as they come in—
you would have to start from scratch each time. Since many people have tens of thou-
sands of email messages, this would be impractical to do each time. Also, since the
number of possible nodes is very large (each feature is present or absent), the trees
can become extremely large and complex and would be slow to make classifications.

Neural Networks | 285

Neural Networks
Chapter 4 showed how to build a simple neural network for altering the ranking of
search results based on what links users have clicked in the past. That neural net-
work was able to learn which words in which combinations were important, and also
which words were unimportant to a particular query. Neural networks can be
applied to both classification and numerical prediction problems.

The neural network in Chapter 4 was used as a classifier—it gave a number for every
link, predicting that the link with the highest number would be the one that the user
would click. Because it gave numbers for every link, you could use all the numbers to
change the rankings of the search results.

There are many different kinds of neural networks. The one covered in this book is
known as a multilayer perceptron network, so named because it has a layer of input
neurons that feed into one or more layers of hidden neurons. The basic structure is
shown in Figure 12-3.

This network has two layers of neurons. The layers of neurons are connected to each
other by synapses, which each have an associated weight. The outputs from one set
of neurons are fed to the next layer through the synapses. The higher the weight of a
synapse leading from one neuron to the next, the more influence it will have on the
output of that neuron.

As a simple example, consider again the problem of spam filtering that was described
in the earlier section “Bayesian Classifier.” In our simplified email world, an email
message can contain the word “online,” the word “pharmacy,” or both. To deter-
mine which of these messages is spam, you might use a neural network that looks
like Figure 12-4.

In this figure, the weights on the synapses are already set to solve the problem.
(You’ll see how they are set in the next section.) The neurons in the first layer
respond to the words that are used as input—if a word is present in the email
message, then the neurons that are strongly connected to that word become active.
The second layer is fed by the first layer, so it responds to combinations of words.

Figure 12-3. Basic neural network structure

Input1 Hidden1 Output1

Input2 Hidden2 Output2

Input3 Hidden3 Output3

286 | Chapter 12: Algorithm Summary

Finally, these neurons feed their results to the outputs, and particular combinations
may be strongly or weakly associated with the possible results. In the end, the final
decision is whichever output is strongest. Figure 12-5 shows how the network reacts
to the word “online” when it is not accompanied by the word “pharmacy.”

One of the neurons in the first layer responds to “online” and feeds its output to the
second layer, where one of the neurons has learned to recognize messages that
contain only the word “online” by itself. This neuron has a much stronger synapse
leading to Not Spam than to Spam, so the message is classified as Not Spam.
Figure 12-6 shows what happens when the words “online” and “pharmacy” are fed
to the network together.

Since the neurons in the first layer react to the individual words, they both become
active. In the second layer, things get a bit more interesting. The presence of
“pharmacy” negatively affects the “online”-only neuron, and both of the first layer
neurons work together to activate the middle neuron, which has been trained to
respond to “online” and “pharmacy” together. This neuron feeds very strongly into
the Spam category, so the document is classified as spam. This example demonstrates
how multilayer neural networks can easily deal with features that mean different
things in different combinations.

Figure 12-4. Neural network for spam classification

Figure 12-5. Network response to the word “online”

Hidden1

Hidden2

Hidden3

Spam

Not spam

Online

Pharmacy

5

-5

2

3

-5

5

5

0

0

5

5

0

5

2

0

Spam

Not spam

Online

Pharmacy

5

-5

2

3

-5

5

5

0

0

5

5

0

Neural Networks | 287

Training a Neural Network
In the example above, the neural network already has the appropriate weights for all
the synapses. The real power of neural networks is that they can start with random
weights and then learn from examples through training. The most common method
of training a multilayer perceptron network, and the method described in Chapter 4,
is called backpropagation.

To train a network with backpropagation, you start with an example, such as the
word “online” by itself and the correct answer, which in this case is Not Spam. You
then feed the example into the neural network to see what its current guess looks
like.

Initially, the network might give a slightly higher result for Spam than Not Spam,
which is incorrect. To correct this, the network is told that Spam should be closer to
0 and Not Spam should be closer to 1. The synapse weights leading to Spam are
adjusted slightly downward in proportion to how much each is contributing, and the
weights leading to Not Spam are adjusted slightly upward. The synapse weights
between the input and hidden layers are also adjusted according to how much they
contribute to the important nodes in the output layer.

The actual formulae for these adjustments are given in Chapter 4. To stop the
network from overcompensating when it is trained with noisy or uncertain data, it is
trained slowly so the more times it sees a particular example, the better it will get at
classifying it.

Using Your Neural Network Code
The code in Chapter 4 is easy to apply to this problem. The only trick is that it
doesn’t take the words directly, but uses number IDs for everything, so you’ll need to
assign numbers to the possible inputs. It uses a database to store training data, so
just open with the name of a file and start training:

Figure 12-6. Neural network response to “online pharmacy”

0

5

0

Spam

Not spam

Online

Pharmacy

5

-5

2

3

-5

5

5

0

0

5

5

0

288 | Chapter 12: Algorithm Summary

>>> import nn
>>> online,pharmacy=1,2
>>> spam,notspam=1,2
>>> possible=[spam,notspam]
>>> neuralnet=nn.searchnet('nntest.db')
>>> neuralnet.maketables()
>>> neuralnet.trainquery([online],possible,notspam)
>>> neuralnet.trainquery([online,pharmacy],possible,spam)
>>> neuralnet.trainquery([pharmacy],possible,notspam)
>>> neuralnet.getresult([online,pharmacy],possible)
[0.7763, 0.2890]
>>> neuralnet.getresult([online],possible)
[0.4351, 0.1826]
>>> neuralnet.trainquery([online],possible,notspam)
>>> neuralnet.getresult([online],possible)
[0.3219, 0.5329]
>>> neuralnet.trainquery([online],possible,notspam)
>>> neuralnet.getresult([online],possible)
[0.2206, 0.6453]

You can see that the network gives more certain results the more it is trained. It can
also handle the occasional incorrect example and still retain good predictive power.

Strengths and Weaknesses
The main strength of neural networks is that they can handle complex nonlinear
functions and discover dependencies between different inputs. Although the example
only showed numerical inputs of 1 or 0 (present or absent), any number can be used
as an input, and the network can also estimate numbers as outputs.

Neural networks also allow for incremental training and generally don’t require a lot
of space to store the trained models, since they are just a list of numbers representing
the synapse weights. There is no need to keep the original data following training,
which means that neural networks can be used for applications in which there is a
continuous stream of training data.

The major downside of neural networks is that they are a black box method. The
example network shown here was contrived to be extremely simple to follow, but in
reality, a network might have hundreds of nodes and thousands of synapses, making
it impossible to determine how the network came up with the answer that it did. Not
being able to understand the reasoning process may be a deal breaker for some
applications.

Another downside is that there are no definitive rules for choosing the training rate
and network size for a particular problem. This decision usually requires a good
amount of experimentation. Choosing a training rate that’s too high means that the
network might overgeneralize on noisy data, and choosing one that’s too low means
it might never learn, given the data you have.

Support-Vector Machines | 289

Support-Vector Machines
Support-vector machines (SVMs) were introduced in Chapter 9, and are probably the
most sophisticated classification method covered by this book. SVMs take datasets
with numerical inputs and try to predict which category they fall into. You might, for
example, want to decide positions for a basketball team from a list of people’s
heights and running speeds. To simplify, consider just two possibilities—front-court
positions in which tall players are required, and back-court positions where you need
the faster movers.

An SVM builds a predictive model by finding the dividing line between the two
categories. If you plot a set of values for height versus speed and the best position for
each person, you get a graph like the one shown in Figure 12-7. Front-court players
are shown as Xs and back-court players are shown as Os. Also shown on the graph
are a few lines that separate the data into the two categories.

A support-vector machine finds the line that separates the data most cleanly, which
means that it is the greatest possible distance from points near the dividing line. In
Figure 12-7, although all the different lines separate the data, the one that does this
best is the one labeled “Best.” The only points necessary to determine where the line
should be are the points closest to it, and these are known as the support vectors.

After the dividing line has been found, classifying new items is just a matter of
plotting them on the graph and seeing on which side of the line they fall. There’s no
need to go through the training data to classify new points once the line has been
found, so classification is very fast.

Figure 12-7. Plot of basketball players and dividing lines

Height

Speed

Best

290 | Chapter 12: Algorithm Summary

The Kernel Trick
Support-vector machines, along with other linear classifiers that use vector dot-
products, often take advantage of a technique called the kernel trick. To understand
this, consider how the problem would change if the classification you were trying to
predict was not position, but rather, whether the players would be appropriate for an
amateur team in which the positions are often switched around. This is more
interesting because the division is not linear. You don’t want players who are too tall
or too fast because they would make the game too difficult for others, but you don’t
want them to be too short or too slow either. Figure 12-8 shows what this might look
like, where an O indicates that a player is appropriate for the team and an X indicates
that he isn’t.

There is no straight dividing line here that will work, so you can’t use a linear
classifier to find the division without first altering the data in some way. One way to
do this would be to transform the data into a different space—perhaps a space with
more than two dimensions—by applying different functions to the axis variables. In
this case, we might create a new space by subtracting the average values for height
and speed and squaring the height and speed values. This would look like
Figure 12-9.

This is called a polynomial transformation, and it transforms data on different axes.
It’s now easy to see that there is a dividing line between the members that are
appropriate and inappropriate for the team, which can be found with a linear
classifier. Classifying new points would be a matter of transforming them into this
space and seeing on which side of the line they fall.

Figure 12-8. Plot of basketball players for amateur team

Height

Speed

Support-Vector Machines | 291

The transformation works in this case, but in many examples, finding the dividing
line will require transformation into much more complex spaces. Some of these
spaces have thousands or even infinite dimensions, so it’s not always practical to
actually do this transformation. This is where the kernel trick comes in—rather than
transforming the space, you replace the dot-product function with a function that
returns what the dot-product would be if the data was transformed into a different
space. For example, instead of doing the polynomial transformation above, you
would change:

dotproduct(A,B)

to:

dotproduct(A,B)**2

In Chapter 9, you built a simple linear classifier that used group averages. You saw
how this could be altered by replacing the dot-product function with other functions
for combining vectors, which allowed it to solve nonlinear problems.

Using LIBSVM
Chapter 9 introduced a library called LIBSVM. You can use it to train on a dataset (to
find the dividing line in a transformed space) and then to classify new observations:

>>> from random import randint
>>> # Create 200 random points
>>> d1=[[randint(-20,20),randint(-20,20)] for i in range(200)]
>>> # Classify them as 1 if they are in the circle and 0 if not
>>> result=[(x**2+y**2)<144 and 1 or 0 for (x,y) in d1]
>>> from svm import *

Figure 12-9. Basketball players in polynomial space

Height-squared

Speed-squared

292 | Chapter 12: Algorithm Summary

>>> prob=svm_problem(result,d1)
>>> param=svm_parameter(kernel_type=RBF)
>>> m=svm_model(prob,param)
>>> m.predict([2,2])
1.0
>>> m.predict([14,13])
0.0
>>> m.predict([-18,0])
0.0

LIBSVM supports many different kernel functions, and it’s easy to try them all out
with different parameters to see what works best for a given dataset. To test how
well a model works, you can try the cross_validation function, which takes a
parameter, n, and divides the dataset into n subsets. It then uses each subset as a test
set and trains the model with all the other subsets. It returns a list of answers that
you can compare to the original list:

>>> guesses=cross_validation(prob,param,4)
>>> sum([abs(guesses[i]-result[i]) for i in range(len(guesses))])
28.0

When approaching a new problem, you can try the different kernel functions with
different parameters to see which gives the best results. This will vary depending on
the dataset, and after you’ve decided, you can use those parameters to create the
model that will be used to classify new observations. In practice, you might create
some nested loops to try different values and track which ones gave the best result.

