Head First

Object-Oriented
Ana,lys Design

Turn your
requirements
and designs into
serious software

Improve your
communication skills with
UML and use cases

Load important OO
design principles straight
into your brain

Bend your mind
around dozens
of OO exercises

aggregation, and delegation
helped Mary get around
Objectville

Avoid leaving
your customers
unsatisfied

&

O RE"_LY® Brett D. McLaughlin, Gary Pollice & David West

Head First Object-Oriented Analysis & Design

Software Development/Software Engineering

“Head First Object-Oriented
Analysis and Design is a
refreshing look at subject of
O0A&D. What sets this book
apart is its focus on learning.
The authors have made the
content of OOA&D accessible,
usable for the practitioner.”

—lvar Jacobson
lvar Jacobson Consulting

“Hidden behind the funny
pictures and crazy fonts is a
serious, intelligent, extremely
well-crafted presentation of OO
Analysis and Design. As I read
the book, I felt like I was looking
over the shoulder of an expert
designer who was explaining to
me what issues were important
at each step, and why.”

—Edward Sciore
Associale Professor
Computer Science Department, Boston College

Tired of reading Object-Oriented Analysis and Design books that only make
sense after you're an expert? You've probably heard that OOA&D can help
you write great software every time—software that makes your boss happy,
and your customers satisfied.

But how?

Head First Object-Oriented Analysis & Design shows you how to analyze, design,
and write serious object-oriented software: software that’s easy to reuse,
maintain, and extend; software that doesn’t hurt your head; software that
lets you add new features without breaking the old ones. Inside you will learn
how to:

Use OO principles like encapsulation and delegation to build

applications that are flexible.

e Apply the Open-Closed Principle (OCP) and the Single
Responsibility Principle (SRP) to promote reuse of your code.

* Learn how OO principles, design patterns, and different
development approaches all fit into the OOA&D project lifecycle.

. Use UML., use cases, and diagrams to ensure that all stakeholders

are communicating clearly to help you deliver the right software

that meets everyone’s needs.

Feature
List

Use Case | Break Up the Vomain
Diagrams Problem ‘Kequiremenj_ Ana Ivsls

“I just finished reading HF
OOA&D and I loved it! The thing
I liked most about this book was
its focus on why we do OOA&D—
to write great software!”

—Kyle Brown
Distinguished Engineer, IBM

www.oreilly.com

US $49.99 CAN $64.99
ISBN-10: 0-596-00867-8
ISBN-13: 978-0-596-00867-3

54999
I TR

Y50saaloamsy i I

I Requirements List

Talk to the Cuslomer

Encapsmahon

[00 Principles
[Atternate Path] LExternal Initiator |

By ('\;pl()ilinq how your brain works, Head First

O0AG &’D compresses the time it takes to learn and
retain complex information. Expect to have fun,
expect to learn, expect to be writing great
software consistently by the time you're
finished reading this!

O’REILLY"

Praise for Head First OOA&D

“Head First Object-Oriented Analysis and Design is a refreshing look at the subject of OOA&D. What sets
this book apart is its focus on learning. There are too many books on the market that spend a lot of
time telling you why, but do not actually enable the practitioner to start work on a project. Those books
are very interesting, but not very practical. I strongly believe that the future of software development
practice will focus on the practitioner. The authors have made the content of OOA&D accessible and
usable for the practitioner ”

— Ivar Jacobson, Ivar Jacobson Consulting

“I just finished reading HFF OOA&D, and I loved it! The book manages to get across the essentials of
object-oriented analysis and design with UML and use cases, and even several lectures on good software
design, all in a fast-paced, easy to understand way. The thing I liked most about this book was its focus
on why we do OOA&D—to write great software! By defining what great software is and showing how
each step in the OOA&D process leads you towards that goal, it can teach even the most jaded Java
programmer why OOA&D matters. This is a great “first book” on design for anyone who is new to Java,
or even for those who have been Java programmers for a while but have been scared off by the massive
tomes on OO Analysis and Design.”

— Kyle Brown, Distinguished Engineer, IBM

“Finally a book on OOA&D that recognizes that the UML is just a notation and that what matters when
developing software is taking the time to think the issues through.”

— Pete McBreen, Author, Sofiware Crafismanship

“The book does a good job of capturing that entertaining, visually oriented, ‘Head First” writing style.
But hidden behind the funny pictures and crazy fonts is a serious, intelligent, extremely well-crafted
presentation of OO Analysis and Design. This book has a strong opinion of how to design programs,
and communicates it effectively. I love the way it uses running examples to lead the reader through the
various stages of the design process. As I read the book, I felt like I was looking over the shoulder of an
expert designer who was explaining to me what issues were important at each step, and why.”

— Edward Sciore, Associate Professor, Computer Science Department
Boston College

“This is a well-designed book that delivers what it promises to its readers: how to analyze, design, and
write serious object-oriented software. Its contents flow effortlessly from using use cases for capturing
requirements to analysis, design, implementation, testing, and iteration. Every step in the development
of object-oriented software is presented in light of sound software engineering principles. The examples
are clear and illustrative. This is a solid and refreshing book on object-oriented software development.”

— Dung Zung Nguyen, Lecturer
Rice University

Download at WoweBook.Com

Praise for other Head First books by the authors

“When arriving home after a 10-hour day at the office programming, who has the energy to plow
through yet another new facet of emerging technology? If a developer is going to invest free time in
self-driven career development, should it not be at least remotely enjoyable? Judging from the content of
O’Reilly’s new release Head Rush Ajax, the answer is yes...Head Rush Ajax is a most enjoyable launchpad
into the world of Ajax web applications, well worth the investment in time and money.”

— Barry Hawkins, Slashdot.org

“By starting with simple concepts and examples, the book gently takes the reader from humble
beginnings to (by the end of the book) where the reader should be comfortable creating Ajax-based
websites... Probably the best web designer centric book on Ajax.”

— Stefan Mischook, Killersites.com

“Using the irreverent style common of the Head First/ Head Rush series of books, this book starts at the
beginning and introduces you to all you need to know to be able to write the JavaScript that will both
send requests to the server and update the page with the results when they are returned...One of the best
things about this book (apart form the excellent explanations of how the code works) is that it also looks
at security issues...If you learn Ajax from this book you are unlikely to forget much of what you learn.”

— Stephen Chapman, JavaScript.About.com

“Head Rush Ajax is the book if you want to cut through all the hype and learn how to make your web apps
sparkled...your users will love you for it!”

— Kiristin Stromberg, Aguirre International

“If you know some HTML, a dollop of CSS, a little JavaScript, and a bit of PHP, but you’re mystified
about what all the Ajax hype is about, this book is for you...You’ll have a blast learning Ajax with Head
Rush Ajax. By the time you've reached the end of the book, all those web technologies that didn’t quite
fit together in your head will all snap into place and you’ll have The Ajax Power! You’ll know the secrets
behind some of the most popular web applications on the Internet. You’ll impress your friends and co-
workers with you knowledge of how those interactive maps and web forms really work.”

— Elisabeth Freeman, The Walt Disney Internet Group
Co-Author, Head First Design Patterns and Head First HTML with CSS & XHTML

“If you thought Ajax was rocket science, this book is for you. Head Rush Ajax puts dynamic, compelling
experiences within reach for every web developer.”

