

Download at WoweBook.Com

Praise for Head First OOA&D

“Head First Object-Oriented Analysis and Design is a refreshing look at the subject of OOA&D. What sets
this book apart is its focus on learning. There are too many books on the market that spend a lot of
time telling you why, but do not actually enable the practitioner to start work on a project. Those books
are very interesting, but not very practical. I strongly believe that the future of software development
practice will focus on the practitioner. The authors have made the content of OOA&D accessible and
usable for the practitioner ”

— Ivar Jacobson, Ivar Jacobson Consulting

“I just finished reading HF OOA&D, and I loved it! The book manages to get across the essentials of
object-oriented analysis and design with UML and use cases, and even several lectures on good software
design, all in a fast-paced, easy to understand way. The thing I liked most about this book was its focus
on why we do OOA&D—to write great software! By defining what great software is and showing how
each step in the OOA&D process leads you towards that goal, it can teach even the most jaded Java
programmer why OOA&D matters. This is a great ‘first book’ on design for anyone who is new to Java,
or even for those who have been Java programmers for a while but have been scared off by the massive
tomes on OO Analysis and Design.”

— Kyle Brown, Distinguished Engineer, IBM

“Finally a book on OOA&D that recognizes that the UML is just a notation and that what matters when
developing software is taking the time to think the issues through.”

— Pete McBreen, Author, Software Craftsmanship

“The book does a good job of capturing that entertaining, visually oriented, ‘Head First’ writing style.
But hidden behind the funny pictures and crazy fonts is a serious, intelligent, extremely well-crafted
presentation of OO Analysis and Design. This book has a strong opinion of how to design programs,
and communicates it effectively. I love the way it uses running examples to lead the reader through the
various stages of the design process. As I read the book, I felt like I was looking over the shoulder of an
expert designer who was explaining to me what issues were important at each step, and why.”

— Edward Sciore, Associate Professor, Computer Science Department
Boston College

“This is a well-designed book that delivers what it promises to its readers: how to analyze, design, and
write serious object-oriented software. Its contents flow effortlessly from using use cases for capturing
requirements to analysis, design, implementation, testing, and iteration. Every step in the development
of object-oriented software is presented in light of sound software engineering principles. The examples
are clear and illustrative. This is a solid and refreshing book on object-oriented software development.”

— Dung Zung Nguyen, Lecturer
Rice University

Download at WoweBook.Com

Praise for other Head First books by the authors

“When arriving home after a 10-hour day at the office programming, who has the energy to plow
through yet another new facet of emerging technology? If a developer is going to invest free time in
self-driven career development, should it not be at least remotely enjoyable? Judging from the content of
O’Reilly’s new release Head Rush Ajax, the answer is yes…Head Rush Ajax is a most enjoyable launchpad
into the world of Ajax web applications, well worth the investment in time and money.”

— Barry Hawkins, Slashdot.org

“By starting with simple concepts and examples, the book gently takes the reader from humble
beginnings to (by the end of the book) where the reader should be comfortable creating Ajax-based
websites... Probably the best web designer centric book on Ajax.”

— Stefan Mischook, Killersites.com

“Using the irreverent style common of the Head First/Head Rush series of books, this book starts at the
beginning and introduces you to all you need to know to be able to write the JavaScript that will both
send requests to the server and update the page with the results when they are returned...One of the best
things about this book (apart form the excellent explanations of how the code works) is that it also looks
at security issues...If you learn Ajax from this book you are unlikely to forget much of what you learn.”

— Stephen Chapman, JavaScript.About.com

“Head Rush Ajax is the book if you want to cut through all the hype and learn how to make your web apps
sparkled…your users will love you for it!”

— Kristin Stromberg, Aguirre International

“If you know some HTML, a dollop of CSS, a little JavaScript, and a bit of PHP, but you’re mystified
about what all the Ajax hype is about, this book is for you…You’ll have a blast learning Ajax with Head
Rush Ajax. By the time you’ve reached the end of the book, all those web technologies that didn’t quite
fit together in your head will all snap into place and you’ll have The Ajax Power! You’ll know the secrets
behind some of the most popular web applications on the Internet. You’ll impress your friends and co-
workers with you knowledge of how those interactive maps and web forms really work.”

— Elisabeth Freeman, The Walt Disney Internet Group
Co-Author, Head First Design Patterns and Head First HTML with CSS & XHTML

“If you thought Ajax was rocket science, this book is for you. Head Rush Ajax puts dynamic, compelling
experiences within reach for every web developer.”

— Jesse James Garrett, Adaptive Path

“This stuff is brain candy; I can’t get enough of it.”

— Pauline McNamara, Center for New Technologies and Education
Fribourg University, Switzerland

Download at WoweBook.Com

Praise for other Head First Books

“I *heart* Head First HTML with CSS & XHTML – it teaches you everything you need to learn in a ‘fun
coated’ format!”
 — Sally Applin, UI Designer and Fine Artist, http://sally.com.

“My wife stole the book. She’s never done any web design, so she needed a book like Head First HTML
with CSS & XHTML to take her from beginning to end. She now has a list of web sites she wants to build

– for our son’s class, our family, ... If I’m lucky, I’ll get the book back when she’s done.”

 — David Kaminsky, Master Inventor, IBM

“Freeman’s Head First HTML with CSS & XHTML is a most entertaining book for learning how to build
a great web page. It not only covers everything you need to know about HTML, CSS, and XHTML,
it also excels in explaining everything in layman’s terms with a lot of great examples. I found the book
truly enjoyable to read, and I learned something new!”

 — Newton Lee, Editor-in-Chief, ACM Computers in Entertainment
 http://www.acmcie.org

From the awesome Head First Java folks, this book uses every conceivable trick to help you understand
and remember. Not just loads of pictures: pictures of humans, which tend to interest other humans.
Surprises everywhere. Stories, because humans love narrative. (Stories about things like pizza and
chocolate. Need we say more?) Plus, it’s darned funny.

 — Bill Camarda, READ ONLY

“This book’s admirable clarity, humor and substantial doses of clever make it the sort of book that helps
even non-programmers think well about problem-solving.”

 — Cory Doctorow, co-editor of Boing Boing
 Author, “Down and Out in the Magic Kingdom”
 and “Someone Comes to Town, Someone Leaves Town”

“I feel like a thousand pounds of books have just been lifted off of my head.”

 — Ward Cunningham, inventor of the Wiki
 and founder of the Hillside Group

“I literally love this book. In fact, I kissed this book in front of my wife.”

 — Satish Kumar

Download at WoweBook.Com

Other related books from O’Reilly

Practical Development Environments

Process Improvement Essentials

Prefactoring

Ajax Design Patterns

Learning UML

Applied Software Project Management

The Art of Project Management

UML 2.0 in a Nutshell

Unit Test Frameworks

Other books in O’Reilly’s Head First Series

Head First Design Patterns

Head First Java

Head First Servlets and JSP

Head First EJB

Head First HTML with CSS & XHTML

Head Rush Ajax

Head First OOA&D

Head First PMP (2007)

Head First Algebra (2007)

Head First Software Development (2007)

Download at WoweBook.Com

Beijing • Cambridge • Köln • Paris • Sebastopol • Taipei • Tokyo

Brett D. McLaughlin
Gary Pollice
David West

Head First Object-Oriented
Analysis and Design

Wouldn’t it be dreamy
if there was an analysis and

design book that was more fun
than going to an HR benefits

meeting? It’s probably nothing
but a fantasy...

Download at WoweBook.Com

Head First Object-Oriented Analysis and Design
by Brett D. McLaughlin, Gary Pollice, and David West

Copyright © 2007 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates

Series Editor: Brett D. McLaughlin

Editor: Mary O’Brien

Cover Designer: Mike Kohnke, Edie Freedman

OO: Brett D. McLaughlin

A: David West

D: Gary Pollice

Page Viewer: Dean and Robbie McLaughlin

Printing History:
November 2006: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations, Head First
OOA&D, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

In other words, if you use anything in Head First OOA&D to, say, write code that controls an American space
shuttle, you’re on your own.

No dogs, rabbits, or woodchucks were harmed in the making of this book, or Todd and Gina’s dog door.

ISBN-10: 0-596-00867-8

ISBN-13: 978-0-596-00867-3

[M] [2/07]

This book uses RepKover™,  a durable and flexible lay-flat binding.
TMTM

Download at WoweBook.Com

To all the brilliant people who came up with various ways to
gather requirements, analyze software, and design code...

...thanks for coming up with something good enough to
produce great software, but hard enough that we needed this
book to explain it all.

Download at WoweBook.Com

viii

the authors

Brett

Gary

Dave

Brett McLaughlin is a guitar player who is still struggling
with the realization that you can’t pay the bills if you’re into
acoustic fingerstyle blues and jazz. He’s just recently discovered, 
to his delight, that writing books that help people become better
programmers does pay the bills. He’s very happy about this, as
are his wife Leigh, and his kids, Dean and Robbie.

Before Brett wandered into Head First land, he developed
enterprise Java applications for Nextel Communications and
Allegiance Telecom. When that became fairly mundane, Brett
took on application servers, working on the internals of the
Lutris Enhydra servlet engine and EJB container. Along the
way, Brett got hooked on open source software, and helped
found several cool programming tools, like Jakarta Turbine and
JDOM. Write to him at brett@oreilly.com.

Gary Pollice is a self-labeled curmudgeon (that’s a crusty, ill-tempered,
usually old man) who spent over 35 years in industry trying to figure out 
what he wanted to be when he grew up. Even though he hasn’t grown up yet,
he did make the move in 2003 to the hallowed halls of academia where he
has been corrupting the minds of the next generation of software developers
with radical ideas like, “develop software for your customer, learn how to
work as part of a team, design and code quality and elegance and correctness
counts, and it’s okay to be a nerd as long as you are a great one.”

Gary is a Professor of Practice (meaning he had a real job before becoming a
professor) at Worcester Polytechnic Institute. He lives in central Massachusetts
with his wife, Vikki, and their two dogs, Aloysius and Ignatius. You can visit
his WPI home page at http://web.cs.wpi.edu/~gpollice/. Feel free
to drop him a note and complain or cheer about the book.

Dave West would like to describe himself as sheik geek. Unfortunately
no one else would describe him in that way. They would say he is a
professional Englishman who likes to talk about software development best
practices with the passion and energy of an evangelical preacher. Recently
Dave has moved to Ivar Jacobson Consulting, where he runs the Americas
and can combine his desire to talk about software development and spread
the word on rugby and football, and argue that cricket is more exciting than
baseball.

Before running the Americas for Ivar Jacobson Consulting, Dave worked
for a number of years at Rational Software (now a part of IBM). Dave held
many positions at Rational and then IBM, including Product Manager for
RUP where he introduced the idea of process plug-ins and agility to RUP.
Dave can be contacted at dwest@ivarjacobson.com.

Download at WoweBook.Com

ix

table of contents

Intro
Your brain on OOA&D. Here you are trying to learn something, while here your

brain is doing you a favor by making sure the learning doesn’t stick. Your brain’s thinking,

“Better leave room for more important things, like which wild animals to avoid and whether

naked snowboarding is a bad idea.” So how do you trick your brain into thinking that your

life depends on knowing object-oriented analysis and design?

Who is this book for? xxiv

We know what you’re thinking xxv

Metacognition xxvii

Bend your brain into submission xxix

Read Me xxx

The Technical Team xxxii

Acknowledgements xxxiii

Table of Contents (summary)
 Intro xxiii

1 Great Software Begins Here: well-designed apps rock 1

2 Give Them What They Want: gathering requirements 55

3 I Love You, You’re Perfect... Now Change: requirements change 111

4 Taking Your Software Into the Real World: analysis 145

5 Part 1: Nothing Ever Stays the Same: good design 197

 Interlude: OO CATASTROPHE 221

 Part 2: Give Your Software a 30-minute Workout: flexible software 233

6 “My Name is Art Vandelay”: solving really big problems 279

7 Bringing Order to Chaos: architecture 323

8 Originality is Overrated: design principles 375

9 The Software is Still for the Customer: iteration and testing 423

10 Putting It All Together: the ooa&d lifecycle 483

 Appendix I: leftovers 557

 Appendix II: welcome to objectville 575

Table of Contents (the real thing)

Download at WoweBook.Com

�

table of contents

1 Great Software Begins Here
So how do you really write great software? It’s never easy trying

to figure out where to start. Does the application actually do what it’s supposed to?

And what about things like duplicate code—that can’t be good, can it? It’s usually pretty

hard to know what you should work on first, and still make sure you don’t screw

everything else up in the process. No worries here, though. By the time you’re done

with this chapter, you’ll know how to write great software, and be well on your way

to improving the way you develop applications forever. Finally, you’ll understand why

OOAD is a four-letter word that your mother actually wants you to know about.

well-designed apps rock

Rock and roll is forever! 2

Rick’s shiny new application 3

What’s the FIRST thing you’d change? 8

Great Software is... 10

Great software in 3 easy steps 13

Focus on functionality first          18

Test drive 23

Looking for problems 25

Analysis 26

Apply basic OO principles 31

Design once, design twice 36

How easy is it to change your applications? 38

Encapsulate what varies 41

Delegation 43

Great software at last (for now) 46

OOA&D is about writing great software 49

Bullet Points 50

How am I supposed to know where to start?
I feel like every time I get a new project to
work on, everyone’s got a different opinion

about what to do first. Sometimes I get it right, and
sometimes I end up reworking the whole app because I
started in the wrong place. I just want to write

great software! So what should I do first
in Rick’s app?

Download at WoweBook.Com

xi

table of contents

2 Give Them What They Want
Everybody loves a satisfied customer. You already know that the first

step in writing great software is making sure it does what the customer wants it to. But

how do you figure out what a customer really wants? And how do you make sure that

the customer even knows what they really want? That’s where good requirements

come in, and in this chapter, you’re going to learn how to satisfy your customer by

making sure what you deliver is actually what they asked for. By the time you’re done,

all of your projects will be “satisfaction guaranteed,” and you’ll be well on your way to

writing great software, every time.

gathering requirements

You’ve got a new programming gig 56

Test drive 59

Incorrect usage (sort of) 61

What is a requirement? 62

Creating a requirements list 64

Plan for things going wrong 68

Alternate paths handle system problems 70

Introducing use cases 72

One use case, three parts 74

Check your requirements against your use cases 78

Your system must work in the real world 85

Getting to know the Happy Path 92

OOA&D Toolbox 106

1. The dog door opening must be at least 12”
tall.

2. A button on the remote control opens the
dog door if the door is closed, and closes
the dog door if the door is open.

3. Once the dog door has opened, it should
close automatically if the door isn’t
already closed.

Todd and Gina’s Dog Door, version 2.0
Requirements List

1. Fido barks to be let out.
2. Todd or Gina hears Fido barking.
3. Todd or Gina presses the button on the

remote control.
4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.
7. Fido goes back inside.
8. The door shuts automatically.

Todd and Gina’s Dog Door, version 2.0
What the Door Does

The System

The dog door and remote are part of the system, or inside the system.

Download at WoweBook.Com

�ii

table of contents

3 I Love You, You’re Perfect... Now Change
Think you’ve got just what the customer wanted?
Not so fast... So you’ve talked to your customer, gathered requirements, written

out your use cases, and delivered a killer application. It’s time for a nice relaxing

cocktail, right? Right... until your customer decides that they really wanted something

different than what they told you. They love what you’ve done, really, but it’s not

quite good enough anymore. In the real world, requirements are always changing,

and it’s up to you to roll with these changes and keep your customer satisfied.

requirements change

You’re a hero! 112

You’re a goat! 113

The one constant in software analysis & design 115

Original path? Alternate path? Who can tell? 120

Use cases have to make sense to you 122

Start to finish: a single scenario        124

Confessions of an Alternate Path 126

Finishing up the requirements list 130

Duplicate code is a bad idea 138

Final test drive 140

Write your own design principle 141

OOA&D Toolbox 142

 public void pressButton() {
 System.out.println(“Pressing the remote control button...”);

 if (door.isOpen()) {
 door.close();
 } else {
 door.open();

 final Timer timer = new Timer();
 timer.schedule(new TimerTask() {
 public void run() {
 door.close();
 timer.cancel();
 }
 }, 5000);
 }
 } class

Remote {
 press-
Button()
}

Remote.java

Download at WoweBook.Com

xiii

table of contents

4 Taking Your Software into the Real World
It’s time to graduate to real-world applications.
Your application has to do more than work on your own personal development machine,

finely tuned and perfectly setup; your apps have to work when real people use them.

This chapter is all about making sure that your software works in a real-world context.

You’ll learn how textual analysis can take that use case you’ve been working on and

turn it into classes and methods that you know are what your customers want. And

when you’re done, you too can say: “I did it! My software is ready for the real world!”

analysis

One dog, two dog, three dog, four... 146

Your software has a context 147

Identify the problem 148

Plan a solution 149

A tale of two coders 156

Delegation Detour 160

The power of loosely coupled applications 162

Pay attention to the nouns in your use case 167

From good analysis to good classes... 180

Class diagrams dissected 182

Class diagrams aren’t everything 187

Bullet Points 191

class
DogDoor
{
 open()
}

DogDoor.java

The Real World

In the real world, there are
dogs, cats, rodents, and a host
of other problems, all set to
screw up your software.

In this context,
things go wrong a
lot more often.

Once I knew the classes and
operations that I needed, I

went back and updated my class
diagram.

Download at WoweBook.Com

�iv

table of contents

5 (part 1)
Nothing Ever Stays the Same
Change is inevitable. No matter how much you like your software right

now, it’s probably going to change tomorrow. And the harder you make it for

your software to change, the more difficult it’s going to be to respond to your

customer’s changing needs. In this chapter, we’re going to revisit an old friend,

try and improve an existing software project, and see how small changes can

turn into big problems. In fact, we’re going to uncover a problem so big that it will

take a TWO-PART chapter to solve it!

good design = flexible software

Rick’s Guitars is expanding 198

Abstract classes 201

Class diagrams dissected (again) 206

UML Cheat Sheet 207

Design problem tipoffs 213

3 steps to great software (revisited) 215

5 (interlude)

$100$100$100$100$100

$200$200$200$200$200

$300$300$300$300$300

$400$400$400$400$400

Software
Neuroses

Maintenance
and Reuse

Code
Constructs

Famous
Designers

Risk
Avoidance

Download at WoweBook.Com

xv

table of contents

5 (part 2)
Give Your Software a 30-minute Workout
Ever wished you were just a bit more fle�ible?
When you run into problems making changes to your application, it probably

means that your software needs to be more flexible and resilient. To help stretch

your application out, you’re going to do some analysis, a whole lot of design, and

learn how OO principles can really loosen up your application. And for the grand

finale, you’ll see how higher cohesion can really help your coupling. Sound

interesting? Turn the page, and let’s get back to fixing that inflexible application.

good design = flexible software

Back to Rick’s search tool 234

A closer look at the search() method 237

The benefits of  analysis          238

Classes are about behavior 241

Death of a design (decision) 246

Turn bad design decisions into good ones 247

“Double encapsulation” in Rick’s software 249

Never be afraid to make mistakes 255

Rick’s flexible application          258

Test driving well-designed software 261

How easy is it to change Rick’s software? 265

The Great Ease-of-Change Challenge 266

A cohesive class does one thing really well 269

The design/cohesion lifecycle 272

Great software is “good enough” 274

OOA&D Toolbox 276

Download at WoweBook.Com

�vi

table of contents

6 “My Name is Art Vandelay... I am an Architect”

It’s time to build something REALLY BIG. Are you ready?
You’ve got a ton of tools in your OOA&D toolbox, but how do you use those tools

when you have to build something really big? Well, you may not realize it, but

you’ve got everything you need to handle big problems. We’ll learn about some

new tools, like domain analysis and use case diagrams, but even these new tools

are based on things you already know about—like listening to the customer and

understanding what you’re going to build before you start writing code. Get ready...

it’s time to start playing the architect.

solving really big problems

Solving big problems 280

It’s all in how you look at the big problem 281

Requirements and use cases are a good place to start... 286

Commonality and variability 287

Figure out the features 290

The difference between features and requirements 292

Use cases don’t always help you see the big picture 294

Use case diagrams 296

The Little Actor 301

Actors are people, too (well, not always) 302

Let’s do a little domain analysis 307

Divide and conquer 309

Don’t forget who the customer really is 313

What’s a design pattern? 315

The power of OOA&D (and a little common sense) 318

OOA&D Toolbox 320Small
Problem

Small
Problem

Small
Problem

Small
Problem

Big
Problem

This BIG PROBLEM is
really just a collection of
functionalities, where each
piece of functionality is re

ally

a smaller problem on its own.

Small
Problem

Download at WoweBook.Com

xvii

table of contents

7 Bringing Order to Chaos
You have to start somewhere, but you better pick the right
somewhere! You know how to break your application up into lots of small

problems, but all that means is that you have LOTS of small problems. In this chapter,

we’re going to help you figure out where to start, and make sure that you don’t waste

any time working on the wrong things. It’s time to take all those little pieces laying

around your workspace, and figure out how to turn them into a well-ordered, well-

designed application. Along the way, you’ll learn about the all-important 3 Qs of

architecture, and how Risk is a lot more than just a cool war game from the ‘80s.

architecture

Feeling a little overwhelmed? 324

We need an architecture 326

Start with functionality 329

What’s architecturally significant?        331

The three Qs of architecture 332

Reducing risk 338

Scenarios help reduce risk 341

Focus on one feature at a time 349

Architecture is your design structure 351

Commonality revisited 355

Commonality Analysis: the path to flexible software    361

What does it mean? Ask the customer 366

Reducing risk helps you write great software 371

Bullet Points 372Gi
a

nt
 R

is
k-

O
-M

et
er

Unit
type: String
properties: Map
setType(String)
getType(): String
setProperty(String, Object)
getProperty(String): Object

Board.java

class
Unit {
 Unit(){
 }
}

Unit.java

class
Tile
{ ge-
tUnit()
}

Tile.java

class
Board
{ ge-
tUnit()
}

Not a chance in hell of
coming in on time.

One in a hundred that
you get it right.

Only a few things can
go really wrong.

As close to a sure
thing as software gets!

Download at WoweBook.Com

�viii

table of contents

8 Originality is Overrated
Imitation is the sincerest form of not being stupid. There’s

nothing as satisfying as coming up with a completely new and original solution to a

problem that’s been troubling you for days—until you find out someone else solved

the same problem, long before you did, and did an even better job than you did! In

this chapter, we’re going to look at some design principles that people have come up

with over the years, and how they can make you a better programmer. Lay aside your

thoughts of “doing it your way”; this chapter is about doing it the smarter, faster way.

design principles

Design principle roundup 376

The Open-Closed Principle (OCP) 377

The OCP, step-by-step 379

The Don’t Repeat Yourself Principle (DRY) 382

DRY is about one requirement in one place 384

The Single Responsibility Principle (SRP) 390

Spotting multiple responsibilities 392

Going from multiple responsibilities to a single responsibility 395

The Liskov Substitution Principle (LSP) 400

Misusing subclassing: a case study in misuing inheritance 401

LSP reveals hidden problems with your inheritance structure 402

Subtypes must be substitutable for their base types 403

Violating the LSP makes for confusing code 404

Delegate functionality to another class 406

Use composition to assemble behaviors from other classes 408

Aggregation: composition, without the abrupt ending 412

Aggregation versus composition 413

Inheritance is just one option 414

Bullet Points 417

OOA&D Toolbox 418

The Open-Closed
Principle

The Don’t Repeat Yourself Principle

The Single
Responsibility Principle

The Liskov
Substitution
Principle

Download at WoweBook.Com

xix

table of contents

9 The Software is Still for the Customer
It’s time to show the customer how much you really care.
Nagging bosses? Worried clients? Stakeholders that keep asking, “Will it be done on

time?” No amount of well-designed code will please your customers; you’ve got to

show them something working. And now that you’ve got a solid OO programming

toolkit, it’s time to learn how you can prove to the customer that your software

works. In this chapter, we learn about two ways to dive deeper into your software’s

functionality, and give the customer that warm feeling in their chest that makes them

say, Yes, you’re definitely the right developer for this job!

iterating and testing

Your toolbox is filling up 424

You write great software iteratively 426

Iterating deeper: two basic choices 427

Feature driven development 428

Use case driven development 429

Two approaches to development 430

Analysis of a feature 434

Writing test scenarios 437

Test driven development 440

Commonality Analysis (redux) 442

Emphasizing commonality 446

Emphasizing encapsulation 448

Match your tests to your design 452

Test cases dissected... 454

Prove yourself to the customer 460

We’ve been programming by contract 462

Programming by contract is about trust 463

Defensive programming 464

Break your apps into smaller chunks of functionality 473

Bullet Points 475

OOA&D Toolbox 478

Unit
type: String
properties: Map
id: int
name: String
weapons: Weapon [*]

setType(String)
getType(): String
setProperty(String, Object)
getProperty(String): Object
getId(): int
setName(String)
getName(): String
addWeapon(Weapon)
getWeapons(): Weapon [*]

All the properties that were common across units are represented as variables outside of the properties Map.

Each of the new
properties gets its
own set of methods.

Sam figured that id
would get set in the Unit
constructor, so no need
for a setId() method.

Download at WoweBook.Com

��

table of contents

10 Putting It All Together
Are we there yet? We’ve been working on lots of individual ways to

improve your software, but now it’s time to put it all together. This is it, what

you’ve been waiting for: we’re going to take everything you’ve been learning,

and show you how it’s all really part of a single process that you can use over

and over again to write great software.

the ooa&d lifecycle

Developing software, OOA&D style 484

The Objectville Subway problem 488

Objectville Subway Map 490

Feature lists 493

Use cases reflect usage, features reflect functionality    499

Now start to iterate 503

A closer look at representing a subway 505

To use a Line, or not to use a Line 514

Points of interest on the Objectville Subway (class) 520

Protecting your classes 523

Break time 531

Back to the requirements phase 533

Focus on code, then focus on customers 535

Iteration makes problems easier 539

What does a route look like? 544

Check out Objectville for yourself ! 548

Iteration #3, anyone? 551

The journey’s not over... 555

Feature
List

Use Case
Diagrams

Break Up the
Problem

Requirements Domain
Analysis

Preliminary
Design

Implementation Delivery

Requirements List

Key Feature List

Class Diagram

Alternate Path

Analysis

Alternate Path

Design PatternEncapsulation

OO Principles
External Initiator

Textual Analysis

Test Scenario
Cohesion

Commonality

Scenario

Iteration
Feature Driven Development

Architecture

Delegation
Test Driven Development

Architecture

Talk to the Customer

Variability

Design Principles
Design Pattern

Iteration
Iteration

Iteration

Talk to the CustomerEncapsulation
Key Feature List

Design Principles

External Initiator

Download at WoweBook.Com

xxi

table of contents

i The Top Ten Topics (we didn’t cover)
Believe it or not, there’s still more. Yes, with over 550

pages under your belt, there are still things we couldn’t cram in. Even

though these last ten topics don’t deserve more than a mention, we didn’t

want to let you out of Objectville without a little more information on each

one of them. But hey, now you’ve got just a little bit more to talk about

during commercials of CATASTROPHE... and who doesn’t love some

stimulating OOA&D talk every now and then?

appendix i: leftovers

#1. IS-A and HAS-A 558

#2. Use case formats 560

#3. Anti-patterns 563

#4. CRC cards 564

#5. Metrics 566

#6. Sequence diagrams 567

#7. State diagrams 568

#8. Unit testing 570

#9. Coding standards and readable code 572

#10. Refactoring 574

Class: DogDoor
Description: Represents the physical dog door. This provides an interface

to the hardware that actually controls the door.
Responsibilities:

Name Collaborator

Open the door
Close the doorBe sure you write

down things that
this class does on its own, as well as things it collaborates with other classes on.

There’s no collaborato
r

class for these.

Anti Patterns

Anti-patterns are the reverse of design pat-

terns: they are common BAD solutions to

problems. These dangerous pitfalls should

be recognized and avoided.

Download at WoweBook.Com

��ii

table of contents

ii Speaking the Language of OO
Get ready to take a trip to a foreign country. It’s time to

visit Objectville, a land where objects do just what they’re supposed to,

applications are all well-encapsulated (you’ll find out exactly what that means

shortly), and designs are easy to reuse and extend. But before we can get

going, there are a few things you need to know first, and a little bit of language

skills you’re going to have to learn. Don’t worry, though, it won’t take long, and

before you know it, you’ll be speaking the language of OO like you’ve been

living in the well-designed areas of Objectville for years.

appendix ii: welcome to objectville

UML and class diagrams 577

Inheritance 579

Polymorphism 581

Encapsulation 582

Bullet Points 586

Airplane
speed: int
getSpeed(): int
setSpeed(int)

This is how you show a
class in a class diagram.
That’s the way that
UML lets you represent
details about the classes
in your application.

This is the name of the class. It’s always in bold, at the top of the class diagram.

These are the member
variables of the class.
Each one has a name,
and then a type
after the colon.

This line separates the member variables from the methods of the class.
These are the methods of the class. Each one has a name, and then any parameters the method takes, and then a return type after the colon.

A class diagram makes it really easy
to see the big picture: you can easily

tell what a class does at a glance.
You can even leave out the variables
and/or methods if it helps you
communicate better.

Download at WoweBook.Com

 ��iii

how to use this book

Intro I can’t believe
they put that in an object-

oriented analysis and design
book!

In this section, we answer the burning question:

“So why DID they put that in an OOA&D book?”

Download at WoweBook.Com

��iv Intro

how to use this book

Who is this book for ?

1 Do you know Java? (You don’t need to be a guru.)

2 Do you want to learn, understand, remember, and
apply object-oriented analysis and design to real world
projects, and write better software in the process?

this book is for you.

Who should probably back away from this book?

1 Are you completely new to Java? (You don’t need to
be advanced, and even if you don’t know Java, but
you know C#, you’ll probably understand almost all
of the code examples. You also might be okay with
just a C++ background.)

3

this book is not for you.

Are you afraid to try something different? Would
you rather have a root canal than mix stripes
with plaid? Do you believe that a technical book
can’t be serious if programming concepts are
anthropomorphized?

If you can answer “yes” to all of these:

If you can answer “yes” to any one of these:

2 Are you a kick-butt OO designer/developer looking
for a reference book?

[note from marketing: this book is
for anyone with a credit card.]

3 Do you prefer stimulating dinner party conversation
to dry, dull, academic lectures?

You’ll probably be okay if you know C# instead.

Download at WoweBook.Com

you are here 4 ��v

intro

“How can this be a serious programming book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

We know what you’re thinking.

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s real job—recording things that matter. It doesn’t bother saving
the boring things; they never make it past the “this is obviously not
important” filter.

How does your brain know what’s important? Suppose you’re out
for a day hike and a tiger jumps in front of you, what happens inside
your head and body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows...

This must be important! Don’t forget it!
But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone.
You’re studying. Getting ready for an exam. Or trying to learn some tough
technical topic your boss thinks will take a week, ten days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying to
make sure that this obviously non-important content doesn’t clutter up scarce
resources. Resources that are better spent storing the really big things. Like
tigers. Like the danger of  fire. Like how you should never again 
snowboard in shorts.

And there’s no simple way to tell your brain, “Hey brain, thank you
very much, but no matter how dull this book is, and how little I’m
registering on the emotional Richter scale right now, I really do want
you to keep this stuff around.”

And we know what your brain is thinking.

Your brain thinks THIS is important.

Great. Only
637 more dull,

dry, boring pages.

Your brain t
hinks

THIS isn’t worth
saving.

Download at WoweBook.Com

��vi Intro

how to use this book

So what does it take to learn something? First, you have to get it, then make sure

you don’t forget it. It’s not about pushing facts into your head. Based on the

latest research in cognitive science, neurobiology, and educational psychology,

learning takes a lot more than te�t on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and

make learning much more effective (up to 89% improvement in recall and

transfer studies). It also makes things more understandable. Put the words

within or near the graphics they relate to, rather than on the bottom

or on another page, and learners will be up to twice as likely to solve problems

related to the content.

Use a conversational and personalized style. In recent studies,

students performed up to 40% better on post-learning tests if the content spoke

directly to the reader, using a first-person, conversational style rather than taking

a formal tone. Tell stories instead of lecturing. Use casual language. Don’t take

yourself too seriously. Which would you pay more attention to: a stimulating

dinner party companion, or a lecture?

Get the learner to think more deeply. In other words, unless you actively flex

your neurons, nothing much happens in your head. A reader has to be motivated,

engaged, curious, and inspired to solve problems, draw conclusions,

and generate new knowledge. And for that, you need challenges,

exercises, and thought-provoking questions, and activities that involve

both sides of the brain, and multiple senses.

Get—and keep—the reader’s attention. We’ve

all had the “I really want to learn this but I can’t stay awake past

page one” experience. Your brain pays attention to things that are

out of the ordinary, interesting, strange, eye-catching, unexpected.

Learning a new, tough, technical topic doesn’t have to be boring. Your

brain will learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember

something is largely dependent on its emotional content. You remember what you care about.

You remember when you feel something. No, we’re not talking heart-wrenching stories about a

boy and his dog. We’re talking emotions like surprise, curiosity, fun, “what the...?” , and the

feeling of “I Rule!” that comes when you solve a puzzle, learn something everybody else

thinks is hard, or realize you know something that “I’m more technical than thou” Bob from

engineering doesn’t.

We think of a “Head First” reader as a learner.

It really sucks to be an

abstract method. You

don’t have a body.

 abstract void roam();

No method b
ody !

End it with a se
micolon.

Connection

Station
“XHTML Expressway”

Station
       “Infinite Circle”

line = “Rumbaugh Line”

All of this is represented in a single Connection object.

Great software every time? I
can hardly imagine what that

would be like!

Download at WoweBook.Com

you are here 4 ��vii

intro

If you really want to learn, and you want to learn more quickly and more
deeply, pay attention to how you pay attention. Think about how you think.
Learn how you learn.

Most of us did not take courses on metacognition or learning theory when we
were growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn object-
oriented analysis and design. And you probably don’t want to spend a lot of
time. And since you’re going to develop software, you need to remember what you
read. And for that, you’ve got to understand it. To get the most from this book, or
any book or learning experience, take responsibility for your brain. Your brain
on this content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well-being. As important as a tiger.
Otherwise, you’re in for a constant battle, with your brain doing its best to
keep the new content from sticking.

Metacognition: thinking about thinking

I wonder how I
can trick my brain
into remembering

this stuff...

So just how DO you get your brain to think object-
oriented analysis and design is a hungry tiger?
There’s the slow, tedious way, or the faster, more effective way. The slow
way is about sheer repetition. You obviously know that you are able to
learn and remember even the dullest of topics if you keep pounding the same thing
into your brain. With enough repetition, your brain says, “This doesn’t feel important to
him, but he keeps looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of  how the words and picture relate, and this causes more neurons to fire. 
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

Download at WoweBook.Com

��viii Intro

how to use this book

We used pictures, because your brain is tuned for visuals, not text. As far as your
brain’s concerned, a picture really is worth 1,024 words. And when text and pictures
work together, we embedded the text in the pictures because your brain works more
effectively when the text is within the thing the text refers to, as opposed to in a caption
or buried in the text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area of
your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain is
tuned to pay attention to the biochemistry of emotions. That which causes you to feel something
is more likely to be remembered, even if that feeling is nothing more than a little humor,
surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening to a
presentation. Your brain does this even when you’re reading.

We included more than 80 activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging-yet-do-able, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while
someone else wants to understand the big picture first, and someone else just wants to see a 
code example. But regardless of your own learning preference, everyone benefits from seeing the 
same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you can
be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view, because
your brain is tuned to learn more deeply when it’s forced to make evaluations and judgements.

We included challenges, with exercises, and by asking questions that don’t always have
a straight answer, because your brain is tuned to learn and remember when it has to work at
something. Think about it—you can’t get your body in shape just by watching people at the gym.
But we did our best to make sure that when you’re working hard, it’s on the right things. That
you’re not spending one extra dendrite processing a hard-to-understand example, or
parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because you’re a person. And
your brain pays more attention to people than it does to things.

We used an 80/20 approach. We assume that if you’re going for a PhD in software design, this
won’t be your only book. So we don’t talk about everything. Just the stuff you’ll actually need.

Here’s what WE did:

 BULLET POINTS

$100$100$100$100$100

$200$200$200$200$200

$300$300$300$300$300

$400$400$400$400$400

Software
Neuroses

Maintenance
and Reuse

Code
Constructs

Famous
Designers

Risk
Avoidance

Instrument properties

Property values

Property names

Pull out what varies InstrumentSpec class model

“OM-18”

Download at WoweBook.Com

you are here 4 ��i�

intro

So, we did our part. The rest is up to you. These tips are a starting point; listen to
your brain and figure out what works for you and what doesn’t. Try new things.

Here’s what YOU can do to bend
your brain into submission

1 Slow down. The more you understand,
the less you have to memorize.
Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really is asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering.

2 Do the exercises. Write your own notes.
We put them in, but if we did them for you,
that would be like having someone else do
your workouts for you. And don’t just look at
the exercises. Use a pencil. There’s plenty of
evidence that physical activity while learning
can increase the learning.

3 Read the “There are No Dumb Questions”
That means all of them. They’re not optional
side-bars—they’re part of the core content!
Don’t skip them.

4 Make this the last thing you read before
bed. Or at least the last challenging thing.
Part of the learning (especially the transfer to
long-term memory) happens after you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing time, some of what you
just learned will be lost.

5 Drink water. Lots of it.
Your brain works best in a nice bath of  fluid. 
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

6 Talk about it. Out loud.
Speaking activates a different part of the brain.
If you’re trying to understand something, or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

7 Listen to your brain.
Pay attention to whether your brain is getting
overloaded. If  you find yourself  starting to skim the 
surface or forget what you just read, it’s time for a
break. Once you go past a certain point, you won’t
learn faster by trying to shove more in, and you
might even hurt the process.

9 Design something!
Apply what you read to something new you’re
designing, or rework an older project. Just do
something to get some experience beyond the
exercises and activities in this book. All you need is
a problem to solve... a problem that might benefit 
from one or more techniques that we talk about.

Cut this out and stick it on your refrigerator.

8 Feel something!
Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke is
still better than feeling nothing at all.

Download at WoweBook.Com

��� Intro

how to use this book

Read Me
This is a learning experience, not a reference book. We deliberately stripped out
everything that might get in the way of learning whatever it is we’re working on at that
point in the book. And the first time through, you need to begin at the beginning, because 
the book makes assumptions about what you’ve already seen and learned.

We assume you are familiar with Java.
It would take an entire book to teach you Java (in fact, that’s exactly what it took: Head
First Java). We chose to focus this book on analysis and design, so the chapters are written
with the assumption that you know the basics of Java. When intermediate or advanced
concepts come up, they’re taught as if they might be totally new to you, though.

If you’re completely new to Java, or coming to this book from a C# or C++ background,
we strongly recommend you turn to the back of the book and read Appendix II before
going on. That appendix has some intro material that will help you start this book off on
the right foot.

We only use Java 5 when we have to.
Java 5.0 introduces a lot of new features to the Java language, ranging from generics to
parameterized types to enumerated types to the foreach looping construct. Since many
professional programmers are just moving to Java 5, we didn’t want you getting hung up
on new syntax while you’re trying to learn about OOA&D. In most cases, we stuck with
pre-Java 5 syntax. The only exception is in Chapter 1, when we needed an enumerated
type—and we explained enums in that section in some detail.

If you’re new to Java 5, you should have no trouble with any of the code examples. If
you’re already comfortable with Java 5, then you will get a few compiler warnings about
unchecked and unsafe operations, due to our lack of typed collections, but you should be
able to update the code for Java 5 on your own quite easily.

The activities are NOT optional.
The exercises and activities are not add-ons; they’re part of the core content of the book.
Some of them are to help with memory, some are for understanding, and some will help
you apply what you’ve learned. Don’t skip the exercises. The crossword puzzles are
the only things you don’t have to do, but they’re good for giving your brain a chance to
think about the words and terms you’ve been learning in a different context.

Download at WoweBook.Com

you are here 4 ���i

intro

The redundancy is intentional and important.
One distinct difference in a Head First book is that we want you to really get it. And we
want you to finish the book remembering what you’ve learned. Most reference books 
don’t have retention and recall as a goal, but this book is about learning, so you’ll see some
of the same concepts come up more than once.

The examples are as lean as possible.
Our readers tell us that it’s frustrating to wade through 200 lines of an example looking
for the two lines they need to understand. Most examples in this book are shown within
the smallest possible context, so that the part you’re trying to learn is clear and simple.
Don’t expect all of the examples to be robust, or even complete—they are written
specifically for learning, and aren’t always fully-functional. 

In some cases, we haven’t included all of the import statements needed, but we assume
that if you’re a Java programmer, you know that ArrayList is in java.util, for
example. If the imports are not part of the normal core J2SE API, we mention it. We’ve
also placed all the source code on the web so you can download it.  You’ll find it at 
http://www.headfirstlabs.com/books/hfoo/.

Also, for the sake of focusing on the learning side of the code, we did not put our
classes into packages (in other words, they’re all in the Java default package). We don’t
recommend this in the real world, and when you download the code examples from this
book, you’ll find that all classes are in packages.

The ‘Brain Power’ exercises don’t have answers.
For some of them, there is no right answer, and for others, part of the learning experience
of the Brain Power activities is for you to decide if and when your answers are right. In
some of  the Brain Power exercises you will find hints to point you in the right direction.

Download at WoweBook.Com

���ii Intro

The Technical Team
Hannibal Scipio

Ara Yapejian

Chris Austin

Technical Reviewers:

Huge thanks to our amazing trio of technical reviewers. These guys caught mistakes
that we missed, let us know when we were moving too fast (or too slow), and even
let us know when our jokes sucked. Several times, they turned chapters around in a
matter of hours... we’re not sure if that means they’re really helpful, or need to get
away from software development a little more. Hannibal in particular made our
week when he let us know that the big OOA&D arrow in Chapter 10 was “Hot!”
Thanks guys, this book wouldn’t be nearly as solid without your hard work.

Kathy Sierra
Bert Bates

Kathy Sierra and Bert Bates:

We continue to be amazed at the insight and
expertise that Bert Bates has about cliffs, and that
Kathy Sierra has about dog doors. If that doesn’t
make much sense, don’t be surprised—everything
you know about almost everything gets turned on its
head when you meet this pair, and yet we all came
out much for the better because of their help.

Bert and Kathy did a ton of review at the eleventh
hour, and we’re thankful they did. Their help and
guidance continues to be the heart of Head First.

review team

Download at WoweBook.Com

you are here 4 ���iii

intro

My co-authors:

Because I’m doing the typing, I get to step out of “we” mode for a moment and say thanks to my
co-authors, Dave West and Gary Pollice. Neither of these guys knew what they were signing up
for when they came on board, but I’ve never been so impressed by a couple of guys willing to explain,
defend, and even change their opinions and knowledge about software design, requirements and
analysis, and lift shafts. They were simply incredible, writing up until the very last day, and even got me
to relax and laugh until I cried on several occasions.

Our editor:

This book wouldn’t be in your hands if not for Mary O’Brien. I think
it’s fair to say she fought more battles and paved the way for us to work
without interruption more times than any of us really are aware of. Most
importantly, she made this the single most enjoyable project we’ve worked on
in our careers. Frankly, she kicked our asses a number of times, and it made
all the difference. She really doesn’t realize how much of an effect she has
on the people she works with, because we don’t tell her enough how much
we respect her and value her opinions. So there, now you know, Mary. If we
could put your name on the cover, we would (oh, wait... we did!).

The O’Reilly team:

These books are a team effort, never more so than on this one. Mike Hendrickson and Laurie
Petrycki oversaw this project at various times, and took heated phone calls more than once.
Sanders Kleinfeld cut his Head First teeth on this project, and managed to come out alive;
better yet, he did a great job, improving the book, and we all are excited that this is just the first of  
many Head First books he’ll be working on. Mike Loukides found Bert and Kathy way back
when, and Tim O’Reilly had the foresight to turn their crazy idea into
a series. As always, Kyle Hart is instrumental in getting these books “out
there”, and Edie Freedman’s beautiful cover design continues to amaze
us all.

A particularly special thanks goes out to Louise Barr, the Head First
Design Editor. Lou pulled several 12- and 14-hour days to help us with
graphics in this book, and put together the amazing Objectville Subway Map
in Chapter 10. Lou, your work has improved the learning quality of this
book, and we can’t thank you enough for your contributions.

Acknowledgements

Mary O’Brien

Lou Barr

Download at WoweBook.Com

���iv Intro

special thanks

Near the completion of this book, Laura Baldwin, the CFO of O’Reilly, encountered some
personal tragedy. It’s hard to know what to say in these situations, especially because Laura has
really become the backbone of O’Reilly in many ways. Laura, we are thinking and praying for you
and your family, and we wish you all the very, very best in the days to come. We know you’d want
nothing more than to see everyone at O’Reilly working harder than ever while you’re away.

This book is certainly a testament to the people at O’Reilly continuing to deliver, and in many of
our conversations, your name came up as someone we wanted to support, and not let down in any
way. Your effect on this company is extraordinary, and O’Reilly and the Head First series will all be
much better for the day you can return to us in full swing.

Special thanks

Download at WoweBook.Com

this is a new chapter 1

well-designed apps rock1

So how do you really write great software? It’s never easy

trying to figure out where to start. Does the application actually do what

it’s supposed to? And what about things like duplicate code—that can’t be

good, can it? It’s usually pretty hard to know what you should work on first,

and still make sure you don’t screw everything else up in the process. No

worries here, though. By the time you’re done with this chapter, you’ll know

how to write great software, and be well on your way to improving the way

you develop applications forever. Finally, you’ll understand why OOA&D is a

four-letter word that your mother actually wants you to know about.

Great Software
 Begins HereI can hardly get over it,

Sue, but since I started using
OOA&D, I’m just a new man... a

new man, I’ll tell you!

Download at WoweBook.Com

2 Chapter 1

Rock and roll is forever!
There’s nothing better than the sound of a killer guitar in the hands
of a great player, and Rick’s Guitars specializes in finding the perfect
instrument for his discerning customers.

the sounds of wood and steel

You wouldn’t believe
the selection we have here.

Come on in, tell us about what kind
of guitar you like, and we’ll find

you the perfect instrument,
guaranteed!

Meet Rick, guitar
aficionado, and owner of a
high-end guitar shop.

Just a few months ago, Rick decided to throw out his paper-based
system for keeping track of guitars, and start using a computer-based
system to store his inventory. He hired a popular programming firm,
Down and Dirty Coding, and they’ve already built him an inventory
management app. He’s even had the firm build him a new search
tool to help him match up a customer to their dream instrument.

Download at WoweBook.Com

well-designed apps rock

you are here 4 3

Rick’s shiny new application...
Here’s the application that the programming firm built for Rick... they’ve
put together a system to completely replace all of Rick’s handwritten
notes, and help him match his customers with the perfect guitar. Here’s
the UML class diagram they gave Rick to show him what they did:

Guitar
serialNumber: String
price: double
builder: String
model: String
type: String
backWood: String
topWood: String
getSerialNumber(): String
getPrice(): double
setPrice(float)
getBuilder(): String
getModel(): String
getType(): String
getBackWood(): String
getTopWood(): String

Inventory
guitars: List
addGuitar(String, double, String, String, String,
 String, String)
getGuitar(String): Guitar
search(Guitar): Guitar

Rick decided these are th
e defining

characteristics of a guit
ar: the serial number,

how much it costs, the builder
 and model,

what type it is (acoustic o
r electric), and

what woods are used in the guit
ar.

Each guitar in Rick’s
inventory is represented by

an
instance of this class.

Here’s Rick’s entire inventory, as well as a way for him to search for guitars.

This method takes in all of a guitar’s details, creates a Guitar object, and adds it to Rick’s inventory.

This method
takes a guitar’s
serial number,
and returns that
guitar’s object.

This is the search method; it takes in a client’s ideal guitar, and returns a guitar from Rick’s inventory that matches up with the client’s specs.

The inventory stores a list
of all the guitars that Rick
currently has available.

Here are
the variables
in the
Guitar class.

These are
the methods
for the
Guitar class.

New to Objectville?
If you’re new to object oriented programming, haven’t heard of UML before,
or aren’t sure about the diagram above, it’s OK! We’ve prepared a special

“Welcome to Objectville” care package for you to get you started. Flip to the
back of the book, and read Appendix II—we promise you’ll be glad you did.
Then come back here, and this will all make a lot more sense.

Encapsulation

In
he

ri
ta

nc
e

Po
ly

mo
rp

his
m

We’ve got some treats for you in Appendix II. Check it out before going on if you’re new to UML or OO programming.

Download at WoweBook.Com

4 Chapter 1

public class Guitar {

 private String serialNumber, builder, model, type, backWood, topWood;
 private double price;

 public Guitar(String serialNumber, double price,
 String builder, String model, String type,
 String backWood, String topWood) {
 this.serialNumber = serialNumber;
 this.price = price;
 this.builder = builder;
 this.model = model;
 this.type = type;
 this.backWood = backWood;
 this.topWood = topWood;
 }

 public String getSerialNumber() {
 return serialNumber;
 }

 public double getPrice() {
 return price;
 }
 public void setPrice(double newPrice) {
 this.price = newPrice;
 }
 public String getBuilder() {
 return builder;
 }
 public String getModel() {
 return model;
 }
 public String getType() {
 return type;
 }
 public String getBackWood() {
 return backWood;
 }
 public String getTopWood() {
 return topWood;
 }
}

Here what the code for
Guitar.java looks like
You’ve seen the class diagram for Rick’s application on the last
page; now let’s look at what the actual code for Guitar.java
and Inventory.java look like.

Guitar
serialNumber: String
price: double
builder: String
model: String
type: String
backWood: String
topWood: String
getSerialNumber(): String
getPrice(): double
setPrice(float)
getBuilder(): String
getModel(): String
getType(): String
getBackWood(): String
getTopWood(): String

class
Guitar {
 Gui-
tar()
}

Guitar.java

These are all the properties we saw from the class diagram for the Guitar class.

UML class diagrams don’t
show constructors; the Guitar
constructor does just what you’d
expect, though: sets all the initial
properties for a new Guitar.

You can see how
the class diagram
matches up with
the methods in the
Guitar class’s code.

rick’s initial application code

Download at WoweBook.Com

well-designed apps rock

you are here 4 5

public class Inventory {
 private List guitars;

 public Inventory() {
 guitars = new LinkedList();
 }

 public void addGuitar(String serialNumber, double price,
 String builder, String model,
 String type, String backWood, String topWood) {
 Guitar guitar = new Guitar(serialNumber, price, builder,
 model, type, backWood, topWood);
 guitars.add(guitar);
 }
 public Guitar getGuitar(String serialNumber) {
 for (Iterator i = guitars.iterator(); i.hasNext();) {
 Guitar guitar = (Guitar)i.next();
 if (guitar.getSerialNumber().equals(serialNumber)) {
 return guitar;
 }
 }
 return null;
 }
 public Guitar search(Guitar searchGuitar) {
 for (Iterator i = guitars.iterator(); i.hasNext();) {
 Guitar guitar = (Guitar)i.next();
 // Ignore serial number since that’s unique
 // Ignore price since that’s unique
 String builder = searchGuitar.getBuilder();
 if ((builder != null) && (!builder.equals(“”)) &&
 (!builder.equals(guitar.getBuilder())))
 continue;
 String model = searchGuitar.getModel();
 if ((model != null) && (!model.equals(“”)) &&
 (!model.equals(guitar.getModel())))
 continue;
 String type = searchGuitar.getType();
 if ((type != null) && (!searchGuitar.equals(“”)) &&
 (!type.equals(guitar.getType())))
 continue;
 String backWood = searchGuitar.getBackWood();
 if ((backWood != null) && (!backWood.equals(“”)) &&
 (!backWood.equals(guitar.getBackWood())))
 continue;
 String topWood = searchGuitar.getTopWood();
 if ((topWood != null) && (!topWood.equals(“”)) &&
 (!topWood.equals(guitar.getTopWood())))
 continue;
 }
 return null;
 }
}

Inventory
guitars: List
addGuitar(String, double, String, String, String,
 String, String)
getGuitar(String): Guitar
search(Guitar): Guitar class

Inven-
tory {

search()

Inventory.java

And Inventory.java...
Remember, we’ve stripped
out the import statements
to save some space.

addGuitar() takes in all the properties required to create a new Guitar instance, creates one, and adds it to the inventory.

This method is a bit of a mess...
it compares each property of the
Guitar object it’s passed in to each
Guitar object in Rick’s inventory.

Download at WoweBook.Com

6 Chapter 1

But then Rick started losing customers...
It seems like no matter who the customer is and what they like, Rick’s new search
program almost always comes up empty when it looks for good guitar matches. But
Rick knows he has guitars that these customers would like... so what’s going on?

public class FindGuitarTester {

 public static void main(String[] args) {
 // Set up Rick’s guitar inventory
 Inventory inventory = new Inventory();
 initializeInventory(inventory);

 Guitar whatErinLikes = new Guitar(“”, 0, “fender”, “Stratocastor”,
 “electric”, “Alder”, “Alder”);
 Guitar guitar = inventory.search(whatErinLikes);
 if (guitar != null) {
 System.out.println(“Erin, you might like this ” +
 guitar.getBuilder() + “ ” + guitar.getModel() + “ ”
 guitar.getType() + “ guitar:\n ” +
 guitar.getBackWood() + “ back and sides,\n ” +
 guitar.getTopWood() + “ top.\nYou can have it for only $” +
 guitar.getPrice() + “!”);
 } else {
 System.out.println(“Sorry, Erin, we have nothing for you.”);
 }
 }

 private static void initializeInventory(Inventory inventory) {
 // Add guitars to the inventory...
 }
}

class
FindGui-
tar {
 main()
}

FindGuitarTester.java

FindGuitarTester.java simulates a typical day for Rick now... a customer comes in, tells him what they like, and he runs a search on his inventory.

the case of the missing guitar

File Edit Window Help C7#5

%java FindGuitarTester

Sorry, Erin, we have nothing for you.

Here’s what happens when Erin
comes into Rick’s store, and Rick
tries to find her a guitar.

I’m sorry, Rick, I guess I’ll
just go to that other store

across town.

Erin is looking
for a Fender
“Strat” guitar,
made of Alder.

Download at WoweBook.Com

well-designed apps rock

you are here 4 7

How would you redesign Rick’s app?

Look over the last three pages, showing the code for Rick’s app, and the results
of running a search. What problems do you see? What would you change? Write
down the FIRST thing you’d do to improve Rick’s app in the blanks below.

Sharpen your pencil

But I know I have a killer
Fender Strat guitar. Look, it’s

right here:

 inventory.addGuitar(“V95693”,
 1499.95, “Fender”, “Stratocastor”,
 “electric”, “Alder”, “Alder”);

Here’s part of the code
that sets up Rick’s inventory.
Looks like he’s got the
perfect guitar for Erin.

These specs seem
to match up
perfectly with
what Erin asked
for... so what’s
going on?

Download at WoweBook.Com

8 Chapter 1

What’s the FIRST thing you’d change?
It’s obvious that Rick’s app has problems, but it’s not so obvious what we
should work on first. And it looks like there’s no shortage of opinion:

Guitar
serialNumber: String
price: double
builder: String
model: String
type: String
backWood: String
topWood: String
getSerialNumber(): String
getPrice(): double
setPrice(float)
getBuilder(): String
getModel(): String
getType(): String
getBackWood(): String
getTopWood(): String

Inventory
guitars: List
addGuitar(String, double, String, String, String,
 String, String)
getGuitar(String): Guitar
search(Guitar): Guitar

Look at all those Strings!
That’s terrible... can’t we use

constants or objects instead?

Whoa... these notes from the
owner says he wants his clients

to have multiple choices. Shouldn’t
the search() method return a list of

matches?

This design is terrible! The
Inventory and Guitar classes

depend on each other too much, and I
can’t see how this is an architecture

that you’d ever be able to
build upon. We need some

restructuring.

Joe’s fairly new
to programming,
but he’s a big
believer in
writing object-
oriented code.

Frank’s been around for a while and really knows his OO principles and design patterns.

Jill’s got a rep for always
delivering exactly what
the customer wants.

how do you write great software?

What would you do first?

Download at WoweBook.Com

How am I supposed to know where to start? I
feel like every time I get a new project to work

on, everyone’s got a different opinion about what
to do first. Sometimes I get it right, and sometimes I

end up reworking the whole app because I started in the
wrong place. I just want to write great software!

So what should I do first in Rick’s app?

How do you
write great
software,
every time?

well-designed apps rock

you are here 4 9

Download at WoweBook.Com

10 Chapter 1

Wait a second... I hate
to butt in, but what does “great
software” mean? That’s sort of a
vague term to be throwing around,

isn’t it?

what does great software mean?

Good question... and there are
lots of different answers:

The customer-friendly programmer says:

“Great software always does what the customer
wants it to. So even if customers think of new
ways to use the software, it doesn’t
break or give them unexpected results.”

The object-oriented programmer says:
“Great software is code that is object-oriented.
So there’s not a bunch of duplicate code, and
each object pretty much controls its own
behavior. It’s also easy to extend because your
design is really solid and flexible.”

Guitar
serialNumber: String
price: double
spec: GuitarSpec
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): GuitarSpec

Builder
toString(): String Type

toString(): String Wood
toString(): String

Inventory
guitars: Guitar [*]
addGuitar(String, double, Builder, String, Type,
 Wood, Wood)
getGuitar(String): Guitar
search(GuitarSpec): Guitar [*]

GuitarSpec
builder: Builder
model: String
type: Type
backWood: Wood
topWood: Wood
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood

The design-guru programmer says:

“Great software is when you use tried-and-true
design patterns and principles. You’ve kept your
objects loosely coupled, and your code open for
extension but closed for modification. That also
helps make the code more reusable, so you
don’t have to rework everything to use parts of
your application over and over again.”

This approach is all
about making sure the
customer is happy with
what their app does.

Good OO programmers are always looking for ways to make their code more flexible.

This design-focused approach optimizes code for extension and reuse, and takes advantages of design patterns and proven OO techniques.

Not sure about what all
that means? It’s OK... you’ll
learn about all these things
in the upcoming chapters.

Download at WoweBook.Com

well-designed apps rock

you are here 4 11

What do you think “great software” means?

You’ve seen what several different types of programmers think
great software is... so who is right? Or do you have your own
definition of what makes an application great? It’s your turn to write
down what you think makes for great software:

Sharpen your pencil

 says:

“

 ”

Write your name here... ...and write what you think great software means here.

Download at WoweBook.Com

12 Chapter 1

Great software is...
more than just one thing
It’s going to take more than just a simple definition to
figure out exactly what “great software” means. In fact,
all of the different programmers on page 10 talked
about a part of what makes software great.

First, great software must satisfy
the customer. The software must
do what the customer wants it to do.

Building software that works right is great, but what
about when it’s time to add to your code, or reuse it
in another application? It’s not enough to just have
software that works like the customer wants it to; your
software better be able to stand the test of time.

Second, great software is
well-designed, well-coded, and
easy to maintain, reuse, and extend.

Win your customers over
Customers will think your software
is great when it does what it’s
supposed to do.

Make your code as
smart as you are.
You (and your co-workers) will think
your software is great when it’s easy
to maintain, reuse, and extend.

great software satisfies the customer and the programmer

Wow, if my code could do all
that, then it really would be great

software! I even think I see how you
could turn this into a few simple steps

that work on every project.

Download at WoweBook.Com

well-designed apps rock

you are here 4 13

1. Make sure your
software does what the
customer wants it to do.

2. Apply basic
OO principles to
add flexibility.

3. Strive for a
maintainable,
reusable design.

Great software in 3 easy steps

It may not seem easy now, but

we’ll show you how OOA&D and

some basic principles can ch
ange

your software forever.

This step focuses on the customer. Make sure the app does what it’s supposed to do FIRST. This is where getting good requirements and doing some analysis comes in.

Once your software works, you
can look for any duplicate code
that might have slipped in, and
make sure you’re using good OO
programming techniques.

Got a good object-oriented app that does what it should? It’s time to apply patterns and principles to make sure your software is ready to use for years to come.

Download at WoweBook.Com

14 Chapter 1

applying the steps

Remember Rick? Remember his lost customers?
Let’s put our ideas about how to write great software to the test and see if they hold
up in the real world. Rick’s got a search tool that isn’t working, and it’s your job to
fix the application, and turn it into something great. Let’s look back at the app and
see what’s going on:

public class FindGuitarTester {

 public static void main(String[] args) {
 // Set up Rick’s guitar inventory
 Inventory inventory = new Inventory();
 initializeInventory(inventory);

 Guitar whatErinLikes = new Guitar(“”, 0, “fender”, “Stratocastor”,
 “electric”, “Alder”, “Alder”);
 Guitar guitar = inventory.search(whatErinLikes);
 if (guitar != null) {

 inventory.addGuitar(“V95693”,
 1499.95, “Fender”, “Stratocastor”,
 “electric”, “Alder”, “Alder”);

Rick’s app should
match Erin’s
preferences here... ...to this

guitar
in Rick’s
inventory.

1. Make sure your
software does what the
customer wants it to do.

2. Apply basic
OO principles to
add flexibility.

3. Strive for a
maintainable,
reusable design.

Remember, we
need to start out
by making sure the
app actually does
what Rick wants...
and it’s definitely
not doing that
right now.

Here’s our
test program
that reveals
a problem
with the
search tool.

So let’s apply our 3 steps:

Don’t worry too much about trying to apply patterns or other OO techniques to your app at this point... just get it to where it’s working like it should.

class
FindGui-
tar {
 main()
}

FindGuitarTester.java

Download at WoweBook.Com

well-designed apps rock

you are here 4 15

Frank: Sure, that would fix the problem Rick’s having now, but
I think there’s probably a better way to make this work than just
calling toLowerCase() on a bunch of strings all over the place.

Joe: Yeah, I was thinking the same thing. I mean, all that string
comparison seems like a bad idea. Couldn’t we use constants or
maybe some enumerated types for the builders and woods?

Jill: You guys are thinking way too far ahead. Step 1 was
supposed to be fixing the app so it does what the customer
wants it to do. I thought we weren’t supposed to worry about
design yet.

Frank: Well, yeah, I get that we’re supposed to focus on the
customer. But we can at least be smart about how we fix things,
right? I mean, why create problems we’ll have to come back and
fix later on if we can avoid them from the start?

Jill: Hmmm... I guess that does make sense. We don’t want our
solution to this problem creating new design problems for us
down the road. But we’re still not going to mess with the other
parts of the application, right?

Frank: Right. We can just remove all those strings, and the
string comparisons, to avoid this whole case-matching thing.

Joe: Exactly. If we go with enumerated types, we can ensure
that only valid values for the builder, woods, and type of guitar
are accepted. That’ll make sure that Rick’s clients actually get to
look at guitars that match their preferences.

Jill: And we’ve actually done a little bit of design at the same
time... very cool! Let’s put this into action.

Joe

Frank

If we’re starting with functionality,
let’s figure out what’s going on with

that broken search() method. It looks like
in Rick’s inventory, he’s got “Fender” with a
capital “F,” and the customer’s specs have
“fender” all lowercase. We just need to do a

case-insensitive string comparison in the
search() method.

Let’s get a little help from some of our programmer buddies.

Don’t create
problems to
solve problems.

Jill

Download at WoweBook.Com

16 Chapter 1

Ditching String comparisons
The first improvement we can make to Rick’s guitar search tool is getting
rid of all those annoying String comparisons. And even though you could
use a function like toLowerCase() to avoid problems with uppercase
and lowercase letters, let’s avoid String comparisons altogether:

public enum Type {

 ACOUSTIC, ELECTRIC;

 public String toString() {
 switch(this) {
 case ACOUSTIC: return “acoustic”;
 case ELECTRIC: return “electric”;
 default: return “unspecified”;
 }
 }
}

enum
Type {
 to-
String()
}

Type.java
public enum Builder {

 FENDER, MARTIN, GIBSON, COLLINGS,
 OLSON, RYAN, PRS, ANY;

 public String toString() {
 switch(this) {
 case FENDER: return “Fender”;
 case MARTIN: return “Martin”;
 case GIBSON: return “Gibson”;
 case COLLINGS: return “Collings”;

enum
Builder{
 to-
String()
}

Builder.java

public enum Wood {

 INDIAN_ROSEWOOD, BRAZILIAN_ROSEWOOD, MAHOGANY,
 MAPLE, COCOBOLO, CEDAR, ADIRONDACK, ALDER, SITKA;

 public String toString() {
 switch(this) {
 case INDIAN_ROSEWOOD:
 return “Indian Rosewood”;
 case BRAZILIAN_ROSEWOOD:
 return “Brazilian Rosewood”; enum

Wood {
 to-
String()
}

Wood.java

These are all Java enums, enumerated types that function sort of like constants.

We can refer to t
hese

as Wood.SITKA, or

Builder.GIBSON, and

avoid all those st
ring

comparisons completely.

Q: I’ve never seen an enum before. What is that, exactly?

A: Enums are enumerated types. They’re available in C, C++,
Java version 5.0 and up, and will even be a part of Perl 6.

Enumerated types let you define a type name, like Wood, and then
a set of values that are allowed for that type (like COCOBOLO,
SITKA, and MAHOGANY). Then, you refer to a specific value like
this: Wood.COCOBOLO.

Q: And why are enumerated types so helpful here?

Dumb Questions
there are no

Each enum
takes the
place of one
of the guitar
properties
that is
standard
across
all guitars.

One of the big advantages of using enums is that it limits the possible values you can supply to a method... no more misspellings or case issues.

step 1: satisfy the customer

Download at WoweBook.Com

well-designed apps rock

you are here 4 17

A: The cool thing about enums is that methods or classes that
use them are protected from any values not defined in the enum.
So you can’t misspell or mistype an enum without getting a compiler
error. It’s a great way to get not only type safety, but value safety; you
can avoid getting bad data for anything that has a standard range or
set of legal values.

Q: I’m using an older version of Java. Am I stuck?

A: No, not at all. Visit the Head First Labs web site at http://
www.headfirstlabs.com, where we’ve posted a version of
Rick’s Guitars that doesn’t use enums, and will work with older JDKs.

public class FindGuitarTester {

 public static void main(String[] args) {
 // Set up Rick’s guitar inventory
 Inventory inventory = new Inventory();
 initializeInventory(inventory);

 Guitar whatErinLikes = new Guitar(“”, 0, Builder.FENDER,
 “Stratocastor”, Type.ELECTRIC, Wood.ALDER, Wood.ALDER);
 Guitar guitar = inventory.search(whatErinLikes);
 if (guitar != null) {

We can replace all those String preferences with the new enumerated type values.

The only String
left is for the
model, since
there really isn’t
a limited set of
these like there
is with builders
and wood.

 public Guitar search(Guitar searchGuitar) {
 for (Iterator i = guitars.iterator(); i.hasNext();) {
 Guitar guitar = (Guitar)i.next();
 // Ignore serial number since that’s unique
 // Ignore price since that’s unique
 if (searchGuitar.getBuilder() != guitar.getBuilder())
 continue;
 String model = searchGuitar.getModel().toLowerCase();
 if ((model != null) && (!model.equals(“”)) &&
 (!model.equals(guitar.getModel().toLowerCase())))
 continue;
 if (searchGuitar.getType() != guitar.getType())
 continue;
 if (searchGuitar.getBackWood() != guitar.getBackWood())
 continue;
 if (searchGuitar.getTopWood() != guitar.getTopWood())
 continue;
 return guitar;
 }
 return null;
 } class

Inven-
tory {
search()
}

Inventory.java

It looks like
nothing has
changed, but
with enums, we
don’t have to
worry about
these comparisons
getting screwed
up by misspellings
or case issues.

The only
property
that we need
to worry
about case on
is the model,
since that’s
still a String.

class
FindGui-
tar {
 main()
}

FindGuitarTester.java

Download at WoweBook.Com

18 Chapter 1

Guitar
serialNumber: String
price: double
builder: Builder
model: String
type: Type
backWood: Wood
topWood: Wood
getSerialNumber(): String
getPrice(): double
setPrice(float)
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood

Inventory
guitars: List
addGuitar(String, double, Builder, String, Type,
 Wood, Wood)
getGuitar(String): Guitar
search(Guitar): Guitar

Let’s take a look at the big picture:

Builder
toString(): String Type

toString(): String Wood
toString(): String

The Guitar class uses these
enumerated types to represent
data, in a way that won’t get
screwed up by case issues or
errors in spelling.

Now the addGuitar() method takes in several enums, instead of Strings or integer constants.

Even though it
looks like nothing’s
changed in search(),
now we’re using
enums to make sure
we don’t miss any
matches because
of spelling or
capitalization.

We’ve replaced
most of those
String properties
with enumerated
types.

The serial number
is still unique, and
we left model as a
String since there
are thousands of
different guitar
models out there...
way too many for an
enum to be helpful.

So what have we really done here?

We’ve gotten a lot closer to completing step 1
in building great software. Rick’s problem with
searches coming up empty when he’s got a matching
guitar in his inventory is a thing of the past.

Even better, we’ve made Rick’s application less
fragile along the way. It’s not going to break so
easily now, because we’ve added both type safety
and value safety with these enums. That means less
problems for Rick, and less maintenance for us.

fragile apps break easily

Here are our
enumerated types.

1. Make sure your
software does what the
customer wants it to do.

Code that is not fragile
is generally referred to as
robust code.

Download at WoweBook.Com

well-designed apps rock

you are here 4 19

Q: So it’s OK to do a little design
when I’m working on Step 1, right?

A: Yeah, as long as your focus is
still on the customer’s needs. You want
the basic features of your application in
place before you start making big design
changes. But while you’re working on
functionality, you can certainly use good
OO principles and techniques to make
sure your application is well designed
from the start.

Q: That diagram over on page
18 is a class diagram right? Or is it
class diagrams, since it’s more than
one class?

A: It is a class diagram, and a single
diagram can have multiple classes in it.
In fact, class diagrams can show a lot
more detail than you’ve seen so far, and
we’ll be adding to them in the next several
chapters.

Q: So we’re ready to move on
to Step 2, and start applying OO
principles, right?

A: Not quite... there’s one more
thing Rick would like us to help him with
before we’re ready to start analyzing
our code for places we might be able to
improve it. Remember, our first job is to
please the customer, and then we really
focus on improving our OO design.

Dumb Questions
there are no

Apply Step 1 to your own project.

It’s time to see how you can satisfy your own customers. In the
blank below, write a short description of the current project you’re
working on (you can also use a project you finished recently):

Now, write down the first thing you did when you started working on
this project. Did it have anything to do with making sure your code
did what the customer wanted it to?

If you started out focusing on something other than the customer,
think about how you might have approached things differently if
you knew about the 3 steps to building great software. What would
have been different? Do you think your application would be any
better or worse than it is right now?

Sharpen your pencil

Download at WoweBook.Com

20 Chapter 1

 inventory.addGuitar(“V95693”,
 1499.95, Builder.FENDER,
 “Stratocastor”, Type.ELECTRIC,
 Wood.ALDER, Wood.ALDER);

So I thought this was
perfect, but then I realized...

I have two guitars that Erin would
love. Could you make the search

tool return both of them?

similar, but different

 inventory.addGuitar(“V9512”,
 1549.95, Builder.FENDER,
 “Stratocastor”, Type.ELECTRIC,
 Wood.ALDER, Wood.ALDER);

These guitars are almost
exactly the same. Only
the serial number and
price are different.

Rick’s happy with your improvements but he really needs the app to return all matching guitars, not just one.

Rick would really like Erin to be able to check out both of these guitars.

Download at WoweBook.Com

well-designed apps rock

you are here 4 21

Rick’s customers want choices!
Rick’s come up with a new requirement for his app: he wants his
search tool to return all the guitars that match his client’s specs, not
just the first one in his inventory.

Let’s continue with Step 1, and make sure we’ve got the app working right. Below
is the code for the search() method in Rick’s inventory tool, but it’s up to you to fill
in the missing pieces. Use the code magnets at the bottom of the page to return
all the matching guitars from Rick’s inventory.

Code Magnets

 public ______ search(Guitar searchGuitar) {
 ______ ______________ = new __________();
 for (Iterator i = guitars.iterator(); i.hasNext();) {
 Guitar guitar = (Guitar)i.next();
 // Ignore serial number since that’s unique
 // Ignore price since that’s unique
 if (searchGuitar.getBuilder() != guitar.getBuilder())
 continue;
 String model = searchGuitar.getModel();
 if ((model != null) && (!model.equals(“”)) &&
 (!model.equals(guitar.getModel())))
 continue;
 if (searchGuitar.getType() != guitar.getType())
 continue;
 if (searchGuitar.getBackWood() != guitar.getBackWood())
 continue;
 if (searchGuitar.getTopWood() != guitar.getTopWood())
 continue;
 ______________._____(___________);
 }
 return _______________;
 }

List

List

LinkedList

LinkedList
List

matchingGuitars

matchingGuitars
matchingGuitars

matchingGuitarsadd

List guitar

guitar

Inventory
guitars: List
addGuitar(String, double, Builder, String, Type,
 Wood, Wood)
getGuitar(String): Guitar
search(Guitar): List

We want search() to be able to return multiple Guitar objects if Rick has more than one guitar that matches his client’s specs.

ArrayList
ArrayList

Download at WoweBook.Com

22 Chapter 1

Let’s keep on with Step 1, and make sure we’ve got the app working right. Below is
the code for the search() method in Rick’s inventory tool, but it’s up to you to fill in
the missing pieces. Use the code magnets at the bottom of the page to return all
the matching guitars from Rick’s inventory.

Code Magnets

 public ______ search(Guitar searchGuitar) {
 ______ ______________ = new __________();
 for (Iterator i = guitars.iterator(); i.hasNext();) {
 Guitar guitar = (Guitar)i.next();
 // Ignore serial number since that’s unique
 // Ignore price since that’s unique
 if (searchGuitar.getBuilder() != guitar.getBuilder())
 continue;
 String model = searchGuitar.getModel();
 if ((model != null) && (!model.equals(“”)) &&
 (!model.equals(guitar.getModel())))
 continue;
 if (searchGuitar.getType() != guitar.getType())
 continue;
 if (searchGuitar.getBackWood() != guitar.getBackWood())
 continue;
 if (searchGuitar.getTopWood() != guitar.getTopWood())
 continue;
 ______________._____(___________);
 }
 return _______________;
 }

List

List

LinkedList

LinkedList

List

matchingGuitars
matchingGuitars

matchingGuitars

matchingGuitars add

List

guitar
guitar

ArrayList

ArrayList

You actually could
have used either a
LinkedList or an
ArrayList here...
both choices are OK.

Leftover magnets.

Matching guitars
get added to the
list of options
for Rick’s client.

maintenance, design, and requirements

Q: So I’m not done with the first
step until the application works like my
customer wants it to?

A: Exactly. You want to make sure that
the application works like it should before
you dive into applying design patterns or
trying to do any real restructuring of how the
application is put together.

Q: And why is it so important to
finish Step 1 before going on to Step 2?

A: You’re going to make lots of
changes to your software when you’re
getting it to work right. Trying to do too much
design before you’ve at least got the basic
functionality down can end up being a waste,
because a lot of the design will change as
you’re adding new pieces of functionality to
your classes and methods.

Q: You seem sort of hung up on this
“Step 1” and “Step 2” business. What if I
don’t code my apps that way?

A: There’s nothing that says you have
to follow these steps exactly, but they do
provide an easy path to follow to make
sure your software does what it’s supposed
to, and is well-designed and easy to
reuse. If you’ve got something similar that
accomplishes the same goals, that’s great!

Dumb Questions
there are no

Download at WoweBook.Com

well-designed apps rock

you are here 4 23

Test drive
We’ve talked a lot about getting the right requirements from the
customer, but now we need to make sure we’ve actually got those
requirements handled by our code. Let’s test things out, and see if our
app is working like Rick wants it to:

public class FindGuitarTester {

 public static void main(String[] args) {
 // Set up Rick’s guitar inventory
 Inventory inventory = new Inventory();
 initializeInventory(inventory);

 Guitar whatErinLikes = new Guitar(“”, 0, Builder.FENDER,
 “Stratocastor”, Type.ELECTRIC,
 Wood.ALDER, Wood.ALDER);
 List matchingGuitars = inventory.search(whatErinLikes);
 if (!matchingGuitars.isEmpty()) {
 System.out.println(“Erin, you might like these guitars:”);
 for (Iterator i = matchingGuitars.iterator(); i.hasNext();) {
 Guitar guitar = (Guitar)i.next();
 System.out.println(“ We have a “ +
 guitar.getBuilder() + “ “ + guitar.getModel() + “ “ +
 guitar.getType() + “ guitar:\n “ +
 guitar.getBackWood() + “ back and sides,\n “ +
 guitar.getTopWood() + “ top.\n You can have it for only $” +
 guitar.getPrice() + “!\n ----”);
 }
 } else {
 System.out.println(“Sorry, Erin, we have nothing for you.”);
 }
 }

Here’s
the test
program,
updated
to use the
new version
of Rick’s
search tool.

We’re using enumerated types in this test drive. No typing mistakes this time!

Yes! That’s exactly what I
want it to do.

Everything worked! Erin gets
several guitar recommendations,
and Rick’s customers are going
to start buying guitars again.

File Edit Window Help SweetSmell

%java FindGuitarTester
Erin, you might like these guitars:
 We have a Fender Stratocastor electric guitar:
 Alder back and sides,
 Alder top.
 You can have it for only $1499.95!

 We have a Fender Stratocastor electric guitar:
 Alder back and sides,
 Alder top.
 You can have it for only $1549.95!

This time
we get a
whole list
of guitars
that match
the client’s
specs.

In this new
version, we need
to iterate over
all the choices
returned from
the search tool.

class
FindGui-
tar {
 main()
}

FindGuitarTester.java

Download at WoweBook.Com

24 Chapter 1

2. Apply basic
OO principles to
add flexibility.

1. Make sure your
software does what the
customer wants it to do.

3. Strive for a
maintainable,
reusable design.

Back to our steps
Now that Rick’s all set with our software, we can begin to use some
OO principles and make sure the app is flexible and well-designed.

apply your oo principles

So this is where we can
make sure there’s no duplicate

code, and all our objects are well
designed, right?

Here’s where you take
software that works, and
make sure the way it’s put
together actually makes sense.

Now that the app does what
Rick wants, we’re finished up
with this step.

Download at WoweBook.Com

well-designed apps rock

you are here 4 25

Is anything wrong here? What
problems might there be with
Rick’s search tool?

brain
power?

Looking for problems
Let’s dig a little deeper into our search tool, and see if we can find any
problems that some simple OO principles might help improve. Let’s start by
taking a closer look at how the search() method in Inventory works:

Each guitar in
Rick’s inventory
is compared
against the specs
in the client’s
Guitar object.

The client provides a set of specs
for their ideal guitar, in the
form of a Guitar object.

null, null,
Builder.MARTIN
Type.ACOUSTIC
"OM-18"
Wood.MAHOGANY
Wood.ADIRONDACK

Guitar
The client doesn’t provide a price or serial number, since those are unique to each particular guitar. She just provides specs to match on.

I’m looking for a Martin
acoustic guitar... you got

anything, Rick?

class
Inven-
tory {

search()

Inventory.java

search()

Guitar
Guitar

Guitar
Guitar

There’s a Guitar object for each
guitar in Rick’s inventory, storing
the serial number, price, and
specs for each instrument.

Hint: Think about what each object
is named, and compare that to its
function. Anything seem odd?

The search() method is
called with the specs from
the client, and begins a
search on Rick’s inventory.

Download at WoweBook.Com

26 Chapter 1

Analyze the search() method
Let’s spend a little time analyzing exactly what goes on in the
search() method of Inventory.java. Before we look at
the code, though, let’s think about what this method should do.

The client can specify only
general properties of an
instrument. So they never supply
a serial number or a price.

The client provides their guitar preferences.1

Each of Rick’s clients has some properties that they’re interested
in finding in their ideal guitar: the woods used, or the type of
guitar, or a particular builder or model. They provide these
preferences to Rick, who feeds them into his inventory search tool.

The search tool looks through Rick’s inventory.2

Once the search tool knows what Rick’s client wants, it starts to
loop through each guitar in Rick’s inventory.

Each guitar is compared to the client’s preferences.3

For each guitar in Rick’s inventory, the search tool sees if that
guitar matches the client’s preferences. If there’s a match, the
matching guitar is added to the list of choices for the client.

analysis of the search() method

Rick’s client is given a list of matching guitars.4

Finally, the list of matching guitars is returned to Rick and his
client. The client can make a choice, and Rick can make a sale.

All the general properties, like the top wood and guitar builder, are compared to the client’s preferences.

Use a textual description of the problem
you’re trying to solve to make sure that
your design lines up with the intended
functionality of your application.

Download at WoweBook.Com

well-designed apps rock

you are here 4 27

The Mystery
of the
Mismatched

Object
Type

In the better-designed areas of Objectville, objects
are very particular about their jobs. Each object is
interested in doing its job, and only its job, to the best
of its ability. There’s nothing a well-designed object
hates more than being used to do something that really
isn’t its true purpose.

Unfortunately, it’s come to our attention that this is
exactly what is happening in Rick’s inventory search
tool: somewhere, an object is being used to do
something that it really shouldn’t be doing. It’s your job
to solve this mystery and figure out how we can get
Rick’s application back in line.

To help you figure out what’s gone amiss, here are
some helpful tips to start you on your search for the
mismatched object type:

1. Objects should do what their names indicate.
If an object is named Jet, it should probably takeOff()
and land(), but it shouldn’t takeTicket()—that’s the job
of another object, and doesn’t belong in Jet.

2. Each object should represent a single concept.
You don’t want objects serving double or triple duty.
Avoid a Duck object that represents a real quacking
duck, a yellow plastic duck, and someone dropping
their head down to avoid getting hit by a baseball.

3. Unused properties are a dead giveaway.
If you’ve got an object that is being used with no-value
or null properties often, you’ve probably got an object
doing more than one job. If you rarely have values for a
certain property, why is that property part of the object?
Would there be a better object to use with just a subset
of those properties?

What do you think the mismatched object type is? Write your answer in the blank below:

What do you think you should do to fix the problem? What changes would you make?

STOP! Try and solve
this mystery before
turning the page.

Download at WoweBook.Com

28 Chapter 1

Frank: Hey, that’s right, Joe. I hadn’t thought about that before.

Jill: So what? Using a Guitar object makes it really easy to do
comparisons in the search() method.

Joe: Not any more than some other object would. Look:

Joe: It really doesn’t matter what type of object we’re using there, as
long as we can figure out what specific things Rick’s clients are looking
for.

Frank: Yeah, I think we should have a new object that stores just the
specs that clients want to send to the search() method. Then they’re not
sending an entire Guitar object, which never seemed to make much
sense to me.

Jill: But isn’t that going to create some duplicate code? If there’s an
object for all the client’s specs, and then the Guitar has all its properties,
we’ve got two getBuilder() methods, two getBackWood() methods...
that’s not good.

Frank: So why don’t we just encapsulate those properties away from
Guitar into a new object?

Joe: Whoa... I was with you until you said “encapsulate.” I thought
that was when you made all your variables private, so nobody could use
them incorrectly. What’s that got to do with a guitar’s properties?

Frank: Encapsulation is also about breaking your app into logical
parts, and then keeping those parts separate. So just like you keep the
data in your classes separate from the rest of your app’s behavior, we
can keep the generic properties of a guitar separate from the actual
Guitar object itself.

Jill: And then Guitar just has a variable pointing to a new object type
that stores all its properties?

Frank: Exactly! So we’ve really encapsulated the guitar properties out
of Guitar, and put them in their own separate object. Look, we could
do something like this...

You know, Rick’s clients really
aren’t providing a Guitar object...

I mean, they don’t actually give him
a guitar to compare against his

inventory.

 if (searchGuitar.getBuilder() !=
 guitar.getBuilder()) {
 continue;
 }

duplicate code sucks

A small
fragment
from the
search()
method in
Inventory.

Encapsulation
allows you to
hide the inner
workings of your
application’s
parts, but yet
make it clear
what each part
does.

New to encapsulation? Flip

ahead to Appendix II, read

that short introducti
on to

Objectville, and then co
me

back here and keep re
ading.

Download at WoweBook.Com

well-designed apps rock

you are here 4 29

Create the GuitarSpec object.

Below, you’ll see the class diagram for Guitar, and the new GuitarSpec object that Frank, Jill, and
Joe have been discussing. It’s your job to add all the properties and methods that you think you’ll
need to GuitarSpec. Then, cross out anything you don’t need anymore in the Guitar class. Finally,
we’ve left you some space in the Guitar class diagram in case you think you need to add any new
properties or methods. Good luck!

Sharpen your pencil

Guitar
serialNumber: String
price: double
builder: Builder
model: String
type: Type
backWood: Wood
topWood: Wood

getSerialNumber(): String
getPrice(): double
setPrice(float)
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood

GuitarSpec

Move anything
out of the
Guitar object
that you think
belongs in the new
GuitarSpec class.

You can add
extra properties and methods to
Guitar if you
think you need to.

* If you get stuck, think about the things that are
common between the Guitar object and what a
client would supply to the search() method.

Download at WoweBook.Com

30 Chapter 1

Create the GuitarSpec object.

Below you’ll see the class diagram for Guitar, and the new GuitarSpec object
that Frank, Jill, and Joe have been discussing. It’s your job to add all the
properties and methods that you think you’ll need to GuitarSpec. See if you
made the same changes that we did.

Guitar
serialNumber: String
price: double
builder: Builder
model: String
type: Type
backWood: Wood
topWood: Wood

getSerialNumber(): String
getPrice(): double
setPrice(float)
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood

GuitarSpec

spec: GuitarSpec

getSpec(): GuitarSpec

builder: Builder
model: String
type: Type
backWood: Wood
topWood: Wood

getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood

answers
Sharpen your pencil

These are the
properties
that Rick’s
clients supply
to search(), so
we can move
them into
GuitarSpec.

These two properties are
still unique to each Guitar,
so they stay.

We also need a
reference to
a GuitarSpec
object for
each guitar.

The methods follow the same pattern
as the properties: we remove any
duplication between the client’s specs
and the Guitar object.

We’ve removed
duplicated
code by moving
all the common
properties-
and related
methods-into
an object that
we can use for
both search
requests and
guitar details.

encapsulate what varies

Now update your own code
With this class diagram, you should be able to add the
GuitarSpec class to your application, and update the Guitar
class as well. Go ahead and make any changes you need to
Inventory.java so that the search tool compiles, as well.

Download at WoweBook.Com

well-designed apps rock

you are here 4 31

Q: I understand why we need an object for the client
to send specs to search()... but why are we using that
object to hold properties for Guitar, too?

A: Suppose you just used GuitarSpec to hold client
specs for sending to the search() method, and you kept
the Guitar class just the same as it was. If Rick started
carrying 12-string guitars, and wanted a numStrings
property, you’d have to add that property—and code for a
getNumStrings() method—to both the GuitarSpec
and Guitar classes. Can you see how this would lead to
duplicate code?
Instead, we can put all that (potentially) duplicate code into
the GuitarSpec class, and then have Guitar objects
reference an instance of it to avoid any duplication.

Anytime you see
duplicate code, look for a

place to encapsulate!
Q: I still am confused about how this is a form of
encapsulation. Can you explain that again?

A: The idea behind encapsulation is to protect information
in one part of your application from the other parts of your
application. In its simplest form, you can protect the data
in your class from the rest of your app by making that data
private. But sometimes the information might be an entire
set of properties—like the details about a guitar—or even
behavior—like how a particular type of duck flies.
When you break that behavior out from a class, you can
change the behavior without the class having to change as
well. So if you changed how properties were stored, you
wouldn’t have to change your Guitar class at all, because
the properties are encapsulated away from Guitar.
That’s the power of encapsulation: by breaking up the different
parts of your app, you can change one part without having to
change all the other parts. In general, you should encapsulate
the parts of your app that might vary away from the parts that
will stay the same.

Dumb Questions
there are no

2. Apply basic
OO principles to
add flexibility.

1. Make sure your
software does
what the customer
wants it to do.

3. Strive for a
maintainable,
reusable design.

Here’s what we’re doing
now: working on design.

This is where
you look for big
problems, especially
related to things
like duplicate code
or bad class design.

Remember, we’ve got even
more design work to do in this
step, so before you’re done,
your software is really easy to
extend and reuse.

Let’s see how we’re coming along on
our three steps to great software.

Download at WoweBook.Com

32 Chapter 1

Update the Inventory class
Now that we’ve encapsulated away the specifications of a guitar,
we’ll need to make a few other changes to our code.

Inventory
guitars: List
addGuitar(String, double, Builder, String, Type,
 Wood, Wood)
getGuitar(String): Guitar
search(GuitarSpec): List

Now search() takes a
GuitarSpec, instead of an
entire Guitar object.

public class Inventory {

 // variables, constructor, and other methods

 public List search(GuitarSpec searchSpec) {
 List matchingGuitars = new LinkedList();
 for (Iterator i = guitars.iterator(); i.hasNext();) {
 Guitar guitar = (Guitar)i.next();
 GuitarSpec guitarSpec = guitar.getSpec();
 if (searchSpec.getBuilder() != guitarSpec.getBuilder())
 continue;
 String model = searchSpec.getModel().toLowerCase();
 if ((model != null) && (!model.equals(“”)) &&
 (!model.equals(guitarSpec.getModel().toLowerCase())))
 continue;
 if (searchSpec.getType() != guitarSpec.getType())
 continue;
 if (searchSpec.getBackWood() != guitarSpec.getBackWood())
 continue;
 if (searchSpec.getTopWood() != guitarSpec.getTopWood())
 continue;
 matchingGuitars.add(guitar);
 }
 return matchingGuitars;
 }
}

All of the information

we use in comparing
guitars is in GuitarSpec

now, not the Guitar class.

This code is almost the same as it was before, except now we’re using information in the
GuitarSpec object.

Even though we changed our

classes a bit, this method still

returns a list of guitars th
at

match the client’s specs.

updating the inventory

class
Inven-
tory {

search()

Inventory.java

Download at WoweBook.Com

well-designed apps rock

you are here 4 33

public class FindGuitarTester {

 public static void main(String[] args) {
 // Set up Rick’s guitar inventory
 Inventory inventory = new Inventory();
 initializeInventory(inventory);

 GuitarSpec whatErinLikes =
 new GuitarSpec(Builder.FENDER, “Stratocastor”, Type.ELECTRIC,
 Wood.ALDER, Wood.ALDER);
 List matchingGuitars = inventory.search(whatErinLikes);
 if (!matchingGuitars.isEmpty()) {
 System.out.println(“Erin, you might like these guitars:”);
 for (Iterator i = matchingGuitars.iterator(); i.hasNext();) {
 Guitar guitar = (Guitar)i.next();
 GuitarSpec spec = guitar.getSpec();
 System.out.println(“ We have a ” +
 spec.getBuilder() + “ ” + spec.getModel() + “ ” +
 spec.getType() + “ guitar:\n ” +
 spec.getBackWood() + “ back and sides,\n ” +
 spec.getTopWood() + “ top.\n You can have it for only $” +
 guitar.getPrice() + “!\n ----”);
 }
 } else {
 System.out.println(“Sorry, Erin, we have nothing for you.”);
 }
 }

 private static void initializeInventory(Inventory inventory) {
 // Add guitars to the inventory...
 }
}

This time, the
client sends a
GuitarSpec to
search().

We’re using the new
GuitarSpec class
here as well.

Getting ready for another
test drive
You’ll need to update the FindGuitarTester
class to test out all these new changes:

You can download the current version of Rick’s search tool at
http://www.headfirstlabs.com. Just look for Head First OOA&D,
and find “Rick’s Guitars (with encapsulation)”.

Get online

class
FindGui-
tar {
 main()
}

FindGuitarTester.java

Download at WoweBook.Com

34 Chapter 1

using object-oriented principles

Q: Encapsulation isn’t the only OO principle I can use at
this stage, is it?

A: Nope. Other good OO principles that you might want to think
about at this stage are inheritance and polymorphism. Both of these
relate to duplicate code and encapsulation though, so starting out by
looking for places where you could use encapsulation to better your
design is always a good idea.
We’ll talk about a lot more OO programming principles throughout this
book (and even see a few sing in Chapter 8), so don’t worry if you
are still getting a handle on things at this point. You’ll learn a lot more
about encapsulation, class design, and more before we’re done.

Q: But I don’t really see how this encapsulation makes my
code more flexible. Can you explain that again?

A: Once you’ve gotten your software to work like it’s supposed
to, flexibility becomes a big deal. What if the customer wants to
add new properties or features to the app? If you’ve got tons of
duplicate code or confusing inheritance structures in your app,
making changes is going to be a pain.
By introducing principles like encapsulation and good class design
into your code, it’s easier to make these changes, and your
application becomes a lot more flexible.

Dumb Questions
there are no

You’ve learned a lot about writing great software, and there’s still more to
go! Take a deep breath and think about some of the terms and principles
we’ve covered. Connect the words on the left to the purposes of those
techniques and principles on the right.

?Why DO I Matter?
d

d

d

n

Without me, you’ll never actually make the
customer happy. No matter how well-designed your
application is, I’m the thing that puts a smile on
the customer’s face.

I’m all about reuse and making sure you’re not
trying to solve a problem that someone else has
already figured out.

You use me to keep the parts of your code that
stay the same separate from the parts that change;
then it’s really easy to make changes to your code
without breaking everything.

Use me so that your software can change and grow
without constant rework. I keep your application
from being fragile.

Flexibility

Encapsulation

Functionality

Design Pattern

Answers on page 52.

Download at WoweBook.Com

well-designed apps rock

you are here 4 35

File Edit Window Help NotQuiteTheSame

%java FindGuitarTester
Erin, you might like these guitars:
 We have a Fender Stratocastor electric guitar:
 Alder back and sides,
 Alder top.
 You can have it for only $1499.95!

 We have a Fender Stratocastor electric guitar:
 Alder back and sides,
 Alder top.
 You can have it for only $1549.95!

Getting back to Rick’s app...
Let’s make sure all our changes haven’t messed up the
way Rick’s tool works. Compile your classes, and run the
FindGuitarTester program again:

The results aren’t
different this time,
but the application is
better designed, and
much more flexible.

Can you think of three specific ways that well-
designed software is easier to change than software
that has duplicate code?

brain
power?

Download at WoweBook.Com

36 Chapter 1

2. Apply basic
OO principles to
add flexibility.

1. Make sure your
software does
what the customer
wants it to do.

3. Strive for a
maintainable,
reusable design.

time for some serious design

Once you’ve applied some basic OO principles, you’re ready to apply some patterns and really focus on reuse.

Design once, design twice
Once you’ve taken a first pass over your software and applied
some basic OO principles, you’re ready to take another look,
and this time make sure your software is not only flexible, but
easily reused and extended.

It’s time to really think about
reuse, and how easy it is to make

changes to your software. Here’s where
you can take some well-designed classes

and really turn them into a reusable,
extensible piece of software.

Download at WoweBook.Com

well-designed apps rock

you are here 4 37

Let’s make sure Inventory.java is well-designed
We’ve already used encapsulation to improve the design of Rick’s
search tool, but there are still some places in our code where we
could get rid of potential problems. This will make our code easier
to extend when Rick comes up with that next new feature he wants
in his inventory search tool, and easier to reuse if we want to take
just a few parts of the app and use them in other contexts.