Strengths and Weaknesses
Support-vector machines are a very powerful classifier; once you get the parameters
correct, they will likely work as well as or better than any other classification method
that this book has covered. Further, after training they are very fast to classify new
observations, since classification is simply done by determining on which side of a
dividing line a point is. By transforming categorical inputs to numbers, you can make
them work with a mixture of categorical and numerical data.

One disadvantage is that the best kernel transformation function and the parameters
for that function will be slightly different for every dataset, and you’ll have to find
them each time. Looping through possible values helps to alleviate this problem, but
it does require that you have a big enough dataset to do reliable cross-validation.
Generally, SVMs are much more suited to problems in which there is a lot of data
available, while other methods such as decision trees can still give interesting
information with very small datasets.

Like neural networks, SVMs are a black box technique—it’s actually even more
difficult to interpret how an SVM is doing classification because of the transformation
into high-dimensional spaces. An SVM may give great answers, but you’ll never really
know why.

k-Nearest Neighbors | 293

k-Nearest Neighbors
Chapter 8 covered the topic of numerical prediction using an algorithm called k-
nearest neighbors (kNN), and used it to show how you could build models for
predicting prices given a set of examples. The recommendation algorithm in
Chapter 2 for predicting how much someone would like a movie or a link was also a
simple version of kNN.

kNN works by taking a new item for which you want a numerical prediction and
comparing it to a set of items for which it already has values. It finds the ones most
similar to the item in question and averages their values to get a predicted value.
Table 12-6 shows a list of digital cameras, along with their megapixel rating, zoom
power, and sale price.

Suppose you want to guess the price for a new camera with a six megapixels and a 6x
zoom lens. The first thing you’ll need is a way to measure how similar two items are.
Chapter 8 used Euclidean distance, and you’ve seen many other distance metrics
throughout this book, such as Pearson correlation and Tanimoto score. Using
Euclidean distance in this example reveals that the closest item in the table is C3. To
visualize this, imagine plotting the items on a chart with megapixels as the x-axis and
zoom as the y-axis. The items themselves are identified by their prices in
Figure 12-10.

You could just take the price of $349 as the answer (it is the closest match, after all),
but you’d never know if its price was just an anomaly. For this reason, it’s better to
take more than one of the best matches and average them. The k in k-nearest
neighbors refers to how many of the top matches you use for averaging. For example,
if you took the best three matches and averaged them, this would be kNN with k=3.

An extension to the basic averaging is to use a weighted average based on how far
away the neighbors are. A very close neighbor would count for more than an item
that was further away. The weights would be in proportion to the total distance.
Chapter 8 covered different functions for determining the weights. In the example,
you might use the price of $349 weighted most heavily, with the two $399 prices
weighted less. For example:

price = 0.5 * 349 + 0.25 * 399 + 0.25 * 399 = 374

Table 12-6. Digital cameras and prices

Camera Megapixels Zoom Price

C1 7.1 3.8x $399

C2 5.0 2.4x $299

C3 6.0 4.0x $349

C4 6.0 12.0x $399

C5 10.0 3x $449

294 | Chapter 12: Algorithm Summary

Scaling and Superfluous Variables
A big problem with the kNN algorithm described so far is that it calculates distance
across all the variables. This means that if the variables measure different things and
one of the variables tends to be much larger than the others, it will exert a much
stronger influence on what is “close.” Imagine if the dataset above gave resolution in
pixels instead of in megapixels—a zoom difference of 10x is much more important
than a resolution difference of 10 extra pixels, but they will be treated the same. In
other cases, the dataset will contain some variables that are completely useless for
making predictions, but these will still affect the distances.

This problem can be solved by scaling the data before calculating the distances. In
Chapter 8, you created a method for scaling, which meant increasing the magni-
tudes of some variables and decreasing the magnitudes of others. Entirely useless
variables could all be multiplied by 0 so that they no longer affect the outcome.
Variables that were valuable but in vastly different ranges could be scaled to be more
comparable—you might determine that a difference of 2,000 pixels is the equivalent
of a zoom difference of 1x.

Because the appropriate amount to scale the data depends on the application, you
can test how good a certain set of scaling factors is by cross-validating the prediction
algorithm. Cross-validation removes items from the dataset and then tries to see how
well it can guess them using the rest of the data. Figure 12-11 shows how this works.

By using cross-validation with many different scaling factors, you can get an error
rate for each item and use it to determine which scaling factors should be used for
making predictions about new items.

Figure 12-10. Camera prices in zoom-megapixel space

Zoom

Megapixels

$399

???

$349
$399

$449$299

k-Nearest Neighbors | 295

Using Your kNN Code
In Chapter 8, you built functions for kNN and weighted kNN. These are easy to run
on the sample dataset given in Table 12-6.

>>> cameras=[{'input':(7.1,3.8),'result':399},
... {'input':(5.0,2.4),'result':299},
... {'input':(6.0,4.0),'result':349},
... {'input':(6.0,12.0),'result':399},
... {'input':(10.0,3.0),'result':449}]
>>> import numpredict
>>> numpredict(cameras,(6.0,6.0),k=2)
374.0
>>> numpredict.weightedknn(cameras,(6.0,6.0),k=3)
351.52666892719458

It’s possible that these can be improved by scaling the data. The rescale function
will do this:

>>> scc=numpredict.rescale(cameras,(1,2))
>>> scc
[{'input': [7.1, 7.6], 'result': 399}, {'input': [5.0, 4.8], 'result': 299},
{'input': [6.0, 8.0], 'result': 349}, {'input': [6.0, 24.0], 'result': 399},
{'input': [10.0, 6.0], 'result': 449}]

And by using crossvalidate, you can figure out which scaling factor works best:

>>> numpredict.crossvalidate(knn1,cameras,test=0.3,trials=2)
3750.0
>>> numpredict.crossvalidate(knn1,scc,test=0.3,trials=2)
2500.0

Figure 12-11. Cross-validation of a single item

Zoom

Megapixels

$399

$349
$399

$449$299

Zoom

Megapixels

$399

???

$399

$449$299

Using k=2;
 guess= average of $399 and $299
 = $349
 error=(guess-actual)^2=$349-$349=0

296 | Chapter 12: Algorithm Summary

With a dataset with more variables, it will become tedious to guess the possible
scaling factors, so you can loop through all the different values looking for the best
result or, as shown in Chapter 8, you can use one of the optimization algorithms.

Strengths and Weaknesses
k-nearest neighbors is one of the few algorithms that will make numerical predic-
tions in complex functions and still remain easy to interpret. The reasoning process
is easy to understand, and a simple change to the code will allow you to see exactly
which neighbors are being used in the calculation. Neural networks can also make
numerical predictions in complex functions, but they will certainly not be able to
show you similar examples to help you understand the reasoning process.

Furthermore, the process of determining the correct amounts to scale the data not
only improves predictions, but also tells you which variables are important in making
predictions. Any variable that gets scaled down to 0 can be thrown out. In some
cases, that data may have been difficult or expensive to collect, so knowing that it’s
not useful may save you some time and money in the future.

KNN is an online technique, meaning that new data can be added at any time, unlike
techniques such as support-vector machines that require retraining if the data
changes. Moreover, adding new data does not require any computation at all; the
data is simply added to the set.

The major weakness of KNN is that it requires all the training data to be present in
order to make predictions. In a dataset with millions of examples, this is not just
a space issue but also a time issue—every item for which you’re trying to make a
prediction has to be compared with every other item to determine which are the
closest. This process may be too slow for some applications.

Another disadvantage is that finding the correct scaling factors can be tedious.
Although there are ways to make this process more automatic, cross-validation and
scoring thousands of possible scaling factors can be very computationally intensive
with a large dataset. If there are many different variables to try, it might be necessary
to try millions of different scaling factors before finding the right one.

Clustering
Hierarchical clustering and K-means clustering are unsupervised learning techniques,
meaning they don’t require examples for training data because they don’t attempt to
make predictions. Chapter 3 looked at how to take a list of top bloggers and auto-
matically cluster them so you could see which ones naturally fell into groups that
write about similar subjects or use similar words.

Clustering | 297

Hierarchical Clustering
Clustering works on any set of items that have one or more numerical properties.
The example in Chapter 3 used word counts for the different blogs, but any set of
numbers can be used for clustering. To demonstrate how the hierarchical clustering
algorithm works, consider a simple table of items (some letters of the alphabet) and
some numerical properties (Table 12-7).

Figure 12-12 shows the process of clustering these items. In the first pane, the items
have been plotted in two dimensions, with P1 on the x-axis and P2 on the y-axis.
Hierarchical clustering works by finding the two items that are closest together and
merging them into a cluster. In the second pane, you can see that the closest items, A
and B, have been grouped together. The “location” of this cluster is the average of
the two items in it. In the next pane, it turns out that the closest items are C and the
new A-B cluster. This process continues until the final pane in which everything is
contained in one big cluster.

This process creates a hierarchy, which can be illustrated as a dendrogram, a tree-like
structure that shows which items and groups are closest together. The dendrogram
for the example dataset is shown in Figure 12-13.

The two closest items, A and B, are connected together at the end. C is connected to
the combination of A and B. From the dendrogram you can pick any branch point
and decide if it is a group of interest. In Chapter 3, you saw branches consisting
almost entirely of political blogs and other branches of technology blogs and so on.

K-Means Clustering
Another method of clustering data is called K-means clustering. While hierarchical
clustering creates a tree of the items, K-means clustering actually separates the data
into distinct groups. It also requires you to decide how many groups you want before
the algorithm starts running. Figure 12-14 shows an example of K-means clustering
in action, trying to find two clusters with a slightly different dataset than was used
with the hierarchical clustering example.

Table 12-7. Simple table for clustering

Item P1 P2

A 1 8

B 3 8

C 2 6

D 1.5 1

E 4 2

298 | Chapter 12: Algorithm Summary

In the first frame, the two centroids (shown as dark circles) are placed randomly.
Frame 2 shows that each of the items is assigned to the nearest one—in this case, A
and B are assigned to the top centroid, and C, D, and E are assigned to the bottom
centroid. In the third frame, the centroids have been moved to the average location
of the items that were assigned to them. When the assignments are calculated again,
it turns out that C is now closer to the top centroid, while D and E remain closest to
the bottom one. Thus, the final result is reached with A, B, and C in one cluster, and
D and E in the other.