— Jesse James Garrett, Adaptive Path

“This stuff is brain candy; I can’t get enough of it.”

— Pauline McNamara, Center for New Technologies and Education
Fribourg University, Switzerland

Download at WoweBook.Com

Praise for other Head First Books

“I *heart* Head First HTML with CSS & XHTML — it teaches you everything you need to learn in a ‘fun
coated’ format!”

— Sally Applin, UI Designer and Fine Artist, http:/ /sally.com.

“My wife stole the book. She’s never done any web design, so she needed a book like Head First HTML
with GSS & XHTML to take her from beginning to end. She now has a list of web sites she wants to build
— for our son’s class, our family, ... If I'm lucky, I'll get the book back when she’s done.”

— David Kaminsky, Master Inventor, IBM

“Freeman’s Head First HTML with CSS & XHTML is a most entertaining book for learning how to build
a great web page. It not only covers everything you need to know about HTML, CSS, and XHTML,
it also excels in explaining everything in layman’s terms with a lot of great examples. I found the book
truly enjoyable to read, and I learned something new!”

— Newton Lee, Editor-in-Chief, ACM Computers in Entertainment
http:/ /www.acmcie.org

From the awesome Head First fava folks, this book uses every conceivable trick to help you understand
and remember. Not just loads of pictures: pictures of humans, which tend to interest other humans.

Surprises everywhere. Stories, because humans love narrative. (Stories about things like pizza and
chocolate. Need we say more?) Plus, it’s darned funny.

— Bill Camarda, READ ONLY

“This book’s admirable clarity, humor and substantial doses of clever make it the sort of book that helps
even non-programmers think well about problem-solving.”

— Cory Doctorow, co-editor of Boing Boing
Author, “Down and Out in the Magic Kingdom”
and “Someone Comes to Town, Someone Leaves Town”

“I feel like a thousand pounds of books have just been lifted off of my head.”

— Ward Cunningham, inventor of the Wiki
and founder of the Hillside Group

“I literally love this book. In fact, I kissed this book in front of my wife.”

— Satish Kumar

Download at WoweBook.Com

Other related books from O’Reilly
Practical Development Environments
Process Improvement Essentials
Prefactoring
Ajax Design Patterns
Learning UML
Applied Software Project Management
The Art of Project Management
UML 2.0 in a Nutshell

Unit Test Frameworks

Other books in O’Reilly’s Head First Series
Head First Design Patterns
Head First Java
Head First Servlets and JSP
Head First EJB
Head First HTML with CSS & XHTML
Head Rush Ajax
Head First OOA&D
Head First PMP (2007)
Head First Algebra (2007)
Head First Software Development (2007)

Download at WoweBook.Com

Head First Object-Oriented
Analysis and Design

Wouldn't it be dreamy
if there was an analysis and
design book that was more fun
than going to an HR benefits
meeting? It's probably nothing
but a fantasy...

Brett D. McLaughlin
Gary Pollice
David West

O’REILLY"

Beijing < Cambridge < Kdin * Paris * Sebastopol * Taipei * Tokyo

Download at WoweBook.Com

Head First Object-Oriented Analysis and Design
by Brett D. McLaughlin, Gary Pollice, and David West

Copyright © 2007 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates
Series Editor: Brett D. McLaughlin
Editor: Mary O’Brien

Cover Designer: Mike Kohnke, Edie Freedman
00: Brett D. McLaughlin

A: David West

D: Gary Pollice

Page Viewer: Dean and Robbie McLaughlin

Printing History:
November 2006: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations, Head First
004&D, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

In other words, if you use anything in Head First OOA&D to, say, write code that controls an American space
shuttle, you’re on your own.

No dogs, rabbits, or woodchucks were harmed in the making of this book, or Todd and Gina’s dog door.

RepKover, . ™ . -
=== This book uses RepKover’," a durable and flexible lay-flat binding.

ISBN-10: 0-596-00867-8
ISBN-13: 978-0-596-00867-3

M] [2/07]

Download at WoweBook.Com

To all the brilliant people who came up with various ways to
gather requirements, analyze software, and design code...

...thanks for coming up with something good enough to
produce great software, but hard enough that we needed this
book to explain it all.

Download at WoweBook.Com

the authors

Brett McLaughlin is a guitar player who is still struggling
with the realization that you can’t pay the bills if you’re into
acoustic fingerstyle blues and jazz. He’s just recently discovered,
to his delight, that writing books that help people become better
programmers does pay the bills. He’s very happy about this, as
are his wife Leigh, and his kids, Dean and Robbie.

(LU TITETee.

|

Before Brett wandered into Head First land, he developed
enterprise Java applications for Nextel Communications and
Allegiance Telecom. When that became fairly mundane, Brett
took on application servers, working on the internals of the
Lutris Enhydra servlet engine and EJB container. Along the
way, Brett got hooked on open source software, and helped
found several cool programming tools, like Jakarta Turbine and
JDOM. Write to him at brett@oreilly.com.

Gary Pollice is a self-labeled curmudgeon (that’s a crusty, ill-tempered,
usually old man) who spent over 35 years in industry trying to figure out
what he wanted to be when he grew up. Even though he hasn’t grown up yet,
he did make the move in 2003 to the hallowed halls of academia where he
has been corrupting the minds of the next generation of software developers
with radical ideas like, “develop software for your customer, learn how to
work as part of a team, design and code quality and elegance and correctness
counts, and it’s okay to be a nerd as long as you are a great one.”

Gary is a Professor of Practice (meaning he had a real job before becoming a
professor) at Worcester Polytechnic Institute. He lives in central Massachusetts
with his wife, Vikki, and their two dogs, Aloysius and Ignatius. You can visit
his WPI home page at http://web.cs.wpi.edu/~gpollice/. Feel free
to drop him a note and complain or cheer about the book.

68\r\/ —

Dave West would like to describe himself as sheik geek. Unfortunately
no one clse would describe him in that way. They would say he is a
professional Englishman who likes to talk about software development best
practices with the passion and energy of an evangelical preacher. Recently
Dave has moved to Ivar Jacobson Consulting, where he runs the Americas
and can combine his desire to talk about software development and spread
the word on rugby and football, and argue that cricket is more exciting than

baseball.

Before running the Americas for Ivar Jacobson Consulting, Dave worked
for a number of years at Rational Software (now a part of IBM). Dave held
many positions at Rational and then IBM, including Product Manager for
RUP where he introduced the idea of process plug-ins and agility to RUP.
Dave can be contacted at dwest@ivarjacobson.com.

Dave —~

viii
Download at WoweBook.Com

Table of Contents (summary)

O s 0 N =

© 0 N

Intro

Great Software Begins Here: well-designed apps rock

Give Them What They Want: gathering requirements

I Love You, You’re Perfect... Now Change: requirements change
Taking Your Software Into the Real World: analyss

Part 1: Nothing Ever Stays the Same: good design

Interlude: OO CATASTROPHE

Part 2: Give Your Software a 30-minute Workout: flexible sofiware
“My Name 1s Art Vandelay™: solving really big problems
Bringing Order to Chaos: architecture

Originality is Overrated: design principles

The Software 1s Still for the Customer: teration and testing
Putting It All Together: the 00a&d lifecycle

Appendix I: leflovers

Appendix II: welcome to objectville

Table of Contents (the rea] thing)

Intro

xxiil

35
111
145
197
221
233
279
323
375
423
483
557
375

Your brain on OOA&D. Here you are trying to learn something, while here your

brain is doing you a favor by making sure the learning doesn’t stick. Your brain’s thinking,

“Better leave room for more important things, like which wild animals to avoid and whether

naked snowboarding is a bad idea.” So how do you trick your brain into thinking that your

life depends on knowing object-oriented analysis and design?