Now that you’ve made Rick a working search tool, you know he’s gonna call you back when he wants changes made to the tool.

 public List search(GuitarSpec searchSpec) {
 List matchingGuitars = new LinkedList();
 for (Iterator i = guitars.iterator(); i.hasNext();) {
 Guitar guitar = (Guitar)i.next();
 GuitarSpec guitarSpec = guitar.getSpec();
 if (searchSpec.getBuilder() != guitarSpec.getBuilder())
 continue;
 String model = searchSpec.getModel().toLowerCase();
 if ((model != null) && (!model.equals(“”)) &&
 (!model.equals(guitarSpec.getModel().toLowerCase())))
 continue;
 if (searchSpec.getType() != guitarSpec.getType())
 continue;
 if (searchSpec.getBackWood() != guitarSpec.getBackWood())
 continue;
 if (searchSpec.getTopWood() != guitarSpec.getTopWood())
 continue;
 matchingGuitars.add(guitar);
 }
 return matchingGuitars;
 }

class
Inven-
tory {

search()

Inventory.java

Here’s the
search()
method from
Inventory.java.
Take a close
look at this
code.

What would you change about this code?

There’s a big problem with the code shown above, and it’s up to you to figure it out. In
the blanks below, write down what you think the problem is, and how you would fix it.

Sharpen your pencil

(really)

Se
e

wh
at

 w
e

sa
id

 o
n

pa
ge

 5
3.

Download at WoweBook.Com

38 Chapter 1

You know, I’ve always loved
playing 12-string guitars. How hard
would it be to update my app so I

can sell 12-string guitars, and let my
clients search for them, too?

Take a look at the class diagram for Rick’s
application, and think about what you
would need to do to add support for
12-string guitars. What properties and
methods would you need to add, and to
what classes? And what code would you
need to change to allow Rick’s clients to
search for 12-strings?

How many classes did you have to modify
to make this change? Do you think Rick’s
application is well designed right now?

How easy is it to make this
change to Rick’s application?

are simple changes simple?

Guitar
serialNumber: String
price: double
spec: GuitarSpec
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): GuitarSpec

Download at WoweBook.Com

well-designed apps rock

you are here 4 39

GuitarSpec
builder: Builder
model: String
type: Type
backWood: Wood
topWood: Wood
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood

Builder
toString(): String Type

toString(): String Wood
toString(): String

Inventory
guitars: List
addGuitar(String, double, Builder, String, Type,
 Wood, Wood)
getGuitar(String): Guitar
search(GuitarSpec): List

Annotate Rick’s class diagram.

Rick wants to be able to sell 12-string
guitars. Get out your pencil, and add notes
to the class diagram showing the following things:

1. Where you’d add a new property, called numStrings, to store the
number of strings a guitar has.

2. Where you’d add a new method, called getNumStrings(), to return
the number of strings a guitar has.

3. What other code you think you’d need to change so that Rick’s
clients can specify that they want to try out 12-string guitars.

Finally, in the blanks below, write down any problems with this design
that you found when adding support for 12-string guitars.

Sharpen your pencil

Here’s a hint: you should get an answer here related to
what you wrote down in the blanks back on page 37.

What’s the advantage of using a
numStrings property instead of
just adding a boolean property to
indicate if a guitar is a 12-string?

brain
power?

Download at WoweBook.Com

40 Chapter 1

Guitar
serialNumber: String
price: double
spec: GuitarSpec
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): GuitarSpec

Builder
toString(): String Type

toString(): String Wood
toString(): String

Inventory
guitars: List
addGuitar(String, double, Builder, String, Type,
 Wood, Wood)
getGuitar(String): Guitar
search(GuitarSpec): List

GuitarSpec
builder: Builder
model: String
type: Type
backWood: Wood
topWood: Wood
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood

Sharpen your pencil
answers

Annotate Rick’s class diagram.

Rick wants to be able to sell 12-string guitars. Get out your pencil,
and add notes to the class diagram showing the following things:

1. Where you’d add a new property, called numStrings, to store the number of strings a
guitar has.

2. Where you’d add a new method, called getNumStrings(), to return the number of strings
a guitar has.

3. What other code you think you’d need to change so that Rick’s clients can specify that
they want to try out 12-string guitars.

Finally, in the blanks below, write down any problems with this design that you found when
adding support for 12-string guitars.

We need to add a
numStrings property to
the GuitarSpec class.

We need a
getNumStrings()
method in this
class to return
how many strings
a guitar has.

We need to change
the constructor
of this class, since
it takes in all
the properties in
GuitarSpec, and
creates a GuitarSpec
object itself.

Another problem:
we have to
change the
search() method
here to account
for the new
property in
GuitarSpec.

We’re adding a property to GuitarSpec, but we

have to change code in the Inventory class’s

search() method, as well as in the constructor

to the Guitar class.

Here’s what we came up
with... did you write down
something similar?

we have an encapsulation problem

This class’s addGuitar() method
deals with all of a guitar’s
properties, too. New properties
means changes to this method-
that’s a problem.

Download at WoweBook.Com

well-designed apps rock

you are here 4 41

So that’s the problem,
right? We shouldn’t have to

change code in Guitar and Inventory to
add a new property to the GuitarSpec

class. Can’t we just use more
encapsulation to fix this?

Even though you’re adding a property
only to the GuitarSpec class, there
are two other classes that have to be
modified: Guitar and Inventory.
The constructor of Guitar has to take
an additional property now, and the
search() method of Inventory has to
do an extra property comparison.

That’s right—we need to
encapsulate the guitar
specifications and isolate
them from the rest of Rick’s
guitar search tool.

 public List search(GuitarSpec searchSpec) {
 List matchingGuitars = new LinkedList();
 for (Iterator i = guitars.iterator(); i.hasNext();) {
 Guitar guitar = (Guitar)i.next();
 GuitarSpec guitarSpec = guitar.getSpec();
 if (searchSpec.getBuilder() != guitarSpec.getBuilder())
 continue;
 String model = searchSpec.getModel().toLowerCase();
 if ((model != null) && (!model.equals(“”)) &&
 (!model.equals(guitarSpec.getModel().toLowerCase())))
 continue;
 if (searchSpec.getType() != guitarSpec.getType())
 continue;
 if (searchSpec.getBackWood() != guitarSpec.getBackWood())
 continue;
 if (searchSpec.getTopWood() != guitarSpec.getTopWood())
 continue;
 matchingGuitars.add(guitar);
 }
 return matchingGuitars;
 }

class
Inven-
tory {

search()

Inventory.java

This code is not easy to
reuse. The classes are all
interdependent, and you
can’t use one class without
using all the others, too.

 public Guitar(String serialNumber,
 double price,
 Builder builder,
 String model, Type type,
 Wood backWood, Wood topWood) {
 this.serialNumber = serialNumber;
 this.price = price;
 this.spec = new GuitarSpec(builder, model,
 type, backWood, topWood);
 }

class
Guitar {
 Gui-
tar()
}

Guitar.java

This constructor creates a GuitarSpec object, so every time the spec changes, this code has to change, too.

Download at WoweBook.Com

42 Chapter 1

 Design Puzzle

1. Add a numStrings property and getNumStrings() method to
GuitarSpec.java.

2. Modify Guitar.java so that the properties of GuitarSpec are
encapsulated away from the constructor of the class.

3. Change the search() method in Inventory.java to delegate
comparing the two GuitarSpec objects to the GuitarSpec class,
instead of handling the comparison directly.

5. Update FindGuitarTester.java to work with your new classes, and
make sure everything still works.

5. Compare your answers with ours on page 44, and then get ready for
another test drive to see if we’ve finally got this application finished.

1

2

3

Your task:

The problem:

Adding a new property to GuitarSpec.java results in changes
to the code in Guitar.java and Inventory.java. The
application should be restructured so that adding properties to
GuitarSpec doesn’t affect the code in the rest of the application.

It’s not enough to know what’s wrong with Rick’s app, or even to figure out that
we need some more encapsulation. Now we need to actually figure out how to fix
his app so it’s easier to reuse and extend.

4

strive for reusable applications

5

All you should
have to do
here is update
your code that
creates a sample
inventory to use
the new Guitar
constructor.

Not sure what
delegation is?
Check this out...

Download at WoweBook.Com

well-designed apps rock

you are here 4 43

Q: You said I should “delegate”
comparisons to GuitarSpec. What’s delegation?

A: Delegation is when an object needs to
perform a certain task, and instead of doing that
task directly, it asks another object to handle the
task (or sometimes just a part of the task).
So in the design puzzle, you want the search()
method in Inventory to ask GuitarSpec to
tell it if two specs are equal, instead of comparing
the two GuitarSpec objects directly within the
search() method itself. search() delegates
the comparison to GuitarSpec.

Q: What’s the point of that?

A: Delegation makes your code more
reusable. It also lets each object worry about
its own functionality, rather than spreading the
code that handles a single object’s behavior all
throughout your application
One of the most common examples of delegation
in Java is the equals() method. Instead of a
method trying to figure out if two objects are equal,
it calls equals() on one of the objects and
passes in the second object. Then it just gets back
a true or false response from the equals()
method.

Q: And what does delegation have to do
with code being more reusable?

A: Delegation lets each object worry about
equality (or some other task) on its own. This
means your objects are more independent of each
other, or more loosely coupled. Loosely coupled
objects can be taken from one app and easily
reused in another, because they’re not tightly tied
to other objects’ code.

Q: And what does loosely coupled mean
again?

A: Loosely coupled is when the objects in
your application each have a specific job to do,
and they do only that job. So the functionality of
your app is spread out over lots of well-defined
objects, which each do a single task really well.

Q: And why is that good?

A: Loosely coupled applications are usually
more flexible, and easy to change. Since each
object is pretty independent of the other objects,
you can make a change to one object’s behavior
without having to change all the rest of your
objects. So adding new features or functionality
becomes a lot easier.

Dumb Questions
there are no

Scholar’s Corner
the

delegation. The act of one object forwarding an
operation to another object, to be performed on

behalf of the first object.

Download at WoweBook.Com

44 Chapter 1

more encapsulation

 Design Puzzle Solution

1. Add a numStrings property and getNumStrings() method to
GuitarSpec.java.

1

Your task:

The problem:

Adding a new property to GuitarSpec.java results in changes
to the code in Guitar.java and Inventory.java. The
application should be refactored so that adding properties to
GuitarSpec doesn’t affect the code in the rest of the application.

It’s not enough to know what’s wrong with Rick’s app, or even to figure out that
we need some more encapsulation. Now we need to actually figure out how to fix
his app so we can test it out.

public class GuitarSpec {

 // other properties
 private int numStrings;

 public GuitarSpec(Builder builder, String model,
 Type type, int numStrings, Wood backWood, Wood topWood) {
 this.builder = builder;
 this.model = model;
 this.type = type;
 this.numStrings = numStrings;
 this.backWood = backWood;
 this.topWood = topWood;
 }

 // Other methods

 public int getNumStrings() {
 return numStrings;
 }
}

class
Guitar-
Spec {
 get-
Num-
Strings()

GuitarSpec.java

This is pretty
easy stuff...

Don’t forget to update the constructor for GuitarSpec.

Download at WoweBook.Com

well-designed apps rock

you are here 4 45

2. Modify Guitar.java so that the properties of GuitarSpec are
encapsulated away from the constructor of the class.

2

3. Change the search() method in Inventory.java to delegate
comparing the two GuitarSpec objects to the GuitarSpec class, instead
of handling the comparison directly.

3

 public Guitar(String serialNumber, double price, GuitarSpec spec) {
 this.serialNumber = serialNumber;
 this.price = price;
 this.spec = spec;
 } class

Guitar {
 Gui-
tar()
}

Guitar.java

Just take in a GuitarSpec directly
now, instead of creating one in
this constructor.

 public List sea
rch(GuitarSpec se

archSpec) {

 List matching
Guitars = new Lin

kedList();

 for (Iterator
 i = guitars.iter

ator(); i.hasNext
();) {

 Guitar guit
ar = (Guitar)i.ne

xt();

 if (guitar.
getSpec().matches

(searchSpec))

 matchingG
uitars.add(guitar

);

 }
 return matchi

ngGuitars;

 }

class
Inven-
tory {

search()

Inventory.java
 public boolean matches(GuitarSpec otherSpec) {
 if (builder != otherSpec.builder)
 return false;
 if ((model != null) && (!model.equals(“”)) &&
 (!model.equals(otherSpec.model)))
 return false;
 if (type != otherSpec.type)
 return false;
 if (numStrings != otherSpec.numStrings)
 return false;
 if (backWood != otherSpec.backWood)
 return false;
 if (topWood != otherSpec.topWood)
 return false;
 return true;
 }

GuitarSpec.java

Most of the code
from search() has
been pulled out,
and put into a
matches() method
in GuitarSpec.java.

Adding properties to
GuitarSpec now requires
only a change to that
class, not Guitar.java or
Inventory.java.

The search() method got a lot simpler.

class
Guitar-
Spec {
 get-
Num-
Strings()

Download at WoweBook.Com

46 Chapter 1

One last test drive
(and an app ready for reuse)
Wow, we’ve done a lot of work since Rick showed us that first version
of his guitar app. Let’s see if the latest version still works for Rick
and his clients, and manages to satisfy our own goal of having a well-
designed, easily maintainable application that we can reuse.

File Edit Window Help ReuseRules

%java FindGuitarTester
Erin, you might like these guitars:
 We have a Fender Stratocastor 6-string electric guitar:
 Alder back and sides,
 Alder top.
 You can have it for only $1499.95!

 We have a Fender Stratocastor 6-string electric guitar:
 Alder back and sides,
 Alder top.
 You can have it for only $1549.95!

This is what
you should see
when you run
FindGuitarTester
with your new code.

Congratulations!
You’ve turned Rick’s broken
inventory search tool into a well-
designed piece of great software.

test drive

Erin gets a couple of guitars to choose from, and Rick is back to selling guitars to his elite clientele.

Download at WoweBook.Com

well-designed apps rock

you are here 4 47

1. Make sure your
software does
what the customer
wants it to do.

2. Apply basic
OO principles to
add flexibility.

3. Strive for a
maintainable,
reusable design.

We started out by fixing
some of the functionality
problems with Rick’s
search tool.

We went on to add some more functionality, so that the search returns a list of guitars.

While we were adding features,

we made sure our design choice
s

were really solid.

We also encapsulated out
the guitar properties, and
made sure we could add new properties to the app easily.

We even added delegation
so that our objects are less
dependent upon each other,
and can be reused easily.

What we did
Let’s take a quick look back at how we got Rick’s
search tool working so well:

Remember our 3 steps? We followed them to turn Rick’s broken search tool into functional, well-designed software.

Download at WoweBook.Com

48 Chapter 1

ooa&d helps you build great software

How the heck am I supposed to know where

to start? I feel like every time I get a new

project to work on, everyone’s got a different

opinion about what to do first. Sometimes I get it right,

but other times I end up reworking the whole app

because I started in the wrong place. I just want

to write great software!

How do you
write great
software,
every time?

well-designed apps rock

you are here 4 7

Remember this poor guy?

All this time that we’ve been talking
about the three steps you can follow to
write great software, we’ve really been
talking about OOA&D.

OOA&D is really just an approach
to writing software that focuses on
making sure your code does what it’s
supposed to, and that it’s well designed.
That means your code is flexible, it’s
easy to make changes to it, and it’s
maintainable and reusable.

Object-Oriented Analysis &
Design helps you write great
software, every timeWe call

this
OOA&D
for short.

He just wanted to write
great software. So
what’s the answer?
How do you write great
software consistently?

You just need a set of steps to follow
that makes sure your software works
and is well designed. It can be as simple
as the three steps we used in working
on Rick’s app; you just need something
that works, and that you can use on all
of your software projects.

9

Download at WoweBook.Com

well-designed apps rock

you are here 4 49

OOA&D is about writing great software,
not doing a bunch of paperwork!

Customers are satisfied when their apps WORK.
We can get requirements from the customer to make sure that we build
them what they ask for. Use cases and diagrams are helpful ways to do
that, but it’s all about figuring out what the customer wants the app to do.

Customers are satisfied when their apps KEEP WORKING.
Nobody is happy when an application that worked yesterday is crashing
today. If we design our apps well, then they’re going to be robust, and
not break every time a customer uses them in unusual ways. Class and
sequence diagrams can help show us design problems, but the point is to
write well-designed and robust code.

Customers are satisfied when their apps can be UPGRADED.
There’s nothing worse than a customer asking for a simple new feature,
and being told it’s going to take two weeks and $25,000 to make it
happen. Using OO techniques like encapsulation, composition, and
delegation will make your applications maintainable and extensible.

Programmers are satisfied when their apps can be REUSED.
Ever built something for one customer, and realized you could use
something almost exactly the same for another customer? If you do just a
little bit of analysis on your apps, you can make sure they’re easily reused,
by avoiding all sorts of nasty dependencies and associations that you don’t
really need. Concepts like the Open-Closed Principle (OCP) and the
Single Responsibility Principle (SRP) are big time in helping here.

Programmers are satisfied when their apps are FLEXIBLE.
Sometimes just a little refactoring can take a good app and turn it into a
nice framework that can be used for all sorts of different things. This is
where you can begin to move from being a head-down coder and start
thinking like a real architect (oh yeah, those guys make a lot more money,
too). Big-picture thinking is where it’s at.

This is ALL OOA&D!
It’s not about doing
silly diagrams... it’s
about writing killer
applications that
leave your customer
happy, and you
feeling like you’ve
kicked major ass.

We’ll talk
all about
requirements
in Chapter 2.

You’ve
learned a bit
about fragile
apps already.

Want more
on delegation,
composition, and
aggregation? We’ll
talk about all of
these in detail in
Chapters 5, and
then again in
Chapter 8.

You’ll get to see
these principles
really strut their
stuff in Chapter 8.

Chapters 6 and 7 are all about
looking at the big picture,
and really developing a good
architecture for your applications.

Download at WoweBook.Com

50 Chapter 1

review and a request

This is fantastic! I’m selling
guitars like crazy with this new

search tool. By the way, I had a few
ideas for some new features...

See? You’re already
getting requests for
more work. Rick will have
to wait until Chapter 5,
though... we’ve got some
hairier issues to tackle in
the next chapter.

It takes very little for something to go wrong with an
application that is fragile.
You can use OO principles like encapsulation and
delegation to build applications that are flexible.
Encapsulation is breaking your application into logical
parts that have a clear boundary that allows an object to
hide its data and methods from other objects.
Delegation is giving another object the responsibility of
handling a particular task.
Always begin a project by figuring out what the customer
wants.
Once you’ve got the basic functionality of an app in
place, work on refining the design so it’s flexible.

◆

◆

◆

◆

◆

◆

With a functional and flexible design, you can employ
design patterns to improve your design further, and
make your app easier to reuse.
Find the parts of your application that change often, and
try and separate them from the parts of your application
that don't change.
Building an application that works well but is poorly
designed satisfies the customer but will leave you with
pain, suffering, and lots of late nights fixing problems.
Object oriented analysis and design (OOA&D) provides
a way to produce well-designed applications that satisfy
both the customer and the programmer.

◆

◆

◆

◆

Download at WoweBook.Com

well-designed apps rock

you are here 4 51

Let’s put what you’ve learned to use, and stetch out your left brain a
bit. All of the words to answer the puzzle below are somewhere in this
chapter. Good luck!

OOA&D Cross

-

Download at WoweBook.Com

52 Chapter 1

exercise solutions

Exercise
Solutions

You’ve learned a lot about writing great software, and there’s still more to
go! Take a deep breath and think about some of the terms and principles
we’ve covered. Connect the words on the left to the purpose of those
techniques and principles on the right.

?Why DO I Matter?
d

d

d

n

Without me, you’ll never actually make the
customer happy. No matter how well-designed your
application is, I’m the thing that puts a smile on
the customer’s face.

I’m all about reuse and making sure you’re not
trying to solve a problem that someone else has
already figured out.

You use me to keep the parts of your code that
stay the same separate from the parts that change;
then it’s really easy to make changes to your code
without breaking everything.

Use me so that your software can change and grow
without constant rework. I keep your application
from being fragile.

Flexibility

Encapsulation

Functionality

Design Pattern

Download at WoweBook.Com

well-designed apps rock

you are here 4 53

 public List search(GuitarSpec searchSpec) {
 List matchingGuitars = new LinkedList();
 for (Iterator i = guitars.iterator(); i.hasNext();) {
 Guitar guitar = (Guitar)i.next();
 GuitarSpec guitarSpec = guitar.getSpec();
 if (searchSpec.getBuilder() != guitarSpec.getBuilder())
 continue;
 String model = searchSpec.getModel().toLowerCase();
 if ((model != null) && (!model.equals(“”)) &&
 (!model.equals(guitarSpec.getModel().toLowerCase())))
 continue;
 if (searchSpec.getType() != guitarSpec.getType())
 continue;
 if (searchSpec.getBackWood() != guitarSpec.getBackWood())
 continue;
 if (searchSpec.getTopWood() != guitarSpec.getTopWood())
 continue;
 matchingGuitars.add(guitar);
 }
 return matchingGuitars;
 }

class
Inven-
tory {

search()

Inventory.java

What would you change about this code?

There’s a big problem with the code shown above, and it’s up to you to figure it out. In
the blanks below, write down what you think the problem is, and how you would fix it.

Sharpen your pencil
answers

This isn’t very good
design. Every time
a new property
is added to
GuitarSpec, this
code is going to
have to change.

Every time a new property is added to GuitarSpec.java, or the methods in GuitarSpec change,

the search() method in Inventory.java will have to change, too. We should let GuitarSpec handle

comparisons, and encapsulate these properties away from Inventory.

Think about it: is Inventory really focusing on Rick’s inventory? Or is it focusing on what makes two GuitarSpec objects the same? You want your classes to focus on their jobs, not the jobs of other classes. Comparing GuitarSpec objects is something GuitarSpec should worry about, not your Inventory class.

Download at WoweBook.Com

Download at WoweBook.Com

this is a new chapter 55

gathering requirements2

Everybody loves a satisfied customer. You already know

that the first step in writing great software is making sure it does what the

customer wants it to. But how do you figure out what a customer really

wants? And how do you make sure that the customer even knows what

they really want? That’s where good requirements come in, and in this

chapter, you’re going to learn how to satisfy your customer by making

sure what you deliver is actually what they asked for. By the time you’re

done, all of your projects will be “satisfaction guaranteed,” and you’ll be

well on your way to writing great software, every time.

Give Them What
 They WantI hope you like it... I’ve been

paying attention to every word
you’ve said lately, and I think
this is just perfect for you!

Download at WoweBook.Com

56 Chapter 2

Doug’s Dog Doors

Tired of cleaning up your dog’s mistakes?

 Ready for someone else to let your dog outside?

 Sick of dog doors that stick when you open them?

 Professionally
installed by our
door experts.

1-800-998-9938Call Doug today at

It’s time to call...

 Patented
all-steel
construction.

 Choose your own
custom colors
and imprints.

 Custom-cut door
for your dog.

You’ve got a new programming gig
You’ve just been hired as the lead programmer at a new start-up,
Doug’s Dog Doors. Doug’s got a pretty high-tech door under
development, and he’s decided you’re the programmer that can
write all the software to make his killer hardware work.

Todd and Gina: your
first customer
Todd and Gina want more than a “normal”
doggie door. Todd has everything from his plasma
TV to his surround sound stereo to his garage
door operating off of a remote control, and he
wants a dog door that responds to the press of
a button. Not satisfied with a little plastic flap
letting their dog in and out, they’ve given Doug’s
Dog Doors a call... and now Doug wants you to
build them the dog door of their dreams.

Todd

Gina

Every night, Fido barks and barks at
the stupid door until we let him go

outside. I hate getting out of bed, and
Todd never even wakes up. Can you

help us out, Doug?

Here’s the new sales
insert that’s running
in all the Sunday
papers this week.

welcome to the big leagues

Download at WoweBook.Com

gathering requirements

you are here 4 57

Let’s start with the dog door
The first thing we need is a class to represent the dog door. Let’s call this class
DogDoor, and add just a few simple methods:

public class DogDoor {

 private boolean open;

 public DogDoor() {
 this.open = false;
 }

 public void open() {
 System.out.println(“The dog door opens.”);
 open = true;
 }

 public void close() {
 System.out.println(“The dog door closes.”);
 open = false;
 }

 public boolean isOpen() {
 return open;
 }
}

Fido’s depending on you...
not to mention Todd, Gina,
and your boss, Doug.

Assume the DogDoor class will interface with Doug’s custom door hardware.

This is pretty
simple: open()
opens the door...

...and close() closes the door.

All this code...

...goes into
DogDoor.java...

...which will control
the hardware in
Todd and Gina’s
dog door.

class
DogDoor
{
 open()
}

DogDoor.java

This returns
the state
of the door:
whether it’s
open or closed.

Download at WoweBook.Com

58 Chapter 2

public class Remote {

 private ___________ door;

 public Remote(_____________ _______) {
 this.door = door;
 }

 public void pressButton() {
 System.out.println(“Pressing the remote control button...”);
 if (_____._______()) {
 door._________();
 } else {
 door._________();
 }
 }
}

Code Magnets
Let’s write another class, Remote, to allow a remote control to
operate the dog door. Todd and Gina can use the remote to
open the dog door without having to get out of bed.

Be careful... you may not need all the magnets.

isOpen

DogDoor

You can use these to
communicate with a
dog door object.

DogDoor
DogDoor

isOpen
isOpen

open
open

close
close

These are the methods you wrote to control the dog door.

true

true
false

true

false

boolean

boolean

Every class needs a little
boolean logic, right?

This keeps up with
whether the door is
open or closed.

door

door

Once you’re done, compare your answer with ours on page 108.

writing the dog door code

Yes, we know this is a really easy one. We’re just getting you warmed up, don’t worry.

Download at WoweBook.Com

gathering requirements

you are here 4 59

File Edit Window Help Woof

%java DogDoorSimulator
Fido barks to go outside...
Pressing the remote control button...
The dog door opens.

Fido has gone outside...
Pressing the remote control button...
The dog door closes.

Fido’s all done...
Pressing the remote control button...
The dog door opens.

Fido’s back inside...
Pressing the remote control button...
The dog door closes.

Run the code!3

Test drive
Let’s see if everything works. Go ahead and take your
new dog door for a test drive.

Create a class to test the door (DogDoorSimulator.java).1

public class DogDoorSimulator {
 public static void main(String[] args) {
 DogDoor door = new DogDoor();
 Remote remote = new Remote(door);
 System.out.println(“Fido barks to go outside...”);
 remote.pressButton();
 System.out.println(“\nFido has gone outside...”);
 remote.pressButton();
 System.out.println(“\nFido’s all done...”);
 remote.pressButton();
 System.out.println(“\nFido’s back inside...”);
 remote.pressButton();
 }
}

class
DogDoor-
Simula-
tor {
 main()

DogDoorSimulator.java

Compile all your Java source code into classes.2

DogDoor.class
class
DogDoor
{
 open()
}

DogDoor.java
javac *.java

Remote.classclass
Remote {
 press-
Button()
}

Remote.java DogDoorSimulator.classclass
DogDoor-
Sim {
}

DogDoorSimulator.java

It works! Let’s go
show Todd and Gina...

Download at WoweBook.Com

60 Chapter 2

How did a
rabbit get into
Gina’s kitchen?

a broken dog door

Not so fast, there...
what the heck is a rabbit
doing in my kitchen?

Uh oh... when Gina used the door, Fido came back in, but so did a few friends.

How do you think the rodents are getting into Gina’s
kitchen? In the blanks below, write down what you think is
wrong with the current version of the dog door.

Sharpen your pencil

Don’t go to the next page
until you’ve written down
an answer for this exercise.

But when Gina tried it...

Download at WoweBook.Com

gathering requirements

you are here 4 61

There’s nothing wrong
with our code! Gina must have
forgotten to press the button on
the remote again after Fido came

back in. It’s not my fault she’s
using the door incorrectly!

Todd and Gina didn’t expect to have to close
the dog door, so they pressed the button on
the remote only once: to let Fido out.

Even worse, in this case, the way they used the
door created new problems. Rats and rabbits
started coming into their house through the
open door, and you’re taking the blame.

Let’s tackle Todd and Gina’s dog door again,
but this time, we’ll do things a little bit
differently. Here’s our plan:

But the door doesn’t work the
way Todd and Gina want it to!

Gather requirements for
the dog door.

1

Figure out what the door
should really do.

2

Get any additional information
we need from Todd and Gina.

3

Build the door RIGHT!4

Looks like we’re going to spend a lot more time talking with Todd and Gina this time around.

We’re paying a lot more

attention to Step 1
in

writing great software
this time, aren’t we?

1. Make sure your
software does
what the customer
wants it to do.

Download at WoweBook.Com

62 Chapter 2

Scholar’s Corner
the

So what exactly is a requirement, anyway?

requirement. A requirement is a singular need detailing
what a particular product or service should be or do.

It is most commonly used in a formal sense in
systems engineering or software engineering.

It’s a
specific thing

your
system

has to
do
to

work correctly.

“system” is the complete app
or project you’re working on.
In this case, your system is
Todd and Gina’s complete dog
door setup (which includes the
remote control, by the way).

The dog door system has to “do” lots of things: open, close, let Fido out, keep rodents from getting inside... anything that Todd and Gina come up with is part of what the system “does.”

Remember, the customer decides when a system works correctly. So if you leave out a requirement, or even if they forget to mention something to you, the system isn’t working correctly!

what is a requirement?

A requirement is usually a single thing, and you can test that thing to make sure you’ve actually fulfilled the requirement.

Download at WoweBook.Com

gathering requirements

you are here 4 63

Close the door

Open the door

Listen to the customer
When it comes to requirements, the best thing you can do is let the
customer talk. And pay attention to what the system needs to do; you
can figure out how the system will do those things later.

Fido’s about a foot tall, and we don’t
want him having to hurt his back

leaning over to get out the door.

Gina: And we want the door to automatically close after a few
seconds. I don’t want to have to wake back up in the middle of
the night to close the door.

You: Do you want a single button on the remote, or both an
“Open” and “Close” button?

Todd: Well, if the door always closes automatically, we really
don’t need separate “Open” and “Close” buttons, do we? Let’s
just stick with a single button on the remote control.

You: Sure. So the button opens the door if it’s closed, and it can
also close the door if it’s open, just in case the door gets stuck.

Todd: Perfect. Gina, anything else you can think of ?

Gina: No, I think that’s it. That’s the dog door of our dreams.

Don’t worry
about your
code at this
stage-just make
sure you know
what the system
should do.

Here’s what Todd and Gina say; it’s your job to translate this into requirements for their door.

This opening
needs to be at least 12” tall... so Fido doesn’t have to “lean.”

12”

Here’s your new set of
remote control and dog
door plans, based on Todd
and Gina’s requirements.

There’s just one button, which toggles between opening and closing the door.

Dog Door, ver. 2

Remote Control,
ver. 2

Download at WoweBook.Com

64 Chapter 2

Creating a requirements list
Now that we know what Todd and Gina want, let’s write down our new
set of requirements. We don’t need anything too fancy...

a simple requirements list

1. The dog door opening must be at least 12” tall.

2. A button on the remote control opens the dog door
if the door is closed, and closes the dog door if the
door is open.

3. Once the dog door has opened, it should close
automatically if the door isn’t already closed.

Todd and Gina’s Dog Door, version 2.0
Requirements List This is just a list of the things

that your customer wants the system you’re building
them to do.

Be sure to leave extra space... additional requirements almost always come up as you work on a project.

Compare these
with Todd
and Gina’s
comments on
page 63...
see how we
turned their
words into a
basic set of
requirements?

A special bonus prize
In addition to having a list of things you need to do to
complete Todd and Gina’s dog door, now you can show

your boss exactly what you’re working on, and what work
you think is left to finish the project.

We’ll just close the door after
a few seconds of being open.

Download at WoweBook.Com

gathering requirements

you are here 4 65

What sorts of things do you think Todd and Gina might not have
thought about when it comes to their new dog door? Make a list
of any concerns you might have in making sure Todd and Gina
are happy with the new door you’re building them.

Sharpen your pencil

Is this list really going to
help? Todd and Gina completely

forgot to tell us they wanted the door
to automatically close before... won’t

they just forget something
again?

You’ve figured out one of  the hardest 
parts about getting a customer’s
requirements—sometimes even the
customer doesn’t know what they really
want! So you’ve got to ask the customer
questions to figure out what they want 
before you can determine exactly what
the system should do. Then, you can
begin to think beyond what your customers
asked for and anticipate their needs, even
before they realize they have a problem.

You need to understand how
the dog door will be used.

In Todd and
Gina’s case, the
system is the dog
door and the
remote control.

Download at WoweBook.Com

66 Chapter 2

1. The dog door opening must be at least 12”
tall.

2. A button on the remote control opens the
dog door if the door is closed, and closes
the dog door if the door is open.

3. Once the dog door has opened, it should
close automatically if the door isn’t
already closed.

Todd and Gina’s Dog Door, version 2.0
Requirements List

figuring out what todd and gina need

What does the dog door really need to do?
You know what Todd and Gina want the dog door to do, but it’s your job to
make sure that the door actually works. In the process, you may even come across
some things that Todd and Gina want, but didn’t think about on their own.

Let’s write down exactly what happens when Fido needs to go outside:

1. Fido barks to be let out.
2. Todd or Gina hears Fido barking.
3. Todd or Gina presses the button on the

remote control.
4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.
7. Fido goes back inside.
8. The door shuts automatically.

Todd and Gina’s Dog Door, version 2.0
What the Door Does

Here’s your
requirements list from page 64.

This is a new
list, which details what the dog door actually does.

We can use
these steps to
see if we’re
missing any
requirements.

When step 8 is complete, Fido’s back
inside after doing his business, and
Todd and Gina are happy.

Download at WoweBook.Com

gathering requirements

you are here 4 67

Q: So a requirement is just one of
the things that a customer wants the
application you build for them to do?

A: Actually, a requirement is a lot more
than just what the customer wants—although
that’s a good place to start. Begin by finding
out what your customer wants and expects,
and what they think the system you’re building
for them should do. But there’s still a lot more
to think about...
Remember, most people expect things to
work even if problems occur. So you’ve got
to anticipate what might go wrong, and add
requirements to take care of those problems as
well. A good set of requirements goes beyond
just what your customers tell you, and makes
sure that the system works, even in unusual or
unexpected circumstances.

Q: And the system for Todd and Gina
is just the dog door, right?

A: The system is everything needed to
meet a customer’s goals. In the case of the
dog door, the system includes the door, but it
also includes the remote control. Without the
remote, the dog door wouldn’t be complete.
And even though they aren’t part of the
system, Todd and Gina and Fido are all
things you have to at least think about when
designing the system. So there’s a lot more to
worry about than just the actual dog door.

Q: I don’t see why I have to figure out
how Todd and Gina are going to use the
dog door, and what can go wrong. Isn’t that
their problem, not mine?

A: Do you remember the first step we
talked about in writing great software? You’ve
got to make sure your app works like the
customer wants it to—even if that’s not how
you would use the application. That means
you’ve got to really understand what the
system has to do, and how your customers
are going to use it.
In fact, the only way to ensure you get Todd
and Gina a working, successful dog door is
to know the system even better than they do,
and to understand exactly what it needs to
do. You can then anticipate problems, and
hopefully solve them before Todd and Gina
ever know something could have gone wrong.

Q: So I should just come up with all
sorts of bad things that might happen when
Todd and Gina use their door?

A: Exactly! In fact, let’s do that now...

there are no
Dumb Questions

The best
way to
get good
requirements
is to
understand
what a
system is
supposed
to do.

Download at WoweBook.Com

68 Chapter 2

what can go wrong will go wrong

If Fido is stuck outside,
can Todd and Gina hear
him bark to press “Open”
on the remote and let
him back in?

What if Todd and Gina aren’t home? What if they don’t hear Fido barking?

What if Fido barks because he’s
excited, or hungry? Will it be a
problem if Todd and Gina open
the door and Fido doesn’t need
to go outside?

Gina, open the dog
door... Fido won’t

quit barking!

2

3

Todd or Gina hears Fido barking

Todd or Gina presses the button on
the remote control.

Woof! Woof!

1

8

Does Fido always
bark when he needs
to go outside? What
if he just scratches
at the door?

Fido barks to be let out

The door shuts automatically

Plan for things going wrong
Below is a diagram of how Todd and Gina’s dog door should work; all
the numbers match up with the steps in our list on page 66. But things
aren’t always going to go according to plan, so we’ve written down some
things that might go wrong along the way.

Download at WoweBook.Com

gathering requirements

you are here 4 69

I feel much
better now!

5 Fido goes outside

6 Fido does his business

7 Fido goes back inside

4 The dog door opens

What if Fido stays inside?

What happens if the door
has automatically closed by
the time Fido is finished?

Can you think of other things that could go wrong? That’s great... the more problems you can think of, the less fragile you can make your application. Go ahead and write anything else that might happen unexpectedly below, directly on the diagram.

Do we need to think about what happens if the door jams? Or maybe that’s more of a hardware problem?

Download at WoweBook.Com

70 Chapter 2

1. The dog door opening must be at least 12”
tall.

2. A button on the remote control opens the
dog door if the door is closed, and closes
the dog door if the door is open.

3. Once the dog door has opened, it should
close automatically if the door isn’t
already closed.

Todd and Gina’s Dog Door, version 2.0
Requirements List

Alternate paths handle system problems
Now that you’ve figured out some of the things that can go wrong, you
need to update your list of things that needs to happen to make the
dog door work. Let’s write down what should happen if the door closes
before Fido gets back inside.

1. Fido barks to be let out.
2. Todd or Gina hears Fido barking.
3. Todd or Gina presses the button on the

remote control.
4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.

6.1 The door shuts automatically.
6.2 Fido barks to be let back inside.
6.3 Todd or Gina hears Fido barking (again).
6.4 Todd or Gina presses the button on the

remote control.
6.5 The dog door opens (again).

7. Fido goes back inside.
8. The door shuts automatically.

Todd and Gina’s Dog Door, version 2.0
What the Door Does

This is that same requirements list from page 64. We may need to update these later, but for now, they’re still OK.

All of these new
steps handle the
problem of the
door closing before
Fido can get back
inside the house.

With some extra steps added, Fido can still get back inside, even though a problem Todd and Gina hadn’t thought about occurred.

We can use these
“sub-numbers” to
show some sub-
steps that might
happen as part
of Step 6.

If Fido stays
outside, there are
a few additional
steps required
to get him back
inside. These
extra steps
are called an
alternate path.

expect things to go wrong

Download at WoweBook.Com

gathering requirements

you are here 4 71

Hey, I took a course in college
on this stuff... aren’t we just

writing a use case?

When you wrote down the steps in getting
Fido outside to use the bathroom, you
were actually writing a use case.

A use case is what people call the steps that
a system takes to make something happen.
In Todd and Gina’s case, the “something”
that needs to happen is getting
Fido outside to do his business,
and then back inside.

Yes! You’ve been writing
use cases all along

1. Fido barks to be let out.
2. Todd or Gina hears Fido barking.
3. Todd or Gina presses the button on the

remote control.
4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.

6.1 The door shuts automatically.
6.2 Fido barks to be let back inside.
6.3 Todd or Gina hears Fido barking (again).
6.4 Todd or Gina presses the button on the

remote control.
6.5 The dog door opens (again).

7. Fido goes back inside.
8. The door shuts automatically.

Todd and Gina’s Dog Door, version 2.0
What the Door Does

You’ve actually already
written the use case for
Todd and Gina’s dog door.

Look! It’s a use case.

Download at WoweBook.Com

72 Chapter 2

(Re) introducing use cases
You’ve been writing a use case for almost 10 pages now, but let’s take a
closer look at exactly what that list of steps—the use case for Todd and
Gina’s dog door—is really all about:

A use case describes
what

your system
does

to accomplish a

particular

customer goal.

Use cases are all about th
e

“what.” What does the dog

door need to do? Remember,

don’t worry about the “how”

right now... we’ll get to that

a little bit later.

We’re still definitely
focusing on what the system needs to “do.” What should happen in order to get Fido outside (and then back into the house)?

A single use case
 focuses

on a single goa
l. The single

goal for Todd
and Gina

is getting Fido outside

without either
of them

getting out of
 bed.

The customer goal is the point of the use case: what do all these steps need to make happen? We’re focusing on the customer, remember? The system has to help that customer accomplish their goal.

The user (or users) are outside of
the system, not a part of it. Fido
uses the system, and he’s outside of
it; Gina has a goal for the system,
and she’s also outside of the syste

m.

The System

The dog door and remote are part of the system, or inside the system.

So we’re the
outsiders, huh?

If Todd and Gina decide
they want to track how
many times Fido uses the
dog door, that would be a
different goal, so you’d need
another, different use case.

what’s a use case?

Download at WoweBook.Com

gathering requirements

you are here 4 73

use case. A use case is a technique for capturing the
potential requirements of a new system or software change.
Each use case provides one or more scenarios that convey how

the system should interact with the end user or another
system to achieve a specific goal.

1. Fido barks to be let out.
2. Todd or Gina hears Fido barking.
3. Todd or Gina presses the button on the

remote control.
4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.

6.1 The door shuts automatically.
6.2 Fido barks to be let back inside.
6.3 Todd or Gina hears Fido barking (again).
6.4 Todd or Gina presses the button on the

remote control.
6.5 The dog door opens (again).

7. Fido goes back inside.
8. The door shuts automatically.

Todd and Gina’s Dog Door, version 2.0
What the Door Does

The use case ends when
the customer goal is
complete-that’s Fido
back inside, after
doing his business, with
Todd and Gina still
comfortable in bed.

The entire use case
describes exactly what the
dog door does when Fido
needs to go outside.

This is an
alternate path,
but it’s still
about achieving
the same goal as
the main path, so
it’s part of the
same use case.

Scholar’s Corner
the

Download at WoweBook.Com

74 Chapter 2

One use case, three parts
There are three basic parts to a good use case, and you need
all three if your use case is going to get the job done.

Clear Value
Every use case must have a clear
value to the system. If the use case
doesn’t help the customer achieve their
goal, then the use case isn’t of much use.

Start and Stop
Every use case must have a definite 
starting and stopping point. Something
must begin the process, and then there must be a
condition that indicates that the process is complete.

External Initiator
Every use case is started off by an external
initiator, outside of the system. Sometimes
that initiator is a person, but it could be
anything outside of the system.

In the dog door,
Fido is the
external initiator.
He’s what starts
the entire process.

The use case
must help
Todd and
Gina deal
with Fido.

The use case starts up when Fido barks... it stops when he’s back inside, done with his business.

2

1

3

one use case, three parts

Download at WoweBook.Com

gathering requirements

you are here 4 75

1. Fido barks to be let out.

2. Todd or Gina hears Fido barking.

3. Todd or Gina presses the button on the
remote control.

4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.

6.1 The door shuts automatically.

6.2 Fido barks to be let back inside.

6.3 Todd or Gina hears Fido barking (again).

6.4 Todd or Gina presses the button on the
remote control.

6.5 The dog door opens (again).

7. Fido goes back inside.
8. The door shuts automatically.

Todd and Gina’s Dog Door, version 2.0
What the Door Does

Use Case Magnets
Below is Todd and Gina’s use case, and a magnet for each of the
three parts of a good use case (one part, Start and Stop, actually
has two magnets). Your job is to identify where each magnet
goes and attach it to the right part of the use case.

Clear Value

Start and Stop

External Initiator

Put the Super Buy magnet
on the part of the use
case that is the clear value
to Todd and Gina.

What kicks off the use case? This is usually
some action outside of the system.

Put this
magnet on the
condition in
the use case
that indicates
the process
should stop.

Who starts the
use case?

Hint: One of these
should be really easy... if you look at the icons.

Download at WoweBook.Com

76 Chapter 2

1. Fido barks to be let out.

2. Todd or Gina hears Fido barking.

3. Todd or Gina presses the button on the
remote control.

4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.

6.1 The door shuts automatically.

6.2 Fido barks to be let back inside.

6.3 Todd or Gina hears Fido barking (again).

6.4 Todd or Gina presses the button on the
remote control.

6.5 The dog door opens (again).

7. Fido goes back inside.
8. The door shuts automatically.

Todd and Gina’s Dog Door, version 2.0
What the Door Does

This is the start
of the use case.
Nothing begins
until Fido barks.

Fido is the
external initiator
in this use case.

The entire use case is of value, because Todd and Gina can stay in bed and still get Fido outside.

Here’s the stop
condition...
Fido is back in,
and the door
is closed.

the parts of a use case

Use Case Magnet Solutions
Below is Todd and Gina’s use case, along with several use case
magnets. Your job was to identify where each magnet goes, and
attach it to the right part of the use case.

Download at WoweBook.Com

gathering requirements

you are here 4 77

Q: So a use case is just a list of the
steps that a system has to do to work
correctly?

A: In most cases, yes. But, remember,
one of the key points about a use case is
that it is focused on accomplishing one
particular goal. If your system does more
than one thing—like let Fido outside and
track how many times he’s been out in an
entire day—then you’ll need more than one
use case.

Q: Then my system will have a use
case for every goal it accomplishes,
right?

A: Exactly! If your system just does one
single thing, you’ll probably only need one
use case. If it does ten or fifteen things, then
you’re going to have a lot of use cases.

Q: And a use case is what the system
does to accomplish a goal?

A: Now you’ve got it. If you write down
what the system needs to do to perform a
task, you’ve probably got a use case.

Q: But the use case isn’t very
specific. Why didn’t we talk about the
Remote class or the DogDoor class?

A: Use cases are meant to help
you understand what a system should
do—and often to explain the system to
others (like the customer or your boss). If
your use case focuses on specific code-
level details, it’s not going to be useful to
anyone but a programmer. As a general
rule, your use cases should use simple,
everyday language. If you’re using lots of
programming terms, or technical jargon,
your use case is probably getting too
detailed to be that useful.

Q: Is a use case the same as a use
case diagram?

A: No, use cases are usually a list
of steps (although you can write them
differently, something we talk about in the
Appendix). Use case diagrams are a way to
show use cases visually, but we’ve already
been working on our own diagram of how
the system works (check out page 69 for
a refresher). Don’t worry, though, we’ll still
look at use case diagrams in Chapter 6.

Q: Then how do I turn my use case
into actual code?

A: That’s another step in the process
of writing your application. In fact, we’re
going to look at how to take our use case
for Todd and Gina and update our code in
just a few more pages.
But the purpose of the use case isn’t to
detail how you’ll write your code. You’ll
probably still have to do some thinking
about how you want to actually put the
steps of your use case into action.

Q: If the use case doesn’t help me
write my code, then what’s the point?
Why spend all this time on use cases?

A: Use cases do help you write your
code—they just aren’t specific about
programming details. For instance, if you
didn’t write a use case for Todd and Gina,
you never would have figured out that Fido
might get stuck outside, or realize that the
dog door needed to close automatically.
Those all came from writing a use case.
Remember, you’ll never write great software
if you can’t deliver an app that does what the
customer wants it to do. Use cases are a tool
to help you figure that out—and then you’re
ready to write code to actually implement the
system your use case describes.

there are no
Dumb Questions

Download at WoweBook.Com

78 Chapter 2

Checking your requirements
against your use cases
So far, you’ve got an initial set of requirements and a good solid
use case. But now you need to go back to your requirements and
make sure that they’ll cover everything your system has to do.
And that’s where the use case comes in:

1. The dog door opening must be at least 12” tall.
2. A button on the remote control opens the dog door

if the door is closed, and closes the dog door if the
door is open.

3. Once the dog door has opened, it should close
automatically if the door isn’t already closed.

Todd and Gina’s Dog Door, version 2.0
Requirements List

1. Fido barks to be let out.
2. Todd or Gina hears Fido barking.
3. Todd or Gina presses the button on the

remote control.
4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.

6.1 The door shuts automatically.
6.2 Fido barks to be let back inside.
6.3 Todd or Gina hears Fido barking (again).
6.4 Todd or Gina presses the button on the

remote control.
6.5 The dog door opens (again).

7. Fido goes back inside.
8. The door shuts automatically.

Todd and Gina’s Dog Door, version 2.0
What the Door Does

Here’s our list of requirements
that we got from Todd and Gina...

...and here’s what we know the
dog door needs to do.

Is anything missing?
Now you need to look over the use case and see
if everything the system needs to do is covered by
the requirements.

did you cover all the features?

Download at WoweBook.Com

gathering requirements

you are here 4 79

Do your requirements handle everything?

Below on the left is the list of things that the dog door does, pulled straight
from our use case on page 78. Your job is to identify the requirement that
handles each step of the use case and write that requirement’s number
down in the blank next to that step of the use case. If a step in the use case
doesn’t require you to do anything, just write N/A down, for “not applicable”.

Sharpen your pencil

1. The dog door opening must be at least 12” tall.
2. A button on the remote control opens the dog door if the door is closed, and closes the dog door if the door is open.
3. Once the dog door has opened, it should close automatically if the door isn’t already closed.

Todd and Gina’s Dog Door, version 2.0
Requirements List

Todd and Gina’s Dog Door, version 2.0
What the Door Does

1. Fido barks to be let out.
2. Todd or Gina hears Fido barking.
3. Todd or Gina presses the button on the

remote control.
4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.

6.1 The door shuts automatically.
6.2 Fido barks to be let back inside.
6.3 Todd or Gina hears Fido barking

(again).
6.4 Todd or Gina presses the button on

the remote control.
6.5 The dog door opens (again).

7. Fido goes back inside.
8. The door shuts automatically.

Here are the three requirements we
have... you can use any of these for
each step in the use case.

Write 1, 2, 3, or N/A
in each of these blanks.

Did you find any steps in the use case that you don’t think
you have a requirement to handle? If you think you need
any additional requirements, write what you think you need
to add to the requirements list in the blanks below:

Download at WoweBook.Com

80 Chapter 2

inquiring minds want to know

Do your requirements handle everything?

Below on the left is the list of things that the dog door does, pulled straight
from our use case on page 78. Your job was to identify the requirement that
handles each step of the use case, and write that requirement’s number down
in the blank next to that step of the use case. You should have written down
N/A for a step that didn’t require our system to do anything.

Sharpen your pencil
answers

Todd and Gina’s Dog Door, version 2.0
What the Door Does

1. Fido barks to be let out.
2. Todd or Gina hears Fido barking.
3. Todd or Gina presses the button on the

remote control.
4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.

6.1 The door shuts automatically.
6.2 Fido barks to be let back inside.
6.3 Todd or Gina hears Fido barking

(again).
6.4 Todd or Gina presses the button on

the remote control.
6.5 The dog door opens (again).

7. Fido goes back inside.
8. The door shuts automatically.

N/A

N/A

2

2

1

N/A

3

N/A

N/A

2

2

1

3

A lot of the things that happen to a system don’t require you to do anything.

You might have put N/A here,
since them pushing the button
isn’t something that’s you have
to handle... then again, 2 is OK,
too, since they wouldn’t push a
button without a remote.

Did you get this one? Fido can’t get outside if the opening isn’t the right size.

The alternate path should
have been easy once you
figured out the requirements
for the main path.

Did you find any steps in the use case that you don’t think
you have a requirement to handle? If you think you need
any additional requirements, write what you think you need
to add to the requirements list down in the blanks below:

No, our requirements cover everything the system needs

to do. We’re ready to actually write code to handle these

requirements now, right?

Download at WoweBook.Com

gathering requirements

you are here 4 81

So now can we write some code?
With use case and requirements in hand, you’re ready to
write code that you know will make Todd and Gina satisfied
customers. Let’s check out our requirements and see exactly
what we’re going to have to write code for:

1. The dog door opening must be at least 12” tall.
2. A button on the remote control opens the dog door

if the door is closed, and closes the dog door if the
door is open.

3. Once the dog door has opened, it should close
automatically if the door isn’t already closed.

Todd and Gina’s Dog Door, version 2.0
Requirements List

This is
something for
Doug and the
hardware guys
to deal with...
we don’t need
any code for
this requirement.

We’ve already
got code to
take care this
requirement.

This is what Todd
and Gina added when
we talked to them...
we need to write
code to take care
of closing the door
automatically.

We’re getting pretty psyched
about our new door. We love that
you thought about Fido getting
stuck outside, and took care of

that, too.

Download at WoweBook.Com

82 Chapter 2

Automatically closing the door
The only requirement left to code is taking care of
automatically closing the door after it’s been opened. Let’s go
back to our Remote class and handle that now:

class
Remote {
 press-
Button()
}

Remote.java

import java.util.Timer;
import java.util.TimerTask;

public class Remote {

 private DogDoor door;

 public Remote(DogDoor door) {
 this.door = door;
 }

 public void pressButton() {
 System.out.println(“Pressing the remote control button...”);
 if (door.isOpen()) {
 door.close();
 } else {
 door.open();

 final Timer timer = new Timer();
 timer.schedule(new TimerTask() {
 public void run() {
 door.close();
 timer.cancel();
 }
 }, 5000);
 }
 }
}

This tells the timer how long to wait before executing the task... in this case, we’re waiting 5 seconds, which is 5000 milliseconds.

You’ll need these two import statements to use Java’s timing classes.

Create a
new Timer
so we can
schedule the
dog door
closing.

All the task does is close the door, and then turn off the timer.

Q: What’s all this Timer stuff? Can’t I
just use a Java thread to close the door?

A: Sure, there’s nothing wrong with
using a Thread to close the dog door. In
fact, that’s all the Timer class does: kick
off a background Thread. But the Timer
class makes running a task in the future
easy, so it seemed like a good choice for the
Remote class.

Q: Why did you make the timer
variable final?

A: Because we need to call its
cancel() method in the TimerTask
anonymous class. If you need to access
variables in your anonymous class from
the enclosing class (that’s Remote in this
case), those variables must be final. And,
really, just because it makes things work.

Q: Why are you calling cancel()?
Won’t the timer quit automatically after
running the TimerTask?

A: It will, but it turns out that most
JVMs take forever before they garbage
collect the Timer. That ends up hanging
the program, and your code will run for
hours before it actually quits gracefully.
That’s no good, but calling cancel()
manually takes care of the problem.

adding a timer to the dog door

The remote already has code to
handle closing the door if it’s open.

This checks the state of the
door before
opening or
closing it.

Dumb Questions
there are no

Download at WoweBook.Com

gathering requirements

you are here 4 83

We need a new simulator!
Our old simulator isn’t that useful anymore... it assumes Todd and Gina are
closing the door manually, and not letting the timer do its work. Let’s update
our simulator to make it work with the updated Remote class:t

class
DogDoor-
Sim {
}

DogDoorSimulator.java

public class DogDoorSimulator {

 public static void main(String[] args) {
 DogDoor door = new DogDoor();
 Remote remote = new Remote(door);

 System.out.println(“Fido barks to go outside...”);
 remote.pressButton();

 System.out.println(“\nFido has gone outside...”);
 remote.pressButton();

 System.out.println(“\nFido’s all done...”);
 remote.pressButton();

 System.out.println(“\nFido’s back inside...”);
 remote.pressButton();
 }
}

This is the same
as in our earlier
version, but
pressing the
button will open
the door and
start a timer to
close the door. In the new improved dog door, Gina doesn’t need to press a button to close the door. That will happen automatically now.

Here’s another spot where we can get rid of some code... the door closes automatically.

Since the door’s
on a timer, Fido
has plenty of
time to get back
inside before the
door closes. Gina
doesn’t need to
open the door to
let Fido back in.

Q: You lost me on that timer code.
What’s going on there again?

A: That’s OK... you don’t need to
get too hung up on Java here. The point
is that our use case helped us write good
requirements, and our requirements made
it easy to figure out how to write a working
dog door. That’s a lot more important than
how—or even in what language—you write
the dog door code.

Q: So the new simulator tests out the
main path we figured out, right?

A: That’s right. Flip back to page 78
and review what the dog door does... that’s
what the new DogDoorSimulator tests
out. We want to make sure that Todd and
Gina’s new door works just like they want
it to.

Q: Why aren’t we testing out that
alternate path we found?

A: That’s a very good question. Let’s
test this version of the door, and then we’ll
talk more about that...

Download at WoweBook.Com

84 Chapter 2

File Edit Window Help InAndOut

%java DogDoorSimulator
Fido barks to go outside...
Pressing the remote control button...
The dog door opens.

Fido has gone outside...

Fido’s all done...

Fido’s back inside...

Test drive, version 2.0
It’s time to see if all our hard work is going to pay off. Let’s
test out the new and improved dog door.

Compile all your Java source code into classes.1

DogDoor.classclass
DogDoor
{
 open()
}

DogDoor.java

javac *.java

Run the code!2

does it work?

Remote.classclass
Remote {
 press-
Button()
}

Remote.java

DogDoorSimulator.class

class
DogDoor-
Sim {
}

DogDoorSimulator.java

File Edit Window Help TimeIsAThief

%java DogDoorSimulator
Fido barks to go outside...
Pressing the remote control button...
The dog door opens.

Fido has gone outside...

Fido’s all done...

Fido’s back inside...
The dog door closes.

A few seconds will
pass between when
the door opens...

...and when it closes.

Tick!
Tock!

Tick!
Tock!

Download at WoweBook.Com

gathering requirements

you are here 4 85

It works! Let’s go show Todd and Gina...

But I don’t think we’re ready to
show Todd and Gina yet... what about that
alternate path, when Fido stays outside

and the door closes behind him?

Wouldn’t it be great if things worked just
like you expected them to every time?
Of course, in the real world, that almost
never happens. Before we can show the
new door off to Todd and Gina, let’s take
a little extra time to make sure the door
works when Fido doesn’t come right back
inside after doing his business.

Good catch... we need to
test alternate paths as
well as the main path.

Your
system
must
work in
the real
world...

...so plan
and test
for when
things go
wrong.

How would you change the DogDoorSimulator
class to test for Fido staying outside longer?

brain
power?

Can you come up with at least one more alternate
path for Todd and Gina’s dog door? Write out the
use case and update the requirements list for your
new alternate path, too.

brain
power?Super

Download at WoweBook.Com

86 Chapter 2

alternate paths

Reviewing the alternate path
Let’s make sure we understand exactly what happens on the
alternate path, and then we can update DogDoorSimulator
to test the new path out. Here’s the original main path diagram
from page 68, along with the alternate path we figured out
and added to our use case:

This part of the
diagram is the main path,
where everything goes
exactly as planned.

Gina, open the dog
door... Fido won’t
quit barking!

2

3 5 Fido goes outside

Todd or Gina hears Fido barking

Todd or Gina presses the button on
the remote control.

7 Fido goes back inside

Woof! Woof!

1

8

Fido barks to be let out

The door shuts automatically

4 The dog door opens

Download at WoweBook.Com

gathering requirements

you are here 4 87

6.1 The door shuts automatically

Todd or Gina hears
Fido barking (again)

Woof! Woof!

Again with the
barking! Someone let
Fido back inside.

Todd or Gina presses
the button on the
remote control

Fido barks to be let back inside.

Here’s where the
alternate path
starts... the door
shuts while Fido is
still outside.

Remember, this is an alternate path... things don’t happen this way every time the system is used.

Note that when
the door opens here,
things continue by
returning to the
main path.

Our system already
handled all of
these things... but
we wouldn’t have
known that unless
we mapped out this
alternate path.

6.2

6.3

6.4

The dog door opens (again)6.5

I feel much
better now!

Fido goes outside

6 Fido does his business

The dog door opens

Download at WoweBook.Com

88 Chapter 2
"...but he's stuck inside!"

It’s time to update the simulator, but this time it’s your job
to actually write some code. Below is what we have so far for
DogDoorSimulator.

Your job is to match the code magnets at the bottom of the page
to where they belong in the simulator. If you get stuck, check the diagram on
the last page to see what’s going on at each step of the way. Oh, and there’s
a twist... all the magents for periods, semicolons, and parentheses fell off the
fridge, so you’ll have to add those wherever they’re needed, too.

testing the alternate path

Code Magnets

public class DogDoorSimulator {

 public static void main(String[] args) {
 DogDoor door = new DogDoor();
 Remote remote = new Remote(door);

 __
 __
 System.out.println(“\nFido has gone outside...”);
 System.out.println(“\nFido’s all done...”);

 try {
 Thread.currentThread().___________(10000);
 } catch (InterruptedException e) { }

 __
 __
 __
 __
 System.out.println(“\nFido’s back inside...”);
 }
}

"...but he's stuck outside!"

"Fido scratches at the door." "\nFido starts barking..."

“...so Gina grabs the remote control.”

“...so Todd grabs the remote control.”

Here are several messages you can print ou
t.

Here’s where
the alternate
path begins.

pressButton

waitFor
sleep

wait

pressButton

pressButton

pressButton

These are methods
you can call on a
Java thread.

Here are the methods to use the remote control.

The alternate path returns to the main path right here.

class
DogDoor-
Sim {
}

DogDoorSimulator.java

We want the program to pause and let the door close automatically.

System.out.println
System.out.println

System.out.println

System.out.prin
tln

System.out.println
System.out.println

remote
remoteremote

remote

Download at WoweBook.Com

gathering requirements

you are here 4 89

File Edit Window Help InLikeFlynn

%java DogDoorSimulator
Fido barks to go outside...
Pressing the remote control button...
The dog door opens.

Fido has gone outside...

Fido’s all done...

Test drive, version 2.1
Make the changes to your copy of DogDoorSimulator.java,
and then recompile your test class. Now you’re ready to test out the
alternate path of your use case:

Tick!
Tock!

File Edit Window Help TheOutsiders

%java DogDoorSimulator
Fido barks to go outside...
Pressing the remote control button...
The dog door opens.

Fido has gone outside...

Fido’s all done...
The dog door closes.
...but he’s stuck outside!

Fido starts barking...
...so Gina grabs the remote control.
Pressing the remote control button...
The dog door opens.

Fido’s back inside...
File Edit Window Help ThereAndBackAgain

%java DogDoorSimulator
Fido barks to go outside...
Pressing the remote control button...
The dog door opens.

Fido has gone outside...

Fido’s all done...
The dog door closes.
...but he’s stuck outside!

Fido starts barking...
...so Gina grabs the remote control.
Pressing the remote control button...
The dog door opens.

Fido’s back inside...
The dog door closes.

Tick!

Tock!

The door opens, and
Fido goes outside to
do his business. But Fido starts

chasing bugs, and the
dog door closes while
he’s still outside.

Fido barks to get back inside, and Gina uses her remote control...

...and Fido gets
to return to air conditioning.

Before long, the doo
r

closes again, keepin
g

rabbits, rodents, a
nd

bugs safely outside
.

Download at WoweBook.Com

90 Chapter 2

public class DogDoorSimulator {

 public static void main(String[] args) {
 DogDoor door = new DogDoor();
 Remote remote = new Remote(door);

 __
 __
 System.out.println(“\nFido has gone outside...”);
 System.out.println(“\nFido’s all done...”);

 try {
 Thread.currentThread().___________(10000);
 } catch (InterruptedException e) { }

 __
 __
 __
 __
 System.out.println(“\nFido’s back inside...”);
 }
}

Code Magnets
Solution
Here’s what we did to complete the simulator. Make sure you got
the same answers that we did.

"...but he's stuck outside!"

"\nFido starts barking..."

sleep

pressButton

You could have chosen
the message about Todd
grabbing the remote, but
we’re trying to test for
the real world, remember?
We figure Gina’s doing
most of the work here.

completing the simulator

class
DogDoor-
Sim {
}

DogDoorSimulator.java

remote

remote pressButton

System.out.println

System.out.println

System.out.println

.

.

(

(

(

(

System.out.println

((

(

(

(

(

(

You should have written in periods, semicolons, and parentheses as you needed them.;

;

;

;

;
“...so Gina grabs the remote control.”(

;

Download at WoweBook.Com

gathering requirements

you are here 4 91

Delivering the new dog door
Good use cases, requirements, main paths, alternate paths, and a
working simulator; we’re definitely on the road to great software.
Let’s take the new dog door to Todd and Gina.

This dog door rocks! We
don’t have to get out of bed to let

Fido out anymore, and the door
closes on its own. Life is good!

Todd and Gina’s nights are uninterrupted now, which makes them satisfied customers.

Fido’s inside, and the
rabbits, woodchucks, and
mice are outside.

Working app, happy customersThis was exactly the outcome we
were hoping for way back on page
60. What a difference good
requirements make, huh?

Not only did we turn Todd and Gina into satisfied
customers, we made sure their door worked when Fido did
something they didn’t expect—like stay outside playing.

Download at WoweBook.Com

92 Chapter 2

when things go right

HeadFirst: Hello there, Main Path.

Happy Path: Actually, I prefer to be called “Happy Path.” I know a lot of books refer to me as “Main
Path,” but I find lots more people remember who I am when I go by “Happy Path.”

HeadFirst: Oh, I apologize. Well, in any case, it’s great to have you with us today, Happy Path, and you’re
right on time, too.

Happy Path: Thanks... I’m always on time, that’s really important to me.

HeadFirst: Is that right? You’re never late?

Happy Path: Nope, not a single time. I never miss an appointment, either. I never make a mistake, nothing
ever goes unexpectedly... you can really count on me to come through just like you want, every time.

HeadFirst: That’s quite a statement to make.

Happy Path: Well, it’s just part of who I am.

HeadFirst: And that’s how you got your name? You make people happy by always being on time and never
making a mistake?

Happy Path: No, but that’s close. They call me “Happy Path” because when you’re hanging out with me,
everything goes just as you’d hope. Nothing ever goes wrong when the “Happy Path” is at the wheel.

HeadFirst: I have to admit, I’m still a bit amazed that nothing ever goes wrong around you. Are you sure
you’re living in the real world?

Happy Path: Well, don’t get me wrong... things definitely go wrong in the real world. But when that 
happens, I just hand things off to my buddy, Alternate Path.

HeadFirst: Oh, I think I see now... so things can go wrong, but that’s Alternate Path’s job to handle.

Happy Path: Yeah, pretty much. But I don’t worry too much about that. My job is to take care of things
when the sun is shining and things are going just like people expect.

HeadFirst: Wow, that must be really satisfying.

Happy Path: Well, most of the time it is. But things do tend to go wrong a lot. It seems like hardly anyone
sticks with me from start to finish. Alternate Path usually gets involved at some point, but we get along well, so 
it’s no big deal.

HeadFirst: Do you ever feel like Alternate Path is butting in? I could imagine some tension there...

Happy Path: No, not at all. I mean, we’re all after the same thing: getting the customer to their goal, and
making sure they’re satisfied. And once we’re defined well, actually coding an application is a lot simpler.

HeadFirst: Well, you heard it here folks. Next week, we’ll try and catch up with Alternate Path, and get her
side of the story. Until then, try and stay on the Happy Path, but remember to plan for problems!

This week’s interview:
Getting to Know the Happy Path

Use Cases Exposed

Download at WoweBook.Com

gathering requirements

you are here 4 93

External

 Case

Start

Requirement

 Value

 Condition

 Path

Below on the left are some of the new terms you’ve learned in this chapter. On the right
are descriptions of what those terms mean and how they’re used. Your job is to match
the term on the left with that term’s purpose on the right.

Kicks off the list of steps described in a
use case. Without this, a use case never gets
going.

Something a system needs to do to be a
success.

Lets you know when a use case is finished.
Without this, use cases can go on forever.

Helps you gather good requirements. Tells a
story about what a system does.

What a system does when everything is
going right. This is usually what customers
describe when they’re talking about the
system.

This is always the first step in the use case.

Without this, a use case isn’t worth anything
to anyone. Use cases without this always fail.

?What’s My Purpose
d

d

d

n

Uh oh... parts of some of the terms on the
left have gone missing. You’ve got to use the
definitions on the right to match to a term,
and fill in the missing part of the term.

Download at WoweBook.Com

94 Chapter 2

i have a purpose

Below on the left are some of the new terms you’ve learned in this chapter. On the right
are descriptions of what those terms mean, and how they’re used. Your job is to match
the term on the left with what that term’s purpose is on the right.

Kicks off the list of steps described in a
use case. Without this, a use case never gets
going.

Something a system has to do to be a success.

Lets you know when a use case is finished.
Without this, use cases can go on forever.

Helps you gather good requirements. Tells a
story about how a system works.

How a system works when everything is
going right. This is usually what customers
describe when they’re talking about the
system.

This is always the first step in the use case.

Without this, a use case isn’t worth anything
to anyone. Use cases without this always fail.

?What’s My Purpose
d

d

d

n

Exercise
Solutions

External

 Case

Start

Requirement

 Value

 Condition

 Path

Initiator

Condition

Use

Clear

Stop

Main

Make sure you filled in all the blanks exactly like we did.

Download at WoweBook.Com

gathering requirements

you are here 4 95

Time to write some more use cases.

Below are three more potential customers that are interested in
Doug’s Dog Doors. For each customer, your job is to write a use
case to solve the customer’s problem.

Sharpen your pencil

Tex is constantly
tracking mud inside the house. I

want a dog door that automatically
closes every time he goes outside, and

stays closed until I press a button to let
him back in.

Bitsie

Kristen

John

Tex

Answers on page 96.

Bitsie is constantly nudging
open our back door, or nosing open the
kitchen bay windows. I want a system that

locks my dog door and windows behind
me every time I enter a code, so Bitsie

can’t get out.

Holly

Bruce

Bruce is constantly barking, so
I never know if he really wants
out or not. Can you build a door

that opens up when he scratches it
with his paws?

Doug’s Dog Doors is partnering with the local security company to handle their growing customer base, and requests like this one.

Download at WoweBook.Com

96 Chapter 2

use case bonanza

Time to write some more use cases!

You’ve seen the customers; now let’s look at the use cases. Here is
how we wrote our use cases for the dog-loving folks on page 95.
See if your use cases look anything like ours.

answers

Bitsie

Kristen

John

Tex

1. Kristen enters a code on a keypad.

2. The dog door and all the windows
in the house lock.

Kristen and Bitsie’s Dog Door

Kristen’s use case is just two steps: she enters a code, and then the dog door and the windows lock.

Even though this is a
dog door, Bitsie actually
has no effect on how
the system behaves!

Tex is constantly tracking
mud inside the house. I want a

dog door that automatically closes
every time he goes outside, and stays
closed until I press a button to let

him back in.

Bitsie is constantly nudging
open our back door, or nosing open the

kitchen bay windows. I want a system that
locks my dog door and windows behind
me every time I enter a code, so Bitsie

can’t get out.

Sharpen your pencil

John’s request turns out to be very
similar to what Todd and Gina
wanted. Part of gathering good
requirements is recognizing when
you’ve already built something similar
to what a customer wants.

Download at WoweBook.Com

gathering requirements

Holly

Bruce

1. Bruce scratches at the dog door.

2. The dog door opens.

3. Bruce goes outside.

4. The dog door closes automatically.

4. Bruce does his business.

5. Bruce scratches at the door again.

6. The dog door opens up again.

7. Bruce comes back inside.

8. The door closes automatically.

Holly and Bruce’s Dog Door

Some of this
really wasn’t
laid out in
what Holly said,
but you should
have figured it
out when you
thought through
how her system
will be used.

1. (Somehow) the dog door
opens.

2. Tex goes outside.
3. The dog door closes

automatically.

John and Tex’s Dog Door
4. Tex does his business.
 4.1 Tex gets muddy
 4.2 John cleans Tex up
5. John presses a button.
6. The dog door opens.
7. Tex comes back inside.
8. The door closes automatically.

Even though John said Tex usually gets muddy, he doesn’t have to get muddy... so that’s really an alternate path.

We really need more information
to write this use case... looks
like we need to ask John some
additional questions.

you are here 4 97

Bruce is constantly barking, so
I never know if he really wants
out or not. Can you build a door

that opens up when he scratches it
with his paws?

Download at WoweBook.Com

98 Chapter 2

the three components of a use case

More Use Case Magnets
Remember the three parts of a use case? It’s time to put what
you’ve learned into action. On these pages, you’ll find several
use cases; your job is to match the use case magnets on the
bottom of the page to the correct parts of each use case.

Clear Value

Start and Stop

External Initiator

Use these magnets to
indicate the clear value
of a use case.

This magnet indicates the start condition for a use case.

You can review all
of these by flipping
back to page 74.Bruce scratches at the dog door to be let out.

The dog door automatically opens, and Bruce
goes outside. The dog door closes after a preset
time. Bruce goes to the bathroom, and then
scratches at the door again. The dog door opens
automatically, and Bruce returns inside. The dog
door then closes automatically.

If Bruce scratches at the door but stays inside
(or stays outside), he can scratch at the door
again to re-open it, from inside or outside.

Holly and Bruce’s Dog Door

1. Kristen enters a code on a keypad.
2. The dog door and all the windows

in the house lock.

Kristen and Bitsie’s Dog Door

You should be able to follow
these alternate use case
formats without much trouble.
If you get confused, check out
Appendix I for the scoop on
alternate use case formats.

Download at WoweBook.Com

gathering requirements

you are here 4 99

Use this
magnet for the
stop condition
of a use case.
How do you
know when
the use case is
finished?

Fido here
represents
the external
initiator of a
use case, which
kicks things off.

Primary Actor: Tex
Secondary Actor: John
Preconditions: The dog

door is open for Tex to go
outside.

Goal: Tex uses the bathroom
and comes back inside,
without getting mud
inside the house.

John and Tex’s Dog Door
Main Path
1. Tex goes outside.
2. The dog door closes automatically.
3. Tex does his business.
4. John presses a button.
5. The dog door opens.
6 Tex comes back inside.
7. The door closes automatically.

Extensions
3.1 Tex gets muddy.
3.2 John cleans Tex up.

An
sw

er
s o

n
pa

ge
 10

0.

Download at WoweBook.Com

100 Chapter 2

Bruce scratches at the dog door to be let out.
The dog door automatically opens, and Bruce
goes outside. The dog door closes after a preset
time. Bruce goes to the bathroom, and then
scratches at the door again. The dog door opens
automatically, and Bruce returns inside. The dog
door then closes automatically.

If Bruce scratches at the door but stays inside
(or stays outside), he can scratch at the door
again to re-open it, from inside or outside.

Holly and Bruce’s Dog Door

1. Kristen enters a code on a keypad.
2. The dog door and all the windows

in the house lock.

Kristen and Bitsie’s Dog Door

Use Case Magnets Solutions
Remember the three parts of a use case? It’s time to put what
you’ve learned into action. On these pages, you’ll find several
use cases (in different formats, no less!); your job is to match the
use case magnets on the bottom of the page up to the correct
parts of each use case.

Clear Value

Start and Stop

External Initiator

The start condition and external initiator are usually both part of the first step of a use case.

The stop condition is
almost always the last
step in the use case.

Look closely for the stop
condition in this style of
use cases; it’s usually not
the last sentence if there
are any alternate paths.

Bruce can get
outside to use the
bathroom without
Holly having to open
and close the dog door
(or even listen for
Bruce to bark)

The clear value of a use
case-in most formats-
isn’t stated in the use
case, so you’ll need to
figure it out on your own.

Bitsie can’t get outside without
Kristen letting her out.

use case magnets solutions

Download at WoweBook.Com

gathering requirements

you are here 4 101

Primary Actor: Tex
Secondary Actor: John
Preconditions: The dog

door is open for Tex to go
outside.

Goal: Tex uses the bathroom
and comes back inside,
without getting mud
inside the house.

John and Tex’s Dog Door
Main Path
1. Tex goes outside.
2. The dog door closes automatically.
3. Tex does his business.
4. John presses a button.
5. The dog door opens.
6 Tex comes back inside.
7. The door closes automatically.

Extensions
3.1 Tex gets muddy.
3.2 John cleans Tex up.

In this use case
format, the external
initiator is always the
primary actor.

Anytime the goal
of a use case is
explicitly stated,
you’ve got your
clear value.

Look for the last step in the main path, not the last step of the extensions.

Download at WoweBook.Com

102 Chapter 2

What’s the real power of use cases?

You’ve already seen how use cases help you build a complete requirements list. Below are
several more use cases to check out. Your job is to figure out if the requirements list next
to each use case covers everything, or if you need to add in additional requirements.

Sharpen your pencil

1. Kristen enters a code on a keypad.

2. The dog door and all the windows
in the house lock.

Kristen and Bitsie’s Dog Door
Use Case

1. The keypad must accept a 4-digit
code.

2. The keypad must be able to lock the
dog door.

Kristen and Bitsie’s Dog Door
Requirements List

Remember Kristen
and Bitsie?

Here’s the requirements
list for Kristen’s dog
door. Is anything missing
or incomplete based
on the use case? If
so, write in the extra
requirements you think
the door needs to handle.

the power of use cases

Download at WoweBook.Com

gathering requirements

you are here 4 103

1. Bruce scratches at the dog door.

2. The dog door opens.

3. Bruce goes outside.

4. The dog door closes automatically.

4. Bruce does his business.

5. Bruce scratches at the door again.

6. The dog door opens up again.

7. Bruce comes back inside.

8. The door closes automatically.

 Holly and Bruce’s Dog Door
Use Case

1. The dog door must detect scratching
from a dog.

2. The door should be able to open on a
command (from #1).

 Holly and Bruce’s Dog Door
Requirements List

Is anything missing?
It’s up to you to
make sure Holly is a
satisfied customer.

Holly is psyched about life with her new dog door. It just needs to work, and she’s all set!

Answers on page 104

Download at WoweBook.Com

104 Chapter 2

What’s the real power of use cases?

In each situation below, the use case describes how the dog door should work-but the
requirements aren’t complete. Here are the things we saw that were missing from the
requirement list, based on the ever-helpful use case.

1. Kristen enters a code on a keypad.

2. The dog door and all the windows
in the house lock .

Kristen and Bitsie’s Dog Door
Use Case

1. The keypad must accept a 4-digit
code.

2. The keypad must be able to lock the
dog door and all the windows.

3. The keypad must be able to unlock
the dog door and all the windows
in the house.

Kristen and Bitsie’s Dog Door
Requirements List

This
requirement is incomplete... Kristen wants to be able to lock the doors and windows.

This one was a little trickier...
the use case doesn’t mention
anything about Bitsie getting
back in, so really the use case
and the requirements list are
incomplete. Kristen wouldn’t
be too happy if she couldn’t
unlock everything, would she?

Be careful! Good use cases make for good requirements, but a
bad-or incomplete-use case can result in BAD requirements!

from use cases to requirements

Sharpen your pencil
answers

Download at WoweBook.Com

gathering requirements

you are here 4 105

1. Bruce scratches at the dog door.

2. The dog door opens.

3. Bruce goes outside.

4. The dog door closes automatically.

4. Bruce does his business.

5. Bruce scratches at the door again.

6. The dog door opens up again.

7. Bruce comes back inside.

8. The door closes automatically.

 Holly and Bruce’s Dog Door
Use Case

1. The dog door must detect scratching
from a dog.

2. The door should be able to open on a
command (from #1).

3. The dog door should close
automatically.

 Holly and Bruce’s Dog Door
Requirements List

This is one of the same requirements as for Todd and Gina’s dog door.

Download at WoweBook.Com

106 Chapter 2

 BULLET POINTS

� Requirements are things your
system must do to work correctly.

� Your initial requirements usually
come from your customer.

� To make sure you have a good
set of requirements, you should
develop use cases for your
system.

� Use cases detail exactly what your
system should do.

� A use case has a single goal, but
can have multiple paths to reach
that goal.

� A good use case has a starting
and stopping condition, an
external initiator, and clear value
to the user.

� A use case is simply a story about
how your system works.

� You will have at least one use case
for each goal that your system
must accomplish.

� After your use cases are complete,
you can refine and add to your
requirements.

� A requirements list that makes all
your use cases possible is a good
set of requirements.

� Your system must work in the real
world, not just when everything
goes as you expect it to.

� When things go wrong, your
system must have alternate paths
to reach the system’s goals.

Tools for your OOA&D Toolbox
OOA&D is all about writing great software, and

you can’t do that without making sure your apps do
exactly what customers want them to.

In this chapter, you learned several tools for making
sure your customers are smiling when you show them the
systems you’ve built. Here are some key tools to keep handy:

Good requirements ensure your system
works like your customers expect.

Make sure your requirements cover all the
steps in the use cases for your system.

Use your use cases to find out about
things your customers forgot to tell you.

Your use cases will reveal any incomplete
or missing requirements that you might
have to add to your system.

Requirements

OO Basics
OO Principles

Here are some of the key tools you learned about in this chapter.

We’ll be
adding lots
more tools to
these other
categories*
in the coming
chapters.

* Readers of Head First Design Patterns will find these categories
familiar... that’s because OOA&D and design patterns go hand in hand.

ooa&d toolbox

Download at WoweBook.Com

gathering requirements

OOA&D Cross

you are here 4 107

Download at WoweBook.Com

108 Chapter 2

public class Remote {

 private ___________ door;

 public Remote(_____________ _______) {
 this.door = door;
 }

 public void pressButton() {
 System.out.println(“Pressing the remote control button...”);
 if (_____._______()) {
 door._________();
 } else {
 door._________();
 }
 }
}

Code Magnets Solutions
The DogDoor class is done, so all you need now is to write a class for
the remote control. We’ve started this class below, but it’s your job to
finish things up. Using the code magnets at the bottom of the page,
complete the code for the Remote class.

Be careful... you may not need all the magnets.

isOpen

DogDoor

DogDoor

DogDoor

isOpen

isOpen

open

open

close

close

true
true

false
true

false

boolean

booleanHere’s what’s leftover.

door

door

exercise solutions

Download at WoweBook.Com

gathering requirements

you are here 4 109

Exercise
Solutions

Download at WoweBook.Com

Download at WoweBook.Com

this is a new chapter 111

requirements change3

Think you’ve got just what the customer wanted?
Not so fast... So you’ve talked to your customer, gathered

requirements, written out your use cases, and delivered a killer application.

It’s time for a nice relaxing cocktail, right? Right... until your customer

decides that they really wanted something different than what they told

you. They love what you’ve done, really, but it’s not quite good enough

anymore. In the real world, requirements are always changing, and it’s

up to you to roll with these changes and keep your customer satisfied.

I Love You, You’re Perfect...
 Now Change

What in the world was I
thinking? I just found out he
doesn’t even like NASCAR.

Download at WoweBook.Com

112 Chapter 3

You’re a hero!
A nice piña colada to sip on, the sun shining down on you, a roll of
hundred dollar bills stuffed into your swim trunks... this is the life of a
programmer who’s just made Doug’s Dog Doors a successful venture. The
door you built for Todd and Gina was a huge success, and now Doug’s
selling it to customers all across the world.

welcome to paradise

Listen, our dog door’s
been working great, but we’d

like you to come work on it
some more...

Todd and Gina,
happily interrupting
your vacation.

Doug’s making
some serious bucks
with your code.

But then came a phone call...

You: Oh, has something gone wrong?

Todd and Gina: No, not at all. The door works just like you said
it would.

You: But there must be a problem, right? Is the door not closing
quickly enough? Is the button on the remote not functioning?

Todd and Gina: No, really... it’s working just as well as the day
you installed it and showed everything to us.

You: Is Fido not barking to be let out anymore? Oh, have you
checked the batteries in the remote?

Todd and Gina: No, we swear, the door is great. We just have a
few ideas about some changes we’d like you to make...

You: But if everything is working, then what’s the problem?

Doug’s Dog Doors

Tired of cleaning up your dog’s mistakes?
 Ready for someone else to let your dog outside?
 Sick of dog doors that stick when you open them?

 Professionally
installed by our
door experts.

1-800-998-9938Call Doug today at

It’s time to call...

 Patented
all-steel
construction.

 Choose your own
custom colors
and imprints.

 Custom-cut door
for your dog.

Over
10,000
Sold

Download at WoweBook.Com

you are here 4 113

requirements change

1. Fido barks to be let out.
2. Todd or Gina hears Fido barking.
3. Todd or Gina presses the button on the

remote control.
4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.

6.1. The door shuts automatically.
6.2. Fido barks to be let back inside.
6.3. Todd or Gina hears Fido barking (again).
6.4. Todd or Gina presses the button on the

remote control.
6.5. The dog door opens (again).

7. Fido goes back inside.

8. The

Todd and Gina’s Dog Door, version 2.0
What the Door (Currently) Does

We’re both tired of having
to listen for Fido all the time.

Sometimes, we don’t even hear him
barking, and he pees inside.

And we’re
constantly losing that
remote, or leaving it in

another room. I’m tired of
having to push a button to

open the door.

What if the dog door opened
automatically when Fido barked at it? Then,
we wouldn’t have to do anything to let him

outside! We both talked it over, and we
think this is a GREAT idea!

Download at WoweBook.Com

114 Chapter 3

Wait a minute... this totally
sucks! We already built them a

working door, and they said it was
fine. And now, just because they had
some new idea, we have to make more

changes to the door?

Even when requirements change,
you’ve got to be ready to update your
application and make sure it works
like your customers expect. When your
customer has a new need, it’s up to you
to change your applications to meet
those new needs.

The customer is always right

Back to the drawing board
Time to get working on fixing up Todd and Gina’s dog
door again. We need to figure out a way to open the
door whenever Fido barks. Let’s start out by...

You’ve just discovered the one constant in software
analysis and design. What do you think that constant is?

brain
power?

Doug loves it when this
happens, since he gets to
charge Todd and Gina for
the changes you make.

the customer is right

Download at WoweBook.Com

you are here 4 115

requirements change

Okay, what’s the one thing you can always count on in writing software?

No matter where you work, what you’re building, or what language you are programming in, what’s
the one true constant that will always be with you?

The one constant in software analysis and design*

CHANGE
(use a mirror to see the answer)

No matter how well you design an application, over time the application
will always grow and change. You’ll discover new solutions to problems,
programming languages will evolve, or your friendly customers will come up
with crazy new requirements that force you to “fix” working applications.

Sharpen your pencil Requirements change all the time... sometimes in
the middle of a project, and sometimes when you
think everything is complete. Write down some
reasons that the requirements might change in
the applications you currently are working on.

My customer decided that they wanted the application to work differently.

My boss thinks my application would be better as a web application than a desktop app.

*If you’ve read Head First Design Patterns, this page might look a bit familiar.
They did such a good job describing change that we decided to just rip off their
ideas, and just CHANGE a few things here and there. Thanks, Beth and Eric!

Requirements
always change.
If you’ve got
good use cases,
though, you can
usually change
your software
quickly to adjust
to those new
requirements.

Download at WoweBook.Com

116 Chapter 3

Add bark recognition to Todd and Gina’s dog door.

Update the diagram, and add an alternate path where Fido barks, Doug’s
new bark recognizer hears Fido, and the dog door automatically opens. The
remote control should still work, too, so don’t remove anything from the
diagram; just add another path where Fido’s barking opens the door.

Exercise

add an alternate path

Gina, open the dog
door... Fido won’t

quit barking!

2

3 5 Fido goes outside

Todd or Gina hears Fido barking

Todd or Gina presses the button on
the remote control.

7 Fido goes back inside

Woof! Woof!

1

8

Fido barks to be let out

The door shuts automatically

4 The dog door opens

Download at WoweBook.Com

you are here 4 117

requirements change

6.1 The door shuts automatically

Todd or Gina hears
Fido barking (again)

Woof! Woof!

Again with the
barking! Someone let
Fido back inside.

Todd or Gina presses
the button on the

remote control

Fido barks to be let back inside.6.2

6.3

6.4

The dog door opens (again)6.5

I feel much
better now!

Fido goes outside

6 Fido does his business

The dog door opens

Download at WoweBook.Com

118 Chapter 3

Todd or Gina presses the button on
the remote control.

meeting fido’s needs

Doug’s invented hardware to recognize barks, but it’s up to you to
figure out how to use his new hardware in the dog door system.

Here’s how we solved Todd and Gina’s problem, and implemented their
bark-recognizing dog door. See if you made similar additions to the diagram.

Exercise
Solutions

We need to add a
handy-dandy bark
recognizer to the
dog door.

2.1 The bark recognizer
“hears” a bark
3.1 The bark recognizer

sends a request to the
door to open

Most of the diagram
stayed the same... we
needed only these two
extra steps.

Just like on the alternate path, we can

use sub-step numbers to show these are

on an alternate path.

Gina, open the dog
door... Fido won’t

quit barking!

2

3

5 Fido goes outside

Todd or Gina hears Fido barking

7 Fido goes back inside

Woof! Woof!

1

8

Fido barks to be let out

The door shuts automatically

4 The dog door opens

Download at WoweBook.Com

you are here 4 119

requirements change

The bark recognizer
“hears” a bark (again)

6.3.1

The bark recognizer
sends a request to the
door to open

6.4.1

We also need a couple of
alternate steps here, too.

Since these steps
are already on an
alternate path,
we need two sub-
step numbers.

6.1 The door shuts automatically

Todd or Gina hears
Fido barking (again)

Woof! Woof!

Again with the
barking! Someone let
Fido back inside.

Todd or Gina presses
the button on the

remote control

Fido barks to be let back inside.6.2

6.3

6.4

The dog door opens (again)6.5

I feel much
better now!

Fido goes outside

6 Fido does his business

The dog door opens

Download at WoweBook.Com

120 Chapter 3

But now my use case is totally
confusing. All these alternate

paths make it hard to tell what in the
world is going on!

1. Fido barks to be let out.
2. Todd or Gina hears Fido barking.

2.1. The bark recognizer “hears” a bark.
3. Todd or Gina presses the button on the remote control.

3.1. The bark recognizer sends a request to the door to
open.

4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.

6.1. The door shuts automatically.
6.2. Fido barks to be let back inside.
6.3. Todd or Gina hears Fido barking (again).

6.3.1. The bark recognizer “hears” a bark (again).
6.4. Todd or Gina presses the button on the remote

control.
6.4.1. The bark recognizer sends a request to the door

to open.
6.5. The dog door opens (again).

7. Fido goes back inside.
8. The door shuts automatically.

Todd and Gina’s Dog Door, version 2.1
What the Door Does

Optional Path?
 Alternate Path?
 Who can tell?

There
are now
alternate
steps for
both #2
and #3.

Even the
alternate
steps
now have
alternate
steps.

These are listed as sub-
steps, but they really are
providing a completely
different path through
the use case.

These sub-steps
provide an additional
set of steps that can
be followed...

...but these sub-steps
are really a different
way to work through
the use case.

which path do i follow?

Download at WoweBook.Com

you are here 4 121

requirements change

1. Fido barks to be let out.
2. Todd or Gina hears Fido barking.

2.1. The bark recognizer “hears” a bark.
3. Todd or Gina presses the button on the remote control.

3.1. The bark recognizer sends a request to the door to
open.

4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.

6.1. The door shuts automatically.
6.2. Fido barks to be let back inside.
6.3. Todd or Gina hears Fido barking (again).

6.3.1. The bark recognizer “hears” a bark (again).
6.4. Todd or Gina presses the button on the remote

control.
6.4.1. The bark recognizer sends a request to the door

to open.
6.5. The dog door opens (again).

7. Fido goes back inside.
8. The door shuts automatically.

Todd and Gina’s Dog Door, version 2.1
What the Door Does

I still think this use
case is confusing. It looks

like Todd and Gina always hear Fido
barking, but the bark recognizer only

hears him sometimes. But that’s not
what Todd and Gina want...

In the new use case,
we really want to say
that either Step 2 or
Step 2.1 happens...

...and then either Step 3
or Step 3.1 happens.

Do you see what Gerald is talking
about? Todd and Gina’s big idea
was that they wouldn’t have to
listen for Fido’s barking anymore.

Here, either Step 6.3
or 6.3.1 happens...

...and then either 6.4
or 6.4.1 happens.

Download at WoweBook.Com

122 Chapter 3

Use cases have to make sense to you
If a use case is confusing to you, you can simply rewrite it. There are tons of
different ways that people write use cases, but the important thing is that
it makes sense to you, your team, and the people you have to explain it to.
So let’s rewrite the use case from page 121 so it’s not so confusing.

Todd and Gina’s Dog Door, version 2.2
What the Door Does

Main Path
1. Fido barks to be let out.
2. Todd or Gina hears Fido barking.

3. Todd or Gina presses the button on the
remote control.

4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.

6.1. The door shuts automatically.
6.2. Fido barks to be let back inside.
6.3. Todd or Gina hears Fido barking (again).

6.4. Todd or Gina presses the button on the
remote control.

6.5. The dog door opens (again).
7. Fido goes back inside.
8. The door shuts automatically.

Alternate Paths

2.1. The bark recognizer “hears” a
bark.

3.1. The bark recognizer sends a
request to the door to open.

6.3.1. The bark recognizer “hears”
a bark (again).

6.4.1. The bark recognizer sends a
request to the door to open.

Now we’ve
added a label
to tell us that
these steps on
the left are
part of the
main path.

We’ve moved the steps that can occur instead of the steps on the main path over here to the right.

This is a little clearer: we can
use Step 2, OR Step 2.1, and
then Step 3, OR Step 3.1.

When there’s
only a single step,
we’ll always use
that step when
we go through
the use case.

These sub-steps
are optional... you
may use them, but
you don’t have
to. But they’re
still on the left,
because they don’t
replace steps on
the main path.

These steps on the right can replace Steps 6.3 and 6.4. You can only take one step to work through the use case:either the step on the left, OR the step on the right.

No matter how you work
through this use case, you’ll
always end up at Step 8 on
the main path.

write it any way you want to

Download at WoweBook.Com

you are here 4 123

requirements change

Todd and Gina’s Dog Door, version 2.3
What the Door Does

Main Path
1. Fido barks to be let out.
2. The bark recognizer “hears” a bark.
3. The bark recognizer sends a request

to the door to open.
4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.

6.1. The door shuts automatically.
6.2. Fido barks to be let back inside.
6.3. The bark recognizer “hears” a

bark (again).
6.4. The bark recognizer sends a

request to the door to open.
6.5. The dog door opens (again).

7. Fido goes back inside.
8. The door shuts automatically.

Alternate Paths

2.1. Todd or Gina hears Fido barking.
3.1. Todd or Gina presses the button

on the remote control.

6.3.1. Todd or Gina hears Fido
barking (again).

6.4.1. Todd or Gina presses the
button on the remote control.

If we can really write the use
case however we want, can we make the

bark recognizer part of the main path?
That’s really the path we want to follow

most of the time, right?

The main path should be what you want to
have happen most of the time. Since Todd
and Gina probably want the bark recognizer
to handle Fido more than they want to use the
remote, let’s put those steps on the main path:

Excellent idea!

Now the steps
that involve the
bark recognizer
are on the main
path, instead of an
alternate path.

Todd and Gina won’t use the
remote most of the time, so
the steps related to the remote
are better as an alternate path.

Download at WoweBook.Com

124 Chapter 3

Start to finish: a single scenario
With all the alternate paths in the new use case, there are lots of
different ways to get Fido outside to use the bathroom, and then
back in again. Here’s one particular path through the use case:

Each path
through
this use
case starts
with Step 1.

getting to the goal

Todd and Gina’s Dog Door, version 2.3
What the Door Does

Main Path
1. Fido barks to be let out.
2. The bark recognizer “hears” a bark.
3. The bark recognizer sends a request

to the door to open.
4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.

6.1. The door shuts automatically.
6.2. Fido barks to be let back inside.
6.3. The bark recognizer “hears” a

bark (again).
6.4. The bark recognizer sends a

request to the door to open.
6.5. The dog door opens (again).

7. Fido goes back inside.
8. The door shuts automatically.

Alternate Paths

2.1. Todd or Gina hears Fido barking.
3.1. Todd or Gina presses the button

on the remote control.

6.3.1. Todd or Gina hears Fido
barking (again).

6.4.1. Todd or Gina presses the
button on the remote control.

You’ll always end up at Step 8, with Fido back inside.

We’re letting Todd and Gina
handle opening the door
again, on the alternate path.

Let’s take
this alternate
path, and let
Todd and Gina
handle opening
the door with
the remote.

Following the arrows gives you a
particular path through the use case.
A path like this is called a scenario.
There are usually several possible
scenarios in a single use case.

We’ll take the optional
sub-path here, where
Fido gets stuck outside.

Download at WoweBook.Com

you are here 4 125

requirements change

Most use cases have
several different scenarios,
but they always share the
same user goal.

Q: I understand the main path of a
use case, but can you explain what an
alternate path is again?