Using Your Clustering Code
In order to do clustering, you’ll need a dataset and a distance metric. The dataset
consists of lists of numbers, with each number representing a variable. In Chapter 3,
both Pearson correlation and Tanimoto score were used as distance metrics, but it’s
easy to use other metrics such as Euclidean distance:

Figure 12-12. Process of hierarchical clustering

Figure 12-13. Dendrogram of clustered letters

A B

C

D E

A B

C

D E

A B

C

D E

A B

C

D E

A B

C

D E

A

B

C
E

D

Clustering | 299

>>> data=[[1.0,8.0],[3.0,8.0],[2.0,7.0],[1.5,1.0],[4.0,2.0]]
>>> labels=['A','B','C','D','E']
>>> def euclidean(v1,v2): return sum([(v1[i]-v2[i])**2 for i in range(len(v1))])
>>> import clusters
>>> hcl=clusters.hcluster(data,distance=euclidean)
>>> kcl=clusters.kcluster(data,distance=euclidean,k=2)
Iteration 0
Iteration 1

For K-means clustering, you can easily print the results of which items were placed in
each of your two clusters:

>>> kcl
[[0, 1, 2], [3, 4]]
>>> for c in kcl: print [labels[l] for l in c]
...
['A', 'B', 'C']
['D', 'E']

Hierarchical clustering doesn’t lend itself well to printing, but the code built in
Chapter 3 included a function to draw the dendrogram of the hierarchical clusters:

>>> clusters.drawdendrogram(hcl,labels,jpeg='hcl.jpg')

The choice of which algorithm to use really depends on what you’re trying to do. It’s
often useful to have the data divided into distinct groups, such as the ones you get
from K-means clustering, since it’s much easier to display and to characterize the
groups. On the other hand, with a completely new dataset you may have no idea
how many groups you want, and you may also want to see which groups are most
similar to each other. In this case, hierarchical clustering would be a better choice.

Figure 12-14. Process of K-means clustering

A B

C

D E

A B

C

D E

A B

C

D E

A B

C

D E

A B

C

D E

300 | Chapter 12: Algorithm Summary

It’s also possible to take advantage of both methods by first using K-means clustering
to create a set of groups, and then hierarchically clustering these groups using the
distances between their centroids. This would give you distinct groups at one level
that are arranged into a tree so you can see how the groups are related.

Multidimensional Scaling
Another method covered in Chapter 3 and applied to blogs was multidimensional
scaling. Like clustering, this is an unsupervised technique that does not attempt to
make predictions, but instead makes it easier to understand how different items are
related. It creates a lower-dimensional representation of a dataset where the
distances are as close to the original dataset as possible. For display on a screen or
paper, this usually means scaling data from many dimensions down to two
dimensions.

Imagine, for example, that you have the four-dimensional dataset shown in
Table 12-8 (every item has four associated values).

Using the Euclidean distance formula, you can get a distance value for every pair of
items. For example, the distance between A and B is sqrt(0.1^2+0.15^2+0.1^2+0.
0^2) = 0.2. The full matrix of all the pairwise distances is given in Table 12-9.

The goal here is to draw all the items in a two-dimensional chart so that the distances
in two dimensions are as close as possible to their distances in four dimensions. All
the items are placed randomly on the chart, and the current distances between all the
items are calculated, as shown in Figure 12-15.

Table 12-8. Simple four-dimensional table for scaling

A 0.5 0.0 0.3 0.1

B 0.4 0.15 0.2 0.1

C 0.2 0.4 0.7 0.8

D 1.0 0.3 0.6 0.0

Table 12-9. Sample distance matrix

A B C D

A 0.0 0.2 0.9 0.8

B 0.2 0.0 0.9 0.7

C 0.9 0.9 0.0 1.1

D 0.8 0.7 1.1 0.0

Multidimensional Scaling | 301

For every pair of items, the target distance is compared to the current distance and
an error term is calculated. Every item is moved a small amount closer or farther
away in proportion to the error between the two items. Figure 12-16 shows the
forces acting on item A. The distance between A and B in the chart is 0.5, but the
target distance is only 0.2, so A has to be moved closer to B. At the same time, A is
also being pushed away by C and D because it is too close.

Every node is moved according the combination of all the other nodes pushing and
pulling on it. Each time this is done, the difference between the current distances and
the target distances should get a little smaller. This procedure is repeated many times
until the total amount of error cannot be reduced by moving the items any more.

Using Your Multidimensional Scaling Code
In Chapter 3, you built two functions for multidimensional scaling, one to actually
run the algorithm and the other to display the results. The first function, scaledown,
takes the list of item values in multiple dimensions and returns the list in the same
order, scaled down to two dimensions:

>>> labels=['A','B','C','D']
>>> scaleset=[[0.5,0.0,0.3,0.1],
... [0.4,0.15,0.2,0.1],
... [0.2,0.4,0.7,0.8],

Figure 12-15. Distances between items

Figure 12-16. Forces acting on item A

A

B

C

D

0.4

0.5

0.4

0.7

0.7

0.6

A

B

C

D

302 | Chapter 12: Algorithm Summary

... [1.0,0.3,0.6,0.0]]
>>> twod=clusters.scaledown(scaleset,distance=euclidean)
>>> twod
[[0.45, 0.54],
 [0.40, 0.54],
 [-0.30, 1.02],
 [0.92, 0.59]]

The other function, draw2d, takes this scaled-down list and creates an image:

>>> clusters.draw2d(twod,labels,jpeg='abcd.jpg')

This will create a file called abcd.jpg, which contains the result. You can also
visualize the results in different ways by taking the list generated by scaledown and
using it with another program, such as a spreadsheet.

Non-Negative Matrix Factorization
Chapter 10 covered an advanced technique called non-negative matrix factorization
(NMF), which is a way to break down a set of numerical observations into their com-
ponent parts. This method was used to show how news stories could be composed
of separate themes and how the trading volume of various stocks could be broken
down into events that affected individual stocks or multiple stocks at once. This is
also an unsupervised algorithm, since it helps characterize data rather than making
predictions about categories or values.

To understand what NMF does, consider the set of values shown in Table 12-10:

Assume that observations A and B are composed of some combination of two pairs
of numbers (the features), but you don’t know what those pairs are or how much of
each pair (the weights) is used to create each observation. NMF can find possible
values for both the features and the weights. When working with news stories in
Chapter 10, the observations were the stories and the columns were the words in the
stories. With stock trading volumes, the observations were the days and the columns

Table 12-10. Simple table for NMF

Observation Number A B

1 29 29

2 43 33

3 15 25

4 40 28

5 24 11

6 29 29

7 37 23

8 21 6

Non-Negative Matrix Factorization | 303

were various stock tickers. In each case, the algorithm attempted to find a smaller
number of parts that could be added together in different amounts to get these
observations.

One possible answer for the data in the table is that the two pairs are (3, 5) and (7, 2).

Using these parts, you can see that the observations can be recreated by combining
the pairs in different amounts, such as the following:

5*(3, 5) + 2*(7, 2) = (29, 29)
5*(3, 5) + 4*(7, 2) = (43, 33)

This can also be viewed as a matrix multiplication, as shown in Figure 12-17.

The goal of NMF is to automatically find the features matrix and the weights matrix.
To do this, it starts with random matrices for each and updates them according to
the update rules. The rules generate four new update matrices. In these descriptions,
the original matrix is referred to as the data matrix:

hn
The transposed weights matrix multiplied by the data matrix

hd
The transposed weights matrix multiplied by the weights matrix multiplied by
the features matrix

wn
The data matrix multiplied by the transposed features matrix

wd
The weights matrix multiplied by the features matrix multiplied by the
transposed features matrix

To update the features and weights matrices, all these matrices are converted to
arrays. Every value in the features matrix is multiplied by the corresponding value in
hn and divided by the corresponding value in hd. Likewise, every value in the weights
matrix is multiplied by the value in wn and divided by the value in wd.

Figure 12-17. Factorizing a dataset into weights and features

=

5 2

3 5
7 2

5 4
5 0
4 4
1 3
5 2
3 4
0 3

X

29 29
43 33
15 25
40 28
24 11
29 29
37 23
21 6

Weights Features Dataset

304 | Chapter 12: Algorithm Summary

This is repeated until the product of the features and weights matrix is close enough
to the data matrix. The features matrix can tell you the underlying causes that work
in combination to create your dataset, such as news themes or stock market events.

Using Your NMF Code
Using the NMF code simply requires you to call the factorize function with a list of
observations and the number of underlying features you want to find:

>>> from numpy import *
>>> import nmf
>>> data=matrix([[29., 29.],
... [43., 33.],
... [15., 25.],
... [40., 28.],
... [24., 11.],
... [29., 29.],
... [37., 23.],
... [21., 6.]])
>>> weights,features=nmf.factorize(data,pc=2)
>>> weights
matrix([[0.64897525, 0.75470755],
 [0.98192453, 0.80792914],
 [0.31602596, 0.70148596],
 [0.91871934, 0.66763194],
 [0.56262912, 0.22012957],
 [0.64897525, 0.75470755],
 [0.85551414, 0.52733475],
 [0.49942392, 0.07983238]])
>>> features
matrix([[41.62815416, 6.80725866],
 [2.62930778, 32.57189835]])

The weights and the features are returned. They may not be the same every time,
since there might be multiple valid feature sets for a small set of observations. The
larger the set of observations, the more likely it is that the results will be consistent,
although the features may be returned in a different order.

Optimization
Optimization, covered in Chapter 5, is a little different from the other methods;
instead of working with a dataset, it attempts to select values that minimize the
output of a cost function. Chapter 5 showed several examples of cost functions, such
as planning group travel using a combination of price and waiting time at the airport,
assigning students to the most appropriate dorm, and optimizing the layout of a
simple graph. Once the cost function was designed, the same algorithms could be
used to solve these three different problems. Two algorithms were covered:
simulated annealing and genetic algorithms.

Optimization | 305

The Cost Function
A cost function is any function that takes a guess at a solution and returns a value
that is higher for worse solutions and lower for better solutions. Optimization
algorithms use this function to test solutions and to search possible solutions for the
best one. The cost functions you use with optimization often have many variables to
consider, and it’s not always clear which is the best one to change in order to improve
the result. However, for illustration, consider a function with only one variable,
defined as:

y = 1/x * sin(x)

Figure 12-18 shows the graph of this function.

Because the function has only one variable, it’s easy to see from the graph where the
lowest point is. We’re using this for illustration so you can see how the optimization
works; in reality, you wouldn’t be able to simply graph complicated functions with
many variables in order to find the lowest point.

What is interesting about this function is that it has several local minima. These are
points that are lower than all the surrounding points but are not necessarily the
lowest point overall. This means the problem can’t necessarily be solved by trying a
random solution and moving down the slope, because it can lead to getting stuck in
a local minimum and never finding the global minimum.

Figure 12-18. Graph of 1/x * sin x

–0.4
0

–0.2

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20

306 | Chapter 12: Algorithm Summary

Simulated Annealing
Simulated annealing, which was inspired by alloy cooling in physics, starts with a
random guess at a solution. It tries to improve the solution by determining the cost
for a similar solution that’s a small distance away and in a random direction from the
solution in question. If the cost is lower, this becomes the new solution. If the cost is
higher, it becomes the new solution with a certain probability, depending on the cur-
rent temperature. The temperature starts high and decreases slowly so that early on
the algorithm is much more likely to accept worse solutions in order to avoid getting
stuck in a local minimum.

When the temperature has reached 0, the algorithm returns the current solution.

Genetic Algorithms
Genetic algorithms were inspired by evolutionary theory. A genetic algorithm starts
with several random solutions called the population. The strongest members of the
population—those with the lowest cost—are chosen and modified either through
slight changes (mutation) or through trait combination (crossover or breeding). This
creates a new population, known as the next generation, and over successive
generations the solutions improve.

The process stops when a certain threshold has been reached, when the population
has not improved over several generations, or when a maximum number of genera-
tions has been reached. The algorithm returns the best solution that has been found
in any generation.