Who is this book for?

We know what you’re thinking
Metacognition

Bend your brain into submission
Read Me

The Technical Team

Acknowledgements

Download at WoweBook.Com

XXiv
XXV
xxvil
XXIX
XXX
Xxxil

XXXI11

table of contents

ix

table of contents

well-designed apps rock

Great Software Begins Here

So how do you really write great software? It's never easy trying

to figure out where to start. Does the application actually do what it’s supposed to?

And what about things like duplicate code—that can’t be good, can it? It's usually pretty

hard to know what you should work on first, and still make sure you don’t screw

everything else up in the process. No worries here, though. By the time you’re done

with this chapter, you’ll know how to write great software, and be well on your way

to improving the way you develop applications forever. Finally, you’ll understand why

OOAD is a four-letter word that your mother actually wants you to know about.

How am I supposed to know where to start?
I feel like every time I get a new project to
work on, everyone's got a different opinion
about what to do first. Sometimes I get it right, and
sometimes I end up reworking the whole app because T
started in the wrong place. I just want to write
great software!l So what should I do first
in Rick's app?

Rock and roll is forever!

Rick’s shiny new application

What'’s the FIRST thing you’d change?
Great Software is...

Great software in 3 easy steps

Focus on functionality first

Test drive

Looking for problems

Analysis

Apply basic OO principles

Design once, design twice

How easy is it to change your applications?
Encapsulate what varies

Delegation

Great software at last (for now)
OOA&D is about writing great software

Bullet Points

Download at WoweBook.Com

10
13
18
23
25
26
31
36
38
41
43
46
49
50

gathering refiuirements
Give Them What They Want

Everybody loves a satisfied customer. You already know that the first

table of contents

step in writing great software is making sure it does what the customer wants it to. But

how do you figure out what a customer really wants? And how do you make sure that

the customer even knows what they really want? That's where good requirements

come in, and in this chapter, you're going to learn how to satisfy your customer by

making sure what you deliver is actually what they asked for. By the time you’re done,

all of your projects will be “satisfaction guaranteed,” and you’ll be well on your way to

writing great software, every time.

Todd and Gina's Dog Door, version 2.0
Reaquirements List

l.The Todd and Gina’s Pog Poor; version 2.0

tall What the Door Poes
2. &b 1. Fido barks to be let out.
do¢ 2. Todd or Gina hears Fido barking.

2 Todd or Gina presses the button on the
3.0n remote control.

;II" 4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.
" 7 Fido goes back inside,
8. The door shuts automatically.

You've got a new programming gig

Test drive

Incorrect usage (sort of)

What is a requirement?

Creating a requirements list

Plan for things going wrong

Alternate paths handle system problems
Introducing use cases

One use case, three parts

Check your requirements against your use cases

Your system must work in the real world
Getting to know the Happy Path
OOA&D Toolbox

Download at WoweBook.Com

56
59
61
62
64
68
70
72
74
78
85
92
106

The dog door
and vemote gre
Far{: O‘F 'l:hc

system, or inside

the SYS‘(ZCM.

xi

table of contents

requirements ch ange

I Love You, You’re Perfect... Now Change

Think you’ve got just what the customer wanted?

Not so fast... So you've talked to your customer, gathered requirements, written
out your use cases, and delivered a killer application. It’s time for a nice relaxing
cocktail, right? Right... until your customer decides that they really wanted something
different than what they told you. They love what you’ve done, really, but it's not
quite good enough anymore. In the real world, requirements are always changing,

and it’s up to you to roll with these changes and keep your customer satisfied.

You’re a hero! 112
You're a goat! 113
The one constant in software analysis & design 115
Original path? Alternate path? Who can tell? 120
Use cases have to make sense to you 122
Start to finish: a single scenario 124
Confessions of an Alternate Path 126
Finishing up the requirements list 130
Duplicate code is a bad idea 138
Final test drive 140
Write your own design principle 141
OOA&D Toolbox 142

public void pressButton() { ;
System.out.println(“Pressing the remote control button...”);
if (door.isOpen()) {
door.close() ;
} else {
door.open() ;

- . . _ Timer():
timer.schedule (new TimerTask() {
public void run() {

Remote.java
Xii

Download at WoweBook.Com

table of contents

analysis
Taking Your Software into the Real World

It’s time to graduate to real-world applications.

Your application has to do more than work on your own personal development machine,
finely tuned and perfectly setup; your apps have to work when real people use them.
This chapter is all about making sure that your software works in a real-world context.
You'll learn how textual analysis can take that use case you’ve been working on and
turn it into classes and methods that you know are what your customers want. And

when you’re done, you too can say: “I did it! My software is ready for the real world!”

One dog, two dog, three dog, four... 146
Your software has a context 147
Identify the problem 148
Once T knew the classes and
operations that I needed, I Plan a solution 149
went back and updated my class
diagram. A tale of two coders 156
Delegation Detour 160
The power of loosely coupled applications 162
Pay attention to the nouns in your use case 167
From good analysis to good classes... 180
Class diagrams dissected 182
Class diagrams aren’t everything 187
Bullet Points 191

[n this tontert)
J(,\\\h55 00 wrong]

\o‘t move ‘{:Ch'

2= |n the veal world, there are
dogs, tats, vodents, and a host
of other problems, all set to

The Real World strew up Your software.

Xiii

Download at WoweBook.Com

table of contents

good design = flexible software

Nothing Ever Stays the Same
5 (1) Change is inevitable. No matter how much you like your software right

now, it's probably going to change tomorrow. And the harder you make it for

your software to change, the more difficult it's going to be to respond to your
customer’s changing needs. In this chapter, we’re going to revisit an old friend,
try and improve an existing software project, and see how small changes can
turn into big problems. In fact, we’re going to uncover a problem so big that it will
take a TWO-PART chapter to solve it!

Rick’s Guitars is expanding 198
Abstract classes 201
Class diagrams dissected (again) 206
UML Cheat Sheet 207
Design problem tipoffs 213
3 steps to great software (revisited) 215

O werii) o EATARTARMES

Objectville's Favorite Quiz Show

Risk Famous Code Maintenance Software
Avoidance Designers Constructs: and Reuse Neuroses
- -
| J S J

a

L

-

ot
|
it
L

a9

Xiv

Download at WoweBook.Com

5 (part 2)

table of contents

good design = flexible software

Give Your Software a 30-minute Workout

Ever wished you were just a bit more flexible?

When you run into problems making changes to your application, it probably

means that your software needs to be more flexible and resilient. To help stretch

your application out, you’re going to do some analysis, a whole lot of design, and

learn how OO principles can really loosen up your application. And for the grand

finale, you’ll see how higher cohesion can really help your coupling. Sound

interesting? Turn the page, and let’s get back to fixing that inflexible application.