A: An alternate path is one or more
steps that a use case has that are optional,
or provide alternate ways to work through the
use case. Alternate paths can be additional
steps added to the main path, or provide
steps that allow you to get to the goal in a
totally different way than parts of the main
path.

Q: So when Fido goes outside and
gets stuck, that’s part of an alternate
path, right?

A: Right. In the use case, Steps 6.1,
6.2, 6.3, 6.4, and 6.5 are an alternate path.
Those are additional steps that the system
may go through, and are needed only when
Fido gets stuck outside. But it’s an alternate
path because Fido doesn’t always get stuck
outside—the system could go from Step 6
directly on to Step 7.

Q: And we use sub-steps for that,
like 6.1 and 6.2?

A: Exactly. Because an alternate path
that has additional steps is just a set of steps
that can occur as part of another step on the
use case’s main path. When Fido gets stuck
outside, the main path steps are 6 and 7,
so the alternate path steps start at 6.1 and
go through 6.5; they’re an optional part of
Step 6.

Q: So what do you call it when you
have two different paths through part of a
use case?

A: Well, that’s actually just another kind
of alternate path. When Fido barks, there’s
one path that involves Todd and Gina hearing
Fido and opening the door, and another path
that involves the bark recognizer hearing a
bark and opening the door. But the system
is designed for one or the other—either
the remote opens the door, or the bark
recognizer does—not both.

Q: Can you have more than one
alternate path in the same use case?

A: Absolutely. You can have alternate
paths that provide additional steps, and
multiple ways to get from the starting
condition to the ending condition. You can
even have an alternate path that ends the
use case early... but we don’t need anything
that complicated for Todd and Gina’s dog
door.

there are no
Dumb Questions

A complete path through
a use case, from the first
step to the last, is called
a scenario.

Download at WoweBook.Com

126 Chapter 3

alternate paths are optional

HeadFirst: Hello, Alternate Path. We’ve been hearing that you’re really
unhappy these days. Tell us what’s going on.

Alternate Path: I just don’t feel very included sometimes. I mean, you can
hardly put together a decent use case without me, but I still seem to get ignored
all the time.

HeadFirst: Ignored? But you just said you’re part of almost every use case. It
sounds like you’re quite important, really.

Alternate Path: Sure, it may sound that way. But even when I’m part of a use
case, I can get skipped over for some other set of steps. It really sucks... it’s like
I’m not even there!

HeadFirst: Can you give us an example?

Alternate Path: Just the other day, I was part of a use case for buying a CD at
this great new online store, Musicology. I was so excited... but it turned out that I
handled the situation when the customer’s credit card was rejected.

HeadFirst: Well, that sounds like a really important job! So what’s the
problem?

Alternate Path: Well, yeah, I guess it’s important, but I always get passed over.
It seems like everyone was ordering CDs, but their credit cards were all getting
accepted. Even though I was part of the use case, I wasn’t part of the
most common scenarios.

HeadFirst: Oh, I see. So unless someone’s credit card was rejected, you were
never involved.

Alternate Path: Exactly! And the finance and security guys loved me, they just 
went on and on about how much I’m worth to the company, but who wants to
sit there unused all the time?

HeadFirst: I’m starting to get the picture. But you’re still helping the use case,
right? Even if you’re not used all the time, you’re bound to get called on once in
a while.

Alternate Path: That’s true; we all do have the same goal. I just didn’t realize
that I could be important to the use case and still hardly ever get noticed.

HeadFirst: Well, just think... the use case wouldn’t be complete without you.

Alternate Path: Yeah, that’s what 3.1 and 4.1 keep telling me. Of course,
they’re part of the alternate path for when customers already have an account
on the system, so they get used constantly. Easy for them to say!

HeadFirst: Hang in there, Alternate Path. We know you’re an important part
of the use case!

This week’s interview:
Confessions of an Alternate Path

Use Cases Exposed

Download at WoweBook.Com

you are here 4 127

requirements change

How many scenarios are in Todd and Gina’s use case?

How many different ways can you work your way through Todd and Gina’s use case?
Remember, sometimes you have to take one of multiple alternate paths, and sometimes
you can skip an alternate path altogether.

Sharpen your pencil

1, 2.1, 3.1, 4, 5, 6, 6.1, 6.2, 6.3.1, 6.4.1, 6.5, 7, 81.

2.

3.

4.

5.

6.

7.

8.

We’ve written
out the steps we
followed for the
scenario highlighted
above to help get
you started.

Ch
ec

k
ou

t o
ur

 a
ns

we
rs

 o
n

th
e

ne
xt

 p
ag

e

You might not need
all of these blanks.

Todd and Gina’s Dog Door, version 2.3
What the Door Does

Main Path
1. Fido barks to be let out.
2. The bark recognizer “hears” a bark.
3. The bark recognizer sends a request

to the door to open.
4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.

6.1. The door shuts automatically.
6.2. Fido barks to be let back inside.
6.3. The bark recognizer “hears” a

bark (again).
6.4. The bark recognizer sends a

request to the door to open.
6.5. The dog door opens (again).

7. Fido goes back inside.
8. The door shuts automatically.

Alternate Paths

2.1. Todd or Gina hears Fido barking.
3.1. Todd or Gina presses the button

on the remote control.

6.3.1. Todd or Gina hears Fido
barking (again).

6.4.1. Todd or Gina presses the
button on the remote control.

Download at WoweBook.Com

128 Chapter 3

one use case, multiple scenarios

How many scenarios are in Todd and Gina’s use case?

How many different ways can you work your way through Todd and Gina’s use case?
Remember, sometimes you have to take one of multiple alternate paths, and sometimes
you can skip an alternate path altogether.

1.

2.

3.

4.

5.

6.

7.

8.

1, 2, 3, 4, 5, 6, 7, 8

1, 2.1, 3.1, 4, 5, 6, 7, 8

These two
don’t take
the optional
alternate
path where
Fido gets
stuck outside.

Sharpen your pencil
answers

1, 2.1, 3.1, 4, 5, 6, 6.1, 6.2, 6.3, 6.4, 6.5, 7, 8

1, 2, 3, 4, 5, 6, 6.1, 6.2, 6.3.1, 6.4.1, 6.5, 7, 8

1, 2, 3, 4, 5, 6, 6.1, 6.2, 6.3, 6.4, 6.5, 7, 8

<nothing else>

<nothing else>

If you take Step 2.1, you’ll

always also take Step 3.1.

When you take 6.3.1, you’ll
also take Step 6.4.1.

1, 2.1, 3.1, 4, 5, 6, 6.1, 6.2, 6.3.1, 6.4.1, 6.5, 7, 8

This is just the use
case’s main path.

Todd and Gina’s Dog Door, version 2.3
What the Door Does

Main Path
1. Fido barks to be let out.
2. The bark recognizer “hears” a bark.
3. The bark recognizer sends a request

to the door to open.
4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.

6.1. The door shuts automatically.
6.2. Fido barks to be let back inside.
6.3. The bark recognizer “hears” a

bark (again).
6.4. The bark recognizer sends a

request to the door to open.
6.5. The dog door opens (again).

7. Fido goes back inside.
8. The door shuts automatically.

Alternate Paths

2.1. Todd or Gina hears Fido barking.
3.1. Todd or Gina presses the button

on the remote control.

6.3.1. Todd or Gina hears Fido
barking (again).

6.4.1. Todd or Gina presses the
button on the remote control.

Download at WoweBook.Com

you are here 4 129

requirements change

Let’s get ready to code...

Now that our use case is finished up, and we’ve figured out all
the possible scenarios for using the dog door, we’re ready to
write code to handle Todd and Gina’s new requirements. Let’s
figure out what we need to do...

I think we should recheck our
requirements list against the new use
case. If Todd and Gina’s requirements
changed, then our requirements list

might change too, right?

Remember, the whole point of a good
use case is to get good requirements. If
your use case changes, that may mean
that your requirements change, too. Let’s
review the requirements and see if we
need to add anything to them.

Any time you change your use
case, you need to go back
and check your requirements.

1. The dog door opening must be at least 12” tall.
2. A button on the remote control opens the dog door

if the door is closed, and closes the dog door if the
door is open.

3. Once the dog door has opened, it should close
automatically if the door isn’t already closed.

Todd and Gina’s Dog Door, version 2.2
Requirements List

Go ahead and write
in any additional
requirements that you’ve
discovered working
through the scenarios
for the new dog door
on page 128.

Download at WoweBook.Com

130 Chapter 3

Todd and Gina’s Dog Door, version 2.3
What the Door Does

Main Path
1. Fido barks to be let out.

2. The bark recognizer “hears” a bark.

3. The bark recognizer sends a request
to the door to open.

4. The dog door opens.

5. Fido goes outside.

6. Fido does his business.

6.1. The door shuts automatically.

6.2. Fido barks to be let back inside.

6.3. The bark recognizer “hears” a
bark (again).

6.4. The bark recognizer sends a
request to the door to open.

6.5. The dog door opens (again)

7. Fido goes back inside.

8. The door shuts automatically.

Alternate Paths

2.1. Todd or Gina hears Fido barking.

3.1. Todd or Gina presses the button
on the remote control.

6.3.1. Todd or Gina hears Fido
barking (again).

6.4.1. Todd or Gina presses the
button on the remote control.

Finishing up the requirements list
So we need to handle the two new alternate paths by adding a couple
extra requirements to our requirements list. We’ve gone ahead and
crossed off the steps that our requirements already handle, and it looks
like we need a few additions to our requirements list:

evolving the requirements list

1. The dog door opening must be at least 12” tall.
2. A button on the remote control opens the dog door

if the door is closed, and closes the dog door if the
door is open.

3. Once the dog door has opened, it should close
automatically if the door isn’t already closed.

4. A bark recognizer must be able to tell when a dog
is barking.

5. The bark recognizer must open the dog door when
it hears barking.

Todd and Gina’s Dog Door, version 2.3
Requirements List

There are
really two
requirements
here: “hearing”
dogs bark, and
then opening the
dog door.

These are
different
steps than 2
and 3, but the
requirements
are the same
as for those
earlier steps.

Here are the two new
requirements we need
to add to our list.

We took care
of most of
these main
path steps in
Chapter 2.

Remember, these steps on the alternate path were part of the use case’s main path in the last chapter...
...so we’ve already handled the requirements to take care of these.

Download at WoweBook.Com

you are here 4 131

requirements change

Woof! Woof!

Now we can start coding the
dog door again
With new requirements comes new code. We need some
barking, a bark recognizer to listen for barking, and then
a dog door to open up:

class
DogDoor
{
 open()
}

DogDoor.java

BarkRecognizer.java

class
BarkRec-
ognizer
{
 update
}

Remember, Fido is
outside the system,
so we don’t need an
object for him. We
can just simulate
him barking in
DogDoorSimulator.

class
DogDoor-
Sim {
}

DogDoorSimulator.java

We don’t need anythi
ng new in

this class. We’ve got an open()

method for the reco
gnizer to

call, so this code do
esn’t need to

change at all.

We still need to write the code for the bark recognizer. We’ll do that on the next page.

recognize()

open()

This is the method in our
software that we want to
have called every time Doug’s
hardware hears a bark.

Just like the bark recognizer, there’s hardware and software in the dog door: the door itself and your code.

Even though we’re still working on getting the software to do what the customer wants, this is a good indication that your design is solid. Nice work!

Download at WoweBook.Com

132 Chapter 3

Was that a “woof” I heard?
We need some software to run when Doug’s hardware “hears”
a bark. Let’s create a BarkRecognizer class, and write a
method that we can use to respond to barks:

recognizing barks

public class BarkRecognizer {

 private DogDoor door;

 public BarkRecognizer(DogDoor door) {
 this.door = door;
 }

 public void recognize(String bark) {
 System.out.println(“ BarkRecognizer: Heard a ‘” +
 bark + “’”);
 door.open();
 }
}

We’ll store the dog door that this bark recognizer is attached to in this member variable.

The BarkRecognizer needs to know
which door it will open.

Every time the hardware hears a bark, it will call this method with the sound of the bark it heard.

All we need to do is output a message letting the system know we heard a bark...
...and then open up
the dog door.

Q: That’s it? It sure seems like the BarkRecognizer
doesn’t do very much.

A: Right now, it doesn’t. Since the requirements are
simple—when a dog barks, open the door—your code is
pretty simple, too. Any time the hardware hears a bark, it
calls recognize() in our new BarkRecognizer
class, and we open the dog door. Remember, keep things as
simple as you can; there’s no need to add complexity if you
don’t need it.

Q: But what happens if a dog other than Fido is
barking? Shouldn’t the BarkRecognizer make sure it’s
Fido that is barking before opening the dog door?

A: Very interesting question! The BarkRecognizer
hears all barks, but we really don’t want it to open the door
for just any dog, do we? We may have to come back and
fix this later. Maybe you should think some more about this
while we’re testing things out.

there are no
Dumb Questions

class
BarkRec-
ognizer
{
 recog
}

BarkRecognizer.java

Download at WoweBook.Com

you are here 4 133

requirements change

Todd and Gina’s Dog Door, version 2.3
Requirements List

I think with this new class, we’ve got
everything we need. Let’s test out the
BarkRecognizer and see if we can make

Todd and Gina happy again.

First, let’s make sure we’ve taken care of Todd
and Gina’s new requirements for their door:

This is another
hardware
requirement for
Doug. For now,
we can use the
simulator to get
a bark to the
recognizer, and
test the software
we wrote.

This is the code
we just wrote...
anytime the
recognizer hears a
bark, it opens the
dog door.

1. The dog door opening must be at least 12” tall.
2. A button on the remote control opens the dog door

if the door is closed, and closes the dog door if the
door is open.

3. Once the dog door has opened, it should close
automatically if the door isn’t already closed.

4. A bark recognizer must be able to tell when a dog
is barking.

5. The bark recognizer must open the dog door when
it hears barking.

Hmmm... our bark recognizer isn’t really

“recognizing” a bark, is it? It’s op
ening

the door for ANY bark. We may have to

come back to this later.

Download at WoweBook.Com

134 Chapter 3

Power up the new dog door
Use cases, requirements, and code have all led up to this. Let’s
see if everything works like it should.

test drive

Update the DogDoorSimulator source code:1

public class DogDoorSimulator {

 public static void main(String[] args) {
 DogDoor door = new DogDoor();
 BarkRecognizer recognizer = new BarkRecognizer(door);
 Remote remote = new Remote(door);

 // Simulate the hardware hearing a bark
 System.out.println(“Fido starts barking.”);
 recognizer.recognize(“Woof”);

 System.out.println(“\nFido has gone outside...”);

 System.out.println(“\nFido’s all done...”);

 try {
 Thread.currentThread().sleep(10000);
 } catch (InterruptedException e) { }

 System.out.println(“...but he’s stuck outside!”);

 // Simulate the hardware hearing a bark again
 System.out.println(“Fido starts barking.”);
 recognizer.recognize(“Woof”);

 System.out.println(“\nFido’s back inside...”);
 }
}

class
DogDoor-
Sim {
}

DogDoorSimulator.java

Create the
BarkRecognizer,
connect it to
the door, and
let it listen for
some barking.

We don’t have
real hardware,
so we’ll just
simulate the
hardware
hearing a
bark.*

Notice that Todd and
Gina never press a
button on the remote
this time around.

*The authors of this book sincerely wanted to
include hardware that could hear dogs barking...
but marketing insists that nobody would buy a
book priced at $299.95. Go figure!

Here’s where
our new
BarkRecognizer software gets to go into action.

We test the
process when
Fido’s outside,
just to make sure
everything works
like it should.

We simulate
some time
passing here.

Download at WoweBook.Com

you are here 4 135

requirements change

Which scenario are we testing?

Can you figure out which scenario from the use case we’re testing?
Write down the steps this simulator follows (flip back to page 123 to
see the use case again):

Sharpen your pencil

Recompile all your Java source code into classes.2

DogDoor.classclass
DogDoor
{
 open()
}

DogDoor.java

javac *.java

Remote.classclass
Remote {
 press-
Button()
}

Remote.java
BarkRecognizer.class

BarkRecognizer.java

class
BarkRec-
ognizer
{
 recog
}

DogDoorSimulator.class

class
DogDoor-
Sim {
}

DogDoorSimulator.java

Run the code and watch the humanless dog door go into action.3

File Edit Window Help YouBarkLikeAPoodle

%java DogDoorSimulator
Fido starts barking.
 BarkRecognizer: Heard a ‘Woof’
The dog door opens.

Fido has gone outside...

Fido’s all done...
...but he’s stuck outside!
Fido starts barking.
 BarkRecognizer: Heard a ‘Woof’
The dog door opens.

Fido’s back inside...

A few seconds
pass here
while Fido
plays outside.

There’s a big problem with our code,
and it shows up in the simulator.
Can you figure out what the problem
is? What would you do to fix it?

brainpower
?

Download at WoweBook.Com

136 Chapter 3

In our new version of the dog door,
the door doesn’t automatically close!

answers and open doors

In the scenarios where Todd and Gina press
the button on the remote control, here’s the
code that runs:

 public void pressButton() {
 System.out.println(“Pressing the remote control button...”);

 if (door.isOpen()) {
 door.close();
 } else {
 door.open();

 final Timer timer = new Timer();
 timer.schedule(new TimerTask() {
 public void run() {
 door.close();
 timer.cancel();
 }
 }, 5000);
 }
 }

class
Remote {
 press-
Button()
}

Remote.java

When Todd
and Gina press
the button on
the remote,
this code
also sets up
a timer to
close the door
automatically.

Which scenario
are we testing?

Did you figure out which scenario from the use
case we’re testing? Here are the steps from the
use case on page 123 that we followed:

Sharpen your pencil
answers

1, 2, 3, 4, 5, 6, 6.1, 6.2, 6.3, 6.4, 6.5, 7, 8
There’s a big problem with our code,

and it shows up in the simulator.

Can you figure out what the problem

is? What would you do to fix it?

brain
power?

Did you figure out what was wrong with our latest version of the dog door?

Remember, this timer waits 5 seconds, and the sends a request to the dog door to close itself.

Download at WoweBook.Com

you are here 4 137

requirements change

But in BarkRecognizer, we open the
door, and never close it:

 public void recognize(String bark) {
 System.out.println(“ BarkRecognizer: ” +

 “Heard a ‘” + bark + “’”);
 door.open();
 }

class
BarkRec-
ognizer
{
 update
}

BarkRecognizer.java

Even I can figure this one
out. Just add a Timer to your

BarkRecognizer like you did in the
remote control, and get things

working again. Todd and Gina are
waiting, you know!

Doug, owner of Doug’s
Dog Doors, decides that
he knows exactly what
you should do.

What do YOU think about
 Doug’s idea?

We open the door, but never close it.

Download at WoweBook.Com

138 Chapter 3

I think Doug’s lame. I don’t want to
put the same code in the remote
and in the bark recognizer.

duplicated code sucks

Well, closing the door is really
something that the door should

do, not the remote control or the
BarkRecognizer. Why don’t we have the

DogDoor close itself?

Duplicate code is a bad idea.
But where should the code
that closes the door go?

Since Gina never wants the dog door left
open, the dog door should always close
automatically. So we can move the code
to close the door automatically into the
DogDoor class. Then, no matter what
opens the door, it will always close itself.

Let’s have the dog door close
automatically all the time.

Even though this is a de
sign

decision, it’s part of g
etting the

software to work like the customer

wants it to. Remember, it’s OK to

use good design as you’r
e working

on your system’s functionality.

Download at WoweBook.Com

you are here 4 139

requirements change

Updating the dog door
Let’s take the code that closed the door from the Remote
class, and put it into our DogDoor code:

public class DogDoor {
 public void open() {
 System.out.println(“The dog door opens.”);
 open = true;

 final Timer timer = new Timer();
 timer.schedule(new TimerTask() {
 public void run() {
 close();
 timer.cancel();
 }
 }, 5000);
 }

 public void close() {
 System.out.println(“The dog door closes.”);
 open = false;
 }
}

class
DogDoor
{
 open()
}

DogDoor.java

Simplifying the remote control
You’ll need to take this same code out of Remote now, since
the dog door handles automatically closing itself:

This is the same code that used to be in Remote.java.

Now the door closes
itself... even if we add
new devices that can
open the door. Nice!

You’ll have to add imports for java.util.Timer and java.util.TimerTask, too.

 public void pressButton() {
 System.out.println(“Pressing the remote control button...”);

 if (door.isOpen()) {
 door.close();
 } else {
 door.open();

 final Timer timer = new Timer();
 timer.schedule(new TimerTask() {
 public void run() {
 door.close();
 timer.cancel();
 }
 }, 5000);
 }
 }

class
Remote {
 press-
Button()
}

Remote.java

Download at WoweBook.Com

140 Chapter 3

File Edit Window Help PestControl

%java DogDoorSimulator
Fido starts barking.
 BarkRecognizer: Heard a ‘Woof’
The dog door opens.

Fido has gone outside...

Fido’s all done...
The dog door closes.
...but he’s stuck outside!

Fido starts barking.
 BarkRecognizer: Heard a ‘Woof’
The dog door opens.

Fido’s back inside...
The dog door closes.

A final test drive
You’ve made a lot of changes to Todd and Gina’s dog door
since they first called you up. Let’s test things out and see if
everything works. Make the changes to Remote.java and
DogDoor.java so that the door closes itself, compile all your
classes again, and run the simulator:

Yes! The door is
closing by itself now.

test drive the door

What would happen if Todd and Gina decided they wanted the door
to stay open longer? Or to close more quickly? See if you can think of
a way to change the DogDoor so that the amount of time that passes
before the door automatically closes can be set by the customer.

brain
power?

Download at WoweBook.Com

you are here 4 141

requirements change

Sometimes a change in requirements reveals
problems with your system that you didn’t
even know were there.

Change is constant, and your system should
always improve every time you work on it.

Design Principle

Write your own design principle!

You’ve used an important design principle in this chapter related to
duplicating code, and the dog door closing itself. Try and summarize the
design principle that you think you’ve learned:

Sharpen your pencil

You won’t find an answer to this
puzzle in the chapter, but we’re
going to come back to this a little
later. Still, take your best guess!

Download at WoweBook.Com

142 Chapter 3

Tools for your OOA&D Toolbox
You’ve learned a lot in this chapter, and now it’s
time to add what you’ve picked up to your OOA&D

toolbox. Review what you’ve learned on this page,
and then get ready to put it all to use in the OOA&D

cross on the next page.

Good requirements ensure your system
works like your customers expect.

Make sure your requirements cover all the
steps in the use cases for your system.

Use your use cases to find out about
things your customers forgot to tell you.

Your use cases will reveal any incomplete
or missing requirements that you might
have to add to your system.

Your requirements will always change (and
grow) over time.

Requirements

There was
just one new
requirement
principle you
learned, but it’s an important one!

 BULLET POINTS

� Requirements will always change
as a project progresses.

� When requirements change, your
system has to evolve to handle
the new requirements.

� When your system needs to work
in a new or different way, begin
by updating your use case.

� A scenario is a single path
through a use case, from start to
finish.

� A single use case can have
multiple scenarios, as long as
each scenario has the same
customer goal.

� Alternate paths can be steps
that occur only some of the time,
or provide completely different
paths through parts of a use
case.

� If a step is optional in how a
system works, or a step provides
an alternate path through a
system, use numbered sub-
steps, like 3.1, 4.1, and 5.1, or
2.1.1, 2.2.1, and 2.3.1.

� You should almost always try
to avoid duplicate code. It’s
a maintenance nightmare, and
usually points to problems in how
you’ve designed your system.

More

OO Principles
Encapsulate what varies.

Encapsulation helped us realize that the
dog door should handle closing itself. We
separated the door’s behavior from the
rest of the code in our app.

ooa&d toolbox

Download at WoweBook.Com

you are here 4 143

requirements change

The puzzles keep coming. Make sure you’ve gotten all the key
concepts in this chapter by working this crossword. All the
answer words are somewhere in this chapter.

OOA&D Cross

-

Download at WoweBook.Com

144 Chapter 3

exercise solutions

Exercise
Solutions

Download at WoweBook.Com

this is a new chapter 145

analysis4

It’s time to graduate to real-world applications.
Your application has to do more than work on your own personal

development machine, finely tuned and perfectly set up; your apps

have to work when real people use them. This chapter is all about

making sure that your software works in a real-world context. You’ll

learn how textual analysis can take that use case you’ve been

working on and turn it into classes and methods that you know are what

your customers want. And when you’re done, you too can say: “I did it!

My software is ready for the real world!”

Taking Your Software
 into the Real World

I think I’m
finally ready!

Download at WoweBook.Com

146 Chapter 4

One dog, two dog, three dog, four...
Things are going well at Doug’s Dog Doors. The version of the dog door you
just developed in Chapter 3 is selling like crazy... but as more doors get installed,
complaints have started coming in:

it’s a dog-loving world

I loved your new model, with the bark
recognizer. But now that you’ve got it installed at
my house, it opens up every time the neighbors’

dogs bark. That’s not what I wanted when I
bought this thing!

Ruff! Ruff!

Yip! Yip!

Aroooo!

Rowlf! Rowlf!

Holly’s dog door
should only open when
Bruce barks...

...but it’s opening up when all the other dogs in the neigborhood bark, too.Bruce

Holly

Download at WoweBook.Com

you are here 4 147

analysis

Analysis helps
you ensure

your system
works in a
real-world

context.

Your software has a context
So far, we’ve worked on writing software in a vacuum, and
haven’t really thought much about the context that our
software is running in. In other words, we’ve been thinking
about our software like this:

But our software has to work in the real world, not just
in a perfect world. That means we have to think about our
software in a different context:

The key to making sure things work and that the real world
doesn’t screw up your application is analysis: figuring out
potential problems, and then solving those problems—before
you release your app out into the real world.

class
DogDoor
{
 open()
}

DogDoor.java

The Perfect World

In the perfect
world, everyone
uses our
software just
like we expect
them to.

Everyone is relaxed, and there are no multi-dog neighborhoods here.

class
DogDoor
{
 open()
}

DogDoor.java

The Real World

In the real world, there are
dogs, cats, rodents, and a host
of other problems, all set to
screw up your software.

In this context,
things go wrong a
lot more often.

Download at WoweBook.Com

148 Chapter 4

Identify the problem
The first step in good analysis is figuring out potential
problems. We already know that there’s a problem when
there are multiple dogs in the same neighborhood:

Yip! Yip!

Ruff! Ruff!

Rowlf! Rowlf!

Holly can use her
remote control to
open the door... no
problems here.

The bark recognizer
hears Bruce and opens
the door, which is just
what Holly wants.

Aroooo!But here’s the
problem... the bark
recognizer also hears
other dogs, and opens
the door for them, too.

what’s going wrong?

We already have classes for all the parts of the system that we need.

open()

open()

class
DogDoor
{
 open()
}

class
Remote {
 press-
Button()
}

DogDoor

Remote

class
BarkRec-
ognizer
{
 update
}

BarkRecognizer

Download at WoweBook.Com

you are here 4 149

analysis

Plan a solution
It looks like there’s a change we need to make in what our
system does. Do you know what it is? Below is a part of the
diagram detailing how the dog door system works:

1

Bruce, I’m
opening the door...
hang on a sec.

2

Bruce barks to be let out

4 The dog door opens

Holly hears Bruce
barking Holly presses the

button on the remote
controlRowlf! Rowlf!

2.1

The bark recognizer
“hears” a bark 5 Bruce goes outside

3.1

The remote is part of
the alternate path in
the latest version of
the dog door.

The bark recognizer
sends a request to the
door to open

3

What’s wrong with this diagram?

It’s your job to figure out how you would fix the dog door. You
can add steps, remove steps, or change steps... it’s up to
you. Write down what you think you need to change, and then
mark your changes on the diagram above.

Sharpen your pencil

The bark recognizer
is part of the main
path, and it’s letting in
all dogs, not just the
owner’s dog.

Bruce has taken Fido’s
place... better update
your diagram a bit.

Download at WoweBook.Com

150 Chapter 4

What’s wrong with this diagram?

adding the missing step

1

Bruce, I’m
opening the door...
hang on a sec.

2

Bruce barks to be let out

4 The dog door opens

Holly hears Bruce
barking Holly presses the

button on the remote
controlRowlf! Rowlf!

2.1

The bark recognizer
“hears” a bark 5 Bruce goes outside

3.1

The bark recognizer
sends a request to the
door to open

3

Sharpen your pencil
answers

If it’s Bruce barking,
send a request to the
door to open

3

In step 3, the bark
recognizer needs to
evaluate the bark it hears
and see if it’s Bruce, or
some other dog.

If the bark is Bruce’s, the bark recognizer can send an open request to the dog door.

The bark recognizer hears
all dogs, which is OK... but
it’s the next step that’s
causing a problem.

Download at WoweBook.Com

you are here 4 151

analysis

There’s an important addition that needs to be made to the dog
door system, in addition to what’s shown on page 150. What is it?

?brain
power

Q: I came up with a different solution.
Does that mean my solution is wrong?

A: No, as long as your solution kept all the
dogs except for Bruce from going in and out of
the dog door. That’s what makes talking about
software so tricky: there’s usually more than one
way to solve a problem, and there’s not always
just one “right” solution.

Q: In my solution, I turned step 3 of the
original use case into two steps, instead of
just replacing the existing step. Where did I go
wrong?

A: You didn’t go wrong. Just as there is
usually more than one solution to a problem, there
is usually more than one way to write that solution
in a use case. If you use more than one step,
but have the scenario with other dogs barking
handled, then you’ve got a working use case.

Q: So these use cases really aren’t that
precise, are they?

A: Actually, use cases are very precise. If
your use case doesn’t detail exactly what your
system is supposed to do, then you could miss
an important requirement or two and end up with
unhappy customers.
But, use cases don’t have to be very formal; in
other words, your use case may not look like
ours, and ours might not look like anyone else’s.
The important thing is that your use case makes
sense to you, and that you can explain it to your
co-workers, boss, and customers.

there are no
Dumb Questions

Write your use cases in
a way that makes sense
to you, your boss, and
your customers.

Analysis and your use
cases let you show
customers, managers,
and other developers
how your system works
in a real world context.

Download at WoweBook.Com

152 Chapter 4

Update your use case
Since we’ve changed our dog door diagram, we need to go
back to the dog door use case, and update it with the new
steps we’ve figured out. Then, over the next few pages, we’ll
figure out what changes we need to make to our code.

keep your use case up to date

The Ultimate Dog Door, version 3.0
What the Door Does

Main Path
1. The owner’s dog barks to be let out.
2. The bark recognizer “hears” a bark.

3. If it’s the owner’s dog barking, the
bark recognizer sends a request to
the door to open.

4. The dog door opens.
5. The owner’s dog goes outside.
6. The owner’s dog does his business.

6.1. The door shuts automatically.
6.2. The owner’s dog barks to be let

back inside.
6.3. The bark recognizer “hears” a

bark (again).
6.4. If it’s the owner’s dog barking,

the bark recognizer sends a
request to the door to open.

6.5. The dog door opens (again).
7. The owner’s dog goes back inside.
8. The door shuts automatically.

Alternate Paths

2.1. The owner hears her dog
barking.

3.1. The owner presses the button
on the remote control.

6.3.1. The owner hears her dog
barking (again).

6.4.1. The owner presses the
button on the remote control.

We’ve removed all the references to specific owners and dogs, so now this use case will work for all of Doug’s customers.

Instead of
Todd and
Gina, or Holly,
let’s just use
“The owner.”

Bye bye,
Fido. Let’s
use “the
owner’s dog”
from now on.

Here is the
updated step
that deals
with only
allowing the
owner’s dog
in and out
the door.

Don’t forget
to change this
substep, too.

Download at WoweBook.Com

you are here 4 153

analysis

The Ultimate Dog Door, version 3.0
Storing a dog bark

1.

2.

Don’t we need to store the
owner’s dog’s bark in our dog door?
Otherwise, we won’t have anything
to compare to the bark that our

bark recognizer gives us.

Our analysis has made us realize we need
to make some changes to our use case—
and those changes mean that we need to
make some additions to our system, too.

If we’re comparing a bark from our bark
recognizer to the owner’s dog’s bark, then
we actually need to store the owner’s
dog’s bark somewhere. And that means
we need another use case.

We need a new use case to
store the owner’s dog’s bark.

Add a new use case to store a bark.

You need a use case to store the owner’s dog’s bark; let’s store the
sound of the dog in the dog door itself (Doug’s hardware guys tell
us that’s no problem for their door technology). Use the use case
template below to write a new use case for this task.

You should need
only two steps
for this use
case, and there
aren’t any
alternate paths
to worry about.

Since this is our second use case, let’s label it according to what it describes.

Sharpen your pencil

Download at WoweBook.Com

154 Chapter 4

Add a new use case to store a bark.

You need a use case to store the owner’s dog’s bark; let’s store the
sound of the dog in the dog door itself (Doug’s hardware guys tell us
that’s no problem for their door technology). Use the use case template
below to write a new use case for this task.

Sharpen your pencil
answers

The Ultimate Dog Door, version 3.0
Storing a dog bark

1. The owner’s dog barks “into”
the dog door.

2. The dog door stores the
owner’s dog’s bark.

We don’t need to know the
exact details of this, since
it’s a hardware issue.

This is what we need to do... add a method to DogDoor to store the owner’s dog’s bark.

a new use case

Q: Do we really need a whole new
use case for storing the owner’s dog’s
bark?

A: Yes. Each use case should detail
one particular user goal. The user goal
for our original use case was to get a dog
outside and back in without using the
bathroom in the house, and the user goal of
this new use case is to store a dog’s bark.
Since those aren’t the same user goal, you
need two different use cases.

Q: Is this really the result of good
analysis, or just something we should
have thought about in the last two
chapters?

A: Probably a bit of both. Sure, we
probably should have figured out that we
needed to store the owner’s dog’s bark
much earlier, but that’s what analysis is
really about: making sure that you didn’t
forget anything that will help your software
work in a real world context.

Q: How are we representing the
dog’s bark?

A: That’s a good question, and it’s one
you’re going to have to answer next...

there are no
Dumb Questions

Download at WoweBook.Com

you are here 4 155

analysis

 Design Puzzle

Add any new objects you think you might need for the new dog door.

Add a new method to the DogDoor class that will store a dog’s bark, and
another new method to allow other classes to access the bark.

If you need to make changes to any other classes or methods, write in those
changes in the class diagram below.

Add notes to the class diagram to remind you what any tricky attributes or
operations are used for, and how they should work.

1

2

3

Your task:

You know what classes you already have, and you’ve got two use cases
that tell you what your code has to be able to do. Now it’s up to you to
figure out how your code needs to change:

4

Remote
door: DogDoor

pressButton()

BarkRecognizer
door: DogDoor

recognize(String)

DogDoor
open: boolean

open()
close()
isOpen(): boolean

Update DogDoor to support the new use case we detailed on page 154.
We used class diagrams
back in Chapter 1; they
show the basic code-level
constructs in your app.

Remember, these
are the attributes
of your class, which
usually match up
with the class’s
member variables...

...and these are the
class’s operations,
which are usually the
class’s public methods.

Remember, Doug’s
hardware sends
the sound of the
current dog’s bark
to this method.
Download at WoweBook.Com

156 Chapter 4

A tale of two coders
There are lots of ways you could solve the design puzzle on page 155.
In fact, Randy and Sam, two developers who Doug’s Dog Doors just
hired, both have some pretty good ideas. But there’s more at stake
here than just programmer pride—Doug’s offered the programmer
with the best design a sparkling new Apple MacBook Pro!

Randy: simple is best, right?
Randy doesn’t waste any time with unnecessary code. He
starts thinking about how he can compare barks:

fixing the dog door 17 inches of raw
Apple and Intel power.

Bark sounds are just
Strings, so I’ll store a String for

the owner’s dog’s bark in DogDoor, and
add a couple of simple methods.

Piece of cake!

Randy

public class DogDoor {

 private boolean open;
 private String allowedBark;

 public DogDoor() {
 open = false;
 }

 public void setAllowedBark(String bark) {
 this.allowedBark = bark;
 }

 public String getAllowedBark() {
 return allowedBark;
 }

 // etc
}

Randy adds an allowedBark variable to his DogDoor class.

This handles setting
the bark, which was
what our new use case
focused on.

Other classes can get
the owner’s dog’s bark
with this method.

DogDoor
open: boolean
allowedBark: String
open()
close()
isOpen(): boolean
setAllowedBark(String)
getAllowedBark(): String

Here’s Randy’s class
diagram for DogDoor.

Download at WoweBook.Com

you are here 4 157

analysis

Sam: object lover extraordinaire
Sam may not be as fast as Randy, but he loves his
objects, so he figures that a new class devoted to
dog barks is just the ticket:

I’ve got the power
of objects!

Bark
sound: String
getSound(): String
equals(Object bark): boolean

Sam

Sam plans to store the sound of a dog’s Bark as a String in his new Bark class...

...and an equals() method
to allow other objects to
compare two Bark instances.

Sharpen your pencil Writing code based on a class diagram
is a piece of cake.

You’ve already seen that class diagrams give you a lot of information
about the attributes and operations of a class. Your job is to write
the code for Sam’s Bark class based on his class diagram. We’ve
written just a bit of the code to help get you started.

public class ____________ {
 private ___________ _________;

 public _____________(__________ ___________) {
 this._________ = ___________;
 }

 public ________ ___________() {
 __________ _________;
 }

 _________ _____________ ______________(________ ________) {
 if (________ instanceof _________) {
 Bark otherBark = (_________)_________;
 if (this._________.equalsIgnoreCase(_______._______)) {
 return __________;
 }
 }
 return ____________;
 }
}

...a method to return
the sound of the Bark...

Sam’s new
Bark class.

Download at WoweBook.Com

158 Chapter 4

Writing code based on a class diagram
is a piece of cake.

Your job was to write the code for Sam’s Bark class based on his
class diagram. Here’s what we did:

public class ____________ {

 private ___________ _________;

 public _____________(__________ ___________) {

 this._________ = ___________;

 }

 public __________ ___________() {

 _________ _________;

 }

 _________ _____________ ______________(________ ________) {

 if (________ instanceof _________) {

 Bark otherBark = (_________)_________;

 if (this._________.equalsIgnoreCase(_________._______)) {

 return __________;

 }

 }

 return ____________;

 }

}

Sharpen your pencil
answers

writing the Bark and DogDoor classes

Bark
sound: String
getSound(): String
equals(Object bark): boolean

Sam’s Bark class diagram.

Bark
String sound

sound
sound

soundsound

String
sound

Bark
Bark

bark
bark

Bark

public

true

false

boolean

bark

equals Object

otherBark

Just like Randy
did, Sam is using
a String to
store the actual
bark sound...

...but he’s
wrapped the
sound up in a
Bark object.

Sam is planning on other classes delegating Bark comparison to the Bark class’s equals() method.

This method
makes sure it has
another Bark
object to compare
itself against...
...and then
compares the two Bark sounds.

Sam: updating the DogDoor class
Since Sam created a new Bark object, he takes a
slightly different path than Randy did in updating
his version of the DogDoor class:

(Sam’s) DogDoor
open: boolean
allowedBark: Bark
open()
close()
isOpen(): boolean
setAllowedBark(Bark)
getAllowedBark(): Bark

Sam’s version of
DogDoor stores a
Bark object, not
just a String sound.

(Randy’s) DogDoor
open: boolean
allowedBark: String
open()
close()
isOpen(): boolean
setAllowedBark(String)
getAllowedBark(): String

Sam’s get and set operations deal
with Bark objects, not Strings.

sound
String getSound

return

Download at WoweBook.Com

you are here 4 159

analysis

Comparing barks
All that’s left to do is add a comparison of barks into BarkRecognizer’s
recognize() method.

Randy: I’ll just compare two strings
When the BarkRecognizer class gets a signal from the
hardware that a dog is barking, it also gets the bark, and
compares it to what’s stored in the door:

public class BarkRecognizer {

 public void recognize(String bark) {
 System.out.println(“ BarkRecognizer: ”
 “Heard a ‘” + bark + “’”);
 if (door.getAllowedBark().equals(bark)) {
 door.open();
 } else {
 System.out.println(“This dog is ” +
 “not allowed.”);
 }
 }

 // etc
}

Sam: I’ll delegate bark comparison
Sam is using a Bark object, and he lets that object
take care of all the sound comparisons:

public class BarkRecognizer {

 public void recognize(Bark bark) {
 System.out.println(“ BarkRecognizer: ”
 “Heard a ‘” + bark.getSound() + “’”);
 if (door.getAllowedBark().equals(bark)) {
 door.open();
 } else {
 System.out.println(“This dog is not allowed.”);
 }
 }

 // etc
}

The argument sent to
recognize() is a String with the dog’s bark.

Compare the bark we
get from the recognizer

hardware to the bark
stored in the door.

Sam has the hardware guys make sure he gets sent a Bark object now, not just the String bark sound, like Randy.

Sam’s code lets the bark
stored in the DogDoor handle
comparisons. His BarkRecognizer
delegates bark comparison to
the Bark object.

Download at WoweBook.Com

160 Chapter 4

 Delegation Detour

Delegation in Sam’s dog door:
an in-depth look
Sam is doing something very similar in his Bark and
DogDoor classes. Let’s see exactly what’s going on:

The BarkRecognizer gets a Bark to evaluate.
Doug’s hardware hears a dog barking, wraps the sound of
the dog’s bark in a new Bark object, and delivers that Bark
instance to the recognize() method.

1

BarkRecognizer gets the owner’s dog’s bark from DogDoor
The recognize() method calls getAllowedBark() on the dog door it’s
attached to, and retrieves a Bark object representing the owner’s dog’s bark.

2

Bark

Doug’s hardware hears a
dog barking, and creates
a new Bark object.

Yip!

Yip!

class
BarkRec-
ognizer
{
 update
}

BarkRecognizer

recognize()

class
BarkRec-
ognizer
{
 update
}

BarkRecognizer

recognize()

The dog’s bark is passed into recognize().

class
DogDoor
{
 open()
}

DogDoor

Bark
Rowlf!

getAllowedBark()

The dog door returns the
Bark object representing
the owner’s dog’s bark.

Download at WoweBook.Com

you are here 4 161

Bark
Yip!

 Delegation Detour

We’ll come back to Sam and Randy’s attemps to win the MacBook Pro once we’ve got a handle on delegation.BarkRecognizer delegates bark comparison to Bark
The recognize() method asks the owner’s dog’s Bark object to see
if it is equal to the Bark instance supplied by Doug’s hardware, using
Bark.equals().

3

class
BarkRec-
ognizer
{
 update
}

BarkRecognizer

recognize() Bark
Rowlf!

equals()

Hey there, allowedBark. Can you see if this
other Bark that I have matches you? I really
don’t know much about what makes Barks the
same, but I’ll bet that you do.

recognize() calls equals() on the
allowed bark, and passes it in the
bark from Doug’s hardware.

It’s up to the Bark object to figure out if two barks are equal.

Bark decides if it’s equal to the bark from Doug’s hardware
The Bark object representing the owner’s dog’s bark figures out if  it is equal to 
the Bark object from Doug’s hardware... however that needs to happen.

4

Bark
Rowlf!

It really takes one Bark to understand another
Bark, you know? So let’s see if we’re really equal.

Bark
Yip!

You got that right. Let’s compare properties.

The details of how this

comparison happens are

hidden from all the
other objects in the

dog door application
.

It’s up to Bark to handle comparisons...

and then just tell the object that c
alled

equals() if these two barks are the same.

Download at WoweBook.Com

162 Chapter 4

 Delegation Detour

The power of loosely
coupled applications
In Chapter 1, we said that delegation helps our
applications stay loosely coupled. That means that
your objects are independent of each other; in
other words, changes to one object don’t require
you to make a bunch of changes to other objects.

By delegating comparison of barks to the
Bark object, we abstract the details about
what makes two barks the same away from the
BarkRecognizer class. Look again at the code
that calls equals() on Bark:

Now suppose that we started storing the sound
of a dog barking as a WAV file in Bark. We’d
need to change the equals() method in the
Bark class to do a more advanced comparison
of sounds and account for the WAV files. But,
since the recognize() method delegates bark
comparison, no code in BarkRecognizer
would have to change.

So with delegation and a loosely coupled
application, you can change the implementation
of one object, like Bark, and you won’t have to
change all the other objects in your application.
Your objects are shielded from implementation
changes in other objects.

public void recognize(Bark bark) {
 System.out.println(“ BarkRecognizer: ”
 “Heard a ‘” + bark.getSound() + “’”);
 if (door.getAllowedBark().equals(bark)) {
 door.open();
 } else {
 System.out.println(“This dog is not allowed.”);
 }
}

Bark
Yip!

Bark
Rowlf!

equals()

The details of how
equals() works are
shielded away from the
recognize() method.

Delegation shields
your objects from
implementation changes
to other objects in your
software.

Download at WoweBook.Com

you are here 4 163

analysis

Back to Sam, Randy, and the contest...
With Randy’s quick solution, and Sam’s more object-oriented one, let’s see
how their applications are working out:

Yip! Yip!

Ruff! Ruff!

Rowlf! Rowlf!

Aroooo!

Randy’s code just does some
simple String comparison.

if (door.getAllowedBark()
 .equals(bark)) {
 door.open();
}

if (door.getAllowedBark()
 .equals(bark)) {
 door.open();
}

Sam’s code uses objects and
delegation to get the job done.

Randy AND Sam: It works!
Both Randy and Sam ended up with a working
dog door that let in only the owner’s dog.

We both got it right? So
who won the laptop?

Remember, Randy’s bark is a String, and Sam’s is an object.

Download at WoweBook.Com

164 Chapter 4

Maria won the MacBook Pro!
To both Randy and Sam’s surprise, Doug announces
that Maria, a junior programmer he got to work for the
company as a summer intern, has won the laptop. This is Maria. Try not to hate

her guts too much... maybe you
can borrow her MacBook Pro
when she’s on vacation...

dog doors and the real world

Randy: Oh, this is ridiculous. My solution worked! That
laptop is mine, not some intern’s!

Sam: Whatever, man. My solution worked, too, and I used
objects. Didn’t you read Head First Java? An object-oriented
solution is the way to go... the laptop’s mine!

Maria: Umm, guys, I don’t mean to interrupt, but I’m not
sure either one of your dog doors really worked.

Sam: What do you mean? We tested it. Bruce barked,
“Rowlf !” and the door opened up... but it stayed shut for the
other dogs. Sounds like a working solution to me.

Maria: But did you do any analysis on your solution? Does
your door truly work in the real world?

Randy: What are you talking about? Are you some sort of
philosophy major? Is this like a “there is no spoon” sort of
thing?

Maria: No, not at all. I’m just wondering... what if Bruce
were to make a different sound? Like “Woof ” or “Ruff ”?

Sam: A different sound? Like if he’s hungry...

Randy: ...or excited...

Maria: ...or maybe... he really needs to get outside to use the
bathroom. That’s, ummm, sort of how things work in the real
world, isn’t it?

Randy and Sam: I guess we hadn’t thought about that...

Rawlf! Rawlf!

Rooowlf!

Woof.

Bruce is a complex, sensitive
animal that communicates through
the subleties of bark-ese, using
inflection and enunciation to get
his point across.

Download at WoweBook.Com

you are here 4 165

analysis

So what did Maria do differently?
Maria started out a lot like Sam did. She created a Bark object to
represent the bark of a dog.

I knew objects and
delegation were

important!Bark
sound: String
getSound(): String
equals(Bark): boolean

But Maria went even further: she decided that since a
dog might have different barks, the dog door should
store multiple Bark objects. That way, no matter how
the owner’s dog barks, it still gets outside:

DogDoor
open: boolean
allowedBarks: Bark [*]
open()
close()
isOpen(): boolean
addAllowedBark(Bark)
getAllowedBarks(): Bark [*]

Here’s where Maria really went down a different path. She decided that the dog door should store more than just one bark, since the owner’s dog can bark in different ways.

Maria knew she’d need
delegation via the equals() method, just as Sam did.

UML Up Close
We’ve added something new to our class diagrams:

allowedBarks: Bark [*]
The type of the allowedBarks
attribute is Bark.

And this asterisk means that allowedBarks can hold an unlimited number of Bark objects.

Anytime you see brackets, it
indicates the multiplicity of an
attribute: how many of a certain
type that the attribute can hold.

Wondering about this
asterisks? Check this out...

Download at WoweBook.Com

166 Chapter 4

The Ultimate Dog Door, version 3.0
Storing a dog bark

1. The owner’s dog barks “into”
the dog door.

2. The dog door stores the
owner’s dog’s bark.

The Ultimate Dog Door, version 3.0
Opening/closing the door

Main Path
1. The owner’s dog barks to be let out.

2. The bark recognizer “hears” a bark.

3. If it’s the owner’s dog barking, the
bark recognizer sends a request to
the door to open.

4. The dog door opens.

5. The owner’s dog goes outside.

6. The owner’s dog does his business.

6.1. The door shuts automatically.

6.2. The owner’s dog barks to be let
back inside.

6.3. The bark recognizer “hears” a
bark (again).

6.4. If it’s the owner’s dog barking,
the bark recognizer sends a
request to the door to open

6.5. The dog door opens (again)

7. The owner’s dog goes back inside.

8. The door shuts automatically.

Alternate Paths

2.1. The owner hears her dog
barking.

3.1. The owner presses the button
on the remote control.

6.3.1. The owner hears her dog
barking (again).

6.4.1. The owner presses the
button on the remote control.

How in the world did you know
to store multiple barks? I never
would have thought about a dog

having multiple barks.

It’s right here
in the use case...

Randy’s not thrilled
he lost either, but
figures Maria might
be his ticket to
winning the next
programming contest.

It’s the dog that is
the focus here, not
just a specific bark.

the use case tells you what to do

We’re focusing on our main use case here, not the new one we developed earlier in this chapter.

Download at WoweBook.Com

you are here 4 167

analysis

Pay attention to the nouns in your use case
Maria’s figured out something really important: the nouns
in a use case are usually the classes you need to write and
focus on in your system.

The Ultimate Dog Door, version 3.0
Opening/closing the door

Main Path
1. The owner’s dog barks to be let out.

2. The bark recognizer “hears” a bark.

3. If it’s the owner’s dog barking, the
bark recognizer sends a request to
the door to open.

4. The dog door opens.

5. The owner’s dog goes outside.

6. The owner’s dog does his business.

6.1. The door shuts automatically.

6.2. The owner’s dog barks to be let
back inside.

6.3. The bark recognizer “hears” a
bark (again).

6.4. If it’s the owner’s dog barking,
the bark recognizer sends a
request to the door to open.

6.5. The dog door opens (again).

7. The owner’s dog goes back inside.

8. The door shuts automatically.

Alternate Paths

2.1. The owner hears her dog
barking.

3.1. The owner presses the button
on the remote control.

6.3.1. The owner hears her dog
barking (again).

6.4.1. The owner presses the
button on the remote control.

Your job is to circle each noun (that’s a person, place, or thing) in the
use case below. Then, in the blanks at the bottom of the page, list all the
nouns that you found (just write each one a single time; don’t duplicate any
nouns). Be sure to do this exercise before turning the page!

Sharpen your pencil

Write the nouns
that you circled
in the use case in
these blanks.

“dog” is a noun (or
you could circle
“owner’s dog”).

Download at WoweBook.Com

168 Chapter 4

The Ultimate Dog Door, version 3.0
Opening/closing the door

Main Path
1. The owner’s dog barks to be let out.

2. The bark recognizer “hears” a bark.

3. If it’s the owner’s dog barking, the
bark recognizer sends a request to
the door to open.

4. The dog door opens.

5. The owner’s dog goes outside.

6. The owner’s dog does his business.

6.1. The door shuts automatically.

6.2. The owner’s dog barks to be let
back inside.

6.3. The bark recognizer “hears” a
bark (again).

6.4. If it’s the owner’s dog barking,
the bark recognizer sends a
request to the door to open

6.5. The dog door opens (again)

7. The owner’s dog goes back inside.

8. The door shuts automatically.

Alternate Paths

2.1. The owner hears her dog
barking.

3.1. The owner presses the button
on the remote control.

6.3.1. The owner hears her dog
barking (again).

6.4.1. The owner presses the
button on the remote control.

Your job was to circle each noun (that’s a person,
place, or thing) in the use case below. Here’s the
use case with all the nouns circled.

Sharpen your pencil
answers

noun analysis

the (owner’s) dog
the owner

bark recognizer
request

dog door
remote control

the button inside/outside bark

Here are all the nouns we circled in the use case.

Download at WoweBook.Com

you are here 4 169

analysis

OK, I get it...
almost all of these nouns

are the classes in my
system.

Maria: That’s right. That’s how I figured out I needed a 
Bark class... it showed up in the use case as a noun in Steps 2
and 6.3. So I created a Bark class.

Randy: So that’s where I went wrong... if I had looked at the
use case and circled the nouns, I would have known to create
a Bark class, too.

Maria: Probably. A lot of times, even if I think I know what
classes I need, I double-check my ideas with the nouns in my
use case to make sure I didn’t forget anything.

Sam: But you don’t need a class for some of those nouns, like
“the owner” or “request,” or even “inside.”

Maria: That’s true... you still have to have some common
sense, and understand the system that
you’re building. Remember, you need
classes only for the parts of the system you
have to represent. We don’t need a class for

“outside” or “inside” or “the owner” because
our software doesn’t have to represent those
things.

Randy: And you don’t need a class for
“the button” because it’s part of the remote
control—and we already do have a class for
that.

Sam: This is all great, but I was just
thinking... I came up with a Bark class, too,
and I didn’t need the use case to figure that 
out.

Maria: Yeah... but then you didn’t end up
with a dog door that really worked, did you?

Sam: Well, no... but that’s just because you
stored more than one Bark object in the
dog door. What does that have to do with
the use case?

Sam

Looking at the
nouns (and verbs)
in your use
case to figure
out classes and
methods is called
textual analysis.

Download at WoweBook.Com

170 Chapter 4

It’s all about the use case
Take a close look at Step 3 in the use case, and see
exactly which classes are being used:

3. If it’s the owner’s dog barking, the
bark recognizer sends a request to
the door to open.

BarkRecognizer
door: DogDoor
recognize(Bark)

DogDoor
open: boolean
allowedBarks: Bark [*]
open()
close()
isOpen(): boolean
addAllowedBark(Bark)
getAllowedBarks(): Bark [*]

“owner’s dog” is a noun, but
we don’t need a class for
this since the dog is an actor,
and outside the system.

This request-another noun without a class-is actually represented by the bark recognizer calling the open() method on the dog door.

the nouns are the objects

There is no Bark class here!
The classes in use here in Step 3 are BarkRecognizer and
DogDoor... not Bark!

Download at WoweBook.Com

you are here 4 171

analysis

Wait a second... I don’t buy
that. What if I happened to
use just a slightly different

wording?

3. If the owner’s dog’s bark
matches the bark heard by the
bark recognizer, the dog door
should open.

Step 3 in Randy’s use case looks a lot like Step 3 in our
use case... but in his step, the focus is on the noun “bark”,
and not “the owner’s dog.” So is Randy right? Does this
whole textual analysis thing fall apart if you use a few
different words in your use case?

What do you think?

Here’s Step 3 from the use
case that Randy wrote for
his dog door. In his Step 3,
“bark” is a noun.

HINT: Look closely at Randy’s Step 3. Does it describe a system that works exactly the same as the system on page 170?

Download at WoweBook.Com

172 Chapter 4

One of these things is not like the other...
It looks like Randy’s Step 3 is actually just a little bit different than our original
Step 3... so where did Randy go wrong?

3. If it’s the owner’s
dog barking, the bark
recognizer sends a request
to the door to open.

3. If the owner’s dog’s bark
matches the bark heard
by the bark recognizer,
the dog door should open.

Here’s our Step 3, from the
original use case we wrote back

in Chapter 3.

And here’s Step 3 from the use case that Randy came up with for the same dog door.

Focus: owner’s dog
Our original Step 3 focuses on the owner’s dog...
no matter how the dog sounds when it barks. So if the
owner’s dog barks with a loud “Rowlf !” one
day, but a quiet “ruff ” the next, the system will
let the dog in, either way. That’s because we’re
focusing on the dog, not a particular bark.

Focus: owner’s dog’s bark
Randy’s use case focuses on the owner’s
dog’s bark... but what if the dog has more
than one sound it makes? And what if two
dogs bark in a really similar way? This step
looks similar to the original Step 3, but it’s
really not the same at all!

Rawlf! Rawlf!

Rooowlf!

Woof.

Rawlf! Rawlf!

Rooowlf!

Woof.

With the right Step

3, the dog door
will open for all of
Bruce’s barks.

With a poorly
written Step 3, only one of Bruce’s barks will get him in and out of the dog door.

words matter in use cases

Download at WoweBook.Com

you are here 4 173

analysis

A good use case clearly and
accurately explains what
a system does, in language
that’s easily understood.

Q: So you’re telling me as long as I
write use cases, all my software will work
like it should?

A: Well, use cases are certainly a good
start towards writing good software. But
there’s a lot more to it than that. Remember,
analysis helps you figure out the classes
from your use case, and in the next chapter,
we’ll spend some time talking about good
design principles in writing those classes.

Q: I’ve never used use cases before,
and I’ve never had any problems. Are you
saying that I have to write use cases to
create good software?

A: No, not at all. There are plenty of
programmers who are good at their jobs,
and don’t even know what a use case is.
But if you want your software to satisfy the
customer more often, and you want your
code to work correctly with less rework,
then use cases can really help you nail
your requirements down... before you make
embarrassing mistakes in front of your boss
or a customer.

Q: It seems like this stuff about
nouns and analysis is pretty tricky, and
I’m not any good at English grammar.
What can I do?

A: You really don’t need to focus too
much on grammar. Just write your use
cases in conversational English (or whatever
language you speak and write in). Then
figure out what the “things” are in your use
case—those are generally the nouns. For
each noun, think about if you need a class to
represent it, and you’ve got a good start on a
real-world analysis of your system.

Q: But what if I make a mistake like
Randy did, and use a noun in my use case
when I shouldn’t?

A: Randy’s mistake—using “bark” as a
noun in step 3 of his use case—had nothing
to do with Randy’s grammar. He didn’t think
through the use case, and how his system
would work in the real world. Instead of
focusing on getting the owner’s dog outside,
he was worrying about one specific bark. He
focused on the wrong thing!

When you write your use case, reread it, and
make sure that it makes sense to you. You
might even want to let a couple of friends or
co-workers read through it, too, and make
sure it will work in the real world, not just in a
controlled environment.

there are no
Dumb Questions

With a good use case complete,
textual analysis is a quick and
easy way to figure out the
classes in your system.

Download at WoweBook.Com

174 Chapter 4

OK, I see what Randy’s mistake was:
he got hung up on a bark, not the owner’s
dog. But even in the correct use case, we

don’t have a Dog object. So what’s the
point of all this, if our analysis doesn’t tell

us what classes to create and use?

Even though we don’t have a Dog class, textual
analysis gave us an important clue about what our
system really needs to do: get the owner’s dog in
and out of the door, regardless of how he barks. In
other words, our analysis helped us understand
what to focus on... and it’s not a specific bark.

Once you’ve figured that out, it makes sense to 
think about what a dog really does. Does a dog
always bark the same way? That’s when Maria
figured out her real-world solution: she realized 
that if the owner’s dog could bark in more than
one way, and the point was getting the owner’s dog
outside, then the dog door needed to store all the
ways that the dog could bark, not just one of them.
But Maria would have never figured this out if  she 
hadn’t really analyzed her use case.

Textual analysis tells you what
to focus on, not just what
classes you should create.

the power of analysis

Sharpen your pencil Why is there no Dog class?

When you picked the nouns out of the use case, one that kept showing up was “the
owner’s dog.” But Maria decided not to create a Dog object. Why not? Below, write
down three reasons you think Maria didn’t create a Dog class in her system.

1.

2.

3.

Answers on page 179.

Download at WoweBook.Com

you are here 4 175

analysis

Remember: pay attention to those nouns!
Even if the nouns in your use case don’t get turned into classes in your
system, they’re always important to making your system work like it should.

3. If it’s the owner’s dog barking,
the bark recognizer sends a
request to the door to open.

In this use case, “owner’s dog” is

a noun, but it’s not a class...
...and even though “barking” isn’t a noun in this step, we have a Bark class.

The point is that the nouns are what you should
focus on. If you focus on the dog in this step,
you’ll figure out that you need to make sure the
dog gets in and out of the dog door—whether he
has one bark, or multiple barks.

DogDoor
open: boolean
allowedBarks: Bark [*]
open()
close()
isOpen(): boolean
addAllowedBark(Bark)
getAllowedBarks(): Bark [*]

This collection of
barks essentially
represents the dog...
this is the “barking”
part of the use case.

BarkRecognizer
door: DogDoor
recognize(Bark)

Even though this method gets a single bark, its purpose is to find out which dog barked. It runs through all the allowed barks in the dog door to see if this bark comes from the owner’s dog.

Pay attention to
the nouns in your
use case, even
when they aren’t
classes in your
system.

Think about how
the classes you do
have can support
the behavior your
use case describes.

Download at WoweBook.Com

176 Chapter 4

It seems like if the nouns in the
use case are usually the classes in

my system, then the verbs in my use
case are my methods. Doesn’t that

make sense?

You’ve already seen how the nouns in
your use case usually are a good starting
point for figuring out what classes you
might need in your system. If you look at
the verbs in your use case, you can usually
figure out what methods you’ll need for
the objects that those classes represent:

The verbs in your use case
are (usually) the methods of
the objects in your system.

The Ultimate Dog Door, version 3.0
Opening/closing the door

Main Path
1. The owner’s dog barks to be let out.

2. The bark recognizer “hears” a bark.

3. If it’s the owner’s dog barking, the
bark recognizer sends a request to
the door to open.

4. The dog door opens.

5. The owner’s dog goes outside.

6. The owner’s dog does his business.

6.1. The door shuts automatically.

6.2. The owner’s dog barks to be let
back inside.

6.3. The bark recognizer “hears” a
bark (again).

6.4. If it’s the owner’s dog barking,
the bark recognizer sends a
request to the door to open.

6.5. The dog door opens (again).

7. The owner’s dog goes back inside.

8. The door shuts automatically.

Alternate Paths

2.1. The owner hears her dog
barking.

3.1. The owner presses the button
on the remote control.

6.3.1. The owner hears her dog
barking (again).

6.4.1. The owner presses the
button on the remote control.

The DogDoor
class needs to
have an open()
and close()
method to
support these
verb actions.

Here’s another verb
fragment: “presses
the button.” Our
Remote class has
a pressButton()
method that
matches up perfectly.

the verbs are operations

Download at WoweBook.Com

you are here 4 177

analysis

Code Magnets
It’s time to do some more textual analysis. Below is the use case for the dog door
you’ve been developing. At the bottom of the page are magnets for most of the
classes and methods we’ve got in our system so far. Your job is to match the class
magnets up with the nouns in the use case, and the method magnets up with the
verbs in the use case. See how closely the methods line up with the verbs.

The Ultimate Dog Door, version 3.0
Opening/closing the door

Main Path
1. The owner’s dog barks to be let out.
2. The bark recognizer “hears” a bark.

3. If it’s the owner’s dog barking, the
bark recognizer sends a request to
the door to open.

4. The dog door opens.
5. The owner’s dog goes outside.
6. The owner’s dog does his business.

6.1. The door shuts automatically.
6.2. The owner’s dog barks to be let

back inside.
6.3. The bark recognizer “hears” a

bark (again).
6.4. If it’s the owner’s dog barking,

the bark recognizer sends a
request to the door to open.

6.5. The dog door opens (again).
7. The owner’s dog goes back inside.
8. The door shuts automatically.

Alternate Paths

2.1. The owner hears her dog
barking.

3.1. The owner presses the button
on the remote control.

6.3.1. The owner hears her dog
barking (again).

6.4.1. The owner presses the
button on the remote control.

Bark
BarkBark Bark

Bark

DogDoor
DogDoor

DogDoor

DogDoor

BarkRecognizer

BarkRecognizer

BarkRecognizer
BarkRecognizer

Remote
Remote

Remote

Remote

There are
lots of
classes and
methods at
this point,
so take
your time.

pressButton()

pressButton()

pressButton()

pressButton()

open()

open() open()

open()
close()

close()

close()
close()

recognize()recognize()

recognize()
recognize()

getAllowedBarks()
getAllowedBarks()

getAllowedBarks()getSound()

getSound()

Download at WoweBook.Com

178 Chapter 4

Code Magnets Solutions
It’s time to do some more textual analysis. Below is the use case for the dog door
you’ve been developing. At the bottom of the page are magnets for most of the
classes and methods we’ve got in our system so far. Your job is to match the class
magnets up with the nouns in the use case, and the method magnets up with the
verbs in the use case. See how closely the methods line up with the verbs.

The Ultimate Dog Door, version 3.0
Opening/closing the door

Main Path
1. The owner’s dog barks to be let out.
2. The bark recognizer “hears” a bark.

3. If it’s the owner’s dog barking, the
bark recognizer sends a request to
the door to open.

4. The dog door opens.
5. The owner’s dog goes outside.
6. The owner’s dog does his business.

6.1. The door shuts automatically.
6.2. The owner’s dog barks to be let

back inside.
6.3. The bark recognizer “hears” a

bark (again).
6.4. If it’s the owner’s dog barking,

the bark recognizer sends a
request to the door to open

6.5. The dog door opens (again)
7. The owner’s dog goes back inside.
8. The door shuts automatically.

Alternate Paths

2.1. The owner hears her dog
barking.

3.1. The owner presses the button
on the remote control.

6.3.1. The owner hears her dog
barking (again).

6.4.1. The owner presses the
button on the remote control.

Bark

Bark

DogDoor

DogDoor

DogDoor

DogDoor

BarkRecognizer

BarkRecognizer

BarkRecognizer

BarkRecognizer

Remote

Remote

pressButton()

pressButton()

open()

open()

open()

open()

close()

close()

recognize()

DogDoor

DogDoor

The use case still makes a lot of sense with the
magnets in place! That’s a good sign that our classes
and methods are doing exactly what they’re supposed
to so that the system will be a success.

textual analysis

getAllowedBarks()

recognize()

getAllowedBarks()

Notice that
most of these
steps without any
magnets are things
that occur outside
of the system and
that the system
then reacts to.

Download at WoweBook.Com

you are here 4 179

analysis

Q: So the nouns in the use case turn into classes, and the
verbs turn into methods?

A: That’s almost it. Actually, the nouns are candidates for
classes... not every noun will be a class. For instance, “the owner” is a
noun in the use case (check out Steps 2.1 and 3.1, for example), but
we don’t need a class for that noun. So even though “the owner” is a
candidate for a class, it doesn’t become a class in the actual system.
In the same way, the verbs are candidates for operations. For example,
one verb phrase is “does his business,” but we just couldn’t bear to
write a pee() or poop() method. We hope you’ll agree that we
made the right choice! Still, textual analysis is a really good start to
figuring out the classes and methods you’ll need in your system.

Q: It looks like the nouns that are outside the system don’t
get turned into classes. Is that always true?

A: Most of the time it is. The only common exception is when
you have to interact with something outside the system—like when
there’s some state or behavior that the system needs to work with on a
recurring basis.
In the dog door system, for example, we didn’t need a class for the
owner because the Remote class took care of all the owner-related
activity. If we ever needed to track owner state, though—like if the
owner was asleep or awake—then we might have to create an Owner
class.

there are no
Dumb Questions

Why didn’t Maria create a Dog class?

When you picked the nouns out of the use case, one that kept showing up was “the
owner’s dog.” But Maria decided not to create a Dog object. Why not? Here are three
reasons we think Maria made the right choice.

1.

Sharpen your pencil
answers

The dog is external to the system, and you usually don’t need
to represent things external to the system.

2. Dog isn’t a software object (and shouldn’t be)... you usually don’t represent living things
with a class unless the system is going to store long-term information about that thing.

3. Even if you had a Dog class, it wouldn’t help the rest of the system. For example, you
can’t really “store” a Dog in the dog door; that doesn’t make any sense.

There are times when
you might do this, but
usually only when you
need to interact with
those external things.
We don’t need to
interact with the dog.

You’ll often see classes
like User or Manager,
but these represent
roles in a system, or
store credit cards
or addresses. A dog
doesn’t fit any of
those patterns.

You could have a reference to
the Dog class in

your DogDoor object, but how do you store a

dog within a door in the real world? Remember,

what works in software doesn’t always work in

real life. Make sure your applications are r
eal-

world compatible!

Download at WoweBook.Com

180 Chapter 4

Once I knew the classes and
operations that I needed,

I went back and updated my
class diagram.

BarkRecognizer

recognize(Bark)

Remote

pressButton()

door door

allowedBarks

11

*

maria’s class diagram

Maria’s Dog Door Class Diagram

Maria’s definitely got some new stuff going on in her class diagram.

Where did the
door attribute
on the Remote
class go?

Remember, the
asterisk means that
getAllowedBarks()
can return multiple
Bark objects.

Bark
sound: String
getSound(): String
equals(Bark): boolean

From good analysis to good classes...

DogDoor
open: boolean
open()
close()
isOpen(): boolean
addAllowedBark(Bark)
getAllowedBarks(): Bark [*]

Why did the
allowedBarks
attribute move
from up here...

...to down here?

Download at WoweBook.Com

you are here 4 181

analysis

UML Investigation
Maria’s gone pretty crazy with her UML diagrams... do you think you can figure
out what all she’s done? On the diagram below, add notes to all the new things
she’s added, and try and figure out what the lines, numbers, and additional
words all mean. We’ve written a few notes of our own to get you started.

The Remote class has
a reference to the
DogDoor class.

DogDoor has an attribute called allowedBarks.

Answers on page 184.

BarkRecognizer

recognize(Bark)

Remote

pressButton()

door door

DogDoor
open: boolean
open()
close()
isOpen(): boolean
addAllowedBark(Bark)
getAllowedBarks(): Bark [*]

allowedBarks

11

*

Bark
sound: String
getSound(): String
equals(Bark): boolean

Download at WoweBook.Com

182 Chapter 4

Class diagrams dissected
There’s a lot more to a class diagram than boxes
and text. Let’s see how some lines and arrows can
add a lot more information to your class diagrams.

associations and multiplicity

Bark
sound: String
getSound(): String
equals(Bark): boolean

A solid line from one class to

another is called an associa
tion.

It means that one class is
associated with another
class, by reference, extensio

n,

inheritance, etc.

allowedBarks

This line goes from the
source class (Remote)
to the target class
(DogDoor). This means
that the source class,
Remote, has an attribute
of type DogDoor, the
target class.

*

The multiplicity of the allowedBarks attribute is unlimited. That means that barks can store an unlimited number of Bark objects.

When you’re
using associations
to represent
attributes, you
usually do
not write the
attribute that
the association
represents in the
class’s attribute
section. That’s
why Remote no
longer has a door
attribute here.

Remote

pressButton()
The DogDoor class has
an attribute named
allowedBarks, which
stores Bark objects.

Download at WoweBook.Com

you are here 4 183

analysis

door 1

The name of the attribute
in the source class is
written here, at the
target end of the line. So
the Remote class has an
attribute called door, of
type DogDoor.

This number is the multiplicity of this association. It’s how many of the target type is stored in the attribute of the source class. In this case, the door attribute stores a single DogDoor.

Based on the class diagram above, what types could you use for the
allowedBarks attribute in the DogDoor class? Write your ideas below:

Sharpen your pencil

DogDoor
open: boolean
open()
close()
isOpen(): boolean
addAllowedBark(Bark)
getAllowedBarks(): Bark [*]Compare this diagram to

Maria’s on page 180. Even
though the classes are in
different places, it’s the SAME
class diagram. So the position
of the classes on the diagram
doesn’t matter. Answers to this exercise are on page 185.

Download at WoweBook.Com

184 Chapter 4

UML Investigation Complete
Maria’s gone pretty crazy with her UML diagrams... see if you can
figure out everything that she’s done.

DogDoor has an
attribute called
allowedBarks. The type
of the attribute is Bark.

The door attribute
holds a single (1)
DogDoor object.

BarkRecognizer has an attribute named door, of type DogDoor, that holds a single reference to a DogDoor object.

The line goes from the
class with the reference to
the class that is the type
being referenced.

This asterisk means “an
unlimited number.”

It looks like Remote doesn’t
have any attributes... but
when one class refers
to another class, that
represents an attribute. So
the Remote class still does
have one attribute.

The Remote class has
a reference to the
DogDoor class, using an
attribute named door.

BarkRecognizer

recognize(Bark)

Remote

pressButton()

door door
11

The DogDoor class can

hold an unlimited number

of Bark objects in th
e

allowedBarks attribute.

more uml

DogDoor
open: boolean
open()
close()
isOpen(): boolean
addAllowedBark(Bark)
getAllowedBarks(): Bark [*]

allowedBarks
*

Bark
sound: String
getSound(): String
equals(Bark): boolean

Download at WoweBook.Com

you are here 4 185

analysis

Based on the class diagram below, what types could you use for the barks
member variable in your DogDoor class? Write your ideas in the blank below:

Sharpen your pencil
answers

List, Array, Vector, etc.

You could write any type
that supports multiple
values... most of the Java
Collection classes would work.

Bark
sound: String
getSound(): String
equals(Bark): boolean

allowedBarks

*

Remote

pressButton()

door 1
DogDoor

open: boolean
open()
close()
isOpen(): boolean
addAllowedBark(Bark)
getAllowedBarks(): Bark [*]

Exercise
Solutions

Notice that this diagram, although positioned very differently, has the same classes and associations as this diagram.

Download at WoweBook.Com

186 Chapter 4

Bark

sound: String

getSound(): String
equals(Bark): boolean

Randy: I may have missed creating a Bark class, but my
solution wasn’t that bad, and I didn’t waste a bunch of my
time drawing squares and arrows.

Maria: Haven’t you ever heard that a picture is worth a
thousand words? Once I had my class diagram, I had a pretty
good idea about how my whole system was going to work.

Randy: Well, yeah, I guess I can see that... but I had a good
idea of how my system would work, too. It was just in my head,
not drawn out on paper.

Sam: I think I’m starting to come around on this UML thing,
Randy. I mean, once you’ve got the use case, it’s pretty natural
to do some analysis, and turn the nouns into classes. It seems
like you wouldn’t have to spend as much time worrying about
what should be a class, and what shouldn’t.

Maria: Exactly! I hate writing a bunch of  classes and then finding out I did something 
wrong. With use cases and class diagrams, if I make a mistake, I can just scribble things
out and redraw my diagram.

Randy: Well, I guess that’s true. Rewriting code takes a lot more time than rewriting a
use case or redrawing a class diagram...

Maria: And you know, if you ever have to work with anyone else, you’re going to have to
explain that system in your head to them somehow, right?

Sam: I think she’s right, Randy. I’ve seen your whiteboard when you’re trying to explain
your ideas... it’s a mess!

Randy: OK, even I can’t argue with that. But I still think class diagrams don’t tell the
whole story. Like, how is our code actually going to compare barks and figure out if  the 
dog door should open up?

I guess I’m still
just not sure why
you need all these

diagrams...

why use class diagrams?

DogDoor
open: boolean
allowedBarks: Bark [*]

open()
close()
isOpen(): boolean
addAllowedBark(Bark)
getAllowedBarks(): Bark [*]

BarkRecognizer
door: DogDoor
recognize(Bark)Remote

door: DogDoor
pressButton()

Remember how we
said OOA&D helps you
write great software,
every time? This is
one way OOA&D can
help you avoid making
mistakes in your code.

Download at WoweBook.Com

you are here 4 187

analysis

Class diagrams aren’t everything
Class diagrams are a great way to get an overview of your system, and
show the parts of your system to co-workers and other programmers.
But there’s still plenty of things that they don’t show.

Class diagrams provide limited
type information

Class diagrams don’t tell you how
to code your methods

Class diagrams only give you a
10,000 foot view of your system

We know that allowedBarks can

hold multiple Bark objects, but

what is its type? a List? A
Vector? Something else?

This diagram says nothing about what recognize() should do... or even why it takes a Bark as an argument.

You might be able to figure

out the general idea beh
ind

the Remote class, but it’s

not apparent from this
diagram what the purpose of

this class really is. You o
nly

know its purpose from your

use case and requirements.

DogDoor
open: boolean
open()
close()
isOpen(): boolean
addAllowedBark(Bark)
getAllowedBarks(): Bark [*]

allowedBarks*

BarkRecognizer
door: DogDoor
recognize(Bark)

Remote
door: DogDoor
pressButton()

Bark
sound: String
getSound(): String
equals(Bark): boolean

The same problem
exists for return
types... what type does
getAllowedBarks() return?

Download at WoweBook.Com

188 Chapter 4

Class diagrams are great for modeling the classes you need to create, but they don’t provide all
the answers you’ll need in programming your system. You’ve already seen that the dog door
class diagram doesn’t tell us much about matching up return types; what other things do you
think are unclear from this diagram that you might need to know to program the dog door?

Add notes to the diagram below about what you might need to figure out in order to program
the door. We’ve added a note about comparing barks to get you started.

An
sw

er
 o

n
pa

ge
 19

0

?What’s Missing

d
d

dn

This method needs to see if the Bark object it receives matches one of the dog barks stored in the dog door. How does that happen?

BarkRecognizer

recognize(Bark)

Remote

pressButton()

door

DogDoor
open: boolean
open()
close()
isOpen(): boolean
addAllowedBark(Bark)
getAllowedBarks(): Bark [*]

allowedBarks

11

*

Bark
sound: String
getSound(): String
equals(Bark): boolean

what’s missing from the diagram?

door

Download at WoweBook.Com

you are here 4 189

analysis

So how does recognize() work now?
Maria’s figured out that her BarkRecognizer class should be able to compare
any bark it receives against multiple allowed barks, but her class diagram doesn’t
tell us much about how to actually write the recognize() method.

Instead, we have to look at Maria’s code. Here’s the recognize() method of
her BarkRecognizer, and how she solved the barking problem:

 public void recognize(Bark bark) {
 System.out.println(“ BarkRecognizer: Heard a ‘” +
 bark.getSound() + “’”);
 List allowedBarks = door.getAllowedBarks();
 for (Iterator i = allowedBarks.iterator(); i.hasNext();) {
 Bark allowedBark = (Bark)i.next();
 if (allowedBark.equals(bark)) {
 door.open();
 return;
 }
 }
 System.out.println(“This dog is not allowed.”);
 }

Maria’s getting a
whole list of Bark
objects from the
dog door .

Maria’s textual analysis helped her figure out that
her BarkRecognizer needed to focus on the dog
involved, rather than the barking of that dog. door.getAllowedBarks()

This method is focused on a single
bark... on one sound the dog makes,
rather than the dog itself.

This makes sure we don’t keep
looping once we’ve found a match.

door.getAllowedBark()

This method represents an entire dog: all the barking sounds that the dog can make.

Iterator is a Java
object that lets us
walk through each
item in a list.

Just like in Sam’s
code, Maria
delegates Bark
comparisons to the
Bark object.

We cast each item we get
from the Iterator to a
Bark object.

Download at WoweBook.Com

190 Chapter 4

Add notes to the diagram about what you might need to figure out to
program the door.

?What’s Missing

d
d

dn

What type is used
to store the multiple
Bark objects?

Does each system
have just a single
DogDoor object?

* These are just a few of the things we thought of. Your
answers may be totally different, if you thought of
other things that the class diagram doesn’t really show.

It’s unclear what any of the
constructors for these classes
might do... or what arguments
they might require.

This method needs to see if the Bark object it receives matches the dog stored in the dog door. How does that happen?

BarkRecognizer

recognize(Bark)

Remote

pressButton()

door

DogDoor
open: boolean
open()
close()
isOpen(): boolean
getAllowedBarks(): Bark [*]

allowedBarks

11

*

What does the
pressButton()
method do?

Do open() and close() just change the door’s state, or do they do something else, too?

Bark
sound: String
getSound(): String
equals(Bark): boolean

puzzle solutions

Exercise
Solutions

Download at WoweBook.Com

you are here 4 191

analysis

 BULLET POINTS

� Analysis helps you ensure that your software works
in the real world context, and not just in a perfect
environment.

� Use cases are meant to be understood by you, your
managers, your customers, and other programmers.

� You should write your use cases in whatever format
makes them most usable to you and the other people
who are looking at them.

� A good use case precisely lays out what a system
does, but does not indicate how the system
accomplishes that task.

� Each use case should focus on only one customer
goal. If you have multiple goals, you will need to write
mutiple use cases.

� Class diagrams give you an easy way to show your
system and its code constructs at a 10,000-foot view.

� The attributes in a class diagram usually map to the
member variables of your classes.

� The operations in a class diagram usually represent
the methods of your classes.

� Class diagrams leave lots of detail out, such as class
constructors, some type information, and the purpose
of operations on your classes.

� Textual analysis helps you translate a use case into
code-level classes, attributes, and operations.

� The nouns of a use case are candidates for classes in
your system, and the verbs are candidates for methods
on your system’s classes.

So when do we get to
see the final version of
Maria’s dog door?

Sam and Randy are anxiou
s to

see the code th
at beat them

out of the MacBook Pro.

Download at WoweBook.Com

192 Chapter 4

 Design Puzzle

1. Start out by re-creating the dog door application as it was described in Chapter
3. You can download this code from the Head First Labs web site if you want a
jump start.

2. Copy or download DogDoorSimulator.java, shown on the next page.
This is the only file that survived Maria’s laptop meltdown.

3. Make your code match up with Maria’s class diagram, shown on page 180.

4. Start coding! First concentrate on getting all of your classes to compile, so you
can begin testing.

5. Use the DogDoorSimulator class to see if things are working like they
should.

6. Keep up the analysis and coding until your test class’s output matches the
output shown on the next page. Don’t give up!

7. Once you think you’ve got a working dog door, check your code against ours at
the Head First Labs web site. We’ll be waiting.

1

2

3

Your task:

The problem:

You need to code the dog door application so that it satisfies 
all of Doug’s new customers (that’s a lot of potential
sales), especially the ones with more than one dog in the
neighborhood. The door should operate just as the use cases in
this chapter describe the system.

4

5

I’ll bet you expected to find
all the code I wrote here, didn’t you? I
wish... when I was transferring files to
my new MacBook Pro, almost all of the
code for my dog door got corrupted.

Can you help?

Maria’s old computer screwed up all the code she wrote for her dog
door except for DogDoorSimulator.java, shown on the next page.
All we’ve got to go on are the code fragments from her solution in this
chapter, her class diagrams, and what you’ve learned about good analysis,
requirements and OO programming. It’s your turn to be a hero...

brush off your coding chops

6

7

Download at WoweBook.Com

you are here 4 193

analysis

public class DogDoorSimulator {

 public static void main(String[] args) {
 DogDoor door = new DogDoor();
 door.addAllowedBark(new Bark(“rowlf”));
 door.addAllowedBark(new Bark(“rooowlf”));
 door.addAllowedBark(new Bark(“rawlf”));
 door.addAllowedBark(new Bark(“woof”));
 BarkRecognizer recognizer = new BarkRecognizer(door);
 Remote remote = new Remote(door);

 // Simulate the hardware hearing a bark
 System.out.println(“Bruce starts barking.”);
 recognizer.recognize(new Bark(“rowlf”));

 System.out.println(“\nBruce has gone outside...”);

 try {
 Thread.currentThread().sleep(10000);
 } catch (InterruptedException e) { }

 System.out.println(“\nBruce’s all done...”);
 System.out.println(“...but he’s stuck outside!”);

 // Simulate the hardware hearing a bark (not Bruce!)
 Bark smallDogBark = new Bark(“yip”);
 System.out.println(“A small dog starts barking.”);
 recognizer.recognize(smallDogBark);

 try {
 Thread.currentThread().sleep(5000);
 } catch (InterruptedException e) { }

 // Simulate the hardware hearing a bark again
 System.out.println(“Bruce starts barking.”);
 recognizer.recognize(new Bark(“rooowlf”));

 System.out.println(“\nBruce’s back inside...”);
 }
}

class
DogDoor
{
 open()
}

DogDoorSimulator.java

%java DogDoorSimulator
Bruce starts barking.
 BarkRecognizer: Heard a ‘rowlf’
The dog door opens.

Bruce has gone outside...
The dog door closes.

Bruce’s all done...
...but he’s stuck outside!
Bitsie starts barking.
 BarkRecognizer: Heard a ‘yip’
This dog is not allowed.
Bruce starts barking.
 BarkRecognizer: Heard a ‘rooowlf’
The dog door opens.

Bruce’s back inside...
The dog door closes.

File Edit Window Help HollyLovesBruce

This is the test class from Maria’s old laptop. Use this for your own dog door testing.

Here’s the output you
want, which proves
that the door works
for Bruce, but not for
other dogs.

Download at WoweBook.Com

194 Chapter 4

Noun Analysis

Multiplicity

Attribute

Class Diagram

Operation

Association

Verb Analysis

UML and use cases have a lot of terms that are similar to, but not quite the same
as, the programming terms you’re already familiar with. Below are several OOA&D-
related terms, and their definitions... but everything is all mixed up. Connect the 
term to the definition, and unscramble the mess.

Lists all the code-level constructs, along with
their attributes and operations.

This is the UML term that usually represents a
method in one of your classes.

Helps you figure out the candidates for methods
on the objects in your system.

Visually shows that one class has a relation to
another class, often through an attribute.

Equivalent to a member variable in a class.

Describes how many of a specific type can be
stored in an attribute of a class.

You do this to your use case to figure out what
classes you need in your system.

?What’s My DEFINITION
d

d

d

n

define me, please

Download at WoweBook.Com

you are here 4 195

analysis

You know you love it... try another puzzling crossword
to get those new concepts lodged firmly in your brain.

OOA&D Cross

Download at WoweBook.Com

196 Chapter 4

Exercise
Solutions

answers, answers, answers

Noun Analysis

Multiplicity

Attribute

Class Diagram

Operation

Association

Verb Analysis

UML and use cases have a lot of terms that are similar to, but not quite the same
as, the programming terms you’re already familiar with. Below are several OOA&D-
related terms, and their definitions... but everything is all mixed up. Connect the 
term to the definition, and unscramble the mess.

Lists all the code-level constructs, along with
their attributes and operations.

This is the UML term that usually represents a
method in one of your classes.

Helps you figure out the candidates for methods
on the objects in your system.

Visually shows that one class has a relation to
another class, usually through an attribute.

Equivalent to a member variable in a class.

Describes how many of a specific type can be
stored in an attribute of a class.

You do this to your use case to figure out what
classes you need in your system.

?What’s My DEFINITION
d

d

d

n

Download at WoweBook.Com

Change is inevitable. No matter how much you like your

software right now, it’s probably going to change tomorrow. And the

harder you make it for your software to change, the more difficult

it’s going to be to respond to your customer’s changing needs. In

this chapter, we’re going to revisit an old friend, try and improve an

existing software project, and see how small changes can turn into

big problems. In fact, we’re going to uncover a problem so big that

it will take a TWO-PART chapter to solve it!

Nothing Ever Stays
 the Same

Molly, I hope we never have
to grow up. Let’s just stay like

this forever!

good design = flexible software5 (part 1)

this is a new chapter 197

Download at WoweBook.Com

198 Chapter 5 (part 1)

going beyond guitars

Your software is the best—I’m selling
guitars left and right. I’ve been getting
a lot of business from Nashville, though,
and want to start carrying mandolins, too.

I figure I can make a killing!

Rick’s Guitars is expanding
Fresh off the heels of selling three guitars to the rock group Augustana,
Rick’s guitar business is doing better than ever—and the search tool you
built Rick back in Chapter 1 is the cornerstone of his business.

Mandolins are a
lot like guitars...
they shouldn’t
be too hard to
support, right?

Let’s put our design to the test
We’ve talked a lot about good analysis and design being the key to
software that you can reuse and extend... and now it looks like we’re
going to have to prove that to Rick. Let’s figure out how easy it is to
restructure his application so that it supports mandolins.

Stringed Instruments

Download at WoweBook.Com

you are here 4 199

good design = flexible software

Guitar
serialNumber: String
price: double
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): GuitarSpec

Builder
toString(): String

Type
toString(): String

Wood
toString(): String

Inventory

addGuitar(String, double, GuitarSpec)
getGuitar(String): Guitar
search(GuitarSpec): Guitar [*]

GuitarSpec
model: String
numStrings: int
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
getNumStrings(): int

spec

1

1

1
1

builder

type
topWood

backWood
1

*inventory

Add support for mandolins to Rick’s search tool.

Below is the completed class diagram for Rick’s guitar search app, just like it was
when we finished up with Chapter 1. It’s up to you to add to this diagram so that Rick
can start selling mandolins, and your search tool can help him find mandolins that
match his clients’ preferences, just like he already can with guitars.

Sharpen your pencil

We’ve added in the
 additional

things you’ve lear
ned about

UML class diagrams.

Notice that we
can write these
properties on
either side of the
association... there’s no “right choice”;
just use what works
best for you.

We’ve moved most
of the properties
out of the class
box and used
associations instead.

HINT: Do a Guitar and Mandolin have
anything in common? If so, maybe a little
inheritance might be the way to go.

Download at WoweBook.Com

200 Chapter 5 (part 1)

Guitar
serialNumber: String
price: double
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): GuitarSpec

Builder
toString(): String

Type
toString(): String

Wood
toString(): String

Inventory

addGuitar(String, double, GuitarSpec)
getGuitar(String): Guitar
search(GuitarSpec): Guitar [*]

GuitarSpec
model: String
numStrings: int
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
getNumStrings(): int
matches(GuitarSpec): boolean

spec

1

1

1
1

builder

type
topWood

backWood
1

*
inventory

Add support for mandolins to Rick’s search tool.

Below is the completed class diagram for Rick’s guitar search app, just like it
was when we finished up with Chapter 1. Here’s what we did first to add support
for mandolins (we’ll make some more changes over the next few pages).

Instrument
serialNumber: String
price: double

getSerialNumber(): String
getPrice(): double
setPrice(float)

Mandolin

getSpec(): MandolinSpec

Since Guitar and

Mandolin share so

many properties,
we created a new

abstract base
class that stores

common properties.

Almost everything in Guitar gets pushed
up to Instrument, and gets inherited. So we can get rid of lots of these properties, as they get moved into the Instrument base class.

Let’s create a new
class, Mandolin,
to represent
mandolins. In just
a sec, we’ll create
a MandolinSpec
class for mandolin
properties, too.

Looks like we’ve got yet more new UML notation going on here... we’ll look at these on page 206.

updating rick’s class diagram

partial
answers

Sharpen your pencil

Download at WoweBook.Com

you are here 4 201

good design = flexible software

Did you notice that abstract
base class?
Take a close look at the new Instrument class
that we created:

Instrument is an abstract class: that means that you
can’t create an instance of Instrument. You have
to define subclasses of Instrument, like we did
with Mandolin and Guitar:

We made Instrument abstract because
Instrument is just a placeholder for actual
instruments like Guitar and Mandolin. An
abstract class defines some basic behavior, but it’s
really the subclasses of the abstract class that add the
implementation of those behaviors. Instrument
is just a generic class that stands in for your actual
implementation classes.

Instrument
serialNumber: String
price: double
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): InstrumentSpec

We took all the
attributes and operations
that are common to both
Guitar and Mandolin, and
put them in Instrument.

Mandolin

getSpec(): MandolinSpec

Instrument
serialNumber: String
price: double
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): InstrumentSpec

Guitar

getSpec(): GuitarSpec

Instrument is the base class for Mandolin and Guitar... they base their behavior off of it.

Abstract classes
are placeholders
for actual
implementation
classes.

The abstract
class defines
behavior, and
the subclasses
implement that
behavior.

Guitar and Mandolin implement the operations defined in Instrument in ways specific to a guitar and mandolin.

Download at WoweBook.Com

202 Chapter 5 (part 1)

We’ll need a MandolinSpec class, too
Mandolins and guitars are similar, but there are just a few things
different about mandolins... we can capture those differences in a
MandolinSpec class:

What do you think about this design? Will it do what the customer
wants it to do? How flexible is it? Do you think software designed
like this will be easy to extend and maintain?

brain
power?

GuitarSpec
builder: Builder
model: String
type: Type
backWood: Wood
topWood: Wood
numStrings: int
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
getNumStrings(): int
matches(GuitarSpec): boolean

MandolinSpec
builder: Builder
model: String
type: Type
Style: Style
backWood: Wood
topWood: Wood
numStrings: int
getBuilder(): Builder
getModel(): String
getType(): Type
getStyle(): Style
getBackWood(): Wood
getTopWood(): Wood
getNumStrings(): int
matches(MandolinSpec): boolean

Most mandolins
have 4 pairs
of strings
(8 total), so
numStrings isn’t
needed here.

Mandolins can
come in several
styles, like an “A”
style, or an “F”
style mandolin.

Style
toString(): String

It’s OK if you don’t know anything about

mandolins, or didn’t figure out the differe
nt

properties in the MandolinSpec class. The main

thing is that you realized we probably need a

new class for mandolins and their specs. If you

came up with using an Instrument interface or

abstract class, all the better!

Those spec classes sure
look a lot alike. How about we use

an abstract base class here, too?

adding a MandolinSpec

Just as we used
an enumerated
type for Wood and
Builder, we can
create a new type
for mandolin styles.

Download at WoweBook.Com

you are here 4 203

good design = flexible software

Q: We made Instrument abstract because we abstracted the
properties common to Guitar and Mandolin into it, right?

A: No, we made Instrument abstract because in Rick’s
system right now, there’s no such thing as an actual “instrument.” All
it does is provide a common place to store properties that exist in
both the Guitar and Mandolin classes. But since an instrument
currently has no behavior outside of its subclasses, it’s really just
defining common attributes and properties that all instruments need
to implement.
So while we did abstract out the properties common to both
instrument types, that doesn’t necessarily mean that Instrument
has to be abstract. In fact, we might later make Instrument a
concrete class, if that starts to make sense in our design...

Q: Couldn’t we do the same thing with GuitarSpec and
MandolinSpec? It looks like they share a lot of common
attributes and operations, just like Guitar and Mandolin.

A: Good idea! We can create another abstract base class,
called InstrumentSpec, and then have GuitarSpec and
MandolinSpec inherit from that base class:

there are no
Dumb Questions

InstrumentSpec
model: String
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

GuitarSpec
numStrings: int
getNumStrings(): int
matches(GuitarSpec): boolean

MandolinSpec

getStyle(): Style
matches(MandolinSpec): boolean

Let’s put everything together...

Download at WoweBook.Com

204 Chapter 5 (part 1)

Behold: Rick’s new application
It looks like all that work on design back in Chapter 1 has paid off;
it took us less than 10 pages to add support for mandolins to Rick’s
search tool. Here’s the completed class diagram:

Inventory

addInstrument(String, double, InstrumentSpec)
get(String): Instrument
search(GuitarSpec): Guitar [*]
search(MandolinSpec): Mandolin [*]

Instrument
serialNumber: String
price: double
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): InstrumentSpec

Mandolin

Instrument is an
abstract class...
that’s what an
italicized class name
means in UML.

Guitar and Mandolin don’t do anything but extend Instrument. The differences between the two types of instruments are encapsulated away in the spec classes.

This is a special type of association we’ll look at on the next page.

*inventory

We’ve changed addGuitar() to addInstrument().

Now get() returns an Instrument instead of just a Guitar.

We need two search()
methods now: one
for guitars and one
for mandolins.

Guitar

abstracting common behavior

Download at WoweBook.Com

you are here 4 205

good design = flexible software

Builder
toString(): String

Type
toString(): String

Wood
toString(): String

1

1

1

style

type

topWood

backWood
1

Style
toString(): String

InstrumentSpec
model: String
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

1

builder

We’ve moved
all the common
spec properties
into another
abstract class.

We need to override matches() in each spec class to handle additional properties specific to each instrument.