Using Your Optimization Code
For both algorithms, you need to define a cost function and determine the domain of
the solution. The domain is the possible ranges for each variable. In this simple
example, you can use [(0,20)], meaning that there is one variable that can be
between 0 and 5. Either of the optimization methods can then be called with the cost
function and the domain as parameters:

>>> import math
>>> def costf(x): return (1.0/(x[0]+0.1))*math.sin(x[0])
>>> domain=[(0,20)]
>>> optimization.annealingoptimize(domain,costf)
[5]

For any problem, it may be necessary to run the optimization a few times to tweak
the parameters, and to get the right balance of running time and quality of the
solution. When building an optimizer for a related set of problems—such as travel
planning, in which the goal remains the same but the underlying details (flight times
and prices) change—you can experiment with the parameters once, decide on
settings that work well for that set of problems, and leave them fixed from then on.

Optimization | 307

There are many possibilities for combining machine learning, open APIs, and open
participation, and there will continue to be more in the future as algorithms are
refined, as APIs are opened up, and as a greater number of people become active
online participants. I hope that this book has given you the tools and the inspiration
to find many new opportunities!

309

Appendix A APPENDIX A

Third-Party Libraries1

This book has introduced a number of third-party libraries that we used to collect,
store, and analyze data. This appendix covers download and installation instructions,
along with some examples of usage.

Universal Feed Parser
The Universal Feed Parser is a Python library written by Mark Pilgrim for parsing
RSS and Atom feeds. This library is used throughout the book for easily download-
ing blog posts and articles from online news sources. The home page of the library is
http://feedparser.org.

Installation for All Platforms
The download page for the library is http://code.google.com/p/feedparser/downloads/
list. Download the latest version of the file named feedparser-X.Y.zip.

Extract the contents of the zip file into an empty directory. At a command prompt,
enter:

c:\download\feedparser>python setup.py install

This will locate your Python installation and install the library there. After it is
installed, you can enter import feedparser at your Python prompt to begin using it.

Example usage of the library is provided at http://feedparser.org/.

Python Imaging Library
The Python Imaging Library (PIL) is an open-source library that adds image creation
and processing capabilities to Python. It supports a wide variety of drawing opera-
tions and file formats. The home page for this library is http://www.pythonware.com/
products/pil.

http://feedparser.org
http://code.google.com/p/feedparser/downloads/list
http://code.google.com/p/feedparser/downloads/list
http://feedparser.org/
http://www.pythonware.com/products/pil
http://www.pythonware.com/products/pil

310 | Appendix A: Third-Party Libraries

Installation on Windows
PIL has a Windows installer available for download. On the library home page, scroll
to the Downloads section and download the latest Windows executable for your
version of Python. Run this file and follow the on-screen instructions.

Installation on Other Platforms
For platforms other than Windows, you’ll need to build the library from the sources.
The sources are available for download on the library’s home page and will work
with any recent version of Python.

To install, download the sources for the latest version and enter the following at the
command prompt, replacing 1.1.6 with the version you have downloaded:

$ gunzip Imaging-1.1.6.tar.gz
$ tar xvf Imaging-1.1.6.tar
$ cd Imaging-1.1.6
$ python setup.py install

This will compile the extensions and install the library in your Python directory.

Simple Usage Example
This example creates a small image, draws some lines, and writes a message. It then
saves the image as a JPEG file.

>>> from PIL import Image,ImageDraw
>>> img=Image.new('RGB',(200,200),(255,255,255)) # 200x200 white background
>>> draw=ImageDraw.Draw(img)
>>> draw.line((20,50,150,80),fill=(255,0,0)) # Red line
>>> draw.line((150,150,20,200),fill=(0,255,0)) # Green line
>>> draw.text((40,80),'Hello!',(0,0,0)) # Black text
>>> img.save('test.jpg','JPEG') # Save to test.jpg

A more extensive set of examples is available at http://www.pythonware.com/library/
pil/handbook/introduction.htm.

Beautiful Soup
Beautiful Soup is a Python parser for HTML and XML documents. It is designed to
work with poorly written web pages. It is used in this book to create datasets from
web sites that do not have APIs, and to find all the text on pages for indexing. The
home page for this library is http://www.crummy.com/software/BeautifulSoup.

http://www.pythonware.com/library/pil/handbook/introduction.htm
http://www.pythonware.com/library/pil/handbook/introduction.htm
http://www.crummy.com/software/BeautifulSoup

pysqlite | 311

Installation on All Platforms
Beautiful Soup is available as a single file source download. Near the bottom of the
home page, there is a link to download BeautifulSoup.py. Simply download this and
put it in either your working directory or your Python/Lib directory.

Simple Usage Example
This example parses the HTML of the Google home page, and shows how to extract
elements from the DOM and search for links.

>>> from BeautifulSoup import BeautifulSoup
>>> from urllib import urlopen
>>> soup=BeautifulSoup(urlopen('http://google.com'))
>>> soup.head.title
<title>Google</title>
>>> links=soup('a')
>>> len(links)
21
>>> links[0]
iGoogle
>>> links[0].contents[0]
u'iGoogle'

A more extensive set of examples is available at http://www.crummy.com/software/
BeautifulSoup/documentation.html.

pysqlite
pysqlite is a Python interface to the SQLite embedded database. Unlike traditional
databases, an embedded database does not run in a separate server process, so
there’s much less to install and set up. SQLite also stores the entire database in a
single file. This book uses pysqlite to illustrate how to persist some of the data being
collected.

The home page for pysqlite is http://www.initd.org/tracker/pysqlite/wiki/pysqlite.

Installation on Windows
The home page has links to download a binary installer for Windows. Simply down-
load this file and run it. It will ask you where your installation of Python is and will
install itself there.

Installation on Other Platforms
For platforms other than Windows, you’ll need to install pysqlite from the source.
The sources are available as a tarball on the pysqlite home page. Download the latest

http://www.crummy.com/software/BeautifulSoup/documentation.html
http://www.crummy.com/software/BeautifulSoup/documentation.html
http://www.initd.org/tracker/pysqlite/wiki/pysqlite

312 | Appendix A: Third-Party Libraries

version and enter the following at the command prompt, replacing 2.3.3 with the
version you have downloaded:

$ gunzip pysqlite-2.3.3.tar.gz
$ tar xvf pysqlite-2.3.3.tar.gz
$ cd pysqlite-2.3.3
$ python setup.py build
$ python setup.py install

Simple Usage Example
This example creates a new table, adds a row to it, and commits the change. The
table is then queried for the new row:

>>> from pysqlite2 import dbapi2 as sqlite
>>> con=sqlite.connect('test1.db')
>>> con.execute('create table people (name,phone,city)')
<pysqlite2.dbapi2.Cursor object at 0x00ABE770>
>>> con.execute('insert into people values ("toby","555-1212","Boston")')
<pysqlite2.dbapi2.Cursor object at 0x00AC8A10>
>>> con.commit()
>>> cur=con.execute('select * from people')
>>> cur.next()
(u'toby', u'555-1212', u'Boston')

Notice that field types are optional with SQLite. To make this work with a more
traditional database, you might have to add field types to your declarations when
creating tables.

NumPy
NumPy is a mathematical library for Python that provides an array object, linear
algebra functions, and Fourier transforms. It is a very popular way to do scientific
computing in Python and it’s gaining popularity, in some cases replacing more
purpose-built tools like MATLAB. NumPy is used in Chapter 10 to implement the
NMF algorithm. The home page for NumPy is http://numpy.scipy.org.

Installation on Windows
There is a Windows binary installer available for NumPy at http://sourceforge.net/
project/showfiles.php?group_id=1369&package_id=175103.

Download the .exe file that matches your version of Python and run it. It will ask you
for the directory where Python is installed and will install itself there.

http://numpy.scipy.org
http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=175103
http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=175103

matplotlib | 313

Installation on Other Platforms
On other platforms, NumPy can be installed from the sources, which can also be
downloaded at http://sourceforge.net/project/showfiles.php?group_id=1369&package_
id=175103.

Download the tar.gz file appropriate for your version of Python. To install from the
source, use the following, replacing 1.0.2 with the version you have downloaded:

$ gunzip numpy-1.0.2.tar.gz
$ tar xvf numpy-1.0.2.tar.gz
$ cd numpy-1.0.2
$ python setup.py install

Simple Usage Example
This example shows you how to create matrices, multiply them together, and then
transpose and flatten operations:

>>> from numpy import *
>>> a=matrix([[1,2,3],[4,5,6]])
>>> b=matrix([[1,2],[3,4],[5,6]])
>>> a*b
matrix([[22, 28],
 [49, 64]])
>>> a.transpose()
matrix([[1, 4],
 [2, 5],
 [3, 6]])
>>> a.flatten()
matrix([[1, 2, 3, 4, 5, 6]])

matplotlib
matplotlib is a 2D graphics library for Python that is much better for creating mathe-
matical graphs than the Python Imaging Library. The figures it produces are intended
to be of high enough quality to be used in publications.

Installation
Before installing matplotlib, you’ll need to install NumPy, as described in the previ-
ous section. matplotlib has binary builds for all major platforms, including
Windows, Mac OS X, RPM-based Linux distributions, and Debian-based
distributions. You can find detailed instructions for installing matplotlib on any of
the platforms at http://matplotlib.sourceforge.net/installing.html.

http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=175103
http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=175103
http://matplotlib.sourceforge.net/installing.html

314 | Appendix A: Third-Party Libraries

Simple Usage Example
This example will use orange circles to plot four points at (1,1), (2,4), (3,9), and
(4,16). It will then save the output to a file and display it in a window on the screen.

>>> from pylab import *
>>> plot([1,2,3,4], [1,4,9,16], 'ro')
[<matplotlib.lines.Line2D instance at 0x01878990>]
>>> savefig('test1.png')
>>> show()

A great collection of usage examples is available at http://matplotlib.sourceforge.net/
tutorial.html.

pydelicious
pydelicious is a library for retrieving data from the del.icio.us social bookmarking
site. del.icio.us has an official API that is used for some calls, but pydelicious adds
some extra features that we used in Chapter 2 to build the recommendation engine.
Pydelicious is now hosted at Google code; you can find it at http://code.google.com/p/
pydelicious/source.

Installation for All Platforms
Getting the latest version of pydelicious is easiest if you have the Subversion version
control software installed. If you do, you can just enter the following at a command
prompt:

svn checkout http://pydelicious.googlecode.com/svn/trunk/pydelicious.py

If you don’t have Subversion, the files can be downloaded at http://pydelicious.
googlecode.com/svn/trunk.

After you have the files, just run python setup.py install from the directory where
you downloaded them. This will install pydelicious in your Python directory.

Simple Usage Example
pydelicious has a number of calls to get popular bookmarks or bookmarks for a
specific user. It also allows you to add new bookmarks to your own account:

>> import pydelicious
>> pydelicious.get_popular(tag='programming')
[{'count': '', 'extended': '', 'hash': '',
 'description': u'How To Write Unmaintainable Code',
 'tags': '', 'href': u'http://thc.segfault.net/root/phun/unmaintain.html',
 'user': u'dorsia', 'dt': u'2006-08-19T09:48:56Z'},

http://matplotlib.sourceforge.net/tutorial.html
http://matplotlib.sourceforge.net/tutorial.html
http://code.google.com/p/pydelicious/source
http://code.google.com/p/pydelicious/source
http://pydelicious.googlecode.com/svn/trunk
http://pydelicious.googlecode.com/svn/trunk

pydelicious | 315

 {'count': '', 'extended': '', 'hash': '',
 'description': u'Threading in C#', 'tags': '',
 'href':u'http://www.albahari.com/threading/', etc...
>> pydelicious.get_userposts('dorsia')
[{'count': '', 'extended': '', 'hash': '',
 'description': u'How To Write Unmaintainable Code',
 'tags': '', 'href': u'http://thc.segfault.net/root/phun/unmaintain.html',
 'user': u'dorsia', 'dt': u'2006-08-19T09:48:56Z'}, etc...
>>> a = pydelicious.apiNew(user, passwd)
>>> a.posts_add(url="http://my.com/", desciption="my.com",
 extended="the url is my.moc", tags="my com")
True

316

Appendix BAPPENDIX B

Mathematical Formulas 2

Throughout the book I have introduced a number of mathematical concepts. This
appendix covers selected concepts and gives a description, relevant formulas, and
code for each of them.