Back to Rick’s search tool

A closer look at the search() method

The benefits of analysis

Classes are about behavior

Death of a design (decision)

Turn bad design decisions into good ones
“Double encapsulation” in Rick’s software
Never be afraid to make mistakes

Rick’s flexible application

Test driving well-designed software

How easy is it to change Rick’s software?
The Great Ease-of-Change Challenge

A cohesive class does one thing really well
The design/cohesion lifecycle

Great software is “good enough”

OOA&D Toolbox

Download at WoweBook.Com

234
237
238
241
246
247

Xv

table of contents

solving really big problems

“My Name is Art Vandelay... | am an Architect”
It’s time to build something REALLY BIG. Are you ready?

You’ve got a ton of tools in your OOA&D toolbox, but how do you use those tools
when you have to build something really big? Well, you may not realize it, but
you’ve got everything you need to handle big problems. We'll learn about some
new tools, like domain analysis and use case diagrams, but even these new tools
are based on things you already know about—Ilike listening to the customer and
understanding what you're going to build before you start writing code. Get ready...

it's time to start playing the architect.

Solving big problems 280
It’s all in how you look at the big problem 281
Requirements and use cases are a good place to start... 286
Commonality and variability 287
Figure out the features 290
The difference between features and requirements 292
Use cases don’t always help you see the big picture 294
Use case diagrams 296
Tv ::\\\,B%i%:" The Little Actor 301
(‘l::;:ci:vc\a\gif:\%:‘:“:jicrca“\f Actors are people, too (well, not always) 302
3 smallev problem on its Ov™ Let’s do a little domain analysis 307
\ Divide and conquer 309
Small Don’t forget who the customer really is 313
What’s a design pattern? 315
The power of OOA&D (and a little common sense) 318
Small OOA&D Toolbox 320
Problem

Small
Problem

Big
Problem

xvi

Download at WoweBook.Com

table of contents

architecture
Bringing Order to Chaos

You have to start somewhere, but you better pick the right
somewhere! You know how to break your application up into lots of small
problems, but all that means is that you have LOTS of small problems. In this chapter,
we’re going to help you figure out where to start, and make sure that you don’t waste
any time working on the wrong things. It's time to take all those little pieces laying
around your workspace, and figure out how to turn them into a well-ordered, well-
designed application. Along the way, you'll learn about the all-important 3 Qs of

architecture, and how Risk is a lot more than just a cool war game from the ‘80s.

Feeling a little overwhelmed? 324
We need an architecture 326

Not a chance in hell of
coming in on time. Start with functionality 329
What’s architecturally significant? 331

The three Qs of architecture 332

.,
(V)
-g Reducing risk 338
1

One ina hundred that Scenarios help reduce risk 341

you geft it right.

Focus on one feature at a time 349
type: String
properties: Map . . .
S Architecture is your design structure 351
s, Ot) B
S B Commonality revisited 355
Only a few things can Commonality Analysis: the path to flexible software 361
o really wrong. .
J Y J What does it mean? Ask the customer 366
Reducing risk helps you write great software 371
Bullet Points 372
As close to a sure
thing as software gets!
xvii

Download at WoweBook.Com

table of contents

design principles

Originality is Overrated

Imitation is the sincerest form of not being stupid. There’s

nothing as satisfying as coming up with a completely new and original solution to a

problem that’s been troubling you for days—until you find out someone else solved

the same problem, long before you did, and did an even better job than you did! In

this chapter, we're going to look at some design principles that people have come up

with over the years, and how they can make you a better programmer. Lay aside your

thoughts of “doing it your way”; this chapter is about doing it the smarter, faster way.

The Ovcn—_w

Printiple
DRY
The Don’t Re eat
Yourself Princ‘i’Flc
The Single 2

Responsibility Principle

™

The Liskov

Substitution

Principle
XViii

Design principle roundup

The Open-Closed Principle (OCP)

The OCP, step-by-step

The Don’t Repeat Yourself Principle (DRY)

DRY is about one requirement in one place

The Single Responsibility Principle (SRP)

Spotting multiple responsibilities

Going from multiple responsibilities to a single responsibility
The Liskov Substitution Principle (LSP)

Misusing subclassing: a case study in misuing inheritance
LSP reveals hidden problems with your inheritance structure
Subtypes must be substitutable for their base types
Violating the LSP makes for confusing code

Delegate functionality to another class

Use composition to assemble behaviors from other classes
Aggregation: composition, without the abrupt ending
Aggregation versus composition

Inheritance is just one option

Bullet Points

OOA&D Toolbox

Download at WoweBook.Com

376
377
379
382
384
390
392
395
400
401
402
403
404
406
408
412
413
414
417
418

Unit

iterating and testing

table

The Software is Still for the Customer

contents

It’s time to show the customer how much you really care.

Nagging bosses? Worried clients? Stakeholders that keep asking, “Will it be done on

time?” No amount of well-designed code will please your customers; you've got to

show them something working. And now that you’ve got a solid OO programming

toolkit, it's time to learn how you can prove to the customer that your software

works. In this chapter, we learn about two ways to dive deeper into your software’s

functionality, and give the customer that warm feeling in their chest that makes them

say, Yes, you’re definitely the right developer for this job!

type: String
properties: Map
id: int

nawe: String =
weapons: Weapon * <—

All the Properties
that were common
ALross units gre
vepresented a5
variables outside of
. the proper-ties Map.

—_

setType(String)

getType(): String
setProperty(String, Object)
getProperty(String): Object

getld(): int
sﬁName(Sﬂﬁ

Sam £i5wcd that id
would get set in the Unit
Construttor, so no need
for a setld0) method.

e\\

getNawel): String < |
addWeapon(Weapon) <—
getWeapons(): Weapon * <

L~ Cach of the new
F— propecties gets its

L own set of methods.

Your toolbox is filling up

You write great software iteratively
Iterating deeper: two basic choices
Feature driven development

Use case driven development

Two approaches to development
Analysis of a feature

Writing test scenarios

Test driven development
Commonality Analysis (redux)
Emphasizing commonality
Emphasizing encapsulation
Match your tests to your design
Test cases dissected...

Prove yourself to the customer

We’ve been programming by contract

Programming by contract is about trust

Defensive programming

Break your apps into smaller chunks of functionality

Bullet Points

OOA&D Toolbox

Download at WoweBook.Com

424
426
427
428
429
430
434
437
440
442
446
448
452
454
460
462
463
464
473
475
478

Xix

table of contents

the ocaéd lifecycle
Putting It All Together

Are we there yet? we've been working on lots of individual ways to

improve your software, but now it’s time to put it all together. This is it, what

you’ve been waiting for: we’re going to take everything you've been learning,

and show you how it’s all really part of a single process that you can use over

and over again to write great software.

Developing software, OOA&D style

The Objectville Subway problem

Objectville Subway Map

Feature lists

Use cases reflect usage, features reflect functionality
Now start to iterate

A closer look at representing a subway

To use a Line, or not to use a Line

Points of interest on the Objectville Subway (class)
Protecting your classes

Break time

Back to the requirements phase

Focus on code, then focus on customers

Iteration makes problems easier

What does a route look like?