1

spec

GuitarSpec
numStrings: int
getNumStrings(): int
matches(GuitarSpec): boolean

MandolinSpec

getStyle(): Style
matches(MandolinSpec): boolean

Style is an enumerated type that

is used only by the MandolinSpec

class, since it’s specific to
mandolins, and not all instrum

ent

specification types.

InstrumentSpec is associated with all the enumerated types that we used to reference directly in GuitarSpec.

Whenever you find common behavior in two
or more places, look to abstract that behavior
into a class, and then reuse that behavior in
the common classes.

Here’s the principle that
led to us creating both the
Instrument and InstrumentSpec
abstract base classes.

Now the abstract Instrument
class is associated with the
abstract InstrumentSpec class.

Download at WoweBook.Com

206 Chapter 5 (part 1)

Class diagrams dissected (again)
Now that you’ve added abstract classes,
subclasses, and a new kind of association, it’s time
to upgrade your UML and class diagram skills.

Guitar

Instrument
serialNumber: String
price: double
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): InstrumentSpec

InstrumentSpec
model: String
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

Mandolin

This line with a diamond means aggregation.
Aggregation is a special form of association, and means
that one thing is made up (in part) of another thing.
So Instrument is partly made up of InstrumentSpec.

A line with an arrow that isn’t colored in means generalization. You use a generalization to show that a class (like Mandolin) extends and inherits behavior from a more generalized class (like Instrument).

When the name of a class
is in italics, the class
is abstract. Here, we
don’t want anyone
creating instances
of Instrument; it’s
just used to provide
a common base for
specific instrument
classes, like Guitar
and Mandolin.

More italics: InstrumentSpec is also abstract.

1
spec

a little more uml

Download at WoweBook.Com

you are here 4 207

good design = flexible software

Abstract Class

Relationship

Inheritance

Aggregation

Abstract Class

Association

Generalization

Aggregation

Italicized Class Name

UML Cheat Sheet

Fold this page down so you
can refer back to it when
you forget some of UML’s
notation and symbols.

What we call
it in Java

What we call
it in UML

How we show
it in UML

Q: Are there lots more types of symbols and notations
that I’m going to have to keep up with to use UML?

A: There are a lot more symbols and notations in UML, but
it’s up to you how many of them you use, let alone memorize.
Many people use just the basics you’ve already learned, and
are perfectly happy (as are their customers and managers).
But other folks like to really get into UML, and use every
trick in the UML toolbox. It’s really up to you; as long as you
can communicate your design, you’ve used UML the way it’s
intended.

there are no
Dumb Questions

Download at WoweBook.Com

208 Chapter 5 (part 1)

public class Mandolin extends Instrument {

 public Mandolin(String serialNumber, double price,
 MandolinSpec spec) {
 super(serialNumber, price, spec);
 }
}

Let’s code Rick’s new search tool
We can start off by creating a new class, Instrument, and making it
abstract. Then we put all the properties common to an instrument in this class:

abstract classes and instruments

public abstract class Instrument {

 private String serialNumber;
 private double price;
 private InstrumentSpec spec;

 public Instrument(String serialNumber, double price,
 InstrumentSpec spec) {
 this.serialNumber = serialNumber;
 this.price = price;
 this.spec = spec;
 }

 // Get and set methods for serial number and price

 public InstrumentSpec getSpec() {
 return spec;
 }
}

Instrument is abstract... you
have to instantiate subclasses of

this base class, like Guitar.

Most of this is pretty simple, and looks a lot
like the old Guitar class we had.

Next we need to rework Guitar.java, and create a class for mandolins.
These both extend Instrument to get the common instrument properties,
and then define their own constructors with the right type of spec class:

Mandolin is almost identical
to Guitar; it just takes in a
MandolinSpec in the constructor,
instead of a GuitarSpec.

We used the aggregation
form of association because
each Instrument is made up
of the serialNumber and
price member variables, and
an InstrumentSpec instance.

Instrument
serialNumber: String
price: double
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): InstrumentSpec

class In-
strument
{
 get-
Price()

Instrument.java

Mandolin

public class Guitar extends Instrument {

 public Guitar(String serialNumber, double price,
 GuitarSpec spec) {
 super(serialNumber, price, spec);
 }
}

Guitar
class
Guitar {
 Gui-
tar()
}

Guitar.java

class
Mandolin
{
 Mando-
lin() }

Mandolin.java

All each
instrument
class needs
is to extend
Instrument,
and provide
a constructor
that takes the
right kind of
spec object.

Download at WoweBook.Com

you are here 4 209

good design = flexible software

public abstract class InstrumentSpec {

 private Builder builder;
 private String model;
 private Type type;
 private Wood backWood;
 private Wood topWood;

 public InstrumentSpec(Builder builder, String model, Type type,
 Wood backWood, Wood topWood) {
 this.builder = builder;
 this.model = model;
 this.type = type;
 this.backWood = backWood;
 this.topWood = topWood;
 }

 // All the get methods for builder, model, type, etc.

 public boolean matches(InstrumentSpec otherSpec) {
 if (builder != otherSpec.builder)
 return false;
 if ((model != null) && (!model.equals(“”)) &&
 (!model.equals(otherSpec.model)))
 return false;
 if (type != otherSpec.type)
 return false;
 if (backWood != otherSpec.backWood)
 return false;
 if (topWood != otherSpec.topWood)
 return false;
 return true;
 }
}

Just like Instrument,
InstrumentSpec is abstract,
and you’ll use subclasses for
each instrument type.

This is similar to our old Guitar constructor...
...except that we’ve pulled
out properties not common
to all instruments, like
numStrings and style.

This version of matches() does just what you’d expect: compares all properties in this class to another spec instance. We’ll have to override this in subclasses, though...

Create an abstract class for
instrument specifications
With the instruments taken care of, we can move on to the spec
classes. We need to create another abstract class, InstrumentSpec,
since so many instruments have common specifications:

InstrumentSpec
model: String
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

1spec

class In-
strument-
Spec {
 matches
}

InstrumentSpec.java

class
Mandolin
{
 Mando-
lin() }

Mandolin.java

Download at WoweBook.Com

210 Chapter 5 (part 1)

Let’s code GuitarSpec...
With InstrumentSpec coded up, it’s pretty simple to write the
GuitarSpec class:

completing the spec classes

public class GuitarSpec extends InstrumentSpec {

 private int numStrings;

 public GuitarSpec(Builder builder, String model, Type type,
 int numStrings, Wood backWood, Wood topWood) {
 super(builder, model, type, backWood, topWood);
 this.numStrings = numStrings;
 }

 public int getNumStrings() {
 return numStrings;
 }

 // Override the superclass matches()
 public boolean matches(InstrumentSpec otherSpec) {
 if (!super.matches(otherSpec))
 return false;
 if (!(otherSpec instanceof GuitarSpec))
 return false;
 GuitarSpec spec = (GuitarSpec)otherSpec;
 if (numStrings != spec.numStrings)
 return false;
 return true;
 }
}

Just as Guitar extended
Instrument, GuitarSpec
extends InstrumentSpec.

This constructor just adds
the guitar-specific properties to what’s already stored in
the base InstrumentSpec class.

matches() uses the superclass’s
matches(), and then performs
additional checks to make
sure the spec is the right
type, and matches the guitar-
specific properties.

Only a guitar has a numStrings property; it’s not in the Instrument superclass.

InstrumentSpec
model: String
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

GuitarSpec
numStrings: int
getNumStrings(): int
matches(GuitarSpec): boolean

class
Guitar-
Spec {
 match-
es()

GuitarSpec.java

GuitarSpec gets a lot of its behavior from InstrumentSpec now, so the code for GuitarSpec has slimmed down a lot from Chapter 1.

Download at WoweBook.Com

you are here 4 211

good design = flexible software

...and MandolinSpec, too
After seeing GuitarSpec, MandolinSpec is pretty simple.
It’s very similar, with the addition of a member variable to
reference the mandolin’s style (like “A” or “F” style), and a
slightly different matches() method:

You’ll need a
new enumerated
type, Style. Use
two enumerated
values, A and F.

1
style

Style
toString(): String

MandolinSpec

getStyle(): Style
matches(MandolinSpec): boolean

class
Mando-
linSpec {
 match-
es()

MandolinSpec.java

public class MandolinSpec extends InstrumentSpec {

 private Style style;

 public MandolinSpec(Builder builder, String model, Type type,
 Style style, Wood backWood, Wood topWood) {
 super(builder, model, type, backWood, topWood);
 this.style = style;
 }

 public Style getStyle() {
 return style;
 }

 // Override the superclass matches()
 public boolean matches(InstrumentSpec otherSpec) {
 if (!super.matches(otherSpec))
 return false;
 if (!(otherSpec instanceof MandolinSpec))
 return false;
 MandolinSpec spec = (MandolinSpec)otherSpec;
 if (!style.equals(spec.style))
 return false;
 return true;
 }
}

Only mandolins have a Style, so this is not
pushed up into the InstrumentSpec base class.

Just like GuitarSpec, MandolinSpec uses its superclass to do basic comparison, and then casts to MandolinSpec and compares the mandolin-specific properties.

public enum Style {
 A, F;
} enum

Style {
 to-
String()
}

Style.java

Download at WoweBook.Com

212 Chapter 5 (part 1)

Inventory
inventory: Instrument [*]
addInstrument(String, double, InstrumentSpec)
get(String): Instrument
search(GuitarSpec): Guitar [*]
search(MandolinSpec): Mandolin [*]

class
Inven-
tory {
search()
}

Inventory.java

Finishing up Rick’s search tool
All that’s left is to update the Inventory class to
work with multiple instrument types, instead of just the
Guitar class:

public class Inventory {

 private List inventory;

 public Inventory() {
 inventory = new LinkedList();
 }

 public void addInstrument(String serialNumber, double price,
 InstrumentSpec spec) {
 Instrument instrument = null;
 if (spec instanceof GuitarSpec) {
 instrument = new Guitar(serialNumber, price, (GuitarSpec)spec);
 } else if (spec instanceof MandolinSpec) {
 instrument = new Mandolin(serialNumber, price, (MandolinSpec)spec);
 }
 inventory.add(instrument);
 }

 public Instrument get(String serialNumber) {
 for (Iterator i = inventory.iterator(); i.hasNext();) {
 Instrument instrument = (Instrument)i.next();
 if (instrument.getSerialNumber().equals(serialNumber)) {
 return instrument;
 }
 }
 return null;
 }

 // search(GuitarSpec) works the same as before

 public List search(MandolinSpec searchSpec) {
 List matchingMandolins = new LinkedList();
 for (Iterator i = inventory.iterator(); i.hasNext();) {
 Mandolin mandolin = (Mandolin)i.next();
 if (mandolin.getSpec().matches(searchSpec))
 matchingMandolins.add(mandolin);
 }
 return matchingMandolins;
 }
}

The inventory list now holds
multiple types of instruments,
not just guitars.

By using the Instrument and InstrumentSpec classes, we can turn addGuitar() into a more generic method, and create any kind of instrument.

Hmmm... this isn’t so great. Since Instrument is abstract, and we can’t instantiate it directly, we have to do some extra work before creating an instrument.

Here’s another spot where using
an abstract base class makes our
design more flexible.

We need another search() method to handle mandolins.

coding rick’s search tool

At this point, you’re ready to try out
Rick’s improved app. See if you can update
FindGuitarTester on your own, and see how
things are working with these design changes.

Download at WoweBook.Com

you are here 4 213

good design = flexible software

Q: Guitar and Mandolin only have a
constructor. That seems sort of silly. Do
we really need a subclass for each type of
instrument just for that?

A: We do, at least for now. Otherwise,
how could you tell a mandolin from a
guitar? There’s no other way to figure out
what type of instrument you’re working
with than by checking the type of the class.
Besides, those subclasses allow us to have
constructors that ensure that the right type
of spec is passed in. So you can’t create a
Guitar, and pass a MandolinSpec
into its constructor.

Q: But with Instrument as an abstract
class, the addInstrument() method in
Inventory.java becomes a real pain!

A: You’re talking about
addInstrument() on page 212,
aren’t you? Yes, with Instrument as
an abstract class, you do have some extra
code to deal with. But it’s still a fairly small
price to pay to ensure that you can’t create
an Instrument, which really doesn’t
exist in the real world.

Q: Isn’t there some middle ground,
though? I mean, even if there’s no such
thing as an “instrument” that isn’t a guitar
or mandolin or whatever, it still seems
like we must have a design problem
somewhere. Right?

A: Well, you may be onto something.
It does seem like parts of our code would
benefit from a concrete Instrument
class, while other parts wouldn’t.
Sometimes this means you have to make
a decision one way or the other, and just
accept the trade-off. But maybe there’s
more going on here that we’re not thinking
about...

Q: Why do we have two different
versions of search()? Can’t we combine
those into a single method that takes an
InstrumentSpec?

A: Since InstrumentSpec is
an abstract class, like Instrument,
Rick’s clients will have to give either a
GuitarSpec or a MandolinSpec to
the search() method in Inventory.
And since a spec will match only other
specs of the same instrument type, there’s
never a case where both mandolins and
guitars would be returned in the list of
matching instruments. So even if you
consolidated the two search() methods
into one, you wouldn’t get any functionality
benefit—and even worse, it might look like
the method would return both mandolins
and guitars (since the return type of
search() would be Instrument
[*]), even though it never actually would.

Dumb Questions
there are no

These are little indicators that
we may have

a design problem. When things just don’t seem

to make sense in your application, yo
u may

want to investigate a little furt
her... which is

exactly what we’re about to do.

Download at WoweBook.Com

214 Chapter 5 (part 1)

Wow, this is really starting to look
pretty good! Using those abstract classes

helped us avoid any duplicate code, and we’ve
got instrument properties encapsulated

away into our spec classes.

I don’t know... it seems like we’ve still
got a few problems, like the almost-
empty Guitar and Mandolin classes,

and addInstrument() with all that nasty
instrument-specific code. Are we just

supposed to ignore those?

You’ve done a lot more than just
add support for mandolins to Rick’s
application. By abstracting common
properties and behavior into the
Instrument and InstrumentSpec
classes, you’ve made the classes in
Rick’s app more independent. That’s a
significant improvement in his design.

You’ve made some MAJOR
improvements to Rick’s app

Along with some major design
improvements, we’ve uncovered a few
problems with the search tool. That’s
OK... you’re almost always going to find 
a few new problems when you make big
changes to your design.

So now our job is to take Rick’s better-
designed application, and see if we can
improve it even further... to take it from
good software to GREAT software.

Great software isn’t
built in a day

major improvements

Download at WoweBook.Com

you are here 4 215

good design = flexible software

Is Rick’s search tool great software?

Remember the three things we talked about that you can do to write great
software? Let’s review them to see how well we’ve done on the latest version
of Rick’s search tool.

1. Does the new search tool do what it’s supposed to do?

2. Have you used solid OO principles, like encapsulation, to avoid duplicate
code and make your software easy to extend?

3. How easy is it to reuse Rick’s application? Do changes to one part of the
app force you to make lots of changes in other parts of the app? Is his
software loosely coupled?

3 steps to great software (revisited)

Great software every time? I
can hardly imagine what that

would be like!

Be sure to answer these questions,

and then turn the pag
e to see

what we wrote down.

Download at WoweBook.Com

216 Chapter 5 (part 1)

Is Rick’s search tool great software?

Remember the three things we talked about that you can do to write great
software? Let’s review them to see how well we’ve done on the latest version
of Rick’s search tool.

1. Does the new search tool do what it’s supposed to do?

2. Have you used solid OO principles, like encapsulation, to avoid duplicate
code and make your software easy to extend?

3. How easy is it to reuse Rick’s application? Do changes to one part of the
app force you to make lots of changes in other parts of the app? Is his
software loosely coupled?

Looks like there’s still
some work to do... but I’ll bet

this will be amazing by the
time you’re done.

Absolutely. It finds guitars and mandolins, although not at the

same time. So maybe it just mostly does what it’s supposed to

do. Better ask Rick to be sure...

It’s sort of hard to use just parts of Rick’s application. Everything’s

pretty tightly connected, and InstrumentSpec is actually part of

Instrument (remember when we talked about aggregation?).

We used encapsulation when we came up with the InstrumentSpec

classes, and inheritance when we developed an Instrument and

InstrumentSpec abstract superclass. But it still takes a lot of work

to add new instrument types...

It’s OK if you got some
different answers and
had different ideas
than we did on these
questions... just make
sure you thought things
through, and that you
understand why we
answered how we did.

is this great software?

Exercise
Solutions

Download at WoweBook.Com

you are here 4 217

good design = flexible software

I’m loving what you’re doing to my
search tool! As long as you’re here, I think

I’d like to start carrying bass guitars, banjos,
and dobros (you know, those guitars you play

with a slide). And how about fiddles, too?

Guitar

Builder
toString(): String Type

toString(): String Wood
toString(): String

Inventory

addInstrument(String, double, InstrumentSpec)
get(String): Instrument
search(GuitarSpec): Guitar [*]
search(MandolinSpec): Mandolin [*]

GuitarSpec
numStrings: int
getNumStrings(): int
matches(InstrumentSpec): boolean

1

1

1
style

type

topWood
backWood1

Style
toString(): String

Instrument
serialNumber: String
price: double
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): InstrumentSpec

InstrumentSpec
model: String
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

Mandolin

MandolinSpec

getStyle(): Style
matches(InstrumentSpec): boolean

1

builder

*inventory

Banjo

Dobro

Bass

Fiddle

BanjoSpec
numStrings: int
getNumStrings(): int
matches(BanjoSpec): boolean

DobroSpec

matches(DobroSpec): booleanBassSpec

matches(BassSpec): boolean
FiddleSpec

finish: String
getFinish(): Style
matches(FiddleSpec): boolean

Four new instrument types

means four new classes, one for

each instrument type.

We’ll have to change Inventory
again, and add support for the
four new instrument types. Not
a pleasant experience....

We need four new
spec objects, too,
each one adding
its own set of
instrument-specific
properties.

One of the best ways to see if software is
well-designed is to try and CHANGE it.

1spec

Let’s put Rick’s software to the test.

If your software is hard to change, there’s
probably something you can improve about the
design. Let’s see how hard it is to add a couple
of new instruments to Rick’s app:

Download at WoweBook.Com

218 Chapter 5 (part 1)

Uh oh... adding new instruments is not easy!
If ease of change is how we determine if our software is
well-designed, then we’ve got some real issues here. Every
time we need to add a new instrument, we have to add
another subclass of Instrument:

BanjoInstrument
serialNumber: String
price: double
spec: InstrumentSpec
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): InstrumentSpec

Then, we need a new subclass of
InstrumentSpec, too:

BanjoSpec
numStrings: int
getNumStrings(): int
matches(BanjoSpec): boolean

InstrumentSpec
model: String
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

When you think about how many
instruments Rick could end up
selling, a class for each instrument
type is a little scary.

We’re starting to have some duplicate code here... banjos have a numStrings property like guitars, but it’s not a common enough property to move into the Instrument superclass.

Then things start to really get nasty when you
have to update the Inventory class’s methods to
support the new instrument type:

Inventory
inventory: Instrument [*]
addInstrument(String, double, InstrumentSpec)
get(String): Instrument
search(GuitarSpec): Guitar [*]
search(MandolinSpec): Mandolin [*]
search(BanjoSpec): Banjo [*]

Remember all that
instanceof and if/else stuff
in addInstrument()? It
gets worse with every new
instrument type we support.

For a refresher on the problems with addInstrument(), flip back to page 212.

The search() situation is getting more annoying with every new instrument type. We need a new version that deals with banjos now.

change is hard

Download at WoweBook.Com

you are here 4 219

good design = flexible software

So what are we supposed to do now?
It looks like we’ve definitely still got some work to do to turn
Rick’s application into great software that’s truly easy to change
and extend. But that doesn’t mean the work you’ve done isn’t

important... lots of times, you’ve got to improve your design
to find some problems that weren’t so apparent earlier

on. Now that we’ve applied some of our OO
principles to Rick’s search tool, we’ve been
able to locate some issues that we’re going
to have to resolve if we don’t want to spend

the next few years writing new Banjo and Fiddle
classes (and who really wants to do that?).

Before you’re ready to really tackle the next phase of
Rick’s app, though, there are a few things you need to
know about. So, without further ado, let’s take a quick
break from Rick’s software, and tune in to...

Download at WoweBook.Com

Download at WoweBook.Com

$100$100$100$100$100

$200$200$200$200$200

$300$300$300$300$300

$400$400$400$400$400

Software
Neuroses

Maintenance
and Reuse

Code
Constructs

Famous
Designers

Risk
Avoidance

Hello, and welcome to OO CATASTROPHE,
Objectville’s favorite quiz show. We’ve got quite
an array of OO answers tonight, I hope you’ve

come ready to ask the right questions.

Download at WoweBook.Com

222 OO CATASTROPHE!

A: It might not seem like it, but we are working on Rick’s
search tool, in a manner of speaking. We’re going to need some
pretty advanced OO techniques to make his application flexible and
reusable, and we wanted to give you a chance to get a handle on
these principles before you had to start applying them to a pretty
complicated problem.

Q: Why are we playing a game show? Shouldn’t we be
fixing Rick’s search tool?

A: The questions that match up with the answers in this chapter
aren’t easy, but you should be able to reason them all out. Take
your time; it’s important that you come up with these questions on
your own if at all possible, and only then turn the page to get a little
more information on each question and the OO principle it involves.
Besides, we think you’re getting to be a pretty kick-ass developer, so
we have lots of confidence in you.

Q: If these are new OO principles, how am I supposed to
figure out what the questions are? That’s asking a lot, isn’t it?

Dumb Answers
there are no

We’ve got some great OO categories
today, so let’s get started. Remember,

I’ll read off an answer, and it’s your job to
come up with the question that matches the

answer. Good luck!

Download at WoweBook.Com

answers and questions 4 223

$100$100$100$100$100

$200$200$200$200

$300$300$300$300$300

$400$400$400$400$400

Software
Neuroses

Maintenance
and Reuse

Code
Constructs

Famous
Designers

Risk
Avoidance

This code construct has the
dual role of defining behavior
that applies to multiple types,
and also being the preferred

focus of classes that use
those types.

“What is ?”
Write what you think the question is for the answer above.

Download at WoweBook.Com

224 OO CATASTROPHE!

“What is an INTERFACE?”
Suppose you’ve got an application that has an interface, and then lots
of subclasses that inherit common behavior from that interface:

Anytime you’re writing code that interacts with these classes, you have
two choices. You can write code that interacts directly with a subclass,
like FootballPlayer, or you can write code that interacts with the
interface, Athlete. When you run into a choice like this, you should
always favor coding to the interface, not the implementation.

Why is this so important? Because it adds flexibility to your app.
Instead of your code being able to work with only one specific
subclass—like BaseballPlayer—you’re able to work with
the more generic Athlete. That means that your code will
work with any subclass of Athlete, like HockeyPlayer or
TennisPlayer, and even subclasses that haven’t even been
designed yet (anyone for CricketPlayer?).

Coding to an
interface, rather
than to an
implementation,
makes your
software easier
to extend.

By coding to
an interface,
your code will
work with all of
the interface’s
subclasses—even
ones that
haven’t been
created yet.

Did you get this? You should have asked this as the question for the answer on page 223.

<<interface>>
Athlete

getSport(): String
play()

BaseballPlayer
getSport(): String
play()

HockeyPlayer
getSport(): String
play()

FootballPlayer
getSport(): String
play()
TennisPlayer

getSport(): String
play()

BasketballPlayer
getSport(): String
play()

Athlete defines a
play() method that
all these classes
implement in sport-
specific ways.

This is how you represent an interface in UML: the <<interface>> word and italicized class name.

<<interface>>
Athlete

getSport(): String
play()

BaseballPlayer
play()

Team
addPlayer(???)

What type should
this method take?

Flexible!

Limiting!

Download at WoweBook.Com

answers and questions 4 225

$100$100$100$100$100

$200$200$200$200

$300$300$300$300

$400$400$400$400$400

Software
Neuroses

Maintenance
and Reuse

Code
Constructs

Famous
Designers

Risk
Avoidance

It’s been responsible for
preventing more maintenance

problems than any other
OO principle in history, by

localizing the changes
required for the behavior of an

object to vary.

“What is ?”

Download at WoweBook.Com

226 OO CATASTROPHE!

“What is ENCAPSULATION?”
We’ve talked a fair bit about encapsulation already, in terms of
preventing duplicate code. But there’s more to encapsulation than
just avoiding lots of copy-and-paste. Encapsulation also helps you
protect your classes from unnecessary changes.

Anytime you have behavior in an application that you think is likely
to change, you want to move that behavior away from parts of your
application that probably won’t change very frequently. In other
words, you should always try to encapsulate what varies.

It looks like Painter has two methods that are pretty stable, but
that paint() method is going to vary a lot in its implementation.
So let’s encapsulate what varies, and move the implementation of
how a painter paints out of the Painter class.

Painter
prepareEasel()
cleanBrushes()
paint()

Here’s a very
simple class that
does three things:
prepares a new
easel, cleans
brushes, and
paints a picture.

Preparing an easel and cleaning brushes are going to stay pretty much the same.

But what about painting? The style of
painting varies... the way the brushes are
used varies... even the speed at which
painting occurs varies. So here’s where all
the change could happen in Painter.

Painter
prepareEasel()
cleanBrushes()
setPaintStyle(PaintStyle)

PaintStyle
getStyle(): String
paint()

ModernPaintStyle
paint()

ImpressionistPaintStyle
paint()

SurrealPaintStyle
paint() CubistPaintStyle

paint()

We’ve
encapsulated
what varies-the
painting behavior-
out of the
Painter class.

PaintStyle represents the varying paint behaviors.

Now the variance is
tucked away into all
of these PaintStyle
implementation classes.

Notice that we’re coding to an interface here, not an implementation.

Download at WoweBook.Com

answers and questions 4 227

$100$100$100$100$100

$200$200$200$200

$300$300$300$300

$400$400$400$400

Software
Neuroses

Maintenance
and Reuse

Code
Constructs

Famous
Designers

Risk
Avoidance

Every class should attempt to
make sure that it has only one
reason to do this, the death of
many a badly designed piece

of software.

“What is ?”

Download at WoweBook.Com

228 OO CATASTROPHE!

“What is CHANGE?”
You already know that the one constant in software is
CHANGE. Software that isn’t well-designed falls apart at the
first sign of change, but great software can change easily.

The easiest way to make your software resilient to change is
to make sure each class has only one reason to change.
In other words, you’re minimizing the chances that a class is
going to have to change by reducing the number of things in
that class that can cause it to change.

When you see a class that has more than one reason to
change, it is probably trying to do too many things. See
if you can break up the functionality into multiple classes,
where each individual class does only one thing—and
therefore has only one reason to change.

Automobile
start()
stop()
changeTires(Tire [*])
drive()
wash()
checkOil()
getOil(): int

Take a look at the
methods in this class.
They deal with starting
and stopping, how tires
are changed, how a
driver drives the car,
washing the car, and even
checking and changing
the oil.

There are LOTS of things that could cause this class to change. If a mechanic changes how he checks the oil, or if a driver drives the car differently, or even if a car wash is upgraded, this code will need to change.

Automobile
start()
stop()
getOil(): int

CarWash
wash(Automobile)

Automobile got a LOT simpler.
It handles starting, stopping, and
reporting on its oil attribute.
Much more resilient to change!

Driver and CarWash each do just ONE thing, so they won’t have to change nearly as often.

Driver
drive(Automobile) Mechanic

checkOil(Automobile)
changeTires(Automobile, Tire [*])

You could probably
even break up these
two functions if you
wanted, and separate
the functionality of
a Mechanic into two
behavior classes.

Download at WoweBook.Com

answers and questions 4 229

Dessert
serve()

IceCream
taste: String
getTaste(): String
serve()

Topping
description: String
getDescription(): String
serve()

HotFudge

Caramel

Sundae
iceCream: IceCream [*]
syrups: Syrup [*]
toppings: Topping [*]
addIceCream(IceCream)
addSyrup(Syrup)
addTopping(Topping)
serve()

Cone
iceCream: IceCream [*]
toppings: Topping [*]
addScoop(IceCream)
addTopping(Topping)
serve()

DessertCounter
orderCone(IceCream[*], Topping[*]): Cone
orderSundae(IceCream[*], Topping[*], Syrup[*]): Sundae
addTopping(Cone, Topping): Cone
addTopping(Sundae, Topping): Sundae

Syrup
ingredients: String [*]
getIngredients(): String [*]
serve()

WhippedCream
serve()Nuts

serve()Cherries
serve()

Vanilla
Chocolate

Peppermint

MintChocolateChip

Final

You’ve been doing pretty well, but
now it’s time for FINAL CATASTROPHE.
Below is the class diagram for an application that’s
not very flexible. To show that you really can avoid an
OO catastrophe, you need to write down how you’d

change this design. You’ll need to use all the principles
we’ve been talking about, so take your time, and

good luck!

Download at WoweBook.Com

230 OO CATASTROPHE!

Sundae
iceCream: IceCream [*]
syrups: Syrup [*]
toppings: Topping [*]
addIceCream(IceCream)
addSyrup(Syrup)
addTopping(Topping)
serve()

Cone
iceCream: IceCream [*]
toppings: Topping [*]
addScoop(IceCream)
addTopping(Topping)
serve()

DessertCounter
orderCone(IceCream[*], Topping[*]): Cone
orderSundae(IceCream[*], Topping[*], Syrup[*]): Sundae
addTopping(Cone, Topping): Cone
addTopping(Sundae, Topping): Sundae

DessertCounter is coding to implementations of the Dessert interface. We can reduce these two order methods to one: orderDessert(), and then return the interface, Dessert.

DessertCounter has more than one reason to change: if the ordering process changes, or if how the Cone and Sundae class adds toppings changes. Adding a topping should be done to the Dessert classes directly, not here.

Syrup is an
implementation of
Topping... we really
don’t need a method
specifically to add a
Topping. That’s coding
to an implementation. There are a LOT of serve()

implementations floating around. We should
try and encapsulate what varies, and put
all the serving code in one place. That way,
if the serving process changes, we don’t
need to change ALL these classes.

A: You’ve seen several times already that when you see a
potential for duplicate code, you should look to encapsulate. In this
case, it’s reasonable to assume that serving a Sundae probably
isn’t that different from serving a Cone.
So you could create a new class, called DessertService,
and put the serve() method in that class. Then, all of your
Dessert, IceCream, and Topping classes could simply refer
to DessertService.serve(). If serve() changes, you’ve
got to update code in only one place: DessertService.

So you’re encapsulating what might vary—the code in the
serve() method—and you’re making sure that each class has
only a single reason to change. That’s a double win!

Q: How did you know to encapsulate the serve() methods
out of all those different classes? I missed that.

Dumb Answers
there are no

Final

Answers

Dessert
serve()

Download at WoweBook.Com

answers and questions 4 231

IceCream
taste: String
getTaste(): String
serve()

Vanilla
Chocolate

Peppermint

MintChocolateChip

Topping
description: String
getDescription(): String
serve()

HotFudge

Caramel

Syrup
ingredients: String [*]
getIngredients(): String [*]
serve()

WhippedCream
serve()Nuts

serve()Cherries
serve()

Topping and IceCream both have a serve() method, and seem to be pretty similar... Maybe we can abstract out common properties and create a base class?Most of the time,

abstracting out c
ommon

properties leads
you to

encapsulation.

Download at WoweBook.Com

232 OO CATASTROPHE!

It’s been great having you as
a contestant, and we’d love to have

you back next week, but we just received
an urgent call from a “Rick”? Something

about getting back to work on his
search tool?

With a few new OO tools and techniques
under your belt, you’re definitely ready to 
go back to Rick’s software, and make it a
lot more flexible. By the time you’re done, 
you’ll have used everything you’ve just
learned on OO Catastrophe, and made it
easy to change Rick’s application, too.

You’re ready to tackle
Rick’s inflexible code now

OO Principles
Encapsulate what varies.
Code to an interface rather than to an
implementation.
Each class in your application should have only
one reason to change.

These three principles are HUGE! Take note of them, as we’ll be using them a lot in the upcoming chapters.

back to rick’s search tool

Download at WoweBook.Com

good design = flexible software5 (part 2)

Give Your Software a
 30-minute Workout

And stretch... 2... 3... 4...

this is (sort of) a new chapter 233

Ever wished you were just a bit more fle�ible?
When you run into problems making changes to your application, it

probably means that your software needs to be more flexible and

resilient. To help stretch your application out, you’re going to do some

analysis, a whole lot of design, and learn how OO principles can really

loosen up your application. And for the grand finale, you’ll see how

higher cohesion can really help your coupling. Sound interesting? Turn

the page, and let’s get back to fixing that inflexible application.

Download at WoweBook.Com

234 Chapter 5 (part 2)

Back to Rick’s search tool
Loaded up with some new OO principles, we’re ready to tackle making
Rick’s application well-designed and flexible. Here’s where we left off,
and some of the problems we’ve discovered:

Inventory

addInstrument(String, double, InstrumentSpec)
get(String): Instrument
search(GuitarSpec): Guitar [*]
search(MandolinSpec): Mandolin [*]

Instrument
serialNumber: String
price: double
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): InstrumentSpec

Mandolin

*inventory

Guitar

problems with rick’s search tool

addInstrument() has code specific to

each instrument type, so every time we

add a new Instrument subclass, we’ve

got to change code here.

There’s a search() method for each and every Instrument subclass. Not so good...

These have nothing but a
constructor, so they’re a real
pain... and we have to add one for
every new instrument type.

Download at WoweBook.Com

you are here 4 235

good design = flexible software

Builder
toString(): String

Type
toString(): String

Wood
toString(): String

1

1

1

style

type

topWood

backWood

Style
toString(): String

InstrumentSpec
model: String
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

1

builder

GuitarSpec
numStrings: int
getNumStrings(): int
matches(GuitarSpec): boolean

MandolinSpec

getStyle(): Style
matches(MandolinSpec): boolean

Just like with Instrument, every new type results in a new subclass of InstrumentSpec.

This class seems OK... except that if we
add a new instrument with different
properties, we’re going to have to change
this code, too.

Download at WoweBook.Com

236 Chapter 5 (part 2)

Guys, I’ve been looking over
this class diagram for Rick’s

application, and there’s just got to
be a better way to deal with this

search() method thing.

examining the search() method

Frank: Yeah, it’s a pain, but I don’t see any way to get around
it. We have to let Rick’s clients search for each different type
of instrument somehow.

Jim: I still don’t see why we can’t have just one search()
method that takes in an InstrumentSpec. Wouldn’t that cut
down on all those different versions of search()?

Joe: Well, it would, but we still don’t have any way to
return multiple types of instruments. If the client provides
a GuitarSpec, it’s never going to match a BanjoSpec or
MandolinSpec. So the list returned from search() will always
have only the type of instrument that the client’s spec is for.

Jim: Because we can’t instantiate InstrumentSpec, right? It’s
an abstract class, so we have to create a MandolinSpec, or a
BanjoSpec, or whatever.

Frank: So maybe that’s the problem... besides, shouldn’t
we be coding to an interface like InstrumentSpec, not an
implementation like GuitarSpec or BanjoSpec?

Joe: Hmmm. I hadn’t thought about that, but you’re right;
we really should be focusing on the interface, and not all those
implementation classes.

JoeFrank Jim

Download at WoweBook.Com

you are here 4 237

good design = flexible software

class
Inven-
tory {
search()
}

Inventory.java

A closer look at the search() method
It seems pretty clear that there’s a problem with the way we’re handling
searches for Rick’s clients. We could make InstrumentSpec a
concrete class, but would that solve all our problems?

search(GuitarSpec)
search(MandolinSpec)
search(BanjoSpec)

search(FiddleSpec)

Right now, we have a

search() method for each

instrument type. But we

can make InstrumentSpec

non-abstract...

class
Inven-
tory {
search()
}

Inventory.java

search(InstrumentSpec)

Now we can let Rick’s clients pass in an InstrumentSpec to the search() method.

InstrumentSpec
model: String
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

InstrumentSpec is no longer
in italics. That means
it’s not an abstract class
anymore... and there’s
nothing we need to change
in the spec subclasses.

This version of Inventory
requires lots of changes
for every new instrument
that Rick sells...

...but this version of
Inventory, with only a
single search() method, is
much easier to change.

Download at WoweBook.Com

238 Chapter 5 (part 2)

Inventory
inventory: Instrument [*]
addInstrument(String, double, InstrumentSpec)
get(String): Instrument
search(InstrumentSpec): Instrument [*] class

Inven-
tory {
search()
}

Inventory.java
public class Inventory {

 private List inventory;

 public Inventory() {
 inventory = new LinkedList();
 }

 public void addInstrument(String serialNumber, double price,
 InstrumentSpec spec) {
 Instrument instrument = null;
 if (spec instanceof GuitarSpec) {
 instrument = new Guitar(serialNumber, price, (GuitarSpec)spec);
 } else if (spec instanceof MandolinSpec) {
 instrument = new Mandolin(serialNumber, price, (MandolinSpec)spec);
 }
 inventory.add(instrument);
 }

 public Instrument get(String serialNumber) {
 for (Iterator i = inventory.iterator(); i.hasNext();) {
 Instrument instrument = (Instrument)i.next();
 if (instrument.getSerialNumber().equals(serialNumber)) {
 return instrument;
 }
 }
 return null;
 }

 public List search(InstrumentSpec searchSpec) {
 List matchingInstruments = new LinkedList();
 for (Iterator i = inventory.iterator(); i.hasNext();) {
 Instrument instrument = (Instrument)i.next();
 if (instrument.getSpec().matches(searchSpec))
 matchingInstruments.add(instrument);
 }
 return matchingInstruments;
 }
} On top of better design, now search()

can return all instruments that match,
even if that list contains different
types of instruments, like two guitars
and one mandolin.

search() is looking much better! Only one version, and it takes in an InstrumentSpec now.

We’re coding to the Instrument base type now,
not the implementation classes like Guitar and
Mandolin. This is a much better design.

We still have some
issues here... this
method gets
bigger and more
complicated every
time we add a new
type of instrument...

...and we’re coding to the implementation classes, not the Instrument base class.

The benefits of our analysis
Let’s take what we’ve figured out about turning
InstrumentSpec into a concrete class, and see if it makes
the design of Inventory any better.

moving to a non-abstract InstrumentSpec

Here’s the big change that this page highlights.

Download at WoweBook.Com

you are here 4 239

good design = flexible software

One of these things is not like the other...
 or is it?

The search() method isn’t the only thing that makes adding new
instruments to Rick’s application difficult. You also have to add a new
subclass of Instrument for each new instrument type. But why? Let’s do a
little more analysis.

Why is there a need for an Instrument class in Rick’s application?

What things are common to all instruments?

What things are different between instruments?

If you have any ideas for how you might change Rick’s application so that
you don’t need all the instrument-specific subclasses, mark those changes
on the class diagram below. Feel free to add or remove classes and
properties; it’s up to you to decide how you can improve Rick’s design.

Sharpen your pencil

GuitarInstrument
serialNumber: String
price: double
spec: InstrumentSpec
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): InstrumentSpec

Mandolin

Dobro

Fiddle

Bass

Banjo

Download at WoweBook.Com

240 Chapter 5 (part 2)

One of these things is not like the other...
 or is it?

The search() method isn’t the only thing that makes adding new
instruments to Rick’s application difficult. You also have to add a new
subclass of Instrument for each new instrument type. But why? Let’s do a
little more analysis.

Why is there a need for an Instrument class in Rick’s application?

What things are common to all instruments?

What things are different between instruments?

If you have any ideas for how you might change Rick’s application so that
you don’t need all the instrument-specific subclasses, mark those changes
on the class diagram below. Feel free to add or remove classes and
properties; it’s up to you how you can improve Rick’s design.

Sharpen your pencil
answers

Most instruments have at least a few common properties, like serial

number and price. Instrument stores the common properties, and then

each specific instrument type can extend from Instrument.

The serial number, the price, and some set of specifications

(even though the details of those specs may be different

for different instrument types).

The specifications: each type of instrument has a different set of

properties that it can contain. And since each instrument has a

different InstrumentSpec, each has a different constructor.

Did you come up with any ideas for changing Rick’s application?

You didn’t need to
write down exactly
what we did, but you
should be thinking along
the same lines here.

GuitarInstrument
serialNumber: String
price: double
spec: InstrumentSpec
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): InstrumentSpec

Mandolin

Dobro

Fiddle

Bass

Banjo

resistance to change

Download at WoweBook.Com

you are here 4 241

good design = flexible software

A closer look at the
instrument classes
Even though search() is looking better, there are still some
real problems with all the instrument subclasses, and the
addInstrument() method in Inventory.

Remember, we originally made Instrument abstract because
each instrument type was represented by its own subclass:

Instrument
serialNumber: String
price: double
spec: InstrumentSpec
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): InstrumentSpec

The Instrument class takes

care of all the common
properties of an instrum

ent.

public class Mandolin extends Instrument {

 public Mandolin(String serialNumber, double price,
 MandolinSpec spec) {
 super(serialNumber, price, spec);
 }
}

class
Mandolin
{
 Mando-
lin() }

Mandolin.java

public class Guitar extends Instrument {

 public Guitar(String serialNumber, double price,
 GuitarSpec spec) {
 super(serialNumber, price, spec);
 }
}

class
Guitar {
 Gui-
tar()
}

Guitar.java

Banjo

Dobro

Bass

Guitar

Mandolin
Fiddle

Each instrument subclass just adds a constructor specific to that instrument type’s spec class.

But classes are really about behavior!
But the reason you usually create a subclass is because the
behavior of the subclass is different than the superclass. In Rick’s
application, is the behavior of a Guitar different than that of an
Instrument? Does it function differently in his application than a
Mandolin or Banjo?

Download at WoweBook.Com

242 Chapter 5 (part 2)

Guitar and Mandolin and
the other instruments don’t

have different behavior. But they have
different properties... so we have to
have subclasses for each instrument,

right?

All the instruments—at least from Rick’s
perspective—behave the same. So that leaves
only two reasons to have subclasses for each
instrument type:

1. Because the Instrument class represents
a concept, and not an actual object, it really
should be abstract. So we have to have
subclasses for each instrument type.

2. Each different type of instrument has
different properties, and uses a different
subclass of InstrumentSpec, so we need
an instrument-specific constructor for each
type of instrument.

These seem like pretty good reasons (well, at
least the first one does), but we’re ending up
with lots of extra classes that don’t do much...
and that makes our software inflexible and
difficult to change. So what do we do?

If we were writing a system

that represented how these

instruments played, we might need

subclasses to handle beha
vior like

pluck(), strum(), or frail().

This is a good OO principle,
but it sure is causing
headaches with all the
subclasses. We’ll come back
to this one in a moment.

This looks like another
case where we’re coding
to an implementation
instead of an interface.
So this isn’t a good
reason to keep
Instrument abstract.

Remember the second step in
writing great software, from
back in Chapter 1:

Apply basic OO
principles to
add flexibility.

How can we take this step and apply it to the problems we’re finding in Rick’s app?

Since Rick’s app
already does what
it needs to do
(Step 1), we’re
ready to try and
make his software
more flexible.

behavior or properties?

Download at WoweBook.Com

you are here 4 243

good design = flexible software

Object-Oriented Principles to the rescue!

There’s definitely a problem with Rick’s app, but we’re not sure what it is. When you
don’t know what to do to solve a design problem, just run through the OO principles
you know, and see if any of them might help improve your software’s design.

For each principle, check the box if you think it could help us out. Then, if you checked
the box for a principle, it’s up to you to write down how you could use that principle to
improve Rick’s search tool design.

Sharpen your pencil

Polymorphism

Encapsulation

Inheritance

Abstraction

See what we thought on the next page.

Download at WoweBook.Com

244 Chapter 5 (part 2)

Object-Oriented Principles to the rescue!

There’s definitely a problem with Rick’s app, but we’re not sure what it is. When you
don’t know what to do to solve a design problem, just run through the OO principles
you know, and see if any of them might help improve your software’s design.

Polymorphism

Encapsulation

Inheritance

Abstraction

Sharpen your pencil
answers

We’re using inheritance already with the Instrument and InstrumentSpec
classes, and their subclasses. But it does seem like the instrument-specific
subclasses don’t actually do anything but inherit from Instrument... they just
have slightly different constructors.

We use polymorphism in the search() method to treat all instruments as
instances of Instrument, instead of worrying about whether they’re a Guitar
or a Mandolin. So searching is a lot easier... but it would be nice to be able to
use this in addInstrument(), too, and cut down on some repetitive code.

InstrumentSpec abstracts the details about each instruments specifications
away from the Instrument class itself, so that we can add new instrument
properties without affecting the basic Instrument class.

We’re using encapsulation a lot, but maybe we can use it even more...
remember, encapsulate what varies! Since the properties in each instrument
type are what varies, can we somehow encapsulate those properties away
from Instrument and InstrumentSpec completely?

sharpen solutions

Download at WoweBook.Com

you are here 4 245

good design = flexible software

Guys, we’ve been using
inheritance, polymorphism, and

abstraction in this design. But I’m beginning
to think the key is encapsulation. Remember

what we learned about separating what
changes from what stays the same?

Joe: Yeah, you’re talking about encapsulating what varies, right?

Frank: Exactly! And we know that the properties for each
instrument are what varies in the application.

Jim: I thought we’d been over this; that’s why we have all those
subclasses of Instrument, like Guitar and Mandolin. So we can
represent the differences between each instrument.

Frank: But that really didn’t help... and besides, the behavior of each
instrument doesn’t vary, so do we really need subclasses for each
one?

Joe: So you’re saying we would make Instrument a concrete class,
instead of being abstract, right? And then we can get rid of all those
instrument-specific subclasses.

Jim: But... I’m totally confused. What about the properties that
vary across each instrument?

Frank: What about them? The Instrument class has a reference to
an InstrumentSpec, and all the property differences can be handled
by those classes. Look:

GuitarSpec
numStrings: int
getNumStrings(): int
matches(GuitarSpec): boolean

Instrument
serialNumber: String
price: double
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): InstrumentSpec

InstrumentSpec
builder: Builder
model: String
type: Type
backWood: Wood
topWood: Wood
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

MandolinSpec

getStyle(): Style
matches(MandolinSpec): booleanThere’s really no reason to have instrument-specific subclasses! They just add complexity to our application.

Instrument
isn’t in italics
anymore; it’s a
concrete class.

We actually already have the properties encapsulated away from the rest of the application! We just weren’t taking advantage of our good design decision.

1

spec

We made InstrumentSpec
non-abstract, too.

Download at WoweBook.Com

246 Chapter 5 (part 2)

Death of a design (decision)
One of the hardest things you will ever do is to let
go of mistakes you made in your own designs. In Rick’s
search tool, it doesn’t make sense to have separate
Instrument subclasses for each type of instrument.
But it took us almost 30 pages (and 2 parts of Chapter
5) to figure that out. Why?

Because it seemed to make sense at the
time, and it’s HARD to change something
you thought was already working!

It’s easy to rip apart someone else’s code, but you’ve
got to learn to look at your own code, and identify
problems. This is also where peer review, having fellow
programmers look at your code, can really be a lifesaver.
Don’t worry if you have to make changes; a better-
designed application will save you tons of time in the
long run.

Design is iterative... and you have to be
willing to change your own designs, as
well as those that you inherit from other
programmers.

R. I. P.
Instrument-specific

subclasses

You will be missed
(well, not so much)

letting bad design die

Pride kills good design
Never be afraid to examine
your own design decisions,
and improve on them, even if
it means backtracking.

Code once, look twice (or more!)
Keep looking over your designs when
you run into problems. A decision

you made earlier may be what’s
causing you headaches now.

Let’s kill our bad design decision to

create instrument-specific subclasses

once and for all, and get on with
writing great software again.

Download at WoweBook.Com

you are here 4 247

good design = flexible software

Let’s turn some bad design
decisions into good ones
Let’s kill all those instrument-specific subclasses:

We also probably need a new property in each
instrument to let us know what type of instrument it is:

GuitarInstrument
serialNumber: String
price: double
spec: InstrumentSpec
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): InstrumentSpec

Mandolin

Dobro

Fiddle

Bass

Banjo

We just cut six classes out of the design, and won’t need any new classes for instruments that Rick decides to start selling!

This can be another enumerated
type, like Wood and Builder. So now
adding a new instrument type just
means adding a new value to this
enumerated type.

InstrumentType
toString(): String

We can put values in here like GUITAR, BANJO, MANDOLIN, and so on. Much better than a bunch of subclasses.

Instrument
serialNumber: String
price: double
spec: InstrumentSpec
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): InstrumentSpec

instrumentType
1

This is a huge improvement... but
it still seems like adding a new spec
class for every instrument type is

pretty inflexible.

Instrument isn’t
abstract anymore.

Download at WoweBook.Com

248 Chapter 5 (part 2)

One more cubicle conversation
(and some help from Jill)

encapsulate what varies

I hate to butt in, but I’ve
been thinking about something

you said earlier, Joe: Encapsulate
what varies.

Joe: But we just did that... we made Instrument concrete, and
got rid of  all the instrument-specific subclasses.

Jill:  Actually, I think that’s really only the first step. What 
really varies in Rick’s software?

Frank: We’ve gone through this already: the properties for
each instrument are what vary.

Jill: So can we encapsulate them somehow?

Joe: We already have: we used the InstrumentSpec class for
that.

Frank: Wait a second, Joe. We used InstrumentSpec because
those properties were used by both clients and instruments. So
that was more about duplicate code...

Jill: Yes! That’s my point... the properties inside
InstrumentSpec vary, too. So maybe we need to add another
layer of encapsulation.

Joe: So since the properties of each instrument vary, we
should pull those out of InstrumentSpec? It’s almost like
double-encapsulation or something.

Jill:  Sort of... we encapsulate the specifications common 
across client requests and instruments from the Instrument
class, and then we encapsulate the properties that vary from
the InstrumentSpec class.

Jill’s been listening in on
the chapter, and has
some ideas on how to
improve Rick’s app.

What varies in Rick’s app? Write what
you think
varies in
these blanks.

Download at WoweBook.Com

you are here 4 249

good design = flexible software

InstrumentSpec
builder: Builder
model: String
type: Type
backWood: Wood
topWood: Wood
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

“Double encapsulation” in Rick’s software This really isn’t an OOA&D term, so don’t

be surprised if your professor look
s at you

funny if you use it in class.
Let’s look at the layer of encapsulation we already
have, and then see how we can add a little more
encapsulation to get those properties that vary out of the
InstrumentSpec class.

Instrument
serialNumber: String
price: double
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): InstrumentSpec

We realized in Chapter 1 that clients and instruments both needed to use these properties, so we created the InstrumentSpec class to abstract them away from the Instrument class.

The problem is that these
properties vary across
instruments, and so we’re
having to add a subclass for
each type of instrument.

Since some of these properties vary, we want to move
them out of the InstrumentSpec class. We need a way
to refer to properties and their values, but not have those
properties hardcoded into the InstrumentSpec class.
Any ideas for how we could do that?

What type(s) do you think you could use to
represent properties and access their values,
but not have to change your InstrumentSpec
class to support new properties?

By encapsulating
what varies,
you make your
application more
flexible, and
easier to change.

1
spec

Download at WoweBook.Com

250 Chapter 5 (part 2)

Getting dynamic with
instrument properties
What did you come up with on the last page to store
properties? We decided that using a Map would be a great
way to handle various types of properties, and still be able
to easily add new properties at any time:

InstrumentSpec
properties: Map
builder: Builder
model: String
type: Type
backWood: Wood
topWood: Wood
getProperty(String): Object
getProperties(): Map
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

We can get rid of all
these properties (and the
related methods), and
just use the properties
map for everything.

We can use getProperty() to return the property values... this will just ask the map for the value associated with the String that’s passed into the method.

simple solutions rock

Even better, now we can dump all those
InstrumentSpec subclasses!

GuitarSpec
numStrings: int
getNumStrings(): int
matches(GuitarSpec): boolean

MandolinSpec

getStyle(): Style
matches(MandolinSpec): boolean

The only reason
we had these
subclasses of
InstrumentSpec was
to handle additional
instrument-specific
properties.

We can take any properties that were in these subclasses, and just add them in to the map in InstrumentSpec.

instrumentType

builder

model

type

backWood

topWood

numStrings

style

InstrumentType.
GUITAR

Builder.MARTIN

“OM-18”

Type.ACOUSTIC

Wood.
MAHOGANY

Wood.SITKA

6

Style.F

properties

Now we just have one

member variable, a
Map

to store all pro
perties.

We need this property
to tell us what kind of instrument we’re looking at.

Download at WoweBook.Com

you are here 4 251

good design = flexible software

What we did: a closer look
Anytime you see something that varies, you should look for
a way to encapsulate. In the case of InstrumentSpec,
we realized that the properties of an instrument vary.

Instrument properties

Property values

Property names

Pull out what varies

InstrumentSpec
class

model

“OM-18”

InstrumentSpec is separate
from Instrument because
Rick’s clients supply an
InstrumentSpec to search().

We took all the properties, which vary across
instruments and instrument types, and pulled them out of InstrumentSpec.

Now all the properties are represented by name/value pairs in a Map data structure.

When you have a set of properties that vary
across your objects, use a collection, like a Map,
to store those properties dynamically.

You’ll remove lots of methods from your classes,
and avoid having to change your code when
new properties are added to your app.

Download at WoweBook.Com

252 Chapter 5 (part 2)

using Instrument and InstrumentSpec

Using the new Instrument and
InstrumentSpec classes
Let’s take one last look at how our new Instrument
and InstrumentSpec classes work in practice. Here’s
where we are with the design right now:

If you were accessing a guitar, and wanted to know who
built it, here’s how you could do that:

Instrument
serialNumber: String
price: double
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): InstrumentSpec

1
spec

InstrumentType
toString(): StringBuilder

toString(): StringType
toString(): String Wood

toString(): StringStyle
toString(): String

InstrumentSpec
properties: Map
getProperty(String): Object
getProperties(): Map
matches(InstrumentSpec): boolean

InstrumentSpec’s Map uses these enumerated types.

Both Instrument and InstrumentSpec
are no longer abstract.

Instrument

We don’t have instrument-
specific subclasses now, so the
guitar is represented by an
instance of Instrument.

InstrumentSpec

The Instrument has an InstrumentSpec instance associated with it to store instrument properties.

Instrument properties

Property values

Property names

builder

Builder.
MARTIN

And the InstrumentSpec has a
Map of name/value properties.

spec properties

instrument getSpec() getProperty("builder")

instrument.getSpec().getProperty(“builder”);

This returns the
builder of a guitar.

Download at WoweBook.Com

you are here 4 253

good design = flexible software

Using a Map for storing properties seems like a good idea, but let’s see how things
look once we actually code up a new version of InstrumentSpec. Your job is to
finish off the code below using the magnets at the bottom of the page.

Code Magnets

import java.util.________;
import java.util.________;
import java.util.________;

public class InstrumentSpec {

 private ______ properties;

 public InstrumentSpec(______ ___________) {
 if (properties == ______) {
 this.properties = new _________();
 } else {
 this.properties = new _________(___________);
 }
 }

 public ________ getProperty(String ____________) {
 return properties.get(___________);
 }

 public ______ getProperties() {
 return ______________;
 }

 public boolean matches(______________ otherSpec) {
 for (__________ i = otherSpec._____________().keySet().___________();
 i._________();) {
 String _____________ = (String)i.______();
 if (!properties.get(_____________).equals(
 otherSpec.getProperty(____________))) {
 return _________;
 }
 }
 return _________;
 }
}

true

true

Iterator

Iterator
List

propertyName

propertyName
propertyName

Map

Map

false
false

HashMap

HashMap

iterator

null

null

HashMap
Object

Map
Map

propertyName

hasNext

InstrumentSpec

InstrumentSpec

next

getProperties

getProperties

Download at WoweBook.Com

254 Chapter 5 (part 2)

Using a Map for storing properties seems like a good idea, but let’s
see how things look once we actually code up a new version of
InstrumentSpec. Your job was to finish off the code below:

Code Magnets Solutions

import java.util.________;
import java.util.________;
import java.util.________;

public class InstrumentSpec {

 private ______ properties;

 public InstrumentSpec(______ ___________) {
 if (properties == ______) {
 this.properties = new _________();
 } else {
 this.properties = new _________(___________);
 }
 }

 public ________ getProperty(String ____________) {
 return properties.get(___________);
 }

 public ______ getProperties() {
 return ______________;
 }

 public boolean matches(______________ otherSpec) {
 for (__________ i = otherSpec._____________().keySet().___________();
 i._________();) {
 String _____________ = (String)i.______();
 if (!properties.get(_____________).equals(
 otherSpec.getProperty(____________))) {
 return _________;
 }
 }
 return _________;
 }
} true

true

Iterator

Iterator

List

propertyName

propertyName

propertyName

Map

Map

false

false

HashMap

HashMap

iterator

null

null

HashMap

Object

the new InstrumentSpec class

You could actually use any
implementation of the Map

interface you wanted here.

Map

Map

Be sure you got these two right;
otherwise, matches() will always
return the wrong result.

propertyName
hasNext

InstrumentSpec

InstrumentSpec

next

getProperties

getPropertie
s

Download at WoweBook.Com

you are here 4 255

good design = flexible software

Q: So now both Instrument and
InstrumentSpec are concrete classes?

A: Right. Instrument isn’t just
a concept anymore; it represents actual
instruments in Rick’s inventory. And
InstrumentSpec is what clients use to
pass in their specs when they’re searching,
and what Instrument uses to store
properties for an instrument.

Q: So I can get rid of my Guitar and
Mandolin subclasses?

A: Yup. As well as Banjo, Dobro,
and any other instrument-specific subclasses
of Instrument you may have created.

Q: And that’s because we use the
Instrument class directly now, right?

A: You got it! Remember, you typically
subclass because behavior changes. In the
Instrument subclasses, no behavior
was changing; in fact, all we did for each
instrument subclass was create a new
constructor. That added a ton of classes,
reduced the flexibility of our app, and really
didn’t give us any helpful functionality.

Q: I understood getting rid of
Guitar and Mandolin, but I’m confused
about why we don’t need the different
subclasses of InstrumentSpec anymore.

A: It’s OK; that’s one of the trickiest
parts of the design of Rick’s application.
Remember, one of the key principles in any
OO design is to encapsulate what varies. In
Rick’s app, the properties of each instrument
varied. So we pulled those properties out of
InstrumentSpec, and put them into a
Map. Now, when you add another instrument
with a new property, you can just add the
new property as a name/value pair in the
properties Map.

Q: And with less classes to deal with,
our software is more flexible?

A: In this case, that’s true. There
are certainly times where adding
classes will make your design more
flexible, though. Remember, adding an
InstrumentSpec class helped separate
instruments from their properties, and that
was good; but in this chapter, we’ve been
removing classes, and that’s made it easier
to add new instruments to Rick’s software.

Q: I never would have figured out
that we didn’t need subclasses for
instruments or their specs. How am I
supposed to ever get good at this?

A: The best way to get good at
software design is to write software! In
Rick’s application, we had to go down some
wrong paths—like adding Guitar and
Mandolin classes—to figure out what the
right thing to do was.
Most good designs come about through bad
designs; almost nobody gets it all right the
first time. So just do what makes sense,
and then start applying your OO principles
and patterns to see if you can make
improvements to what you’ve got.

Dumb Questions
there are no

Most good
designs come
from analysis of
bad designs.

Never be
afraid to make
mistakes and
then change
things around.

Download at WoweBook.Com

256 Chapter 5 (part 2)

Finishing up Rick’s app: the
InstrumentType enum
We’ve almost got ourselves a great piece of software. Let’s
follow through on our new design ideas, starting with a
new enumerated type for each instrument type:

public enum InstrumentType {

 GUITAR, BANJO, DOBRO, FIDDLE, BASS, MANDOLIN;

 public String toString() {
 switch(this) {
 case GUITAR: return “Guitar”;
 case BANJO: return “Banjo”;
 case DOBRO: return “Dobro”;
 case FIDDLE: return “Fiddle”;
 case BASS: return “Bass”;
 case MANDOLIN: return “Mandolin”;
 default: return “Unspecified”;
 }
 }
}

So far, these are the types of instruments that Rick sells.

toString() just
makes it easier to
print things out.

class
Inven-
tory {
search()
}

Inventory.java

public class Inventory {

 public void addInstrument(String serialNumber, double price,
 InstrumentSpec spec) {
 Instrument instrument = null;
 if (spec instanceof GuitarSpec) {
 instrument = new Guitar(serialNumber, price, (GuitarSpec)spec);
 } else if (spec instanceof MandolinSpec) {
 instrument = new Mandolin(serialNumber, price, (MandolinSpec)spec);
 }
 Instrument instrument = new Instrument(serialNumber, price, spec);
 inventory.add(instrument);
 }

 // etc
}

Let’s update Inventory, too
With the changes to Instrument and InstrumentSpec,
our Inventory class starts to get much simpler:

Adding an
instrument
just got a
lot easier.

Now we’re able to instantiate
Instrument directly, since it’s
no longer abstract.

updating rick’s application

InstrumentType
toString(): String

enum In-
strumnt-
Type {
 to-
String()

InstrumentType.java

Inventory
inventory: Instrument [*]
addInstrument(String, double, InstrumentSpec)
get(String): Instrument
search(InstrumentSpec): Instrument [*]

Download at WoweBook.Com

you are here 4 257

good design = flexible software

Let’s see what we’ve really done.

We’ve made a ton of changes to Rick’s software, all in the name of “more flexibility.”
Let’s see how things look now. Flip back to the class diagram of Rick’s app on page
234, and recall what things looked like when we started. Then, below, draw a class
diagram for how Rick’s application looks now.

Sharpen your pencil

Answers on the next page!

Download at WoweBook.Com

258 Chapter 5 (part 2)

InstrumentType
toString(): String

Behold: Rick’s flexible application
We’ve made a ton of changes to Rick’s application... and it’s easy to
forget what we’ve been working towards. Look at the class diagram below,
though, and see how much simpler Rick’s application is now:

Builder
toString(): StringType

toString(): String Wood
toString(): String

Inventory

addInstrument(String, double, InstrumentSpec)
get(String): Instrument
search(InstrumentSpec): Instrument [*]

Style
toString(): String

Instrument
serialNumber: String
price: double
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): InstrumentSpec

InstrumentSpec
properties: Map
getProperty(String): Object
getProperties(): Map
matches(InstrumentSpec): boolean

*inventory

Inventory has just one search()
method now, and the method
can return multiples types of
matching instruments.

Instrument isn’t
abstract anymore, and
we also got rid of
all those instrument-
specific subclasses.

InstrumentSpec
isn’t abstract
anymore, either.

We’re using a Map
to store all the
properties, so
we don’t need
subclasses for each
instrument type.

We added a new enum

to represent the
types of instruments

that Rick sells.

All of these enumerated types
are used by the properties Map
in InstrumentSpec. So we’re very loosely coupled here!

more flexibility

1spec

Download at WoweBook.Com

you are here 4 259

good design = flexible software

But does the application actually work?
Rick’s software looks a lot better than it did way back at the beginning
of this chapter—and it sure looks better than when we added all those
subclasses for banjos and mandolins. But we’ve still got to make sure his
search tool actually works! So let’s update our test class, and check out how
searches work with the new version of Rick’s software:

public class FindInstrument {

 public static void main(String[] args) {
 // Set up Rick’s inventory
 Inventory inventory = new Inventory();
 initializeInventory(inventory);

 Map properties = new HashMap();
 properties.put(“builder”, Builder.GIBSON);
 properties.put(“backWood”, Wood.MAPLE);
 InstrumentSpec clientSpec = new InstrumentSpec(properties);

 List matchingInstruments = inventory.search(clientSpec);
 if (!matchingInstruments.isEmpty()) {
 System.out.println(“You might like these instruments:”);
 for (Iterator i = matchingInstruments.iterator(); i.hasNext();) {
 Instrument instrument = (Instrument)i.next();
 InstrumentSpec spec = instrument.getSpec();
 System.out.println(“We have a ” + spec.getProperty(“instrumentType”) +
 “ with the following properties:”);
 for (Iterator j = spec.getProperties().keySet().iterator();
 j.hasNext();) {
 String propertyName = (String)j.next();
 if (propertyName.equals(“instrumentType”))
 continue;
 System.out.println(“ ” + propertyName + “: ” +
 spec.getProperty(propertyName));
 }
 System.out.println(“ You can have this ” +
 spec.getProperty(“instrumentType”) + “ for $” +
 instrument.getPrice() + “\n---”);
 }
 } else {
 System.out.println(“Sorry, we have nothing for you.”);
 }
 }

 // initializeInventory() method here
}

Now clients fill out an InstrumentSpec. Since this test client didn’t specify an instrument type, the search could bring back guitars, mandolins, or anything else that Rick sells.

We have to work a
little more directly
with the Map that
InstrumentSpec uses,
but it’s easy now to
just loop through each
instrument’s properties
and print them out.

We want to skip over the instrumentType property, since we’ve already handled that before we start looping.

We also need to add some instruments to Rick’s

inventory so we can search for more than

guitars... we’ll do that on the next page.

class
FindIn-
stru-
ment {
main()}

FindInstrument.java

Download at WoweBook.Com

260 Chapter 5 (part 2)

Inventory Roundup

initializing rick’s inventory

To see if the new version of Rick’s software works, we need to run a search on
more than just guitars. Your job is to write code for the initializeInventory()
method in FindInstrument.java, and add several guitars, mandolins, and
banjos to Rick’s inventory. Below, we’ve listed the instruments Rick currently
has, and even written code to add the first guitar to help you get started.

private static void initializeInventory(Inventory inventory) {
 Map properties = new HashMap();
 properties.put(“instrumentType”, InstrumentType.GUITAR);
 properties.put(“builder”, Builder.COLLINGS);
 properties.put(“model”, “CJ”);
 properties.put(“type”, Type.ACOUSTIC);
 properties.put(“numStrings”, 6);
 properties.put(“topWood”, Wood.INDIAN_ROSEWOOD);
 properties.put(“backWood”, Wood.SITKA);
 inventory.addInstrument(“11277”, 3999.95,
 new InstrumentSpec(properties));
 // your code goes here
}

You should write code here to add the other instruments shown above.

Here’s the
beginning of
initializeInventory(),
where the first
guitar shown above
is added to Rick’s
inventory.

Guitars
Mandolins

Fender stratocastor 6-string electric,

Alder back and sides and top,
Serial #V95693, for $1499.95

Collings CJ 6-string acoustic,
Indian Rosewood back and sides, Spruce

top, Serial #11277, for $3999.95

Martin D-18 6-string acoustic,
Mahogany back and sides, Adirondack top,
Serial #122784, for $5495.95

Fender stratocastor 6-string electric,
Alder back and sides and top,
Serial #V9512, for $1549.95

Gibson SG ‘61 Reissue 6-string electric,
Mahogany back, sides, and top,
Serial #82765501, for $1890.95

Gibson Les Paul 6-string electric,
Maple back, sides, and top,
Serial #70108276, for $2295.95

Gibson F5-G acoustic mandolin,
Maple back, sides, and top,
Serial #9019920, for $5495.99

Banjos
Gibson RB-3 5-string acoustic banjo,
Maple back and sides,
Serial #8900231, for $2945.95

Banjos do not have
a top wood.

Banjos do not have
a top wood.

Remember, the
numStrings
attribute doesn’t
apply to mandolins.

An
sw

er
s o

n
pa

ge
 2

62

class
FindIn-
stru-
ment {
main()}

FindInstrument.java

Download at WoweBook.Com

you are here 4 261

good design = flexible software

Test driving Rick’s
well-designed software
Be sure you’ve added all the instruments shown on
the last page to your initializeInventory()
method in FindInstrument.java, and then
compile all your classes. Now you’re ready to take
Rick’s software for a test drive...

...well, almost. First, you need to figure out
what a search based on the current version of
FindInstrument should return. Here’s the set of
preferences that Rick’s current client has supplied:

File Edit Window Help TheSearchIsOn

%java FindInstrument
You might like these instruments:

 Map properties = new HashMap();
 properties.put(“builder”, Builder.GIBSON);
 properties.put(“backWood”, Wood.MAPLE);
 InstrumentSpec clientSpec =
 new InstrumentSpec(properties);

class
FindIn-
stru-
ment {
main()}

FindInstrument.java

Rick’s client didn’t specify an instrument type, but he wants something from Gibson with a maple back.

Based on those specs, look over the instruments
shown on the last page, and write in which guitars,
mandolins, and banjos you think Rick’s search tool
should return:

Write in the instruments
you think that running
FindInstrument should return
based on Rick’s inventory.

SPECIAL BONUS CREDIT Try and write the instruments that this program finds exactly as FindInstrument will output them.

Download at WoweBook.Com

262 Chapter 5 (part 2)

Inventory Roundup Solutions
To see if the new version of Rick’s software works, we need to run a search on
more than just guitars. Your job was to write code for the initializeInventory()
method in FindInstrument.java, and add several guitars, mandolins, and
banjos to Rick’s inventory.

adding to rick’s inventory

private static void initializeInventory(Inventory inventory) {
 Map properties = new HashMap();
 properties.put(“instrumentType”, InstrumentType.GUITAR);
 properties.put(“builder”, Builder.COLLINGS);
 properties.put(“model”, “CJ”);
 properties.put(“type”, Type.ACOUSTIC);
 properties.put(“numStrings”, 6);
 properties.put(“topWood”, Wood.INDIAN_ROSEWOOD);
 properties.put(“backWood”, Wood.SITKA);
 inventory.addInstrument(“11277”, 3999.95,
 new InstrumentSpec(properties));

 properties.put(“builder”, Builder.MARTIN);
 properties.put(“model”, “D-18”);
 properties.put(“topWood”, Wood.MAHOGANY);
 properties.put(“backWood”, Wood.ADIRONDACK);
 inventory.addInstrument(“122784”, 5495.95,
 new InstrumentSpec(properties));

 properties.put(“builder”, Builder.FENDER);
 properties.put(“model”, “Stratocastor”);
 properties.put(“type”, Type.ELECTRIC);
 properties.put(“topWood”, Wood.ALDER);
 properties.put(“backWood”, Wood.ALDER);
 inventory.addInstrument(“V95693”, 1499.95,
 new InstrumentSpec(properties));
 inventory.addInstrument(“V9512”, 1549.95,
 new InstrumentSpec(properties));

Collings CJ 6-string acoustic,
Indian Rosewood back and sides, Spruce top, Serial #11277, for $3999.95

Martin D-18 6-string acoustic,
Mahogany back and sides, Adirondack top,
Serial #122784, for $5495.95

Fender stratocastor 6-string electric,

Alder back and sides and top,
Serial #V95693, for $1499.95

Fender stratocastor 6-string electric,
Alder back and sides and top,
Serial #V9512, for $1549.95

The specs for these two Strats
are the same; only the properties in
Instrument are different.

This is a
bit of a
shortcut:
we’re
just using
the same
Map over
and over.

Download at WoweBook.Com

you are here 4 263

good design = flexible software

 properties.put(“builder”, Builder.GIBSON);
 properties.put(“model”, “Les Paul”);
 properties.put(“topWood”, Wood.MAPLE);
 properties.put(“backWood”, Wood.MAPLE);
 inventory.addInstrument(“70108276”, 2295.95,
 new InstrumentSpec(properties));

 properties.put(“model”, “SG ‘61 Reissue”);
 properties.put(“topWood”, Wood.MAHOGANY);
 properties.put(“backWood”, Wood.MAHOGANY);
 inventory.addInstrument(“82765501”, 1890.95,
 new InstrumentSpec(properties));

 properties.put(“instrumentType”, InstrumentType.MANDOLIN);
 properties.put(“type”, Type.ACOUSTIC);
 properties.put(“model”, “F-5G”);
 properties.put(“backWood”, Wood.MAPLE);
 properties.put(“topWood”, Wood.MAPLE);
 properties.remove(“numStrings”);
 inventory.addInstrument(“9019920”, 5495.99,
 new InstrumentSpec(properties));

 properties.put(“instrumentType”, InstrumentType.BANJO);
 properties.put(“model”, “RB-3 Wreath”);
 properties.remove(“topWood”);
 properties.put(“numStrings”, 5);
 inventory.addInstrument(“8900231”, 2945.95,
 new InstrumentSpec(properties));
 }
}

Gibson SG ‘61 Reissue 6-string electric,
Mahogany back, sides, and top,
Serial #82765501, for $1890.95

Gibson F5-G acoustic mandolin,
Maple back, sides, and top,
Serial #9019920, for $5495.99

class
FindIn-
stru-
ment {
main()}

FindInstrument.java

Gibson RB-3 5-string acoustic banjo,
Maple back and sides,
Serial #8900231, for $2945.95

Gibson Les Paul 6-string electric,
Maple back, sides, and top,
Serial #70108276, for $2295.95

Banjos don’t have
a top wood, so we
have to remove
this property.

Don’t
forget to
remove
numStrings
for the
mandolin
if you’re
reusing
the same
properties
map.

Download at WoweBook.Com

264 Chapter 5 (part 2)

File Edit Window Help SatisfyTheCustomer

%java FindInstrument
You might like these instruments:
We have a Guitar with the following properties:
 topWood: Maple
 backWood: Maple
 builder: Gibson
 type: electric
 model: Les Paul
 numStrings: 6
 You can have this Guitar for $2295.95

We have a Mandolin with the following properties:
 topWood: Maple
 backWood: Maple
 builder: Gibson
 type: acoustic
 model: F-5G
 You can have this Mandolin for $5495.99

We have a Banjo with the following properties:
 backWood: Maple
 builder: Gibson
 type: acoustic
 model: RB-3 Wreath
 numStrings: 5
 You can have this Banjo for $2945.95

rick’s software works like it should

Q: My output isn’t the same as yours. What did I do wrong?

A: If your version of Rick’s tool returned different guitars, or
output the same guitars but with different properties, then you should
be sure you have the same instruments in your inventory as we
do. Check the exercise on page 260, and the answers on page
261-262, and make sure the instruments you have in Rick’s inventory
match ours.

Q: Is this really a good test since we only have one banjo
and one mandolin?

A: That’s a great question, and you’re right, it would be better
to have a few more mandolins and banjos to really make sure Rick’s
search tool picks only matching mandolins and banjos. Go ahead
and add a few non-matching banjos or mandolins, and try testing out
Rick’s search tool with the additional instruments.

Dumb Questions
there are no

Rick’s got working software,
his client has three choices:

Rick’s client ends
up with three
instruments to
choose from: a
guitar, a mandolin,
and a banjo.

The guitar meets Bryan’s specs because it has a maple back and sides, and is made by Gibson.

Here’s a Gibson mandolin
with a maple back... this
also meets Bryan’s specs.

One more maple instrument
by Gibson... this one’s a banjo.
No top wood on banjos, but
that doesn’t matter.

Download at WoweBook.Com

you are here 4 265

good design = flexible software

That’s great that you’ve got your software
working right, but don’t start patting yourself

on the back for a great design just yet. Me and
my buddies at the bureau of change are here to see

just how cohesive your software really is.

 How easy is it to change
Rick’s software?

 Is Rick’s software really
well-designed?

 And what the heck does
cohesive mean?

Download at WoweBook.Com

266 Chapter 5 (part 2)

How easy is it to change Rick’s search tool?

Let’s add support for dobros and fiddles back into Rick’s application. We
tried to do that earlier, back in the first part of Chapter 5, and it turned into
a total mess. Things should be much easier this time, right? Below is the
class diagram for the current version of Rick’s software.

InstrumentType
toString(): StringBuilder

toString(): StringType
toString(): String Wood

toString(): String

Inventory

addInstrument(String, double, InstrumentSpec)
get(String): Instrument
search(InstrumentSpec): Instrument [*]

Style
toString(): String

Instrument
serialNumber: String
price: double
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): InstrumentSpec

InstrumentSpec
properties: Map
getProperty(String): Object
getProperties(): Map
matches(InstrumentSpec): boolean

*inventory

1spec

The Great Ease-of-Change Challenge
the ease-of-change challenge

Here’s what our
design looks like
right now.

Download at WoweBook.Com

you are here 4 267

good design = flexible software

Let’s apply the ease-of-change test to our software:

1. How many classes did you have to add to support
Rick’s new instrument types?

2. How many classes did you have to change to support
Rick’s new instrument types?

3. Suppose that Rick decided that he wanted to start
keeping up with what year an instrument was made
in. How many classes would you need to change to
support keeping up with this new information?

4. Rick also wants to add a new property, neckWood, that
tracks what wood is used in the neck of an instrument.
How many classes would you need to change to
support this property?

1

Seeing how easy it is to change your software is one of the best ways to figure out if you really have well-designed software.

2

3

4

Answers on page 268

Download at WoweBook.Com

268 Chapter 5 (part 2)

How easy is it to change Rick’s search tool?

Let’s add support for dobros and fiddles back into Rick’s application. We
tried to do that earlier, and it turned into a total mess. Things should be
much easier this time, right?

The Great Ease-of-Change Challenge

Let’s apply the ease-of-change test to our software:

1. How many classes did you have to add to support
Rick’s new instrument types?

2. How many classes did you have to change to support
Rick’s new instrument types?

3. Suppose that Rick decided that he wanted to start
keeping up with what year an instrument was made
in. How many classes would you need to change to
support keeping up with this new information?

4. Rick also wants to add a new property, neckWood, that
tracks what wood is used in the neck of an instrument.
How many classes would you need to change to
support this property?

1

2

3

4

None! We got rid of all the instrument-specific
subclasses of Instrument and InstrumentSpec.

One: we need to add any new instrument types to the
InstrumentType enumerated type.

None! You can just store the year that an instrument
was made in the properties Map in InstrumentSpec.

One in the worst case, and maybe none! neckWood
is just another property we can store in the
InstrumentSpec map... but we might need to add new
wood enumerated values to the Wood enum.

easy to change?

Download at WoweBook.Com

you are here 4 269

good design = flexible software

Sweet! Our software is easy to change...
 ...but what about that “cohesive” thing?

Scholar’s Corner
the

cohesion. Cohesion measures the degree of connectivity among
the elements of a single module, class, or object. The higher
the cohesion of your software is, the more well-defined and

related the responsibilities of each individual class in
your application. Each class has a very specific set

of closely related actions it performs.

A cohesive class does
one thing
really well and
does not try to

do
or be

something else.

Cohesive classes are focused on specific tasks. Our
Inventory class worries about just Rick’s inventory, not what woods can be used in a guitar, or how to compare two instrument specs.

Instrument doesn’t try to
handle searches, or keep
up with what woods are
available. It is focused on
describing an instrument-and
nothing else.

Look through the methods of
your classes-do they all relate
to the name of your class? If
you have a method that looks
out of place, it might belong
in another class.

The more cohesive
your classes are, the
higher the cohesion
of your software.

Download at WoweBook.Com

270 Chapter 5 (part 2)

cohesive classes are focused on one thing

Cohesion, and one reason for a
class to change
You may not realize it, but we’ve already talked about
cohesion in this book. Remember this?

Cohesion is really just a measure of how closely related the
functionality of the classes in an application are. If one class
is made up of functionality that’s all related, then it has only
one reason to change... which is what we already talked about
in OO CATASTROPHE!

Here are the classes we talked about when we made sure
each class had only a single reason to change:

Every class should attempt to
make sure that it has only one
reason to do this, the death of
many a badly designed piece

of software.
This was one of the answers from OO CATASTROPHE! Do you remember what the question was?

Automobile
start()
stop()
getOil(): int

CarWash
wash(Automobile)

Driver
drive(Automobile) Mechanic

checkOil(Automobile)
changeTires(Automobile, Tire [*])

The function of each of these
classes is well-defined. Each
one is a highly cohesive class,
and that makes it easy to
change, without changing the
other classes.

Can you think of a way to make the Mechanic class more cohesive?

Download at WoweBook.Com

you are here 4 271

good design = flexible software

Q: So cohesion is just a fancy
word for how easy it is to change my
application?

A: Not exactly. Cohesion focuses on
how you’ve constructed each individual
class, object, and package of your software.
If each class does just a few things that are
all grouped together, then it’s probably a
highly cohesive piece of software. But if you
have one class doing all sorts of things that
aren’t that closely related, you’ve probably
got low cohesion.

Q: So highly cohesive software is
loosely coupled, right?

A: Exactly! In almost every situation,
the more cohesive your software is, the
looser the coupling between classes.
In Rick’s application, the Inventory
class really worries just about managing
inventory—and not about how instruments
are compared or what properties are stored
in an instrument spec. That means that
Inventory is a highly cohesive class.
That also means it’s loosely coupled with
the rest of the application—changes to
Instrument, for example, don’t have a
lot of effect on the Inventory class.

Q: But all that means the software
will be easier to change, doesn’t it?

A: Most of the time, yes. But remember
the version of Rick’s application that
we started with in this chapter? It only
supported guitars, and we didn’t even have
Instrument or InstrumentSpec
classes. That was pretty cohesive software—
Guitar was very loosely coupled with
Inventory. However, it took a lot of work
and redesign to support mandolins.
When you fundamentally change what an
application does—like going from selling only
one type of instrument to multiple types—you
may have to make lots of changes to a
design that’s already cohesive and loosely
coupled. So cohesion isn’t always a test
of how easy it is to change software; but
in cases where you’re not dramatically
changing how software works, highly
cohesive software is usually easy to change.

Q: And high cohesion is better than
low cohesion?

A: Right. Good OO design is when
each class and module in your software
does one basic thing, and that one thing
really well. As soon as one class starts
doing two or three different things, you’re
probably moving away from cohesion, and
good OO design.

Q: Wouldn’t software that’s cohesive
be easier to reuse, as well as change?

A: You got it. High cohesion and
loose coupling adds up to software that
can easily be extended, or even broken up
and reused, because all the objects in the
software aren’t interdependent.
Think about it this way: the higher the
cohesion in your application, the better
defined each object’s job is. And the better
defined an object (and its job) is, the easier
it is to pull that object out of one context,
and have the object do the same job in
another context. The object is happy to
just keep on doing its very specific job, no
matter where it’s being used.

Q: And we’ve been making Rick’s
application more cohesive throughout his
chapter, haven’t we?

A: For the most part, yes. But let’s look
a little bit closer at that question...

Dumb Questions
there are no

Download at WoweBook.Com

272 Chapter 5 (part 2)

co
he

sio
n

Guitar
serialNumber: String
price: double
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): GuitarSpec

Builder
toString(): String

Type
toString(): String

Wood
toString(): String

Inventory

addGuitar(String, double, GuitarSpec)
getGuitar(String): Guitar
search(GuitarSpec): Guitar [*]

GuitarSpec
model: String
numStrings: int
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
getNumStrings(): int

spec

1

1

1
1

builder

type
topWood

backWood
1

*inventory

Guitar

Builder
toString(): String Type

toString(): String Wood
toString(): String

Inventory

addInstrument(String, double, InstrumentSpec)
get(String): Instrument
search(GuitarSpec): Guitar [*]
search(MandolinSpec): Mandolin [*]

GuitarSpec
numStrings: int
getNumStrings(): int
matches(GuitarSpec): boolean

1

1

1
style

type

topWood
backWood1

Style
toString(): String

Instrument
serialNumber: String
price: double
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): InstrumentSpec

InstrumentSpec
model: String
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

Mandolin

MandolinSpec

getStyle(): Style
matches(MandolinSpec): boolean

1

builder

*inventory

1spec

Guitar
serialNumber: String
price: double
builder: String
model: String
type: String
backWood: String
topWood: String
getSerialNumber(): String
getPrice(): double
setPrice(float)
getBuilder(): String
getModel(): String
getType(): String
getBackWood(): String
getTopWood(): String

Inventory
guitars: List
addGuitar(String, double, String, String, String,
 String, String)
getGuitar(String): Guitar
search(Guitar): Guitar

Remember this simple class
diagram from way back in
Chapter 1? We just had two
classes, and they were not
well-designed or very cohesive.

Here’s where Rick was just selling guitars. The app was really cohesive, even though we had to do some real redesign to add support for mandolins.

increasing cohesion

Here was our first attempt
to add support for multiple
instrument types... but we
definitely have lower cohesion
here than in the previous version.

The Bureau of Change

is a huge believer in
the

power of highly cohesive

software design.

low

high

Rick’s software, in review
So have our changes to Rick’s software resulted in high
cohesion? Are our objects loosely coupled? And can we
make changes easily? Let’s take a look:

Download at WoweBook.Com

you are here 4 273

good design = flexible software

the design life cycle

Guitar

Builder
toString(): String Type

toString(): String Wood
toString(): String

Inventory

addInstrument(String, double, InstrumentSpec)
get(String): Instrument
search(GuitarSpec): Guitar [*]
search(MandolinSpec): Mandolin [*]

GuitarSpec
numStrings: int
getNumStrings(): int
matches(InstrumentSpec): boolean

1

1

1
style

type

topWood
backWood1

Style
toString(): String

Instrument
serialNumber: String
price: double
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): InstrumentSpec

InstrumentSpec
model: String
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

Mandolin

MandolinSpec

getStyle(): Style
matches(InstrumentSpec): boolean

1

builder

*inventory

Banjo

Dobro

Bass

Fiddle

BanjoSpec
numStrings: int
getNumStrings(): int
matches(BanjoSpec): boolean

DobroSpec

matches(DobroSpec): booleanBassSpec

matches(BassSpec): boolean
FiddleSpec

finish: String
getFinish(): Style
matches(FiddleSpec): boolean

InstrumentType
toString(): StringBuilder

toString(): StringType
toString(): String Wood

toString(): String

Inventory

addInstrument(String, double, InstrumentSpec)
get(String): Instrument
search(InstrumentSpec): Instrument [*]

Style
toString(): String

Instrument
serialNumber: String
price: double
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): InstrumentSpec

InstrumentSpec
properties: Map
getProperty(String): Object
getProperties(): Map
matches(InstrumentSpec): boolean

*inventory

1spec

Each time you make changes to your

software, try and make sure you’re

getting more cohesive.

Here’s where things are

now with Rick’s design. High

cohesion, loose coupling
, and

software that’s really easy
to

extend and reuse.

This was a real low point in our design... trying to add a new instrument
type was a total disaster.

THIS is your goal...
software that’s getting
more cohesive throughout
the design life cycle.

1spec

Download at WoweBook.Com

274 Chapter 5 (part 2)

This sounds great and all, but how
do you know when you’re done? I mean,
is there some sort of scale of cohesion,
and when I get to a “10” or whatever, it

means that I’m finished?

It’s hard to know when to stop designing
software. Sure, you can make sure that your
software does what it’s supposed to do, and
then start working on increasing the flexibility 
and cohesion of your code. But then what?

Sometimes you just have to stop designing
because you run out of time... or money...
and sometimes you just have to recognize
you’ve done a good enough job to move on.

If your software works, the customer is happy,
and you’ve done your best to make sure
things are designed well, then it just might be
time to move on to the next project. Spending
hours trying to write “perfect software” is a
waste of time; spending lots of time writing
great software and then moving on, is sure to
win you more work, big promotions, and
loads of cash and accolades.

Great software is usually
about being good enough.

great software is good enough

Download at WoweBook.Com

you are here 4 275

good design = flexible software

I love it! I can finally sell any
kind of instrument I want,

and help my clients find just what
they’re looking for.

Really nice design here. High cohesion, the
classes are loosely coupled... I’ll bet the next

time Rick needs something changed, we won’t have
too much trouble at all.

Make sure the
customer is happy

Make sure your
design is flexible

Knowing when to say “It’s good enough!”

Before you ever leave a
project, you always want to
make sure your software does
what it’s supposed to do.

Once you’ve got functionality down, move on to making good design decisions, using solid OO principles to add flexibility.

If you’ve done both of these things, it may
just be time to move on... to the next project,
the next application, even the next chapter!

Download at WoweBook.Com

276 Chapter 5 (part 2)

Tools for your OOA&D Toolbox
Wow, you’ve really come a long way since we

started working with Rick way back in Chapter 1.
You’ve learned a ton about design, so let’s do a quick

review of what you’ve added to your toolbox.

Good requirements ensure your system
works like your customers expect.

Make sure your requirements are complete
by developing use cases for your system.

Use your use cases to find out about
things your customers forgot to tell you.

Your use cases will reveal any incomplete
or missing requirements that you might
have.

Your requirements will always change (and
grow) over time.

Requirements

Well-designed software is easy to change
and extend.

Use basic OO principles like encapsulation
and inheritance to make your software
more flexible.

If a design isn’t flexible, then CHANGE
IT! Never settle on bad design, even if
it’s your bad design that has to change.

Make sure each of your classes is
cohesive: each of your classes should
focus on doing ONE THING really well.

Always strive for higher cohesion as you
move through your software’s design
life cycle.

Analysis and Design

ooa&d toolbox

Between OO CATASTROPHE!
and this chapter, we’ve added
quite a few new OO principles to
our toolbox.

We did a ton of design in this chapter, so take a second to review everything we’ve learned.

The goal of good
design is highly
cohesive, loosely
coupled software.

OO Principles
Encapsulate what varies.
Code to an interface rather than to an
implementation.
Each class in your application should have only
one reason to change.
Classes are about behavior and functionality.

Download at WoweBook.Com

you are here 4 277

good design = flexible software

This one is a particularly tough puzzle: almost all the
answers are more than one word, and they’re spread
across both parts of Chapter 5. Good luck, and keep
that left brain working.

OOA&D Cross

Download at WoweBook.Com

278 Chapter 5 (part 2)

did you get the same answers as we did?

Exercise
Solutions

Download at WoweBook.Com

this is a new chapter 279

solving really big problems6

It’s time to build something REALLY BIG. Are you ready?
You’ve got a ton of tools in your OOA&D toolbox, but how do you use those tools

when you have to build something really big? Well, you may not realize it, but

you’ve got everything you need to handle big problems. We’ll learn about some

new tools, like domain analysis and use case diagrams, but even these new tools

are based on things you already know about—like listening to the customer and

understanding what you’re going to build before you start writing code. Get ready...

it’s time to start playing the architect.

“My Name is Art Vandelay...
 I am an Architect”

I was just thinking... do you
remember if we ever tightened

the bolts down on those basement
girders? Oh well...

Download at WoweBook.Com

280 Chapter 6

what about big applications?

Look, all this stuff about writing great
software sounds terrific, but real applications
have a lot more than five or ten classes. How

am I supposed to turn big applications into
great software?

We’ve been working with fairly simple
applications so far... Rick’s guitar shop
had less than fifteen classes in its worst 
state, and Doug’s dog door never had
more than five. But everything you’ve 
learned so far applies to working with
big applications, too.

You solve big problems
the same way you solve
small problems.

1. Make sure your
software does what the
customer wants it to do.

2. Apply basic
OO principles to
add flexibility.

3. Strive for a
maintainable,
reusable design.

Remember these steps to writing great software? They all apply to working with huge, 1000+ class applications just as much as when you’re working with just a couple of classes.

Download at WoweBook.Com

you are here 4 281

solving really big problems

It’s all in how you look at
the big problem
Think about how you work on big problems, in big
software applications. You usually look at the big
picture, but then start working on just one part of
the application’s functionality.

The best way to look at a
big problem is to see it as lots of
individual pieces of functionality.

You can treat each of those pieces as
an individual problem to solve, and
apply the things you already know.

Once you get one part of an application working
like you want it to, then you can move on to another
piece of functionality within the app. At each step,
though, you’re applying the same basic principles
we’ve been talking about for the last 250 pages or so.

You can solve a
big problem by

breaking it into
lots of functional
pieces, and then
working on each

of those pieces
individually.

Small
Problem

Small
Problem

Small
Problem

Small
Problem

Big
Problem

This BIG PROBLEM
is really just a
collection of
functionalities,
where each piece of
functionality is really
a smaller problem on
its own.

Small
Problem

Download at WoweBook.Com

The best way
to get good
requirements is
to understand
what a system is
supposed to do.

Coding to an
interface, rather

than to an
implementation,

makes your
software easier

to extend.

By encapsulating what
varies, you make your
application more flexible,
and easier to change.

The things you already know...
You’ve already learned a lot of things that will help you
solve big software problems... you just may not have
realized it. Let’s take a quick look at some of the things
we already know about how to write great (big) software:

solving big problems

Using encapsulation helps with big problems, too. The more you encapsulate things, the easier it will be for you to break a large app up into different pieces of functionality.

This is even more important
in big apps. By coding to
an interface, you reduce
dependencies between
different parts of your
application... and “loosely
coupled” is always a good
thing, remember?

If you know what each small piece of your app’s functionality should do, then it’s easy to combine those parts into a big app that does what it’s supposed to do.

282 Chapter 6
Download at WoweBook.Com

you are here 4 283

solving really big problems

Analysis helps
you ensure

your system
works in a
real-world

context.Great software
is easy to
change and
extend, and
does what the
customer wants
it to do.

This sure doesn’t change with bigger
problems. In fact, the higher the
cohesion of your app, the more
independent each piece of functionality
is, and the easier it is to work on those
pieces one at a time. Analysis is even

more important
with large
software... and in
most cases, you
start by analyzing
individual pieces
of functionality,
and then analyzing
the interaction of
those pieces.

Got a big problem? Take a few
of these little principles, and call

me in the morning. I bet you’ll
have things under control in

no time.

So let’s solve a BIG problem!
Enough about what you already know; let’s see how
we can apply these things to a brand new, really
big piece of software. Turn the page to learn a bit
about Gary, his new game company, and a large
software project.

Download at WoweBook.Com

284 Chapter 6

introducing gary’s games

Here’s the big problem we’re
going to be working on for the
next few chapters.

Gary’s Games provides frameworks that game designers can use to

create turn-based strategy games. Unlike arcade-style shoot-’em-up

games and games that rely on audio and video features to engage the

player, our games will focus on the technical details of strategy and

tactics. Our framework provides the bookkeeping details to make

building a particular game easy, while removing the burden of coding

repetitive tasks from the game design.

The game system framework (GSF) will provide the core of all of

Gary’s Games. It will be delivered as a library of classes with a well-

defined API that should be usable by all board game development

project teams within the company. The framework will provide standard

capabilities for:

 Defining and representing a board configuration

 Defining troops and configuring armies or other fighting units

 Moving units on the board

 Determining legal moves

 Conducting battles

 Providing unit information

The GSF will simplify the task of developing a turn-based strategic

board game so that the users of the GSF can devote their time to

implementing the actual games.

Gary’s Games
Vision Statement

Download at WoweBook.Com

you are here 4 285

solving really big problems

What should we do first?

Below are several things that you might start out doing to get going on Gary’s
Games. Check the boxes next to the things you think we should start with.

Sharpen your pencil

Talk to Gary.

Talk to people who might
use the framework.

Gather requirements.

Write use cases.

Start a class diagram.

Start a package diagram.

I’m not interested in one
of those fancy, flashy Star Wars

rip-off games... I want something with
strategy, that makes you think! A

cool turn-based war game, that’s the
ticket.

This is Gary. He looks pretty

serious, but he’s an absol
ute

nut for strategy games.

Download at WoweBook.Com

286 Chapter 6

But I’m not sure we really
have enough information to figure out
the requirements or use cases yet... all
we’ve got is that fancy vision statement.

But that really doesn’t tell us much about
what the system we’re building is

supposed to do.

Hey, this is an easy one.
We start out by writing out the

requirements and use cases, like we did
with Doug’s Dog Doors.

what should you do first?

Starting out working on a system by
building a requirements list and writing
use cases is a great idea. You can figure out 
what a system is supposed to do, and just
go down your list adding functionality bit
by bit... solving lots of small problems to
solve one really big problem.

Requirements and use cases
are a good place to start...

That vision statement seemed to have a
lot of information about what Gary wants,
but it leaves a lot open to interpretation.

What kind of board did Gary have in
mind? And who’s the customer, really?
Game players or game designers? And
will all the games be historically based, or
do we have to support things like lasers
and spaceships? It sounds like there’s a lot
more we need to know before we can write
a very good set of requirements.

...but what do we really know
about the system so far?

One of the
programmers on
your team.