Euclidean Distance
Euclidean distance finds the distance between two points in multidimensional space,
which is the kind of distance you measure with a ruler. If the points are written as
(p1, p2, p3, p4, …) and (q1, q2, q3, q4, …), then the formula for Euclidean distance
can be expressed as shown in Equation B-1.

A clear implementation of this formula is shown here:

def euclidean(p,q):
 sumSq=0.0

 # add up the squared differences
 for i in range(len(p)):
 sumSq+=(p[i]-q[i])**2

 # take the square root
 return (sumSq**0.5)

Euclidean distance is used in several places in this book to determine how similar
two items are.

Equation B-1. Euclidean distance

p1 q1–()2
p2 q2–()2 … pn qn–()2

+ + + pi qi–()2

i 1=

n

∑=

Pearson Correlation Coefficient | 317

Pearson Correlation Coefficient
The Pearson correlation coefficient is a measure of how highly correlated two vari-
ables are. It is a value between 1 and –1, where 1 indicates that the variables are per-
fectly correlated, 0 indicates no correlation, and –1 means they are perfectly inversely
correlated.

Equation B-2 shows the Pearson correlation coefficient.

This can be implemented with the following code:

def pearson(x,y):
 n=len(x)
 vals=range(n)

 # Simple sums
 sumx=sum([float(x[i]) for i in vals])
 sumy=sum([float(y[i]) for i in vals])

 # Sum up the squares
 sumxSq=sum([x[i]**2.0 for i in vals])
 sumySq=sum([y[i]**2.0 for i in vals])

 # Sum up the products
 pSum=sum([x[i]*y[i] for i in vals])

 # Calculate Pearson score
 num=pSum-(sumx*sumy/n)
 den=((sumxSq-pow(sumx,2)/n)*(sumySq-pow(sumy,2)/n))**.5
 if den==0: return 0

 r=num/den

 return r

We used the Pearson correlation in Chapter 2 to calculate the level of similarity
between people’s preferences.

Equation B-2. Pearson correlation coefficient

r
XY∑

X∑ Y∑
N

------------------------–

X
2∑

X∑()
2

N
--------------------–

Y
2∑

Y∑()
2

N
--------------------–

--=

318 | Appendix B: Mathematical Formulas

Weighted Mean
The weighted mean is a type of average that has a weight for every observation being
averaged. It is used in this book to make numerical predictions based on similarity
scores. The weighted mean has the formula shown in Equation B-3, where x1…xn are
the observations and w1…wn are the weights.

A simple implementation of this formula that takes a list of values and weights is
given here:

def weightedmean(x,w):
 num=sum([x[i]*w[i] for i in range(len(w))])
 den=sum([w[i] for i in range(len(w))])

 return num/den

In Chapter 2, weighted means are used to predict how much you’ll enjoy a movie.
This is done by calculating an average rating from other people, weighted by how
similar their tastes are to yours. In Chapter 8, weighted means are used to predict
prices.

Tanimoto Coefficient
The Tanimoto coefficient is a measure of the similarity of two sets. It is used in this
book to calculate how similar two items are based on lists of properties. If you have
two sets, A and B, where:

A = [shirt, shoes, pants, socks]
B = [shirt, skirt, shoes]

Then the intersection (overlapping) set, which I’ll call C, is [shirt, shoes]. The
Tanimoto coefficient is shown in Equation B-4, where Na is the number of items in A,
Nb is the number of items in B, and Nc is the number of items in C, the intersection.
In this case the Tanimoto coefficient is 2/(4+3–2) = 2/5 = 0.4.

Equation B-3. Weighted mean

Equation B-4. Tanimoto coefficient

x
w1x1 w2x2 … wnxn+ + +

w1 w2 … wn+ + +
---=

T
Nc

Na Nb Nc–+()
---=

Gini Impurity | 319

Here is a simple function that takes two lists and calculates the Tanimoto coefficient:

def tanimoto(a,b):
 c=[v for v in a if v in b]
 return float(len(c))/(len(a)+len(b)-len(c))

The Tanimoto coefficient is used in Chapter 3 to calculate similarities between
people for clustering.

Conditional Probability
Probability is a way of measuring how likely something is to occur. It is usually
written as Pr(A) = x, where A is an event. For example, we might say that there’s a 20
percent chance of rain today, which would be written as Pr(rain) = 0.2.

If we were to note that it’s already cloudy right now, then we might conclude there’s
a higher chance of rain later today. This is called conditional probability, which is the
chance of A given that we know B. This is written as Pr(A | B), so in this case, it’s
Pr(rain | cloudy).

The formula for conditional probability is the probability of both events happening
divided by the chance of the given condition, as shown in Equation B-5.

So if 10 percent of the time it’s cloudy in the morning and rains later, and 25 percent
of the time it’s cloudy in the morning, then Pr(rain | cloudy) = 0.1/0.25 = 0.4.

Since this is just a simple division, no function is given here. Conditional probability
is used in Chapter 6 for document filtering.

Gini Impurity
Gini impurity is a measure of how impure a set is. If you have a set of items, such as
[A, A, B, B, B, C], then Gini impurity tells you the probability that you would be
wrong if you picked one item and randomly guessed its label. If the set were all As,
you would always guess A and never be wrong, so the set would be totally pure.

Equation B-6 shows the formula for Gini impurity.

Equation B-5. Conditional probability

Equation B-6. Gini impurity

Pr A B() Pr A B∩()
Pr B()

---------------------------=

IG i() 1 f i j(,)
2

j 1=

m

∑– f i j(,) f i k(,)
j k≠
∑= =

320 | Appendix B: Mathematical Formulas

This function takes a list of items and calculates the Gini impurity:

def giniimpurity(l):
 total=len(l)
 counts={}
 for item in l:
 counts.setdefault(item,0)
 counts[item]+=1

 imp=0
 for j in l:
 f1=float(counts[j])/total
 for k in l:
 if j==k: continue
 f2=float(counts[k])/total
 imp+=f1*f2
 return imp

In Chapter 7, Gini impurity is used in decision tree modeling to determine if dividing
a set makes it more pure.

Entropy
Entropy is another way to see how mixed a set is. It comes from information theory,
and it measures the amount of disorder in a set. Loosely defined, entropy is how sur-
prising a randomly selected item from the set is. If the entire set were As, you would
never be surprised to see an A, so the entropy would be 0. The formula is shown in
Equation B-7.

This function takes a list of items and calculates the entropy:

def entropy(l):
 from math import log
 log2=lambda x:log(x)/log(2)

 total=len(l)
 counts={}
 for item in l:
 counts.setdefault(item,0)
 counts[item]+=1

 ent=0
 for i in counts:
 p=float(counts[i])/total
 ent-=p*log2(p)
 return ent

Equation B-7. Entropy

H X() p xi()log 2
1

p xi()

i 1=

n

∑ p xi() 2log p xi()
i 1=

n

∑–= =

Gaussian Function | 321

In Chapter 7, Entropy is used in decision tree modeling to determine if dividing a set
reduces the amount of disorder.

Variance
Variance measures how much a list of numbers varies from the mean (average) value.
It is frequently used in statistics to measure how large the differences are in a set of
numbers. It is calculated by averaging the squared difference of every number from
the mean, as shown by the formula in Equation B-8.

This is a simple function to implement:

def variance(vals):
 mean=float(sum(vals))/len(vals)
 s=sum([(v-mean)**2 for v in vals])
 return s/len(vals)

In Chapter 7, variance is used in regression tree modeling to determine how to best
divide a set to make the subsets more tightly distributed.

Gaussian Function
The Gaussian function is the probability density function of the normal curve. It is
used in this book as a weighting function for weighted k-nearest neighbors, since it
starts high and falls off quickly but never reaches 0.

The formula for a Gaussian with a variance of σ is shown in Equation B-9.

This can be implemented as a two-line function directly translating the formula:

import math
def gaussian(dist,sigma=10.0):
 exp=math.e**(-dist**2/(2*sigma**2))
 return (1/(sigma*(2*math.pi)**.5))*exp

In Chapter 8, the Gaussian function is given as a possible weighting function for
building a numerical predictor.

Equation B-8. Variance

Equation B-9. Gaussian function

σ2 1
N
---- xi x–()2

i 1=

N

∑=

1

σ 2π
--------------- x µ–()2

2σ2
---------------------–

exp

322 | Appendix B: Mathematical Formulas

Dot-Products
The dot-product is a method of multiplying two vectors. If you have two vectors, a =
(a1, a2, a3, …) and b = (b1, b2, b3, …), then the dot-product is defined as shown in
Equation B-10.

Dot-product is easily implemented with this function:

def dotproduct(a,b):
 return sum([a[i]*b[i] for i in range(len(a))])

If θ is the angle between the two vectors, then the dot-product can also be defined as
shown in Equation B-11.

This means that you can use the dot-product to calculate the angle between two
vectors:

from math import acos

Calculates the size of a vector
def veclength(a):
 return sum([a[i] for i in range(len(a))])**.5

Calculates the angle between two vectors
def angle(a,b):
 dp=dotproduct(a,b)
 la=veclength(a)
 lb=veclength(b)
 costheta=dp/(la*lb)
 return acos(costheta)

Dot-products are used in Chapter 9 to calculate vector angles from classifying items.

Equation B-10. Dot-product with components

Equation B-11. Dot-product with angle

a b• aibi
i 1=

n

∑ a1b1 a2b2 … anbn+ + += =

a b• a b θcos=

323

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
advancedclassify.py

dotproduct function, 203
dpclassify function, 205
getlocation function, 207, 208
getoffset function, 213
lineartrain function, 202
loadnumerical function, 209
matchcount function, 206
matchrow class

loadmatch function, 198
milesdistance function, 207, 208
nonlinearclassify function, 213
rbf function, 213
scaledata function, 210
scaleinput function, 210
yesno function, 206

agesonly.csv file, 198
Akismet, xvii, 138
akismettest.py, 138
algorithms, 4

CART (see CART)
collaborative filtering, 8
feature-extraction, 228
genetic (see genetic algorithms)
hierarchical clustering, 35
Item-based Collaborative Filtering

Recommendation Algorithms, 27
mass-and-spring, 111
matrix math, 237
other uses for learning, 5
PageRank (see PageRank algorithm)

stemming, 61
summary, 277–306

Bayesian classifier, 277–281
Amazon, 5, 53

recommendation engines, 7
annealing

defined, 95
simulated, 95–96

articlewords dictionary, 231
artificial intelligence (AI), 3
artificial neural network (see neural network,

artificial)
Atom feeds

counting words in, 31–33
parsing, 309

Audioscrobbler, 28

B
backpropagation, 80–82, 287
Bayes’ Theorem, 125
Bayesian classification, 231
Bayesian classifier, 140, 277–281

classifying, 279
combinations of features, 280
naïve, 279
strengths and weaknesses, 280
support-vector machines (SVMs), 225
training, 278

Beautiful Soup, 45, 310
crawler, 57
installation, 311
usage example, 311

324 | Index

bell curve, 174
best-fit line, 12
biotechnology, 5
black box method, 288
blogs

clustering based on word frequencies, 30
feeds

counting words, 31–33
filtering, 134–136
(see also Atom feeds; RSS feeds)