Check out Objectville for yourself!

Iteration #3, anyone?

The journey’s not over...

484
488
490
493
499
503
505
514
520
523
531
533
535
539
544
548
551
555

eature List 1Encapsulation 00 Pr|n0|ple Dosign Principles
-mﬁm __..u..m [Encapsulation [prattem

Feature Driven Development

A i Path g
m \lternate f m Test Driven Develoment

\Variability

ponesion |
coston Sl | 'E

terat|0

XX

20Sign e
Alternate Path Class Diagra Ciples

Download at WoweBook.Com

table of contents

appendix i: leftovers
P The Top Ten Topics (we didn’t cover)

Believe it or not, there’s still more. Yes, with over 550
pages under your belt, there are still things we couldn’t cram in. Even
though these last ten topics don’t deserve more than a mention, we didn’t
want to let you out of Objectville without a little more information on each
one of them. But hey, now you’ve got just a little bit more to talk about
during commercials of CATASTROPHE... and who doesn’t love some

stimulating OOA&D talk every now and then?

#1. IS-A and HAS-A 558
#2. Use case formats 560
#3. Anti-patterns 563
#4. CRC cards 564
#5. Metrics 566

Anti Patterns

ign pat- .
7 reverse of design pa
Anu—pat:i;r;/saz;;e :g; o SAD solutions (0 #6. Sequence diagrams 567
terns:

dangerous pitfalls should

::’r‘;’g’;:i;ze:id avoided. #7. State diagrams 568
#8. Unit testing 570
#9. Coding standards and readable code 572
#10. Refactoring 574

Class: DoaDoor
Pescription: Represents the physical dog door. This provides an interface
to the hardware that actually controls the door-
Responsibilities:

Nawe Collaborator

= Open the door I
Be sure You wri{:e‘\9 Close the door l\\
down ‘l:hings that \ \
this class does on its \\
own, as well as fhings N ator
it collaborates with Treres o Laloher
other ¢lasses on. tlass for thest

xxi

Download at WoweBook.Com

table of contents

XXii

This is how You show @
tlass in a tlass diageam:
That's the way that
UML- lets you vepresent
details about the tlasses

in Yyour 8\7\?“(.8{',\07\- \

These ave the member
vaviables of the tlass.
Each one has 8 name,
and then 3 {’.\,‘76
apccr the tolon.

These are the
methods of the
elass, Each one has
9 name, gnqg then
Ny Parameters 4
h
method takes, ahdC

appendix ii: welcome to objectville

Speaking the Language of 00

Get ready to take a trip to a foreign country. Its time to

visit Objectville, a land where objects do just what they’re supposed to,

applications are all well-encapsulated (you'll find out exactly what that means

shortly), and designs are easy to reuse and extend. But before we can get

going, there are a few things you need to know first, and a little bit of language

skills you're going to have to learn. Don’t worry, though, it won’t take long, and

before you know it, you'll be speaking the language of OO like you've been

living in the well-designed areas of Objectville for years.

UML and class diagrams

Inheritance

Polymorphism

Encapsulation

Bullet Points

This is the name of
the elass. [¢'s always
in bold, at the top of
the ¢lass diasram.

Chirplane <

speed: int

getSpeed(): int
setSpeed(int)

<—/_£

577
579
581
582
586

This line separates

he membey variables

‘FV'OM {:he me-ﬂwds OIF
he ¢lass.

\ A class diagram makes it veally easy

he bio pitture: you €an easily
{:cllscwchgt a c?a‘:s does at a 5\av_xcc.
You tan even leave out the vaviables
and/or methods if it helps you
tommunicate better.

Download at WoweBook.Com

how to use this book

Intro

I can't believe
they put that in an object-
oriented analysis and design
book!

answer the burning ques on:

[n this settion, we D book?”

i £
“So why DID they ?u{: that in an 00hs

xXiii

Download at WoweBook.Com

how to use this book

Who is this book for?

If you can answer “yes” to all of these:

\/ou)” P\robably be okay if

@ Do you know Java? (You don’t need to be a guru.) you know C# instead

@ Do you want to learn, understand, remember, and
apply object-oriented analysis and design to real world
projects, and write better software in the process?

@ Do you prefer stimulating dinner party conversation
to dry, dull, academic lectures?

this book is for you.

Who should probably back away from this book?

If you can answer “yes” to any one of these:

@ Are you completely new to Java? (You don’t need to
be advanced, and even if you don’t know Java, but
you know C#, you'll probably understand almost all
of the code examples. You also might be okay with
just a C++ background.)

@ Are you a kick-butt OO designer/developer looking
for a reference book?

@ Are you afraid to try something different? Would
you rather have a root canal than mix stripes
with plaid? Do you believe that a technical book
can'’t be serious if programming concepts are
anthropomorphized?

¥

this book 1s not for you.

[note (:rom markc{','mgi this book is
for anyone with a evedit card.]

XXiv

Download at WoweBook.Com

intro

We know what you're thinking.

“How can thus be a serious programming book?”
“What’s with all the graphics?”

“Can I actually learn it this way?”

)/OUV' br- ai
THIS

And we know what your brainis thinking. (

Your brain craves novelty. It’s always searching, scanning, wating for

. h fhlhks
is i'"P°'"fan L

something unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s real job—recording things that matler. It doesn’t bother saving
the boring things; they never make it past the “this is obviously not
important” filter.

How does your brain know what’s important? Suppose you’re out
for a day hike and a tiger jumps in front of you, what happens inside
your head and body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows...

Great. Only
637 more dull,
dry, boring pages.

This must be important! Don’t forget it!

But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone. by
You're studying. Getting ready for an exam. Or trying to learn some tough \/our \Jva:'j; wor O
technical topic your boss thinks will take a week, ten days at the most. THIS e

savindy

Just one problem. Your brain’s trying to do you a big favor. It’s trying to
make sure that this obviously non-important content doesn’t clutter up scarce
resources. Resources that are better spent storing the really bzg things. Like
tigers. Like the danger of fire. Like how you should never again
snowboard in shorts.

And there’s no simple way to tell your brain, “Hey brain, thank you
very much, but no matter how dull this book 1s, and how little I'm
registering on the emotional Richter scale right now, I really do want
you to keep this stuff around.”

you are here » XXV

Download at WoweBook.Com

how to use this book

wWe think of a “Head First’ reader as a learner.

So what does it take to learn something? First, you have to getit, then make sure
you don’t forgetit. It's not about pushing facts into your head. Based on the
|atest research in cognitive science, neurobiology, and educational psychology,
learning takes a lot more than texton a page. We know what turns your brain on.

All of this is v
- - - - . . Is repre; i
some of the Head First learning principles: a single cmecﬁontﬂfi"

Make it visual. Images are far more memorable than words alone, and

make learning much more effective (up to 89% improvement in recall and

transfer studies). It also makes things more understandable. Put the words
within or near the graphics they relate to, rather than on the bottom

Station

or on another page, and learners will be up to twice as likely to solve problems

related to the content.