Download at WoweBook.Com

you are here 4 287

solving really big problems

What is the system like?
One way you can find out more
about a system is to figure out
what the system is like. In other
words, are there some things that
you do know about that the system
functions or behaves like?

What is the system not like?
Another great way to find out what
a system should do is to figure out
what it’s not like. This helps you
determine what you don’t need to
worry about in your system.

We need a lot more information
All we’ve got to go on with Gary’s system so far is a vision
statement... and that didn’t tell us very much at all. So
now we’ve got to figure out what the system is supposed
to do. So how do we do that?

So let’s listen in on one of Gary’s
meetings, and see what we can find out...

This is called commonality...
what things are similar?

This is called variability... what things are different?

Download at WoweBook.Com

288 Chapter 6

Customer Conversation
We need to listen in a little more on what Gary and his
team are planning before we can get started on the game
system framework he wants us to build.

listening to the customer

Tom: Yeah, Gary loves text-based games. And people are getting a little tired of
all the fancy graphics in games like Star Wars episode 206 (or whatever the heck
they’re up to these days).

Bethany: And we need all sorts of different time periods. We could have a Civil
War version, with battles at Antietam and Vicksburg, and a World War I version
over in Europe... players will love all the historical stuff, I’ll bet.

Susan: Nice idea, Beth! I’ll bet we can let game designers create add-on packs, too,
so you could buy a World War II: Allies game, and then buy an add-on for other
forces that the core game didn’t include.

Bob: That’s a cool marketing point, too... if our system supports different time
periods, unit types, uniforms, and offensives, we’re going to be able to sell this to
almost anyone developing games.

Bethany: Do you think we need to worry about battles that aren’t historical? I
mean, we could sell our system to the folks that make the fancy starship games, and
let them create sci-fi battles, right?

Bob in marketing. Susan and Tom in sales.
Bethany in design.

Remember that old computer game,
Zork? Everybody loved that thing,

even though it was pure text.

Here’s some
variability. The
system is not a
graphic-rich game.

We’ve already found some commonality! The system has an interface sort of like this Zork game.

Flexbililty is
going to be key
if we’re going
to support
all these
variations.

Download at WoweBook.Com

you are here 4 289

solving really big problems

Tom: Hmmm... I’ll bet Gary would go for that, if they’re still creating turn-based
games. Why not clean up on that market as well as the history buffs?

Bob: Do you think we could market this as a system to create everything from
online Risk to a modern-day Stratego? Those were both killer strategy board
games back in the day... I’d love to sell our system to people that make those sorts
of games.

Bethany: So let’s talk details. We know we’ve got to sell this to lots of game
designers, so we need it to be really flexible. I’m thinking we start with a nice 
square board, and fill it up with square tiles.

Tom: We can let the game designers pick how many tiles on the board, right?
They can choose a height and width, or something like that?

Bethany: Yeah. And then we should support all different types of terrains:
mountains, rivers, plains, grass...

Susan: ...maybe space or craters or asteroid or something for the space games...

Bob: Even underwater tiles, like seaweed or silt or something, right?

Bethany: Those are great ideas! So we just need a basic tile that can be
customized and extended, and a board that we can fill with all the different tiles.

Susan: Do we have to worry about all those movement rules and things that
these games usually have?

Tom: I think we have to, don’t we? Don’t most of these
strategy games have all sorts of complicated rules, like a
unit can only move so many tiles because he’s carrying
too much weight, or whatever?

Bethany: I think most of the rules depend on the
specific game, though. I think we should leave 
that up to the game designers who use our
framework. All our framework should do is
keep track of whose turn it is to move, and
handle basic movement stuff.

Susan: This is great. We can build a
framework for challenging, fun strategy
games, and make a ton of money, too.

Bob: This is starting to sound pretty
cool! Let’s get this to Gary and those
software guys he’s hired, so they can
get started.

So did you get all that? You’re
ready to start working on my new

game system now, right?

A little more
commonality...
so we’re really
aiming at turn-
based wargames.

OK, now we’re
starting to
get some ideas
about actual
features of the
game system.

Strategy
games again... we definitely have some
commonality with that type of game to pay attention to.

Download at WoweBook.Com

290 Chapter 6

information, features, and requirements

Figure out the features
You’ve learned a lot about what Gary and his team
want the game system framework to do, so let’s take that
information and figure out the features of the system.

Bethany: And we need all sorts of different time periods. We could have a Civil
War version, with battles at Antietam and Vicksburg, and a World War I version
over in Africa and Italy... players will love all the historical stuff, I’ll bet.

Bethany said the game system should

support different time periods. That’s a

feature of the game system.

Bethany: Yeah. And then we should support all different types of terrains:
mountains, rivers, plains, grass...

Susan: ...maybe space or craters or asteroid or something for the space games...

Bob: Even underwater tiles, like seaweed or silt or something, right?

Here’s another feature: different types of terrain. This single feature will probably create several individual requirements.

But what is a
feature, anyway?
A feature is just a high-level description of something a
system needs to do. You usually get features from talking
to your customers (or listening in on their conversations,
like we just did on the last few pages).

A lot of times, you can take one feature, and come up
with several different requirements that you can use to
satisfy that feature. So figuring out a system’s features is a
great way to start to get a handle on your requirements.

Starting with the features of a system is really helpful in big projects-like Gary’s game system-when you don’t have tons of details, and just need to get a handle on where to start.

Download at WoweBook.Com

you are here 4 291

solving really big problems

We need a list of features for Gary’s game system.

You’ve got plenty of information from Gary and his team, and now you know how to
turn that information into a set of features. Your job is to fill in the blanks below with
some of the features you think Gary’s game system framework should have.

Sharpen your pencil

Feature (from customer) Requirement (for developer)

Supports different
types of terrain.

A tile is associated with
a terrain type.

Game designers can create
custom terrain types.

Each terrain has characteristics
that affect movement of units.

Get features from the customer, and
then figure out the requirements you
need to implement those features.

Here’s a single feature we
got from the customer.

That single
feature results in multiple
different
requirements.

Download at WoweBook.Com

292 Chapter 6

feature or requirement?

We need a list of features for Gary’s game system.

You’ve got plenty of information from Gary and his team, and now you know how to
turn that information into a set of features. Your job is to fill in the blanks below with
some of the features you think Gary’s game system framework should have.

Supports different types of terrain. Supports different time periods, including
fictional periods like sci-fi and fantasy.

Supports multiple types of troops or
units that are game-specific.

Supports add-on modules for additional
campaigns or battle scenarios.

Sharpen your pencil
answers

Lots of people use “feature” to mean different
things, so it’s not a term you should get too
worked up about. For some people, a feature is a
requirement; and you’ll even hear some people
say “feature requirement,” which really can get
confusing.

Others think of features as higher-level
than requirement, which is how we’ve been
talking about them. So it might take several
requirements to satisfy one feature of a system.

The main thing is that if you’re stuck on where
to get started, especially with a big project, you
can gather features (or requirements!) to get a
handle on the high-level things you know you’ll
need to take care of in the system you’re building.

Don’t get hung up on the
“difference” between a
feature and a requirement.

This all seems pretty arbitrary...
some of those features look just like

requirements. What’s the big difference
between calling something a feature, and

calling something a requirement?

It’s OK if these aren’t the exact features you got, or if you had more detailed things in this list. These are just what we came up with.

Each game has a board, made up of
square tiles, each with a terrain type.

The framework keeps up with whose turn
it is and coordinates basic movement.

Download at WoweBook.Com

you are here 4 293

solving really big problems

Q: So there’s no difference between a
feature and a requirement?

A: Well, this really depends on who
you ask. For some people, a feature is a
“big” thing that a system does, like “support
different types of terrain.” But to put that
feature into place, there are lots of “small”
things that the system must do, like “define
a base terrain type” and “allow developers
to extend the base terrain type” and “allow
each tile to contain multiple terrain types.”
All of these little things are considered
requirements. So a single feature is satisfied
by several requirements, like this:

Q: You said, “some people.” So there
are other ways to look at features and
requirements?

A: Right. A lot of other people don’t
make such a distinction between a feature
and a requirement. One feature might be
“supports different time periods” (which is a
pretty big thing), and another might be “allow
for water as a type of terrain” (which is a
pretty small, specific thing). In this approach,
there’s not really a big difference between
what a feature is and what a requirement is.
So these people see things a lot more like
this:

Q: So which is right?

A: Both! Or neither, if you prefer.
There’s no “one right way” to think about
features and requirements, especially if you
don’t want to waste lots of time arguing over
definitions with your programmer buddies.
You’re better off thinking about both features
and requirements as the things your system
needs to do. If you want to consider features
the “big picture” things, and requirements the
“smaller, more detailed” things, that’s OK...
just don’t get into any barroom fights over it,
alright?

Dumb Questions
there are no

Features are “big things”
that lots of requirements
combine to satisfy.

Feature

Requirements
Requirements

Features

In this approach,
there’s a lot of
overlap in what a
feature is, and what
a requirement is. The
two terms are more or
less interchangeable.

Can’t we all just get along?

Download at WoweBook.Com

294 Chapter 6

OK, so we’ve got the feature and
requirement thing figured out. Now we can

write some use cases, right?

When you start to write use cases, you’re
really getting into a lot of detail about
what the system should do. The problem
is that can cause you to lose sight of the
big picture. In Gary’s game system, we’re
really not ready for a lot of detail... we’re
just trying to figure out what the framework 
actually is at this point.

So even though you could start writing use
cases, that probably won’t help you figure 
out exactly what you’re trying to build,
from the big-picture point of view. When
you’re working on a system, it’s a good idea
to defer details as long as you can... you
won’t get caught up in the little things when
you should be working on the big things.

Use cases don’t always help
you see the big picture.

no value, no use case

If we did write use cases for Gary’s game
system, who would the actors be?

brain
power?

Always defer
details as long
as you can.

Download at WoweBook.Com

you are here 4 295

solving really big problems

So what are we supposed to do now?
You’ve been telling us we need to know

what the system is supposed to do for like
200 pages now, and suddenly use cases

aren’t a good idea? What gives?

You still need to know
what your system is
supposed to do... but you
need a BIG-PICTURE view.
Even though use cases might be a little too
focused on the details for where we are in
designing the system right now, you still
need to have a good understanding of what
your system needs to do. So you need a
way to focus on the big picture, and figure 
out what your system should do, while still
avoiding getting into too much detail.

Ever hear that a picture is
worth a thousand words?

Let’s see if we can show what
the system is supposed to do.

Create New Game

Modify Existing Game

Deploy Game
Game Designer

Download at WoweBook.Com

296 Chapter 6

from use cases to use case diagrams

Use case diagrams
Sometimes you need to know what a system does,
but don’t want to get into all the detail that use cases
require. When you’re in a situation like this, a use case
diagram could be just what you need:

Create New Game

Deploy Game

Modify Existing Game

Game Designer

This stick figure is an
actor. He acts on the
system, which in this case
is the game framework.

This big box represents the system. What’s inside the box is the system; what’s outside uses the system. So the box is the system boundary.

Each of
these ovals
represents
a single use
case in the
system.

Remember, the
actor on this system is a game designer, not a game player.

This use case diagram might not be the most detailed

set of blueprints for a system
, but it tells you

everything the system needs to do, in a simple, easy-

to-read format. Use cases are much more detail-

oriented, and don’t help you f
igure out the big

picture like a good use case di
agram does.

Download at WoweBook.Com

you are here 4 297

solving really big problems

OK, this is just plain stupid. What
good does that diagram do us? Do we
really need to draw a picture to figure
out that game designers are going to

create and modify games?

Use case diagrams are the
blueprints for your system.
Remember, our focus here is on the big
picture. That use case diagram may seem
sort of vague, but it does help you keep
your eye on the fundamental things that
your system must do. Without it, you could
easily get so caught up in the details of how
a designer creates a new game that you
completely forget that they need to actually
deploy that game. With a use case diagram,
you’ll never forget about the big picture.

Use your feature list to
make sure your use case
diagram is complete.
Once you have your features and a use case
diagram, you can make sure you’re building
a system that will do everything it needs to.
Take your use case diagram, and make sure
that all the use cases you listed will cover
all the features you got from the customer.
Then you’ll know that your diagram—the
blueprints for your system—is complete,
and you can start building the system.

But what about all those
features we worked so hard to figure
out? They don’t even show up on the

use case diagram!

Download at WoweBook.Com

298 Chapter 6

map your features to your use case diagram

Deploy Game

Modify Existing Game

Create New Game

Game Designer

Gary’s Game System Framework
Feature List

1. The framework supports different
types of terrain.

2. The framework supports different time
periods, including fictional periods like
sci-fi and fantasy.

3. The framework supports multiple
types of troops or units that are game-
specific.

4. The framework supports add-on
modules for additional campaigns or
battle scenarios.

5. The framework provides a board made
up of square tiles, and each tile has a
terrain type.

6. The framework keeps up with whose
turn it is, and coordinates basic
movement.

It’s time to match up the game framework’s features to the use cases in your use
case diagram. Place the magnet for each feature on the use case that will handle
that feature. If your use case diagram is complete, then you should be able to
attach each feature magnet to a use case on your diagram. Good luck!

Feature Magnets

The framework supports
different types of terrain.

The framework supports
different time periods.

The framework supports
multiple unit types.

The framework supports
add-on modules.

The framework provides a
board made up of tiles, each
with a terrain type.

The framework keeps up
with whose turn it is, and
coordinates basic movement.

Here’s our use case
diagram, the blueprint
for our system.

Each feature
should be
attached to one
of the use cases
in the system.

Here’s the list of features we came up with back on page 292.

Feature magnets.

Download at WoweBook.Com

you are here 4 299

solving really big problems

Q: So an actor is a person that uses the system?

A: An actor is actually any external entity (it doesn’t have to be
a person) that interacts with the system. So in a cash machine, you’d
obviously have a person that uses the system as an actor, but you
might also have the bank as an actor, because it deposits money in
the system. If it’s not part of the system but acts on the system, it’s
an actor.

Q: What’s the box around everything for? And why are the
actors outside of the box?

A: The box shows the boundaries of the system. So you have to
code up everything inside the box, but you don’t have to worry about
the stuff outside the box. The actors—the game designers using your
framework—are outside of the box because they use your system;
they’re not part of it.

Q: And each circle is a use case?

A: Right. That’s part of why use case diagrams are great for
getting a handle on the big picture: they can show you multiple use
cases, and how all those use cases work together to do really big
tasks. It also helps you avoid getting into details about a particular
requirement too early (like now, when you should be worrying about
the overall system design).

Q: I’ve seen use case diagrams with lines marked with
<<include>> and <<extend>>. What’s that about?

A: UML and use case diagrams do define ways to specify what
kinds of relationships exist between use cases. So you could say
that one use case includes another, or that one use case extends
another. That’s what the <<include>> and <<extend>>
keywords mean.
However, it’s easy to spend a lot of time arguing over whether a
use case extends this use case, or includes that one. And suddenly,
you’re spending your time on how a tile can support mountains or
units need to carry a backpack, instead of focusing on the bigger
picture. You can use <<include>> and <<extend>>, but
it’s really not that big of a deal, and those keywords should never
distract from the overall design process.

Q: So use case diagrams are more about a general picture
of the system than including lots of little details?

A: Now you’ve got it! If you’re worrying too much about
what to call a use case, or whether you should use a particular
relationship between use cases, you’ve lost sight of the big picture.
Use your use case diagrams to get a clear 10,000-foot view of your
system, nothing more.

Dumb Questions
there are no

Thanks for all the info, but can we get
back to that Feature Magnets exercise?

I’m stuck trying to match one of the
features to a use case...

Download at WoweBook.Com

300 Chapter 6

Deploy Game

Modify Existing Game

Create New Game

Game Designer

It’s time to match up the game framework’s features to the use cases
in your use case diagram. Were you able to find a use case for each
feature in the game framework?

Feature Magnets Solutions

The framework supports
different time periods.

The framework supports
multiple unit types.

The framework supports
add-on modules.

The framework provides a

board made up of tiles, each

with a terrain type.

The framework keeps up
with whose turn it is, and
coordinates basic movement.

The framework supports

different types of terrain.

Almost all of the features have to do with a game designer creating a new game.

You could also have
put most of these
features on “Modify
Existing Game,” since
they all can be part
of a redesign, too.

Deploying the game is an important piece of the system, even though the customer didn’t mention any features related specifically to it.

we have a feature problem

But there’s one feature still left...

what up with that?

There’s probably one feature you had some
trouble placing on the use case diagram.
Think about this feature carefully: it’s really
not something the game designer directly
interacts with or worries about, because the
functionality is already taken care of.

So how is this feature related to the system?
And what actors are involved? And are we
missing some use cases in our diagram?

What do you think?

We know this is a
feature, but why
doesn’t it have a place
in our blueprints?

Well, it’s a “mostly done” solution this time.

?

Download at WoweBook.Com

you are here 4 301

solving really big problems

What system are you designing? A game framework, duh!

So what is the point of the framework? To let game designers build games.

The Little Actor
A small Socratic exercise in the style of The Little Lisper

So the game designer is an actor on the system? Yes. I’ve got that in my use case diagram.

And what does the game designer do with the
framework?

Design games. I thought we established that!

Is the game the same as the framework? Well, no, I suppose not.

Why not? The game is complete, and you can actually
play it. All the framework provides is a
foundation for the game to be built on.

So the framework is a set of tools for the
game designer?

No, it’s more than that. I mean, the feature
I’m stuck on is something the framework
handles for each individual game. So it’s
more than just tools for the designer.

Interesting. So the framework is part of the game,
then?

Well, I guess so. But it’s like a lower level,
like it just provides some basic services to the
game. The game sort of sits on top of the
framework.

So the game actually uses the framework? Yes, exactly.

Then the game actually uses the system you’re
building?

Right, that’s just what I said. Oh, wait...
then...

...if the game uses the system, what is it? An actor! The game is an actor!

Download at WoweBook.Com

302 Chapter 6

Deploy Game

Modify Existing Game

Create New Game

Game Designer

Actors are people, too
(well, not always)
It turns out that in addition to the game designer,
the game itself is an actor on the framework you’re
building. Let’s see how we can add a new actor to our
use case diagram:

actors aren’t always people

The Game

Create Board

Move Units

Add/Remove
Units

We’ve added a new actor, for the game (which the designer creates, using the framework).

Here are a few of the
things that the game uses
the framework to do.

These become additional use cases that our system will need to perform to be complete.

Do these new use cases
take care of the feature we
couldn’t find a place for?

The framework keeps up
with whose turn it is, and
coordinates basic movement.

Remember, actors
don’t have to be
people... here, the
game interacts
with our system.

Download at WoweBook.Com

you are here 4 303

solving really big problems

Use case diagram... check!
Features covered... check!
With a new actor in place, we can finally take our use
case diagrams and our features, and match them all up.

Deploy Game

Modify Existing Game

Create New Game

Game Designer

The Game

Create Board

Move Units

Add/Remove
Units

The framework supports
different time periods.

The framework supports
multiple unit types. The framework supports

add-on modules.

The framework provides a

board made up of tiles, each

with a terrain type.

The framework keeps up
with whose turn it is, and
coordinates basic movement.

The framework supports

different types of terrain.

That last feature is still a little funny...

The second part of that last feature, about movement, fits in with the “Move Units” use
case... but what about keeping up with whose turn it is to move? It seems like there’s
something still missing from our use case diagram. It’s your job to figure out two things:

1. Who is the actor on “The framework keeps up with whose turn it is?”

2. What use case would you add to support this partial feature?

Sharpen your pencil

Most of the
features relate
to what the game
designer does with
the framework.

Here’s our new actor,
the game, which also
uses the framework
during gameplay.

The new use cases
associated with the
game take care of
the feature we had
trouble with earlier.

The framework keeps up with whose turn it is, and coordinates basic movement.

* BONUS CREDIT:

Make these cha
nges

to the use ca
se

diagram above.

Download at WoweBook.Com

304 Chapter 6

That last feature is still a little funny...

The second part of that last feature, about movement, fits in with the “Move Units” use
case... but what about keeping up with whose turn it is to move? It seems like there’s
something still missing on our use case diagram. It’s your job to figure out two things:

1. Who is the actor on “The framework keeps up with whose turn it is?”

2. What use case would you add to support this partial feature?

The framework keeps up with whose turn it is, and coordinates basic movement.

Sharpen your pencil
answers

The game is still the actor... it’s using the framework to
handle managing whose turn it is.

We need a use case for “Take Turn” where the framework
handles basic turn duties, and lets the custom game handle
the specifics of that process.

Deploy Game

Modify Existing Game

Create New Game

Game Designer

The Game

Take Turn

Move Units

Add/Remove
Units

The framework supports
different time periods.

The framework supports
multiple unit types. The framework supports

add-on modules.

The framework provides a

board made up of tiles, each

with a terrain type.

The framework coordinates
basic movement.

The framework supports

different types of terrain.

The “Take Turn” use case lets us know that the game needs to handle turn-based duties.

Create Board

The framework keeps up
with whose turn it is.

We also broke
up that one
feature into
two separate
features.

completing the use case diagram

Download at WoweBook.Com

you are here 4 305

solving really big problems

Gary’s Game System Framework
Feature List

1. The framework supports different
types of terrain.

2. The framework supports different time
periods, including fictional periods like
sci-fi and fantasy.

3. The framework supports multiple
types of troops or units that are game-
specific.

4. The framework supports add-on
modules for additional campaigns or
battle scenarios.

5. The framework provides a board made
up of square tiles, and each tile has a
terrain type.

6. The framework keeps up with whose
turn it is.

7. The framework coordinates basic
movement.

Here’s our feature list... the system has to do these things.
So what exactly have we done?
You’ve got a list of features that Gary’s game system
framework needs to support, and that tells you all the
major pieces of the system you need to build. This is
a lot like the requirements list you built way back in
Chapter 2 for Todd and Gina’s dog door... except it
focuses on the big picture.

Use a feature or requirement list to
capture the BIG THINGS that your
system needs to do.

Once you’ve got your features and requirements
mapped out, you need to get a basic idea of how the
system is going to be put together. Use cases are often
too detailed at this stage, so a use case diagram can help
you see what a system is like at 10,000 feet... kind of like
a blueprint for your application.

Draw a use case diagram to show
what your system IS without getting
into unnecessary detail.

Here’s our use case
diagram... this is
the blueprint for
our system.

Deploy Game

Modify Existing Game

Create New Game

Game Designer

The Game

Take Turn

Move Units

Add/Remove
Units

Create Board

Download at WoweBook.Com

306 Chapter 6

speaking the customer’s language

Frank: I don’t know, Jim. I think we have been talking about code.

Jim:  How do you figure that? I mean, what line of  code is 
“framework supports different types of terrain” really going to turn
into?

Frank:  You’re talking about those features we figured out, right? 
Well, that’s not just one line of code, but it certainly is a big chunk of
code, right?

Jim: Sure... but when do we get to talk about what classes we need
to write, and the packages we put those classes into?

Frank:  We’re getting to that, definitely. But the customer really 
doesn’t understand what most of that stuff means... we’d never be
sure we were building the right thing if we started talking about
classes and variables.

Jim: What about class diagrams? We could use those to show what
we’re going to code, couldn’t we?

Frank: Well, we could... but do you think the customer would
understand that much better? That’s really what domain analysis is
all about. We can talk to the customer about their system, in terms
that they understand. For Gary, that means talking about units, and
terrain, and tiles, instead of classes, objects, and methods.

Isn’t it about time we started
actually talking about code? I mean, I get
that we need a feature list, and use case
diagrams, and all that, but at some point
we have to actually build something,

you know?

Cubicle Conversation

FrankJim

Domain analysis
lets you check
your designs, and
still speak the
customer’s language.

Download at WoweBook.Com

you are here 4 307

solving really big problems

Let’s do a little domain analysis!
Let’s put all these things we’ve figured out about the game system
together, in a way that Gary, our customer, will actually understand.
This is a process called domain analysis, and just means that we’re
describing a problem using terms the customer will understand.

Scholar’s Corner
the

domain analysis. The process of identifying, collecting,
organizing, and representing the relevant information of a

domain, based upon the study of existing systems and
their development histories, knowledge captured from

domain experts, underlying theory, and emerging
technology within a domain.

Gary’s Game System Framework
Feature List

1. The framework supports different
types of terrain.

2. The framework supports different time
periods, including fictional periods like
sci-fi and fantasy.

3. The framework supports multiple
types of troops or units that are game-
specific.

4. The framework supports add-on
modules for additional campaigns or
battle scenarios.

5. The framework provides a board made
up of square tiles, and each tile has a
terrain type.

6. The framework keeps up with whose
turn it is.

7. The framework coordinates basic
movement.

1946

These features are
using terms that the
customer understands.

The domain here is game systems.

This whole feature li
st is

a form of analysis, ju
st

like we’ve been doing
 in

earlier chapte
rs.

Download at WoweBook.Com

308 Chapter 6

Gary’s Game System Framework
Feature List

1. The framework supports different
types of terrain.

2. The framework supports different time
periods, including fictional periods like
sci-fi and fantasy.

3. The framework supports multiple
types of troops or units that are game-
specific.

4. The framework supports add-on
modules for additional campaigns or
battle scenarios.

5. The framework provides a board made
up of square tiles, and each tile has a
terrain type.

6. The framework keeps up with whose
turn it is.

7. The framework coordinates basic
movement.

1946

everyone loves a happy customer

Very cool! That’s exactly what I
want the system to do.

What most people give the customer...

What we’re giving the customer...

Gary’s thrilled, because he
understand what you’re
building, and knows it will do
what he wants it to do.

What the heck is this? I have no
idea if this is what I want.

Gary’s totally lost,
because he’s not a
programmer! You didn’t
speak his language.

These are class and package diagrams, and code-level details about how you’ll build Gary’s game framework.

Our feature
list, in language
the customer
understands.

Unit
type: String
properties: Map
setType(String)
getType(): String
setProperty(String, Object)
getProperty(String): Object

class
Unit {
 Unit(){
 }
}

Unit.java

Units

Board

Utilities

Game

1946

Controller

Download at WoweBook.Com

you are here 4 309

solving really big problems

Now divide and conquer
With the customer onboard, and a nice completed set
of blueprints, you’re ready to start breaking up your big
problem into different pieces of functionality—and then
you can use what you’ve learned already to tackle each of
those pieces of functionality, one at a time.

1946

Units
We need a way to represent a
basic unit, and let the game
designers extend that to create
game-specific units.

Tiles
The framework needs to
have a basic tile, and each
tile should be able to support
terrain types, units, and
probably handle battles, too.

Time Periods
We may not need to do
much here... as long as we
support different terrains,
unit types, and weapons, this
should come naturally.

Terrain Types
Each tile should support at
least one terrain type, and
game designers should be able
to create and use their own
custom terrain types, from grass
to lakes to asteriod dunes.

Here’s a rough drawing of
some of the core parts of
the game framework.

We can break the large framework down into several smaller, more manageable, pieces.

Download at WoweBook.Com

310 Chapter 6

1946Gary’s Game System Framework
Feature List

1. The framework supports different
types of terrain.

2. The framework supports different time
periods, including fictional periods like
sci-fi and fantasy.

3. The framework supports multiple
types of troops or units that are game-
specific.

4. The framework supports add-on
modules for additional campaigns or
battle scenarios.

5. The framework provides a board made
up of square tiles, and each tile has a
terrain type.

6. The framework keeps up with whose
turn it is.

7. The framework coordinates basic
movement.

Deploy Game

Modify Existing Game

Create New Game

Game Designer

The Game

Take Turn

Move Units

Add/Remove
Units

Create Board

breaking up the big problem

You need to address all the
features in the system...

...as well as the functionality laid out in your use case diagram.

Here’s the game board to remind you of some of the major areas to focus on... but remember, this isn’t everything!

The Big Break-Up
It’s time to break up our big problem—Gary’s game framework—into lots of smaller
pieces of functionality. You’ve already seen how we can divide the game and its features
into some basic groups of functionality, so you’re already well on your way.

Below are the features and diagrams we’ve been using throughout this chapter to show
what Gary’s system needs to do. You need to look at these, and figure out what modules
you want to use to handle all this functionality, and how you want to split the features
and requirements up. Make sure your modules cover everything you think the game
framework will need to do!

Download at WoweBook.Com

you are here 4 311

solving really big problems

We’ve added a “Units” module to get you started. This would be where classes representing troops, armies, and related functionality would go.

Units
For each package/module,

write in what you think that

module should focus on.

You can add more modules if you
need, or use less modules than we’ve
provided. It’s all up to you!

We have BIG problems,
and I just can’t handle them. It’s

time to break up.

Download at WoweBook.Com

312 Chapter 6

lots of small problems

Units
Board

Utilities

Game

This takes care of
troops, armies, and all
the units used in a game.

The board module
handles the board
itself, tiles, terrain, and
other classes related
to creating the actual
board used in each game.

It’s always a good idea to have a Utilities
module, to store tools and helper classes
that are shared across modules.

We’re using a Game module to store basic classes that can be extended by designers. These relate to the time period of the game, basic properties of the game, and anything else that sets up the basic structure of each game.

We chose to NOT have a module just
for terrain, or tiles, since there
would only be one or two classes in
those modules. Instead, we tied that
all into the Board module.

1946

Controller

Here’s where we can handle the turns of
each player, basic movement, and anything
else related to keeping a game actually
going. This module is sort of the “traffic
cop” for the games that designers create.

Relax
There’s no single RIGHT
answer to this exercise!

 It’s OK if your answers don’t match up
with ours exactly. There are lots of ways

to design a system, and this is just the one we chose.
What you do need to worry about is that you’ve covered
all the features and use cases with your design, and that
it makes sense... you don’t want a module to have just
one class in it, or one that will have one or two hundred.

Our Big Break-Up
Here’s what we did to handle all the features of Gary’s
system, and to break the big problem up into several
smaller, more manageable pieces of functionality.

Download at WoweBook.Com

you are here 4 313

solving really big problems

Dude, this game is gonna SUCK!
You don’t even have a graphics package...

even if it’s not all fancy, I’ve gotta at
least be able to see the freaking board

and units.

Don’t forget who your
customer really is
It might seem like Tony has a good point... until you
remember who the customer for Gary’s game system
framework really is. Your job is to write a framework
for game designers, not to create actual games. Every
game’s user interface will be different, so it’s up to the
game designer to take care of graphics, not you.

Domain analysis helps you avoid
building parts of a system that
aren’t your job to build.

Tony may know a lot about what
makes for a killer game, but
he’s not your customer!

Take a close look at the modules and groupings in the
game system framework. Do you recognize a commonly
used design pattern?

Patterns
Puzzle

Here’s a hint for you Head
First Design Patterns readers.

class Player {
 play(){}
 rip(){}
 burn(){}
}

Graphics

This is something that the game designer would create... it’s not your responsibility.

Download at WoweBook.Com

314 Chapter 6

model-view-controller

You know, once the game designer
adds in a Graphics module, this looks an
awful lot like the Model-View-Controller

pattern.

View Controller

class Player {
 play(){}
 rip(){}
 burn(){}
}

controller

manipulates

the model

the model notifies
the view of a change

in state

Controller

Graphics

Board

Units

Model

Here’s the game
controller that we’re
going to write. It
handles basic turns
and figuring out what
needs to happen with
boards, units, etc.

The Board and Units modules

both are part of the m
odel...

they model what’s actually

happening in the game.

The game designer

takes care of
 the

view, adding graph
ics

to represent
the

model, so the
players actual

ly see

something.

It’s the Model-View-Controller Pattern!

Game designers
can extend this
module with their
own game-specific
controller, but
this module is still
the basic game
controller.

Most people refer to this
as the MVC pattern.

Game

1946

These really don’t fit
into the MVC pattern,
but they’re still part
of the system.

Utilities

Download at WoweBook.Com

you are here 4 315

solving really big problems

We’ve all used off-the-shelf libraries and frameworks. We take them, write some code against their APIs,
compile them into our programs, and benefit from a lot of  code someone else has written.  Think about 
the Java APIs and all the functionality they give you: network, GUI, IO, etc. Libraries and frameworks go
a long way towards a development model where we can just pick and choose components and plug them
right in. But... they don’t help us structure our own applications in ways that are easier to understand, more
maintainable and flexible. That’s where Design Patterns come in.

Design patterns don’t go directly into your code, they first go into your BRAIN.  A design pattern is just
a way to design the solution for a particular type of problem. Once you’ve loaded your brain with a good
working knowledge of patterns, you can then start to apply them to your new designs, and rework your old
code when you find it’s degrading into an inflexible mess of  jungle spaghetti code.

Your BRAIN

Your Code, now new
and improved with
design patterns!

A
bun

ch
of

 pa
tt

ern
s

swim()

display()

performQuack()

performFly()

setFlyBehavior()

setQuackBehavior()

// OTHER duck-like methods...

Duck

FlyBehavior flyBehavior;

QuackBehavior quackBehavior;

<<interface>>

FlyBehavior

fly()

fly() {

 // implements duck flying

}

FlyWithWings
fly() {

 // do nothing - can’t fly!

}

FlyNoWay

<<interface>>

QuackBehavior

quack()

quack) {

 // implements duck quacking

}

Quack
quack() {

 // rubber duckie squeak

}

Squeak
quack() {

 // do nothing - can’t quack!

}

MuteQuack

display() {

// looks like a decoy duck }

Decoy Duck

display() {

// looks like a mallard }

Mallard Duck
display() {

// looks like a redhead }

Redhead Duck
display() {

// looks like a rubberduck }

Rubber Duck

Encapsulated fly behavior

Encapsulated quack behavior
Client

View

Controller

Model

Request

MVC

Subject Object

8

int
 Dog Objec

t

Mouse Objec
t

 Cat Object Duck Objec
t

Observers

8
8
8

8

Automatic update/notification

Object that
holds state

De
pen

de
nt

 O
bje

cts

OBSERVER

What’s a design pattern?
And how do I use one?

You can find this pa
ge, and a

whole lot more detail on what

design patterns are
and how to

use them, by picking up a cop
y of

Head First Design Patterns.

Download at WoweBook.Com

316 Chapter 6

I haven’t read Head First Design
Patterns, and I’m still a bit fuzzy on

exactly what a design pattern even is.
What should I do?

It’s OK if you’re not familiar with design
patterns. Design patterns help you take
those last steps of design—once you’ve
used OO principles like encapsulation
and delegation to make your software
flexible, a well-chosen design pattern can 
add just that extra bit of  flexibility to 
your design, and save you some time, too.

But it’s no big deal if you’re not familiar
with design patterns. You can still work
through this book, and get a handle
on really solid design. Then, we’d
recommend you pick up Head First
Design Patterns, and see how other
people have been handling some classic
design problems, and learn from them.

Keep going! Design
patterns are one of the
last steps of design.

confused about design patterns?

Download at WoweBook.Com

you are here 4 317

solving really big problems

OK, I must have missed that. Can
you let me in on what I missed?

Feeling a little bit lost?
We’ve done a lot of things in this chapter, and some of
them don’t even seem to be related...

➙ Gathering features

➙ Domain analysis

➙ Breaking Gary’s system into modules

➙ Figuring out Gary’s system uses the MVC pattern.

But how does any of this really help
us solve BIG problems?
Remember, the whole point of all this was to get a
handle on how to deal with really large applications—
like Gary’s game system framework—that involve a lot
more than some basic design and programming.

But here’s the big secret: you’ve
already done everything you need to
handle Gary’s BIG problem.

Download at WoweBook.Com

318 Chapter 6

The power of OOA&D
(and a little common sense)

you know how to solve small problems

Gary’s Games provides frameworks that game designers can use to

create turn-based strategy games. Unlike arcade-style shoot-em-up

games and games that rely on audio and video features to engage the

player, our games will focus on the technical details of strategy and

tactics. Our framework provides the bookkeeping details to make

building a particular game easy, while removing the burden of coding

repetitive tasks from the game design.

The game system framework (GSF) will provide the core of all of

Gary’s Games. It will be delivered as a library of classes with a well-

defined API that should be usable by all board game development

project teams within the company. The framework will provide standard

capabilities for:

 defining and representing a board configuration

 defining troops and configuring armies or other fighting units

 moving units on the board

 determining legal moves

 conducting battles

 providing unit information

The GSF will simplify the task of developing a turn-based strategic

board game so that the users of the GSF can devote their time to

implementing the actual games.

Gary’s Games
Vision Statement

We started out with this rather vague, far-reaching vision statement. Now that’s a BIG problem.

Gary’s Game System Framework
Feature List

1. The framework supports different
types of terrain.

2. The framework supports different time
periods, including fictional periods like
sci-fi and fantasy.

3. The framework supports multiple
types of troops or units that are game-
specific.

4. The framework supports add-on
modules for additional campaigns or
battle scenarios.

5. The framework provides a board made
up of square tiles, and each tile has a
terrain type.

6. The framework keeps up with whose
turn it is.

7. The framework coordinates basic
movement.

Using domain analysis, we
made sure we understand
what Gary wanted his
system to do.

Deploy Game

Modify Existing Game

Create New Game

Game Designer

The Game

Take Turn

Move Units

Add/Remove
Units

Create Board

Once we knew what we
were building, we created a
use case diagram to help us
understand the big picture.

1 We listened to the customer.

2 We made sure we
understood the system.

3 We drew up blueprints for
the system we’re building.

Download at WoweBook.Com

you are here 4 319

solving really big problems

Units

Board

Utilities

Game

1946

Controller

With a blueprint and feature list in hand, we were able to break up Gary’s big app into lots of smaller pieces of individual functionality.

View Controller

class Player {
 play(){}
 rip(){}
 burn(){}
}

controller

manipulates

the model

the model notifies
the view of a change

in state

Controller

Graphics

Board

Units

Model

We even took a design
pattern that we already
understand, and applied
it to our system.

M-V-C

4 We broke the big problem up into
smaller pieces of functionality.

5 We apply design patterns to help
us solve the smaller problems.

Look! You already know how to
solve these smaller problems, using
everything you’ve already learned
about analysis and design...

...and you can even figure out
how to apply the MVC pattern
from Head First Design Patterns.

Congratulations!
You’ve turned a BIG PROBLEM
into a bunch of SMALLER PROBLEMS that you
already know how to solve.

Download at WoweBook.Com

320 Chapter 6

Tools for your OOA&D Toolbox
You’ve taken on a huge problem, and you’re still
standing! Review some of the things you’ve learned

about handling big problems, and then you’re ready
for the return of the OOA&D crossword puzzle.

 BULLET POINTS

� The best way to look at a big problem is to view it as a
collection of smaller problems.

� Just like in small projects, start working on big projects
by gathering features and requirements.

� Features are usually “big” things that a system does,
but also can be used interchangeably with the term
“requirements.”

� Commonality and variability give you points of
comparison between a new system and things you
already know about.

� Use cases are detail-oriented; use case diagrams are
focused more on the big picture.

� Your use case diagram should account for all the
features in your system.

� Domain analysis is representing a system in language
that the customer will understand.

� An actor is anything that interacts with your system, but
isn’t part of the system.

ooa&d toolbox

Good requirements ensure your system
works like your customers expect.

Make sure your requirements are complete
by developing use cases for your system.

Use your use cases to find out about
things your customers forgot to tell you.

Your use cases will reveal any incomplete
or missing requirements that you might
have.

Your requirements will always change (and
grow) over time.

Requirements

Well-designed software is easy to change
and extend.

Use basic OO principles like encapsulation
and inheritance to make your software
more flexible.

If a design isn’t flexible, then CHANGE
IT! Never settle on bad design, even if
it’s your bad design that has to change.

Make sure each of your classes is cohesive:
each of your classes should focus on doing
ONE THING really well.

Always strive for higher cohesion as you
move through your software’s design
lifecycle.

Analysis and Design
Listen to the customer, and figure out
what they want you to build.

Put together a feature list, in language
the customer understands.

Make sure your features are what the
customer actually wants.

Create blueprints of the system using use
case diagrams (and use cases).

Break the big system up into lots of
smaller sections.

Apply design patterns to the smaller
sections of the system.

Use basic OOA&D principles to design and
code each smaller section.

Solving Big Problems
We’ve got a whole new
category of techniques
we learned about in
this chapter.

OO Principles
Encapsulate what varies.
Code to an interface rather
than to an implementation.
Each class in your application
should have only one reason to
change.
Classes are about behavior and
functionality.

Download at WoweBook.Com

you are here 4 321

solving really big problems

It’s time for another left-brain workout.
Below is a puzzle with lots of blank
squares; to the right are some clues. You
know what to do, so go for it!

OOA&D Cross

Download at WoweBook.Com

322 Chapter 6

Exercise
Solutions

crossword solutions

Download at WoweBook.Com

this is a new chapter 323

architecture7

You have to start somewhere, but you better pick the
right somewhere! You know how to break your application up into lots of

small problems, but all that means is that you have LOTS of small problems. In

this chapter, we’re going to help you figure out where to start, and make sure

that you don’t waste any time working on the wrong things. It’s time to take all

those little pieces laying around your workspace, and figure out how to turn

them into a well-ordered, well-designed application. Along the way, you’ll learn

about the all-important 3 Qs of architecture, and how Risk is a lot more than just

a cool war game from the ‘80s.

Bringing Order to Chaos
OK, I’ve got these blueprints

now, but I’m still not sure how the
whatchamacallit connects to the

thingamajiggy.

Download at WoweBook.Com

324 Chapter 7

where do we start?

Feeling a little overwhelmed?
So you’ve got lots of small pieces of functionality that you know
how to take care of... but you’ve also got use case diagrams,
feature lists, and a whole lot of other things to think about.

OK, even if I do know how to
handle all these individual pieces, where
the heck am I supposed to start? Can

you at least tell me what to do
FIRST?

Remember our
programmer friend?
Here’s how we left him
back in Chapter 6.

Gary’s Game System Framework
Feature List

1. The framework supports different

types of terrain.

2. The framework supports different time

periods, including fictional periods like

sci-fi and fantasy.

3. The framework supports multiple

types of troops or units that are game-

specific.

4. The framework supports add-on

modules for additional campaigns or

battle scenarios.

5. The framework provides a board made

up of square tiles, and each tile has a

terrain type.

6. The framework keeps up with whose

turn it is.

7. The framework coordinates basic

movement.

Units

Board

Utilities

Game

1946

Controller

We have feature lists...

...individual modules to code...

Download at WoweBook.Com

you are here 4 325

architecture

Deploy Game

Modify Existing Game

Create New Game

Game Designer

The Game

Take Turn

Move Units

Add/Remove
Units

Create Board

Gary’s Games provides frameworks that game designers can use to create turn-based strategy games. Unlike arcade-style shoot-’em-up games and games that rely on audio and video features to engage the player, our games will focus on the technical details of strategy and tactics. Our framework provides the bookkeeping details to make building a particular game easy, while removing the burden of coding repetitive tasks from the game design.
The game system framework (GSF) will provide the core of all of Gary’s Games. It will be delivered as a library of classes with a well-defined API that should be usable by all board game development project teams within the company. The framework will provide standard capabilities for:

 Defining and representing a board configuration
 Defining Units and configuring armies or other fighting units
 Moving units on the board
 Determining legal moves
 Conducting battles
 Providing unit information
The GSF will simplify the task of developing a turn-based strategic board game so that the users of the GSF can devote their time to implementing the actual games.

Gary’s Games
Vision Statement

...high-level views of what we need to build...

...the customer’s vision...

...and even some design patterns to apply.

View
Controller

class Player {
 play(){}
 rip(){}
 burn(){}
}
 controller

manipulates

the model

the model notifies

the view of a change

in state

ControllerGraphics

Board

Units

Model

M-V-C

Do you think it matters what you should try to do first? If
you do, why? And what would you work on first?

brain
power?

Download at WoweBook.Com

326 Chapter 7

Scholar’s Corner
the

architecture. Architecture is the organizational structure
of a system, including its decomposition into parts, their
connectivity, interaction mechanisms, and the guiding

principles and decisions that you use in the design
of a system.

We need an architecture
It’s really not enough to just figure out the individual pieces of a
big problem. You also need to know a little bit about how those
pieces fit together, and which ones might be more important than
others; that way, you’ll know what you should work on first.

the power of architecture

Architecture is your

design structure,
and highlights the

most important
parts of your app, and the

relationships
between those parts.

We already knew this...
architecture helps us
design these big systems.

Now this is what we need... how do we figure out what’s most important, so we can build those parts of our app first?

Our use case diagram was the start of this, but it’s still pretty unclear how all the modules interact.

All this is particularly
important when you’re working
with other programmers... you
have to all understand the
same architecture.

Download at WoweBook.Com

you are here 4 327

architecture

Architecture takes a big chaotic mess...

...and helps us turn it into a well-ordered application

Deploy Game

Modify Existing Game

Create New Game

Game Designer

The Game

Take Turn

Move Units

Add/Remove Units

Create Board

Troops

Board

Utilities

Game

1946

Controller

Gary’s Game System FrameworkFeature List
1. The framework supports different types of terrain.
2. The framework supports different time periods, including fictional periods like sci-fi and fantasy.

3. The framework supports multiple types of troops or units that are game-specific.
4. The framework supports add-on modules for additional campaigns or battle scenarios.

5. The framework provides a board made up of square tiles, and each tile has a terrain type.
6. The framework keeps up with whose turn it is.

7. The framework coordinates basic movement.

Gary’s Games provides frameworks that game designers can use to create turn-based strategy games. Unlike arcade-style shoot-em-up games and games that rely on audio and video features to engage the player, our games will focus on the technical details of strategy and tactics. Our framework provides the bookkeeping details to make building a particular game easy, while removing the burden of coding repetitive tasks from the game design.
The game system framework (GSF) will provide the core of all of Gary’s Games. It will be delivered as a library of classes with a well-defined API that should be usable by all board game development project teams within the company. The framework will provide standard capabilities for:

 defining and representing a board configuration
 defining Units and configuring armies or other fighting units
 moving units on the board
 determining legal moves
 conducting battles
 providing unit information
The GSF will simplify the task of developing a turn-based strategic board game so that the users of the GSF can devote their time to implementing the actual games.

Gary’s Games
Vision Statement

View
Controller

class Player {
 play(){}
 rip(){}
 burn(){}
}
 controller

manipulates

the model

the model notifies

the view of a change

in state

ControllerGraphics

Board

Units

Model

Ever get this feeling?
You’ve got lots of
important diagrams and
plans, but everything is
just a huge mess.

These lists and patterns should help, but it’s hard to know how it all fits together.

Deploy Game

Modify Existing Game

Create New Game
Game Designer

The Game

Take Turn

Move Units

Add/Remove Units

Create Board

Gary’s Games provides frameworks that game designers can use to

create turn-based strategy games. Unlike arcade-style shoot-em-up

games and games that rely on audio and video features to engage the

player, our games will focus on the technical details of strategy and

tactics. Our framework provides the bookkeeping details to make

building a particular game easy, while removing the burden of coding

repetitive tasks from the game design.

The game system framework (GSF) will provide the core of all of

Gary’s Games. It w
ill be delivered as a library of classes with a well-

defined API that should be usable by all board game development

project teams within the company. The framework will provide standard

capabilities for:

 d
efining and representing a board configuration

 d
efining units and configuring armies or other fighting units

 m
oving units on the board

 d
etermining legal moves

 c
onducting battles

 p
roviding unit information

The GSF will sim
plify the task of developing a turn-based strategic

board game so that the users of the GSF can devote their tim
e to

implementing the actual games.

Gary’s Games

Vision Statement

UnitsBoard

Game

1946

Utilities

Controller

Gary’s Game System Framework

Feature List

1. The framework supports different

types of terrain.

2. The framework supports different time

periods, including fictional periods like

sci-fi and fantasy.

3. The framework supports multiple

types of troops or units that are game-

specific.

4. The framework supports add-on

modules for additional campaigns or

battle scenarios.

5. The framework provides a board made

up of square tiles, and each tile has a

terrain type.

6. The framework keeps up with whose

turn it is.

7. The framework coordinates basic

movement.

View

Controller

class Player {

 play(){}

 rip(){}

 burn(){}

}

controller

m
anipulates

the m
odel

the m
odel notifies

the view
 of a change

in state

Controller

Graphics
Board

Units

M
odel

This is what we want... to

use all the information we

have to create a n
ice, well-

constructed applic
ation.

Wow... now I see how
it all fits together!

I have no clue what to
do with all of this stuff.

All the
diagrams and
patterns are
used to build
the customer
exactly what
they want, all
within a flexible,
reusable design.

Download at WoweBook.Com

328 Chapter 7

we’re still building great software

You write great software the same
way, whether you’re working on a
small project, or a huge one. You can
still apply the three steps we talked
about way back in Chapter 1.

Remember this page from the first chapter? These 3 steps apply to building great BIG software, too.

Units

Board

Utilities

Game

1946

Controller

We know that these three
steps will help us tackle each of
these individual pieces of the
game system framework.

These three steps appl
y when you’re

working on really big a
pplications,

too. So we need to start with what

the customer wants an app to do,

before we get into details ab
out

the actual design of
the app.

Deploy Game

Modify Existing Game

Create New Game
Game Designer

The Game

Take Turn

Move Units

Add/Remove Units

Create Board

Gary’s Games provides frameworks that game designers can use to

create turn-based strategy games. Unlike arcade-style shoot-em-up

games and games that rely on audio and video features to engage the

player, our games will focus on the technical details of strategy and

tactics. Our framework provides the bookkeeping details to make

building a particular game easy, while removing the burden of coding

repetitive tasks from the game design.

The game system framework (GSF) will provide the core of all of

Gary’s Games. It w
ill be delivered as a library of classes with a well-

defined API that should be usable by all board game development

project teams within the company. The framework will provide standard

capabilities for:

 d
efining and representing a board configuration

 d
efining units and configuring armies or other fighting units

 m
oving units on the board

 d
etermining legal moves

 c
onducting battles

 p
roviding unit information

The GSF will sim
plify the task of developing a turn-based strategic

board game so that the users of the GSF can devote their tim
e to

implementing the actual games.

Gary’s Games

Vision Statement

UnitsBoard

Game

1946

Utilities

Controller

Gary’s Game System Framework

Feature List

1. The framework supports different

types of terrain.

2. The framework supports different time

periods, including fictional periods like

sci-fi and fantasy.

3. The framework supports multiple

types of troops or units that are game-

specific.

4. The framework supports add-on

modules for additional campaigns or

battle scenarios.

5. The framework provides a board made

up of square tiles, and each tile has a

terrain type.

6. The framework keeps up with whose

turn it is.

7. The framework coordinates basic

movement.

View

Controller

class Player {

 play(){}

 rip(){}

 burn(){}

}

controller

m
anipulates

the m
odel

the m
odel notifies

the view
 of a change

in state

Controller

Graphics
Board

Units

M
odel

Really BIG application

Download at WoweBook.Com

you are here 4 329

architecture

Let’s start with functionality
The first step is always to make sure an application does what
it’s supposed to do. In small projects, we used a requirements list
to write down functionality; in big projects, we’ve been using a
feature list to figure those things out:

Gary’s Game System Framework
Feature List

1. The framework supports different
types of terrain.

2. The framework supports different time
periods, including fictional periods like
sci-fi and fantasy.

3. The framework supports multiple
types of troops or units that are game-
specific.

4. The framework supports add-on
modules for additional campaigns or
battle scenarios.

5. The framework provides a board made
up of square tiles, and each tile has a
terrain type.

6. The framework keeps up with whose
turn it is.

7. The framework coordinates basic
movement.

But which of these are
the most important?
Even if we know to start by focusing on
functionality, we still need to figure out which
pieces are the most important. Those are the
pieces we want to focus on first.

All of these
features are about
functionality... they
focus on what the
system has to do, not
on what principles or
patterns you use to
build the system.

View
Controller

class Player {
 play(){}
 rip(){}
 burn(){}
}
 controller

manipulates

the model

the model notifies

the view of a change

in state

ControllerGraphics

Board

Units

Model

Deploy Game

Modify Existing Game

Create New Game

Game Designer

The Game

Take Turn

Move Units

Add/Remove
Units

Create Board

We’ll come back to these other
diagrams and
patterns later... but right now,
we’re focusing
solely on the
functionality of the system.

Units

Board

Utilities

Game

1946

Controller

M-V-C

Download at WoweBook.Com

330 Chapter 7

start with functionality

Sharpen your pencil
What do YOU think are the most important features?

Even though our feature list has only seven things on it, there’s a lot of work
in those seven features. It’s your job to figure out which features you think are
the most important, and then in what order you’d work on those things.

Gary’s Game System Framework
Feature List

1. The framework supports different
types of terrain.

2. The framework supports different time
periods, including fictional periods like
sci-fi and fantasy.

3. The framework supports multiple
types of troops or units that are game-
specific.

4. The framework supports add-on
modules for additional campaigns or
battle scenarios.

5. The framework provides a board made
up of square tiles, and each tile has a
terrain type.

6. The framework keeps up with whose
turn it is.

7. The framework coordinates basic
movement.

1.

2.

3.

4.

You’ve got to handle all
of these features, but
it’s up to you to figure
out the order you
should tackle them in.

Write down the 4 things you’d do first, in order, in these blanks.

Download at WoweBook.Com

you are here 4 331

architecture

Wait a second... if
architecture is about the relationships

between the parts of an application,
why are we talking about the individual
parts? Shouldn’t we be talking about

how the parts work together?

It’s awfully hard to talk about the
relationships between parts of a system if
you don’t have any of the parts themselves.
So say you wanted to talk about how the
Board module interacted with the Units
module:

To figure out how these modules interact, 
you’d need to have at least the basics of the
two modules in place first.

So architecture isn’t just about the
relationships between parts of your app; it’s
also about figuring out which parts are the 
most important, so you can start building
those parts first.

You gotta start somewhere!

Units Board?

The things
in your
application
that are really
important are
architecturally
significant,
and you should
focus on them
FIRST.

Download at WoweBook.Com

332 Chapter 7

MEA NING

The three Qs of architecture
When you’re trying to figure out if something is architecturally
significant, there are three questions you can ask:

what is architecturally significant?

1. Is it part of the essence of the system?
Is the feature really core to what a system
actually is? Think about it this way: can you
imagine the system without that feature? If not,
then you’ve probably found a feature that is part of the
essence of a system.

2. What the fuck does it mean?
If you’re not sure what the description of a particular
feature really means, it’s probably pretty important that
you pay attention to that feature. Anytime you’re unsure
about what something is, it could take lots of time, or
create problems with the rest of the system. Spend time on
these features early, rather than late.

3. How the “heck” do I do it?
Another place to focus your attention early
on is on features that seem really hard to
implement, or are totally new programming
tasks for you. If you have no idea how you’re
going to tackle a particular problem, you
better spend some time up front looking at that feature, so it
doesn’t create lots of problems down the road.

Note from marketing: suggest replacing profanity with “heck.”

Download at WoweBook.Com

you are here 4 333

architecture

Gary’s Game System Framework
Feature List

1. The framework supports different
types of terrain.

2. The framework supports different time periods, including fictional periods like sci-fi and fantasy.
3. The framework supports multiple

types of troops or units that are game-specific.
4. The framework supports add-on

modules for additional campaigns or battle scenarios.
5. The framework provides a board made up of square tiles, and each tile has a terrain type.
6. The framework keeps up with whose turn it is.
7. The framework coordinates basic

movement.

To the right, you’ll find the
feature list we figured out in the
last chapter. Your job is to play

like you’re the architect,
and figure out what’s

architecturally significant
by using the three Qs of

architecture we just talked about.

BE the Architect

What’s significant? Why?

Write down
which of the three Qs applies (you can write more than one, if you need to)

Check and see how close your
answers here match up to what you
wrote down on page 330.

Download at WoweBook.Com

334 Chapter 7

To the right, you’ll find
the feature list we
figured out in the

last chapter. Below are
the things we thought were

architecturally significant,
and which of the three Qs we
used to make our decisions.

BE the Architect
Solutions

Gary’s Game System Framework
Feature List

1. The framework supports different
types of terrain.

2. The framework supports different time periods, including fictional periods like sci-fi and fantasy.
3. The framework supports multiple

types of troops or units that are game-specific.
4. The framework supports add-on

modules for additional campaigns or battle scenarios.
5. The framework provides a board made up of square tiles, and each tile has a terrain type.
6. The framework keeps up with whose turn it is.
7. The framework coordinates basic

movement.

figuring out what’s significant

What’s significant? Why?

The board for the game Q1
Game-specific units Q1, Q2

We decided that the
board was core to
the game... without
a board, there really
isn’t a game!

We thought that troops were essential to the game... and we’re not sure what “game-specific” might really mean. So two Qs applied here.

The framework coordinates basic movement. Q3 (and maybe Q2)

This seems a little vague, but it’s

not something we’re sure about
how to do. Definitely worth
spending some time up front
figuring out what this means, and

what we need to do.
Download at WoweBook.Com

you are here 4 335

architecture

What do you think the essence of each of these systems is:
 A weather-monitoring station?
 A home automation remote control?
 A beat-controlling, music-mixing DJ application?

brain
power?

Q: I’m a little confused about what
you mean by the “essence” of the
system. Can you say more about that?

A: The essence of a system is
what it is at its most basic level. In other
words, if you stripped away all the bells
and whistles, all the “neat” things that
marketing threw in, and all the cool ideas
you had, what would the system really be
about? That’s the essence of a system.
When you’re looking at a feature,
ask yourself: “If this feature wasn’t
implemented, would the system still
really be what it’s supposed to be?” If the
answer is no, you’ve found yourself an
“essence feature.” In Gary’s system, we
decided that the game wouldn’t really be
a game without a board and some units,
and there are some more examples in the
Brain Power at the bottom of the page.

Q: If you don’t know what
something means, isn’t that a sign that
you’ve got bad requirements?

A: No, but it is a sign that you might
need to get some additional requirements,
or at least some clarification. In the early
stages, you can leave some details out
to get a basic sense of a system. But at
this stage, it’s time to fill in some of those
details, and that’s what the second Q of
architecture is all about.

Q: If I’m working on a new system,
I probably won’t know how to do
anything on my feature list. So won’t
the 3rd Q of architecture about not
knowing how to do something always
apply?

A: No, not at all. For instance, even
if you’ve never written code to decide
whether a player typed in the letter “q”
or the letter “x,” you know how to write a
basic if/else statement, and it’s easy
to grab keyboard input from a player.
So a feature like getting keyboard input
isn’t something you don’t know how to
do, even if you’ve never written code
specifically for that task before. It’s just a
few new details, really.
But if you had to write a multi-threaded
chat server, and you’re new to threads
and network programming, then that
would be something that you don’t know
how to do. Those are the things to look
out for: particularly hard tasks that you’re
unsure about how to handle.

Q: Doesn’t this all end up just
being a judgment call, anyway?

A: In a lot of cases, yes. But as
long as you choose to start working on
the things that seem the most important
to the system, you’re going to get off to
a good start.

What you don’t want to do is see some
things that look familiar—perhaps you’ve
solved the same problem in another
project—and start there. Start with the
core pieces of the system, and the things
that look like they might be particularly
hard, and you’ll be on the road to
success.

Dumb Questions
there are no

The essence
of a system
is what that
system is
at its most
basic level.

Download at WoweBook.Com

336 Chapter 7

We’ve got a lot less chaos now...
Using the three Qs of architecture, we’ve started to add some
order to all that confusion we started out with:

moving towards order

...but there’s still plenty left to do
We’ve gotten Gary’s system down to three key features, but the
big question remains: which one should you work on first?

I know I love a man in
uniform, but there are still

choices to be made...

Gary’s Game System Framework
Feature List

1. The framework supports different

types of terrain.

2. The framework supports different time

periods, including fictional periods like

sci-fi and fantasy.

3. The framework supports multiple

types of troops or units that are game-

specific.

4. The framework supports add-on

modules for additional campaigns or

battle scenarios.

5. The framework provides a board made

up of square tiles, and each tile has a

terrain type.

6. The framework keeps up with whose

turn it is.

7. The framework coordinates basic

movement.

Deploy Game

Modify Existing Game

Create New Game

Game Designer

The Game

Take Turn

Move Units

Add/Remove
Units

Create Board

Units

Board

Utilities

Game

1946

Controller

Gary’s Games provides frameworks that game designers can use to create turn-based strategy games. Unlike arcade-style shoot-em-up games and games that rely on audio and video features to engage the player, our games will focus on the technical details of strategy and tactics. Our framework provides the bookkeeping details to make building a particular game easy, while removing the burden of coding repetitive tasks from the game design.
The game system framework (GSF) will provide the core of all of Gary’s Games. It will be delivered as a library of classes with a well-defined API that should be usable by all board game development project teams within the company. The framework will provide standard capabilities for:

 defining and representing a board configuration
 defining units and configuring armies or other fighting units
 moving units on the board
 determining legal moves
 conducting battles
 providing unit information
The GSF will simplify the task of developing a turn-based strategic board game so that the users of the GSF can devote their time to implementing the actual games.

Gary’s Games
Vision Statement

View
Controller

class Player {
 play(){}
 rip(){}
 burn(){}
}

controller

manipulates

the model

the model notifies
the view of a change

in state

Controller

Graphics

Board

Units

Model

M-V-C

Gary’s Game System FrameworkFeature List
1. The framework supports different types of terrain.
2. The framework supports different time periods, including fictional periods like sci-fi and fantasy.

3. The framework supports multiple types of troops or units that are game-specific.
4. The framework supports add-on modules for additional campaigns or battle scenarios.

5. The framework provides a board made up of square tiles, and each tile has a terrain type.
6. The framework keeps up with whose turn it is.

7. The framework coordinates basic movement.

2

Gary’s Game System Framework
KEY Features

1. The board for the game—essence of the system

2. Game-specific units—essence, and what does this mean?

3. Coordinating movement—what is it, and how do we do it?

Remember all this?
Quite a mess when we
started out...

But then we focused on making the system do what it is supposed to do.

Finally, we’ve
narrowed that down
to just a few key
features to focus on.

3

1

Download at WoweBook.Com

you are here 4 337

architecture

Cubicle Conversation

Argument

Well, we obviously need to build
the board first... I mean, it’s
the essence of the system!

Whatever! If you don’t even know
what “game-specific units” means,

that’s where to start.

Wrong! Start with the hardest thing—
coordinating movement.

Frank Joe

Jim

Jim: What in the world are you guys
thinking? What good is it starting with
anything that isn’t the essence of the
system?

Joe: That’s ridiculous. Even if  that’s the essence of  the system, you’ve got to figure out 
what game-specific units are. That could take weeks to write if  it’s harder than we think!

Frank: Maybe... but we know that coordinating movement will be tough, because we don’t have a clue
how to do it! How can you possibly work on anything else when you know the movement deal is going to be
difficult?

Joe: But the game-specific units might be difficult, too! We just don’t know, and that’s my point. We’ve got to 
figure out the parts of  the system we don’t know anything about, or they could be real trouble!

Jim: You guys go on and write movement engines and deal with units. Me, I’m gonna write a board,
because... well... something tells me Gary will want to see a board for his board game system. And I’m not about
to leave the board for later... I’m taking it on first.

Frank: You’re both nuts. While you’re putting off the hard tasks, I’m gonna make sure the things that I
don’t have any real idea about are taken care of, right away.

So who do you think is right? Do you agree with:

Jim (build the board) Joe (build the game-specific units)

Frank (build the movement engine)

Check the box next
to who you agree with.

Download at WoweBook.Com

338 Chapter 7

the problem is RISK

Leave it to a bunch of
boys to get into a big argument.

I think they’re ALL right... the problem
isn’t which feature to start with,

the problem is RISK!

The reason that these features are
architecturally significant is that they
all introduce RISK to your project. It
doesn’t matter which one you start
with—as long as you are working towards
reducing the RISKS in succeeding.

Take another look at our key features:

Gary’s Game System Framework
KEY Features

1. The board for the game—essence of the system

2. Game-specific units—essence, and what does this mean?

3. Coordinating movement—what is it, and how do we do it?

Jill works with Frank, Jim, and Joe, and is used to breaking up their arguments.

The point here is to REDUCE RISK,
not to argue over which key feature
you should start with first. You can
start with ANY of these, as long as
you’re focused on building what you’re
supposed to be building.

Since we don’t
know what
this means, it
could be a ton
of work, and
that’s a RISK
in meeting
schedules and
deadlines.

If the core features of the system aren’t in place, there’s a serious RISK that the customer won’t like the system.
This is something we’re not sure how to do, so there’s a RISK that we won’t figure it out, or it will take a really long time.

Download at WoweBook.Com

you are here 4 339

architecture

Well, I still think my risk is bigger
than yours...

Find the risk in your own project.

Think about the project you’re working on in your day job right now.
Now write down the first thing you started working on when you
started the project:

Now think about the 3 Qs of architecture that we talked about back
on page 332. If you applied those to your project, write down a few
features that you think would be architecturally significant:

If you look at those features closely, you’ll probably see that they all
have a lot of RISK connected to them. They’re the things that could
cause you lots of problems, or delay you getting your project done.
In the blanks below, write down which of those features you think
you should have worked on first, and why. What risks did it create?
What risks could you have reduced by working on it first?

Sharpen your pencil

Download at WoweBook.Com

340 Chapter 7

Architecture Puzzle

1. Create a new class called Board.java.

2. Add a constructor to Board that takes in a width and height, and creates
a new board with that height and width. The constructor also needs to fill 
the board with square tiles, one at each X-Y position.

3. Write a method that will return the tile at a given position, given that tile’s
X- and Y-position.

4. Write methods to add units to a tile based on that tile’s X- and Y-position.

5. Write a method to return all the units on a tile, given the X- and Y-position
of the tile.

1

Your task:

The problem:

You need a Board base type that game designers can use to create
new games. The board’s height and width are supplied by the
game designers for their games. Additionally, the board can return
the tile at a given position, add units to a tile, and return all the
units at a given X-Y position.

For Gary’s game system, let’s start out by working on the board module. Your
job is to write a Board interface that game designers can then use and extend to
build their own games.

writing the board interface

2

3

4

5

Here’s a sample board. This one

is a perfect square
, although all

boards won’t be square.

These are the
Y-coordinates.

These are the X-coordinates.

1
2
3
4
5

10

1 2 3 4 5 10

So this tile w
ould

be at (8, 9).

And this one is at position (4,2).

Here are some detailed requirements that we got from Gary and his design team.

An
sw

er
s o

n
pa

ge
 3

46

Download at WoweBook.Com

you are here 4 341

architecture

HeadFirst: Hi there, Scenario, we appreciate you taking the time to talk with us today.

Scenario: I’m really happy to be here, especially in a chapter that isn’t just about use cases.

HeadFirst: Well, yes, to tell the truth, I was rather surprised when I was told we’d be interviewing
you. We’re really focusing on architecture here, and working on features that would reduce risk.

Scenario: Absolutely! Well, that sounds like a very good way to approach big problems.

HeadFirst: Yes, well... ahem... then why are you here?

Scenario: Oh! I’m sorry, I just assumed you knew. I’m here to help reduce risk, also.

HeadFirst: But I thought you were just a particular path through a use case. We haven’t even
written any use cases yet!

Scenario: That’s no problem, I can still be a real help. I mean, look, let’s be honest, lots of
developers just don’t ever really take the time to sit down and write out use cases. Good grief, it took
you something like four pages in Chapter 6 to convince people to even use a use case diagram, and
that’s much easier to draw than it is to write a use case!

HeadFirst: Well, that’s true... there is a lot of resistance to writing out use cases. But they’re really
helpful, I thought they saved the day with Todd and Gina’s dog door.

Scenario: Oh, I agree! But in cases where developers just don’t have the time, or a use case is too
formal for what’s needed, I can really give you a lot of the advantages of a use case, without all the
paperwork.

HeadFirst: Hmmm, that is appealing. So tell me how that works.

Scenario: Well, take that board you’ve been writing. Suppose you wanted to reduce the risks of
Gary seeing it, and thinking of something important you forgot to add to it...

HeadFirst: Ahh, yes, forgetting an important requirement is always a risk!

Scenario: Well, you could come up with a simple scenario for how the board would be used—
that’s where I come in—and then make sure the board works with everything in your scenario.

HeadFirst: But there’s no use case... what steps do we pick in the scenario we make up?

Scenario: It doesn’t have to be that formal. You might say, “The game designer creates a new
board 8 squares wide by 10 squares high,” and “Player 1 kills Player 2’s troops at (4, 5) so the board
removes Player 2’s troops from that tile.”

HeadFirst: Oh, so just little descriptions of how the board is used?

Scenario: You’ve got it! Then you run through each description, and make sure your board
handles those cases. It’s not quite as thorough as a use case, but I really can help you make sure you
don’t forget any big requirements.

HeadFirst: This is fantastic! We’ll be right back with more from Scenario.

This week’s interview:
Scenarios help reduce risk

Use Cases Exposed

Download at WoweBook.Com

342 Chapter 7

19461946

Scenario Scramble
figuring out a scenario

Write a scenario for the Board interface you just coded.

Reducing risk is the name of the game in this chapter. You’ve coded a Board
interface based on a few requirements we gave you, but it’s your job to figure out if
we forgot anything—before Gary sees your work and finds a mistake.

Your job is to take the fragments of a scenario from the bottom of this page, and put
them into an order that makes sense on the bulletin board. The scenario should run
through a realistic portion of a game. When you’re done, see if you left out anything
on the Board interface, and if you did, add the missing functionality into your code.
You may not need all the scenario fragments; good luck!

This is the risk we’re trying to reduce or eliminate using a scenario.

Game designer creates a new board.

Game designer supplies height and width.

Game designer creates board with a height and width.

Player 1 battles Player 2.

Player 2 moves army onto (4, 5).

Player 1 moves artillery onto (4, 5).

Player 1’s units lose the battle.

Player 1 moves subs to (2, 2).

Game requests terrain at (4, 5).

Game requests units from (4, 5).

Player 1’s units are removed from (4, 5).

Player 2’s units win the battle.

Pin the
scenario
fragments
onto this
piece of
paper.

Player 2 moves tanks onto (4, 5).

Game requests terrain at (2, 2).

We’ve
done a
couple
to help
you get
started.

Gary’s Game System Framework
Board Scenario

Use both columns
for the scenario.

Download at WoweBook.Com

you are here 4 343

architecture

HeadFirst: We’re back with Scenario, again. Scenario, we’re getting quite a few calls. Would you
mind taking some of our listener’s questions?

Scenario: Sure, I’d be happy to.

HeadFirst: Great. First, here’s one we’re getting a lot. This is from Impatient in Idaho: “So you’re
saying I don’t need to write use cases, anymore, right? I can just use scenarios?”

Scenario: Oh, thanks, Impatient, I actually get that question often. I firmly believe you should 
still write use cases whenever possible. I’m helpful for quick problems, and to find the most common 
requirements, but remember, I’m only one path through a use case. If there are lots of alternate
paths, you might miss some important requirements if you used just a scenario for your requirements.

HeadFirst: That’s right, we’ve actually had Happy Path and Alternate Path on our show before.

Scenario: Well, they’re really just specialized versions of me, if you want the truth. We try not
to talk much about our family relationships, we all wanted to make it in this world on our own.
But we’re really all part of the Scenario family. And you really need all of us to be sure you’ve got
a system completely right. But if you’re just getting started, and a use case seems like it might be
premature, just using me is a good way to get started.

HeadFirst: OK, here’s another question, from Nervous in Nebraska: “You said you would help me
reduce risk, and I hate risk. Could you tell me exactly how you can help me avoid risk?”

Scenario: Another good question. Remember, when you’re figuring out requirements, whether 
you’re using a use case, a use case diagram, or a scenario, you’re trying to make sure you are building
just what the customer wants. Without good requirements, the risk is letting down or upsetting the
customer by building the wrong thing.

HeadFirst: So you’re reducing risk in the requirements phase?

Scenario: A lot of the time, yes. That’s when you’re writing use cases, putting together a
requirements list, and using lots of scenarios to chart out all the paths through a use case.

HeadFirst: But you also help out in big project architecture, right? That’s why we’re interviewing
you now?

Scenario: Exactly. Sometimes, you don’t have a complete requirements list and a bunch of use
cases, but you still need to get some basic work done to see how a system is going to work. That’s
what we’ve been doing here: using a scenario to get the basics of a module or piece of code down, so
you can get the basic building blocks of your application in place.

HeadFirst: So you’re really a handy guy, aren’t you?

Scenario: I’d like to think so. I help in gathering requirements, in being sure your use cases are
complete, but also in architecture, helping you reduce risk and reduce the chaos and confusion
around what a particular module or piece of code does.

This week’s interview:
Scenarios help reduce risk (cont.)

Use Cases Exposed

Download at WoweBook.Com

344 Chapter 7

reducing the risks to your success

Scenario Scramble Solution
Write a scenario for the Board interface you just coded.

Below is the scenario we came up with. Yours might be a bit different, but you
should at least have the game designer creating the board, a battle occuring
between Player 1 and Player 2, and units being both added to and removed from

Game designer creates a new board.

Game designer supplies height and width.

Game designer creates board with a
height and width.

Player 2 moves army onto (4, 5).

Player 1 moves artillery onto (4, 5).

Player 1’s units lose the battle.

Player 1 moves subs to (2, 2).

Game requests terrain at (4, 5).

Game requests units from (4, 5).

Player 1’s units are removed from (4, 5).

Player 2’s units win the battle.
Player 2 moves tanks onto (4, 5).

Game requests terrain at (2, 2).

Gary’s Game System Framework
Board Scenario

Player 1 battles Player 2.

In our scenario,
these fragments
were extras.

This part of the
scenario sets up
a battle between
Player 1 and
Player 2.

This part is really optional, but it shows us that the board will probably need to figure out the terrain of a tile for basic movement requests.

The scenario
continues in the
second column.

Download at WoweBook.Com

you are here 4 345

architecture

Q: Where did those requirements for the
Architecture Puzzle on page 340 come from?

A: From Gary, with some common sense added
in. If you think about what Gary’s asked for, a game
system framework, and then read back over the customer
conversation in Chapter 6, you could probably come up
with these requirements on your own. We did add a few
specifics, like being able to add a unit to a specific tile, but
that’s really just thinking through the problem.

Q: But why didn’t we write a use case to figure
out the requirements?

A: We could have. But remember, we’re not trying
to complete the Board module, as much as get the basic
pieces in place. That’s all we need to reduce the risk of
completing this piece of Gary’s system. In fact, if we got
into too much detail, we might actually add risk to the
project, by working on details that really aren’t important
at this stage of things.

Q: Now you’re telling me that use cases add
risk? That can’t be right!

A: No, use cases don’t add risk when used at
the right time. Right now, we’ve come up with some
key features that could cause us headaches if we
don’t figure them out. But that doesn’t mean we need
to perfect the Board interface; we just need to get
an understanding of how it works, so if there are any
potential problem spots, we can catch them and avoid
problems down the line. So at this point, the details
you’d need to write a good use case are a bit of overkill.
But once we’ve got the key features sketched out, and
handled the major risks, we’ll go back to each module
and really start to add detail in. At that point, a use case
is very helpful.

Q: So that’s why we used a scenario, right? To
avoid getting into lots of unnecessary detail?

A: Exactly. A scenario gives us lots of the
advantages of a use case, without forcing us to get into
lots of detail that we don’t need to worry about right now.

Dumb Questions
there are no

What’s missing in Board.java?

Look closely at the scenario on the previous page. Did the
requirements we used on page 340 cover everything in the
completed scenario? If you think something is missing, write it
in the blank below, and then add code to Board.java to handle
the missing functionality.

Architecture Puzzle (Revisited)

Download at WoweBook.Com

346 Chapter 7

how we wrote the board interface

Architecture Puzzle Solution
For Gary’s game system, let’s start out by working on the Board module. Below
is the interface we wrote to handle what we thought the basic tasks of a board
would be. See how your solution compares with ours.

package headfirst.gsf.board;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import headfirst.gsf.unit.Unit;

public class Board {

 private int width, height;
 private List tiles;

 public Board(int width, int height) {
 this.width = width;
 this.height = height;
 initialize();
 }

 private void initialize() {
 tiles = new ArrayList(width);
 for (int i=0; i<width; i++) {
 tiles.add(i, new ArrayList(height));
 for (int j=0; j<height; j++) {
 ((ArrayList)tiles.get(i)).add(j, new Tile());
 }
 }
 }

We put the Board class in a board-specific package. This lines up with the modules we decided on back in Chapter 6.

Here’s a class we’ll create
in a minute, since we need
it to finish up Board.

This constructor was laid out in the requirements. It takes the width and height in, and then calls initialize() to set up the board.

We represented the grid on the
board as an array of arrays, using
width and height as the dimensions.

At each coordinate, we add a new instance of Tile. We’ll have to write that class to make Board work as well... check the next page for how we defined Tile.
class
Board
{ ge-
tUnit()
}

Board.java

Bonus Design
Principle: Pull out
setup code into its
own method, so it
doesn’t make the
rest of your code
so confusing to read.

Download at WoweBook.Com

you are here 4 347

architecture

 public Tile getTile(int x, int y) {
 return (Tile)((ArrayList)tiles.get(x-1)).get(y-1);
 }

 public void addUnit(Unit unit, int x, int y) {
 Tile tile = getTile(x, y);
 tile.addUnit(unit);
 }

 public void removeUnit(Unit unit, int x, int y) {
 Tile tile = getTile(x, y);
 tile.removeUnit(unit);
 }

 public void removeUnits(int x, int y) {
 Tile tile = getTile(x, y);
 tile.removeUnits();
 }

 public List getUnits(int x, int y) {
 return getTile(x, y).getUnits();
 }
}

These
methods are
pretty self-
explanatory,
and were
part of the
requirements
on page 340.

You should have figured out that we need a way to remove units from the scenario exercise on page 344. This is what was missing in our original requirements.

We decided to
let the Tile class
handle these
operations, and
just delegate
adding and
removing units to
that class.

Here’s another place where
we delegate to the Tile class.
Since a tile stores the units on
it, it’s really the tile’s job to
handle retrieving those units.

Dumb Questions
there are no

Q: Doesn’t using an array of arrays limit you to a square
board?

A: No, although it does limit you to a board that uses (x, y)
coordinates. For example, you can use (x, y) coordinates in a board
made up of hexagon-shaped tiles, if you structure the hexagon tiles
correctly. But for the most part, an array of arrays is more ideally
suited to a square-tiled, rectangular board.

Q: So isn’t that limiting? Why not use a graph, or even a
Coordinate class, so you’re not tied to (x, y) coordinates and a
rectangular board?

A: If you wanted maximum flexibility, that might be a good
idea. For this situation, though, our requirements (back on page
340) actually specified (x, y) coordinates. So we chose a solution
that wasn’t quite as flexible, but certainly was simpler. Remember,
at this stage, we’re trying to reduce risk, not increase it by going
with a solution that is a lot more complex than we really need.

Download at WoweBook.Com

348 Chapter 7

The Tile and Unit classes
To actually make Board compile and work, we need to create a
Tile and Unit class. Here’s how we wrote those classes:

package headfirst.gsf.unit;

public class Unit {

 public Unit() {
 }
}

package headfirst.gsf.board;

import java.util.LinkedList;
import java.util.List;

import headfirst.gsf.unit.Unit;

public class Tile {

 private List units;

 public Tile() {
 units = new LinkedList();
 }

 protected void addUnit(Unit unit) {
 units.add(unit);
 }

 protected void removeUnit(Unit unit) {
 units.remove(unit);
 }
}

class
Unit {
 Unit(){
 }
}

Unit.java

class
Tile
{ ge-
tUnit()
}

Tile.java

We made Unit as absolutely simple as possible. There are lots of details to be added later, but we don’t need those details to make Board work right now.

Tile is in the same package
as the Board class...
they’re tightly related.

Tile has a list of the units
on it at any given time.

These are the methods
that Board uses to
manipulate units. They’re
protected, so only clas

ses

in headfirst.gsf.board
can

access them.

the tile and unit classes

Keep the right focus
You don’t need to worry about everything that Tile
and Unit will eventually need to do. Your focus is
on making Board and its key features work, not on
completing Tile or Unit. That’s why we left Unit
so bare, and added only a few methods to Tile.

Download at WoweBook.Com

you are here 4 349

architecture

You can download these Board-related classes for Gary’s
framework at http://www.headfirstlabs.com.  Just look for Head 
First OOA&D, and find “Gary’s Game System - Board classes.”

Get online

Focus on one
feature at a time
to reduce risk in
your project.

Don’t get
distracted
with features
that won’t help
reduce risk.

Q: If the Tile class handles adding and removing units,
and you can get the tile at a coordinate from the Board using
getTile(), why add those addUnit() and removeUnit() methods to
Board. Couldn’t you just call getTile(), and then use the Tile to do
those things?

A: You could take that approach, and let all the Unit-related
operations be handled directly through the Tile object returned
from getTile(). We decided to add the Unit-related methods
to Board, and have Board be the entry point for game designers.
In fact, you’ll see on the next page that we made Tile’s methods
protected, so that only classes in the same package as Tile—like
Board—could call addUnit() and removeUnit() directly. So
we’ve really ensured that Board is the object used to work with tiles,
units, and eventually terrain.

Q: I still think it would be easy to go ahead and add some
more of the methods we know we’ll need to Unit and Tile. Why
not spend a little time on those classes now?

A: You’re not trying to code the entire game system framework at
this point; you’re just trying to tackle a few key features, and reduce
the major risks to your project. Spending time writing the Unit
class, or fleshing out the Tile class, really isn’t going to help you
reduce risk. Instead, do just enough to get the Board class working,
because it’s the Board class that we decided was part of the
essence of the system, and where we had a risk of failing if we didn’t
get that piece in place.
Once you’ve handled your key features, and reduced or eliminated
the big risks to your project, then you’ll have plenty of time to work
on other features, like the Unit class. At this stage, though, you’re
trying to avoid spending time on anything that doesn’t help you reduce
the risks to your project succeeding.

Dumb Questions
there are no

Download at WoweBook.Com

350 Chapter 7

More order, less chaos
Our architecture and key feature list has helped us
get the basic Board in place, and make sure we’re
capturing the essence of the system for the customer.
Let’s look back at our key feature list:

Gary’s Game System Framework
KEY Features

1. The board for the game—essence of the system

2. Game-specific units—essence, and what does this mean?

3. Coordinating movement—what is it, and how do we do it?

We’ve got the basic Board
written, so we’ve handled
this key feature enough to
move on to another.

architecture reduces chaos

We’ve got structure now, too...
Even better, we’ve got some basic classes in place, and
we can start to think about our next key feature, and
how it fits into this structure.

Board
width: int
height: int
tiles: Tile [*][*]
getTile(int, int): Tile
addUnit(Unit, int, int)
removeUnit(Unit, int, int)
removeUnits(int, int)
getUnits(int, int): List

Unit

Tile
units: Unit [*]
addUnit(Unit)
removeUnit(Unit)
getUnits(): List
removeUnits()

*
units

UML doesn’t have a
good way to show multi-
dimensional arrays, which
is what the tiles variable
really is. So we can just
use an ordinary association.

Even though Board doesn’t have any variables of type Unit, it’s still associated to Unit because of its methods that take in Unit instances.

There are only three classes in
the project, but it’s still a lot
more structure than what we
had before.

Download at WoweBook.Com

you are here 4 351

architecture

Which feature should we work on next?

We’ve got a Unit class now, so why
don’t we tackle “game-specific units” next?
Besides, we can also look at how Board and

Unit interact.

When you’ve got nothing but requirements
and diagrams, you’ve just got to pick a
place to start. But now that we do have
some code and classes, it’s easiest to pick
another key feature that relates to what
we’ve already built. And remember our
definition for architecture?

You really can’t talk about the relationships
between parts if you don’t have two parts
that have a relationship. We know Board
and Unit are related, and that “game-
specific units” are a key feature, so that’s 
the obvious thing to work on next.

Build on what you’ve already
got done whenever possible.

Architecture is your

design structure,
and highlights the

most important
parts of your app, and the

relationships
between those parts.

Units

Board

?

With some basic
classes written, we
can look at how
classes interact, as
well as begin to
build on what we’ve
already done.

Download at WoweBook.Com

352 Chapter 7

Game-specific units...
 what does that mean?
The simplest way to understand a bit more about what

“game-specific units” means is to talk to some of Gary’s
customers, the game designers who will be using his
framework. Let’s listen in on what they have to say:

know what you don’t know

I build sci-fi games, big huge space
and planet battles. So I need to be able to
have armies with lasers and create lots of

spaceships.

Strategy is the key for
our games. We use an advanced

combat system where each unit has an
attack strength, defense strength,

and experience modifier.

Download at WoweBook.Com

you are here 4 353

architecture

Our customers are all
about air battles, so we don’t even need

troops. I just want to be able to create a
bunch of different types of planes, with

different speeds, weapons, and that
kind of thing.

Our games are realistic
and long-term... we even keep up
with the ages and relationships

between characters in our
games.

No good war game is good
without weapons... lots of different
types of weapons. And our units can

hold two each, so it gets really
fun fast.

What does “game-specific units” mean?

Now that you’ve heard from several of the game designers who want
to use Gary’s game system framework, you should have a good idea of
what our second key feature is all about. Write down in the blanks below
your idea of what you need to do to support “game-specific units.”

Sharpen your pencil

When you’re done,

compare your
answers with ours

on the next page.

Download at WoweBook.Com

354 Chapter 7

What does “game-specific units” mean?

Now that you’ve heard from several of the game designers who want to
use Gary’s game system framework, you should have a good idea of what
our second key feature is all about. Write down in the blanks below your
idea of what you need to do to support “game-specific units.”

Exercise
Solutions

Sharpen your pencil
answers

Each game based on the framework has different types of units,
with different attributes and capabilities. So we need to be able
to have properties for a unit that are different for each game,
and support multiple data types for those properties.

exercise solutions

Some army-related
games might have
tanks and soldiers...

...fantasy games might have rangers, magicians, and swordsmen...

...and flight simulators
might use planes, jets,
and rockets.

Download at WoweBook.Com

you are here 4 355

architecture

Commonality revisited
We’re starting to learn more about what “game-specific units”
means, but we still need to figure out how to actually add support
for this feature to our game system framework. Let’s start by taking
a look at the different types of units the customers mentioned, and
figure out what’s common between them.

Here are a
few of the
game-specific
units, and their
properties,
mentioned on
the last couple
of pages.

attack = 12
experience = 22

weapon = Bazooka
name = "Simon"

defense = 9.5

speed = 110
gun = Gatling

model = "A-10 Thunderbolt II"

What is common among
these different types
of units? What basic
things can we say that
would apply to any
game’s units?

We talked about commonality back
on page 287 of Chapter 6, when we
were trying to gather basic system
requirements. It also applies to smaller
problems, like the game-specific units.

Download at WoweBook.Com

356 Chapter 7

Unit

Here’s our Unit class,
which has no properties
or methods yet. Anything
that’s common to all types
of units needs to be put
into this class.

Tank

Most games will probably extend t
he

basic Unit type. So things t
hat are

specific to a particul
ar type of unit

would go in these indiv
idual subclasses.

Commonality
Variability

Soldier

Airplane

It’s your job to figure out what’s common, and should be a part of the basic Unit
class, and what varies, and belongs in the game-specific subclasses of Unit. Write
any properties and methods that you think belong in Unit in the class diagram for
that class below, and then add properties and methods that you think belong in the
game-specific subclasses to those diagrams.

what things are common?

Design Puzzle

Download at WoweBook.Com

you are here 4 357

architecture

attack = 12
experience = 22

weapon = Bazooka
name = "Simon"

defense = 9.5

speed = 110
gun = Gatling

model = "A-10 Thunderbolt II"

Which of these properties seem to apply to all types of units? Which only belong in a game-specific Unit subclass?

Download at WoweBook.Com

358 Chapter 7

Unit
weapon: Weapon

Tank
attack: float
experience: float
defense: float

getAttack(): float
setAttack(float)
...etc...

Commonality
Variability

Solution #1: It’s all different!
At first glance, you might have come up with a solution
that looks something like this:

There really wasn’t anything
common between the different
units. They all have properties,
but the properties are different
for each unit. So nothing gets
added to the Unit base class.

Tanks had a
few properties
specific to it,
so those get
added to the
Tank class.

Soldier
weapon: Weapon
name: String

getWeapon(): Weapon
setWeapon(Weapon)
getName(): String
setName(String)
...etc...

Airplane
speed: int
gun: Weapon
model: String

getSpeed(): int
setSpeed(int)
getGun(): Weapon
...etc...

You might have figured out that a Weapon class is a good idea... that way, we can store information about weapons and reuse those across instances of the Unit class.

look a little deeper

You might have put a weapon
property up in Unit, since it sounds
like most units will have a weapon.
But what about units with more
than one weapon? There are still
some problems with this approach.

Download at WoweBook.Com

you are here 4 359

architecture

That was sort of dumb... why go
through all this commonality stuff when
there’s nothing common between the

different units? That seemed like a waste
of time.

Commonality is about
more than just the names
of properties... you need to
look a little bit deeper.
It might seem like there’s not anything
common across all the units used in
different games, but let’s take a step back
from focusing on the actual names of the
properties for each unit. What’s really the
same for each unit?

attack = 12
experience = 22

weapon = Bazooka
name = "Simon"

defense = 9.5

speed = 110
gun = Gatling

model = "A-10 Thunderbolt II"

propertyName = propertyValue

Each unit also has a
bunch

of different proper
ties... ...each with a value.

So what is common is that a
unit has a type and a set of
properties, each of which is a
simple name/value pair.

Each unit has a different type: there are tanks, soldiers, planes, spaceships, etc.

type = unitType

Download at WoweBook.Com

360 Chapter 7

Unit
type: String
properties: Map

setType(String)
getType(): String
setProperty(String, Object)
getProperty(String): Object

Tank
attack: float
experience: float
defense: float

getAttack(): float
setAttack(float)
...etc...

Commonality
Variability

Solution #2: It’s all the same!
At first glance, you might have come up with a solution that
looks something like this:

Soldier
weapon: Weapon
name: String

getWeapon(): Weapon
setWeapon(Weapon)
getName(): String
setName(String)
...etc...

Airplane
speed: int
gun: Weapon
model: String

getSpeed(): int
setSpeed(int)
getGun(): Weapon
...etc...

commonality creates flexibility

This time, we’ve made Unit a
lot more generic. It supports
a unit type, and a Map of
name/value properties.

There’s no longer a need for lots of Unit subclasses... we can simply use the Unit class with a different type and property set.

Weapons (even multiple weapons per
unit), strength, speed, experience,
age, and anything else a game
designer might need can all be
stored in the properties Map.

This is really similar to how we stored instrument properties back in Chapter 5.

Download at WoweBook.Com

you are here 4 361

architecture

Commonality analysis: the
path to flexible software
Wondering why we spent all that time on commonality
analysis? Look back at the first solution on page 358,
and then again at the second solution, on the left, and
then fill out the table below to see what commonality
has really bought us in terms of our design:

Which solution do you think is better?

Why?

OK, this is ludicrous. First,
nothing was the same, and now everything

is the same? How in the world is this
helping me reduce risk or write better

software?

Number of
unit types

3
5
10
25
50
100

Number of unit
classes - Solution #1

Number of unit
classes - Solution #2

This first
row is what
we’ve looked
at so far: 3
different
unit types.

100 may seem like a lot, but in massive war games, it’s not so far-fetched.

Download at WoweBook.Com

362 Chapter 7

Number of
unit types

3
5
10
25
50
100

Number of unit
classes - Solution #1

4
6
11
26
51
101

Number of unit
classes - Solution #2

1
1
1
1
1
1

With Solution #1, you always
had a Unit base class, and a
subclass for each unit type.

With Solution #2, the single Unit class supported all types of units, with any number of different types of properties and attributes.

commonality and flexibility

We identified what was
common, and put it in the Unit
base class. The result was that
game designers now only have
to keep up with ONE unit class,
instead of 25, 50, or 100!

Unit
type: String
properties: Map
setType(String)
getType(): String
setProperty(String, Object)
getProperty(String): Object

With a single well-
designed Unit class,
we can support any
number of different unit types. Q: I can see how this would help me with my design,

but what does any of this have to do with reducing risk?

A: Good design always reduces risk. By figuring out
how best to design the Unit class, we can get it right the
first time... before we’re deep into working on the entire game
system framework, and might have to make drastic changes to
Unit that affect lots of other code.
Not only have we figured out what “game-specific units”
means, but we’ve defined the basic Unit class, and now
other classes like Board can relate to it without worrying
about its design drastically changing in the middle or near the
end of the project’s development cycle.

Dumb Questions
there are no

Good design
will always
reduce risk.

Download at WoweBook.Com

you are here 4 363

architecture

And still more order...
We’ve figured out another key feature,
reduced risk to our project even further, and
only have one feature left to worry about.

Gary’s Game System Framework

1. The board for the game—essence of the system2. Game-specific units—essence, and what does this mean?3. Coordinating movement—what is it, and how do we do it?

We’re focusing on doing just
the things that reduce risk.
Remember, the point of architecture is
to reduce risk, and to create order.
There are plenty of other things to work
on in your application, but those are for
after you’ve got a handle on how your
application will be structured, and have
the major risks reduced to the point where
they are manageable.

We were trying to get a handle on the
Unit class, and what “game-specific units” 
meant; at this point, we’ve done that:

Wait a second... we haven’t
written any code for the Unit class.
Don’t we need to do that before we

go on to that last feature?

Unit
type: String
properties: Map
setType(String)
getType(): String
setProperty(String, Object)
getProperty(String): Object

This class diagram is all
you need at this point. It
gives you the structure
of the Unit class, and
answers the question,
“What does ‘game-specific
units’ mean?”

KEY Features

Download at WoweBook.Com

364 Chapter 7

Q: When we worked on the Board,
we did code the Board class, but now
you say we shouldn’t code the Unit class.
What gives?

A: The question you need to be always
asking at this stage of a project is, “Will this
reduce the risk to my project succeeding?”
If the answer is yes, you should go ahead; if
it’s no, you probably can leave the task for a
later stage of the project.
In the case of the Board, we needed to
have a basic understanding of what the
game board does, so we went ahead and
coded a basic implementation. But for Unit,
a class diagram and understanding its basic
functionality was all we really needed to do.
In both cases, we were reducing risk to our
project, rather than focusing on coding or not
coding a certain class or package.

Q: But couldn’t we have just done a
class diagram for Board, like we did for
Unit, and stopped there?

A: You probably could have just done
a class diagram. It’s really a judgment call,
and as long as you feel you’re focusing on
reducing the risk in your project, it’s OK to
stop with a class diagram, or take things a
level or two deeper.

Q: Is it really good to ask the
customer and users of a system about
what it should do? Couldn’t they lead us
astray, or distract us?

A: It’s usually a good idea to ask the
customer, because it is their system that
you’re building. And really, the customer
is only going to confuse you, or get you
working on the wrong thing, if you’re unsure
of what you’re supposed to be working on.
As long as you go into a conversation clear
on what your goals are, and you’re listening
for something specific, you should be able
to filter out anything that might confuse or
distract you.

Q: I’m still not sure I would have ever
come up with using a Map for storing
properties in the Unit class on my own.

A: That’s OK; that’s what tools like
commonality and the three Qs of architecture
are for. They help you get to solutions that
you might not think of on your own, in a way
that works on any type of project.
In the case of the Unit class, the point isn’t
that we used a Map to store properties. It’s
that we figured out that all units are basically
just a unit type and a set of name/value
pairs. Once we figured that out, the details
about how we stored those name/value pairs
were a piece of cake.

Q: So there’s really not a lot of code
involved in OOA&D, is there?

A: OOA&D is all about code—it’s
about writing great software, every time. But
the way you get to good code isn’t always
by sitting down and writing it right away.
Sometimes the best way to write great code
is to hold off on writing code as long as you
can. Plan, organize, architect, understand
requirements, reduce risks... all these make
the job of actually writing your code very
simple.

Dumb Questions
there are no

ooa&d and great software

Sometimes
the best
way to write
great code is
to hold off
on writing
code as long
as you can.