Boolean operations, 84
breeding, 97, 251, 263

C
CART (Classification and Regression

Trees), 145–146
categorical features

determining distances using Yahoo!
Maps, 207

lists of interests, 206
yes/no questions, 206

centroids, 298
chi-squared distribution, 130
classifiers

basic linear, 202–205
Bayesian (see Bayesian classifier)
decision tree, 199–201
decision tree (see decision tree classifier)
naïve Bayesian (see naïve Bayesian

classifier)
neural network, 141
persisting trained, 132–133

SQLite, 132–133
supervised, 226
training, 119–121

classifying
Bayesian classifier, 279
documents, 118–119

training classifiers, 119–121
click-training network, 74
closing price, 243
clustering, 29, 226, 232

column, 40–42
common uses, 29
hierarchical (see hierarchical clustering)
K-means, 248
K-means clustering (see K-means

clustering)
word vectors (see word vectors)

clusters of preferences, 44–47
Beautiful Soup, 45
clustering results, 47
defining distance metric, 47
getting and preparing data, 45
scraping Zebo results, 45
Zebo, 44

clusters.py, 38
bicluster class, 35
draw2d function, 51
drawdendrogram function, 39
drawnode function, 39
getheight function, 38
hcluster function, 36
printclust function, 37
readfile function, 34
rotatematrix function, 40
scaledown function, 50

cocktail party problem, 226
collaborative filtering, 7

algorithm, 8
term first used, 8

collective intelligence
defined, 2
introduction, 1–6

column clustering, 40–42
conditional probability, 122, 319

Bayes’ Theorem, 125
content-based ranking, 64–69

document location, 65
normalization, 66
word distance, 65, 68
word frequency, 64, 66

converting longitudes and latitudes of two
points into distance in miles, 208

cost function, 89–91, 109, 304
global minimum, 305
local minima, 305

crawler, 56–58
Beautiful Soup API, 57
code, 57–58
urllib2, 56

crawling, 54
crossover, 97, 251, 263
cross-validation, 176–178, 294

leave-one-out, 196
squaring numbers, 177
test sets, 176
training sets, 176

cross-validation function, 219
cumulative probability, 185

Index | 325

D
data clustering (see clustering)
data matrix, 238
data, viewing in two dimensions, 49–52
dating sites, 5
decision boundary, 201
decision tree classifier, 199, 281–284

interactions of variables, and, 284
strengths and weaknesses, 284
training, 281

decision tree modeling, 321
decision trees, 142–166

best split, 147–148
CART algorithm, 145–146
classifying new observations, 153–154
disadvantages of, 165
displaying, 151–153

graphical, 152–153
early stopping, 165
entropy, 148
exercises, 165
Gini impurity, 147
introducing, 144–145
missing data, 156–158, 166
missing data ranges, 165
modeling home prices, 158–161

Zillow API, 159–161
modeling hotness, 161–164
multiway splits, 166
numerical outcomes, 158
predicting signups, 142–144
pruning, 154–156
real world, 155
recursive tree binding, 149–151
result probabilities, 165
training, 145–146
when to use, 164–165

del.icio.us, xvii, 314
building link recommender, 19–22

building dataset, 20
del.icio.us API, 20
recommending neighbors and

links, 22
deliciousrec.py

fillItems function, 21
initializeUserDict function, 20

dendrogram, 34
drawing, 38–40

drawnode function, 39
determining distances using Yahoo!

Maps, 207

distance metric
defining, 47

distance metrics, 29
distributions, uneven, 183–188
diversity, 268
docclass.py

classifer class
catcount method, 133
categories method, 133
fcount method, 132
incc method, 133
incf method, 132
setdb method, 132
totalcount method, 133

classifier class, 119, 136
classify method, 127
fisherclassifier method, 128
fprob method, 121
train method, 121
weightedprob method, 123

fisherclassifier class
classify method, 131
fisherprob method, 129
setminimum method, 131

getwords function, 118
naivebayes class, 124

prob method, 125
sampletrain function, 121

document filtering, 117–141
Akismet, 138
arbitrary phrase length, 140
blog feeds, 134–136
calculating probabilities, 121–123

assumed probability, 122
conditional probability, 122

classifying documents, 118–119
training classifiers, 119–121

exercises, 140
Fisher method, 127–131

classifying items, 130
combining probabilities, 129
versus naïve Bayesian filter, 127

improving feature detection, 136–138
naïve Bayesian classifier, 123–127

choosing category, 126
naïve Bayesian filter

versus Fisher method, 127
neural network classifier, 141
persisting trained classifiers, 132–133

SQLite, 132–133
Pr(Document), 140
spam, 117

326 | Index

document filtering (continued)
varying assumed probabilities, 140
virtual features, 141

document location, 65
content-based ranking

document location, 67
dorm.py, 106

dormcost function, 109
printsolution function, 108

dot-product, 322
code, 322

dot-products, 203, 290
downloadzebodata.py, 45, 46

E
eBay, xvii
eBay API, 189–195, 196

developer key, 189
getting details for item, 193
performing search, 191
price predictor, building, 194
Quick Start Guide, 189
setting up connection, 190

ebaypredict.py
doSearch function, 191
getCategory function, 192
getHeaders function, 190
getItem function, 193
getSingleValue function, 190
makeLaptopDataset function, 194
sendrequest function, 190, 191

elitism, 266
entropy, 148, 320

code, 320
Euclidean distance, 203, 316

code, 316
k-nearest neighbors (kNN), 293
score, 10–11

exact matches, 84

F
Facebook, 110

building match dataset, 223
creating session, 220
developer key, 219
downloading friend data, 222
matching on, 219–224
other Facebook predictions, 225

facebook.py
arefriends function, 223
createtoken function, 221
fbsession class, 220

getfriends function, 222
getinfo method, 222
getlogin function, 221
getsession function, 221
makedataset function, 223
makehash function, 221
sendrequest method, 220

factorize function, 238
feature extraction, 226–248

news, 227–230
feature-extraction algorithm, 228
features, 277
features matrix, 234
feedfilter.py, 134

entryfeatures method, 137
feedforward algorithm, 78–80
feedparser, 229
filtering

documents (see document filtering)
rule-based, 118
spam

threshold, 126
tips, 126

financial fraud detection, 6
financial markets, 2
Fisher method, 127–131

classifying items, 130
combining probabilities, 129
versus naïve Bayesian filter, 127

fitness function, 251
flight data, 116
flight searches, 101–106
full-text search engines (see search engines)
futures markets, 2

G
Gaussian function, 174, 321

code, 321
Gaussian-weighted sum, 188
generatefeedvector.py, 31, 32

getwords function, 31
generation, 97
genetic algorithms, 97–100, 306

crossover or breeding, 97
generation, 97

Index | 327

mutation, 97
population, 97
versus genetic programming, 251

genetic optimization stopping criteria, 116
genetic programming, 99, 250–276

breeding, 251
building environment, 265–268
creating initial population, 257
crossover, 251
data types, 274

dictionaries, 274
lists, 274
objects, 274
strings, 274

diversity, 268
elitism, 266
exercises, 276
fitness function, 251
function types, 276
further possibilities, 273–275
hidden functions, 276
measuring success, 260
memory, 274
mutating programs, 260–263
mutation, 251
nodes with datatypes, 276
numerical functions, 273
overview, 250
parse tree, 253
playing against real people, 272
programs as trees, 253–257
Python and, 253–257
random crossover, 276
replacement mutation, 276
RoboCup, 252
round-robin tournament, 270
simple games, 268–273

Grid War, 268
playing against real people, 272
round-robin tournament, 270

stopping evolution, 276
successes, 252
testing solution, 259
tic-tac-toe simulator, 276
versus genetic algorithms, 251

Geocoding, 207
API, 207

Gini impurity, 147, 319
code, 320

global minimum, 94, 305
Goldberg, David, 8

Google, 1, 3, 5
PageRank algorithm (see PageRank

algorithm)
Google Blog Search, 134
gp.py, 254–258

buildhiddenset function, 259
constnode class, 254, 255
crossover function, 263
evolve function, 265, 268
fwrapper class, 254, 255
getrankfunction function, 267
gridgame function, 269
hiddenfunction function, 259
humanplayer function, 272
mutate function, 261
node class, 254, 255

display method, 256
exampletree function, 255
makerandomtree function, 257

paramnode class, 254, 255
rankfunction function

breedingrate, 266
mutationrate, 266
popsize, 266
probexp, 266
probnew, 266

scorefunction function, 260
tournament function, 271

grade inflation, 12
Grid War, 268

player, 276
group travel cost function, 116
group travel planning, 87–88

car rental period, 89
cost function (see cost function)
departure time, 89
price, 89
time, 89
waiting time, 89

GroupLens, 25
web site, 27

groups, discovering, 29–53
blog clustering, 53
clusters of preferences (see clusters of

preferences)
column clustering (see column clustering)
data clustering (see data clustering)
exercises, 53
hierarchical clustering (see hierarchical

clustering)

328 | Index

groups, discovering (continued)
K-means clustering (see K-means

clustering)
Manhattan distance, 53
multidimensional scaling (see

multidimensional scaling)
supervised versus unsupervised

learning, 30

H
heterogeneous variables, 178–181

scaling dimensions, 180
hierarchical clustering, 33–38, 297

algorithm for, 35
closeness, 35
dendrogram, 34
individual clusters, 35
output listing, 37
Pearson correlation, 35
running, 37

hill climbing, 92–94
random-restart, 94

Holland, John, 100
Hollywood Stock Exchange, 5
home prices, modeling, 158–161

Zillow API, 159–161
Hot or Not, xvii, 161–164
hotornot.py

getpeopledata function, 162
getrandomratings function, 162

HTML documents, parser, 310
hyperbolic tangent (tanh) function, 78

I
inbound link searching, 85
inbound links, 69–73

PageRank algorithm, 70–73
simple count, 69
using link text, 73

independent component analysis, 6
independent features, 226–249

alternative display methods, 249
exercises, 248
K-means clustering, 248
news sources, 248
optimizing for factorization, 249
stopping criteria, 249

indexing, 54
adding to index, 61
building index, 58–62

finding words on page, 60
setting up schema, 59
tables, 59

intelligence, evolving, 250–276
inverse chi-square function, 130
inverse function, 172
IP addresses, 141
item-based bookmark filtering, 28
Item-based Collaborative Filtering

Recommendation Algorithms, 27
item-based filtering, 22–25

getting recommendations, 24–25
item comparison dataset, 23–24
versus user-based filtering, 27

J
Jaccard coefficient, 14

K
Kayak, xvii, 116

API, 101, 106
data, 102
firstChild, 102
getElementsByTagName, 102

kayak.py, 102
createschedule function, 105
flightsearch function, 103
flightsearchresults function, 104
getkayaksession() function, 103

kernel
best kernel parameters, 225

kernel methods, 197–225
understanding, 211

kernel trick, 212–214, 290
radial-basis function, 213

kernels
other LIBSVM, 225

K-means clustering, 42–44, 248, 297–300
function for doing, 42

k-nearest neighbors (kNN), 169–172,
293–296

cross-validating, 294
defining similarity, 171
Euclidean distance, 293
number of neighbors, 169
scaling and superfluous variables, 294
strengths and weaknesses, 296
weighted average, 293
when to use, 195

Index | 329

L
Last.fm, 5
learning from clicks (see neural network,

artificial)
LIBSVM

applications, 216
matchmaker dataset and, 218
other LIBSVM kernels, 225
sample session, 217