Use a conversational and personalized style. In recent studies,

students performed up to 40% better on post-learning tests if the content spoke

directly to the reader, using a first-person, conversational style rather than taking

T+t really sucks to be an
abstract method. You
don't have a body.

a formal tone. Tell stories instead of lecturing. Use casual language. Don't take

yourself too seriously. Which would you pay more attention to: a stimulating

dinner party companion, ora lecture?

o
. Get the learner to think more deeply: In other words, unless you actively flex
z.-—*'}‘_i' your neurons, nothing much happens in your head. A reader has to be motivated,
- = engaged, curious, and inspired to solve problems, draw conclusions,
= and generate new knowledge. And for that, you need challenges,
! " exercises, and thought-provoking questions, and activities that involve Great software every time? T

can hardly imagine what that
would be like!

poth sides of the brain, and multiple senses.

abstract void roam() ;

Get—and keep—the reader’s attention. We've

od \)od\i:““‘,‘w\ow 7\

Nowe™ a8 all had the“l really want to learn this but | can't stay awake past
{,,'\6'\’6“‘

page one” experience. Your brain pays attention to things that are

out of the ordinary, interesting, strange, eye-catching, unexpected.

Learning a new, tough, technical topic doesn’t have to be boring. Your

prain will learn much more quickly if it's not.

Touch their emotions. We now know that your ability to remember

something is largely dependent on its emotional content. You remember what you care about.

You remember when you feel something. No, we're not talking heart-wrenching stories abouta

boy and his dog. We're talking emotions like surprise, curiosity, fun, “what the..?", and the

feeling of “I Rule!” that comes when you solve a puzzle, learn something everybody else

thinks is hard, or realize you know something that “'m more technical than thou” Bob from
engineering doesn’t.

XXVi Intro

Download at WoweBook.Com

intro

Metacognition: thinking about thinking

If you really want to learn, and you want to learn more quickly and more
deeply, pay attention to how you pay attention. Think about how you think.
Learn how you learn.

T wonder how I
can frick my brain
into remembering
this stuff...

Most of us did not take courses on metacognition or learning theory when we
were growing up. We were expected to learn, but rarely faught to learn.

But we assume that if you’re holding this book, you really want to learn object- o
oriented analysis and design. And you probably don’t want to spend a lot of

time. And since you’re going to develop software, you need to remember what you
read. And for that, you’ve got to understand it. To get the most from this book, or
any book or learning experience, take responsibility for your brain. Your brain
on this content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well-being. As important as a tiger.

Otherwise, you're in for a constant battle, with your brain doing its best to
keep the new content from sticking;

So just how DO you get your brain to think object-
oriented analysis and design is a hungry tiger?

There’s the slow, tedious way, or the faster, more effective way. The slow
way 1s about sheer repetition. You obviously know that you are able to
learn and remember even the dullest of topics if you keep pounding the same thing
into your brain. With enough repetition, your brain says, “This doesn’t fee/ important to
him, but he keeps looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording:

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

XXVii

Download at WoweBook.Com

how to use this book

Here’s what WE did:

We used pictures, because your brain is tuned for visuals, not text. As far as your ~
brain’s concerned, a picture really zs worth 1,024 words. And when text and pictures
work together, we embedded the text i the pictures because your brain works more
effectively when the text is withun the thing the text refers to, as opposed to in a caption
or buried in the text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area of
your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,

AR BATARTAORLE!

and we used pictures and ideas with at least some emotional content, because your brain is
tuned to pay attention to the biochemistry of emotions. That which causes you to_fee/ something
1s more likely to be remembered, even if that feeling is nothing more than a little Aumor, ()

surprise, or interest. [[g

We used a personalized, conversational style, because your brain is tuned to pay more (il ol
attention when it believes you’re in a conversation than if it thinks you’re passively listening to a
presentation. Your brain does this even when you’re reading.

We included more than 80 activities, because your brain is tuned to learn and remember

more when you do things than when you read about things. And we made the exercises

challenging-yet-do-able, because that’s what most people prefer.

We used mudltiple learning styles, because you might prefer step-by-step procedures, while BULLET Pom&
someone else wants to understand the big picture first, and someone else just wants to see a

code example. But regardless of your own learning preference, everyone benefits from seeing the
same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you

engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you can ~ Fireside Chats
be more productive at learning for a longer period of time. T

—

And we included stories and exercises that present more than one point of view, because
your brain is tuned to learn more deeply when it’s forced to make evaluations and judgements.

We included challenges, with exercises, and by asking questions that don’t always have

a straight answer, because your brain is tuned to learn and remember when it has to work at
something, Think about it—you can’t get your body in shape just by watching people at the gym.
But we did our best to make sure that when you’re working hard, it’s on the 7ght things. That
you’re not spending one extra dendrite processing a hard-to-understand example, or
parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because you’re a person. And
your brain pays more attention to pesple than it does to things.

We used an 80/20 approach. We assume that if you’re going for a PhD in software design, this {
won’t be your only book. So we don’t talk about everything. Just the stuff you’ll actually need. ey
xxviii ~ Intro

Download at WoweBook.Com

Cut +this out and stiek it
on Your \rc-pkiscra{:or. —

Slow down. The more you understand,
the less you have to memorize.

Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really s asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering,

Do the exercises. Write your own notes.
We put them in, but if we did them for you,
that would be like having someone else do

your workouts for you. And don’t just look at

the exercises. Use a pencil. There’s plenty of
evidence that physical activity while learning
can increase the learning.

Read the “There are No Dumb Questions”
That means all of them. They’re not optional
side-bars—they’re part of the core content!
Don’t skip them.

Make this the last thing you read before
bed. Or at least the last challenging thing.
Part of the learning (especially the transfer to
long-term memory) happens after you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing time, some of what you
just learned will be lost.

Drink water. Lots of it.

Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

®

©)

intro

Here’s what YOU can do to bend
your brain into submission

So, we did our part. The rest is up to you. These tips are a starting point; listen to
your brain and figure out what works for you and what doesn’t. Try new things.

Talk about it. Out loud.

Speaking activates a different part of the brain.
If you’re trying to understand something, or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You'll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

Listen to your brain.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim the
surface or forget what you just read, it’s time for a
break. Once you go past a certain point, you won’t
learn faster by trying to shove more in, and you
might even hurt the process.

Feel something!

Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke is
still better than feeling nothing at all.

Design something!

Apply what you read to something new you’re
designing, or rework an older project. Just do
something to get some experience beyond the
exercises and activities in this book. All you need is
a problem to solve... a problem that might benefit
from one or more techniques that we talk about.

XXixX

Download at WoweBook.Com

how to use this book

Read Me

This 1s a learning experience, not a reference book. We deliberately stripped out
everything that might get in the way of learning whatever it is we’re working on at that
point in the book. And the first time through, you need to begin at the beginning, because
the book makes assumptions about what you’ve already seen and learned.

We assume you are familiar with Java.

It would take an entire book to teach you Java (in fact, that’s exactly what it took: Head
First fava). We chose to focus this book on analysis and design, so the chapters are written
with the assumption that you know the basics of Java. When intermediate or advanced
concepts come up, they’re taught as if they might be totally new to you, though.

If you’re completely new to Java, or coming to this book from a C# or C++ background,
we strongly recommend you turn to the back of the book and read Appendix II before
going on. That appendix has some intro material that will help you start this book off on
the right foot.