Download at WoweBook.Com

All that’s left is to handle
coordinating game movement. But
what would you do next to figure
that out? Your job is to outline
the next few pages of Head
First OOA&D, and
figure out how you’d
take care of this last
key feature.

BE the Author

you are here 4 365

you are here 4 367

you are here 4 369

architecture

architecture

architecture

366 Chapter 7

368 Chapter 7

ask the customer

whose job is this?

*Hint: check out
what we did for the last key feature that we weren’t clear on how to get started.

Download at WoweBook.Com

366 Chapter 7

ask the customer

What does it mean?
Ask the customer.
When you’re not sure what a feature really means, one of
the best things you can do is ask the customer. We did this
with the game-specific units, so let’s try the same thing for
figuring out what coordinating movement means.

Want to see the answers to the
BE the Author exercise? Read the

next four pages and see how close

your pages are to what we did.

Each unit has a movement property
that says how many squares it can move,
and the game checks the terrain to see if

the move is legal.

We hate games that aren’t
realistic... like when airplanes can

fly through buildings! Our games check
all the surrounding tiles for other units,

and then apply a wind factor to the
plane’s speed property.

This looks pretty straightforward...
it’s a fairly simply calculation.

This is quite a bit more
complicated... and totally
different from the other
game designer’s requirements.

They’re cracking
up at yet another
air game that lets
you fly places you
shouldn’t be able to.

Download at WoweBook.Com

you are here 4 367

architecture

Do you know what “coordinating
movement” means?
Listening to the customers should have given you a pretty
good idea of what the third key feature of Gary’s game
system framework is all about. Write what you think that
feature really means in the blanks below:

Now do some
commonality analysis
Next you need to try and figure out what’s common about
the different movement scenarios that the customers on
page 366 have been talking about. Are there some basic
things that apply to all the different types of movement? If
you think that there are, write those common things in the
blanks below:

So now what would you do?
If you have an understanding of what “coordinating
movement” means, and you know what things are
common across all games, you should have an idea about
what you need to do to the game framework to make this
feature work. Write your ideas down in this final set of
blanks:

1. Ask the customer

2. Commonality analysis

3. Implementation plan

You can use these three basic steps anytime you’re unsure about what a feature means, and how you need to implement that feature in your system.
W

hat does the feature mean?
How do I realize that feature

in my system?

Download at WoweBook.Com

368 Chapter 7

whose job is this?

Is there anything common here?
Here’s what we thought we needed to do based on what
Gary’s customers were saying about movement:

So what exactly is common among all the different
possible movement scenarios? Remember what the
customers said?

Units should be able to move from one tile on the
board to another. Movement is based on a calculation or
algorithm specific to each game, and sometimes involves
the game-specific properties of a unit.

We hate games that aren’t
realistic... like when airplanes can

fly through buildings! Our games check
all the surrounding tiles for other units,

and then apply a wind factor to the
plane’s speed property.

Each unit has a movement property
that says how many squares it can move,
and the game checks the terrain to see if

the move is legal.

In this situation, ther
e’s an algorithm

to see if a move is legal, and anot
her

algorithm to figure out how far a

unit can go, based pa
rtly on that

unit’s properties.

In this case, there’s a check to see if a move is legal, and another check of a unit’s movement property.

What’s common? What’s variable?
There’s a check prior to a move
to see if the move is legal.

The algorithm to check a move’s
legality is different for every game.

A unit’s properties are used to
see how far the unit can move.

The number and specific properties
used are different for every game.

Factors other than the unit
affect movement.

The factors that affect movement
are different for every game.

This is where things like
wind speed come into play.

See a recurring theme here?

Download at WoweBook.Com

you are here 4 369

architecture

It’s “different for every game”
Did you see what kept showing up in our chart? Every
time we found some commonality, the variability
column had the same words: “different for every game.”

When you find more things that are
different about a feature than things that
are the same, there may not be a good,
generic solution.

OK, it seems like you’ve
thought things through, so I’m OK

with that. Game designers love
having more control, anyway.

Q: How is this really that different
from game-specific units?

A: With units, we did find some
commonality: every unit had a type, and
then name/value properties. With movement,
every single game looked like it would handle
things differently. So it made sense to leave
movement to the game designers, rather
than come up with a solution that was so
generic that it was essentially useless.

Q: But there is some commonality,
isn’t there? A movement algorithm, and a
check to see if a move is legal, right?

A: You’re right. So, in theory, you
could write a Movement interface,
with a method like move() that took
in a MovementAlgorithm and a
LegalMoveCheck, or something
similar. And then each game designer could
extend MovementAlgorithm and
LegalMoveCheck. If you thought of
something like this, nice work! You’re really
ahead of the game.

But then ask yourself: what does this really
gain? Game designers are going to have
to learn your interfaces, and if they don’t
have a legality check, they might pass
in null for the LegalMoveCheck
parameter, and what would the interface for
MovementAlgorithm look like, and...
well, you’re probably adding complexity,
rather than really removing it.
Your job is to reduce risk and complexity,
not increase it. We decided that it would
be simpler to let game designers handle
movement, and just change the position
of units on the board (using methods on
Board, which we did take care of for them).

Dumb Questions
there are no

Gary, we’ve thought it through,
and we think we should let the game

designers handle movement on their own.
Anything we do in the framework would

just make things a pain for
them.

In the case of Gary’s system, if there’s no generic solution, it really doesn’t belong as part of the game framework.

Download at WoweBook.Com

370 Chapter 7

Great. So we’ve got a little
sheet of paper with some checkmarks,

a few classes that we know aren’t finished,
and lots of UML diagrams. And I’m
supposed to believe this is how you

write great software?

Great code is well-designed, and
generally functions like it’s supposed
to. But great software not only is well-
designed, it comes in on time and does
what the customer really wants it to do.

That’s what architecture is about:
reducing the risks of you delivering
your software late, or having it not work
like the customer wants it to. Our key
feature list, class diagrams, and those
partially done classes all help make sure
we’re not just developing great code, but
that we’re developing great software.

Absolutely! Remember,
great software is more
than just great code.

Customers
don’t
pay you
for great
code, they
pay you
for great
software.

great code or great software

Download at WoweBook.Com

you are here 4 371

architecture

Reducing risk helps you
write great software
With all three key features figured out, we’ve
got a handle on the major risks to our project
succeeding. Look at how each step we’ve taken
in this chapter has reduced the risks to our
project:

Gary’s Game System Framework

1. The board for the game—essence of the system
2. Game-specific units—essence, and what does this mean?
3. Coordinating movement—what is it, and how do we do it?

KEY Features

Gi
a

nt
 R

is
k-

O
-M

et
er

Unit
type: String
properties: Map
setType(String)
getType(): String
setProperty(String, Object)
getProperty(String): Object

Board.java

class
Unit {
 Unit(){
 }
}

Unit.java

class
Tile
{ ge-
tUnit()
}

Tile.java

class
Board
{ ge-
tUnit()
}

Not a chance in hell of
coming in on time.

One in a hundred that
you get it right.

Only a few things can
go really wrong.

As close to a sure
thing as software gets!

Here’s where we started. We
knew what we needed to
build, but not much else.

We figured out the basic classes for the Board, but wrote just enough code to lower the risk of getting the board wrong for the customer.

Next, we figured out
what “game-specific
units” meant, and
planned how we’d handle
that feature with a
class diagram.

Finally, we used
commonality to realize
that handling movement
was for the game
designer to worry
about... another major
risk taken care of.

We don’t have a lot of code, but
we do have a project that we’re
confident we can deliver on time,
with the right functionality.

Download at WoweBook.Com

372 Chapter 7

coming up next

 BULLET POINTS

� Architecture helps you turn all your diagrams, plans,
and feature lists into a well-ordered application.

� The features in your system that are most important to
the project are architecturally significant.

� Focus on features that are the essence of your system,
that you’re unsure about the meaning of, or unclear
about how to implement first.

� Everything you do in the architectural stages of a
project should reduce the risks of your project failing.

� If you don't need all the detail of a use case, writing a
scenario detailing how your software could be used can
help you gather requirements quickly.

� When you're not sure what a feature is, you should ask
the customer, and then try and generalize the answers
you get into a good understanding of the feature.

� Use commonality analysis to build software solutions
that are flexible.

� Customers are a lot more interested in software that
does what they want, and comes in on time, than they
are in code that you think is really cool.

Download at WoweBook.Com

you are here 4 373

architecture

The march of the crossword continues. Have you
gotten every answer so far? Here’s another set of
clues to help you store all this architectural info
in your brain for good.

OOA&D Cross

-

Download at WoweBook.Com

374 Chapter 7

What’s missing in Board.java?

Look closely at the scenario on the last page. Did the requirements
we used on page 340 cover everything in the completed scenario?
If you think something is missing, write it in the blank below, and
then add code to Board.java to handle the missing functionality.

Sharpen your pencil
answers

The scenario talks about removing units, but there is no
requirement to remove units on page 340.

We added a removeUnit() and removeUnits() method to Board.java to handle this requirement.

puzzle solutions

Download at WoweBook.Com

this is a new chapter 375

design principles8

Imitation is the sincerest form of not being stupid.
There’s nothing as satisfying as coming up with a completely new and original

solution to a problem that’s been troubling you for days—until you find out

someone else solved the same problem, long before you did, and did an

even better job than you did! In this chapter, we’re going to look at some

design principles that people have come up with over the years, and how

they can make you a better programmer. Lay aside your thoughts of “doing it

your way”; this chapter is about doing it the smarter, faster way.

Originality is Overrated
I must have heard that line a
thousand times, but it works

on me every time!

Baby, somebody better call
heaven, ‘cause they’re missing an

angel tonight!

Download at WoweBook.Com

376 Chapter 8

what’s a design principle?

Design principle roundup
So far, we’ve really been concentrating on all the things that
you do before you start coding your application. Gathering
requirements, analysis, writing out feature lists, and drawing use
case diagrams. Of course, at some point you actually are going
to have to write some code. And that’s where design principles
really come into play.

You’ve already seen a few design principles in earlier chapters:

In this chapter, we’re going to look at several more key design
principles, and how each one can improve the design and
implementation of your code. We’ll even see that sometimes
you’ll have to choose between two design principles... but we’re
getting ahead of ourselves. Let’s begin by looking at the first of
our design principles.

A design principle is a basic tool or
technique that can be applied to designing
or writing code to make that code more
maintainable, flexible, or extensible.

OO Principles
Encapsulate what varies.
Code to an interface rather than to
an implementation.
Each class in your application should
have only one reason to change.
Classes are about behavior and
functionality.

Using proven
OO design
principles
results in more
maintainable,
flexible, and
extensible
software.

Download at WoweBook.Com

you are here 4 377

design principles

Principle #1:
The Open-Closed Principle (OCP)
Our first design principle is the OCP, or the Open-Closed
principle. The OCP is all about allowing change, but doing
it without requiring you to modify existing code. Here’s
how we usually define the OCP:

Closed for modication...
Suppose you have a class with a particular behavior, and you’ve
got that behavior coded up just the way you want it. Make sure
that nobody can change your class’s code, and you’ve made
that particular piece of behavior closed for modification. In
other words, nobody can change the behavior, because you’ve
locked it up in a class that you’re sure won’t change.

...but open for extension
But then suppose someone else comes along, and they just have
to change that behavior. You really don’t want them messing
with your perfect code, which works well in almost every
situation... but you also want to make it possible for them to use
your code, and extend it. So you let them subclass your class,
and then they can override your method to work like they want
it to. So even though they didn’t mess with your working code,
you still left your class open for extension.

Open-Closed Principle
Classes should be open for extension,
and closed for modification.

You close classes by not
allowing anyone to touch
your working code.

You open classes by
allowing them to be
subclassed and extended.

Download at WoweBook.Com

378 Chapter 8

Remember working on Rick’s
Stringed Instruments?
You probably didn’t realize it, but we were using the Open-
Closed Principle when we wrote those InstrumentSpec
classes for Rick’s Stringed Instruments, back in Chapter 5:

GuitarSpec
numStrings: int
getNumStrings(): int
matches(GuitarSpec): boolean

InstrumentSpec
model: String
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

MandolinSpec

getStyle(): Style
matches(MandolinSpec): booleanInstrumentSpec is an abstract

base class. It defines a matches()

method that has a basic spe
c-

matching implementation Each of the instrument-specific
subclasses extend the matches()
method... they use the base version
from InstrumentSpec, but then add
some extra matching detail specific
to the instrument they work with.

InstrumentSpec is closed for modification; the
matches() method is defined in the base class
and doesn’t change.

But it’s open for extension, because all of the
subclasses can change the behavior of matches().

The parts of matches() that change across subclasses are encapsulated away from the InstrumentSpec base class.

ocp in action

Download at WoweBook.Com

you are here 4 379

design principles

The OCP, step-by-step
Let’s take what we did back in Chapter 5, and look at in terms
of the OCP, one step at a time.

We coded matches() in InstrumentSpec.
java, and closed it for modification.
This version of matches() works just fine, and we don’t
want anyone messing with it. In other words, once we’re
done coding InstrumentSpec and this version of
matches(), they shouldn’t change.

1

InstrumentSpec
model: String
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

This method works fine,
so we don’t want anyone
else touching it.

But we needed to modify matches() to work
with instrument-specific spec classes.
Even though matches() works great for other
InstrumentSpec objects, it doesn’t quite do what it should
for guitars and mandolins. So even though matches()
is closed for modification, we need a way to extend and
change it... otherwise, InstrumentSpec isn’t very flexible,
which is a big problem.

2

So we extended InstrumentSpec, and
overrode matches() to change its behavior.
We don’t want to change the code in InstrumentSpec, but
we can extend it, with GuitarSpec and MandolinSpec,
and then override matches() in each of those classes to
add instrument-specific behavior.

3

GuitarSpec
numStrings: int
getNumStrings(): int
matches(GuitarSpec): boolean

InstrumentSpec
model: String
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

We don’t change the
original version of
matches()...

...but we can extend
InstrumentSpec, and still
get new behavior.

Download at WoweBook.Com

380 Chapter 8

Gee, inheritance is powerful. Really,
this is supposed to be some sort of great

design principle? Come on.

It’s certainly true that inheritance is a simple
example of the open-closed principle, but
there’s a lot more to it than just subclassing and
overriding a method. Anytime you write working
code, you want to do your best to make sure that
code stays working... and that means not letting
other people change that code.

But there are going to be times when that code
still needs to be changed, maybe for just one or
two particular situations. Rather than just diving
into your code and making a bunch of changes,
the OCP lets you extend your working code,
without changing that code.

There are lots of different ways to accomplish
this, and while inheritance is often the easiest
to implement, it’s certainly not the only option.
In fact, we’ll talk about another great way to
achieve this later in the chapter, when we talk
about composition.

The OCP is about flexbility, and
goes beyond just inheritance.

more than inheritance

Download at WoweBook.Com

you are here 4 381

design principles

Q: What’s the big deal about
modifying code in a base class, or a class
that you’ve already written?

A: Once you have a class that works,
and is being used, you really don’t want to
make changes to it unless you have to. But
remember, CHANGE is the great constant
in software development. With the OCP, we
allow for change through extension, rather
than having to go back and modify your
existing code. Subclasses can add and
extend the base class’s behavior, without
messing around with code that you already
know is working and making the customer
happy.

Q: Isn’t the OCP just another form of
encapsulation?

A: It’s really a combination of
encapsulation and abstraction. You’re finding
the behavior that stays the same, and
abstracting that behavior away into a base
class, and then locking that code up from
modification. But then when you need new
or different behavior, your subclasses handle
the changes by extending the base class.
That’s where encapsulation comes in: you’re
encapsulating what varies (behavior in the
subclasses) away from what stays the same
(the common behavior in the base class).

Q: So the only way to use the OCP is
by extending another class?

A: No, anytime your code is closed for
modification but open for extension, you’re
using the OCP. So for example, if you had
several private methods in a class, those
are closed for modification—no other code
can mess with them. But then you could
add several public methods that invoked
those private methods in different ways.
You’re extending the behavior of the private
methods, without changing them. That’s
another example of the OCP in action.

Dumb Questions
there are no

Find the OCP in your own project.

Think about the project you’re currently working on. Can you find any places where
you’ve used the OCP already? If so, write how you used the OCP in the blanks below:

Now think about a place in your project where you should be using the Open-Closed
Principle, but you aren’t yet. Write down in the blanks below what you think you need
to do to put the OCP into place in your current project:

Sharpen your pencil

Download at WoweBook.Com

382 Chapter 8

Principle #2:
The Don’t Repeat Yourself Principle (DRY)
Next up is the Don’t Repeat Yourself principle, or DRY for short. This is
another principle that looks pretty simple, but turns out to be critical in
writing code that’s easy to maintain and reuse.

don’t repeat yourself

Don’t Repeat Yourself
Avoid duplicate code by abstracting out
things that are common and placing
those things in a single location.

A prime place to apply DRY...
You’ve seen the DRY principle in action, even if you didn’t realize it.
We used DRY back in Chapter 2, when Todd and Gina wanted us to
close the dog door automatically after it had been opened.

 public void pressButton() {
 System.out.println(
 “Pressing the remote control button...”);
 if (door.isOpen()) {
 door.close();
 } else {
 door.open();

 final Timer timer = new Timer();
 timer.schedule(new TimerTask() {
 public void run() {
 door.close();
 timer.cancel();
 }
 }, 5000);
 }
 }

class
Remote {
 press-
Button()
}

Remote.java

Remember when we had code in the Remote class to automatically close the dog door once it had been opened?

 public void recognize(String bark) {

 System.out.println(“ BarkRecognizer: ” +

 “Heard a ‘” + bark + “’”);

 door.open();

 final Timer timer = new Timer();

 timer.schedule(new TimerTask() {

 public void run() {
 door.close();
 timer.cancel();
 }
 }, 5000);
 }

class
BarkRec-
ognizer
{
 update
}

BarkRecognizer.java

Doug suggested we put the same code

in BarkRecognizer... but accordin
g to

DRY, that’s a BAD idea.

Download at WoweBook.Com

you are here 4 383

design principles

public class DogDoor {
 public void open() {
 System.out.println(“The dog door opens.”);
 open = true;

 final Timer timer = new Timer();
 timer.schedule(new TimerTask() {
 public void run() {
 close();
 timer.cancel();
 }
 }, 5000);
 }

class
DogDoor
{
 open()
}

DogDoor.java

Using DRY, we pull
out all this code
from Remote and
BarkRecognizer,
and put it in ONE
place: the DogDoor
class. So no more
duplicate code, no
more maintenance
nightmares.

1. Let’s abstract out the common code.
Using DRY, we first need to take the code that’s common
between Remote and BarkRecognizer, and put it in a
single place. We figured out back in Chapter 2 the best place
for it was in the DogDoor class:

2. Now remove the code from other locations...

 3. ...and reference the code from Step #1.
The next two steps happen at the same time. Remove all the code
that you put in a single place in Step #1, and then reference the code
you abstracted out explicitly if you need to:

 public void recognize(String bark) {
 System.out.println(“ BarkRecognizer: ” +
 “Heard a ‘” + bark + “’”);
 door.open();

 final Timer timer = new Timer();
 timer.schedule(new TimerTask() {
 public void run() {
 door.close();
 timer.cancel();
 }
 }, 5000);
 }

class
BarkRec-
ognizer
{
 update
}

BarkRecognizer.java

First, we got rid of
this code... it’s all
in DogDoor’s open()
method now.

We don’t have to explicitly call the code we abstracted out... that’s handled already by our call to door.open().

Download at WoweBook.Com

384 Chapter 8

DRY is really about ONE
requirement in ONE place
Abstracting out duplicate code is a good start to using DRY,
but there’s more to it than just that. When you’re trying to
avoid duplicate code, you’re really trying to make sure that
you only implement each feature and requirement in your
application one single time.

In the dog door we just looked at, the feature we were trying
to implement was automatically closing the door.

Originally, though, we implemented that single feature in two
places: Remote.java and BarkRecognizer.java.

By using DRY, we removed the duplicate code. But
more importantly, we moved the implementation of this
requirement, automatically closing the door, into one place,
instead of two places:

using DRY the right way

class
Remote {
 press-
Button()
}

Remote.java

class
BarkRec-
ognizer
{
 update
}

BarkRecognizer.java

1. The dog door opening must be at least 12” tall.
2. A button on the remote control opens the dog door

if the door is closed, and closes the dog door if the
door is open.

3. Once the dog door has opened, it should close
automatically if the door isn’t already closed.

Todd and Gina’s Dog Door, version 2.0
Requirements List

Here’s the single requirement we’re focusing on here.

pressButton() recognize()

BOTH of these
methods have code that
closes the dog door.

class
DogDoor
{
 open()
}

DogDoor.java

open()
Now there is just ONE place we automatically close the door: open(), in DogDoor.

Download at WoweBook.Com

you are here 4 385

design principles

Q: So DRY isn’t about duplicate code, and
avoiding copy-and-paste?

A: DRY is about avoiding duplicate code, but it’s
also about doing it in a way that won’t create more
problems down the line. Rather than just tossing code
that appears more than once into a single class, you
need to make sure each piece of information and
behavior in your system has a single, clear place where
it exists. That way, your system always knows exactly
where to go when it needs that information or behavior.

Q: If DRY is related to our features and
requirements, then shouldn’t we apply it to
gathering those features and requirements as well
as writing our code?

A: Absolutely, and that’s a great idea! Whether
you’re writing requirements, developing use cases, or
coding, you want to be sure that you don’t duplicate
things in your system. A requirement should be
implemented one time, use cases shouldn’t have
overlap, and your code shouldn’t repeat itself. DRY is
about a lot more than just code.

Q: And this is all to avoid maintenance
problems later, right?

A: Right. But it’s more than just avoiding a need to
update code in more than one place. Remember, DRY
is about having a single source for a particular piece
of information or behavior. But that single source has
to make sense! You wouldn’t want the bark recognizer
to be the single source for closing the dog door, would
you? Do you think the dog door should be asking the
recognizer to close itself?
So DRY is not just removing duplication, it’s also about
making good decisions about how to break up your
system’s functionality.

Dumb Questions
there are no

DRY is about
having each piece
of information and
behavior in your
system in a single,
sensible place.

Download at WoweBook.Com

386 Chapter 8

1. Read through the requirements and features list on the right. We’ve bolded
the requirements and features that have been added since you last worked
on the dog door.

2. Look through the new features and requirements, and see if you see any
possible duplication in the new things you’d need to build.

3. Annotate the requirements and features list indicating what you think has
been duplicated.

4. Rewrite the duplicate requirements at the bottom of the list so that there is
no more duplication.

5.   Write a new definition for the DRY principle in the space below, and make 
sure you talk about more than just duplicate code.

1

Your task:

The problem:

Todd and Gina have come up with yet more features for their dog
door. It’s your job to make sure the feature list we’ve assembled
doesn’t have any duplication issues, and that each feature is handled
once and only once in the system you’re designing for them.

DRY is about a lot more than just finding duplicate code in your system. It also 
applies to your features and requirements. It’s time to put DRY into action on
your own now, and to do it in more than just code.

applying DRY to requirements

2

3

4

Don’t Repeat Yourself

Write your own definition for DRY that includes what you’ve learned over the last few pages.

5

Design Puzzle

Download at WoweBook.Com

you are here 4 387

design principles

Todd and Gina’s Dog Door, version 3.0
Requirements and Features List

1. The dog door opening must be at least 12” tall.
2. A button on the remote control opens the dog door

if the door is closed, and closes the dog door if the
door is open.

3. Once the dog door has opened, it should close
automatically if the door isn’t already closed.

4. A bark recognizer must be able to tell when a dog
is barking.

5. The bark recognizer must open the dog door when
it hears barking.

6. The dog door should alert the owner when
something inside the house gets too close for the
door to open without knocking it over.

7. The dog door will open during certain hours of the
day.

8. The dog door can be integrated into the house’s
overall alarm system to ensure the alarm doesn’t
go off when the dog door opens and closes.

9. The dog door should make a noise if the door
cannot open because of a blockage outside.

10. The dog door will track how many times the dog
enters and leaves the inside of the house.

11. When the dog door closes, the household alarm
system re-arms if it was active before the door
opened.

These are the
requirements you’ve
already seen...

...and these are the
new features and
requirements.

Write any new or
updated requirements,
without duplication,
here at the bottom

of the list.

Solutions on the next page.

Download at WoweBook.Com

388 Chapter 8

1. Read through the requirements and features list on the right. We’ve bolded
the requirements and features that have been added since you last worked
on the dog door.

2. Look through the new features and requirements, and see if you see any
possible duplication in the new things you’d need to build.

3. Annotate the requirements and features list indicating what you think has
been duplicated.

4. Rewrite the duplicate requirements at the bottom of the list so that there is
no more duplication.

5.   Write a new definition for the DRY principle in the space below, and make 
sure you talk about more than just duplicate code.

1

Your task:

The problem:

Todd and Gina have come up with yet more features for their dog
door. It’s your job to make sure the feature list we’ve assembled
doesn’t have any duplication issues, and that each feature is handled
once and only once in the system you’re designing for them.

DRY is about a lot more than just finding duplicate code in your system. It also 
applies to your features and requirements. Your job was to put DRY into action
on your own, in the context of requirements rather than just code.

2

3

4

Don’t Repeat Yourself

Here’s what we wrote for our definition of DRY.

5

don’t repeat anything

DRY is about having each piece of
information and behavior in your
system in a single, sensible place.

Design Puzzle Solutions

Download at WoweBook.Com

you are here 4 389

design principles

Todd and Gina’s Dog Door, version 3.0
Requirements and Features List

1. The dog door opening must be at least 12” tall.
2. A button on the remote control opens the dog door

if the door is closed, and closes the dog door if the
door is open.

3. Once the dog door has opened, it should close
automatically if the door isn’t already closed.

4. A bark recognizer must be able to tell when a dog
is barking.

5. The bark recognizer must open the dog door when
it hears barking.

6. The dog door should alert the owner when
something inside the house gets too close for the
door to open without knocking it over.

7. The dog door will open during certain hours of the
day.

8. The dog door can be integrated into the house’s
overall alarm system to ensure the alarm doesn’t
go off when the dog door opens and closes.

9. The dog door should make a noise if the door
cannot open because of a blockage outside.

10. The dog door will track how many times the dog
enters and leaves the inside of the house.

11. When the dog door closes, the household alarm
system re-arms if it was active before the door
opened.

The door alerts the owner if there is an obstacle
inside or outside of the house that stops the door
from operating.

When the door opens, the house alarm system will
disarm, and when the door closes, the alarm
system will re-arm (if the alarm system is turned
on).

#6 and #9 are
almost identical. One
focuses on the inside

,
and the other on
the outside, but the

basic functinality is
the same.

Here’s how we
combined and re-
wrote #6 and #9.

#8 and #11 both
relate to the house
alarm... they’re
really duplicates
of the same basic
functionality, too.

Here’s our new
requirement from
#8 and #11.

Requirements #7
and #10 were fine,
and stayed the same.

Here’s what we did to the requirements list.

Download at WoweBook.Com

390 Chapter 8

Principle #3:
The Single Responsibility Principle (SRP)
The SRP is all about responsibility, and which objects in your
system do what. You want each object that you design to have just
one responsibility to focus on—and when something about that
responsibility changes, you’ll know exactly where to look to make
those changes in your code.

the single responsibility principle

Single Responsibility Principle
Every object in your system should
have a single responsibility, and all the
object’s services should be focused on
carrying out that single responsibility.

You’ve implemented the
Single Responsibility
Principle correctly when
each of your objects has
only one reason to change.

Hey, we’ve talked about
this before... this is the same as
a class having only one reason to

change, isn’t it?

Download at WoweBook.Com

you are here 4 391

design principles

Q: SRP sounded a lot like DRY to
me. Aren’t both about a class doing
the one thing it’s supposed to do?

A: They are related, and often
appear together. DRY is about putting a
piece of functionality in a single place,
such as a class; SRP is about making
sure that a class does only one thing,
and that it does it well.
In good applications, one class does
one thing, and does it well, and no other
classes share that behavior.

Q: Isn’t having each class do
only one thing kind of limiting?

A: It’s not, when you realize that
the one thing a class does can be
a pretty big thing. For example, the
Board class in Gary’s Games does a
lot of different small tasks, but they’re
all related to a single big thing: handling
the board in a game. It does that one
thing, and that’s all the Board class
does, so it’s a great example of using
the SRP.

Q: And using SRP will help my
classes stay smaller, since they’re
only doing one thing, right?

A: Actually, the SRP will often
make your classes bigger. Since you’re
not spreading out functionality over
a lot of classes—which is what many
programmers not familiar with the SRP
will do—you’re often putting more things
into a class.
But using the SRP will usually result in
less classes, and that generally makes
your overall application a lot simpler to
manage and maintain.

Q: This sounds a lot like
cohesion, are they the same thing?

A: Cohesion is actually just another
name for the SRP. If you’re writing
highly cohesive software, then that
means that you’re correctly applying
the SRP.

Dumb Questions
there are no

Download at WoweBook.Com

392 Chapter 8

Spotting multiple responsibilities
Most of the time, you can spot classes that aren’t using the
SRP with a simple test:

1. On a sheet of paper, write down a bunch of lines like this: The [blank]
[blanks] itself. You should have a line like this for every method in the class
you’re testing for the SRP.

2.   In the first blank of  each line, write down the class name; in the second 
blank, write down one of the methods in the class. Do this for each
method in the class.

3. Read each line out loud (you may have to add a letter or word to get it to
read normally). Does what you just said make any sense? Does your class
really have the responsibility that the method indicates it does?

1

2

If what you’ve just said doesn’t make sense,
then you’re probably violating the SRP with
that method. The method might belong on a
different class... think about moving it.

The itself.
The itself.
The itself.

Write the class name
in this blank, all the
way down the sheet.

Write each method
from the class in this blank, one per line.

Repeat this line for
each

method in your class
.

SRP Analysis for

srp analysis

Here’s what your SRP analysis sheet should look like.

3

Download at WoweBook.Com

you are here 4 393

design principles

Automobile
start()
stop()
changeTires(Tire [*])
drive()
wash()
checkOil()
getOil(): int

Apply the SRP to the Automobile class.

Do an SRP analysis on the Automobile class shown below. Fill out the sheet with
the class name methods in Automobile, like we’ve described on the last page.
Then, decide if you think it makes sense for the Automobile class to have each
method, and check the right box.

Sharpen your pencil

The itself.
The itself.
The itself.

SRP Analysis for

The itself.
The itself.
The itself.

The itself.

Yes, we realize you can peek back at Chapter 5 and cheat here, but we’re trusting you not to. Try the exercise on your own first, and only look back at what we did in Chapter 5 if you get stuck.

We looked at
this class in
CATASTROPHE
back in Chapter 5.

Automobile
Follows

SRP
Violates

SRP

If what you read doesn’t make sense, then the method on that line is probably violating the SRP.

Download at WoweBook.Com

394 Chapter 8

The itself.
The itself.
The itself.

SRP Analysis for

The itself.
The itself.
The itself.

The itself.Automobile
Automobile
Automobile
Automobile

Automobile
Automobile
Automobile

Automobile

start[s]

You may have
to add an “s”
or a word or
two to make
the sentence
readable.stop[s]

changesTires
drive[s]
wash[es]

check[s] oil
get[s] oil

Apply the SRP to the Automobile class.

Your job was to do an SRP analysis on the Automobile class shown below. You
should have filled out the sheet with the class name methods in Automobile, and
decided if you think it makes sense for the Automobile class to have each method.

Sharpen your pencil
answers

single responsibility

Follows
SRP

Violates
SRP

It makes sense
that the
automobile is
responsible for
starting, and
stopping. That’s
a function of
the automobile.

An automobile is NOT responsible for changing
its own tires,
washing itself,
or checking its own oil.

This one was a little tricky... we thought that while an automobile might start and stop itself, it’s really the responsibilty of a driver to drive the car.

You should have thought carefully
about this one, and what “get”
means. This is a method that just
returns the amount of oil in the
automobile... and that is something
that the automobile should do.

Cases like this are why SRP analysis is just a guideline. You still are going to have to make some judgment calls using common sense and your own experience.

Download at WoweBook.Com

you are here 4 395

design principles

Going from multiple responsibilities
to a single responsibility
Once you’ve done an analysis, you can take all the methods
that don’t make sense on a class, and move those methods to
classes that do make sense for that particular responsibility.

Automobile
start()
stop()
changeTires(Tire [*])
drive()
wash()
checkOil()
getOil(): int

We used our analysis
to figure out that
these four methods
really aren’t the
responsibility of
Automobile.

CarWash
wash(Automobile)

Driver
drive(Automobile)

Mechanic
changeTires(Automobile, Tire [*])
checkOil(Automobile)

It’s a driver’s responsibility to drive the car, not the automobile itself.

A CarWash
can handle
washing an
automobile.

A mechanic is responsible for changing tires and checking the oil on an automobile.

Automobile
start()
stop()
getOil(): int

Now Automobile
has only a single
responsibility:
dealing with its
own basic functions.

Q: How does SRP analysis work when a method takes
parameters, like wash(Automobile) on the CarWash class?

A: Good question! For your SRP analysis to make any sense,
you need to include the parameter of the method in the method blank.
So you would write “The CarWash washes [an] automobile itself.”
That method makes sense (with the Automobile parameter), so it
would stay on the CarWash class.

Q: But what if CarWash took in an Automobile parameter
as part of its constructor, and the method was just wash()?
Wouldn’t SRP analysis give you a wrong result?

A: It would. If a parameter that might cause a method to
make sense, like an Automobile for the wash() method on
CarWash, is passed into a class’s constructor, your SRP analysis
might be misleading. But that’s why you always need to apply a good
amount of your own common sense and knowledge of the system in
addition to what you learn from the SRP analysis.

Dumb Questions
there are no

Download at WoweBook.Com

396 Chapter 8

find the single responsibility principle

SRP Sightings
The SRP has already made a few appearances in our work so far; now that
you’re getting familiar with the SRP, it’s time for you to figure out where and 
how it’s been used. Your task is to look at the page below and figure out how 
SRP was used, and why.

This is from the dog door, back in Chapter 3.

Download at WoweBook.Com

you are here 4 397

design principles

How do you think the Single Responsibility Principle was used in Todd and Gina’s dog
door? Write your answer in the blanks below:

Now see if you can find two more instances in the book’s examples so far where we’ve
used the SRP to make our design better and more flexible. You can find the SRP in the
dog door, Rick’s instrument inventory searcher, or Gary’s game framework. Write down
each instance you found, and how you think the SRP is being used.

First Instance
Example application:

How SRP is being used:

Second Instance
Example application:

How SRP is being used:

Rick’s Instruments Doug’s Dog Doors Gary’s Games

Check off which
example application
you found the SRP
being used in.Write in how

you think
the SRP was
applied in
this example. There’s the SRP!

Rick’s Instruments Doug’s Dog Doors Gary’s Games

Download at WoweBook.Com

398 Chapter 8

SRP Sightings Revealed!
Let’s look back on the times that SRP has already shown
up in our software. Here are the SRP sightings we came
up with; see if your answers are similar.

This is from the dog door, back in Chapter 3.

finding single responsibility

Download at WoweBook.Com

you are here 4 399

design principles

How do you think the Single Responsibility Principle was used in Todd and Gina’s dog
door? Write your answer in the blanks below:

Now see if you can find two more instances in the book’s examples so far where we’ve
used the SRP to make our design better and more flexible. You can find the SRP in the
dog door, Rick’s instrument inventory searcher, or Gary’s game framework. Write down
each instance you found, and how you think the SRP is being used.

First Instance
Example application:

How SRP is being used:

Second Instance
Example application:

How SRP is being used:

Rick’s Instruments Doug’s Dog Doors Gary’s Games

We moved the code to close the dog door out of Remote.java, and avoided
duplicating the same code in the BarkRecognizer (DRY in effect there!). We
also made sure that the DogDoor class handled all tasks relating to the
operation of the dog door—it has that single responsibility.

We created a matches() method on InstrumentSpec, rather than leaving
the code to compare instruments in the search() method of Inventory. So an
InstrumentSpec handles everything related to an instrument’s properties—
that code isn’t spread out over other classes. That’s SRP in action.

When we used a Map to store properties for all types of units in the Unit
class, we were using the SRP. So instead of having game-specific Units have
to deal with their properties, and still have the base Unit class dealing with
a different set of properties, we moved all property-related functionality
into the nit class. So handling the properties feature is taken care of in ONE
single place—the Unit class.

Rick’s Instruments Doug’s Dog Doors Gary’s Games

Here’s what we
wrote about
how SRP (and
DRY) helped us
out with the
dog door.

You don’t have to hav
e

the same examples
that we found. Just
make sure the SRP
was applied in similar
ways to the ones we
wrote down here, and
you’ve got it.

Download at WoweBook.Com

400 Chapter 8

Contestant #4:
The Liskov Substitution Principle (LSP)
Next up in our design principle parade is the Liskov Substitution
Principle, or the LSP. It’s definition is as simple as it gets:

liskov substitution principle

Liskov Substitution Principle
Subtypes must be substitutable for
their base types.

The LSP is all about well-designed
inheritance. When you inherit from
a base class, you must be able to
substitute your subclass for that
base class without things going
terribly wrong. Otherwise, you’ve
used inheritance incorrectly!

OK, earlier you convinced
me that the OCP is more than just

basic inheritance, but here you are
with the subclassing thing again. We’re

programmers, we know how to use
inheritance correctly by now.

Download at WoweBook.Com

you are here 4 401

design principles

One of these things is just like another,
Use the base or its subclass, it’s not a bother,

Substitute, exchange, it doesn’t rattle me,
They all work the same, they use the LSP!

Make it Stick

Misusing subclassing: a case study in
misusing inheritance
Suppose that Gary’s Games has a new client who wants to use their
game system framework to create World War II air battles. They
need to take the basic Board base type, and extend it to support a
3-dimensional board to represent the sky. Here’s what they’ve done:

3DBoard
zpos: int
3dTiles: Tile [*][*][*]
getTile(int, int, int): Tile
addUnit(Unit, int, int, int)
removeUnit(Unit, int, int, int)
removeUnits(int, int, int)
getUnits(int, int, int): List

This is the Board
base type we
developed back in
Chapter 7.

The game designers subclassed Board and created a new type, 3DBoard.

Since Board3D
requires (x,y,z)
coordinates, it adds
a bunch of new
methods to support
3D coorindates.

Board
width: int
height: int
tiles: Tile [*][*]
getTile(int, int): Tile
addUnit(Unit, int, int)
removeUnit(Unit, int, int)
removeUnits(int, int)
getUnits(int, int): List

Download at WoweBook.Com

402 Chapter 8

When 3DBoard
subclasses Board, it
gets all of these
methods, in addition
to the new methods
it defines.

But these are
the methods that
work with (x,y,z)
coordinates... so
what did we really
gain from subclassing
the Board type?

All of these methods, that are inherited from Board don’t have any meaning in a 3D context.

The 3DBoard class is not substitutable
for Board, because none of the
methods on Board work correctly in a
3D environment. Calling a method like
getUnits(2, 5) doesn’t make sense for
3DBoard. So this design violates the LSP.

Even worse, we
don’t know
what passing a
coordinate like
(2,5) even means
to 3DBoard. This
is not a good use
of inheritance.

LSP reveals hidden problems with
your inheritance structure
At first glance, it may seem like subclassing Board and
using inheritance is a great idea. But look closer, there are
lots of problems that this approach creates:

3DBoard
zpos: int
3dTiles: Tile [*][*][*]
getTile(int, int, int): Tile
addUnit(Unit, int, int, int)
removeUnit(Unit, int, int, int)
removeUnits(int, int, int)
getUnits(int, int, int): List

Board
width: int
height: int
tiles: Tile [*][*]
getTile(int, int): Tile
addUnit(Unit, int, int)
removeUnit(Unit, int, int)
removeUnits(int, int)
getUnits(int, int): List

getTile()
addUnit()

removeUnit()
removeUnits()

getUnits()

lsp reveals inheritance problems

Download at WoweBook.Com

you are here 4 403

design principles

“Subtypes must be substitutable
for their base types”
We already said that LSP states that a subtype must be
substitutable for its base type. But what does that really
mean? Technically, it doesn’t seem to be a problem:

But when you start to actually use that instance of 3DBoard
like a Board, things can get confusing very fast:

So even though 3DBoard is a subclass of Board, it’s not
substitutable for Board... the methods that 3DBoard
inherited don’t have the same meaning as they do on the
superclass. Even worse, it’s not clear what meaning those
methods do have!

Board board = new 3DBoard();

From the compiler’s point of
view, 3DBoard can be used in
place of a Board here.

Unit unit = board.getUnits(8, 4);

Remember, board here is
actually an instance of the
subtype, 3DBoard.

But what does this method mean on 3DBoard?

Board
width: int
height: int
tiles: Tile [*][*]
getTile(int, int): Tile
addUnit(Unit, int, int)
removeUnit(Unit, int, int)
removeUnits(int, int)
getUnits(int, int): List

3DBoard
zpos: int
3dTiles: Tile [*][*][*]
getTile(int, int, int): Tile
addUnit(Unit, int, int, int)
removeUnit(Unit, int, int, int)
removeUnits(int, int, int)
getUnits(int, int, int): List

But what do these methods mean for 3DBoard? They probably don’t mean anything!

?

Inheritance (and the LSP) indicate
that any method on Board should
be able to be used on 3DBoard...
that 3DBoard can stand in for
Board without any problems.

Unit unit = removeUnits(8, 4);

Some bit of code calls a
method from Board, but
on an instance of 3DBoard.

Download at WoweBook.Com

404 Chapter 8

Violating the LSP makes for confusing code
It might seem like this isn’t such a big deal, but code that violates LSP
can be confusing, and a real nightmare to debug. Let’s think a bit about
someone who comes to use the badly designed 3DBoard for the first time.

They probably start out by checking out the class’s methods:

3DBoard
width: int
height: int
zpos: int
tiles: Tile [*][*]
3dTiles: Tile [*][*][*]
getTile(int, int): Tile
getTile(int, int, int): Tile
addUnit(Unit, int, int)
addUnit(Unit, int, int, int)
removeUnit(Unit, int, int)
removeUnit(Unit, int, int, int)
removeUnits(int, int)
removeUnits(int, int, int)
getUnits(int, int): List
getUnits(int, int, int): List

Even though some
of these methods
aren’t defined on
3DBoard, they’re all
inherited from the
base class, Board.

Hmm, I’m not sure which
version of getTile() and addUnit() to

use. Maybe those methods take an X- and
Y-coordinate for the current board... I’m

just not sure.

When you use inheritance, your subclass gets
all the methods from its superclass, even if
you don’t want those methods. And if you’ve
used inheritance badly, then you’re going to
end up with a lot of methods that you don’t
want, because they probably don’t make
sense on your subclass.

So what can you do to avoid this? First, be
sure your subclasses can substitute for their
base types, which is just following the LSP.
Second, learn about some alternatives to
using inheritance in your code...

It’s hard to understand code
that misuses inheritance.

avoid confusing code

Download at WoweBook.Com

you are here 4 405

design principles

Solving the 3DBoard problem
without using inheritance
It’s not enough to just know that inheritance isn’t the answer...
now we’ve got to figure out what we should have done. Let’s look
at the Board and 3DBoard classes again, and see how we can
create a 3-dimensional board without using inheritance.

Instead of extension, we’re using an association. So 3DBoard can use the behavior of Board, without having to extend from it and violate the LSP.

3DBoard can
store an array
of Board
objects, and
end up with a
3D collection
of boards.

boards *

The 3DBoard methods use the zpos coordinate to figure out which Board instance in the array to use, and then delegates the (x,y) coords to that Board’s functions.

This is a form of delegation.
The 3DBoard class delegates
a lot of its functionality to
the individual Board instances.

These methods look a lot
like the methods in Board,
but they need to use the
functionality in Board, rather
than extend it. So inheritance
isn’t a good option here.

The Board class has
functionality that 3DBoard
needs, but it’s not the base

type for 3DBoard.

3DBoard
zpos: int
3dTiles: Tile [*][*][*]
getTile(int, int, int): Tile
addUnit(Unit, int, int, int)
removeUnit(Unit, int, int, int)
removeUnits(int, int, int)
getUnits(int, int, int): List

Board
width: int
height: int
tiles: Tile [*][*]
getTile(int, int): Tile
addUnit(Unit, int, int)
removeUnit(Unit, int, int)
removeUnits(int, int)
getUnits(int, int): List

So what options are there besides inheritance?

Download at WoweBook.Com

406 Chapter 8

Delegate functionality to another class
You’ve already seen that delegation is when one class hands off the
task of doing something to another class. It’s also just one of several
alternatives to inheritance.

Delegation was what we used to solve the 3DBoard problem we’ve
been looking at, without resorting to inheritance:

Delegation is when you hand over
the responsibility for a particular

task to another class or method.

We just
talked about delegation. You use a normal association line for delegation.

3DBoard
delegates
functionality
related to
specific boards to
the Board class.

boards *

3DBoard
zpos: int
3dTiles: Tile [*][*][*]
getTile(int, int, int): Tile
addUnit(Unit, int, int, int)
removeUnit(Unit, int, int, int)
removeUnits(int, int, int)
getUnits(int, int, int): List

Board
width: int
height: int
tiles: Tile [*][*]
getTile(int, int): Tile
addUnit(Unit, int, int)
removeUnit(Unit, int, int)
removeUnits(int, int)
getUnits(int, int): List

use another class’s functionality

Download at WoweBook.Com

you are here 4 407

design principles

When to use delegation
Delegation is best used when you want to use another class’s functionality,
as is, without changing that behavior at all. In the case of 3DBoard, we
wanted to use the various methods in the Board class:

Since we don’t want to change the existing behavior, but we do want to
use it, we can simply create a delegation relationship between 3DBoard
and Board. 3DBoard stores multiple instances of Board objects, and
delegates handling each individual board-related task.

If you need to use functionality in another class,
but you don’t want to change that functionality,
consider using delegation instead of inheritance.

Board
width: int
height: int
tiles: Tile [*][*]
getTile(int, int): Tile
addUnit(Unit, int, int)
removeUnit(Unit, int, int)
removeUnits(int, int)
getUnits(int, int): List

These methods are all fine... in fact, we want to store an entire array of Boards, and then use each individual Board via these methods.

3DBoard
zpos: int
3dTiles: Tile [*][*][*]
getTile(int, int, int): Tile
addUnit(Unit, int, int, int)
removeUnit(Unit, int, int, int)
removeUnits(int, int, int)
getUnits(int, int, int): List

Board
width: int
height: int
tiles: Tile [*][*]
getTile(int, int): Tile
addUnit(Unit, int, int)
removeUnit(Unit, int, int)
removeUnits(int, int)
getUnits(int, int): List

Now 3DBoard uses the z
coordinate to get a Board
instance in its array, and
then delegates to a method
on that Board using the
supplied x and y coordinates.

Download at WoweBook.Com

408 Chapter 8

Use composition to assemble behaviors
from other classes
Sometimes delegation isn’t quite what you need; in delegation, the behavior
of the object you’re delegating behavior to never changes. 3DBoard always
uses instances of Board, and the behavior of the Board methods always
stay the same.

But in some cases, you need to have more than one single behavior to
choose from. For example, suppose we wanted to develop a Weapon
interface, and then create several implementations of that interface that all
behave differently:

Now we need to use the behavior from these classes in our Unit class.
One of the properties in our properties Map will be “weapon”, and
the value for that property needs to be an implementation of the Weapon
class. But a Unit might change weapons, so we don’t want to tie the
weapon property to a specific implementation of Weapon; instead, we just
want each Unit to be able to reference a Weapon, regardless of which
implementation of Weapon we want to use.

use multiple classes’s behaviors

Unit
type: String
properties: Map
setType(String)
getType(): String
setProperty(String, Object)
getProperty(String): Object

<<interface>>
Weapon

attack()

Sword
attack() Gun

attack() Club
attack()

Weapon defines an
attack() method...

...and these implementations
of Weapon all define
different behaviors for
that method.

<<interface>>
Weapon

attack()

Sword
attack() Gun

attack() Club
attack()

There’s a property in
this map called “weapon”...

...that we want to associate with an implementation of the Weapon interface.

We don’t want to be stuck with
one particular weapon... instead,
we want to choose between the
available weapon types.

Download at WoweBook.Com

you are here 4 409

design principles

When to use composition
When we reference a whole family of behaviors like in the Unit
class, we’re using composition. The Unit’s weapons property is
composed of a particular Weapon implementation’s behavior. We
can show this in UML like this:

Composition is most powerful when you want to use behavior defined
in an interface, and then choose from a variety of implementations
of that interface, at both compile time and run time.

Composition allows you to
use behavior from a family of
other classes, and to change

that behavior at runtime.

These subclasses of Weapon are all substitutable for Weapon, so inheritance is a good choice in this case.

A Unit has a Weapon, and
uses the functionality of
that class. But we don’t
want a bunch of Unit
subclasses for each type
of weapon, so composition
is better than inheritance
for the relationship
between Unit and Weapon.

Unit
type: String
properties: Map
setType(String)
getType(): String
setProperty(String, Object)
getProperty(String): Object

<<interface>>
Weapon

attack()

Sword
attack() Gun

attack() Club
attack()

This closed-in diamond at the

end of a line means composition.

Pizza is actually a great example of composition: it’s composed of different ingredients, but you can swap out different ingredients without affecting the overall pizza slice.

[note from marketing: how will

anyone take us seriously
if we compare

programming principles to pizza?]

Download at WoweBook.Com

410 Chapter 8

When the pizza is gone, so are the
ingredients...
There’s one important point we haven’t mentioned so far about
composition. When an object is composed of other objects,
and the owning object is destroyed, the objects that are part of the
composition go away, too. That’s a little confusing, so let’s take a
closer look at what that actually means.

Here’s our Unit class again, which has a composition
relationship to the Weapon interface and its implementations:

Suppose we create a new Unit, and assign its weapon property
to an instance of Sword:

What happens if this Unit is destroyed? Obviously, the
pirate variable is trashed, but the instance of Sword
referenced by pirate is also thrown away. It doesn’t exist outside of
the pirate object.

Unit
type: String
properties: Map
setType(String)
getType(): String
setProperty(String, Object)
getProperty(String): Object

<<interface>>
Weapon

attack()

Sword
attack() Gun

attack() Club
attack()

Unit pirate = new Unit();
pirate.setProperty(“weapon”, new Sword());

composition and ownership

Unit

Sword

This Unit is
composed with an instance of Sword.

This Sword object
does not exist
outside of the
context of this
particular Unit.

Unit Sword

If you get rid of th
e

pirate Unit object...
...then you’re automatically getting rid of the Sword object associated with pirate, too.

Download at WoweBook.Com

you are here 4 411

design principles

In composition, the object composed of other
behaviors owns those behaviors. When the
object is destroyed, so are all of its behaviors.

The behaviors in a composition do not exist
outside of the composition itself.

I get it... composition is
really about ownership. The main

object owns the composed behavior,
so if that object goes away, all the

behavior does, too.

Can you think of an example where the ownership
aspect of composition would be a negative in your
application? When might you want the composed
objects to exist outside of the composing class?

brain
power?

Download at WoweBook.Com

412 Chapter 8

InstrumentSpec is used as part of an Instrument, but the spec can also exist outside of an Instrument (like when it’s supplied by a customer for searching).
A line with an open
diamond at the end
means aggregation.

We were able to avoid
all those instrument-
specific subclasses by using
aggregation here.

Instrument
serialNumber: String
price: double
getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): InstrumentSpec

InstrumentSpec
properties: Map
getProperty(String): Object
getProperties(): Map
matches(InstrumentSpec): boolean

1
spec

Aggregation: composition, without
the abrupt ending
What happens when you want all the benefits of
composition—flexibility in choosing a behavior, and adhering
to the LSP—but your composed objects need to exist outside
of your main object? That’s where aggregation comes in.

You’ve already used aggregation...
We’ve been using aggregation already, in Rick’s Stringed
Instruments, from Chapter 5:

Aggregation is when one class is
used as part of another class, but
still exists outside of that other class.

The ice cream, bananas, and cherries exist outside of a banana split. Take away that fancy container, and you’ve still got the individual components.

aggregating behaviors

Download at WoweBook.Com

you are here 4 413

design principles

Aggregation versus composition
It’s easy to get confused about when you should use composition,
and when you should use aggregation. The easiest way to figure
this out is to ask yourself, Does the object whose behavior I want to use
exist outside of the object that uses its behavior?

If the object does make sense existing on its own, then you should
use aggregation; if not, then go with composition. But be careful!
Sometimes the slightest change in the usage of your objects can
make all the difference.

Five-Minute Mystery
Joel leaned back in his seat, arched his back, and thought again
about buying that new Aeron chair once his stock options came
in. Being a game programmer was hard work, and Joel was the last
coder in the office yet again.

“People are gonna go nuts over Cows Gone Wild,” he thought. He
pulled up the user guide for Gary’s Game System Framework, and
started to think about how he was going to implement the cowboys,
one of the last features he had to deal with. Suddenly, his eyes lit

upon the Unit class, and he realized that he could
use Units for cowboys, and the Weapon interface
for lassos, revolvers, and even branding irons.

Joel created Lasso, Revolver, and BrandingIron
classes, and made sure they all implemented the

Weapon interface. He even added a Weapon property
to his Building class, so the cowboys could hang their gear up at the
end of long days chasing the cows.

“This is so money... a little bit of composition, and I’ll bet boss-
man Brad will put me as the lead designer in the game credits.”
He quickly drew up a class diagram of what he had done for the
morning shift, colored in his composition diamond between the
Unit and Weapon classes, and headed for Taco Bell on the way
back to his apartment.

Little did Joel know that when he got back into work the next day,
Brad would be yelling at him, instead of congratulating him...

What did Joel do wrong?

An
sw

er
 o

n
pa

ge
 4

21

Download at WoweBook.Com

414 Chapter 8

going beyond inheritance

Inheritance is just one option
We started out this section talking about the LSP, and the
basic idea that subclasses must be substitutable for their
base classes. More importantly, though, now you have
several ways to reuse behavior from other classes, beyond
inheritance.

Let’s take a quick look back at our options for reusing
behavior from other classes, without resorting to subclassing.

Delegation

Delegate behavior to another class when you
don’t want to change the behavior, but it’s

not your object’s responsibility to implement that
behavior on its own.

Composition

You can reuse behavior from one or more
classes, and in particular from a family of
classes, with composition. Your object

completely owns the composed objects, and they
do not exist outside of their usage in your object.

Aggregation

When you want the benefits of composition,
but you’re using behavior from an object
that does exist outside of your object, use
aggregation.

If you favor
delegation,
composition, and
aggregation over
inheritance, your
software will
usually be more
flexible, and easier
to maintain, extend,
and reuse.

All three of these OO techniques allow you

to reuse behavior without violating the LSP.

Download at WoweBook.Com

you are here 4 415

design principles

Q: I thought subclassing was a good
thing. Now you’re saying it’s a bad thing?

A: No, subclassing and inheritance
are key to any good OO programming
language. The LSP is not about subclassing,
though; it’s about when to subclass. If your
subclass really is substitutable for its base
type, then you’ve probably done a good job
using inheritance. If your subclass is not
substitutable for its base type, then you might
look at other OO solutions like aggregation
or delegation.

Q: But it is OK to use delegation,
composition, or aggregation in a class
that really shouldn’t extend another
class?

A: Sure. In fact, the LSP doesn’t apply
at all to aggregate or delegate classes,
because those are two great ways to fix
an inheritance tree that doesn’t conform to
the LSP. You might even say that good use
of the LSP goes hand-in-hand with more
delegation, composition, and aggregation.

Q: Do we really need to apply the
LSP all the time to figure this out? Isn’t
this just writing good OO software?

A: Lots of times, you don’t need to
worry about the formal name of a design
principle to write good code. For example,
look back at the Board example on page
401; to make 3DBoard extend Board,
all of the methods had to be changed! That
should be a real tip-off that you’re got some
inheritance problems.

Q: There were a lot of weird UML
symbols in there. How am I supposed to
remember what they all mean?

A: You really don’t need to memorize
these symbols at all. While UML provides
specific notation for aggregation and
composition, they are all just different forms
of association. So just like we did with
delegation, you can use a normal line with an
arrow, a normal association, for composition
and aggregation.

Q: But won’t that be confusing to
developers if they don’t know what type
of association should be used?

A: That’s possible, but it also allows for
a lot more flexibility. Suppose that you decide
later on that when an army is destroyed, you
don’t want the individual units destroyed as
well. So you might change the relationship
between army and unit from composition to
aggregation.
If you’re using a basic association arrow,
you won’t need to change your class
diagram at all. It also gives the developer
freedom to come up with their own ideas
about how to implement the association.
There’s nothing wrong with using the
aggregation and composition symbols,
but you shouldn’t get too hung up on
it, especially if you’re early on in the
development cycle. You never know what
might change later, and flexibility is always
better than rigidity in your design.

Dumb Questions
there are no

Download at WoweBook.Com

416 Chapter 8

Who Am I?
A bunch of classes involved in OO principles, all in full costume, are
playing a party game, “Who Am I?” They give a clue, and you try to
guess who they are, based on what they say. Assume they always
tell the truth about themselves. If they happen to say something that
could be true for more than one of them, choose all for whom that
sentence can apply. Fill in the blanks next to the sentence with the
names of one or more attendees. The first one’s on us.

Tonight’s attendees:

Subclass Delegated Class Aggregated Class
 Delegating Class Composite Class

I’m substitutable for my base type.

I let someone else do things for me.

My behavior is used as part of
another class’s behavior.

I change the behavior of
another class.

I don’t change the behavior
of another class.

I can combine the behavior of
other classes together.

I’m not gonna go away, even
if other related classes do.

I get my behavior and
functionality from my base type.

Unmask the principles on page 420

who am i?

Download at WoweBook.Com

you are here 4 417

design principles

 BULLET POINTS

� The Open-Closed Principle keeps your software
reusable, but still flexible, by keeping classes open
for extension, but closed for modification.

� With classes doing one single thing through the
Single Responsibility Principle, it’s even easier to
apply the OCP to your code.

� When you’re trying to determine if a method is
the responsibility of a class, ask yourself, Is it this
class’s job to do this particular thing? If not, move the
method to another class.

� Once you have your OO code nearly complete, be
sure that you Don’t Repeat Yourself. You’ll avoid
duplicate code, and ensure that each behavior in
your code is in a single place.

� DRY applies to requirements as well as your code:
you should have each feature and requirement in
your software implemented in a single place.

� The Liskov Substitution Principle ensures that you
use inheritance correctly, by requiring that subtypes
be substitutable for their base types.

� When you find code that violates the LSP, consider
using delegation, composition, or aggregation to
use behavior from other classes without resorting to
inheritance.

� If you need behavior from another class but don’t
need to change or modify that behavior, you can
simply delegate to that class to use the desired
behavior.

� Composition lets you choose a behavior
from a family of behaviors, often via several
implementations of an interface.

� When you use composition, the composing object
owns the behaviors it uses, and they stop existing as
soon as the composing object does.

� Aggregation allows you to use behaviors from
another class without limiting the lifetime to those
behaviors.

� Aggregated behaviors continue to exist even after
the aggregating object is destroyed.

Download at WoweBook.Com

418 Chapter 8

Tools for your OOA&D Toolbox
We’ve got a lot more OO principles to add to

the toolbox. Let’s add what we’ve learned to our
notes—and remember: these principles are best

used together, not separately!

Good requirements ensure your system
works like your customers expect.

Make sure your requirements are complete
by developing use cases for your system.

Use your use cases to find out about
things your customers forgot to tell you.

Your use cases will reveal any incomplete
or missing requirements that you might
have.

Your requirements will always change (and
grow) over time.

Requirements

Well-designed software is easy to change
and extend.

Use basic OO principles like encapsulation
and inheritance to make your software
more flexible.

If a design isn’t flexible, then CHANGE
IT! Never settle on bad design, even if
it’s your bad design that has to change.

Make sure each of your classes is cohesive:
each of your classes should focus on doing
ONE THING really well.

Always strive for higher cohesion as you
move through your software’s design
lifecycle.

Analysis and Design Listen to the customer, and figure out what they want you to build.
Put together a feature list, in language the customer understands.
Make sure your features are what the customer actually wants.
Create blueprints of the system using use case diagrams (and use cases).
Break the big system up into lots of smaller sections.
Apply design patterns to the smaller sections of the system.
Use basic OOA&D principles to design and code each smaller section.

Solving Big Problems

OO Principles
Encapsulate what varies.
Code to an interface rather than to an
implementation.
Each class in your application should have only
one reason to change.
Classes are about behavior and functionality.

Classes should be open for extension, but closed
for modification (the OCP)

Avoid duplicate code by abstracting out things
that are common and placing them in a single
location (the DRY principle)

Every object in your system should have a
single responsibility, and all the object’s services
should be focused on carrying out that single
responsibility (the SRP)
Subclasses should be suitable for their base
classes (the LSP)

ooa&d toolbox

Download at WoweBook.Com

you are here 4 419

design principles

This one is a particularly tough puzzle: almost all the
answers are more than one word. Good luck, and keep
that left brain working.

OOA&D Cross

Download at WoweBook.Com

420 Chapter 8

Who Am I?
Solutions

A bunch of classes involved in OO principles, all in full costume, are
playing a party game, “Who Am I?” They give a clue, and you try to
guess who they are, based on what they say. Assume they always
tell the truth about themselves. If they happen to say something that
could be true for more than one of them, choose all for whom that
sentence can apply. Fill in the blanks next to the sentence with the
names of one or more attendees. The first one’s on us.

Tonight’s attendees:

Subclass Delegated Class Aggregated Class
 Delegating Class Composite Class

I’m substitutable for my base type.

I let someone else do things for me.

My behavior is used as part of
another class’s behavior.

I change the behavior of
another class.

I don’t change the behavior of
another class.

I can combine the behavior of
other classes together.

I’m not gonna go away, even if
other related classes do.

I get my behavior and
functionality from my base type.

subclass
delegating class, composite class

aggregated class

subclass

delegated class, aggregated class,
delegating class, composite class

composite class, delegating class

aggregated class, delegated class

subclass

This is a basic
delegation
definition,
but a class
that uses
composition
uses other
classes for
behavior, also.

A subclass is
the only class
that changes
another class’s
behavior.

In aggregation
and delegation,
object
instances are
tied together,
but not
dependent on
each other for
their existence.

exercise solutions

Download at WoweBook.Com

you are here 4 421

design principles

Exercise
Solutions

Five-Minute Mystery Solved
Joel’s big mistake was revealed in this line:

He even added a Weapon property to his Building class, so
the cowboys could hang their gear up at the end of long days
chasing the cows.

When Joel decided that cowboys could hang up their weapons,
he committed to the Lasso, Revolver, and BrandingIron classes
existing outside of any individual Unit instance. No cowboy owned
the gear; they just used the behavior of the gear for a time.

Since the Weapon implementations exist outside of a specific
cowboy, Joel should have used aggregation instead of composition.
Different cowboys could use the same Weapon implementation at
different times, and those weapons should stay in existence, even if
the cowboy using them was trampled by a mad cow.

Download at WoweBook.Com

Download at WoweBook.Com

this is a new chapter 423

iterating and testing9

It’s time to show the customer how much you really
care. Nagging bosses? Worried clients? Stakeholders that keep asking,

“Will it be done on time?” No amount of well-designed code will please

your customers; you’ve got to show them something working. And now

that you’ve got a solid OO programming toolkit, it’s time to learn how you

can prove to the customer that your software works. In this chapter, we

learn about two ways to dive deeper into your software’s functionality, and

give the customer that warm feeling in their chest that makes them say,

Yes, you’re definitely the right developer for this job!

The Software is Still
 for the Customer

Oh, Jim! You really do care
about what I want, don’t you?

I spent forever wondering
what I could give you to show

how much I think of your ideas,
and then I had it: a beautiful

new set of tests!

Download at WoweBook.Com

424 Chapter 9

kick-ass developers

Your toolbox is filling up
We’ve learned quite a bit so far, and our toolbox of analysis
and design tools is getting pretty full. We even added some OO
programming techniques in the last chapter:

Good requirements ensure your system
works like your customers expect.

Make sure your requirements are complete
by developing use cases for your system.

Use your use cases to find out about
things your customers forgot to tell you.

Your use cases will reveal any incomplete
or missing requirements that you might
have.

Your requirements will always change (and
grow) over time.

Requirements

Well-designed software is easy to change
and extend.

Use basic OO principles like encapsulation
and inheritance to make your software
more flexible.

If a design isn’t flexible, then CHANGE
IT! Never settle on bad design, even if
it’s your bad design that has to change.

Make sure each of your classes is cohesive:
each of your classes should focus on doing
ONE THING really well.

Always strive for higher cohesion as you
move through your software’s design
lifecycle.

Analysis and Design

Listen to the customer, and figure out what they want you to build.
Put together a feature list, in language the customer understands.
Make sure your features are what the customer actually wants.
Create blueprints of the system using use case diagrams (and use cases).
Break the big system up into lots of smaller sections.
Apply design patterns to the smaller sections of the system.
Use basic OOA&D principles to design and code each smaller section.

Solving Big Problems

OO Principles
Encapsulate what varies.
Code to an interface rather than an
implementation.
Classes are about behavior and functionality.

Classes should be open for extension, but closed
for modification (the OCP)

Avoid duplicate code by abstracting out things
that are common and placing them in a single
location (the DRY principle)

Every object in your system should have a
single responsibility, and all the object’s services
should be focused on carrying out that single
responsibility (the SRP)
Subclasses should be suitable for their base
classes (the LSP)

1. Make sure your
software does what the
customer wants it to do.

2. Apply basic
OO principles to
add flexibility.

3. Strive for a
maintainable,
reusable design.

Deploy Game

Modify Existing Game

Create New Game
Game Designer

The Game

Take Turn

Move Units

Add/Remove Units

Create Board

Gary’s Games provides frameworks that game designers can use to

create turn-based strategy games. Unlike arcade-style shoot-em-up

games and games that rely on audio and video features to engage the

player, our games will focus on the technical details of strategy and

tactics. Our framework provides the bookkeeping details to make

building a particular game easy, while removing the burden of coding

repetitive tasks from the game design.

The game system framework (GSF) will provide the core of all of

Gary’s Games. It w
ill be delivered as a library of classes with a well-

defined API that should be usable by all board game development

project teams within the company. The framework will provide standard

capabilities for:

 d
efining and representing a board configuration

 d
efining units and configuring armies or other fighting units

 m
oving units on the board

 d
etermining legal moves

 c
onducting battles

 p
roviding unit information

The GSF will sim
plify the task of developing a turn-based strategic

board game so that the users of the GSF can devote their tim
e to

implementing the actual games.

Gary’s Games

Vision Statement

UnitsBoard

Game

1946

Utilities

Controller

Gary’s Game System Framework

Feature List

1. The framework supports differe
nt types

of ter
rain.

2. The framework supports differe
nt time

periods, including fictio
nal periods like sci-

fi and fantasy.

3. The framework supports m
ultiple types of

troops or units th
at are game-specific.

4. The framework supports add-on modules

for additional campaigns or battle

scenarios.

5. The framework provides a board made

up of sq
uare tile

s, and each tile h
as a

terrain type.

6. The framework keeps up with whose turn

it is.

7. The framework coordinates basic

movement.

View

Controller

class Player {

 play(){}

 rip(){}

 burn(){}

}

controller

manipulates

the model

the m
odel notifies

the view
 of a change

in state

Controller

Graphics
Board

Units

M
odel

The 3 steps
to writing
great software
showed up back
in Chapter 1,
but we’ve been
using them
throughout
every chapter.

In Chapters 6 and 7, we used use case diagrams and a key feature list to turn a simple vision statement into an application architecture.

Our OO principles
from Chapter 8 help

us write well-designed,

flexible OO software. We’ve got a whole slew of principles and techniques to gather requirements, analyze and design, and solve all types of software problems.

Download at WoweBook.Com

you are here 4 425

iterating and testing

That’s great, really, you’re an amazing
developer, I’m sure. But I really don’t

care about any of that...
where’s my application?

But you’re still writing
your software for the
CUSTOMER!

All the tools and techniques
you’ve been learning are
terrific... but none of them
matter if you don’t use them
to produce great software that
makes your customer happy.

And most of the time, your
customer won’t care about all
the OO principles and diagrams
you create. They just want the
software to work the way that
it’s supposed to.

Gary, from Gary’s Games, is ready to see his game system framework in action.

Download at WoweBook.Com

426 Chapter 9

We really don’t have anything to
show Gary yet. All we’ve done is

start on a few of these key features,
like the Board class and the Unit

class diagram.

Joe: Yeah, maybe we shouldn’t have spent all this time on so
many diagrams, and all this architecture stuff. We’ve got nothing
to show Gary except a bunch of ovals with things like “Play
Game” written inside them.

Frank: Come on guys, we’ve got a lot more done than that. It’s
going to be simple to finish up the Board class, because we’ve 
already got a start on writing a lot of that functionality.

Jill: Well, sure, but that’s the only class we’ve written any code
for. How are we supposed to show that to Gary?

Joe: Well, I guess we could write the Unit class pretty easily,
since we did that class diagram. So it wouldn’t take a lot more
time to write the code for that class.

Frank: Exactly. And, really, we know how to write all of these
classes. We can just take each class, or even an entire package,
and apply all those OO principles and analysis and design
techniques to each chunk of functionality.

Jill: But we’ve got to work on functionality now. We don’t have
time for a bunch more big-picture analysis and design.

Frank: But that’s just the thing, Jill: we don’t need to change
what we’re doing, we just need to iterate deeper.

Joe: Iterate deeper? What does that mean?

Frank: It just means we keep doing analysis and design, but
now on each individual part of Gary’s game system framework.

Jill: And as we build up the application, we’ll have lots of pieces
working that we can show to Gary, right?

Joe: And we get to use all these tools we’ve got to make sure the
software is well-designed, too, right?

Frank: Exactly. But first, we’ve got a choice to make...

JoeFrank
Jill

iterate deeper

You write
great software
iteratively.
Work on the big
picture, and then
iterate over pieces
of the app until
it’s complete.

Download at WoweBook.Com

you are here 4 427

iterating and testing

Iterating deeper:
two basic choices
When it comes to developing software, there is more than
one way to iterate into specific parts of your application.
You’ve got to take on smaller pieces of functionality, but
there are two basic approaches to figuring out which
small pieces to work on—and even what a “small piece”
means in terms of your application.

You can choose to focus on specific
features of the application. This
approach is all about taking one
piece of functionality that the
customer wants, and working on that
functionality until it’s complete.

You can also choose to focus on
specific flows through the application.
This approach takes a complete path
through the application, with a clear
start and end, and implements that
path in your code.

Feature driven development
...is when you pick a specific feature
in your app, and plan, analyze, and
develop that feature to completion.

Use case driven development
...is when you pick a scenario
through a use case, and write code
to support that complete scenario

through the use case.

Both approaches to
iterating are driven
by good requirements.

Because requirements
come from the
customer, both
approaches focus on
delivering what the
customer wants.

You’ll often see the t
erms

“flow” and “scenario” used

interchangeably.

Download at WoweBook.Com

428 Chapter 9

Gary’s Games provides frameworks that game designers can use to

create turn-based strategy games. Unlike arcade-style shoot-em-up

games and games that rely on audio and video features to engage the

player, our games will focus on the technical details of strategy and

tactics. Our framework provides the bookkeeping details to make

building a particular game easy, while removing the burden of coding

repetitive tasks from the game design.

The game system framework (GSF) will provide the core of all of

Gary’s Games. It will be delivered as a library of classes with a well-

defined API that should be usable by all board game development

project teams within the company. The framework will provide standard

capabilities for:

 defining and representing a board configuration

 defining Units and configuring armies or other fighting units

 moving units on the board

 determining legal moves

 conducting battles

 providing unit information

The GSF will simplify the task of developing a turn-based strategic

board game so that the users of the GSF can devote their time to

implementing the actual games.

Gary’s Games
Vision Statement

Feature driven development
When you’re using feature driven development,
you work on a single feature at a time, and then
iterate, knocking off features one at a time until
you’ve finished up the functionality of an application.

features or use cases?

Units

Board

Utilities

Game

1946

Controller

View
Controller

class Player {
 play(){}
 rip(){}
 burn(){}
}
 controller

manipulates

the model

the model notifies
the view of a change

in state

Controller
Graphics

Board

Units

Model

M-V-C

Deploy Game

Modify Existing Game

Create New Game

Game Designer

The Game

Take Turn

Move Units

Add/Remove
Units

Create Board

Gary’s Game System Framework
Feature List

1. The framework supports different types
of terrain.

2. The framework supports different time
periods, including fictional periods like sci-
fi and fantasy.

3. The framework supports multiple types of
troops or units that are game-specific.

4. The framework supports add-on modules
for additional campaigns or battle
scenarios.

5. The framework provides a board made
up of square tiles, and each tile has a
terrain type.

6. The framework keeps up with whose turn
it is.

7. The framework coordinates basic
movement.

With feature driven development, you pick a single feature, and the focus is on the feature list of your app.

So we might take feature
#1, and work on the
Terrain class, as well as
the Tile class, to support
different types of terrain.

All these other plans and diagrams are used, but your feature list is the focus.
Download at WoweBook.Com

you are here 4 429

iterating and testing

Use case driven development
With use case driven development, you work on completing
a single scenario through a use case. Then you take another
scenario and work through it, until all of the use case’s scenarios
are complete. Then you iterate to the next use case, until all your
use cases are working.

Gary’s Games provides frameworks that game designers can use to

create turn-based strategy games. Unlike arcade-style shoot-em-up

games and games that rely on audio and video features to engage the

player, our games will focus on the technical details of strategy and

tactics. Our framework provides the bookkeeping details to make

building a particular game easy, while removing the burden of coding

repetitive tasks from the game design.

The game system framework (GSF) will provide the core of all of

Gary’s Games. It will be delivered as a library of classes with a well-

defined API that should be usable by all board game development

project teams within the company. The framework will provide standard

capabilities for:

 defining and representing a board configuration

 defining Units and configuring armies or other fighting units

 moving units on the board

 determining legal moves

 conducting battles

 providing unit information

The GSF will simplify the task of developing a turn-based strategic

board game so that the users of the GSF can devote their time to

implementing the actual games.

Gary’s Games
Vision Statement

Units

Board

Utilities

Game

1946

Controller

Gary’s Game System FrameworkFeature List
1. The framework supports different types of terrain.

2. The framework supports different time periods, including fictional periods like sci-fi and fantasy.
3. The framework supports multiple types of

troops or units that are game-specific.4. The framework supports add-on modules for additional campaigns or battle scenarios.
5. The framework provides a board made up of square tiles, and each tile has a terrain type.

6. The framework keeps up with whose turn
it is.

7. The framework coordinates basic movement.

View
Controller

class Player {
 play(){}
 rip(){}
 burn(){}
}
 controller

manipulates

the model

the model notifies
the view of a change

in state

Controller
Graphics

Board

Units

Model

M-V-C

Deploy Game

Modify Existing Game

Create New Game

Game Designer

The Game

Take Turn

Move Units

Add/Remove
Units

Create Board

With use case driven
development, you work from
the use case diagram, which
lists the different use
cases in your system.

Here, you could take the Create Board use case, and figure out all the scenarios for that use case, and write code to handle all of them.

Download at WoweBook.Com

430 Chapter 9

use case or feature driven

Two approaches to development
There’s just one basic way to write code, isn’t there? Well, there
are actually a ton of different ways to go about iterating deeper
and finishing up parts of  your application. Most of  these 
different approaches fall into the two basic categories we’ve been
looking at, though. So how do you decide which to use?

What’s the difference between feature driven and
use case driven development?

Feature driven development is
more granular

Use case driven development is
more “big picture”

Works well when you have a lot
of different features that don’t
interconnect a whole lot.

Is very functionality-driven. You’re not
going to forget about any features
using feature driven development.

Is very user-centric. You’ll code for
all the different ways a user can use
your system with use case driven
development.

Allows you to show the customer
working code faster.

Works well when your app has lots
of processes and scenarios rather
than individual pieces of functionality.

Allows you to show the customer
bigger pieces of functionality at each
stage of development.

Works particularly well on systems
with lots of disconnected pieces of
functionality.

Works particularly well on
transactional systems, where the
system is largely defined by lengthy,
complicated processes.

You’ll be working on pretty
major chunks of code at a time, since a single scenario often involves a lot of functionality.

A single feature
is often pretty
small, and every
application has a
lot of them.

Download at WoweBook.Com

you are here 4 431

iterating and testing

!
Welcome to “Name That Approach!” Below are several statements, and
each one is about a particular approach to iterating over parts of your
system. Your job is to figure out which approach each statement refers to.
Note that sometimes, a statement might apply to both approaches.

Name That Approach!
dd

d

n

Use Case Driven Feature Driven

This approach deals with really small pieces
of your application at a time.

This approach lets you focus on just a part
of your application at a time.

This approach is all about a complete
process in your application.

Using this approach, you can always test
to see if you’ve completed the part of the
application you’re working on.

When you use this approach, your focus is
on a diagram, not a list.

Download at WoweBook.Com

432 Chapter 9

name that approach solutions

Exercise
Solutions!

Welcome to “Name That Approach!” Below are several statements, and
each one is about a particular approach to iterating over parts of your
system. Your job is to figure out which approach each statement refers to.
Note that sometimes, a statement might apply to both approaches.

Name That Approach!
dd

d

Use Case Driven Feature Driven

This approach deals with really small pieces
of your application at a time.

This approach lets you focus on just a part
of your application at a time.

This approach is all about a complete
process in your application.

Using this approach, you can always test
to see if you’ve completed the part of the
application you’re working on.

When you use this approach, your focus is
on a diagram, not a list.

Download at WoweBook.Com

you are here 4 433

iterating and testing

Let’s use feature
driven development
Since Gary’s losing patience, let’s go with feature driven development. We can
take just a single feature and work it through to completion, and it shouldn’t
take as much time as it would to write the code to support an entire use case.

Anytime you’ve got a customer impatient to see results, you should consider
feature driven development, and starting with a feature you’ve already done
some work on.

If you decided to go with use case driven development,
what would you start working on first?

brain
power?

Gary’s Game System Framework
Feature List

1. The framework supports different types
of terrain.

2. The framework supports different time
periods, including fictional periods like sci-
fi and fantasy.

3. The framework supports multiple types of
troops or units that are game-specific.

4. The framework supports add-on modules
for additional campaigns or battle
scenarios.

5. The framework provides a board made
up of square tiles, and each tile has a
terrain type.

6. The framework keeps up with whose turn
it is.

7. The framework coordinates basic
movement.

We already have the class
diagram for Unit, so let’s
write the code for that class,
and knock off feature #3.

Unit
type: String
properties: Map
setType(String)
getType(): String
setProperty(String, Object)
getProperty(String): Object

We go back to our feature
list, from Chapters 6 and 7.

We also know that most of our other features depend on this class, so that makes it an even better candidate to start with.

Download at WoweBook.Com

434 Chapter 9

Analysis of a feature
Once you’ve decided on a feature to start with, you’ve got
to do some more analysis. Let’s start with what we had
written down on the feature list:

We also have the start of a class diagram, from Chapter 7:

It looks like we’ve got everything we need to start coding,
right? To help us make sure we haven’t forgotten anything,
let’s go back to using some textual analysis.

We don’t have a use case to analyze, but we can revisit
the vision statement for Gary’s games, and see if we’re
covering everything that Gary wanted his units to do.

Compare the class diagram for Unit with
this vision statement. Are there things
missing from our class diagram?

What else might Gary expect to see when
you say, “I’m done with writing code for
the units in your framework?”

analyze your features

3. The framework supports multiple types of
troops or units that are game-specific. Here’s what we’ve got so far... but this is still a pretty

generic description of what we need to code.
Unit

type: String
properties: Map
setType(String)
getType(): String
setProperty(String, Object)
getProperty(String): Object

This looks like the blueprint
for a good Unit class. So is
anything missing?

Gary’s Games provides frameworks that game designers can use to
create turn-based strategy games. Unlike arcade-style shoot-’em-up
games and games that rely on audio and video features to engage the
player, our games will focus on the technical details of strategy and
tactics. Our framework provides the bookkeeping details to make
building a particular game easy, while removing the burden of coding
repetitive tasks from the game design.

The game system framework (GSF) will provide the core of all of
Gary’s Games. It will be delivered as a library of classes with a well-
defined API that should be usable by all board game development
project teams within the company. The framework will provide standard
capabilities for:

 Defining and representing a board configuration
 Defining troops and configuring armies or other fighting units
 Moving units on the board

 Determining legal moves

 Conducting battles

 Providing unit information

The GSF will simplify the task of developing a turn-based strategic
board game so that the users of the GSF can devote their time to
implementing the actual games.

Gary’s Games
Vision Statement

Here’s Gary’s vision statement,
from way back in Chapter 6.

Download at WoweBook.Com

you are here 4 435

iterating and testing

Each unit should have properties, and
game designers can add new properties
to unit types in their own games.

In our class diagram, all we’ve really figured out is how to 
represent the properties of a unit. But in Gary’s vision statement,
he’s expecting his game system framework to support a lot more
than just those game-specific properties.

Here are the things we came up with that Gary is expecting units
in his framework to do:

Units have to be able to move from one
tile on a board to another.

1

2

Units can be grouped together into armies.3

Fleshing out the Unit class

Wow, great. Another list
of things you’re going to do. Look,
I trust you and all, but I need to
see something more than scraps
of paper to believe your code is

working.

This makes sense, because the key feature we were focusing on in Chapter 7 was not the entire Unit class, but just game-specific properties of a Unit.

Our class diagram is focused on
this particular aspect of the
Unit class right now.

You should have some ideas about how to handle this from our work on a related key feature back in Chapter 7.

These new
features are
all pulled
straight from
Gary’s vision
statement.

Gary isn’t satisfied with your
use cases and lists... what do you
think would make Gary believe
that what you’re working on will
satisfy his requirements?

Download at WoweBook.Com

436 Chapter 9

customer demonstrations

Showing off the Unit class
We worked on supporting game-specific units, and how
to store the properties of a Unit, back in Chapter 7.
But Gary wants more than a class diagram before he’s
convinced you’re getting any work done.

Unit groupsUnit movementUnit properties

Unit
type: String
properties: Map
setType(String)
getType(): String
setProperty(String, Object)
getProperty(String): Object

This may be what you need to start coding the Unit class, but it doesn’t do anything to prove to Gary that you’ve got working units in the game system framework.

How about a test? Can’t you come
up with a way to show me the unit has

properties, and can move around, and that
you’ve got support for armies? I want to see

your code actually running.

Your customers are used to seeing
computer programs run on a computer.
All those diagrams and lists may help
you get on the same page with them in
terms of requirements and what you’re
supposed to build, but you’re going to
need more than that before they think
you’ve built anything useful.

You need to come up with some test
scenarios that you can show to your
customer, which will prove that your
code works, and that it behaves like
your customer expects it to.

Your customers want to
see something that makes
sense to them

Download at WoweBook.Com

you are here 4 437

iterating and testing

We’ve already got one test
scenario. It’s your job to
play Gary, and think of two

more test scenarios that
we can use to prove
that the Unit class is
working like it should.

Write the output of each
scenario in the code

windows on the right.

BE the Customer

Writing test scenarios
Test cases don’t have to be very complex; they just
provide a way to show your customer that the
functionality in your classes is working correctly.

For the properties of a unit, we can start out with a
simple test scenario that creates a new Unit, and adds a
property to the unit. We could just show our customer a
running program that displays output like this:

File Edit Window Help ItWorks

%java UnitTester
Testing the Unit class...
...Created a new unit
...Set “type” to “infantry”
...Set “hitPoints” to 25
...Getting unit type: “infantry”
...Getting unit hitPoints: 25

Test complete.

We start out by
creating the Unit...

...then we set some
properties...

...and finally get
the properties
and make sure the
values match up
with what we set.

This test, although simple, lets your customer “see” that the code you’re writing really works.

File Edit Window Help Scenario2

%java UnitTester
Testing the Unit class...

Test complete.

File Edit Window Help Scenario3

%java UnitTester
Testing the Unit class...

Test complete.

Write the output you want Gary to see in these blanks.

Be careful... this “scenario” isn’t the
same as the “scenario” we’ve been
talking about in a use case scenario.

Download at WoweBook.Com

438 Chapter 9

Your job was to think of
two more test scenarios
that we can use to prove

that the Unit class
is working like it

should. Here are
the two scenarios
we came up with:

BE the Customer
Solutions

exercise solutions

File Edit Window Help ItWorks

%java UnitTester
Testing the Unit class...
...Created a new unit
...Set “type” to “infantry”
...Set “hitPoints” to 25
...Getting unit type: “infantry”
...Getting unit hitPoints: 25

Test complete.

File Edit Window Help Scenario2

%java UnitTester
Testing the Unit class...

Test complete.

...Created a new unit

...Set “hitPoints” to 25

...Set “hitPoints” to 15

...Getting unit hitPoints: 15

Here’s the first test scenario, which tests setting and getting property values.

Scenario #2: Changing property values
We decided to test setting, and then changing, the value of
a property. If the hitPoints property is set, for example,
and then set again, getting the value of hitPoints should
return the most recent value for that property:

We always begin
by creating a new
Unit, so we can test
things out.

Next we set the
value of hitPoints,
and then reset it
to a new value.

Finally, we make
sure hitPoints has the most current
value, and not the original value of 25.

This is pretty similar-looking to the first scenario, above, but it tests changing a property value, rather than just setting and retrieving a property.

Unit groupsUnit movementUnit properties

Download at WoweBook.Com

you are here 4 439

iterating and testing

File Edit Window Help Scenario3

%java UnitTester
Testing the Unit class...

Test complete.

...Created a new unit

...Set “hitPoints” to 25

...Getting unit strength: [no value]

...Getting unit hitPoints: 25

Scenario #3: Getting non-existent property values
For our third scenario, we decided to test what would happen when
you tried to retrieve the value of a property that had never been set.
Error conditions like this crop up all the time, and we don’t want our
program crashing every time a game designer makes a small typo or
mistake in their code. Here’s what we did to test this:

Start out by creating
a new Unit again.

Next, we set a
hitPoints property,
which is the normal
Unit usage.
Now let’s try and
access a property
that has no value.

Finally, make sure
the Unit still behaves
when you ask for a
property that does
have a value.

This test shows the customer that
you’re not just dealing with happy
paths... you’re thinking about how
to deal with uses of the software
that are outside of the norm.

You should test your software for every
possible usage you can think of. Be creative!

Don’t forget to test for incorrect usage of
the software, too. You’ll catch errors early,
and make your customers very happy.

Download at WoweBook.Com

440 Chapter 9

Q: We don’t have any code
written yet. Aren’t we doing things a
bit backwards by worrying about tests
right now?

A: Not at all. In fact, if you know what
tests you’re going to use before you write
your code, it’s easy to figure out what
code you’re going to need to pass those
tests. With the three test scenarios we
just developed, it should be pretty simple
to write the Unit class, and the tests tell
us exactly how our code should behave.

Q: Isn’t this just test driven
development?

A: For the most part, yes. Formally,
test driven development focuses on
automated tests, and usually involves a
testing framework like JUnit. But the idea
of writing test cases, and then writing the
code that will pass the test, is the core
idea behind test driven development.

Q: So are we using test driven
development or feature driven
development? I’m confused...

A: Both. In fact, most good software
analysis and design mixes lots of different
approaches. You might start with a use
case (use case driven development),
and then choose just a small feature
in that use case to start working on
(which is really a form of feature driven
development). Finally, you might use
tests to figure out how to implement that
feature (feature driven development).

Q: Why are the tests so simple? I
expected something a little fancier.

A: You want to keep your tests
simple, and have them test just a small
piece of functionality at a time. If you start
testing multiple things at once, it’s hard to
tell what might have caused a particular
test to fail. You may need a lot more tests,
but keep each one focused on a very
specific piece of functionality.

Q: And each test makes sure
a single method in the class works
correctly, right?

A: No, each test really focuses
on a single piece of functionality. That
might involve one method, or several
methods. For example, you can’t test
setting a property’s value (which uses
setProperty()) without getting
that property’s value as well (using
getProperty()). So it’s one piece
of functionality—setting a property—but
it takes two methods.

Q: Can you explain why you tested
getting a property that you didn’t set?
Isn’t that testing the wrong way to use
the Unit class?

A: Testing incorrect usage of your
software is usually at least as important
as testing it when it’s used properly.
Game designers could easily mistype
a property name, or write code that
expects some other piece of a game to
set a property and asks for a property
that doesn’t exist. It’s your job to know
what will happen in these situations.

Q: Now that we’ve got our tests
planned out, we can finally start coding
the Unit class, right?

A: Well, there’s one more bit of
design we need to think about first...

Dumb Questions
there are no

questions on testing

Unit groupsUnit movementUnit properties

Test driven development
focuses on getting the behavior
of your classes right.

Download at WoweBook.Com

you are here 4 441

iterating and testing

Joe: What do you mean? We figured out that all properties in a Unit 
have a name and a value. So we decided to use a Map to store them all.

Frank: And game designers can add any new properties they want by
just creating new property names, and sticking name/value pairs in the
Map with the setProperty() method.

Jill: Right. But then, we also added a type property, since all units will
have a type. And that’s something common for all units...

Joe: Sure. See, we did do the commonality analysis right.

Jill: ...but we also now know that units can be assembled into groups,
like armies or fleets or whatever. So what happens if  we have two units 
of the same type in the same group... how can we tell the difference
between them?

Frank: You think we need some sort of ID, don’t you?

Jill: Yeah, maybe. Or at least a name... but even then, you can’t really
prevent duplication with a name property, can you?

Joe: OK, but that still doesn’t mean we need to change our design. We
can just add the ID property into our property Map. So we’ve got a
nice, uniform way to access all those properties, using the getProperty()
method.

Frank: He’s right, Jill. And since we encapsulate away the details about
property names into the properties Map, we could even change from
using an ID to a name, or something totally different, and code using
the Unit class wouldn’t have to change much... you’d just need to use
the new property name in getProperty(). That’s a pretty slick design!

Jill: But what about commonality? If ID is really common to all types
of Unit, shouldn’t it be moved out of the Map, sort of like we did with
the type property?

Joe: Whoa... encapsulation or commonality. That’s tough... it seems like
we can’t do one without screwing up the other.

Joe
Frank

Guys, I’ve been looking
at our class diagram for Unit,

and I’m not sure that this is the best
way to handle things. I think our
commonality analysis might have

been a little off.

Jill

Unit
type: String
properties: Map
setType(String)
getType(): String
setProperty(String, Object)
getProperty(String): Object

Here’s the current class diagram
for Unit that Frank, Jill, and
Joe are discussing.

Download at WoweBook.Com

442 Chapter 9

Refine your commonality analysis.

Before we close the book on dealing with Unit properties, there are a few things you
still need to think through. Below are several properties that different units might
have, and two sheets of paper. Write down on the Commonality sheet the properties
that you think all units, regardless of their type, would have; on the Variability sheet,
write down properties you think only specific types of units might have.

Sharpen your pencil

commonality revisited

Commonality

Variability

Potential Unit Properties

name

type

strength

speed

stamina

weapon

hitPoints

weight

intelligence

firstName

allegiance

wingspan

landSpeed

experience

weapons

gear

lastName

id

groundSpeed

hunger

Anything
that you
think is
generic
enough
to apply
to all
units gets
written
down here.

Unit-specific stuff
goes on this sheet
of paper.

Download at WoweBook.Com

you are here 4 443

iterating and testing

Now update the Unit class diagram.

With the details from your revised commonality analysis on page 442, you (might) need
to update the Unit class diagram, shown below. Make any changes that might improve the
design of the Unit class below, and add notes to remind yourself what the purpose of any
additions you’ve made are going to be used for.

Unit
type: String
properties: Map

setType(String)
getType(): String
setProperty(String, Object)
getProperty(String): Object

Add any new properties you think Unit needs here.

You can cross out
or modify the
existing properties
of Unit, in
addition to adding
new stuff.

Change and add to
the methods in Unit
to match what you
figured out in the
commonality and
variability analysis on
the last page.

Download at WoweBook.Com

444 Chapter 9

Refine your commonality analysis.

On page 442, we showed you several properties that different units might have.
Your job was to write down on the Commonality sheet the properties that you think
all units, regardless of their type, would have; on the Variability sheet, you should
have written down properties you think only specific types of units might have.

Sharpen your pencil
answers

a matter of opinion

weapon

Commonality

name

weapons
id

We didn’t find a lot
of properties that
could apply to any
type of unit, so our
commonality page is
pretty thin.

You should definitely
have written down “type”,
since we figured out
that was common to all
units back in Chapter 7.

“name” and “id” are
pretty basic, and we
thought that all units
would probably have
both properties. “weapons” might be a bit of a controversial decision. We figured that since these are war games, all units would have at least one weapon, but that some might have more than one. So a generic “weapons” property seemed a good fit for all unit types.

We also decided that we would never
need just a single “weapon” property...
units with one weapon would have
just a single weapon in the “weapons”
property. So we ditched this property.

Unit groupsUnit movementUnit properties

type

Relax
You may have a different idea
about what makes a good game.

 You might have played different games
than we have, and come up with different

common properties. That’s OK—just focus on how
and why you made your own decisions. We’re going to
use our choices in the rest of the chapter, so you should
be comfortable with how we made our choices, too.

Download at WoweBook.Com

you are here 4 445

iterating and testing

Variability

strength
speed
stamina
hitPoints
weight
intelligence
firstName
allegiance
wingspan
landSpeed
experience
gear
lastName
groundSpeed
hunger

We moved most of the
properties onto the
Variability list, since they
only apply to certain
types of units.

hitPoints was one that
could have potentially
been common to all
units, and gone on the
Commonality list. We
kept it on Variability,
since some object units,
like tank or airplane,
didn’t map as cleanly to
hitPoints, which is usually
used for units that are
human, or at least “alive.”

Most of these
properties applied to either human-like units, or to vehicular units, but not to both.

Q: I didn’t have anything on the
Commonality list except for “type”. Where
did I go wrong?

A: You didn’t go wrong at all. Analysis
and design are all about making choices,
and sometimes you’re going to make a
different choice than another programmer.
There’s nothing wrong with that, as long as
you have good, well thought out reasons for
the decision you made.

Q: But won’t different choices at
least result in different code and design
implementations?

A: Yes, they sure will. But OOA&D,
and software development, aren’t about
making a particular decision, since many
times there isn’t an exactly “right” or exactly
“wrong” choice. They’re about writing well-
designed software, and that can happen in
a lot of different ways.

In fact, even if two programmers made
the same decision about commonality and
variability in this exercise, it can lead to
totally different design decisions when it
comes to actually writing your classes.
Let’s assume for a moment that two
developers both came up with the answers
for commonality and variability shown here,
and then tried to revise the Unit class to
reflect what they figured out...

Dumb Questions
there are no

Download at WoweBook.Com

446 Chapter 9

solution #1: focus on commonality

Unit groupsUnit movementUnit properties

Solution #1:
Emphasizing Commonality

Unit
type: String
properties: Map
id: int
name: String
weapons: Weapon [*]

setType(String)
getType(): String
setProperty(String, Object)
getProperty(String): Object
getId(): int
setName(String)
getName(): String
addWeapon(Weapon)
getWeapons(): Weapon [*]

I pulled the properties that
were common to all units into their

own variables and methods, and then
left the properties that varied in the

properties Map.

We met Sam back in
Chapter 4, when he was
working on the dog door
with Maria and Randy.

All the properties that were common across units are represented as variables outside of the properties Map.

Each of the new
properties gets its
own set of methods.

In this solution, all game designers can directly access the
id, name, and weapons properties, instead of having to
use getProperty() and work through the more generic
properties Map.