LIBSVM library, 291
line angle penalization, 116
linear classification, 202–205

dot-products, 203
vectors, 203

LinkedIn, 110
lists of interests, 206
local minima, 94, 305
longitudes and latitudes of two points into

distance in miles, converting, 208

M
machine learning, 3

limits, 4
machine vision, 6
machine-learning algorithms (see algorithms)
Manhattan distance, 14, 53
marketing, 6
mass-and-spring algorithm, 111
matchmaker dataset, 197–219

categorical features, 205–209
creating new, 209
decision tree algorithm, 199–201
difficulties with data, 199
LIBSVM, applying to, 218
scaling data, 209–210

matchmaker.csv file, 198
mathematical formulas, 316–322

conditional probability, 319
dot-product, 322
entropy, 320
Euclidean distance, 316
Gaussian function, 321
Gini impurity, 319
Pearson correlation coefficient, 317
Tanimoto coefficient, 318
variance, 321
weighted mean, 318

matplotlib, 185, 313
installation, 313
usage example, 314

matrix math, 232–243
algorithm, 237
data matrix, 238
displaying results, 240, 246
factorize function, 238
factorizing, 234
multiplication, 232
multiplicative update rules, 238
NumPy, 236
preparing matrix, 245
transposing, 234

matrix, converting to, 230
maximum-margin hyperplane, 215
message boards, 117
minidom, 102
minidom API, 159
models, 3
MovieLens, using dataset, 25–27
multidimensional scaling, 49–52, 53,

300–302
code, 301
function, 50
Pearson correlation, 49

multilayer perceptron (MLP) network, 74,
285

multiplicative update rules, 238
mutation, 97, 251, 260–263

N
naïve Bayesian classifier, 123–127, 279

choosing category, 126
strengths and weaknesses, 280
versus Fisher method, 127

national security, 6
nested dictionary, 8
Netflix, 1, 5
network visualization

counting crossed lines, 112
drawing networks, 113
layout problem, 110–112

network vizualization, 110–115
neural network, 55

artificial, 74–84
backpropagation, 80–82
connecting to search engine, 83
designing click-training network, 74
feeding forward, 78–80
setting up database, 75–77
training test, 83

neural network classifier, 141

330 | Index

neural networks, 285–288
backpropagation, and, 287
black box method, 288
combinations of words, and, 285
multilayer perceptron network, 285
strengths and weaknesses, 288
synapses, and, 285
training, 287
using code, 287

news sources, 227–230
newsfeatures.py, 227

getarticlewords function, 229
makematrix function, 230
separatewords function, 229
shape function, 237
showarticles function, 241, 242
showfeatures function, 240, 242
stripHTML function, 228
transpose function, 236

nn.py
searchnet class, 76

generatehiddennode function, 77
getstrength method, 76
setstrength method, 76

nnmf.py
difcost function, 237

non-negative matrix factorization
(NMF), 232–239, 302–304

factorization, 30
goal of, 303
update rules, 303
using code, 304

normalization, 66
numerical predictions, 167
numpredict.py

createcostfunction function, 182
createhiddendataset function, 183
crossvalidate function, 177, 182
cumulativegraph function, 185
distance function, 171
dividedata function, 176
euclidian function, 171
gaussian function, 175
getdistances function, 171
inverseweight function, 173
knnestimate function, 171
probabilitygraph function, 187
probguess function, 184, 185
rescale function, 180
subtractweight function, 173
testalgorithm function, 177

weightedknn function, 175
wineprice function, 168
wineset1 function, 168
wineset2 function, 178

NumPy, 236, 312
installation on other platforms, 313
installation on Windows, 312
usage example, 313
using, 236

O
online technique, 296
Open Web APIs, xvi
optimization, 86–116, 181, 196, 304–306

annealing starting points, 116
cost function, 89–91, 304
exercises, 116
flight searches (see flight searches)
genetic algorithms, 97–100

crossover or breeding, 97
generation, 97
mutation, 97
population, 97

genetic optimization stopping
criteria, 116

group travel cost function, 116
group travel planning, 87–88

car rental period, 89
cost function (see cost function)
departure time, 89
price, 89
time, 89
waiting time, 89

hill climbing, 92–94
line angle penalization, 116
network visualization

counting crossed lines, 112
drawing networks, 113
layout problem, 110–112

network vizualization, 110–115
pairing students, 116
preferences, 106–110

cost function, 109
running, 109
student dorm, 106–108

random searching, 91–92
representing solutions, 88–89
round-trip pricing, 116
simulated annealing, 95–96
where it may not work, 100

Index | 331

optimization.py, 87, 182
annealingoptimize function, 95
geneticoptimize function, 98

elite, 99
maxiter, 99
mutprob, 99
popsize, 99

getminutes function, 88
hillclimb function, 93
printschedule function, 88
randomoptimize function, 91
schedulecost function, 90

P
PageRank algorithm, 5, 70–73
pairing students, 116
Pandora, 5
parse tree, 253
Pearson correlation

hierarchical clustering, 35
multidimensional scaling, 49

Pearson correlation coefficient, 11–14, 317
code, 317

Pilgrim, Mark, 309
polynomial transformation, 290
poplib, 140
population, 97, 250, 306

diversity and, 257
Porter Stemmer, 61
Pr(Document), 140
prediction markets, 5
price models, 167–196

building sample dataset, 167–169
eliminating variables, 196
exercises, 196
item types, 196
k-nearest neighbors (kNN), 169
laptop dataset, 196
leave-one-out cross-validation, 196
optimizing number of neighbors, 196
search attributes, 196
varying ss for graphing probability, 196

probabilities, 319
assumed probability, 122
Bayes’ Theorem, 125
combining, 129
conditional probability, 122
graphing, 186

naïve Bayesian classifier (see naïve
Bayesian classifier)

of entire document given
classification, 124

product marketing, 6
public message boards, 117
pydelicious, 314

installation, 314
usage example, 314

pysqlite, 58, 311
importing, 132
installation on other platforms, 311
installation on Windows, 311
usage example, 312

Python
advantages of, xiv
tips, xv

Python Imaging Library (PIL), 38, 309
installation on other platforms, 310
usage example, 310
Windows installation, 310

Python, genetic programming and, 253–257
building and evaluating trees, 255–256
displaying program, 256
representing trees, 254–255
traversing complete tree, 253

Q
query layer, 74
querying, 63–64

query function, 63

R
radial-basis function, 212
random searching, 91–92
random-restart hill climbing, 94
ranking

content-based (see content-based ranking)
queries, 55

recommendation engines, 7–28
building del.icio.us link

recommender, 19–22
building dataset, 20
del.icio.us API, 20
recommending neighbors and

links, 22
collaborative filtering, 7
collecting preferences, 8–9

nested dictionary, 8

332 | Index

recommendation engines (continued)
exercises, 28
finding similar users, 9–15

Euclidean distance score, 10–11
Pearson correlation coefficient, 11–14
ranking critics, 14
which metric to use, 14

item-based filtering, 22–25
getting recommendations, 24–25
item comparison dataset, 23–24

item-based filtering versus user-based
filtering, 27

matching products, 17–18
recommending items, 15–17

weighted scores, 15
using MovieLens dataset, 25–27

recommendations based on purchase
history, 5

recommendations.py, 8
calculateSimilarItems function, 23
getRecommendations function, 16
getRecommendedItems function, 25
loadMovieLens function, 26
sim_distance function, 11
sim_pearson function, 13
topMatches function, 14
transformPrefs function, 18

recursive tree binding, 149–151
returning ranked list of documents from

query, 55
RoboCup, 252
round-robin tournament, 270
round-trip pricing, 116
RSS feeds

counting words in, 31–33
filtering, 134–136
parsing, 309

rule-based filters, 118

S
scaling and superfluous variables, 294
scaling data, 209–210
scaling dimensions, 180
scaling, optimizing, 181–182
scoring metrics, 69–73

PageRank algorithm, 70–73
simple count, 69
using link text, 73

search engines
Boolean operations, 84
content-based ranking (see content-based

ranking)
crawler (see crawler)
document search, long/short, 84
exact matches, 84
exercises, 84
inbound link searching, 85
indexing (see indexing)
overview, 54
querying (see querying)
scoring metrics (see scoring metrics)
vertical, 101
word frequency

bias, 84
word separation, 84

searchengine.py
addtoindex function, 61
crawler class, 55, 57, 59
createindextables function, 59
distancescore function, 68
frequencyscore function, 66
getentryid function, 61
getmatchrows function, 63
gettextonly function, 60
import statements, 57
importing neural network, 83
inboundlinkscore function, 69
isindexed function, 58, 62
linktextscore function, 73
normalization function, 66
searcher class, 65

nnscore function, 84
query method, 83

searchnet class
backPropagate function, 81
trainquery method, 82
updatedatabase method, 82

separatewords function, 60
searchindex.db, 60, 62
searching, random, 91–92
self-organizing maps, 30
sigmoid function, 78
signups, predicting, 142–144
simulated annealing, 95–96, 305
socialnetwork.py, 111

crosscount function, 112
drawnetwork function, 113

Index | 333

spam filtering, 117
method, 4
threshold, 126
tips, 126

SpamBayes plug-in, 127
spidering, 56 (see crawler)
SQLite, 58

embedded database interface, 311
persisting trained classifiers, 132–133
tables, 59

squaring numbers, 177
stemming algorithm, 61
stochastic optimization, 86
stock market analysis, 6
stock market data, 243–248

closing price, 243
displaying results, 246
Google’s trading volume, 248
preparing matrix, 245
running NMF, 246
trading volume, 243
Yahoo! Finance, 244

stockfeatures.txt file, 247
stockvolume.py, 245, 246

factorize function, 246
student dorm preference, 106–108
subtraction function, 173
supervised classifiers, 226
supervised learning methods, 29, 277–296
supply chain optimization, 6
support vectors, 216
support-vector machines (SVMs), 197–225,

289–292
Bayesian classifier, 225
building model, 224
dot-products, 290
exercises, 225
hierarchy of interests, 225
kernel trick, 290
LIBSVM, 291
optimizing dividing line, 225
other LIBSVM kernels, 225
polynomial transformation, 290
strengths and weaknesses, 292

synapses, 285

T
tagging similarity, 28
Tanimoto coefficient, 47, 318

code, 319

Tanimoto similarity score, 28
temperature, 306
test sets, 176
third-party libraries, 309–315

Beautiful Soup, 310
matplotlib, 313

installation, 313
usage example, 314

NumPy, 312
installation on other platforms, 313
installation on Windows, 312
usage example, 313

pydelicious, 314
installation, 314
usage example, 314

pysqlite, 311
installation on other platforms, 311
installation on Windows, 311
usage example, 312

Python Imaging Library (PIL), 309
installation on other platforms, 310
usage example, 310
Windows installation, 310

Universal Feed Parser, 309
trading behavior, 5
trading volume, 243
training

Bayesian classifier, 278
decision tree classifier, 281
neural networks, 287
sets, 176

transposing, 234
tree binding, recursive, 149–151
treepredict.py, 144

buildtree function, 149
classify function, 153
decisionnode class, 144
divideset function, 145
drawnode function, 153
drawtree function, 152
entropy function, 148
mdclassify function, 157
printtree function, 151
prune function, 155
split_function, 146
uniquecounts function, 147
variance function, 158

trees (see decision trees)