We only use Java 5 when we have to.

Java 5.0 introduces a lot of new features to the Java language, ranging from generics to
parameterized types to enumerated types to the foreach looping construct. Since many
professional programmers are just moving to Java 5, we didn’t want you getting hung up
on new syntax while you’re trying to learn about OOA&D. In most cases, we stuck with
pre-Java 5 syntax. The only exception is in Chapter 1, when we needed an enumerated
type—and we explained enums in that section in some detail.

If you’re new to Java 5, you should have no trouble with any of the code examples. If
you’re already comfortable with Java 5, then you will get a few compiler warnings about
unchecked and unsafe operations, due to our lack of typed collections, but you should be
able to update the code for Java 5 on your own quite easily.

The activities are NOT optional.

The exercises and activities are not add-ons; they’re part of the core content of the book.
Some of them are to help with memory, some are for understanding, and some will help
you apply what you've learned. Don’t skip the exercises. The crossword puzzles are
the only things you don’t 4ave to do, but they’re good for giving your brain a chance to
think about the words and terms you’ve been learning in a different context.

XXX

Download at WoweBook.Com

The redundancy is intentional and important.

One distinct difference in a Head First book 1s that we want you to really get it. And we
want you to finish the book remembering what you’ve learned. Most reference books
don’t have retention and recall as a goal, but this book is about learning, so you’ll see some
of the same concepts come up more than once.

The examples are as lean as possible.

Our readers tell us that it’s frustrating to wade through 200 lines of an example looking
for the two lines they need to understand. Most examples in this book are shown within
the smallest possible context, so that the part you're trying to learn is clear and simple.
Don’t expect all of the examples to be robust, or even complete—they are written
spectfically for learning, and aren’t always fully-functional.

In some cases, we haven’t included all of the import statements needed, but we assume
that if you’re a Java programmer, you know that ArrayListisin java.util, for
example. If the imports are not part of the normal core J2SE API, we mention it. We've
also placed all the source code on the web so you can download it. You’ll find it at
http://www.headfirstlabs.com/books/hfoo/.

Also, for the sake of focusing on the learning side of the code, we did not put our
classes into packages (in other words, they’re all in the Java default package). We don’t
recommend this in the real world, and when you download the code examples from this
book, you’ll find that all classes are in packages.

The ‘Brain Power’ exercises don’t have answers.

For some of them, there is no right answer, and for others, part of the learning experience
of the Brain Power activities is for you to decide if and when your answers are right. In
some of the Brain Power exercises you will find hints to point you in the right direction.

Download at WoweBook.Com

intro

XXXi

review team

The Technical Team

Hannibal Sciyio

Ava Yapejian o

Technical Reviewers:

Huge thanks to our amazing trio of technical reviewers. These guys caught mistakes
that we missed, let us know when we were moving too fast (or too slow), and even
let us know when our jokes sucked. Several times, they turned chapters around in a
matter of hours... we’re not sure if that means they’re really helpful, or need to get
away from software development a little more. Hannibal in particular made our
week when he let us know that the big OOA&D arrow in Chapter 10 was “Hot!”
Thanks guys, this book wouldn’t be nearly as solid without your hard work.

Kathy Sierra and Bert Bates:

We continue to be amazed at the insight and
expertise that Bert Bates has about cliffs, and that
Kathy Sierra has about dog doors. If that doesn’t
make much sense, don’t be surprised—everything
you know about almost everything gets turned on its
head when you meet this pair, and yet we all came
out much for the better because of their help.

Bert and Kathy did a ton of review at the eleventh
hour, and we’re thankful they did. Their help and
guidance continues to be the heart of Head First.

Ka'{:h\/ Sic(:ra
T Bert Bates

XXXii Intro

Download at WoweBook.Com

Acknowledgements

My co-authors:

Because I'm doing the typing, I get to step out of “we” mode for a moment and say thanks to my
co-authors, Dave West and Gary Pollice. Neither of these guys knew what they were signing up
for when they came on board, but I’'ve never been so impressed by a couple of guys willing to explain,
defend, and even change their opinions and knowledge about software design, requirements and
analysis, and lift shafts. They were simply incredible, writing up until the very last day, and even got me
to relax and laugh until I cried on several occasions.

Our editor:

This book wouldn’t be in your hands if not for Mary O’Brien. I think
it’s fair to say she fought more battles and paved the way for us to work
without interruption more times than any of us really are aware of. Most
importantly, she made this the single most enjoyable project we’ve worked on
in our careers. Frankly, she kicked our asses a number of times, and it made
all the difference. She really doesn’t realize how much of an effect she has
on the people she works with, because we don’t tell her enough how much
we respect her and value her opinions. So there, now you know, Mary. If we
could put your name on the cover, we would (oh, wait... we did!).

M ary O’BYiCh

_

The O’Reilly team:

These books are a team effort, never more so than on this one. Mike Hendrickson and Laurie
Petrycki oversaw this project at various times, and took heated phone calls more than once.
Sanders Kleinfeld cut his Head First teeth on this project, and managed to come out alive;
better yet, he did a great job, improving the book, and we all are excited that this is just the first of
many Head First books he’ll be working on. Mike Loukides found Bert and Kathy way back
when, and Tim O’Reilly had the foresight to turn their crazy idea into
a series. As always, Kyle Hart is instrumental in getting these books “out
there”, and Edie Freedman’s beautiful cover design continues to amaze
us all.

A particularly special thanks goes out to Louise Barr, the Head First

Design Editor. Lou pulled several 12- and 14-hour days to help us with
graphics in this book, and put together the amazing Objectville Subway Map
in Chapter 10. Lou, your work has improved the learning quality of this

book, and we can’t thank you enough for your contributions. /9

Low Bar\r

you are here »

Download at WoweBook.Com

intro

xxxiii

special thanks

Special thanks

XXXV

Near the completion of this book, Laura Baldwin, the CFO of O’Reilly, encountered some
personal tragedy. It’s hard to know what to say in these situations, especially because Laura has
really become the backbone of O’Reilly in many ways. Laura, we are thinking and praying for you
and your family, and we wish you all the very, very best in the days to come. We know you’d want
nothing more than to see everyone at O’Reilly working harder than ever while you’re away.

This book is certainly a testament to the people at O’Reilly continuing to deliver, and in many of
our conversations, your name came up as someone we wanted to support, and not let down in any
way. Your effect on this company is extraordinary, and O’Reilly and the Head First series will all be
much better for the day you can return to us in full swing.

Download at WoweBook.Com

1 well-designed apps rock

Great Software
Begins Here

T can hardly get over it,
Sue, but since I started using
OOA&D, I'm just a new man... a
new man, I'll tell youl

So how do you really write great software? It's never easy
trying to figure out where to start. Does the application actually do what

it's supposed to? And what about things like duplicate code—that can’t be
good, can it? It's usually pretty hard to know what you should work on first,
and still make sure you don’t screw everything else up in the process. No
worries here, though. By the time you’re done with this chapter, you'll know
how to write great software, and be well on your way to improving the way
you develop applications forever. Finally, you'll understand why OOA&D is a

four-letter word that your mother actually wants you to know about.

this is a new chapter

Download at WoweBook.Com

the sounds of wood and steel

Rock and roll is forever!