The emphasis is on keeping the common properties of
a Unit outside of the properties Map, and leaving
properties that vary inside the properties Map.

Sam figured that id
would get set in the Unit
constructor, so no need
for a setId() method.

Download at WoweBook.Com

you are here 4 447

iterating and testing

You defintely found some
commonality between different unit

types, but what about good encapsulation?
That Unit class doesn’t seem very
resistant to change, if you ask me.

Randy’s learned a lot about OO design since we saw him last in Chapter 4.

Design decisions are always a tradeoff
Sam chose to emphasize the things that are common
across all types of Units. But there are some negatives
to Sam’s design, too:

We’re repeating ourselves
Now there are two different ways
to access properties: through the
getId(), getName(), and

property-specific methods, and the
getProperty() method. Two ways

to access properties is almost certainly going to
mean duplicate code somewhere.

Maintenance is a problem
Now you’ve got property names,
like id and name, hard-
coded into the Unit class.
If a game designer doesn’t
want to use those, or wants to
change them, it’s going to be a
real hassle, and require changes to the Unit class.
This is usually where encapsulation would help,
and that leads us to Randy’s design choice...

When you see the
potential for duplicate
code, you’ll almost always
find maintenance and
flexibility issues, as well.

Download at WoweBook.Com

448 Chapter 9

solution #2: encapsulate everything

Unit groupsUnit movementUnit properties

Solution #2:
Emphasizing Encapsulation

Unit
type: String
properties: Map
setType(String)
getType(): String
setProperty(String, Object)
getProperty(String): Object

This solution focuses on encapsulating all the properties for a Unit
into the properties Map, and providing a standard interface—the
getProperty() method—for accessing all properties. Even
properties that apply to all units, like type and id, are accessed
through the properties Map in this solution.

The emphasis is on encapsulation, and a flexible design. Even if
the names of common properties change, the Unit class can stay the
same, since no property names are hardcoded into the class itself.

Randy didn’t add any new properties or methods, and he got rid of the type variable and the getType() method, moving that property into the properties Map.

I encapsulated all the
properties of every kind of Unit

into the properties Map. My class
is extremely resistant to change

now.

Download at WoweBook.Com

you are here 4 449

iterating and testing

Which developer’s solution do you think is best? Are there
times where you think one solution might be the best choice,
and other times where the other might work better?

brain
power?

But you’re totally ignoring what’s
common across Units. And how are

game designers going to know that we
intended name, type, id, and weapons

to be standard properties?

Tradeoffs with this decision, too...
Randy’s solution is more resistant to changes, and uses a lot
more encapsulation, but there are tradeoffs with this design,
as well. Here are a few of the downsides to Randy’s design:

We’re ignoring commonality
Randy encapsulated all of the
properties into the properties
Map, but now there’s nothing to

indicate that type, name, id, and
weapons are intended to be properties

common to all Unit types.

Lots of work at runtime
getProperty() returns an Object,
and you’re going to have to cast that
into the right value type for each
different property, all at runtime. That’s
a lot of casting, and a lot of extra work
that your code has to do at runtime,
even for the properties that are common
to all Unit types.

Download at WoweBook.Com

450 Chapter 9

Let’s go with the
commonality-focused solution
For Gary’s game system framework, let’s use Sam’s solution,
which pulls the common properties of a Unit out into
their own properties and methods, and leaves unit-specific
properties in a separate Map.

you have to make a choice

Unit
type: String
id: int
name: String
weapons: Weapon [*]
properties: Map
setType(String)
getType(): String
getId(): int
setName(String)
getName(): String
addWeapon(Weapon)
getWeapons(): Weapon [*]
setProperty(String, Object)
getProperty(String): Object

These properties are
common to all units.

Any other
unit- or
game-specific
properties go in this Map.

Unit groupsUnit movementUnit properties

This is all still part
of dealing with the
properties of a unit

.

Download at WoweBook.Com

you are here 4 451

iterating and testing

Q: I thought the other design, that focused on
encapsulation, was better. Is that OK?

A: Absolutely. Both design choices have
positives, and either one might work well. The only
thing you cannot do is be unwilling to change your
design—whichever one you start with—if it turns out to
not work well down the line. At each stage of iterating
through your app, you need to reevaluate your design
decisions, and make sure they’re still solid.

Q: So how do I know when I need to change
my design? My code won’t just stop working, so
what should I look out for?

A: Iteration is really the key point here. Lots
of design decisions look great at one stage of your
development, but then turn out to be a problem as you
get deeper into a particular part of your app. So once
you make a decision, stick with it, and iterate deeper
into your application. As long as your design is working,
and you’re able to use good OO principles and apply
design patterns, you’re in good shape. If you start
running into trouble with a decision, though, don’t ever
be afraid to change designs and rework things.

Q: What happens when I can’t decide between
a couple of good design choices?

A: You always have to make a choice, even if
you’re not 100% sure if it’s the right one. It’s always
better to take your best guess, and see how things
work out, rather than spend endless hours debating
one choice or another. That’s called analysis
paralysis, and it’s a sure way to not get anything done.
It’s much better to start down one path, even if you’re
not totally sure it’s the right one, and get some work
done, than to not make a choice at all.

Dumb Questions
there are no

Good software is built
iteratively. Analyze,
design, and then
iterate again, working
on smaller and smaller
parts of your app.

Each time you iterate,
reevaluate your design
decisions, and don’t be
afraid to CHANGE
something if it makes
sense for your design.

Download at WoweBook.Com

452 Chapter 9

connecting code and tests

Match your tests to your design
We’ve got test scenarios we want to show Gary, and a design
for the Unit class. The last thing we need to do before
coding is to make sure our design for Unit will allow us to
code a solution that passes all the tests.

Unit groupsUnit movementUnit properties

Unit
type: String
id: int
name: String
weapons: Weapon [*]
properties: Map
setType(String)
getType(): String
getId(): int
setName(String)
getName(): String
addWeapon(Weapon)
getWeapons(): Weapon [*]
setProperty(String, Object)
getProperty(String): Object

File Edit Window Help ItWorks

%java UnitTester
Testing the Unit class...
...Created a new unit
...Set type to “infantry”
...Set hitPoints to 25
...Getting unit type: “infantry”
...Getting unit hitPoints: 25

Test complete.File Edit Window Help Scenario2

%java UnitTester
Testing the Unit class...
...Created a new unit
...Set hitPoints to 25
...Set hitPoints to 15
...Getting unit hitPoints: 15

Test complete.

File Edit Window Help Scenario3

%java UnitTester
Testing the Unit class...
...Created a new unit
...Set hitPoints to 25
...Getting unit strength: [no value]
...Getting unit hitPoints: 25

Test complete.

We should have
methods in this class
to allow us to do
everything in all of
our tests.

Creating a unit is just
calling “new Unit()”,
so we’re all set there.

We can use setType()
and getType() to
handle this, since it’s
a common property
for all Unit types.

Any properties like hitPoints
that aren’t common to
all units can be set and
retrieved using setProperty()
and getProperty().

This tests re-setting a value, which just means another call to setProperty(), so we’re covered on this scenario.

For this test, we just need to call
getProperty(“strength”), without
ever setting the “strength” property,
and see what happens.

Download at WoweBook.Com

you are here 4 453

iterating and testing

Let’s write the Unit class
It’s been two chapters in coming, but we’re finally ready to
write the code for the Unit class. Here’s how we did it:

package headfirst.gsf.unit;

public class Unit {
 private String type;
 private int id;
 private String name;
 private List weapons;
 private Map properties;

 public Unit(int id) {
 this.id = id;
 }

 public int getId() {
 return id;
 }

 // getName() and setName() methods
 // getType() and setType() methods

 public void addWeapon(Weapon weapon) {
 if (weapons == null) {
 weapons = new LinkedList();
 }
 weapons.add(weapon);
 }

 public List getWeapons() {
 return weapons;
 }

 public void setProperty(String property, Object value) {
 if (properties == null) {
 properties = new HashMap();
 }
 properties.put(property, value);
 }

 public Object getProperty(String property) {
 if (properties == null) {
 return null;
 }
 return properties.get(property);
 }
}

We didn’t list the code for
these simple getters and
setters to save a little space.

We take the ID of the Unit
in through the constructor...

...so we only need a getId(),
and not a setId() as well.

We wait until there’s a need for a weapons list to instantiate a new List. That saves a little bit of memory, especially when there may be thousands of units.

Just like the weapons List, we

don’t create a HashMap for

properties until it’s need
ed.

Since properties might not be initialized, there’s an extra check here before looking up a property’s value.

You’ll need a simple Weapon
class to make this code
compile. We created an
empty Weapon.java, with no
methods, for testing.

class
Unit {
 Unit(){
 }
}

Unit.java

Download at WoweBook.Com

454 Chapter 9

Unit groupsUnit movementUnit properties

test cases examined

Test cases dissected...
We’ve talked a lot about test cases, but so far,
you haven’t seen how to actually write one.
Let’s examine a test case up close, and see
exactly what makes up a good test.

1 Each test case should have an ID and a name.
The names of your test cases should describe what is being tested.
Test names with nothing but a number at the end aren’t nearly as
helpful as names like testProperty() or testCreation().
You should also use a numeric ID, so you can easily list your tests
cases out (something we’ll do on the next page).

3 Each test case should have an input you
supply.
You’re going to give the test case a value, or a set of values,
that it uses as the test data. This data is usually then used to
execute some specific piece of  functionality or behavior.

4 Each test case should have an output
that you expect.
Given your input, what should the program, class, or
method output? You’ll compare the actual output of the
program with your expected output, and if they match,
then you’ve got a successful test, and your software works.

5 Most test cases have a starting state.
Do you need to open a database connection, or create a
certain object, or set some values before running your test?
If so, that’s all part of the starting state of the test case, and
needs to be handled before you run the actual test.

Try not to refer to tests as test1, test2, etc. Use descriptive names whenever possible.

If you’re setting hitPoints
to 15, then “15” becomes
the input you supply to your
test case.

This is what you want the program to output. So if you set type to “infantry”, and then call getType(), your exepcted output is “infantry”.

There’s not much starting
state for the Unit class. We
do need to create a new Unit,
but that’s about it.

2 Each test case should have one specific
thing that it tests.
Each of your test cases should be atomic: each should test
only one piece of functionality at time. This allows you
to isolate exactly what piece of functionality might not be
working in your application.

One piece of functionality may involve one method, two methods, or even multiple classes... but to start with, focus on very simple pieces of functionality, one at a time.

Download at WoweBook.Com

you are here 4 455

iterating and testing

Design your test cases.

Below is a table with 5 columns, one for each of the 5 important parts of a test
case. Your job is to fill in the table with information for the test cases we’ve
laid out in this chapter already. We’ve even done the first one to help get you
started, and filled in a few empty spots on the rest of the tests.

Sharpen your pencil

ID

1

4

What we’re testing

Setting/Getting the
type property

Input

“type”,
“infantry”
“hitPoints”,

25

Expected
Output
“type”,

“infantry”

Starting State

Existing Unit object

Existing Unit object

with hitPoints set to 25

File Edit Window Help ItWorks

%java UnitTester
Testing the Unit class...
...Created a new unit
...Set type to “infantry”
...Set hitPoints to 25
...Getting unit type: “infantry”
...Getting unit hitPoints: 25

Test complete.

File Edit Window Help Scenario2

%java UnitTester
Testing the Unit class...
...Created a new unit
...Set hitPoints to 25
...Set hitPoints to 15
...Getting unit hitPoints: 15

Test complete.
File Edit Window Help Scenario3

%java UnitTester
Testing the Unit class...
...Created a new unit
...Set hitPoints to 25
...Getting unit strength: [no value]
...Getting unit hitPoints: 25

Test complete.

There are actually
4

individual things b
eing tested

in these three sce
narios.

This test sets the “type” property to a value of “infantry.”

Remember,
there’s a
difference
between
a common
property like
type, and
unit-specific
properties.

The first
scenario tests
getting and
setting the
“type” property,
as shown here.

Download at WoweBook.Com

456 Chapter 9

Unit groupsUnit movementUnit properties

testing matters

Sharpen your pencil
answers

ID

1

 2

3

4

What we’re testing

Setting/Getting a
common property

Setting/Getting a unit-
specific property

Changing an existing
property’s value

Getting a non-existent
property’s value

Input

“type”,
“infantry”
“hitPoints”,

25
“hitPoints”,

15
N/A

Expected
Output
“type”,

“infantry”
“hitPoints”,

25
“hitPoints”,

15
“strength”,
no value

Starting State

Existing Unit object

Existing Unit object

Existing Unit object
with hitPoints set to 25

Existing Unit object
without strength value

Design your test cases.

Below is a table with 5 columns, one for each of the 5 important parts of
a test case. Your job was to fill in the table with information for the test
cases we’ve laid out in this chapter already.

Did you figure out that you needed to make sure there was no property with a previous value for this test case?

You should have
one test case
for working
with common
properties, and
one for working
with unit-
specific ones.

In most of our tests, we
want as output exactly what
we supplied as input.

The entire point of this test
is to not supply a value for a
property, and then try and
retrieve that property’s value.

Q: How did our three test scenarios turn into four test cases?

A: Because the first test case really tested two things: setting and
retrieving a common property, which has its own variable and access
method (like getType()), and setting a retrieving a unit- or game-
specific property, which is accessed through getProperty() (like
hitPoints). That’s two pieces of functionality, so two different test
cases are required.

Q: And all these tests will let us know that our software works
like it should, right?

A: It’s a good start on that, yes, but remember, we started out
writing the tests so that we could prove to the customer that the
software we’ve been writing actually will work. Our test cases let the
customer see some code actually running, as well as help us find bugs
in our code before we get too far along in our development cycle.

Dumb Questions
there are no

Download at WoweBook.Com

you are here 4 457

iterating and testing

Test Puzzle

1. Create a new class called UnitTester.java, and import the Unit
class and any related classes into it.

2.   Add a new method for each test case you figured out from the table on 
page 456. Be sure to use descriptive names for the test methods.

3. Each test method should take in an instance of Unit with any starting
state already set, and any other parameters you think you’ll need to run
the test and compare an input value with an expected output value.

5. The test method should set the supplied property name and property value
on the provided Unit, and then retrieve the expected output property
value using the expected output property name.

5. If the provided input value and expected output value match, the method
should print out “Test passed”; if they don’t match, the method should
print “Test failed”, along with the mismatched values.

6 Write a main() method that sets up the starting state for each test, and
then runs each test.

1

2

3

Your task:

The problem:

Gary wants to know that you’re making progress on supporting
units in his game system framework, and you want to be sure that
the code you’ve written for Unit.java works properly.

Now that you know what test cases are, and have several written up in table form,
you’re ready to code a test class to show your customer that your software works,
and prove to yourself that there aren’t any bugs in the code that you’ve written.

4

5

6

1. There are several things in Unit.java that are not being tested by the
scenarios on page 456. Identify what each of these are, and create a test
method for each.

2. Run these tests from your main() method as well.

1

Bonus Credit:

2

Download at WoweBook.Com

458 Chapter 9

Unit groupsUnit movementUnit properties

Test Puzzle Solutions

test puzzle solutions

public class UnitTester {

 public void testType(Unit unit, String type, String expectedOutputType) {
 System.out.println(“\nTesting setting/getting the type property.”);
 unit.setType(type);
 String outputType = unit.getType();
 if (expectedOutputType.equals(outputType)) {
 System.out.println(“Test passed”);
 } else {
 System.out.println(“Test failed: ” + outputType + “ didn’t match ” +
 expectedOutputType);
 }
 }

 public void testUnitSpecificProperty(Unit unit, String propertyName,
 Object inputValue, Object expectedOutputValue) {
 System.out.println(“\nTesting setting/getting a unit-specific property.”);
 unit.setProperty(propertyName, inputValue);
 Object outputValue = unit.getProperty(propertyName);
 if (expectedOutputValue.equals(outputValue)) {
 System.out.println(“Test passed”);
 } else {
 System.out.println(“Test failed: ” + outputValue + “ didn’t match ” +
 expectedOutputValue);
 }
 }

 public void testChangeProperty(Unit unit, String propertyName,
 Object inputValue, Object expectedOutputValue) {
 System.out.println(“\nTesting changing an existing property’s value.”);
 unit.setProperty(propertyName, inputValue);
 Object outputValue = unit.getProperty(propertyName);
 if (expectedOutputValue.equals(outputValue)) {
 System.out.println(“Test passed”);
 } else {
 System.out.println(“Test failed: ” + outputValue + “ didn’t match ” +
 expectedOutputValue);
 }
 }

Here’s the class we wrote to test the Unit class.

Each test
method has
different
parameters, since
each method is
testing different
things in the
Unit class.

Most tests end with a
comparison of the expected
output and the actual output.

Properties stored in the Map take Objects as input and output values.

This test is almost identical to test2(),
because the starting state takes care of
pre-setting the property to another value.

class
Unit-
Tester {
 test(){
 }
}

UnitTester.java

This test
assumes
you’ve set
the starting
state
correctly...
otherwise, it
will ALWAYS
fail.

Download at WoweBook.Com

you are here 4 459

iterating and testing

 public void testNonExistentProperty(Unit unit, String propertyName) {
 System.out.println(“\nTesting getting a non-existent property’s value.”);
 Object outputValue = unit.getProperty(propertyName);
 if (outputValue == null) {
 System.out.println(“Test passed”);
 } else {
 System.out.println(“Test failed with value of ” + outputValue);
 }
 }

 public static void main(String args[]) {
 UnitTester tester = new UnitTester();
 Unit unit = new Unit(1000);
 tester.testType(unit, “infantry”, “infantry”);
 tester.testUnitSpecificProperty(unit, “hitPoints”,
 new Integer(25), new Integer(25));
 tester.testChangeProperty(unit, “hitPoints”,
 new Integer(15), new Integer(15));
 tester.testNonExistentProperty(unit, “strength”);
 }
}

This last test doesn’t need an input v
alue,

because that’s what is being tested for: a

property without a preset value.

hitPoints is set to 25 in
testUnitSpecificProperty(), so
we can call testChangeProperty()
knowing that the value will be reset
in that test case.

All our main()
method needs to
do is create a new
Unit, and then run
through the tests.

ID

1

 2

3

4

5

6

7

What we’re testing

Setting/Getting the
type property

Setting/Getting a unit-
specific property

Changing an existing
property’s value

Getting a non-existent
property’s value

Getting the id property

Setting/getting the
name property

Adding/getting weapons

Input

“type”,
“infantry”
“hitPoints”,

25
“hitPoints”,

15
N/A

N/A

“name”,
“Damon”

Axe object

Expected
Output
“type”,

“infantry”
“hitPoints”,

25
“hitPoints”,

15
“strength”,
no value
1000

“name”,
“Damon”

Axe object

Starting State

Existing Unit object

Existing Unit object

Existing Unit object
with hitPoints set to 25

Existing Unit object
without strength value
Existing Unit object
with an id of 1000
Existing Unit object

Existing Unit object

This test case
doesn’t test all
common properties;
it just tests the
type property.

We need to test all
three of the other
common properties,
since each uses its
own specific methods.

And now for some bonus credit...
We added three new test cases to our table, to handle the three
properties common to all units that aren’t tested in UnitTester. You
should be able to write three additional test methods based on this
table. Did you figure these out on your own?

Download at WoweBook.Com

460 Chapter 9

Prove yourself to the customer
With a Unit class and a set of test cases, you’re ready to
show Gary some working code, and prove that you’re on the
right track to building his game system framework just the
way he wants it. Let’s show him the test class running:

show the customer

Unit groupsUnit movementUnit properties

File Edit Window Help ProveToMe

%java UnitTester

Testing setting/getting the type property.
Test passed

Testing setting/getting a unit-specific
property.
Test passed

Testing changing an existing property’s
value.
Test passed

Testing getting a non-existent property’s
value.
Test passed

Test classes aren’t
supposed to be exciting
or sexy... they just
need to prove that your
software does what it’s
supposed to do.

This is great! You really do
know what you’re doing. I’ll put a check
in the mail, and you just keep on with

the Unit class. Do you have units moving
around the board yet?

Customers that see running code tend to get happy, and keep paying you. Customers that only see diagrams get impatient and frustrated, so don’t expect much support or cash.

Download at WoweBook.Com

you are here 4 461

iterating and testing

It’s not perfect for me—I don’t need your
framework returning null all the time, and my guys
having to check for it. We’ll write our code correctly,
so if your framework gets asked for a property that

doesn’t exist, just throw an exception, OK?

Meet Sue. She manages a team of top-notch game developers, and they’re interested in using Gary’s game framework.

Let’s change the programming
contract for the game system
When you’re writing software, you’re also
creating a contract between that software and
the people that use it. The contract details how
the software will work when certain actions are
taken—like requesting a non-existent property
on a unit.

If the customer wants an action to result in
different behavior, then you’re changing the
contract. So if Gary’s framework should throw
an exception when a non-existent property
is queried, that’s fine; it just means that the 
contract between game designers and the
framework has changed.

When you program by contract,
you and your software’s users are
agreeing that your software will
behave in a certain way.

Want to know more about
what this means? Turn the
page to find out more...

Download at WoweBook.Com

462 Chapter 9

programming by contract

Unit groupsUnit movementUnit properties

We’ve been programming by
contract so far
You probably didn’t notice, but we’ve been doing
something called programming by contract in the
Unit class so far. In the Unit class, if someone asks for a
property that doesn’t exist, we’ve just returned null. We’ve
been doing the same thing in getWeapons(); if the
weapons list isn’t initialized, we just return null there, too:

The decisions we’re making now affect the Unit class and how we handle non-existent properties, so we’re still on this first bit of Unit functionality.

 public List getWeapons() {
 return weapons;
 }

 // other methods

 public Object getProperty(String property) {
 if (properties == null) {
 return null;
 }
 return properties.get(property);
 } class

Unit {
 Unit(){
 }
}

Unit.java

This list might not
be initialized, so
this could return
null if there aren’t
any weapons for
this unit.

If there aren’t
any properties, we
return null...

...and if there isn’t
a value for the
requested property,
this will return null.

This is the contract for Unit
The Unit class assumes that people using it are
competent programmers, and that they can handle null
return values. So our contract states something like this:

Unit

Hey, you look pretty smart. I’m gonna return null
if you ask for properties or weapons that don’t
exist. You can handle the null values, OK?

This is our contract... it states what we’ll do in a certain situation.

Even though
you didn’t know
it, this code
is defining a
contract for
what happens
when a property
doesn’t exist.

Download at WoweBook.Com

you are here 4 463

iterating and testing

Programming by contract is
really all about trust
When you return null, you’re trusting programmers to
be able to deal with null return values. Programmers are
basically saying that they’ve coded things well enough that
they won’t ask for non-existent properties or weapons, so
their code just doesn’t worry about getting null values back
from the Unit class:

Unit

Hey, you look pretty smart. I’m gonna return null
if you ask for properties or weapons that don’t
exist. You can handle the null values, OK?

Code using the
Unit class

Look, we know what we’re doing. Our code will
only ask you for properties that exist. So just
return null... trust us to do the right thing, OK?

And we can always change the
contract if we need to...
Back on page 461, we were asked to stop returning
null, and throw an exception instead. This really isn’t a
big change to the contract; it just means that now game
designers are going to have big problems if they ask for
non-existent properties or weapons.

You know what? We’re really confident we’re not
going to ask you for non-existent properties. In
fact, if we do, just throw an exception, and it will
crash the program, and we’ll hunt down the bug.
Trust us... throwing an exception is no problem.

Unit

Sure. As long as you know I’m going to start throwing
an Exception, we’re good to go. I’ll just change my
code, and we’ll start using this new contract.

Download at WoweBook.Com

464 Chapter 9

But if you don’t trust your users...
But what happens if you don’t think your code will be used correctly?
Or if you think that certain actions are such a bad idea that you don’t
want to let users deal with them in their own way? In these cases, you
may want to consider defensive programming.

Suppose you were really worried that game designers using the
Unit class, and asking for non-existent properties, were getting
null values and not handling them properly. You might rewrite the
getProperty() method like this:

defensive programming

 Defensive

taught here
Programming

 public Object getProperty(String property)
 throws IllegalAccessException {

 if (properties == null) {
 return null;
 throw new IllegalAccessException(
 “What are you doing? No properties!”);
 }
 return properties.get(property);
 Object value = properties.get(property);
 if (value == null) {
 throw new IllegalAccessException(
 “You’re screwing up! No property value.”);
 } else {
 return value;
 }
 }

class
Unit {
 Unit(){
 }
}

Unit.java

 Defensive

taught here
Programming

This is a defensive version of Unit.java.

This version of getProperty() can throw a CHECKED exception, so code using Unit will have to catch this exception.

Unit groupsUnit movementUnit properties

We don’t
return null
anymore... we
make a BIG
deal about
asking for a
non-existent
property.

Unit

I’m sure you’re great code and all, but I just don’t
trust you. I could send you null, and you could
totally blow up. So let’s just be safe, and I’ll send
you a checked exception that you’ll have to catch,
to make sure you don’t get a null value back and do
something stupid with it.

 Defensive

taught here
Programming

Defensive programming assumes the
worst, and tries to protect itself
(and you) against misuse or bad data.

Download at WoweBook.Com

you are here 4 465

iterating and testing

-or if they don’t trust you...
Of course, when programmers use your code, they might not
trust you either... they can program defensively as well. What if
they don’t believe that you’ll only return non-null values from
getProperty()? Then they’re going to protect their code,
and use defensive programming, as well:

This code does
a LOT of error
checking... it doesn’t
ever trust Unit to
return valid data.

 // Some method goes out and gets a unit
 Unit unit = getUnit();

 // Now let’s use the unit...
 String name = unit.getName();
 if ((name != null) && (name.length() > 0)) {
 System.out.println(“Unit name: ” + name);
 }
 Object value = unit.getProperty(“hitPoints”);
 if (value != null) {
 try {
 Integer hitPoints = (Integer)value;
 } catch (ClassCastException e) {
 // Handle the potential error
 }
 }
 // etc...

 Defensive

taught here
Programming

This code is
written extremely
defensively.

Here’s a sample of
code that uses the
Unit class.

Q: You said on page 463 that we could change the contract
to throw an exception, but then you said here that throwing an
exception is defensive programming. I’m confused...

A: It’s really not that important what kind of exception is
thrown. What’s important is how your customers and clients are
involved in that decision. In programming by contract, you work
with the client to agree on how you’re going to handle problems;
in defensive programming, you make that decision in a way that
ensures your code doesn’t crash, regardless of what the client
wants to have happen.

When we decided to switch from returning null to throwing an
exception, we did that by listening to the client, and agreeing on
that particular action as a response to a request for non-existent
properties. And we made the exception a RuntimeException,
again because the client didn’t want to add lots of try/catch
blocks to their code. They could have just as easily asked for a
checked exception, and we could have agreed—and still been
programming by contract.
Compare that to defensive programming, where we’re not really that
interested in what the client wants. In defensive programming, we’re
making sure that we aren’t responsible for crashing a program,
and we even go out of our way to try and prevent the client from
crashing their program.

Dumb Questions
there are no

Download at WoweBook.Com

466 Chapter 9

Tonight’s talk: Programming by Contract and Defensive
Programming duke it out over trust issues with programmers.

Programming by Contract Defensive Programming

It’s nice to sit down with you and meet face to face,
we really don’t see each other like this very often.

What do you mean?

Well, sure, I guess... but you can’t live your whole
life in fear of bad code. At some point, you have
to just commit to how you’re going to behave, and
trust other programmers to use you right.

Boy, it sounds like you have trust issues.

No. I trust programmers understand the contract
that I provide them.

Yeah, I really don’t like to get out much.
There’s just so much that can go wrong.

Well, I could be crossing the street, and slip on
some Banana.peel() that hadn’t been garbage
collected, or some for loop without a good
termination condition could come screaming
through the intersection... there’s a lot of bad
code out there, you know?

Are you kidding me? Have you met most of the
programmers writing the code you’re talking
about trusting? They’re too busy watching
Lost to worry about checking for bugs in their
software. If they’d stop gawking at that Kate
and her freckles, maybe I wouldn’t have to
double-check their work so much.

And you don’t?

Contract? Oh, you still think that if you
explain what you’ll do in a certain situation,
that a “good” programmer will use you
correctly? Boy, what naivete!

fireside chat: protect the programmer?

Download at WoweBook.Com

you are here 4 467

iterating and testing

Programming by Contract Defensive Programming

Haven’t you heard? Over 50% of contracts
today end in divorce... or maybe that was a
different stat, I’m not sure... anyway, do you
really think programmers are paying attention
to your little contract?

Sounds pretty callous to me. I try and help my
users, and even protect them from themselves.

Sure, sometimes I’m not the best performer, but
I sure keep everyone safe from disaster. I often
like to think of myself... a bit like Superman.

It’s true! Besides, how many times has your
code gone up in smoke because of a lazy
programmer who ignored your contract?

Short code, humph. I’d much rather have good
code. Code that keeps programmers and users
safe.

Hey, I’ve got a trust issue for you right here...

Look, my contract explicitly states what I have to do,
and what people that use me have to do.

Look, if programmers and users don’t keep their end
of the bargain, I can’t be held responsible for that. If
they violate the contract, they deserve what they get.
I can’t be held liable.

With tons of  extra code, little “if  (value == null)” 
checks everywhere? What a beating. Sounds like you
slow things down more than anything.

Superman? You did not just say that...

But that’s the point! I may not be great for lazy
programmers, but I’m terrific for programmers who
do check their work. They get a performance bump,
and their code is shorter when they use me.

And that’s what I provide, just without all the trust
issues and baggage you bring along...

I’ll show you safe code, you little...

...transmission ended... Veuillez nous aider! ... 4 8 15 ...

Download at WoweBook.Com

468 Chapter 9

Who Am I?
Feature Driven Development, Use Case Driven Development,
Programming by Contract, and Defensive Programming have
all showed up for a masquerade party, but none of them bothered to
wear name tags. They’re all a chatty bunch, though, so it’s up to you
to listen to what they’re saying, and try and figure out who’s behind
the masks. Be careful.... sometimes more than one masked guest
could be saying the same thing.

I’m very well-ordered. I prefer to take
things one step at a time, until I’ve
made it from start to finish.

Figure out who is who on page 481.

Well, sure, she said she would call,
but how can you really believe
anyone anymore?

Hey, you’re a big boy. You can deal
with that on your own... it’s really not
my problem anymore, is it?

I’m very well-behaved. In fact, I’ve been
focusing on all of my own behavior
before moving on to anything else.

Really, it’s all about my customer. I
just want to satisfy them, after all.

Oh, absolutely, requirements really
get me motivated.

As long as you’re good with it, so
am I. Who am I to tell you what to do,
so long as you know what you can
expect from me.

identify the technique

Download at WoweBook.Com

you are here 4 469

iterating and testing

Unit groupsUnit movementUnit properties

Change the programming contract for Unit.

Gary’s clients want Unit to assume they’re using it correctly. That means
that if a non-existent property is being queried, then something has truly
gone wrong in the game, and an exception needs to be thrown. Your job
is to:

1. Update Unit.java so that requests for a non-existent property result in
an exception being thrown. Figuring out the type of exception to use
is up to you.

2. Update UnitTester and the test cases that this contract change affects
to reflect this new contract.

3. Re-run UnitTester and make sure Unit.java still passes all of the tests.

Sharpen your pencil

Our answers are on the next page.

Download at WoweBook.Com

470 Chapter 9

Unit groupsUnit movementUnit properties

Sharpen your pencil
answers

changing the contract

 public Object getProperty(String property) {
 if (properties == null) {
 return null;
 throw new RuntimeException(
 “No properties for this Unit.”);
 }
 return properties.get(property);
 Object value = properties.get(property);
 if (value == null) {
 throw new RuntimeException(
 “Request for non-existent property.”);
 } else {
 return value;
 }
 } class

Unit {
 Unit(){
 }
}

Unit.java

Change the programming contract for Unit.

Gary’s clients want Unit to assume they’re using it correctly. That means
that if a non-existent property is being queried, then something has truly
gone wrong in the game, and an exception needs to be thrown.

The only method in Unit.java that you needed to change was getProperty().
Asking for a
property when
the properties
Map is null is
still asking for
a non-existent
property.

We throw a RuntimeException anytime a property that doesn’t exist is queried.

We can’t just return a

value in the Map now.
We have to make sure
the property exists,
and the value isn’t nu

ll.

Q: Why are you throwing a RuntimeException, and not a
checked exception, like IllegalAccessException?

A: If you used a checked exception, code that calls
getProperty() would have to check for that exception, in
try/catch blocks. That’s not what the client wanted; we agreed
to a contract that would let them code without having to catch for
any exceptions. So by using a RuntimeException, no extra
worked is required for their client code to use the Unit class.

Q: What about the get methods for other properties, like
weapons, name, and id?

A: id and name are an int and String, respectively, so
those aren’t a problem (id is required to create a new Unit, and
name will either be null or a String with a value). The weapons
property is a List, so if you call getWeapons() when there
aren’t any it’s going to result in a null list being returned. You could
change that method to throw an exception if the weapons list was
empty, although that wasn’t specifically asked for by the clients.

Dumb Questions
there are no

Code that uses
Unit doesn’t
have to catch a
RuntimeException...
so we’re still
programming by
contract, and not
defensively.

Download at WoweBook.Com

you are here 4 471

iterating and testing

 public void test4(Unit unit, String propertyName) {
 System.out.println(
 “\nTesting getting a non-existent property’s value.”);
 try {
 Object outputValue = unit.getProperty(propertyName);
 } catch (RuntimeException e) {
 System.out.println(“Test passed”);
 return;
 }
 System.out.println(“Test failed.”);
 } class

Unit-
Tester {
 test(){
 }
}

UnitTester.java

test4() tests asking for a
non-existent property.

We expect asking
for a non-existent
value to throw a
RuntimeException,
so we catch it...

...and use that
as an indication
for success.

If no exception is thrown,
we have a problem... the
test failed.

Be sure
that once an
exception is
thrown and you
print a “passed”
message, you exit
the test method.

Q: You said that programming by contract resulted in less
code, but it seems like we just added a lot of code to Unit.java.

A: That’s because instead of directly returning null, we throw
a new RuntimeException. But that’s more of a special case
here than the rule. Most of the time, you’ll not have much extra
code on the service side, because you’re simply returning objects
and values without checking to see if they’re non-null, or within a
particular data range.

Q: I still don’t see why we’re switching to programming by
contract here. Why is it so much better?

A: It’s not a matter of being better or worse; it’s a matter of
what your customer wants. In fact, you’ll rarely decide on your
own if you want to do programming by contract or defensive
programming. That’s something that’s usually determined by what
your customer wants, and the types of users that will be using the
software that you’re writing.

When you are programming by contract, you’re working with client
code to agree on how you’ll handle problem situations.
When you’re programming defensively, you’re making sure the client
gets a “safe” response, no matter what the client wants to have happen.

Download at WoweBook.Com

472 Chapter 9

Unit groupsUnit properties Unit movement

It took a while, but we’re
finally on to the next piece of functionality in the Unit class.

Moving units
We’ve finally finished up unit properties, and can
move on to the next item on our list:

testing the new contract

Each unit should have properties, and
game designers can add new properties
to unit types in their own games.

Units have to be able to move from one
tile on a board to another.

1

2

Units can be grouped together into armies.3

We’re on to
dealing with
movement, now.

Haven’t we been here before?
This should sound pretty familiar... we already dealt
with movement in Chapter 7:

Back in Chapter 7, we
decided that handling
movement was different
for every game.

Download at WoweBook.Com

you are here 4 473

iterating and testing

Break your apps up into smaller
chunks of functionality
We’ve been talking a lot about iterating deeper into your
application, and at each stage, doing more analysis and
design. So you’re taking each problem, and then breaking it
up (either into use cases or features), and then solving a part
of the problem, over and over. This is what we’ve been doing
in this chapter: taking a single feature, and working on that
feature until it’s complete.

But you can still break things up further...
But once you choose a single feature or use case, you can
usually break that feature up into even smaller pieces of
behavior. For example, a unit has properties and we have
to deal with unit movement. And we also need to support
groupings of units. So each of these individual pieces of
behavior has to be dealt with.

Just like when you broke your app up and began to iterate,
you’ll have to do more analysis and design at each step.
Always make sure your earlier decisions make sense, and
change or rework those decisions if they don’t.

Your decisions can iterate down, too
Lots of times you’ll find that decisions you made earlier save
you work down the line. In Gary’s system, we decided that
game designers would deal with movement on their own. So
now that we’re talking about how to handle unit movement,
we can take that decision we made earlier, and apply it here.
Since it still seems sensible—there’s no reason to change that
decision—we can have game designers worry about handling
unit movement, and move on to the next piece of behavior.

 Problem

 Feature

 Feature

 Feature

The problem here is Gary’s game system framework.

 Units

 Properties

 Movement

 Groups

We chose one
feature, and
focused on it: units
in the framework.

 Problem

 Feature

 Feature

 Use Case Feature

 Behavior

 Behavior

 Behavior
 Behavior

 Behavior
 Behavior

 Behavior

 Behavior
 Behavior

 Behavior

 Behavior
 Behavior

 Behavior

Decisions you make about
the overall problem... ...often apply to the feature and behavior level, too.

Units have to be able to move from one
tile on a board to another.

2

We can check off this next bit of behavior in the Unit class.

Just add a note
to your docs
for the game
designers that
movement is up
to them.

Download at WoweBook.Com

474 Chapter 9

Unit properties Unit movement Unit groups

grouping units is up to you

Feature Puzzle

1. Create a new class that can group units together, and both add and remove
units to the group.

2. Fill out the table below with test case scenarios that will test your software,
and prove to Gary that the grouping of units works.

3. Add methods to UnitTester to implement the test scenarios in the table,
and make sure all your tests pass.

1

2

Your task:

The problem:

Gary’s framework needs to support groups of units.

By now, you should have feature driven development, iteration,
analysis, and design down pretty solid. We’re going to leave it up
to you to handle the last bit of  behavior and finish off  the Unit
feature of Gary’s game system framework.

3

ID What we’re testing Input Expected
Output

Starting State

There’s no
guarantee that
you’ll use all these
rows... or that
you won’t need
more rows.

Solve this puzzle,
and you’ve
completed the
behavior for the
Unit feature.

See how we solved the puzzle on page 476.

Download at WoweBook.Com

you are here 4 475

iterating and testing

 BULLET POINTS

� The first step in writing good software is to
make sure your application works like the
customer expects and wants it to.

� Customers don’t usually care about diagrams
and lists; they want to see your software
actually do something.

� Use case driven development focuses
on one scenario in a use case in your
application at a time.

� In use case driven development, you focus
on a single scenario at a time, but you also
usually code all the scenarios in a single
use case before moving on to any other
scenarios, in other use cases.

� Feature driven development allows you to
code a complete feature before moving on to
anything else.

� You can choose to work on either big or small
features in feature-driven development, as
long as you take each feature one at a time.

� Software development is always iterative.
You look at the big picture, and then iterate
down to smaller pieces of functionality.

� You have to do analysis and design at each
step of your development cycle, including
when you start working on a new feature or
use case.

� Tests allow you to make sure your software
doesn’t have any bugs, and let you prove to
your customer that your software works.

� A good test case only tests one specific piece
of functionality.

� Test cases may involve only one, or several,
methods in a single class, or may involve
multiple classes.

� Test driven development is based on the
idea that you write your tests first, and
then develop software that passes those
tests. The result is fully functional, working
software.

� Programming by contract assumes both
sides in a transaction understand what
actions generate what behavior, and will
abide by that contract.

� Methods usually return null or unchecked
exceptions when errors occur in
programming by contract environments.

� Defensive programming looks for things to
go wrong, and tests extensively to avoid
problem situations.

� Methods usually return “empty” objects
or throw checked exceptions in defensive
programming environments.

Download at WoweBook.Com

476 Chapter 9

Feature Puzzle Solutions
Gary’s framework needs to support groups of units, and
should also allow groups of those groups (in as many
nestings as the game designer wants to allow).

Unit properties Unit movement Unit groups

finishing up the unit class

public class UnitGroup {
 private Map units;

 public UnitGroup(List unitList) {
 units = new HashMap();
 for (Iterator i = unitList.iterator(); i.hasNext();) {
 Unit unit = (Unit)i.next();
 units.put(unit.getId(), unit);
 }
 }

 public UnitGroup() {
 this(new LinkedList());
 }

 public void addUnit(Unit unit) {
 units.put(unit.getId(), unit);
 }

 public void removeUnit(int id) {
 units.remove(id);
 }

 public void removeUnit(Unit unit) {
 removeUnit(unit.getId());
 }

 public Unit getUnit(int id) {
 return (Unit)units.get(id);
 }

 public List getUnits() {
 List unitList = new LinkedList();
 for (Iterator i = units.entrySet().iterator(); i.hasNext();)
{
 Unit unit = (Unit)i.next();
 unitList.add(unit);
 }
 return unitList;
 }
}

UnitGroup
units: Map
addUnit(Unit)
removeUnit(int)
removeUnit(Unit)
getUnit(int): Unit
getUnits(): Unit [*]

We decided to use a
Map, storing the ID
of a unit as the key,
and the Unit object
itself as the value of
an entry.

You create a new UnitGroup by
passing in a List of the units to add
to the group initially.

By using a Map
of units, we can
retrieve and
remove units by
their ID, which
is a nice bit of
functionality.

Here’s the class diagram for
UnitGroup, to give you an overview

of what we did.

There’s a little bit of work
in returning a list of all units,
since we store the units in a
Map, but we thought it was
worth having units stored by ID.

The constructor just adds all the units to its units Map, setting the key of each entry to the ID of each unit.

Download at WoweBook.Com

you are here 4 477

iterating and testing

ID

10

11

12

13

14

15

What we’re testing

Creating a new UnitGroup
from a list of units

Adding a unit to a group

Getting a unit by its ID

Getting all the units in a
group

Removing a unit by the
ID of the unit

Removing a unit by the
Unit instance

Input

List of
units

Unit with
ID of 100

100

N/A

100

Unit with
ID of 100

Expected Output

Same list of units

Unit with ID of
100

Unit with ID of
100

List of units that
matches initial list
List of units (none
with ID of 100)

List of units (none
with ID of 100)

Starting State

No existing instance of
UnitGroup

UnitGroup with no
entries

UnitGroup with no
entries

UnitGroup with a known
list of units

UnitGroup with no
entries

UnitGroup with no
entries

We started the IDs higher, so they
wouldn’t conflict with the IDs of
the test cases we already have.

Here are the test cases
for UnitGroup that we
came up with. Did you
think of any others?

We like to start with
an empty UnitGroup, to
make sure the units we’re
working with don’t already
appear in the UnitGroup.

And now for the test cases:

You should be able to write the code for UnitTester using the test
case table shown here. If you want to see how your code compares
with ours, visit http://www.headfirstlabs.com, click on Head First 
OOA&D, and look for “UnitGroup Test Cases.”

Get online

Download at WoweBook.Com

478 Chapter 9

ooa&d toolbox

Tools for your OOA&D Toolbox
We learned about several approaches to

iterating through your project, and even a bit
about two common programming practices in this

chapter. Add all these to your toolbox:

Good requirements ensure your system
works like your customers expect.

Make sure your requirements are complete
by developing use cases for your system.

Use your use cases to find out about
things your customers forgot to tell you.

Your use cases will reveal any incomplete
or missing requirements that you might
have.

Your requirements will always change (and
grow) over time.

Requirements

Well-designed software is easy to change
and extend.

Use basic OO principles like encapsulation
and inheritance to make your software
more flexible.

If a design isn’t flexible, then CHANGE
IT! Never settle on bad design, even if
it’s your bad design that has to change.

Make sure each of your classes is cohesive:
each of your classes should focus on doing
ONE THING really well.

Always strive for higher cohesion as you
move through your software’s design
lifecycle.

Analysis and Design Listen to the customer, and figure out what they want you to build.
Put together a feature list, in language the customer understands.
Make sure your features are what the customer actually wants.
Create blueprints of the system using use case diagrams (and use cases).
Break the big system up into lots of smaller sections.
Apply design patterns to the smaller sections of the system.
Use basic OOA&D principles to design and code each smaller section.

Solving Big Problems

OO Principles
Encapsulate what varies.
Code to an interface rather than an
implementation.
Each class in your application should have only
one reason to change.
Classes are about behavior and functionality.
Classes should be open for extension, but closed
for modification (the OCP)
Avoid duplicate code by abstracting out things
that are common and placing them in a single
location (the DRY principle)
Every object in your system should have a
single responsibility, and all the object’s services
should be focused on carrying out that single
responsibility (the SRP)
Subclasses should be suitable for their base
classes (the LSP)

Development Approaches
Use case driven development takes a single use case in your system, and focuses on completing the code to implement that entire use case, including all of its scenarios, before moving on to anything else in the application.
Feature driven development focuses on a single feature, and codes all the behavior of that feature, before moving on to anything else in the application.
Test driven development writes test scenarios for a piece of functionality before writing the code for that functionality. Then you write software to pass all the tests.
Good software development usually incorporates all of these development models at different stages of the development cycle.

Programming by contract sets up an
agreement about how your software
behaves that you and users of your
software agree to abide by.

Defensive programming doesn’t trust
other software, and does extensive error
and data checking to ensure the other
software doesn’t give you bad or unsafe
information.

Programming Practices

Download at WoweBook.Com

you are here 4 479

iterating and testing

Lots of new terms in this chapter, so lots of little
square boxes to fill in for this chapter’s crossword.
Review the chapter and see if you can get them all!

OOA&D Cross

Download at WoweBook.Com

480 Chapter 9

exercise solutions

Exercise
Solutions

Download at WoweBook.Com

you are here 4 481

iterating and testing

Feature Driven Development, Use Case Driven Development,
Programming by Contract, and Defensive Programming have
all showed up for a masquerade party, but none of them bothered to
wear name tags. They’re all a chatty bunch, though, so it’s up to you
to listen to what they’re saying, and try and figure out who’s behind
the masks. Be careful.... sometimes more than one masked guest
could be saying the same thing.

I’m very well-ordered. I prefer to take
things one step at a time, until I’ve
made it from start to finish.

Well, sure, she said she would call,
but how can you really believe
anyone anymore?

Hey, you’re a big boy. You can deal
with that on your own... it’s really not
my problem anymore, is it?

I’m very well-behaved. In fact, I’ve been
focusing on all of my own behavior
before moving on to anything else.

Really, it’s all about my customer. I
just want to satisfy them, after all.

Oh, absolutely, requirements really
get me motivated.

As long as you’re good with it, so
am I. Who am I to tell you what to do,
so long as you know what you can
expect from me.

Who Am I?
Solutions

Use Case Driven Development

Defensive Programming

Feature Driven Development,
Use Case Driven Development

Feature Driven Development

All of them!

Programming by Contract

Programming by Contract

You might have added
Programming by
Contract here, since
a contract is really a
form of requirements.

All of these
techniques and tools
are really about
getting the customer
the software that
they want.

Download at WoweBook.Com

Download at WoweBook.Com

this is a new chapter 483

the ooa&d lifecycle10

Are we there yet? We’ve been working on lots of

individual ways to improve your software, but now it’s time to

put it all together. This is it, what you’ve been waiting for: we’re

going to take everything you’ve been learning, and show you

how it’s all really part of a single process that you can use over

and over again to write great software.

Putting It
 All Together

You may not see it yet, Walter,
but I’m going to take all these

pieces and turn them into one big
beautiful cake of OO goodness.

Just you wait and see...

Honey, I think you’re a great
programmer, but I just don’t see how
you’re going to combine all those little

bits and pieces into anything that
makes sense.

Download at WoweBook.Com

484 Chapter 10

assembling the pieces

Developing software, OOA&D style
You’ve got a lot of new tools, techniques, and ideas about how
to develop great software by now... but we still haven’t really
put it all together.

That’s what this chapter is all about: taking all the individual
things you know how to do—like figuring out requirements,
writing up use cases, and applying design patterns—and
turning it into a reusable process that you can use to tackle
even your trickiest software problems, over and over again.

So what does that process look like?

Feature List
Figure out what your
app is supposed to do
at a high level

Use Case Diagrams
Nail down the big
processes that your app
performs, and any external
forces that are involved.

Break Up the Problem
Break your application up
into modules of functionality,
and then decide on an order
in which to tackle each of
your modules.

Requirements
Figure out the individual
requirements for each
module, and make sure those
fit in with the big picture.

1. Make sure your software does what the customer wants it to do

Does it seem like you spend a LOT of time
worrying about functionality? That’s because
you do... if the customer isn’t happy with
what your software does, you won’t succeed.

The Object-Oriented Analysis & Design Project Lifecycle

Download at WoweBook.Com

you are here 4 485

the ooa&d lifecycle

Domain Analysis
Figure out how your use
cases map to objects in your
app, and make sure your
customer is on the same
page as you are.

Preliminary Design
Fill in details about your
objects, define relationships
between the objects, and
apply principles and patterns.

Implementation
Write code, test it, and make
sure it works. Do this for
each behavior, each feature,
each use case, each
problem, until you’re done.

Delivery
You’re done! Release your
software, submit your
invoices, and get paid.

2. Apply basic OO principles
to add flexibility.

3. Strive for a maintainable,
reusable design.

This entire section applies
to each

smaller problem... so you’ll solve a

problem using these phases, itera
te

to another problem, and use these

phases again.

These may seem like small parts of the process,

but you’ll spend most of your development

time in the design and implementation phases.

Iterative Development

The Object-Oriented Analysis & Design Project Lifecycle

Download at WoweBook.Com

486 Chapter 10

Look, I love your pretty arrows
and all those labels, but I’m not

convinced. We’ve used parts of that
process, but how am I supposed to
know using all those steps together

like that really works?

We’ve used all of the different parts of
this process to work on software projects
throughout the book, but we haven’t yet
really put it all together. But that’s all
about to change... we’re going to let you
build a pretty complex piece of software
in this chapter, from feature list to
implementation and delivery.

Along the way, you’ll see for yourself how
all the things you’ve been learning really
do help you build great software. Get
ready, this will be your final test.

Let’s build a software
project, from start to
finish, using this process.

skeptical?

Download at WoweBook.Com

you are here 4 487

the ooa&d lifecycle

Feature
List

Use Case
Diagrams

Break Up the
Problem

Requirements Domain
Analysis

Preliminary
Design

Implementation Delivery

Before we dive into the problem we’re going to be solving in this chapter, you
need to make sure you see where all the things you’ve been learning fit in the
big OOA&D Project Lifecycle. At the bottom of this page are OOA&D magnets for
lots of the things you’ve learned about already; your job is to try and put those
magnets on the right phase of the OOA&D lifecycle, shown again below.

You can put more than one magnet on each phase, and there are some magnets
you may want to use more than once, so take your time, and good luck.

OOA&D Magnets

Requirements List
Key Feature List Class DiagramAlternate Path

Analysis

Alternate Path

Design PatternEncapsulationOO Principles
External InitiatorTextual Analysis

Test Scenario

Cohesion

Commonality

Scenario

Iteration
Feature Driven DevelopmentArchitecture

Delegation

Test Driven DevelopmentArchitecture

Talk to the Customer
Variability

Design Principles

You can use each of these magnets

as many times as you like.

OOA&D GENERAL’S WARNING: Answers to this exercise do NOT appear on the next page. Go ahead and work through this chapter, and we’ll come back to these answers at the end of the chapter.

Requirements List
Textual Analysis

We’ve started a list for
the Requirements phase to help you out.

Download at WoweBook.Com

488 Chapter 10

Statement of Work

Congratulations! Based on your amazing work for Rick’s Stringed

Instruments and Doug’s Dog Doors, we’d like to commission you

to program our brand new Objectville Travel RouteFinder.

With the recent increase in travel to Objectville, we want to

provide tourists an easy way to see the wonderful sights that make

Objectville so unique. The RouteFinder should be able to store

Objectville’s complete network of subway lines, as well as all the

stations along each line. Objectville’s subways are state-of-the-art,

and can go backwards and forwards between stations, so you don’t

need to worry about the direction of any of the lines.

The RouteFinder should also be able to take a starting station, and a

destination station, and figure out a route to travel. Our travel agents

should be able to print out the route, indicating which lines to take,

which stations are passed on a line, and when travelers may need to

get off one line and get on another at a connecting station.

We pride ourselves on flexibility and extensibility in Objectville,

so we expect the RouteFinder to be easy to extend as we come up

with new ways to provide our tourists the best experience around in

object-based travel.

We look forward to seeing your design and a working RouteFinder

soon. We’re all counting on you!

Sincerely,

Orbin Traveloctic, CEO

P.S. To help you get started, we’ve provided a map of Objectville’s

subway lines, and a file with all of the stations and lines.

Objectville Travel, Inc.

210 Tourist Ave.

Objectville, HF 90210

objectville travel

The problem
Here’s the project we’re going to work through in
this chapter, from beginning to end:

Download at WoweBook.Com

you are here 4 489

the ooa&d lifecycle

This page left intentionally blank,
so you can cut out the cool
Objectville Map on the next page
and hang it up on your cubicle wall.

[note from marketing: What are you thinking? Can’t we

sell the poster as an add-on and charge extra?]

Download at WoweBook.Com

490 Chapter 10

Web Design Way

Head First Labs OCP Orchard

JSP Junction

Infinite Circle

Algebra Avenue

Servlet Springs

HTML Heights

 JavaBeans Boulevard

Ajax Rapids

CSS Center EJB Estates

UML Walk

LSP Lane

SRP Square

Design Patterns Plaza

Boards ‘R’ Us

Choc-O-Holic, Inc.

Objectville
PizzaStore

PMP Place

JavaRanch

SimUDuck Lake

GoF Gardens

XHTML Expressway

OOA&D Oval

DRY Drive

Objectville Subway Map
Legend

Local train station

Booch Line

Gamma Line

Jacobson Line

Liskov Line

Meyer Line

Rumbaugh Line

Wirfs-Brock Line

Interchange with
other lines

St
arb

uzz Coffee Starbuzz

Weather-O-Rama, Inc.

Head First Theater

Download at WoweBook.Com

you are here 4 491

Objectville Diner

Mighty Gumball, Inc.

Web Design Way

Head First Labs OCP Orchard

JSP Junction

Infinite Circle

Algebra Avenue

Servlet Springs

HTML Heights

 JavaBeans Boulevard

Ajax Rapids

CSS Center EJB Estates

UML Walk

LSP Lane

SRP Square

Design Patterns Plaza

Boards ‘R’ Us

Choc-O-Holic, Inc.

Objectville
PizzaStore

PMP Place

JavaRanch

SimUDuck Lake

GoF Gardens

XHTML Expressway

OOA&D Oval

DRY Drive

Objectville Subway Map
Legend

Local train station

Booch Line

Gamma Line

Jacobson Line

Liskov Line

Meyer Line

Rumbaugh Line

Wirfs-Brock Line

Interchange with
other lines

Download at WoweBook.Com

492 Chapter 10

This page left intentionally blank, so
you can cut out the cool Objectville
Map on the previous page and hang
it up on your cubicle wall.

scratch paper

Download at WoweBook.Com

you are here 4 493

the ooa&d lifecycle

Write the feature list for the RouteFinder app.

We’re throwing you right into things. Your job is to take the Statement
of Work on page 488, and use it to develop a feature list. You can refer
back to Chapter 6 if you need help on what features are, and what a
typical feature list looks like.

Sharpen your pencil

Feature
List

Use Case
Diagrams

Break Up the
Problem

Requirements Domain
Analysis

Preliminary
Design

Implementation Delivery

You are HERE.

Objectville RouteFinder
Feature List

1.

2.

3.

4.

5.

6.

7.

You don’t have to use
all of these blanks if
you don’t think you
need them all.

Download at WoweBook.Com

494 Chapter 10

RouteFinder feature list

Sharpen your pencil
answers

Write the feature list for the RouteFinder app.

Your job was to take the Statement of Work on page 488, and use it to
develop a feature list for the RouteFinder we’re going to build.

Objectville RouteFinder
Feature List

1. We have to be able to represent a subway line,
and the stations along that line.

2. We must be able to load multiple subway lines
into the program, including overlapping lines.

3. We need to be able to figure out a valid path
between any two stations on any lines.

4. We need to be able to print out a route
between two stations as a set of directions.

Here’s what we came up with.
Your answers may not match
ours exactly, but they should
be pretty close, and cover
these same basic four features.

Q: Why aren’t we gathering requirements? I’m still
not clear on how a feature is really that different from a
requirement, anyway.

A: Features and requirements are often used almost
interchangeably. Most of the time, though, people say “feature”
when they’re talking about BIG things that an application needs
to do. So it might take several requirements to satisfy one
feature. And since features are usually a little bigger-picture
than requirements, it’s a good idea to start any new project by
writing out a feature list, like we’ve done with the RouteFinder.

Q: Why did you list printing out the route as a separate
feature? That’s pretty easy once you’ve got a valid route
between two stations, isn’t it?

A: It probably will be, yes. But the feature list isn’t just
a list of hard problems you have to solve—it’s a list of all the
things your application has to be able to do. So even if a feature
seems easy or trivial, put it on your feature list anyway.

Dumb Questions
there are no

Lines overlap when
they both share the
same station.

Printing is a separate
feature... be sure
you have this in your
feature list.

A “valid route” might be
all on one line, or involve
several different line.

Download at WoweBook.Com

you are here 4 495

the ooa&d lifecycle

Now you should really know
what you’re supposed to do
At this point, you’ve finished up that first phase.

With a feature list in hand, you should have a good
understanding of the things that your app needs to
do. You probably even can begin to think about the
structure of your application, although we’ll spend
a lot more time on that in just a bit.

Once you’ve got your feature list down, you should
move on to use case diagrams. Those will help you
connect what your app does to how it will be used—
and that’s what customers really are interested in.

Your feature lists are all about understanding
what your software is supposed to do.

Your use case diagrams let you start thinking
about how your software will be used, without
getting into a bunch of unnecessary details.

Feature
List

Use Case
Diagrams

Break Up the
Problem

Requirements Domain
Analysis

Preliminary
Design

Implementation Delivery

Download at WoweBook.Com

496 Chapter 10

Sharpen your pencil

use case diagrams

Decide on the structure for the RouteFinder code.

With feature lists in hand, let’s look at how our app is going to be used. Below, we’ve
started a use case diagram for the RouteFinder app. For this project, there are two
actors, and just two use cases (sounds sort of simple, doesn’t it?).

It’s up to you to figure out who (or what) the two actors are, and to label the two use
cases. If you need help, refer back to Chapter 6 for more on use case diagrams.

Answers on page 498.

Download at WoweBook.Com

you are here 4 497

the ooa&d lifecycle

You are HERE.

Once you’ve got your use case diagrams figured out, you need to make sure that
your use cases match up with the features you have to deliver to the customer.
Below is the feature list for RouteFinder, as well as magnets for each feature. Place
each magnet below on one of the use cases you filled in on page 496. Make sure
you have each feature covered before turning the page.

Feature Magnets

Objectville RouteFinder
Feature List

1. We have to be able to represent a subway line,
and the stations along that line.

2. We must be able to load multiple subway lines
into the program, including overlapping lines.

3. We need to be able to figure out a valid path
between any two stations on any lines.

4. We need to be able to print out a route
between two stations as a set of directions.

Represent subway lines, and
stations along each line.

Load multiple subway
lines into the program.

Figure out a valid route
between two stops.

Print directions for a

particular route.

Each one of these magnets
should go on one of the use
cases over here.

Feature
List

Use Case
Diagrams

Break Up the
Problem

Requirements Domain
Analysis

Preliminary
Design

Implementation Delivery

Download at WoweBook.Com

498 Chapter 10

exercise solutions

Exercise
Solutions

Administrator

Travel Agent
(or Tourist)

Load network of
subway lines

Get directions

Represent subway lines, and
stations along each line.

Load multiple subway
lines into the program.

Figure out a valid route
between two stations.

Print directions for a

particular route.

Decide on the structure for the RouteFinder code, and map your
use cases back to your feature list.

You had a Sharpen Your Pencil, and a Feature Magnets to solve. You
were supposed to figure out the actors and use cases for your system,
and then make sure those use cases covered all the features we
decided RouteFinder had to support.

You might have put down Travel
Agent or another name for
this actor... just make sure you
had someone loading in the
Objectville subway lines.

In theory, a travel agent OR a tourist could use this piece of funtionality in the system.

This feature is required
functionality for this
use case to work, so we
attached it here.

Download at WoweBook.Com

you are here 4 499

the ooa&d lifecycle

You are (still) HERE.

Use cases reflect usage,
features reflect functionality
Let’s look more closely at one of the feature-use case
matches we showed you on the last page:

The “Load network of subway lines” use case really
does not directly use our feature that deals with
representing the subway. Obviously, we have to be able
to represent the subway for this use case to work, but
it’s a stretch to tie the two together like this.

That’s not a mistake, though; when we’re writing
use cases, we’re dealing with just the interactions
between actors and a system. We’re just talking about
the ways that your system is used (which is where the
term “use case” came from).

The features in your system reflect your
system’s functionality. Your system
must do those things in order for the
use cases to actually work, even though
the functionality isn’t always an explicit
part of any particular use case.

Load network of
subway lines

Represent subway lines, and
stations along each line.

Load network of
subway lines

Represent subway lines, and
stations along each line.

Get directions

These are ways that our
RouteFinder is used.

This is something the RouteFinder must do for a use case to work, but it’s not actually an interaction on its own. It’s NOT part of any use case.

A use case may depend upon a feature to
function, but the feature may not actually
be part of the steps in the use case itself.

“Load network of subway lines” depends on a
representation of the subway, but only uses
that feature indirectly.

Feature
List

Use Case
Diagrams

Break Up the
Problem

Requirements Domain
Analysis

Preliminary
Design

Implementation Delivery

Download at WoweBook.Com

500 Chapter 10

The features in your
system are what the
system does, and are not
always reflected in your
use cases, which show how
the system is used.

Features and use cases
work together, but they
are not the same thing.

Q: Didn’t you say that I should be able to match up every
feature to a use case in my system?

A: Yes, and that’s still true. Every feature in your system will
be at least a part of addressing one or more uses cases in your use
case diagram. But that doesn’t mean that the use case has to actually
directly use that feature. Lots of times, a feature makes it possible
for a use case to function without being directly used by the use case
itself.
In our RouteFinder, there would be no way to load a network of
subway lines into the system (one of our use cases) without having a
representation of a subway in the first place (one of our features). But
the “Load Network” use case doesn’t have any steps that match up
directly with that feature... the steps in the use case just assume that
a representation of the subway exists. So the use case indirectly uses
the feature, without explicitly referring to it.

Q: So is a use case a requirement, or is a feature a
requirement?

A: Both! Use cases are requirements for how people and things
(actors) interact with your system, and features are requirements
about things that your system must do. They’re related, but they are
not the same. Still, to implement a system’s use cases, you’re going
to need the functionality in the system’s features. That’s why you
should always be able to map your features to the use cases that
they enable and are used by.

Q: What happens if I find a feature that I can’t match up to a
use case, even indirectly?

A: You should take a hard look at the feature, and make sure
it really is a required part of your system. Your customer—and her
customers—only interact with your system through the use cases.
So if a feature doesn’t at least indirectly make a use case possible,
you’re customer really isn’t going to see a benefit. If you think
you’ve got a feature that doesn’t really affect how your system is
used or performs, talk it over with the customer, but don’t be afraid
to cut something if it’s not going to improve your system.

Dumb Questions
there are no

features and use cases

Download at WoweBook.Com

you are here 4 501

the ooa&d lifecycle

The Big Break-Up
We’re starting to pick up some steam. With use case diagrams in place, you’re
ready to break this problem up into some smaller pieces of functionality. There
are several ways to do this in any application, but our goal here is to keep the
RouteFinder system very modular. That means keeping different pieces of
functionality separate—each module should have a single responsibility.

Go ahead and break up the RouteFinder system into four different “modules”.
Think carefully about the best way to break up your system... it isn’t necessarily
going to line up with your four features (although it might!).

We’re really moving along.

Write the name of
what this module
does in the blank.

HINT: Remember, you need to handle the system’s functionality, but you also need to prove to the customer that your system works.

Feature
List

Use Case
Diagrams

Break Up the
Problem

Requirements Domain
Analysis

Preliminary
Design

Implementation Delivery

Download at WoweBook.Com

502 Chapter 10

The Big Break-Up, Solved
We’re starting to pick up some steam. With use case diagrams in place, you’re
ready to break this problem up into some smaller pieces of functionality.

breaking up isn’t hard to do

Subway Printer

Loader

Test
Web Design Way

Head First Labs OCP Orchard

JSP Junction

Infinite Circle

Algebra Avenue

Servlet Springs

HTML Heights

 JavaBeans Boulevard

Ajax Rapids

CSS Center EJB Estates

UML Walk

LSP Lane

SRP Square

Design Patterns Plaza

Boards ‘R’ Us

Choc-O-Holic, Inc.

Objectville
PizzaStore

PMP Place

JavaRanch

SimUDuck Lake

GoF Gardens

XHTML Expressway

OOA&D Oval

DRY Drive

Objectville Subway Map
Legend

Local trains station

Booch Line

Gamma Line

Jacobson Line

Liskov Line

Meyer Line

Rumbaugh Line

Wirfs-Brock Line

Interchange with
other lines

These three modules make
up the system... they form
a “black box” that is used by
tourists and travel agents to
get directions. We added a Testing module, because we need some code that actually proves to our customer that the system works... not only in our “perfect world”, but also in the real world.

The Subway module has all
the code that represents
stations, connections
between those stations, and
the entire subway system
itself. It also knows how
to get directions from one
station to another on its
connections and lines.

We could have several different ways to load a subway: from a file, or with user input, or even from a database. Loading is really separate from the subway representation itself, so it gets its own module.

Printing is a lot like loading:
it’s separate from the
subway system itself. This
module handles printing the
subway to any device or
format that we might need.

Test is outside the system... it interacts with the system, but isn’t part of the system itself.

Which OO principles are we using?

Check the box next to the OO principles you think we’re using to break up
the RouteFinder functionality in this manner.

Sharpen your pencil

Single Responsibility Principle

Don’t Repeat Yourself

Encapsulation

Delegation

Polymorphism

Liskov Substitution Principle

Answers on
page 504.

Download at WoweBook.Com

you are here 4 503

the ooa&d lifecycle
Iteration 1

Now start to iterate
Once you’ve broken up your software into several individual pieces
of functionality, you’re ready to start iterating over each piece of
functionality, until the application is complete.

At this point, we need to take our big-picture view of the system,
from our use case diagram, and refine that into requirements that
we can begin to tackle, one by one. For this first iteration, let’s take
the “Load network of subway lines” use case, and turn that into a
set of requirements that isn’t so big-picture. Then we can take care
of that use case, and iterate again, working on the next use case.

Administrator

Travel Agent
(or Tourist)

Load network of
subway lines

Get directions

Write the use case for loading subway lines.

Turn that little oval into a full-blown use case. Write the steps
that RouteFinder needs to take to implement the “Load network
of subway lines” use case.

Sharpen your pencil

1.

2.

3.

4.

5.

6.

Load network of subway lines
Use Case

You can use
more room, or
more steps, if
you need them.

What approach to development are we using?

Sharpen your pencil
We’re taking the
first use case from
our diagram, and
starting with it.

Not too sure about this use case? It’s OK... turn the page for some help...

Download at WoweBook.Com

504 Chapter 10

You’ve just uncovered a “secret step” in our process
for writing software the OOA&D way:

If you get stuck writing a use case, there’s nothing
wrong with taking a step back, and examining the
problem you’re trying to solve a bit. Then, you can
go back to your use case, and have a better chance of
getting it written correctly.

You’ll often have to do some extra
work between breaking up the
problem and writing your use cases.

what’s a subway?

How am I supposed to write this use
case? I’m not totally sure I know what a

subway line even is yet. And what about that
file that Objectville travel said they were going

to send over to us? Won’t that affect how we
write our use case?

Which OO principles are we using?

Check the box next to the OO principles you think we used to break up the
RouteFinder functionality into separate modules.

Single Responsibility Principle

Don’t Repeat Yourself

Encapsulation

Delegation

Polymorphism

Liskov Substitution Principle

By breaking up
printing, loading,
and representing
the subway into
three modules,
we’re making sure
each module has
only one reason
to change.

We’ve encapsulated printing and loading, which might vary, away from the subway, which should stay the same.

It’s not clear
if we’re using
delegation
yet, although
with SRP and
encapsulation, we
probably will at
some point.

Sharpen your pencil
answers

Feature
List

Use Case
Diagrams

Break Up the
Problem

Requirements Domain
Analysis

Preliminary
Design

Implementation Delivery

Understand

the Problem

We really don’t understand our problem well enough to write better requirements yet.
Here’s the “extra step” that
we sometimes need to take.

Download at WoweBook.Com

you are here 4 505

the ooa&d lifecycle
Iteration 1

A closer look at representing a subway
Before we can figure out how to load a subway line, there are two
things we need to get a good grasp of:

1. Understanding the basics of what a subway system is.

2. Understanding the information an administrator would have
when they’re loading a set of subway stations and lines.

1

2

We’re on Iteration 1, trying
to handle the first use
case: loading a network of
subway lines.

What is a station?
A subway system has stations, and connections between those stations,
and lines that are groups of connections. So let’s begin by figuring out
exactly what a station is.

OOA&D OvalA station is just a
point on the map,
with a name.

And a connection between two stations?
As soon as you start adding several stations, you’ve got to deal with the
connections between those stations:

These are both
stations, each with
a simple name.

This connection is part of a subway line.

Then a line is just a series of connections...
If you put several connections together, then you’ve got a subway line.

A subway line is a series of
stations, each connected
one to another.

W
ha

t a
pp

ro
ac

h
to

 d
ev

el
op

m
en

t a
re

w

e
us

in
g

in
 th

is
 c

ha
pt

er
?

Sha
rpe

n y
our

 pe
ncil

an
sw

er
s

Us
e-

ca
se

 d
ri

ve
n

de
ve

lo
pm

en
t

Download at WoweBook.Com

506 Chapter 10

Let’s take a look at that subway file
We’ve got a basic idea now of what a subway is, so let’s see what kind
of data we’ve got to work with. Remember, Objectville Travel said
they would send us a file with all the stations and lines, so this should
give us an idea of what an administrator will use to load the lines into
the subway system.

loading a subway network

ObjectvilleSubway.txt,
the file that Objectville
Travel sent us to load
the subway lines from.

Ajax Rapids
HTML Heights
JavaBeans Boulevard
LSP Lane
Head First Labs
Objectville PizzaStore
UML Walk
XHTML Expressway
Choc-O-Holic, Inc.
Head First Theater
Infinite Circle
CSS Center
OOA&D Oval
SimUDuck Lake
Web Design Way

... more station names...

Booch Line
Ajax Rapids
HTML Heights
JavaBeans Boulevard
LSP Lane
Head First Labs
Objectville PizzaStore
UML Walk
Ajax Rapids

Gamma Line
OOA&D Oval
Head First Lounge
OOA&D Oval

Jacobson Line
Servlet Springs

... more stations on this line...

... more lines...

The file starts out
with a list of all the
station names.

This is the name
of the line...

...and here are the
stations on this
line, in order.

There is an empty line
between each subway line.

Since these lines form loops, the
first station also appears as the
last station, forming a cycle.

Feature
List

Use Case
Diagrams

Break Up the
Problem

Requirements Domain
Analysis

Preliminary
Design

Implementation Delivery

We’re HERE.

Download at WoweBook.Com

you are here 4 507

the ooa&d lifecycle
Iteration 1

Write the use case for loading subway lines.

You should have enough understanding of what a subway system is, and
the format of the Objectville Subway input file, to write this use case now.

Sharpen your pencil

1.

2.

3.

4.

5.

6.

7.

8.

9.

Load network of subway lines
Use Case

You can use
more room, or
more steps, if
you need them.

Download at WoweBook.Com

508 Chapter 10

the finished use case

Write the use case for loading subway lines.

You should have enough understanding of what a subway system is, and
the format of the Objectville Subway input file, to write this use case now.

Sharpen your pencil
answers

Load network of subway lines
Use Case

The first step is the
start condition: the
loader gets a new file
to load from.

Did you get this step?
We really don’t want our
system to have duplicate
stations... that could be
a real problem later on.

This is really only
one possible way to
write the use case.
Instead of creating a

“SubwayLine” object,
we decided to just
give the subway
each connection,
and associate the
connection with a
particular subway line.Here’s another step

where we validate
input, to make sure the
connection is valid for
the current subway. You didn’t have to

write this down,
but we thought
it was important
to remember
that subways in
Objectville can
go in EITHER
direction.

Q: My use case looks totally different. Is your use case the
only solution to the puzzle?

A: No, not at all. By now you realize that there are lots of
decisions you have to make to solve any problem, and our use case
simply reflects the decisions we made. We’re going to work with this
particular use case throughout the rest of this chapter, so make sure
you understand our reasoning behind it, but it’s perfectly OK if you
came up with your own use case that solves the same problem of
loading a network of subway stations and lines.

Q: I didn’t add any steps about validation to my use case. Is
that OK?

A: Validation is something that you should add to your use
case if you left it out. Making sure the stations for a connection
actually exist is a lot like not having a dog door automatically close. It
seems innocent enough, until the real world creeps in, and someone
misspells a station name. Suddenly, you have the equivalent of
software rodents: a connection that goes to a non-existent station. So
if you left out validation, be sure to add it in to your own use case.

Dumb Questions
there are no

1. The administrator supplies a file of stations and lines.

2. The system reads in the name of a station.

3. The system validates that the station doesn’t already exist.

4. The system adds the new station to the subway.

5. The system repeats steps 2-4 until all stations are added.

6. The system reads in the name of a line to add.

7. The system reads in two stations that are connected.

8. The system validates that the stations exist.

9. The system creates a new connection between the two
stations, going in both directions, on the current line.

10. The system repeats steps 7-9 until the line is complete.

11. The system repeats steps 6-10 until all lines are entered.Steps like this, which
indicate repeating other steps, help make your
use cases a little more readable and concise.

Download at WoweBook.Com

you are here 4 509

the ooa&d lifecycle
Iteration 1

Let’s see if our use case works
The use case for loading a network is a little tricky, and has several
groups of steps that repeat. Let’s check the flow of things against our
text file before we go on to analyzing the use case, and starting to
design the classes in our system.

Ajax Rapids
HTML Heights
JavaBeans Boulevard
LSP Lane
Head First Labs
Objectville PizzaStore
UML Walk
XHTML Expressway
Choc-O-Holic, Inc.
Head First Theater
Infinite Circle
CSS Center
OOA&D Oval
SimUDuck Lake
Web Design Way

... more station names...

Booch Line
Ajax Rapids
HTML Heights
JavaBeans Boulevard
LSP Lane
Head First Labs
Objectville PizzaStore
UML Walk
Ajax Rapids

Gamma Line
OOA&D Oval
Head First Lounge
OOA&D Oval

Jacobson Line
Servlet Springs

... more stations on this line...

... more lines...

#1. The administrator
supplies a file like this to
the system loader.

#2. The system reads in a
station name.

#3. The system makes sure
this station hasn’t already
been entered in.

#4. The system adds the
station to the subway.

#5. The system repeats
these steps until all the
stations are entered.

#6. The system reads in
the name of a line.

#7. The system reads in the two
stations connected on the line.

#8. The system makes sure both
stations actually exist on the subway.

#9. The system creates a new
connection between the stations.

#10. These steps are repeated
for each successive pair of
stations on the line.

#11. The entire process of
adding a line is repeated for
each line in the file.

Download at WoweBook.Com

510 Chapter 10

Analysis and Design Puzzle
This time, it’s your job to take on two phases of the OOA&D process at once.
First, you need to perform textual analysis on the use case below, and figure out
the nouns that are candidate classes, and the verbs that are candidate operations.
Write the nouns and verbs in the blanks provided below the use case.

analysis and design puzzle

Nouns (candidate classes):

Verbs (candidate operations):

Load network of subway lines
Use Case

1. The administrator supplies a file of stations and lines.
2. The system reads in the name of a station.
3. The system validates that the station doesn’t already exist.
4. The system adds the new station to the subway.
5. The system repeats steps 2-4 until all stations are added.
6. The system reads in the name of a line to add.
7. The system reads in two stations that are connected.
8. The system validates that the stations exist.
9. The system creates a new connection between the two

stations, going in both directions, on the current line.
10. The system repeats steps 7-9 until the line is complete.
11. The system repeats steps 6-10 until all lines are entered.

Download at WoweBook.Com

you are here 4 511

the ooa&d lifecycle

Feature
List

Use Case
Diagrams

Break Up the
Problem

Requirements Domain
Analysis

Preliminary
Design

Implementation Delivery

Iteration 1

It’s on to preliminary design. Using the candidate nouns and verbs you got from
the use case, draw a class diagram below of what you think the subway system
might look like modeled in code. Use associations and any other UML notation
you think will help make your design clear and understandable.

This part of the puzzle
is domain analysis... ...and this part is

preliminary design.

Download at WoweBook.Com

512 Chapter 10

Analysis and Design Puzzle Solutions

puzzle solutions

Nouns (candidate classes):

Verbs (candidate operations):

administrator
file

system
station

subway
connection

We know
that actors
are outside
the system,
so no class
needed here.

These are easy... they all
appear on our class diagram.

line

This is an input to our system, not something we model in our system.

We decided not to create
a Line class... more on that
when you turn the page.

Load network of subway lines
Use Case

1. The administrator supplies a file of stations and lines.

2. The system reads in the name of a station.

3. The system validates that the station doesn’t already exist.

4. The system adds the new station to the subway.

5. The system repeats steps 2-4 until all stations are added.

6. The system reads in the name of a line to add.

7. The system reads in two stations that are connected.

8. The system validates that the stations exist.

9. The system creates a new connection between the two
stations, going in both directions, on the current line.

10. The system repeats steps 7-9 until the line is complete.

11. The system repeats steps 6-10 until all lines are entered.

reads in
validates station

adds a station adds a connection
repeatssupplies a file

Most of these directly map
to methods on our classes.

We can use Java’s
I/O operations to
handle this.

Download at WoweBook.Com

you are here 4 513

the ooa&d lifecycle
Iteration 1

Station
name: String
getName(): String
equals(Object): boolean
hashCode(): int

Connection
lineName: String
getStation1(): Station
getStation2(): Station
getLineName(): String

Subway

addStation(String)
hasStation(String): boolean
addConnection(String, String, String)

*stations *connections

station1

station2

Station is pretty
simple... it has a
name, and that’s
about it. We’ll come
back to why we
added an equals()
and hashCode()
method in a minute.

A connection has
two stations and
the name of the
line the connection
is a part of.

You should not call these attributes
start and stop, or beginning and
end, since subways in Objectville
go both ways. We just went with
station1 and station2.

Subway has a collection of
the stations in the subway,
as well as the connections
among its stations.

This is the main object
we’ll be working with, and
we need a method to
add stations, and to add
connections.

You should have figured ou
t

from the use case that you’ll

need an operation to see i
f a

station exists. This is part

of validating stations, in s
teps

#2 and #5.

SubwayLoader

loadFromFile(File): Subway
The actual loader class h

as very

little functionality... it
 just takes in

a File, and generates a new
 instance

of Subway from that file.

Feature
List

Use Case
Diagrams

Break Up the
Problem

Requirements Domain
Analysis

Preliminary
Design

Implementation Delivery

We’re doing design, and heading towards
implementation for this iteration.

This class uses all the functionality
in Subway to create a subway from
a text file of stations and lines.

Download at WoweBook.Com

514 Chapter 10

To use a Line class or not to use a
Line class... that is the question
It was pretty easy to look at our use case and figure out that we
need a Station, Connection, and Subway class—those
are fundamental to our system. But then we decided to not
create a Line class. Instead, we just assigned a line name to
each connection:

We made this decision based on one thing: we know how the
system is going to be used. In the original Statement of
Work (back on page 488) from Objectville Travel, we were told
we needed to represent a subway, and get directions between
one station and another. Once we have those directions, we can
simply ask each connection for its line; there doesn’t seem to be
a need for an actual Line class.

design decisions

Connection
station1: Station
station2: Station
lineName: String
getStation1(): Station
getStation2(): Station
getLineName(): String

Lines only exist
as String names
attached to
a particular
Connection.

Your design
decisions should
be based on how
your system
will be used, as
well as good OO
principles.

Even if it turns out we need to
add a Line class later, that’s no big

deal. This is a preliminary design, and
we can change it if we need to once

we start writing our code.

Download at WoweBook.Com

you are here 4 515

the ooa&d lifecycle

Q: I found the “validates that a station exists” verb,
but where does that operation appear on any of the classes
in your design?

A: We modeled that operation as hasStation()
on the Subway class. You could have called that operation
validate() or validateStation(), but those aren’t
as descriptive as hasStation(), and you should always try
and make your code as readable as possible.

Q: Could you talk a little more about how you showed
those repeated steps in the use case?

A: Lots of times a use case has a set of steps that need
to be repeated, but there’s not a standard way to show that in
use cases. So we just made one up! The point of a use case
is to provide you with a clear set of steps that detail what your
system should do, and we thought the clearest way to show
those repeated steps was to write down “Repeat Steps 7-9.”

Q: I’ve been thinking about that subway
representation, and it looks a lot like a graph data structure
to me. Why aren’t we using a graph?

A: Wow, you must have taken a data structures or
algorithms class recently! Yes, you can use a graph to
represent the subway. In that case, each station would be a
node, and each connection would be a labeled edge.

Q: So then why aren’t we using a graph structure in
this example?

A: We think it’s really overkill in this situation. If you
already know about graphs and nodes and edges, and you
happen to have code for that sort of data structure lying
around, then go ahead and use them. But from our point of
view, we’d do more work adapting a graph to our needs than
just coming up with a few simple classes for Station and
Connection. Like almost everything else in the design
stage, there are several ways to solve a problem, and you need
to choose a solution that works well for you.

Q: You lost me on the whole graph thing... what’s all
this about edges and nodes?

A: It’s OK; you don’t need to know about graphs in order
to understand and solve this particular problem. It’s nothing to
worry about, at least until we come up with a Head First Data
Structures book (anyone? anyone?).

there are no
Dumb Questions

Iteration 1

Feature
List

Use Case
Diagrams

Break Up the
Problem

Requirements Domain
Analysis

Preliminary
Design

Implementation Delivery

Our design decisions here...
...have a lot of impact here.

Download at WoweBook.Com

516 Chapter 10

Code the Station class
We’ve got requirements in the form of a use case, a class
diagram, and we know the Station class will fit into our
Subway model. Now we’re ready to start writing code:

the station class

Subway

Station
name: String
getName(): String
equals(Object): boolean
hashCode(): intpublic class Station {

 private String name;

 public Station(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public boolean equals(Object obj) {
 if (obj instanceof Station) {
 Station otherStation = (Station)obj;
 if (otherStation.getName().equalsIgnoreCase(name)) {
 return true;
 }
 }
 return false;
 }

 public int hashCode() {
 return name.toLowerCase().hashCode();
 }
}

We came up with the Subway module back on page 502.

This is our class diagram for
Station, from page 513.

If you want, you
can put Station
in a package like
objectville.subway.
It’s up to you if you
want to break up your
modules by package. A Station is basically just a named object.

We figured there’s going to be a lot
of comparisons between stations, so we
made sure we defined equals(). In this
version, two Station objects are equal
if they have the same name.

The Java specification recommends that if two objects
are equal, they should have the same hash code. So
if you’re deciding on equality based on a property, it’s
a good idea to also override hashCode() and return
a hash code based on that same property. This is
particularly important if you’re using your object in a
Hashtable or HashMap, which both make heavy use
of the hashCode() method.

When you override equals() in
Java, you should usually also
override hashCode() to ensure
correct comparisons.

Watch it!

We base the hash code of a Station on the same property that comparisons are based on: the name of the station.

For a lot more on equals() and
hashCode(), check out Chapter 16
of Head First Java.

This ensures, for example, that a station named “AJAX RAPIDS” is considered the same as a station named “Ajax Rapids”.

Download at WoweBook.Com

you are here 4 517

the ooa&d lifecycle
Iteration 1

Write the Connection class.

Using the class diagram on the right, complete the
Connection class by filling in the blanks with the correct lines
of code. Be sure your class will compile before you turn the
page and see our answers.

Sharpen your pencil
Subway

Connection
station1: Station
station2: Station
lineName: String
getStation1(): Station
getStation2(): Station
getLineName(): String

public class Connection {

 private _________ ___________, ____________;
 private _________ ___________;

 public Connection(__________ __________, _________ _________,
 __________ __________) {
 this.__________ = station1;
 this.__________ = station2;
 this.__________ = lineName;
 }

 public _________ ___________() {
 ________ station1;
 }

 public _________ ___________() {
 ________ station2;
 }

 public _________ ___________() {
 ________ lineName;
 }
}

Feature
List

Use Case
Diagrams

Break Up the
Problem

Requirements Domain
Analysis

Preliminary
Design

Implementation Delivery

We’re well into the
implementation phase of our
first iteration, now.

Download at WoweBook.Com

518 Chapter 10

Write the Connection class.

Using the class diagram on the right, your job was to fill in
the blanks and complete the Connection class.

Subway

Connection
station1: Station
station2: Station
lineName: String
getStation1(): Station
getStation2(): Station
getLineName(): String

public class Connection {

 private _________ ___________, ____________;
 private _________ ___________;

 public Connection(__________ __________, _________ _________,
 __________ __________) {
 this.__________ = station1;
 this.__________ = station2;
 this.__________ = lineName;
 }

 public _________ ___________() {
 ________ station1;
 }

 public _________ ___________() {
 ________ station2;
 }

 public _________ ___________() {
 ________ lineName;
 }
}

Sharpen your pencil
answers

Station

Station Station

Station

Station

return

return

return

station1

station1

station1

station2

station2

station2

String

String

String

lineName

lineName

lineName

getStation1

getStation2

getLineName

the connection class

Feature
List

Use Case
Diagrams

Break Up the
Problem

Requirements Domain
Analysis

Preliminary
Design

Implementation Delivery

You are HERE.

Download at WoweBook.Com

you are here 4 519

the ooa&d lifecycle

Code the Subway class
Next up is the Subway class itself. With Station and
Connection done, and a good class diagram, nothing
here should be a surprise:

Iteration 1

public class Subway {

 private List stations;
 private List connections;

 public Subway() {
 this.stations = new LinkedList();
 this.connections = new LinkedList();
 }

 public void addStation(String stationName) {
 if (!this.hasStation(station)) {
 Station station = new Station(stationName);
 stations.add(station);
 }
 }

 public boolean hasStation(String stationName) {
 return stations.contains(new Station(stationName));
 }

 public void addConnection(String station1Name, String station2Name,
 String lineName) {
 if ((this.hasStation(station1Name)) &&
 (this.hasStation(station2Name))) {
 Station station1 = new Station(station1Name);
 Station station2 = new Station(station2Name);
 Connection connection = new Connection(station1, station2, lineName);
 connections.add(connection);
 connections.add(new Connection(station2, station1,
 connection.getLineName()));
 } else {
 throw new RuntimeException(“Invalid connection!”);
 }
 }
}

Subway

Subway
stations: Station [*]
connections: Connection [*]
addStation(String): Station
hasStation(String): boolean
addConnection(String, String, String): Connection

These will store all the stations, and the connections between those stations.

First, we validate the name, and make
sure we don’t already have this station.

If not, we create a new Station instance, and add it to the subway.

This method checks to see

if a station is already
 in the

subway’s stations List.

Like addStation(), we begin
with some validation: this
time, we make sure both
stations exist in the subway.

This is VERY important. Since

Objectville subways run in

both directions, w
e add two

connections: one c
onnection

for both directio
ns.

This is pretty rough in terms of error handling... see if you can come up with a better way to handle the case where one of the stations in the connection doesn’t exist.

Download at WoweBook.Com

520 Chapter 10

Points of interest on the
Objectville Subway (class)
We threw a couple of new things into the Subway class;
first, you’ll see this line of code quite a bit:

For example, when we create a new Connection, we
have code like this:

Lots of programmers would take station1Name,
and iterate through the list of stations in the Subway
class to find the Station object that has a name of
station1Name. But that takes a lot of time, and there’s a
better way. Remember how we defined an equals() and
hashCode() method on our Station class?

These methods allowed us to tell Java that when it
compares two Station objects, just see if their name is
the same. If the names are equal, even if the objects don’t refer
to the same location in memory, they should be treated as the
same. So instead of looking for a particular Station object
in the Subway class’s list of station, it’s much easier to just
create a new Station and use it.

Because we overrode equals() and
hashCode(), we can save search time
and complexity in our code. Your
design decisions should always make
your implementation better, not more
complicated or harder to understand.

understand the system

Station station = new Station(stationName);

Station station1 = new Station(station1Name);
Station station2 = new Station(station2Name);
Connection connection =
 new Connection(station1, station2, lineName);

Station
name: String
getName(): String
equals(Object): boolean
hashCode(): int

Normally, equals() in Java just checks to see
if two objects actually are the SAME object...
in other words, it looks to see if they are
actually both references to the same place in
memory. But that’s NOT what we want to use
for comparison of two Station objects.

Download at WoweBook.Com

you are here 4 521

the ooa&d lifecycle

Our version of equals() tells Java to base equality on the value of the name attribute, instead of a memory location.

Station
name = “HTML Heights”

What Java’s default equals() implementation does... Iteration 1

Station
name = “HTML Heights”

These two instances of Station have the same
name, but they refer to two different memory
locations... so equals() says:

These two stations are NOT equal!

Object.equals()

Station
name = “HTML Heights”

What our equals() implementation does...

Station
name = “HTML Heights”

These two stations ARE equal!

Station.equals()

This makes our
implementation
code a big pain.

This result makes dealing with Stations much easier.

Q: What does any of this have to do with OOA&D?

A: This is the very core of what makes OOA&D useful: because
we understand our system, we realize that two stations should be
considered identical if they have the same name. And, our design is
improved by being able to compare stations based on their name,
rather than their location in memory.

So the time we spent on requirements and getting a good grasp of
our system made our design better, which in turn made implementing
that design a lot simpler. That’s the power of OOA&D: you can turn
knowledge of your system into a flexible design, and even end up
with cleaner code—all because you spent time up front listening to
the customer and gathering requirements, rather than diving right into
an IDE and typing in source code.

Dumb Questions
there are no

Download at WoweBook.Com

522 Chapter 10

Frank: That’s true. So we could change our Subway class to look
more like this:

Jill: But then you’re exposing the internals of your application!

Joe: Whoa... not sure what that means, but it sure doesn’t sound like
something I want to do. What are you talking about?

Jill: Well, look at our code right now. You don’t have to work with a
Station or Connection at all to load up the subway. You can just call
methods on our new Subway class.

Frank: How is that any different from what we’re suggesting?

Jill: If we went with your ideas, people that use the Subway class
would have to also work with Station and Connection. In our version
right now, they just work with Strings: the name of a station, and the
name of a line.

Joe: And that’s bad because...

Frank: Wait, I think I get it. Their code is getting tied in to how we
implement the Station and Connection classes, since they’re having to
work with those classes directly.

Jill: Exactly! But with our version, we could change up Connection
or Station, and we’d only have to change our Subway class. Their
code would stay the same, since they’re abstracted away from our
implementations of Connection and Station.

Why aren’t we just taking in a
Station object in addStation(),

and a Connection object in
addConnection()? Wouldn’t that

make sense?

Subway
stations: Station [*]
connections: Connection [*]
addStation(Station)
hasStation(String): boolean
addConnection(Connection)

Joe and Frank are suggesting taking in objects for these methods, rather than the strings that are the property values for those objects.

abstract your classes

Download at WoweBook.Com

you are here 4 523

the ooa&d lifecycle

Protecting your classes (and your
client’s classes, too)
Frank, Joe, and Jill are really talking about just one more
form of abstraction. Let’s take a closer look:

Subway

Station

Connection

Right now, only the Subway class
interacts with the Station and
Connection objects.

addStation(String)

addConnection(String, String, String)

Client code never deals directly with the Station or Connection objects. It just works with Strings.
Subway subway = new Subway();
subway.addStation(“OOA&D Oval”);
subway.addStation(“Head First Lounge”);
subway.addConnection(“OOA&D Oval”, “Head First Lounge”,
 “Gamma Line”);

The only interfac
e to the

stations and co
nnections on

the subway is through t
he

Subway object itself
.

You should only expose clients of your code to the
classes that they NEED to interact with.

Classes that the clients don’t interact with can be
changed with minimal client code being affected.

In this application, we could change how
Station and Connection work, and it
wouldn’t affect code that only uses our
Subway object; they’re protected from
changes to our implementation.

Iteration 1

Download at WoweBook.Com

524 Chapter 10

The SubwayLoader class
We’re almost done with our first iteration, and our first use
case. All that’s left is to code the class that loads a subway
based on the test file we got from Objectville Travel, Inc.

Loader

Web Design Way

Head First Labs OCP Orchard

JSP Junction

Infinite Circle

Algebra Avenue

Servlet Springs

HTML Heights

 JavaBeans Boulevard

Ajax Rapids

CSS Center EJB Estates

UML Walk

LSP Lane

SRP Square

Design Patterns Plaza

Boards ‘R’ Us

Choc-O-Holic, Inc.

Objectville
PizzaStore

PMP Place

JavaRanch

SimUDuck Lake

GoF Gardens

XHTML Expressway

OOA&D Oval

DRY Drive

Objectville Subway Map
Legend

Local trains station

Booch Line

Gamma Line

Jacobson Line

Liskov Line

Meyer Line

Rumbaugh Line

Wirfs-Brock Line

Interchange with
other lines

SubwayLoader

loadFromFile(File): Subway

We’re working on the Loader module now (see page 502).

public class SubwayLoader {
 private Subway subway;

 public SubwayLoader() {
 this.subway = new Subway();
 }

 public Subway loadFromFile(File subwayFile) throws IOException {
 BufferedReader reader = new BufferedReader(
 new FileReader(subwayFile));

 loadStations(subway, reader);
 String lineName = reader.readLine();
 while ((lineName != null) && (lineName.length() > 0)) {
 loadLine(subway, reader, lineName);
 lineName = reader.readLine();
 }

 return subway;
 }

 private void loadStations(Subway subway, BufferedReader reader)
 throws IOException {
 String currentLine;
 currentLine = reader.readLine();
 while (currentLine.length() > 0) {
 subway.addStation(currentLine);
 currentLine = reader.readLine();
 }
 }

 private void loadLine(Subway subway, BufferedReader reader,
 String lineName)
 throws IOException {
 String station1Name, station2Name;
 station1Name = reader.readLine();
 station2Name = reader.readLine();
 while ((station2Name != null) && (station2Name.length() > 0)) {
 subway.addConnection(station1Name, station2Name, lineName);
 station1Name = station2Name;
 station2Name = reader.readLine();
 }
 }
}

We start out by loading all the stations.

Once we’ve got the stations, we need to

get the next line, which should be a line

name, and add the stations unde
rneath

that line into the subway.

Loading stations just involves reading a line, adding that line into the subway as a new station name, and then repeating, until we hit a blank line.

We read the first station, and the
station after that...

...and then add a new connection using the current line name.
We take the current second

station, bump it up to the first,

and then read another line
 to

get the new second station.

loading the subway

Download at WoweBook.Com

you are here 4 525

the ooa&d lifecycle
Iteration 1

Let’s see exactly what happens when you call loadFromFile() in SubwayLoader, and
give it the text file we got from Objectville Travel. Your job is to place the magnets
from the bottom of this page—which match up to methods on the SubwayLoader
and Subway classes—next to the lines in the text file where they’ll be called.

Method Magnets

Ajax Rapids
HTML Heights
JavaBeans Boulevard
LSP Lane
Head First Labs
Objectville PizzaStore
UML Walk
XHTML Expressway
Choc-O-Holic, Inc.
Head First Theater
Infinite Circle
CSS Center
OOA&D Oval
SimUDuck Lake
Web Design Way

... more station names...