334 | Index

U
uneven distributions, 183–188

graphing probabilities, 185
probability density, estimating, 184

Universal Feed Parser, 31, 134, 309
unsupervised learning, 30
unsupervised learning techniques, 296–302
unsupervised techniques, 226
update rules, 303
urllib2, 56, 102
Usenet, 117
user-based collaborative filtering, 23
user-based efficiency, 28
user-based filtering

versus item-based filtering, 27

V
variance, 321

code, 321
varying assumed probabilities, 140
vector angles, calculating, 322
vectors, 203
vertical search engine, 101
virtual features, 141

W
weighted average, 175, 293
weighted mean, 318

code, 318
weighted neighbors, 172–176

bell curve, 174
Gaussian function, 174
inverse function, 172
subtraction function, 173
weighted kNN, 175

weighted scores, 15
weights matrix, 235
Wikipedia, 2, 56
word distance, 65, 68
word frequency, 64, 66

bias, 84
word separation, 84
word usage patterns, 226
word vectors, 30–33

clustering blogs based on word
frequencies, 30

counting words in feed, 31–33
wordlocation table, 63, 64
words commonly used together, 40

X
XML documents, parser, 310
xml.dom, 102

Y
Yahoo! application key, 207
Yahoo! Finance, 53, 244
Yahoo! Groups, 117
Yahoo! Maps, 207
yes/no questions, 206

Z
Zebo, 44

scraping results, 45
web site, 45

Zillow API, 159–161
zillow.py

getaddressdata function, 159
getpricelist function, 160

About the Author
Toby Segaran is a director of software development at Genstruct, a computational
biology company, where he designs algorithms and applies data-mining techniques
to help understand drug mechanisms. He also works with other companies and
open source projects to help them analyze and find value in their collected datasets.
In addition, he has built several free web applications including the popular tasktoy
and Lazybase. He enjoys snowboarding and wine tasting. His blog is located at
blog.kiwitobes.com. He lives in San Francisco.

Colophon
The animals on the cover of Programming Collective Intelligence are King penguins
(Aptenodytes patagonicus). Although named for the Patagonia region, King Penguins
no longer breed in South America; the last colony there was wiped out by 19th-
century sealers. Today, these penguins are found on sub-Antarctic islands such as
Prince Edward, Crozet, Macquarie, and Falkland Islands. They live on beaches and
flat glacial lands near the sea. King penguins are extremely social birds; they breed in
colonies of as many as 10,000 and raise their young in crèches.

Standing 30 inches tall and weighing up to 30 pounds, the King is one of the largest
types of penguin—second only to its close relative the Emperor penguin. Apart from
size, the major identifying feature of the King penguin is the bright orange patches on
its head that extend down to its silvery breast plumage. These penguins have a sleek
body frame and can run on land, instead of hopping like Emperor penguins. They are
well adapted to the sea, eating a diet of fish and squid, and can dive down 700 feet,
far deeper than most other penguins go. Because males and females are similar in size
and appearance, they are distinguished by behavioral clues such as mating rituals.

King penguins do not build nests; instead, they tuck their single egg under their
bellies and rest it on their feet. No other bird has a longer breeding cycle than these
penguins, who breed twice every three years and fledge a single chick. The chicks are
round, brown, and so fluffy that early explorers thought they were an entirely
different species of penguin, calling them “woolly penguins.” With a world popula-
tion of two million breeding pairs, King penguins are not a threatened species, and
the World Conservation Union has assigned them to the Least Concern category.

The cover image is from J. G. Wood’s Animate Creation. The cover font is Adobe
ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

	Table of Contents
	Preface
	Prerequisites
	Style of Examples
	Why Python?
	Python Tips
	List and dictionary constructors
	Significant Whitespace
	List comprehensions

	Open APIs
	Overview of the Chapters
	Conventions
	Using Code Examples
	How to Contact Us
	Safari® Books Online
	Acknowledgments

	Introduction to Collective Intelligence
	What Is Collective Intelligence?
	What Is Machine Learning?
	Limits of Machine Learning
	Real-Life Examples
	Other Uses for Learning Algorithms

	Making Recommendations
	Collaborative Filtering
	Collecting Preferences
	Finding Similar Users
	Euclidean Distance Score
	Pearson Correlation Score
	Which Similarity Metric Should You Use?
	Ranking the Critics

	Recommending Items
	Matching Products
	Building a del.icio.us Link Recommender
	The del.icio.us API
	Building the Dataset
	Recommending Neighbors and Links

	Item-Based Filtering
	Building the Item Comparison Dataset
	Getting Recommendations

	Using the MovieLens Dataset
	User-Based or Item-Based Filtering?
	Exercises

	Discovering Groups
	Supervised versus Unsupervised Learning
	Word Vectors
	Pigeonholing the Bloggers
	Counting the Words in a Feed

	Hierarchical Clustering
	Drawing the Dendrogram
	Column Clustering
	K-Means Clustering
	Clusters of Preferences
	Getting and Preparing the Data
	Beautiful Soup
	Scraping the Zebo Results
	Defining a Distance Metric
	Clustering Results

	Viewing Data in Two Dimensions
	Other Things to Cluster
	Exercises

	Searching and Ranking
	What’s in a Search Engine?
	A Simple Crawler
	Using urllib2
	Crawler Code

	Building the Index
	Setting Up the Schema
	Finding the Words on a Page
	Adding to the Index

	Querying
	Content-Based Ranking
	Normalization Function
	Word Frequency
	Document Location
	Word Distance

	Using Inbound Links
	Simple Count
	The PageRank Algorithm
	Using the Link Text

	Learning from Clicks
	Design of a Click-Tracking Network
	Setting Up the Database
	Feeding Forward
	Training with Backpropagation
	Training Test
	Connecting to the Search Engine

	Exercises

	Optimization
	Group Travel
	Representing Solutions
	The Cost Function
	Random Searching
	Hill Climbing
	Simulated Annealing
	Genetic Algorithms
	Real Flight Searches
	The Kayak API
	The minidom Package
	Flight Searches

	Optimizing for Preferences
	Student Dorm Optimization
	The Cost Function
	Running the Optimization

	Network Visualization
	The Layout Problem
	Counting Crossed Lines
	Drawing the Network

	Other Possibilities
	Exercises

	Document Filtering
	Filtering Spam
	Documents and Words
	Training the Classifier
	Calculating Probabilities
	Starting with a Reasonable Guess

	A Naïve Classifier
	Probability of a Whole Document
	A Quick Introduction to Bayes’ Theorem
	Choosing a Category

	The Fisher Method
	Category Probabilities for Features
	Combining the Probabilities
	Classifying Items

	Persisting the Trained Classifiers
	Using SQLite

	Filtering Blog Feeds
	Improving Feature Detection
	Using Akismet
	Alternative Methods
	Exercises

	Modeling with Decision Trees
	Predicting Signups
	Introducing Decision Trees
	Training the Tree
	Choosing the Best Split
	Gini Impurity
	Entropy

	Recursive Tree Building
	Displaying the Tree
	Graphical Display

	Classifying New Observations
	Pruning the Tree
	Dealing with Missing Data
	Dealing with Numerical Outcomes
	Modeling Home Prices
	The Zillow API

	Modeling “Hotness”
	When to Use Decision Trees
	Exercises

	Building Price Models
	Building a Sample Dataset
	k-Nearest Neighbors
	Number of Neighbors
	Defining Similarity
	Code for k-Nearest Neighbors

	Weighted Neighbors
	Inverse Function
	Subtraction Function
	Gaussian Function
	Weighted kNN

	Cross-Validation
	Heterogeneous Variables
	Adding to the Dataset
	Scaling Dimensions

	Optimizing the Scale
	Uneven Distributions
	Estimating the Probability Density
	Graphing the Probabilities

	Using Real Data—the eBay API
	Getting a Developer Key
	Setting Up a Connection
	Performing a Search
	Getting Details for an Item
	Building a Price Predictor

	When to Use k-Nearest Neighbors
	Exercises

	Advanced Classification: Kernel Methods and SVMs
	Matchmaker Dataset
	Difficulties with the Data
	Decision Tree Classifier

	Basic Linear Classification
	Categorical Features
	Yes/No Questions
	Lists of Interests
	Determining Distances Using Yahoo! Maps
	Getting a Yahoo! Application Key
	Using the Geocoding API
	Calculating the Distance

	Creating the New Dataset

	Scaling the Data
	Understanding Kernel Methods
	The Kernel Trick

	Support-Vector Machines
	Using LIBSVM
	Getting LIBSVM
	A Sample Session
	Applying SVM to the Matchmaker Dataset

	Matching on Facebook
	Getting a Developer Key
	Creating a Session
	Download Friend Data
	Building a Match Dataset
	Creating an SVM Model

	Exercises

	Finding Independent Features
	A Corpus of News
	Selecting Sources
	Downloading Sources
	Converting to a Matrix

	Previous Approaches
	Bayesian Classification
	Clustering

	Non-Negative Matrix Factorization
	A Quick Introduction to Matrix Math
	What Does This Have to Do with the Articles Matrix?
	Using NumPy
	The Algorithm

	Displaying the Results
	Displaying by Article

	Using Stock Market Data
	What Is Trading Volume?
	Downloading Data from Yahoo! Finance
	Preparing a Matrix
	Running NMF
	Displaying the Results

	Exercises

	Evolving Intelligence
	What Is Genetic Programming?
	Genetic Programming Versus Genetic Algorithms

	Programs As Trees
	Representing Trees in Python
	Building and Evaluating Trees
	Displaying the Program

	Creating the Initial Population
	Testing a Solution
	A Simple Mathematical Test
	Measuring Success

	Mutating Programs
	Crossover
	Building the Environment
	The Importance of Diversity

	A Simple Game
	A Round-Robin Tournament
	Playing Against Real People

	Further Possibilities
	More Numerical Functions
	Memory
	Different Datatypes

	Exercises

	Algorithm Summary
	Bayesian Classifier
	Training
	Classifying
	Using Your Code
	Strengths and Weaknesses

	Decision Tree Classifier
	Training
	Using Your Decision Tree Classifier
	Strengths and Weaknesses

	Neural Networks
	Training a Neural Network
	Using Your Neural Network Code
	Strengths and Weaknesses

	Support-Vector Machines
	The Kernel Trick
	Using LIBSVM
	Strengths and Weaknesses

	k-Nearest Neighbors
	Scaling and Superfluous Variables
	Using Your kNN Code
	Strengths and Weaknesses

	Clustering
	Hierarchical Clustering
	K-Means Clustering
	Using Your Clustering Code

	Multidimensional Scaling
	Using Your Multidimensional Scaling Code

	Non-Negative Matrix Factorization
	Using Your NMF Code

	Optimization
	The Cost Function
	Simulated Annealing
	Genetic Algorithms
	Using Your Optimization Code

	Third-Party Libraries
	Universal Feed Parser
	Installation for All Platforms

	Python Imaging Library
	Installation on Windows
	Installation on Other Platforms
	Simple Usage Example

	Beautiful Soup
	Installation on All Platforms
	Simple Usage Example

	pysqlite
	Installation on Windows
	Installation on Other Platforms
	Simple Usage Example

	NumPy
	Installation on Windows
	Installation on Other Platforms
	Simple Usage Example

	matplotlib
	Installation
	Simple Usage Example

	pydelicious
	Installation for All Platforms
	Simple Usage Example

	Mathematical Formulas
	Euclidean Distance
	Pearson Correlation Coefficient
	Weighted Mean
	Tanimoto Coefficient
	Conditional Probability
	Gini Impurity
	Entropy
	Variance
	Gaussian Function
	Dot-Products

	Index