Booch Line
Ajax Rapids
HTML Heights
JavaBeans Boulevard
LSP Lane
Head First Labs
Objectville PizzaStore
UML Walk
Ajax Rapids

Gamma Line
OOA&D Oval
Head First Lounge
OOA&D Oval

Jacobson Line
Servlet Springs

... more stations on this line...

... more lines...

ObjectvilleSubway.txt

loadStations()
loadLine() addStation()

addConnection()

new Subway()
There are only 5 methods that
are involved here, but you’ll need
to use most of these magnets
several times each.

Download at WoweBook.Com

526 Chapter 10

Let’s see exactly what happens when you call loadFromFile() in
SubwayLoader, and give it the text file we got from Objectville Travel. Your
job was to place the magnets from the bottom of this page next to the
lines in the text file where they’ll be called.

Method Magnet Solutions

Ajax Rapids
HTML Heights
JavaBeans Boulevard
LSP Lane
Head First Labs
Objectville PizzaStore
UML Walk
XHTML Expressway
Choc-O-Holic, Inc.
Head First Theater
Infinite Circle
CSS Center
OOA&D Oval
SimUDuck Lake
Web Design Way

... more station names...

Booch Line
Ajax Rapids
HTML Heights
JavaBeans Boulevard
LSP Lane
Head First Labs
Objectville PizzaStore
UML Walk
Ajax Rapids

Gamma Line
OOA&D Oval
Head First Lounge
OOA&D Oval

Jacobson Line
Servlet Springs

... more stations on this line...

... more lines...

ObjectvilleSubway.txt
loadStations()

addStation()

new Subway()

loading a subway

addStation()
addStation()

addStation()
addStation()

addStation()
addStation()

addStation()
addStation()
addStation()

addStation()
addStation()
addStation()
addStation()

addStation()

loadLine()

loadLine()

loadLine()

addConnection()

addConnection()

The Loader starts by
creating a new Subway
object, and then
calling loadStations().

addStation() is called on every line until the loader hits a blank line.

loadLine() gets called
at the beginning of
each new line.

addConnection()

addConnection()

This was a little trickie
r...

addConnection() gets

called for every
two

stations that are
 read.

addConnection()

addConnection()
addConnection()
addConnection()

addConnection()

addConnection()

Download at WoweBook.Com

you are here 4 527

the ooa&d lifecycle

Feature
List

Use Case
Diagrams

Break Up the
Problem

Requirements Domain
Analysis

Preliminary
Design

Implementation Delivery

Iteration 1

 Test Puzzle

1. Add a method to Subway to check if a particular connection exists, given
the two station names and the line name for that connection.

2. Write a test class, called LoadTester, with a main() method that loads
the Objectville Subway system from the text file we got from Objectville 
Travel, Inc.

3. Write code in LoadTester that checks a few of the stations and
connections from the text file against the Subway object returned from
SubwayLoader’s loadFromFile() method. You should check to
make sure that at least three stations and three connections on three
different lines were all entered correctly.

4. Run your test program, and verify that we’re really done with Iteration 1.

1

Your task:

The problem:

You need to test loading the ObjectvilleSubway.txt file, 
and make sure that SubwayLoader correctly loads in all stations
and connections in the file.

You’re almost done with the first use case, and our first iteration! All that’s left is 
to test out our solution, and make sure it actually works.

2

3

4

Load network of subway lines
Use Case

1. The administrator supplies a file of stations and lines.
2. The system reads in the name of a station.
3. The system validates that the station doesn’t already exist.
4. The system adds the new station to the subway.
5. The system repeats steps 2-4 until all stations are added.
6. The system reads in the name of a line to add.
7. The system reads in two stations that are connected.
8. The system validates that the stations exist.
9. The system creates a new connection between the two

stations, going in both directions, on the current line.
10. The system repeats steps 7-9 until the line is complete.
11. The system repeats steps 6-10 until all lines are entered.

Here’s the use case
we’re testing in
this puzzle.

Testing is really part of
the implementation phase.
Code isn’t complete until
it’s tested.

Download at WoweBook.Com

528 Chapter 10

 Test Puzzle Solution
Your job was to test the SubwayLoader and our subway representation to
make sure you can load a subway system from a text file.

test puzzle solutions

 public boolean hasConnection(String station1Name, String station2Name,
 String lineName) {
 Station station1 = new Station(station1Name);
 Station station2 = new Station(station2Name);
 for (Iterator i = connections.iterator(); i.hasNext();) {
 Connection connection = (Connection)i.next();
 if (connection.getLineName().equalsIgnoreCase(lineName)) {
 if ((connection.getStation1().equals(station1)) &&
 (connection.getStation2().equals(station2))) {
 return true;
 }
 }
 }
 return false;
 }

Subway
stations: Station [*]
connections: Connection [*]
addStation(String)
hasStation(String): boolean
addConnection(String, String, String)
hasConnection(String, String, String): boolean

class
Subway {
 Sub-
way()
}

Subway.java

1. Add a method to Subway to check if a particular connection exists, given
the two station names and the line name for that connection.

1

This is pretty
straightforward...
it iterates through
each connection in
the subway, and just
compares the line name
and stations to see if
we’ve got a match.

Q: Wouldn’t it be easier to write the hasConnection()
method if we used a Line object, like we talked about a few
pages ago?

A: It would. If we had a Line object, we could look up the line
using the name passed into hasConnection(), and just iterate
over the Connection objects for that line. So in most cases,
hasConnection() would involve less iteration, and return a

result faster, if we had a Line object.

We still decided not to use a Line object, though, because we’ve
only added hasConnection() to help us test our classes.
So adding a Line object just to make a test method return
faster doesn’t seem like a good idea. If we find that we need the
hasConnection() method in other parts of our app, though, this

Dumb Questions
there are no

Download at WoweBook.Com

you are here 4 529

the ooa&d lifecycle

2. Write a test class, called LoadTester, with a main() method that loads
the Objectville Subway system from the text file we got from Objectville 
Travel, Inc.

3. Write code in LoadTester that checks a few of the stations and
connections from the text file against the Subway object returned from
SubwayLoader’s loadFromFile() method. You should check to
make sure that at least three stations and three connections on three
different lines were all entered correctly.

2

3

class
Load-
Tester {
 main()

LoadTester.java

public class LoadTester {
 public static void main(String[] args) {
 try {
 SubwayLoader loader = new SubwayLoader();
 Subway objectville =
 loader.loadFromFile(new File(“ObjectvilleSubway.txt”));
 System.out.println(“Testing stations...”);
 if (objectville.hasStation(“DRY Drive”) &&
 objectville.hasStation(“Weather-O-Rama, Inc.”) &&
 objectville.hasStation(“Boards ‘R’ Us”)) {
 System.out.println(“...station test passed successfully.”);
 } else {
 System.out.println(“...station test FAILED.”);
 System.exit(-1);
 }

 System.out.println(“\nTesting connections...”);
 if (objectville.hasConnection(“DRY Drive”,
 “Head First Theater”, “Meyer Line”) &&
 objectville.hasConnection(“Weather-O-Rama, Inc.”,
 “XHTML Expressway”, “Wirfs-Brock Line”) &&
 objectville.hasConnection(“Head First Theater”,
 “Infinite Circle”, “Rumbaugh Line”)) {
 System.out.println(“...connections test passed successfully.”);
 } else {
 System.out.println(“...connections test FAILED.”);
 System.exit(-1);
 }
 } catch (Exception e) {
 e.printStackTrace(System.out);
 }
 }
}

Iteration 1

This code simply passes in
the text file, and then
tests a few stations and
connections to see if they
got loaded.

You can use any
stations and
connections you
like here.

Download at WoweBook.Com

530 Chapter 10

 Test Puzzle Solution (cont.)
Your job was to test the SubwayLoader and our subway representation to
make sure you can load a subway system from a text file.

4. Run your test program, and verify that we’re really done with Iteration 1.4

File Edit Window Help NotVeryExciting

%java LoadTester
Testing stations...
...station test passed successfully.

Testing connections...
...connections test passed successfully.

Tests are usually not really exciting to run... until you realize that they prove your software is WORKING!

Feature
List

Use Case
Diagrams

Break Up the
Problem

Requirements Domain
Analysis

Preliminary
Design

Implementation Delivery

It’s time to iterate again
Our test proves that we really have finished up our first iteration.
The “Load network of subway lines” use case is complete, and that
means it’s time to iterate again. Now, we can take on our next use
case—“Get directions”—and return to the Requirements phase
and work through this use case.

Once an iteration is complete, if
there are more use cases or features
to implement, you need to take your
next feature or use case, and start
again at the requirements phase.

Load network of
subway lines

Get directions

We’re done here.

test and iterate

Try and write a test case that gets all the stations and
connections in the Subway and prints them out, to
verify your subway is loading the network correctly.

brain
power?

Download at WoweBook.Com

you are here 4 531

the ooa&d lifecycle
Iteration 1

But before we start Iteration 2...

It’s been a LONG iteration, and you’ve
done some great work. STOP, take a
BREAK, and eat a bite or drink some water.
Give your brain a chance to REST.

Then, once you’ve caught your breath, turn the
page, and let’s knock out that last use case. Are
you ready? Then let’s iterate again.

Iteration 2

...zzz...

Seriously, things only move faster

from here. Let your brain take a

break before going on.

Download at WoweBook.Com

532 Chapter 10

What’s left to do?
We’ve made a lot of progress, on both our use cases, and
our feature list. Below is the feature list and use case
diagram we developed earlier in the chapter:

Objectville RouteFinder
Feature List

1. We have to be able to represent a subway line,
and the stations along that line.

2. We must be able to load multiple subway lines
into the program, including overlapping lines.

3. We need to be able to figure out a valid path
between any two stations on any lines.

4. We need to be able to print out a route
between two stations as a set of directions.

Represent subway lines, and
stations along each line.

Load multiple subway
lines into the program.

Figure out a valid route
between two stops.

Print directions for a

particular route.

Administrator

Travel Agent
(or Tourist)

Load network of
subway lines

Get directions

We took care of both of these features in Iteration #1.

We’ve also got our first use
case taken care of.

how far have we come?

Our second iteration should

take care of both of the
se

two remaining features.

This use case is the focus of our second iteration.

Download at WoweBook.Com

you are here 4 533

the ooa&d lifecycle
Iteration 1

Iteration 2

Write the complete use case for “Get directions.”

We’re back to writing use cases again. This time, your job is to write a
use case that allows a travel agent to get directions from one station to
another on the Objectville Subway.

Sharpen your pencil

Back to the requirements phase...
Now that we’re ready to take on the next use case, we have to go
back to the requirements phase, and work through this use case the
same way we did the first one. So we’ll start by taking our use case
title from our use case diagram, “Get directions,” and developing
that into a full-blown use case.

Feature
List

Use Case
Diagrams

Break Up the
Problem

Requirements Domain
Analysis

Preliminary
Design

Implementation Delivery

Get directions
Use Case

1.

2.

3.

4.

You shouldn’t
need as many
steps to write
this use case.

Download at WoweBook.Com

534 Chapter 10

Write the complete use case for “Get directions.”

Get directions
Use Case

1. The travel agent gives the system a starting station
and a station to travel to.

2. The system validates that the starting and ending
stations both exist on the subway.

3. The system calculates a route from the starting
station to the ending station.

4. The system prints out the route it calculated.

Sharpen your pencil
answers

the get directions use case

Just like our first
use case, you
should have added
some validation.

This is the big
task we have to
tackle in this
iteration.

Once we have a route, printing
should be pretty simple.

I’m a little confused. We
went to all that work to break

our code up into modules, but our use
cases involve code in more than one

module. Why do we keep jumping
back and forth between modules

and use cases?

Subway

Printer

These are the two
modules we’ll be working with to put this use case into action.

Download at WoweBook.Com

you are here 4 535

the ooa&d lifecycle

Focus on code, then focus on customers.
Then focus on code, then focus on customers...
When we started breaking our application up into different modules way back
on page 502, we were really talking about the structure of our application,
and how we are going to break up our application. We have a Subway and
Station class in the Subway module, and a SubwayLoader class in the
Loader module, and so on. In other words, we’re focusing on our code.

But when we’re working on use cases, we’re focusing on how the customer uses
the system—we looked at the format of an input file to load lines, and began to
focus on the customer’s interaction with your system. So we’ve really been going
back and forth between our code (in the Break Up the Problem step) and our
customer (in the Requirements step):

When you’re developing software, there’s going to be a lot of this back-and-
forth. You have to make sure your software does what it’s supposed to, but it’s
your code that makes the software actually do something.

Feature
List

Use Case
Diagrams

Break Up the
Problem

Requirements Domain
Analysis

Preliminary
Design

Implementation Delivery

Subway

Loader

Web Design Way

Head First Labs OCP Orchard

JSP Junction

Infinite Circle

Algebra Avenue

Servlet Springs

HTML Heights

 JavaBeans Boulevard

Ajax Rapids

CSS Center EJB Estates

UML Walk

LSP Lane

SRP Square

Design Patterns Plaza

Boards ‘R’ Us

Choc-O-Holic, Inc.

Objectville
PizzaStore

PMP Place

JavaRanch

SimUDuck Lake

GoF Gardens

XHTML Expressway

OOA&D Oval

DRY Drive

Objectville Subway Map
Legend

Local trains station

Booch Line

Gamma Line

Jacobson Line

Liskov Line

Meyer Line

Rumbaugh Line

Wirfs-Brock Line

Interchange with
other lines

Printer

This reflects how we’re breaking up the structure of our system’s code.

This step is about our
code, and how we break
up functionality.

This step is about
how the customer
uses our software.

It’s your job to balance making sure the customer
gets the functionality they want with making sure
your code stays flexible and well-designed.

We’ve really been
going back and forth
between our code, and
how our system is used,
in both iterations.

Iteration 1
Iteration 2

Download at WoweBook.Com

536 Chapter 10

Analysis and Design Puzzle
It’s time to take on more domain analysis and design for your system.
Take the use case below, figure out the candidate classes and candidate
operations, and then update the class diagram on the right with any
changes you think you need to make.

textual analysis and preliminary design

Do some of these exercises look familiar? You use the same techniques in each iteration of your development cycle.

Nouns (candidate classes):

Verbs (candidate operations):

Get directions
Use Case

1. The travel agent gives the system a starting station
and a station to travel to.

2. The system validates that the starting and ending
stations both exist on the subway.

3. The system calculates a route from the starting
station to the ending station.

4. The system prints out the route it calculated.

Download at WoweBook.Com

you are here 4 537

the ooa&d lifecycle
Iteration 1

Iteration 2

Station
name: String

getName(): String
equals(Object): boolean
hashCode(): int

Connection
lineName: String

getStation1(): Station
getStation2(): Station
getLineName(): String

Subway

addStation(String)
hasStation(String): boolean
addConnection(String, String, String)
hasConnection(String, String, String): boolean

*stations *connections

station1

station2

SubwayLoader

loadFromFile(File): Subway

Feature
List

Use Case
Diagrams

Break Up the
Problem

Requirements Domain
Analysis

Preliminary
Design

Implementation Delivery

We’re taking these two phases on at the same time again.

Add in any new classes,
attributes, and operati

ons

you think you need base
d

on your analysis on the
previous page.

Download at WoweBook.Com

538 Chapter 10

Analysis and Design Puzzle Solutions

class diagrams

Station
name: String

getName(): String
equals(Object): boolean
hashCode(): int

Connection
lineName: String

getStation1(): Station
getStation2(): Station
getLineName(): String

Subway

addStation(String)
hasStation(String): boolean
addConnection(String, String, String)
hasConnection(String, String, String): boolean
getDirections(String, String): Connection [*]

*stations *connections

station1

station2

SubwayLoader

loadFromFile(File): Subway SubwayPrinter

out: PrintStream

printDirections(Connection [*])

We know we need a new class to
handle printing a route once we
get it from the Subway class.

This is the main addition...
we need to be able to pass
in the name of a start
station, and end station,
and get a set of directions. We decided to represent a route as a set of connections (and each connection will tell us the line it’s on).

This print method takes as

input the same thing that

getDirections() outputs.

* We didn’t show the nouns and verbs... by
now, you should be comfortable with that
step, and be able to translate them into
the class diagram shown here.

Download at WoweBook.Com

you are here 4 539

the ooa&d lifecycle

Load network of subway lines
Use Case

1. The administrator supplies a file of stations and lines.
2. The system reads in the name of a station.
3. The system validates that the station doesn’t already exist.4. The system adds the new station to the subway.
5. The system repeats steps 2-4 until all stations are added.6. The system reads in the name of a line to add.
7. The system reads in two stations that are connected.
8. The system validates that the stations exist.
9. The system creates a new connection between the two stations, going in both directions, on the current line.
10. The system repeats steps 7-9 until the line is complete.
11. The system repeats steps 6-10 until all lines are entered.

Test

Iteration 1
Iteration 2

Iteration makes problems easier
The class diagram on the last page really isn’t that much
different from our class diagram from the first iteration (flip
back to page 513 to take a look at that earlier version).
That’s because we did a lot of work that applies to all our
iterations during our first iteration.

Once you’ve completed your first iteration, your successive
iterations are often a lot easier, because so much of what
you’ve already done makes those later iterations easier.

Feature
List

Use Case
Diagrams

Break Up the
Problem

Requirements Domain
Analysis

Preliminary
Design

Implementation Delivery

We’re ready to move to the
implementation phase... but this iteration
is moving a lot faster, and there’s less
to do, than the first iteration.

Iteration 1

Subway

Loader

Web Design Way

Head First Labs OCP Orchard

JSP Junction

Infinite Circle

Algebra Avenue

Servlet Springs

HTML Heights

 JavaBeans Boulevard

Ajax Rapids

CSS Center EJB Estates

UML Walk

LSP Lane

SRP Square

Design Patterns Plaza

Boards ‘R’ Us

Choc-O-Holic, Inc.

Objectville
PizzaStore

PMP Place

JavaRanch

SimUDuck Lake

GoF Gardens

XHTML Expressway

OOA&D Oval

DRY Drive

Objectville Subway Map
Legend

Local trains station

Booch Line

Gamma Line

Jacobson Line

Liskov Line

Meyer Line

Rumbaugh Line

Wirfs-Brock Line

Interchange with
other lines

We did a LOT of work in our first
iteration... we worked on three modules,
and completed an entire use case.

Iteration 2

Subway

All the work we did on
the Subway module laid
the groundwork for our
second iteration.

Subway
Test

Printer

We still have plenty of work to do, but not nearly as much as we did in the first iteration. Most of the Subway module is done, and we’ve even got some tests in place.

Download at WoweBook.Com

540 Chapter 10

public class Subway {
 private List stations;
 private List connections;
 private Map network;

 public Subway() {
 this.stations = new LinkedList();
 this.connections = new LinkedList();
 this.network = new HashMap();
 }

 // addStation(), hasStation(), and hasConnection() stay the same

 public Connection addConnection(String station1Name, String station2Name,
 String lineName) {
 if ((this.hasStation(station1Name)) &&
 (this.hasStation(station2Name))) {
 Station station1 = new Station(station1Name);
 Station station2 = new Station(station2Name);
 Connection connection = new Connection(station1, station2, lineName);
 connections.add(connection);
 connections.add(new Connection(station2, station1,
 connection.getLineName()));
 addToNetwork(station1, station2);
 addToNetwork(station2, station1);
 return connection;
 } else {
 throw new RuntimeException(“Invalid connection!”);
 }
 }

 private void addToNetwork(Station station1, Station station2) {
 if (network.keySet().contains(station1)) {
 List connectingStations = (List)network.get(station1);
 if (!connectingStations.contains(station2)) {
 connectingStations.add(station2);
 }
 } else {
 List connectingStations = new LinkedList();
 connectingStations.add(station2);

Ready-bake CodeImplementation: Subway.java
Figuring out a route between two stations turns out to be a
particularly tricky problem, and gets into some of that graph stuff
we talked about briefly back on page 515. To help you out, we’ve
included some Ready-bake Code that you can use to get a route
between two stations. Ready-bake code is code that

we’re already prepared for you.
Just type it in as its shown here,
or you can download a completed
version of Subway.java from the
Head First Labs web site.

We need a Map to store each station, and a list of all the stations that it connects to.

When we add connections, we need
to update our Map of stations,
and how they’re connected in the
subway’s network.

Everything starting with this method down is new code.

Our Map has as its keys each
station. The value for that station
is a List containing all the stations
that it connects to (regardless of
which line connects the stations).

getting directions

Download at WoweBook.Com

you are here 4 541

the ooa&d lifecycle
Iteration 1

Iteration 2

 network.put(station1, connectingStations);
 }
 }

 public List getDirections(String startStationName,
 String endStationName) {
 if (!this.hasStation(startStationName) ||
 !this.hasStation(endStationName)) {
 throw new RuntimeException(
 “Stations entered do not exist on this subway.”);
 }

 Station start = new Station(startStationName);
 Station end = new Station(endStationName);
 List route = new LinkedList();
 List reachableStations = new LinkedList();
 Map previousStations = new HashMap();

 List neighbors = (List)network.get(start);
 for (Iterator i = neighbors.iterator(); i.hasNext();) {
 Station station = (Station)i.next();
 if (station.equals(end)) {
 route.add(getConnection(start, end));
 return route;
 } else {
 reachableStations.add(station);
 previousStations.put(station, start);
 }
 }

 List nextStations = new LinkedList();
 nextStations.addAll(neighbors);
 Station currentStation = start;

 searchLoop:
 for (int i=1; i<stations.size(); i++) {
 List tmpNextStations = new LinkedList();
 for (Iterator j = nextStations.iterator(); j.hasNext();) {
 Station station = (Station)j.next();
 reachableStations.add(station);
 currentStation = station;
 List currentNeighbors = (List)network.get(currentStation);
 for (Iterator k = currentNeighbors.iterator(); k.hasNext();) {
 Station neighbor = (Station)k.next();
 if (neighbor.equals(end)) {
 reachableStations.add(neighbor);
 previousStations.put(neighbor, currentStation);
 break searchLoop;

Here’s the validation of the start and end stations that we referred to in our use case on page 534.

This method is based on
a well-known bit of code
called Dijkstra’s algorithm,
which figures out the
shortest path between two
nodes on a graph.

This first part of the code handles the case when the end station is just one connection away from the starting station.

These loops begin to
iterate through each set
of stations reachable by
the starting station, and
tries to find the least
number of stations possible
to connect the starting
point and the destination.

Download at WoweBook.Com

542 Chapter 10

 } else if (!reachableStations.contains(neighbor)) {
 reachableStations.add(neighbor);
 tmpNextStations.add(neighbor);
 previousStations.put(neighbor, currentStation);
 }
 }
 }
 nextStations = tmpNextStations;
 }

 // We’ve found the path by now
 boolean keepLooping = true;
 Station keyStation = end;
 Station station;

 while (keepLooping) {
 station = (Station)previousStations.get(keyStation);
 route.add(0, getConnection(station, keyStation));
 if (start.equals(station)) {
 keepLooping = false;
 }
 keyStation = station;
 }

 return route;
 }

 private Connection getConnection(Station station1, Station station2) {
 for (Iterator i = connections.iterator(); i.hasNext();) {
 Connection connection = (Connection)i.next();
 Station one = connection.getStation1();
 Station two = connection.getStation2();
 if ((station1.equals(one)) && (station2.equals(two))) {
 return connection;
 }
 }
 return null;
 }
}

Ready-bake
Code

Once we’ve got a path, we just “unwind” the path, and create a List of connections to get from the starting station to the destination station.
This is a utility method that takes two

stations, and looks for a co
nnection

between them (on any line).

getting directions, continued

Download at WoweBook.Com

you are here 4 543

the ooa&d lifecycle
Iteration 1

Iteration 2

OK, this is just ridiculous. I
spent 500 pages reading about how

great OOA&D is so you can just give
me the hardest code in the book? I
thought I was supposed to be able

write great software on my
own by now.

It might seem weird that at this stage,
we’re giving you the code for getting a
route between two stations. But that’s
part of what makes a good developer: a
willingness to look around for existing
solutions to hard problems.

In fact, we had some help from a college
student on implementing a version of
Dijkstra’s algorithm that would work
with the subway (seriously!). Sure, you
probably can come up with your own
totally original solution to every problem,
but why would you want to if someone
has already done the work for you?

Sometimes the best way
to get the job done is find
someone else who has
already done the job for you.

Thanks, Felix Geller,

your code rea
lly

saved the day
.

Sometimes the best code for a particular problem has
already been written. Don’t get hung up on writing code
yourself if someone already has a working solution.

Feature
List

Use Case
Diagrams

Break Up the
Problem

Requirements Domain
Analysis

Preliminary
Design

Implementation Delivery

You are HERE.

Download at WoweBook.Com

544 Chapter 10

What does a route look like?
The getDirections() method we just added to Subway
takes in two Strings: the name of the starting station, and
the name of the station that a tourist is trying to get to:

getDirections() then returns a List, which is filled
with Connection objects. Each Connection is one part
of the path between the two stations:

So the entire route returned from getDirections() looks
like a series of Connection objects:

XHTML Expressway

JSP Junction?
This is passed in as the starting station...

...and this name is passed in as the
destination station.

This connection starts at

XHTML Expressway, and

goes to Infinite Circle, on

the Rumbaugh Line.

Connection

Station
“XHTML Expressway”

Station
       “Infinite Circle”

line = “Rumbaugh Line”

All of this is represented in
a single Connection object.

Connection

Station
“XHTML Expressway”

Station
       “Infinite Circle”

line = “Rumbaugh Line”

Connection

Station
      “Infinite Circle”

Station
 “Head First Theater”

line = “Rumbaugh Line”

Connection

Station
 “Head First Theater”

Station
 “DRY Drive”

line = “Meyer Line”

Connection

Station
 “DRY Drive”

Station
 “Web Design Way”

line = “Meyer Line”

The first
station on the
first connection
is your starting
point.

The list goes on until it ends in a connection that has a second station that is the destination.

a series of connections

etc.

Download at WoweBook.Com

you are here 4 545

the ooa&d lifecycle
Iteration 1

Iteration 2

Printing Puzzle
You’re almost done! With a working getDirections() method
in Subway, the last feature to implement is printing those directions
out. Your job is to write a class called SubwayPrinter that takes the
data structure returned from getDirections(), which is a list of
Connection objects, and prints out the directions. The directions
should be printed to an OutputStream, supplied to the constructor
of the SubwayPrinter class when an instance of the printer class is
created.

Here’s the class diagram for SubwayPrinter that you should follow:

Your output should look similar to this:

SubwayPrinter
out:PrintStream
printDirections(Connection [*])

File Edit Window Help ShowMeTheWay

%java SubwayTester “XHTML Expressway” “JSP Junction”
Start out at XHTML Expressway.

Get on the Rumbaugh Line heading towards Infinite Circle.

 Continue past Infinite Circle...

When you get to Head First Theater, get off the Rumbaugh Line.

Switch over to the Meyer Line, heading towards DRY Drive.

 Continue past DRY Drive...

When you get to Web Design Way, get off the Meyer Line.

Switch over to the Wirfs-Brock Line, heading towards Boards ‘R’ Us.

 Continue past Boards ‘R’ Us...

When you get to EJB Estates, get off the Wirfs-Brock Line.

Switch over to the Liskov Line, heading towards Design Patterns Plaza.

 Continue past Design Patterns Plaza...

Get off at JSP Junction and enjoy yourself!

Begin by
printing out
the starting
station.

You can get the
line for this
Connection using
getConnection.
Print the line
and which station
to head towards.

Print out each
station on a line
that is passed.

Anytime the line
changes, print out
the line and station
to get off of...

...as well as the
new line to get on.

The last thing you should have is
a Connection with the destination
station as the stopping point.

BONUS CREDIT: Go ahead

and write SubwayTester, too, a

class to test out lo
ading the

Objectville subway system, and

then printing out d
irections.

Download at WoweBook.Com

546 Chapter 10

public class SubwayPrinter {
 private PrintStream out;

 public SubwayPrinter(OutputStream out) {
 this.out = new PrintStream(out);
 }

 public void printDirections(List route) {
 Connection connection = (Connection)route.get(0);
 String currentLine = connection.getLineName();
 String previousLine = currentLine;
 out.println(“Start out at “ +
 connection.getStation1().getName() + “.”);
 out.println(“Get on the “ + currentLine + “ heading towards “ +
 connection.getStation2().getName() + “.”);
 for (int i=1; i<route.size(); i++) {
 connection = (Connection)route.get(i);
 currentLine = connection.getLineName();
 if (currentLine.equals(previousLine)) {
 out.println(“ Continue past “ +
 connection.getStation1().getName() + “...”);
 } else {
 out.println(“When you get to “ +
 connection.getStation1().getName() + “, get off the “ +
 previousLine + “.”);
 out.println(“Switch over to the “ + currentLine +
 “, heading towards “ + connection.getStation2().getName() + “.”);
 previousLine = currentLine;
 }
 }
 out.println(“Get off at “ + connection.getStation2().getName() +
 “ and enjoy yourself!”);
 }
}

Printing Puzzle Solution

printing directions

Here’s how we wrote the SubwayPrinter class. You might have
come up with a slightly different approach to looping through the route
List, but your output should match ours exactly for full credit.

Rather than printing directly
 to System.out, our

class takes in an OutputStream at construction.

That allows directions to be output to
 any

output source, not just a co
nsole window on the

user’s screen.

We begin by printing the
starting station...

...and the first line to get
on, as well as the next
station to travel towards.

This looks at the current connection, and figures out if a line change is required.

If it’s the same line, just
print the station name. If the line

changes, print
out how to
change lines.

Finally, we’re through all

the connections... get of
f

the subway.

SubwayPrinter
out:PrintStream
printDirections(Connection [*])

Printer

Download at WoweBook.Com

you are here 4 547

the ooa&d lifecycle

public class SubwayTester {
 public static void main(String[] args) {
 if (args.length != 2) {
 System.err.println(“Usage: SubwayTester [startStation] [endStation]”);
 System.exit(-1);
 }
 try {
 SubwayLoader loader = new SubwayLoader();
 Subway objectville =
 loader.loadFromFile(new File(“ObjectvilleSubway.txt”));

 if (!objectville.hasStation(args[0])) {
 System.err.println(args[0] + “ is not a station in Objectville.”);
 System.exit(-1);
 } else if (!objectville.hasStation(args[1])) {
 System.err.println(args[1] + “ is not a station in Objectville.”);
 System.exit(-1);
 }

 List route = objectville.getDirections(args[0], args[1]);
 SubwayPrinter printer = new SubwayPrinter(System.out);
 printer.printDirections(route);
 } catch (Exception e) {
 e.printStackTrace(System.out);
 }
 }
}

Iteration 1
Iteration 2

One last test class...
All that we need to do now is put everything together. Below
is the SubwayTester class we wrote to load the Objectville
Subway system, take in two stations from the command line, and
print out directions between those two stations using our new
getDirections() method and printer class.

We want two stations passed in on the command line for this test.

We’ve tested this earlier,
so we know that loading
the subway works fine.

We also validate that the two stations supplied exist on the subway.

With two valid stations,
we can get a route
between them...

...and use our new
SubwayPrinter class to
print out the route.

Test

We can’t prove our
software works
without some test
cases and test classes.

Download at WoweBook.Com

548 Chapter 10

Check out Objectville for yourself!
It’s time to sit back and enjoy the fruits of your labor. Compile all
your classes for the Objectville Subway application, and try out
SubwayTester with a few different starting and stopping stations.
Here’s one of our favorites:

Web Design Way

Head First Labs
OCP Orchard

JSP Junction

Infinite Circle

Algebra Avenue

Servlet Springs

HTML Heights

 JavaBeans Boulevard

Ajax Rapids

CSS Center EJB Estates

UML Walk

LSP Lane

SRP Square

Design Patterns Plaza

Boards ‘R’ Us

Choc-O-Holic, Inc.

Objectville
PizzaStore

PMP Place

JavaRanch

SimUDuck Lake

GoF Gardens

XHTML Expressway

OOA&D Oval

DRY Drive

Objectville Subway Map
Legend

Local trains station

Booch Line

Gamma Line

Jacobson Line

Liskov Line

Meyer Line

Rumbaugh Line

Wirfs-Brock Line

Interchange with
other lines

St
arb

uzz Coffee Starbuzz

Objectville Diner
Weather-O-Rama, Inc.

Head First Theater

Mighty Gumball, Inc.

Where do YOU want to go in
Objectville today?

File Edit Window Help CandyIsKing

%java SubwayTester “Mighty Gumball, Inc.” “Choc-O-Holic,
Inc.”

Start out at Mighty Gumball, Inc..

Get on the Jacobson Line heading towards Servlet Spri
ngs.

When you get to Servlet Springs, get off the Jacobson
 Line.

Switch over to the Wirfs-Brock Line, heading towards
Objectville Diner.

 Continue past Objectville Diner...

When you get to Head First Lounge, get off the Wirfs-
Brock Line.

Switch over to the Gamma Line, heading towards OOA&D
Oval.

When you get to OOA&D Oval, get off the Gamma Line.

Switch over to the Meyer Line, heading towards CSS Ce
nter.

 Continue past CSS Center...

When you get to Head First Theater, get off the Meyer
 Line.

Switch over to the Rumbaugh Line, heading towards Cho
c-O-Holic, Inc..

Get off at Choc-O-Holic, Inc. and enjoy yourself!

visit objectville

Download at WoweBook.Com

you are here 4 549

the ooa&d lifecycle

Feature
List

Use Case
Diagrams

Break Up the
Problem

Requirements Domain
Analysis

Preliminary
Design

Implementation Delivery

Way back on page 487, we asked you to think about where lots of different things
you’ve been learning about fit on the OOA&D lifecycle below. Now that you’ve
written another piece of great software, you’re ready to take this exercise on,
and see how we answered it, too. Go ahead and work this exercise again; did you
change where you put any of the magnets after working through this chapter?

Oh, and don’t forget, you can put more than one magnet on each phase, and
there are some magnets you may want to use more than once.

OOA&D Magnets

Requirements List
Key Feature List Class DiagramAlternate Path

Analysis

Alternate Path

Design PatternEncapsulationOO Principles
External InitiatorTextual Analysis

Test Scenario

Cohesion

Commonality

Scenario

Iteration
Feature Driven DevelopmentArchitecture

Delegation

Test Driven DevelopmentArchitecture

Talk to the Customer
Variability

Design Principles

Even though each magnet appears only once, you can use each one as many times as you like.

This time, answers are on the next page!

Iteration 2
Iteration 1

Download at WoweBook.Com

550 Chapter 10

Feature
List

Use Case
Diagrams

Break Up the
Problem

Requirements Domain
Analysis

Preliminary
Design

Implementation Delivery

Your job was to try and put the different magnets on the right phase of the
OOA&D lifecycle, shown below. You could put more than one magnet on each
phase; how do your answers compare with ours?

OOA&D Magnet Solutions

Requirements List

Key Feature List

Class Diagram

Alternate Path

Analysis

Alternate Path

Design PatternEncapsulation

OO Principles
External Initiator

Textual Analysis

Test Scenario
Cohesion

Commonality

Scenario

Iteration
Feature Driven Development

Architecture

Delegation
Test Driven Development

Architecture

Talk to the Customer

Variability

Design Principles
Design Pattern

Iteration
Iteration

Iteration

Talk to the CustomerEncapsulation
Key Feature List

Design Principles

External Initiator

Q: It seems like I could put almost every magnet on
each phase... but that can’t be right, can it?

A: That’s exactly right. Although there are definitely
some basic phases in a good development cycle, you can
use most of the things you’ve learned about OOA&D, OO
principles, design, analysis, requirements, and everything
else at almost every stage of development.
The most effective and successful way to write great software
is to have as many tools as you can, and to be able to choose
any one (or more) to use at each stage of your development
cycle. The more tools you have, the more ways you’ll have
to look at and work on a problem... and that means less time
being stuck or not knowing what to do next.

Dumb Questions
there are no

OOA&D is about having
lots of options. There is
never one right way to
solve a problem, so the
more options you have,
the better chance you’ll
find a good solution to
every problem.

ooa&d is about options

Download at WoweBook.Com

you are here 4 551

the ooa&d lifecycle
Iteration 1

Iteration 3
Iteration 2

Iteration #3, anyone?
No, we’re not going to launch into any more design problems. But, you
should realize that there is plenty more that you could do to improve the
design of our RouteFinder application. We thought we’d give you just a few
suggestions, in case you’re dying to take another pass through the OOA&D
lifecycle.

Make loading more extensible
Right now, we’ve just got a single class that handles loading, and it only
accepts a Java File as input. See if you can come up with a solution
that allows you to load a subway from several types of input sources (try
starting with a File and InputStream). Also make it easy to add new
input sources, like a database. Remember, you want to minimize changes
to existing code when you’re adding new functionality, so you may end up
with an interface or abstract base class before you’re through.

Allow different output sources (and formats!)
We can only print subway directions to a file, and the directions are
formatted in a particular way. See if you can design a flexible Printing
module that allows you to print a route to different output sources (like
a File, OutputStream, and Writer), in different formats (perhaps
a verbose form that matches what we’ve done already, a compact form
that only indicates where to changes lines, and an XML form for other
programs to use in web services).

Loader

Web Design Way

Head First Labs OCP Orchard

JSP Junction

Infinite Circle

Algebra Avenue

Servlet Springs

HTML Heights

 JavaBeans Boulevard

Ajax Rapids

CSS Center EJB Estates

UML Walk

LSP Lane

SRP Square

Design Patterns Plaza

Boards ‘R’ Us

Choc-O-Holic, Inc.

Objectville
PizzaStore

PMP Place

JavaRanch

SimUDuck Lake

GoF Gardens

XHTML Expressway

OOA&D Oval

DRY Drive

Objectville Subway Map
Legend

Local trains station

Booch Line

Gamma Line

Jacobson Line

Liskov Line

Meyer Line

Rumbaugh Line

Wirfs-Brock Line

Interchange with
other lines

SubwayLoader

loadFromFile(File): Subway

Printer

SubwayPrinter
out:PrintStream
printDirections(Connection [*])

Here’s a hint: check out the
Strategy pattern in Head First
Design Patterns for ideas on how
you might make this work.

OOA&D and great
software are ongoing
projects... you can always
add new functionality, or
improve your design.

Feature Driven Development

Download at WoweBook.Com

552 Chapter 10

Yes, it’s a sad day: you’re looking at the last crossword
in the book. Take a deep breath, we’ve crammed this
one full of terms to make it last a little longer. Enjoy!

(the last) OOA&D Cross

ooa&d cross

Download at WoweBook.Com

you are here 4 553

the ooa&d lifecycle

Download at WoweBook.Com

554 Chapter 10

Exercise
Solutions

last answers

Download at WoweBook.Com

you are here 4 555

the ooa&d lifecycle

Now take OOA&D for a spin on your own projects!

The journey’s not over...

She’s a real peach, isn’t she? I
can’t wait to see how she handles

once we get back to our own
neighborhood.

We’ve loved having you here in Objectville, and we’re sad to see you go.
But there’s nothing like taking what you’ve learned and putting it to use on
your own development projects. So don’t stop enjoying OOA&D just yet...
you’ve still got a few more gems in the back of the book, an index to read
through, and then it’s time to take all these new ideas and put them into
practice. We’re dying to hear how things go, so drop us a line at the Head
First Labs web site, http://www.headfirstlabs.com, and let us know how
OOA&D is paying off for YOU.

Download at WoweBook.Com

Download at WoweBook.Com

this is a new chapter 557

appendix i: leftovers

Believe it or not, there’s still more. Yes, with over 550 pages

under your belt, there are still things we couldn’t cram in. Even though these

last ten topics don’t deserve more than a mention, we didn’t want to let you

out of Objectville without a little more information on each one of them. But

hey, now you’ve got just a little bit more to talk about during commercials

of CATASTROPHE... and who doesn’t love some stimulating OOA&D talk

every now and then?

Besides, once you’re done here, all that’s left is another appendix... and the

index... and maybe some ads... and then you’re really done. We promise!

The Top Ten Topics
 (we didn’t cover)

Download at WoweBook.Com

558 Appendix I

assembling the pieces

#1. IS-A and HAS-A
Lots of times in OO programming circles, you’ll hear someone
talk about the IS-A and HAS-A relationships.

IS-A refers to inheritance
Usually, IS-A relates to inheritance, for example: “A Sword IS-
A Weapon, so Sword should extend Weapon.”

HAS-A refers to composition or aggregation.
HAS-A refers to composition and aggregation, so you might
hear, “A Unit HAS-A Weapon, so a Unit can be composed
with a Weapon object.” This is sometimes referred to as a HAS-A relationship.

Unit
type: String
properties: Map
setType(String)
getType(): String
setProperty(String, Object)
getProperty(String): Object

<<interface>>
Weapon

attack()

Sword
attack() Gun

attack() Club
attack()

<<interface>>
Weapon

attack()

Sword
attack() Gun

attack() Club
attack()

You’ll see inheritance referred
to as IS-A relationships.

Download at WoweBook.Com

you are here 4 559

leftovers

The problem with IS-A and HAS-A
The reason we haven’t covered IS-A and HAS-A much is that they tend to
break down in certain situations. For example, consider the situation where
you’re modeling shapes, like Circle, Rectangle, and Diamond.

If you think about a Square object, you can apply the IS-A relationship:
Square IS-A Rectangle. So you should make Square extend
Rectangle, right?

But remember LSP, and that subtypes should be substitutable for their base
types. So Square should be a direct substitute for Rectangle. But what
happens with code like this:

The problem here is that when you set the width in setWidth() on
Square, the square is going to have to set its height, too, since squares
have equal width and height. So even though Square IS-A Rectangle,
it doesn’t behave like a rectangle. Calling getHeight() above will return
5, not 10, which means that squares behave differently than rectangles, and
aren’t substitutable for them—that’s a violation of the LSP.

Rectangle
setHeight(int)
setWidth(int)

Square
setHeight(int)
setWidth(int)

Square IS-A Rectangle.

Rectangle square = new Square();
square.setHeight(10);
square.setWidth(5);

System.out.println(“Height is ” + square.getHeight());

What does this method return? More

importantly, what SHOULD it return?

Use inheritance when one object
behaves like another, rather than just
when the IS-A relationship applies.

Download at WoweBook.Com

560 Appendix I

#2. Use case formats
Even though there’s a pretty standard definition for what a use
case is, there’s not a standard way for writing use cases. Here are
just a few of the different ways you can write up your use cases:

1. Fido barks to be let out.

2. Todd or Gina hears Fido barking.

3. Todd or Gina presses the button on the
remote control.

4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.

6.1 The door shuts automatically.

6.2 Fido barks to be let back inside.

6.3 Todd or Gina hears Fido barking (again).

6.4 Todd or Gina presses the button on the
remote control.

6.5 The dog door opens (again).

7. Fido goes back inside.
8. The door shuts automatically.

Todd and Gina’s Dog Door, version 2.0
What the Door Does

Fido barks to be let outside. When Todd and Gina hear him barking, they press a button on their remote control. The button opens up the dog door, and Fido goes outside. Then Fido does his business, and returns inside. The dog door then shuts automatically.
If Fido stays outside too long, then the dog door will shut while he’s still outside. Fido will bark to be let back inside, and Todd or Gina presses the button on the remote control again. This opens the dog door, and allows Fido to return back inside.

Todd and Gina’s Dog Door, version 2.0
What the Door Does

This use case is in a casual style. The steps that the system follows are written out in paragraph form.

Any alternate paths are usually
added to the end of the text
in casual form, and presented in
an “If-then” form.

Here’s the format we’ve been using so
far. It’s a simple, step-based format
that works well for most situations.

use case formats

Download at WoweBook.Com

you are here 4 561

leftovers

Focusing on interaction
This format is a little more focused on separating out what is in
a system, and how the actors outside of the system interact with
your software.

Todd and Gina’s Dog Door, version 2.0
What the Door Does

Actor System

Fido barks to be let out.

The dog door opens.

Todd or Gina hears Fido
barking.

Todd or Gina presses
the button on the
remote control.

Fido goes outside.
Fido does his business.
Fido goes back inside.

The door shuts automatically.

Extensions
If Fido stays outside and the dog door shuts before he

comes back in, he can bark to be let back in. Todd or
Gina can press the button on the remote again, and he
can return inside.

This format focuses on what is external to the system (the actors), and what the system itself does.

In Todd and Gina’s
dog door, the system
is pretty simple,
and usually is just
responding to the
actions of Todd,
Gina, and Fido.

This format doesn’t offer a very
convenient way to handle alternate
paths, so they’re just added at the
bottom of the use case.

Remember,
actors are
external to
the system.
They act on,
or use, the
system.

Download at WoweBook.Com

562 Appendix I

A more formal use case

more use case formats

Primary Actor: Fido
Secondary Actors: Todd and Gina

Pre-condition: Fido is inside, and needs to use the restroom.

Goal: Fido has used the bathroom and is back inside the
house, without Todd or Gina having to get up and open
or close the dog door.

Main Path
1. Fido barks to be let out.
2. Todd or Gina hears Fido barking.

3. Todd or Gina presses the button on the remote control.

4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.
7. Fido goes back inside.
8. The door shuts automatically.

Extensions
6.1 The door shuts automatically.

6.2 Fido barks to be let back inside.

6.3 Todd or Gina hears Fido barking (again).

6.4 Todd or Gina presses the button on the remote control.

6.5 The dog door opens (again).

Todd and Gina’s Dog Door, version 2.0
What the Door Does

This is similar to the use case format we’ve been using, but adds some extra details.

The actors are
external forces
that affect
the system.

Everything in the use case is geared towards accomplishing this goal.

Pre-conditions
detail any
assumptions
that the
system makes
before things
get started.

These are the steps from the alternate path, but they’re just listed separately.

Alternate paths are
also called extensions,
and in this format,
are listed below the
main path steps.

All of these use cases say the same thing...
it’s up to you (and probably your boss) to
decide which format works best for you.

Download at WoweBook.Com

you are here 4 563

leftovers

#3. Anti patterns
We’ve talked a lot in this book about design patterns, and
described them this way:

But there’s another type of pattern you should know about,
called an anti-pattern:

Anti patterns turn up when you see the same problem get solved
the same way, but the solution turns out to be a BAD one. For
example, one common anti pattern is called “Gas Factory”, and
refers to designs that are overly complex, and therefore not very
maintainable. So you want to work to avoid the Gas Factory in
your own code.

Design Patterns
Design patterns are proven solutions to
particular types of problems, and help us
structure our own applications in ways
that are easier to understand, more
maintainable, and more flexible.

Anti Patterns
Anti-patterns are the reverse of design

patterns: they are common BAD solutions
to problems. These dangerous pitfalls

should be recognized and avoided.

We’re actually not making this up! At your next serious development meeting, be sure to mention trying to avoid the Gas Factory.

Design patterns
help you recognize
and implement
GOOD solutions to
common problems.

Anti patterns are
about recognizing
and avoiding
BAD solutions to
common problems.

Download at WoweBook.Com

564 Appendix I

#4. CRC cards
CRC stands for Class, Responsibility, Collaborator. These cards are
used to take a class and figure out what its responsibility should be,
and what other classes it collaborates with.

CRC cards are typically just 3x5 index cards, with each individual
card representing a class. The card has two columns: one for the
responsibilities of the class, and another for other classes that are
collaborators, and used to fulfill those responsibilities.

crc cards

Class: BarkRecognizer
Description: This class is the interface to the bark recognition hardware.

Responsibilities:
Name Collaborator

Tell the door to open DogDoor

This class is the class you’re determining responsibilities for.

List each
job this class
needs to do.

If there are other classes involved is this job, list them in this column.

Class: DogDoor
Description: Represents the physical dog door. This provides an interface

to the hardware that actually controls the door.
Responsibilities:

Name Collaborator

Open the door
Close the doorBe sure you write

down things that
this class does on its own, as well as things it collaborates with other classes on.

There’s no collaborato
r

class for these.

Download at WoweBook.Com

you are here 4 565

leftovers

CRC cards help implement the SRP
You can use CRC cards to make sure your classes follow the Single
Responsibility Principle. These go hand in hand with your SRP
Analysis, as well:

The itself.
The itself.
The itself.

SRP Analysis for

The itself.
The itself.
The itself.

The itself.Automobile
Automobile
Automobile
Automobile

Automobile
Automobile
Automobile

Automobile
start[s]
stop[s]

changesTires
drive[s]
wash[es]

check[s] oil
get[s] oil

Class: Automobile
Description: This class represents a car and its related functionality

Responsibilities:
Name Collaborator

Starts itself.
Stops itself.
Gets tires changed
Gets driven

Gets washed
Gets oil checked
Reports on oil levels

Any time you see “Gets”, it’s probably not the responsibility of this class to do a certain task.

Technically, you don’
t need to

list responsibilities t
hat AREN’T

this class’s, but doin
g things this

way can help you find
 tasks that

really shouldn’t be o
n this class.

Mechanic, Tire
Driver
CarWash, Attendant

Mechanic

If you’ve got a class that seems to violate the SRP, you can use a CRC card to sort out which classes should be doing what.

Download at WoweBook.Com

566 Appendix I

#5. Metrics
Sometimes it’s hard to tell how solid your design really is, because design is such
a subjective thing. That’s where metrics can help out: while they don’t provide
a complete picture of your system, they can be helpful in pointing out strengths,
weaknesses, and potential problems. You usually use software tools to take as input
your class’s source code, and those tools then generate metrics based on your code
and its design.

These metrics are more than just numbers, though. For example, just counting the
number of lines of code in your application is almost a total waste of time. It’s
nothing but a number, and has no context (and also depends a lot on how you’re
writing your code, something else we’ll talk about in this appendix). But if you count
the number of defects per 1000 lines of code, then that becomes a useful metric.

You can also use metric to measure things like how well you’re using abstraction in
your code. Good design will use abstract classes and interfaces, so that other classes
can program to those interfaces rather than specific implementation classes. So
abstraction keeps one part of your code independent from changes to other parts
of your code, at least to the degree that it’s possible in your system. You can use
something called the abstractness metric to measure this:

Packages that have lots of abstractions will have a higher value for A, and packages
with less abstractions have a lower value for A. In general, you want to have each
package in your software only depend on packages with a higher value for A. That
means that your packages are always depending on packages that are more abstract;
the result should be software that can easily respond to change.

metrics and sequence diagrams

defect density = errors found in code
total lines of code / 1000

This number gives you some idea of how well you’re writing your code. If it’s high, look for design problems or inefficiences.

A = N / Na c

Na is the nu
mber of abstract

classes in a particular packag
e or

module of your software (this
includes interfaces).

Nc is the total number of classes in the same package or module.

This number will always be
between 0 and 1. Higher numbers
mean more abstraction is being
used, lower numbers represent
less abstraction.

Robert Martin’s book called
“Agile Software Development”
has a lot more of these OO-
related metrics.

Download at WoweBook.Com

you are here 4 567

leftovers

#6. Sequence diagrams
When we were working on the dog door for Todd and Gina, we developed
several alternate paths (and one alternate path actually had an alternate
path itself). To really get a feel for how your system handles these different
paths, it’s helpful to use a UML sequence diagram. A sequence diagram
is just what it sounds like: a visual way to show the things that happen in a
particular interaction between an actor and your system.

BarkRecognizer DogDoor

owner’s dog

1: bark

2: open

3: close

4: bark

5: open

6: close

The owner’s dog
goes outside

The owner’s dog
comes inside

This is the actor this
sequence is started by.

These boxes with underlined names represent objects in the system.

These are called lifelines. They
represent the life of these
objects and actors throughout
this particular sequence.

These are notes, and
indicate things that are
going on in the system
that aren’t specifically
related to the objects
in this diagram.These are the messages in the sequence. The number is the order that they occur in.

In OO systems, these messages
equate to methods being called
on the objects in the sequence.

Sometimes an object calls a method on itself. In that case, the message originates from, and is directed to, the same object.

Download at WoweBook.Com

568 Appendix I

#7. State diagrams
You’ve already seen class diagrams and sequence diagrams. UML also
contains a diagram called a state machine diagram or statechart
diagram, which is usually just referred to as a state diagram. This
diagram describes a part of your system by showing its various states,
and the actions that cause that state to change. These diagrams are
great for describing complex behaviors visually.

State diagrams really come into play when you have multiple actions
and events that are all going on at the same time. On the right page,
we’ve taken just such a situation, and drawn a state diagram for how
a game designer might use Gary’s Game System Framework. If game
designers were going to use the framework, they might write a game
that behaves a lot like this state diagram demonstrates.

state diagrams

Ready to
Play

Symbols commonly used in state diagrams

A solid circle indicates
a starting state.

The end state of the diagram is indicated by a solid circle inside another circle.

Each rounded rec
tangle

is a state. The state

has a name, and is one

of several possib
le states

that the software can be

in at a given tim
e.

These arrows are
transitions. They take the app from one
state to another.

make move [units able to move > 0]

This is the name
of the transition,
and describes what
triggers the change
of state.

This is called a guard expression. It indicates a condition that must be true for this transition to occur.

All activity diagram
s

begin at this poin
t.

Download at WoweBook.Com

you are here 4 569

leftovers

Ready to
Play

Player 1
Movement

Player 1
Combat

Player 2
Movement

Victory
Check

Player 2
Combat

select game scenario

start game

end phase

end phase

end phase

end phase

end phase [Player 2 to move]

make move [units able to move > 0]

make move [units able to move > 0]

victory

fight battle [units able to attack > 0]

fight battle [units able to attack > 0]

end phase [Player 1 to move]

The game (the activity in

this diagram) starts here.

Movement can only
occur if there
are units that are

able to move (their
movement attribute

is greater than z
ero).

There’s a check
for victory, and
the game ends
if the check
returns true.

This is the end state
for this diagram. The
process doesn’t stop
until it gets here.

These aren’t actual methods or classes... they’re particular states that the app can be in at a particular point.

Sometimes a transition is just part of the process, and doesn’t have a special name or condition. It’s just the “next stage” of the state of the app.

Download at WoweBook.Com

570 Appendix I

#8. Unit testing
In each chapter that we’re worked on an application, we’ve built

“driver” programs to test the code, like SubwayTester and
DogDoorSimulator. These are all a form of unit testing. We
test each class with a certain set of input data, or with a particular
sequence of method calls.

While this is a great way to get a sense of how your application
works when used by the customer, it does have some drawbacks:

1. You have to write a complete program for each usage of
the software.

2. You need to produce some kind of output, either to the
console or a file, to verify the software is working correctly.

3. You have to manually look over the output of the test, each
time its run, to make sure things are working correctly.

4. Your tests will eventually test such large pieces of
functionality that you’re no longer testing all the smaller
features of your app.

Fortunately, there are testing frameworks that will not only allow
you to test very small pieces of functionality, but will also automate
much of that testing for you. In Java, the most popular framework
is called JUnit (http://www.junit.org), and integrates with lots of
the popular Java development environments, like Eclipse.

unit testing

1

2

3

4

Q: If the tests we wrote in the main part of the book made
sure our software worked at a high level, why do we need more
tests? Aren’t those enough to be sure our software works?

A: Most of the tests we wrote really tested a particular scenario,
such as opening the door, letting a dog out, having another dog bark,
and then letting the owner’s dog back in. Unit tests, and particular the
tests we’re talking about here, are far more granular. They test each
class’s functionality, one piece at a time.

The reason that you need both types of tests is because you’ll
never be able to come up with scenarios that test every possible
combination of features and functionality in your software. We’re all
human, and we all tend to forget just one or two strange situations
now and then.
With tests that exercise each individual piece of functionality in your
classes, you can be sure that things will work in any scenario, even if
you don’t specifically test that scenario. It’s a way to make sure each
small piece works, and one that lets you assume pretty safely that
combining those small pieces will then work, as well.

Dumb Questions
there are no

Download at WoweBook.Com

you are here 4 571

leftovers

What a test case looks like
A test case has a test method for each and every piece of functionality
in the class that it’s testing. So for a class like DogDoor, we’d test
opening the door, and closing the door. JUnit would generate a test
class that looked something like this:

import junit.framework.TestCase;

/**
 * This test case tests the operation of the dog door by using the
 * remote button.
 */
public class RemoteTest extends TestCase
{
 public void testOpenDoor()
 {
 DogDoor door = new DogDoor();
 Remote remote = new Remote(door);
 remote.pressButton();
 assertTrue(door.isOpen());
 }

 public void testCloseDoor() {
 DogDoor door = new DogDoor();
 Remote remote = new Remote(door);
 remote.pressButton();
 try {
 Thread.currentThread().sleep(6000);
 } catch (InterruptedException e) {
 fail(“interrupted thread”);
 }
 assertFalse(door.isOpen());
 }
}

Test your code in context
Notice that instead of directly testing the DogDoor’s open() and
close() methods, this test uses the Remote class, which is how
the door would work in the real world. That ensures that the tests are
simulating real usage, even though they are testing just a single piece of
functionality at a time.

The same thing is done in testCloseDoor(). Instead of calling
the close() method, the test opens the door with the remote, waits
beyond the time it should take for the door to close automatically, and
then tests to see if the door is closed. That’s how the door will be used,
so that’s what should be tested.

TestCase is JUnit’s base class for testing software.

There’s a method
for each piece of
functionality in DogDoor.

This method tests for
the door automatically
closing, rather than just
calling door.close(), which
isn’t how the door is
usually used.

assertTrue()
checks to see
if the supplied
method
returns true,
which it should
in this case.

assertFalse()
checks a
method to
ensure that
it’s NOT true.

Download at WoweBook.Com

572 Appendix I

#9. Coding standards and readable code
Reading source code should be a lot like reading a book. You should
be able to tell what’s going on, and even if you have a few questions, it
shouldn’t be too hard to figure out the answers to those questions if you
just keep reading. Good developers and designers should be willing to
spend a little extra time writing readable code, because it improves the
ability to maintain and reuse that code.

Here’s an example of a commented and readable version of the
DogDoor class we wrote back in Chapters 2 and 3.

coding standards

/**
 * This class represents the interface to the real dog door.
 *
 * @author Gary Pollice
 * @version Aug 11, 2006
 */
public class DogDoor
{
 // the number of open commands in progress
 private int numberOfOpenCommands = 0;

 boolean doorIsOpen = false;
 /**
 * @return true if the door is open
 */
 public boolean isOpen()
 {
 return doorIsOpen;
 }

 /**
 * Open the door and then, five seconds later, close it.
 */
 public void open()
 {
 // Code to tell the hardware to open the door goes here
 doorIsOpen = true;
 numberOfOpenCommands++;
 TimerTask task = new TimerTask() {
 public void run() {
 if (--numberOfOpenCommands == 0) {
 // Code to tell the hardware to close the door goes here
 doorIsOpen = false;
 }
 }
 };
 Timer timer = new Timer();
 timer.schedule(task, 5000);
 }
}

JavaDoc comments help people reading the code, and also can be used to generate documentation with Java’s javadoc tool.

This code is clear and spaced out.

Method and variable names are descriptive, and easy to decipher.

Any statements that
aren’t perfectly clear are
commented to clarify.

Even variables
used just within
a single method
are named for
readability.

Download at WoweBook.Com

you are here 4 573

leftovers

Great software is more than just
working code
Many developers will tell you that code standards and formatting are
a big pain, but take a look at what happens when you don’t spend any
time making your code readable:

From a purely functional point of view, this version of DogDoor works
just as well as the one on the last page. But by now you should know
that great software is more than just working code—it’s code that is
maintainable, and can be reused. And most developers will not want to
maintain or reuse this second version of DogDoor; it’s a pain to figure
out what it does, or where things might go wrong—now imagine if
there were 10,000 lines of code like this, and not just 25 or so.

public class DogDoor
{
 private int noc = 0;
 boolean dio = false;

 public boolean returndio() { return dio; }

 public void do_my_job()
 {
 dio = true;
 noc++;
 TimerTask tt = new TimerTask() {
 public void run() {
 if (--noc == 0) dio = false;
 }
 };
 Timer t = new Timer();
 t.schedule(tt, 5000);
 }
}

No comments at all here... it’s up to

the developer reading this code
 to

figure everything out on their
own.

No telling what these variables are for...

...or these methods.
The names are not at
all descriptive.

The lack of
indentation and
spacing makes
things even harder
to understand.

Writing readable code makes that code
easier to maintain and reuse, for you
and other developers.

Download at WoweBook.Com

574 Appendix I

refactoring

#10. Refactoring
Refactoring is the process of modifying the structure of your code
without modifying its behavior. Refactoring is done to increase the
cleanness, flexibility, and extensibility of your code, and usually is
related to a specific improvement in your design.

Most refactorings are fairly simple, and focus on one specific design
aspect of your code. For example:

While there’s nothing particularly wrong with this code, it’s not as
maintainable as it could be. The getDisabilityAmount()
method is really doing two things: checking the eligibility for disability,
and then calculating the amount.

By now, you should know that violates the Single Responsibility
Principle. We really should separate the code that handles eligibility
requirements from the code that does disability calculations. So we can
refactor this code to look more like this:

Now, if the eligibility requirements for disability change, only the
isEligibleForDisability() methods needs to change—and
the method responsible for calculating the disability amount doesn’t.

Think of refactoring as a checkup for your code. It should be an
ongoing process, as code that is left alone tends to become harder and
harder to reuse. Go back to old code, and refactor it to take advantage
of new design techniques you’ve learned. The programmers who have
to maintain and reuse your code will thank you for it.

public double getDisabilityAmount() {
 // Check for eligibility
 if (seniority < 2)
 return 0;
 if (monthsDisabled > 12)
 return 0;
 if (isPartTime)
 return 0;
 // Calculate disability amount and return it
}

public double getDisabilityAmount() {
 // Check for eligibility
 if (isEligibleForDisability()) {
 // Calculate disability amount and return it
 } else {
 return 0;
 }
}

We’ve taken two responsibilities, and placed them in two separate methods, adhering to the SRP.

Refactoring
changes the
internal structure
of your code
WITHOUT
affecting your
code’s behavior.

Download at WoweBook.Com

this is an appendix 575

appendix ii: welcome to objectville

Get ready to take a trip to a foreign country. It’s time

to visit Objectville, a land where objects do just what they’re supposed

to, applications are all well-encapsulated (you’ll find out exactly what that

means shortly), and designs are easy to reuse and extend. But before we

can get going, there are a couple of things you need to know first, and a few

language skills you’re going to have to learn. Don’t worry, though, it won’t

take long, and before you know it, you’ll be speaking the language of OO like

you’ve been living in the well-designed areas of Objectville for years.

Speaking the
 Language of OOIt says here that you want

to change my composition to
aggregation, add some delegation,
and that I’m not well-encapsulated.
I’m totally lost, and I think I might

even be insulted!

Download at WoweBook.Com

576 Appendix II

Welcome to Objectville
Whether this is your first trip to Objectville, or you’ve visited
before, there’s no place quite like it. But things are a little
different here, so we’re here to help you get your bearings before
you dive into the main part of the book.

a care package for you

Welcome to Objectville! I picked
up a few things I thought you might
need to help make you comfortable

right away. Enjoy!

UML

Encapsulation

In
he

ri
ta

nc
e

We’ll start with
just a little bit of
UML, so we can talk
about classes easily
throughout the book.

Then, we’ll do a quick review of inheritance, just to make sure you’re ready for the more advanced code examples in this book.

Finally, we’ll talk just a

bit about encapsula
tion,

and make sure we’re all

on the same page about

what that word means.

Po
ly

mo
rp

his
m

Once we’ve got
inheritance covered,
we’ll take a quick look
at polymorphism, too.

Download at WoweBook.Com

welcome to objectville

you are here 4 577

UML and class diagrams
We’re going to talk about classes and objects a lot in this book, but it’s
pretty hard to look at 200 lines of code and focus on the big picture.
So we’ll be using UML, the Unified Modeling Language, which is a
language used to communicate just the details about your code and
application’s structure that other developers and customers need,
without getting details that aren’t necessary.

Airplane
speed: int
getSpeed(): int
setSpeed(int)

This is how you show a
class in a class diagram.
That’s the way that
UML lets you represent
details about the classes
in your application.

This is the name of the class. It’s always in bold, at the top of the class diagram.

These are the member
variables of the class.
Each one has a name,
and then a type
after the colon.

This line separates the member variables from the methods of the class.
These are the methods of the class. Each one has a name, and then any parameters the method takes, and then a return type after the colon.

A class diagram makes it really easy
to see the big picture: you can easily

tell what a class does at a glance.
You can even leave out the variables
and/or methods if it helps you
communicate better.

Write the skeleton for the Airplane class.

Using the class diagram above, see if you can write the basic skeleton for
the Airplane class. Did you find anything that the class diagram leaves out?
Write those things in the blanks below:

Sharpen your pencil

Download at WoweBook.Com

578 Appendix II

Write the skeleton for the Airplane class.

Using the class diagram on page 577, you were supposed to write
the basic skeleton for the Airplane class. Here’s what we did:

Sharpen your pencil
answers

public class Airplane {

 private int speed;

 public Airplane() {
 }

 public void setSpeed(int speed) {
 this.speed = speed;
 }

 public int getSpeed() {
 return speed;
 }
}

The class diagram
didn’t tell us if
speed should be public,
private, or protected.

There was nothing about a constructor in the class diagram. You could have written a constructor that took in an initial speed value, and that would be OK, too.

The class diagram didn’t
tell us what this method
did... we made some
assumptions, but we can’t
be sure if this code is
really what was intended.

coding from a class diagram

Q: So the class diagram isn’t a very
complete representation of a class, is it?

A: No, but it’s not meant to be. Class
diagrams are just a way to communicate
the basic details of a class’s variables and
methods. It also makes it easy to talk about
code without forcing you to wade through
hundreds of lines of Java, or C, or Perl.

Q: I’ve got my own way of drawing
classes; what’s wrong with that?

A: There’s nothing wrong with your
own notation, but it can make things harder
for other people to understand. By using
a standard like UML, we can all speak the
same language and be sure we’re talking
about the same thing in our diagrams.

Q: So who came up with this UML
deal, anyway?

A: The UML specification was
developed by Rational Software, under the
leadership of Grady Booch, Ivar Jacobson,
and Jim Rumbaugh (three really smart
guys). These days it’s managed by the
OMG, the Object Management Group.

Q: Sounds like a lot of fuss over that
simple little class diagram thing.

A: UML is actually a lot more than
that class diagram. UML has diagrams for
the state of your objects, the sequence of
events in your application, and it even has
a way to represent customer requirements
and interactions with your system. And
there’s a lot more to learn about class
diagrams, too.
At this point, though, you just need the
basics on page 577. We’ll talk about other
things you can show in a class diagram,
and other types of diagrams, when we need
them later in the book.

Dumb Questions
there are no

Actually, class diagams
can provide this
information, but in
most cases, it’s not
needed for clear
communication.

Download at WoweBook.Com

welcome to objectville

you are here 4 579

Next up: inheritance
One of the fundamental programming topics in Objectville is
inheritance. That’s when one class inherits behavior from another
class, and can then change that behavior if needed. Let’s look at how
inheritance works in Java; it’s similar in other languages, too:

public class Jet extends Airplane {

 private static final int MULTIPLIER = 2;

 public Jet() {
 super();
 }

 public void setSpeed(int speed) {
 super.setSpeed(speed * MULTIPLIER);
 }

 public void accelerate() {
 super.setSpeed(getSpeed() * 2);
 }

}

Jet extends from the
Airplane class. That means
it inherits all of Airplane’s
behavior to use for its own.

super is a special keyword. It refers to the class that this class has inherited behavior from. So here, this calls the constructor of Airplane, Jet’s superclass.

The subclass can add its own variables to the ones that it inherits from Airplane.

The subclass can change the behavior
of its superclass, as well as call the
superclass’s methods. This is called
overriding the superclass’s behavior.

Jet is called a subc
lass

of Airplane. Airplane is

the superclass for
Jet.

Jet also inherits the getSpeed() method
from Airplane. But since Jet uses the
same version of that method as Airplane,
we don’t need to write any code to
change that method. Even though you
can’t see it in Jet, it’s perfectly OK to
call getSpeed() on Jet.

A subclass can add its
own methods to the
methods it inherits
from its superclass.

You can call super.getSpeed(), but you can also just call getSpeed(), just as if getSpeed() were a normal method defined in Jet.

Inheritance lets you build classes
based on other classes, and avoid
duplicating and repeating code.

Download at WoweBook.Com

580 Appendix II

Pool Puzzle
Your job is to take code snippets from

the pool below and place them into
the blank lines in the code

you see on the right.
You may use the same
snippet more than once,
and you won’t need
to use all the snippets.

Your goal is to create a
class that will compile, run,

and produce the output listed.

pool puzzle

Output:

File Edit Window Help LeavingOnAJetplane

%java FlyTest

212

844

1688

6752

13504

27008

1696

Solution on page 588

212

422

424
108

boeing.getSpeed()

biplane.getSpeed()int x = 0

x = 0

x<4

x<3

x<5

boeing.accelerate()

biplane.accelerate()boeing.setSpeed

biplane.setSpeed

x = 1

x++

x--

public class FlyTest {
 public static void main(String[] args) {
 Airplane biplane = new Airplane();
 biplane.setSpeed(_____);
 System.out.println(_________________);
 Jet boeing = new Jet();
 boeing.setSpeed(_____);
 System.out.println(________________);
 __________;
 while (______) {
 __________________;
 System.out.println(__________________);
 if (___________________ > 5000) {
 ________________(__________________ * 2);
 } else {
 ___________________;
 }
 _______;
 }
 System.out.println(__________________);
 }
}

Download at WoweBook.Com

welcome to objectville

you are here 4 581

And polymorphism, too...
Polymorphism is closely related to inheritance. When
one class inherits from another, then polymorphism allows a
subclass to stand in for the superclass.

Airplane
speed: int
getSpeed(): int
setSpeed(int)

Jet
MULTIPLIER: int
accelerate()

This little arrow means that Jet inherits from Airplane. Don’t worry about this notation too much, we’ll talk a lot more about inheritance in class diagrams later on.

Jet subclasses Airplane. That

means that anywhere that you

can use an Airplane...

Airplane plane = new Airplane(); Airplane plane = new Jet();

...you could also use a Jet.

So on the left side, you
have the superclass...

...and on the right, you can have the superclass OR any of its subclasses.
Airplane plane = new Airplane(); Airplane plane = new Airplane();

Airplane plane = new Jet();
Airplane plane = new Rocket();

Pretend that
Rocket is
another subclass
of Airplane.

Q: What’s so useful about polymorphism?

A: You can write code that works on the superclass, like
Airplane, but will work with any subclass type, like Jet or
Rocket. So your code is more flexible.

Q: I still don’t get how polymorphism makes my code
flexible.

A: Well, if you need new functionality, you could write a new
subclass of Airplane. But since your code uses the superclass,
your new subclass will work without any changes to the rest of our
code! That means your code is flexible and can change easily.

Dumb Questions
there are no

Here’s another class
diagram, this time
with two classes.

Download at WoweBook.Com

582 Appendix II

Last but not least: encapsulation
Encapsulation is when you hide the implementation of a
class in such a way that it is easy to use and easy to change. It
makes the class act as a black box that provides a service to its
users, but does not open up the code so someone can change
it or use it the wrong way. Encapsulation is a key technique in
being able to follow the Open-Closed principle. Suppose we
rewrote our Airplane class like this:

public class Airplane {

 public int speed;

 public Airplane() {
 }

 public void setSpeed(int speed) {
 this.speed = speed;
 }

 public int getSpeed() {
 return speed;
 }
}

We made the
speed variable
public, instead
of private, and
now all parts
of your app
can access
speed directly.

Now anyone can set the speed directly
This change means that the rest of your app no longer has to call
setSpeed() to set the speed of a plane; the speed variable can be
set directly. So this code would compile just fine:

public class FlyTest2 {
 public static void main(String[] args) {
 Airplane biplane = new Airplane();
 biplane.speed = 212;
 System.out.println(biplane.speed);
 }
}

We don’t have to use setSpeed() and getSpeed() anymore... we can just access speed directly.

information hiding

Encapsulation
is when

you protect
information

in your
code from
being used
incorrectly.

Try this code out...
anything surprising in the
results you get?

Download at WoweBook.Com

welcome to objectville

you are here 4 583

So what’s the big deal?
Doesn’t seem like much of a problem, does it? But what happens if
you create a Jet and set its speed like this:

public class FlyTest3 {
 public static void main(String[] args) {
 Jet jet1 = new Jet();
 jet1.speed = 212;
 System.out.println(jet1.speed);

 Jet jet2 = new Jet();
 jet2.setSpeed(212);
 System.out.println(jet2.getSpeed());
 }
}

What’s the value of encapsulating your data?

Type in, compile, and run the code for FlyTest3.java, shown above. What
did your output look like? Write the two lines of output in the blanks below:

Speed of jet1:

Speed of jet2:

What do you think happened here? Write down why you think you got the
speeds that you did for each instance of Jet:

Finally, summarize what you think the value of encapsulation is:

Sharpen your pencil

Since Jet inherits from Airplane, you can use the speed variable from its superclass just like it was a part of Jet.

This is how we set and accessed the spe
ed

variable when we hid speed from being

directly accessed.

Using Jet
without
encapsulation.

Using Jet with
encapsulation

Download at WoweBook.Com

584 Appendix II

encapsulation. The process of enclosing programming
elements inside larger, more abstract entities. Also known

as information hiding, or separation of concerns.

Scholar’s Corner
the

Taking a college class in programming? Here’s the official definition of encapsulation... if you’re taking an exam, this is the definition to use.

What’s the value of encapsulating your data?

Type in, compile, and run the code for FlyTest3.java shown above. What
did your output look like? Write the two lines of output in the blanks below:

Speed of jet1:

Speed of jet2:

What do you think happened here? Write down why you think you got the
speeds that you did for each instance of Jet:

Finally, summarize what you think the value of encapsulation is:

Sharpen your pencil
answers

212

424

In the Jet class, setSpeed() takes the value supplied, and multiplies
it by two before setting the speed of the jet. When we set the
speed variable manually, it didn’t get multiplied by two.

Encapsulation protects data from being set in an improper way. With
encapsulated data, any calculations or checks that the class does on
the data are preserved, since the data can’t be accessed directly.

You didn’t have to write
down exactly what we
did, but you should have
gotten something similar.

So encapsulation does more than just
hide information; it makes sure the
methods you write to work with your
data are actually used!

the value of encapsulation

Download at WoweBook.Com

welcome to objectville

you are here 4 585

Q: So encapsulation is all about
making all your variables private?

A: No, encapsulation is about
separating information from other parts of
your application that shouldn’t mess with
that information. With member variables,
you don’t want the rest of your app directly
messing with your data, so you separate
that data by making it private. If the data
needs to be updated, you can provide
methods that work with the data responsibly,
like we did with the Airplane class, using
getSpeed() and setSpeed().

Q: So are there other ways to use
encapsulation besides with variables?

A: Absolutely. In fact, in Chapter 1,
we’ll be looking at how you can encapsulate
a group of properties away from an object,
and make sure that the object doesn’t use
those properties incorrectly. Even though
we’ll deal with an entire set of properties, it’s
still just separating a set of information away
from the rest of your application.

Q: So encapsulation is really about
protecting your data, right?

A: Actually, it’s even more than
that! Encapsulation can also help you
separate behavior from other parts of your
application. So you might put lots of code in
a method, and put that method in a class;
you’ve separated that behavior from the
rest of your application, and the app has to
use your new class and method to access
that behavior. It’s the same principles as
with data, though: you’re separating out
parts of your application to protect them
from being used improperly.

Q: Wow, I’m not sure I’m following
all of this. What do I need to do?

A: Just keep reading. Make sure you
understand the exercise solutions on page
584, and you’re ready for Chapter 1. We’ll
spend a lot more time on all of these OO
principles and concepts, so don’t feel like
you need to get everything down perfectly
at this point.

there are no
Dumb Questions

Encapsulation
separates
your data
from your
app’s
behavior.

Then you can
control how
each part is
used by the
rest of your
application.

Download at WoweBook.Com

586 Appendix II

Already gone through
everything? Then you’re definitely
ready for the rest of this book. And
welcome again to the well-designed
part of Objectville... we love it here,

I’m sure you will, too.

 BULLET POINTS

� UML stands for the Unified
Modeling Language.

� UML helps you communicate
the structure of your application
to other developers, customers,
and managers.

� A class diagram gives you an
overview of your class, including
its methods and variables.

� Inheritance is when one class
extends another class to reuse
or build upon the inherited
class’s behavior.

� In inheritance, the class being
inherited from is called the
superclass; the class that is
doing the inheritance is called
the subclass.

� A subclass gets all the behavior
of its superclass automatically.

� A subclass can override its
superclass’s behavior to change
how a method works.

� Polymorphism is when a
subclass “stands in" for its
superclass.

� Polymorphism allows your
applications to be more flexible,
and less resistant to change.

� Encapsulation is when you
separate or hide one part of your
code from the rest of your code.

� The simplest form of
encapsulation is when you make
the variables of your classes
private, and only expose that
data through methods on the
class.

� You can also encapsulate
groups of data, or even
behavior, to control how they are
accessed.

reviewing the basics

Download at WoweBook.Com

welcome to objectville

you are here 4 587

Take a moment to review the concepts in this appendix,
and then you’re ready to step firmly into the world of
analysis, design, OO programming, and great software.

OOA&D Cross

Download at WoweBook.Com

588 Appendix II

Pool Puzzle
Solution

Your job was to take code snippets
from the pool below, and place them
into the blank lines in the code you see
on the right. You may use the same
snippet more than once, and you won’t
need to use all the snippets. Your goal
was to create a class that will compile,
run, and produce the output listed.

Output:

File Edit Window Help LeavingOnAJetplane

%java FlyTest

212

844

1688

6752

13504

27008

1696

public class FlyTest {
 public static void main(String[] args) {
 Airplane biplane = new Airplane();
 biplane.setSpeed(212);
 System.out.println(biplane.getSpeed());
 Jet boeing = new Jet();
 boeing.setSpeed(422);
 System.out.println(boeing.getSpeed());
 int x = 0;
 while (x<4) {
 boeing.accelerate();
 System.out.println(boeing.getSpeed());
 if (boeing.getSpeed() > 5000) {
 biplane.setSpeed(biplane.getSpeed() * 2);
 } else {
 boeing.accelerate();
 }
 x++;
 }
 System.out.println(biplane.getSpeed());
 }
}

pool puzzle solution

Here’s our solution to t
he

pool puzzle.

Download at WoweBook.Com

welcome to objectville

you are here 4 589

Exercise
Solution

Download at WoweBook.Com

Download at WoweBook.Com

This is the inde� 591

Index

Numbers
3DBoard, solving without inheritance 405

A
abstract base class 200–203, 212

abstracting behavior 205

abstraction 243

actors 294, 299, 300, 302

aggregation 208, 412–417, 414, 558
versus composition 413

Airplane class 577

alternate paths 70, 85–87
dog door 123
dog door requirement changes 120
questions and answers 125

analysis xiii–xxii, 145–196, 283
identifying problems 148
planning solutions 149
textual 169
use cases and 151

Analysis and Design Puzzle 510, 536–538

anonymous class 82

anti patterns 563

architecturally significant features 331

architecture
defined 326–328
purpose of 351
three questions 332

Architecture Puzzle 340
revisited 345
solution 346–347

array of arrays 347

association 194

attributes 194

B
Bark object 158, 159

multiple 165

BarkRecognizer.java 131, 132, 135
Don’t Repeat Yourself Principle 382

BarkRecognizer class 132, 135, 159
delegation 161
questions and answers 132
recognize() method 160, 189

base classes, modifying 381

behavior
of subclasses 241
reusing from other classes 414

Be the Browser 333, 334, 365, 437, 438

big problems
breaking into smaller pieces 281, 309, 310–314
looking at 281
versus little problems 280

Board class 346, 348, 349, 364

boolean property versus numStrings property 39

Bullet Points 106, 142, 191, 320, 372, 417, 475, 586

C
cancel() method (TimerTask anonymous class) 82

case diagrams, versus use cases 77

change 228
constant in software development 115

changing requirements 115

checked exception 470

Download at WoweBook.Com

the inde�

592 inde�

class diagrams 19, 194
abstract classes 206
annotating guitar application 39
dissected 182–183
Guitar 29
limitations 187
subclasses 206
UML and 577
what’s missing 188, 190

classes, protecting 523

clear value 74, 75, 98, 100

closed for modification 377–381, 417, 418

code, robust 18

coding standards 572

cohesion 269–276

collections 251

commonality 355–361, 367, 441–450
commonality-focused solution 450
emphasizing 446–447

commonality analysis 361, 367

common behavior 205

composition 408–417, 414, 558
assembling behaviors from other classes 408
ownership and 411
versus aggregation 413
when to use 409

Connection class 514, 517

constant in software analysis & design 115

context 147

contract, programming by 461–463

coordinating movement 337, 366, 367

CRC cards 564–565

customer’s language 306

customer goal 72

customers
listening to 63
satisfying 12
understanding customer’s requirments 65

D
death of a design 246

Decorator Pattern
disadvantages 92, 126, 341, 343
interview 92, 126, 341, 343

defensive programming 464–465

delegation 43, 45, 162, 414, 504
3DBoard 406
BarkRecognizer class 161
DogDoor class (Sam’s) 160
versus inheritance 407
when to use 407

design
death of a 246
preliminary 485

design lifecycle 273

design patterns 8, 10, 22, 34, 50, 52, 313, 315, 316, 319,
563

design principles 376, 377, 380, 400, 415
writing your own 141

Dessert interface 230

DessertService class 230

dog door
alternate paths 123
automatically closing 82
barking focus 172
coding changes in 131
final test drive 140
main path 123
planning for things going wrong 68–71
single scenario 124
Todd and Gina’s Dog Door 387, 389
updating after analysis 152
where code should go for closing door 138

DogDoor.java 57, 59, 131, 135, 139, 140
Don’t Repeat Yourself Principle 383
gathering requirements 61
test drive 59

second 83

Download at WoweBook.Com

the inde�

you are here4 593

DogDoor class 59, 135
allowedBarks attribute 183
updating 139

DogDoor class (Sam’s) 158
delegation 160

Dog Door Class Diagram (Maria’s) 180

DogDoorSimulator.java 59, 83, 88–90, 131, 134, 135, 192
code magnets 88, 90
test drive 89

DogDoorSimulator class 59, 135
updating 134

domain analysis 306, 313, 317, 320, 485

Don’t Repeat Yourself Principle (see DRY) 382

double encapsulation 249

DRY (Don’t Repeat Yourself Principle) 382–388
main idea 384

E
encapsulate what varies 115–116

encapsulation 28, 34, 52, 226, 231, 243, 245, 282, 504,
582, 585

Bullet Points 50
double 249
emphasizing 448–449
guitar specifications 41
OCP and 381
questions and answers 31

enumerated types 16

enums 16–18

equals()
Java’s default 521
overriding 516
RouteFinder 521

essence of a system 332, 335

external initiator 74, 75, 93, 94, 98, 100

F
feature analysis 434–435

feature driven development 427, 428, 433, 475, 478
versus use case driven development 430–432

feature lists 484, 495

Feature Magnets
RouteFinder feature list 497

Feature Puzzle 474
solutions 476–477

features 290
architecturally significant 331
interpreting 366
mapping to use case diagrams 298, 300
versus requirements 292
versus use cases 499, 500

Final CATASTROPHE! 230

FindGuitar.java
updating 42

FindGuitar class 33

FindInstrument.java 259, 260
initializeInventory() method 261
test driving 261, 264

flexibility 34, 49, 52, 380
interfaces and 224
versus functionality 535

fragile 18

Friedman, Dan 301

functionality 34, 52, 324, 329, 330, 342, 345, 364, 371,
374, 499

breaking applications into smaller chunks of 473
versus flexibility 535

G
game-specific units 352–353

game system framework (GSF) 284

Gary’s Games
customer conversations 288–289
features 290
vision statement 284

Download at WoweBook.Com

the inde�

594 inde�

Gary’s Game System Framework
coordinating game movement 365
feature list 305, 324, 329

determining significance 333, 334
key features 336, 350, 363, 371

risk 338
getNumStrings() method (GuitarSpec.java) 42, 44

good enough software 274–275

graph structure 515

great software
3 steps to 215, 216
consistently writing 48
satisfying customers 12
three easy steps 13
what does this mean? 10

Guitar.java
adding class for mandolins 208
encapsulating properties of GuitarSpec 45

Guitar class diagram 29

GuitarSpec.java
adding new property 44
getNumStrings() method 42, 44
numStrings property 42, 44

GuitarSpec class 29, 210
adding property to 40
encapsulating properties of 45
questions and answers 31

H
HAS-A 558–559

hashCode(), overriding 516

Head First Labs website 17

Head First learning principles xxvi

I
implementation 485

inheritance 243, 380, 558, 579
alternatives 405, 414
hidden structure problems 402

misusing 401
versus delegation 407
(see also LSP)

instrument-specific subclasses
killing 247

Instrument.java 208

Instrument abstract base class 201

instrument application
ease-of-change challenge 266–269

Instrument class
adding new subclasses 218
completed class diagram 201
extending 208
updated 252

InstrumentSpec 203–220
creating abstract class for 209
making concrete class 237–238
matches() method 378

InstrumentSpec.java 209

InstrumentSpec class
updated 252

InstrumentType.java 256

InstrumentType enum 256

interface 224, 226, 230, 232
coding to an 282

Inventory.java 212, 256
making sure is well designed 37
search() method 37, 42, 45, 237

Inventory class 32
addInstrument() method 241
updating 256
updating to work with multiple instrument types 212

Inventory Roundup 260
solutions 262–263

IS-A 558–559

iterating over all choices (guitar application) 23

iterative design 503, 530, 539

iterative development 475, 485

Download at WoweBook.Com

the inde�

you are here4 595

J
Java’s default equals() 521

L
Line class 514

Liskov Substitution Principle (see LSP)

LoadTester class 529

loosely coupled 162

LSP (Liskov Substitution Principle) 400–405, 412–418
hidden structure problems 402
violating 404

M
main path 92, 99, 101

dog door 123

Mandolin.java 208

MandolinSpec.java 211

MandolinSpec class 200, 202, 205, 211

Map for storing properties 253, 254

Method Magnets 525
solutions 526

metrics 566

mismatched object type 27

Model-View-Controller pattern (see MVC pattern)

multiplicity 165, 183, 194

MVC pattern 314

N
noun analysis 194

nouns in use cases 167, 175

numStrings property (GuitarSpec.java) 42, 44

numStrings property versus boolean property 39

O
Object-Oriented Analysis & Design (see OOA&D)

Object Oriented Design Principles 141

objects
concepts 27
forwarding operation to another object 43
naming 27

ObjectvilleSubway.txt file 527

Objectville Subway Map 490–491

OCP (Open-Closed Principle) 49, 377–381, 400, 417, 418
step-by-step 379

OOA&D (Object-Oriented Analysis & Design) 48, 49, 50
power of 318–319
process overview 484

OOA&D Cross 51, 107, 143, 195, 277, 321, 373, 419,
479, 552

OOA&D Magnets 487, 549
solutions 550

OOA&D Toolbox 276, 320, 418, 478
more tools for 142
tools 106

OO CATASTROPHE! 223–232

OO Cross 587

OO Principles 232

Open-Closed Principle (see OCP)

open for extension 377, 378, 381, 417, 418

operation 194

optional paths 120

P
Painter class 226

Patterns Exposed 92, 126, 341, 343

placeholders 201

planning for things going wrong 68–71

polymorphism 243, 581

pressButton() xii, 136, 139

Download at WoweBook.Com

the inde�

596 inde�

programming
by contract 461–463, 471

versus defensive programming 466–468
defensively 464–465, 471

properties
storing 250, 251, 253
that vary across objects 251
unused 27

protecting classes 523

R
readable code 572–573

refactoring 574

relationships 326, 331, 343, 351, 353

Remote.java 59, 135, 140
Don’t Repeat Yourself Principle 382

Remote class 58, 59, 135
automatically closing door 82
code magnet solutions 108

remote control
simplifying 139

requirements 93, 94, 484
changes xii–xxii, 111–144
changes in use cases 129
checking against use cases 78
creating list of 64, 66
defined 62
gathering xi–xxii, 55–110
good 67, 142, 282
list 81
list, checking 133
list for changes to dog door 130
questions and answers 67
versus features 292

requirements list 286

reusable 49

reusable design 36

Rick’s Search Tool 3–54
download 33
encapsulation 28
iterating over all choices 23
looking deeper for problems 25
making well-designed and flexible 234–235
mismatched object type 27
problems with 6

revisiting problems 14
String comparisons 16

search() method 21, 22
analyzing 26

test drive 23, 46

risk 338, 339
reducing 349, 362, 371
use cases and 341

robust code 18

RouteFinder 488–556
back to requirements phase 533
breaking into modules 501, 502
closer look at representing a subway 505
coding

Station class 516
Connection class 514, 517
different output sources 551
feature list 532
getDirections() method 544
iterative design 503, 530, 539
Line class 514
LoadTester class 529
more extensible loading 551
statement of work 488
Station class 514
Subway class 514

coding 519
equals() 520
hashCode() 520

subway file 506
SubwayLoader class 524
SubwayPrinter class 545
SubwayTester class 547
textual analysis 510–513

RuntimeException 470

Download at WoweBook.Com

the inde�

you are here4 597

S
satisfying customers 12

scenarios 73
Board interface 342, 344
questions and answers 125
risk and 343
single, for dog door 124

search() method (guitar application) 21, 22
analyzing 26

search() method (Inventory.java) 37, 42, 45

seeing the big picture 294–295

sequence diagrams 567

Sharpen your pencil
adding support for mandolins to search tool 199

answers 200
analysis 149

answers 150
annotating guitar application class diagram 39, 40
breaking RouteFinder into modules 502
Connection class 517

answers 518
designing test cases 455

answers 456
design principle 141
Dog class, not including 174

answers 179
DogDoor class

allowedBarks attribute 183, 185
dog door requirements 65
drawing class diagram for updated instrument applica-

tion 257
game-specific units 353

answers 354
Gary’s Games, things to do first 285
Gary’s Games features 291, 303

answers 290, 304
Gary’s Game System Framework

most important features 330
great software 11
guitar application 7, 19
GuitarSpec object 29, 30

instrument-specific subclasses 239, 240
Inventory.java 37
letting GuitarSpec handle comparisons 53
OCP, finding in your project 381
OO principles 243

answers 244
potential Unit properties 442–443

answers 444–445
power of use cases 104
reasons requirments might change 115
requirements for dog door 79

answers 80
risk 339
rodents getting into kitchen 60
RouteFinder feature list 493

answers 494
scenarios in use cases 127

answers 128
scenario testing 135

answers 136
skeleton for Airplane class 577

answers 578
SRP, applying to automobile class 393

answers 394
structure for RouteFinder code 496

answers 498
Unit class programming contract 469

answers 470
use case for Get directions 533
use case for loading subway lines 503, 507

answers 504, 508
use case nouns 167

answers 168
use cases 95

real power of 102–103
real power of, solution 104–105
writing more 96–97

use case to store a bark 153
answers 153

value of encapsulating your data 583
answers 584

writing code based on class diagram 157
answers 158

Download at WoweBook.Com

the inde�

598 inde�

software
good enough 274–275
great (see great software)
well-designed 217

software, great 283

software release 485

solutions, questions and answers 151

SRP (Single Responsibility Principle) 49, 390–399, 504
analysis 392
going from multiple to single 395

SRP Analysis
CRC cards and 565

SRP Sightings 396–397
answers 398–399

start condition 93, 94

statechart diagram 568–569

state machine diagrams 568–569

Station class 514
coding 516

String comparisons 16

Style.java 211

subclasses
adding new instruments 218
behavior of 241
behavior versus properties 242
instrument-specific

killing 247
misusing 401
standing in for superclass 581
versus abstract base classes 201

subtype must be substitutable for its base type 403

Subway.java
implementation 540–542

Subway class 514
coding 519
equals() 520
hashCode() 520

SubwayLoader class 524
making sure correctly loads in all stations and

connections 527

SubwayPrinter class 545–546

SubwayTester class 547

system boundary 296

T
terrain types 309

test cases 454, 477, 571

test driven development 440

Test Puzzle 457, 527
solution 528–530
solutions 458–459

test scenarios
Unit class 437–439

textual analysis 169, 173, 174, 189, 510
code magnets 177

solution 178
The Little Lisper 301

There are no Dumb Questions
advanced OO techniques 222
aggregation 415
alternate paths 125
array of arrays 347
BarkRecognizer class 132
class diagrams 19, 578
cohesion 271
commonality 445
commonality versus variability 369
composition 415
deciding between design choices 451
defensive programming 465
delegation 43, 415
DessertService class 230
Don’t Repeat Yourself Principle 385
encapsulation 31, 34, 585
enumerated types 16
equals() 521
essence of a system 335

Download at WoweBook.Com

the inde�

you are here4 599

features versus requirements 293, 494
fewer classes and flexibility 255
FindInstrument.java, getting different results 264
hasConnection() method 528
holding off writing code 364
inheritance 415
Instrument class 213
making Instrument abstract 203
matching up every feature to a use case 500
multiple solutions 151
nouns and verbs in use cases 179
OCP 381
options 550
polymorphism 581
programming by contract 471
reducing risk 362
repeated steps in use case 515
requirements 67
RuntimeException 470
scenarios 125
Single Responsibility Principle 391
SRP analysis 395
steps in coding 22
subclassing 415
test cases 456
test driven development 440
textual context 173
Tile and Unit classes 349
Timer class 82
UML 207
unit testing 570
use case diagrams 299
use cases 77
use cases for storing a bark 154
uses cases and risk 345
validation 508

Thread class, using to close door 82

Tile.java 348

Tile class 348, 349

tiles 309

time periods 309

Timer class
using to close door 82

TimerTask anonymous class
cancel() method 82

U
UML and class diagrams 577

UML Cheat Sheet 207

UML diagrams 181, 184

Unit.java 348

Unit class 348, 349, 435–437
class diagram 441
matching tests to design 452
programming by contract 462–463
test scenarios 437–439
writing 453

UnitGroup class 476–477

units 309
finding what is common between 355
game-specific (see game-specific units)
moving 472

unit testing 570–571

upgradable 49

use case diagrams 296–297, 305, 484, 495
mapping features to 298

use case driven development 427, 429, 475, 478
versus driven development 430–432

use cases 71–86, 286
analysis and 151
changes and requirements 129
checking against requirements 78
clear value 74
definite starting and stopping point 74
exposed 92, 126
external initiator 74
formats 560–562
Get directions 533

answers 534
identifying classes to use 170

Download at WoweBook.Com

the inde�

600 inde�

use cases (continued)
loading subway lines 507

checking flow 509
Load network of subway lines 527
magnets 75, 98–99

solution 76, 100
nouns 167, 175
questions and answers 77
real power of 102
risk and 341
seeing the big picture 294
storing a bark 153
three parts 74
updating after analysis 152
verbs 176
versus case diagrams 77
versus features 499
writing so not confusing 122–123

V
validation 508

variability 356, 358, 360, 442, 444, 445

verb analysis 194

verbs in use cases 176

vision statement 284, 286

W
Weapon interface 408–410

well-designed software 217

Who Am I? 416, 468
solutions 420, 481

Download at WoweBook.Com

	Table of Contents
	Intro
	Chapter 1. well-designed apps rock
	Chapter 2. gathering requirements
	Chapter 3. requirements change
	Chapter 4. analysis
	Chapter 5. (part 1) good design = flexible software
	Chapter 6. solving really big problems
	Chapter 7. architecture
	Chapter 8. design principles
	Chapter 9. iterating and testing
	Chapter 10. the ooa&d lifecycle
	Appendix i: leftovers
	Appendix ii: welcome to objectville
	Index