There’s nothing better than the sound of a killer guitar in the hands
of a great player, and Rick’s Guitars specializes in finding the perfect
mstrument for his discerning customers.

You wouldn't believe
the selection we have here.
Come on in, tell us about what kind
of guitar you like, and we'll find
you the perfect instrument,
guaranteed!

Meet Rick, guitar
afitionado, and owner of a

high—end quitar shop-

Just a few months ago, Rick decided to throw out his paper-based
system for keeping track of guitars, and start using a computer-based
system to store his inventory. He hired a popular programming firm,
Down and Dirty Coding, and they’ve already built him an inventory
management app. He’s even had the firm build him a new search
tool to help him match up a customer to their dream instrument.

2 Chapter 1

Download at WoweBook.Com

well-designed apps rock

Rick’s shiny new application...

Here’s the application that the programming firm built for Rick... they’ve
put together a system to completely replace all of Rick’s handwritten
notes, and help him match his customers with the perfect guitar. Here’s
the UML class diagram they gave Rick to show him what they did:

) -
Here's Rick’s entive inventor ,

as well as 3 way for him +

Eath guitar in Riek's searth for guitars. The inventory stoves 2 fit

‘“V°"J°°v\’£ ;;Yrccs\;sw i of all the 5ui‘cars.‘§:{’*:ﬁ Riek
instance s ' l g curvently has avanabie:
|
Guitar Inventory /
serialNumber: String guitars: List =
price: double : - I - X -
Heve are builder: String addetar(gtt:ilzg, g?rlijr?g?’ String, String, String, \
the vaviables model: Stnng getGuitar(String): Guitar Thi
in the type: String search(Guitar): Guitar 'S method
Quitar elass. backWood: String kes in 4|
topWood: String thod ; fj lgu;{;akls
: . : Th|s metho) .. ¢ isl Cr
gethrlalNumber(). String Lakes a 5.,1£ar s Th-s is the seareh methog: 3 Quitay oiaicj:
getPrice(): double cevial number, .-Jc takes in 3 ¢lien o) and 3dg itJto)
settI;rllclz(ﬂoe.ztétl and vekurns that 'dca.l guitar, and veturns Riek’s ihvenfor),,
- ggtmﬂdeﬁ(g(-)'sngg auitar's object f:,vi"'f.?" Fz:mtRickls
: ntor a
R:S;X\iods getType(): String with Jchcy,;)i o ,C,:'fjccit“ up
for the getBackWood(): String peés.
Guitar elass: getTopWood(): String selinins

. h
Rick decided H\zzc aav?)i'\ta:: fhe sexial number,

e
charaC‘hC:‘ft‘ :os , the builder and. mOdC\A
how much ! (atoustit or electrie), an

what {Z‘IYC s

in the 5“.‘ v)
what woods ave used in We've 9ot some treats for You

in Appendix [. Cheek it out
etore 3oin3 on if you'v-c new

{'D MML or 00 Prosv‘am”\iha.

New to Objectvi]le?

If you're new to object oriented programming, haven't heard of UML before,
or aren’t sure about the diagram above, it's OK! We've prepared a special 4
“Welcome to Objectville” care package for you to get you started. Flip to the
back of the book, and read Appendix Il—we promise you'll be glad you did.
Then come back here, and this will all make a lot more sense.

you are here » 3

Download at WoweBook.Com

rick’s initial application code

Here what the code for
Guitarjava looks like

You've seen the class diagram for Rick’s application on the last
page; now let’s look at what the actual code for Guitar. java
and Inventory. java look like.

public class Guitar {

private String serialNumber, builder, model,

private double price;

public Guitar(String serialNumber,
String builder, String model,
String backWood,
serialNumber
this.price price;
this.builder = builder;
this.model model;
this.type type;
this.backWood backWood;
this.topWood topWood;
}

this. serialNumber;

public String getSerialNumber () {
return serialNumber;

}

public double getPrice() {
return price;

}

public void setPrice (double newPrice) {
this.price newPrice;

}

public String getBuilder () {
return builder;

}

public String getModel () {
return model;

You tan see how

Ehe methods in

} Guitar tlass’s tode.

public String getType () {
return type;

}

public String getBackWood () {
return backWood;

}

public String getTopWood ()
return topWood;

}

4 Chapter 1

fhe class diagram
matehes wp with

{ \

These are all the
Properties we say 4

) om
s

uitar ¢lass.

type, backWood, topWood;

double price,

String type,

String topWood) {

~

UML class diagrams don't

show tonstruttors; the Quitar ,
tonstruttor does Jus{: what you d
expect, though: sets all the nitial
properties for a new Quitar.

Guitar

serialNumber: String
price: double
builder: String
model: String

type: String
backWood: String

the topWood: String

getSerialNumber(): String
getPrice(): double
setPrice(float)
getBuilder(): String
getModel(): String
getType(): String
getBackWood(): Str
getTopWood(): Strin

Guitar.java

Download at WoweBook.Com

well-designed apps rock

And Inventoryjava...
Remember, we ve stripped

. -
publllc clas.s Inverlltory { out the imYOY"{': s{;a{-,cmcn{’,s
private List guitars;
4o save some spate:

public Inventory() {
guitars = new LinkedList();

}

public void addGuitar (String serialNumber, double price,
String builder, String model,
String type, String backWood, String topWood) {
Guitar guitar = new Guitar (serialNumber, price, builder,
model, type, backWood, topWood); <—_ addéui{;ay() takes in all

guitars.add(guitar) ; e the Properties required
) . , . , , treate 5 new Quita
public Guitar getGuitar (String serialNumber) { insta e uItar
for (Iterator i = guitars.iterator(); i.hasNext();) { h c'crcafcsohc,ahd
Guitar guitar = (Guitar)i.next(); adds,{ to thihvehéor
if (guitar.getSerialNumber ().equals (serialNumber)) { Y

return guitar;

}
return null;
}
. . . S...
public Guitar search(Guitar searchGuitar) { < —— This method is @ bit of a mes

for (Iterator i = guitars.iterator(); i.hasNext();) { it tompavres eath yroycv{:\{ 0(" the
Guitar guitar = (Guitar)i.next(); @Ab“ ob")cé{'. s ‘,asscd in to eath
// Ignore serial number since that’s unique ita obiett in Rmk%ihVﬂﬂDYY
// Ignore price since that’s unique éul v o0

String builder searchGuitar.getBuilder () ;
if ((builder != null) && (!builder.equals (™)) &&
('builder.equals (guitar.getBuilder())))
continue;
String model = searchGuitar.getModel () ;
if ((model != null) && (!model.equals (™)) &&
(!'model.equals (guitar.getModel())))
continue;
String type = searchGuitar.getType () ;
if ((type != null) && (!searchGuitar.equals (V")) &&
('type.equals (guitar.getType())))
continue;

String backWood = searchGuitar.getBackWood() ; Inventory
if ((backWood != null) && (!backWood.equals (™)) &&
(!backWood.equals (guitar.getBackWood()))) guitars: List
continue; . . X . -
String topood — searchGuitar.getTopiood () ; addetar(Str.mg, dogble, String, String, String,
if ((topWood != null) && (!topWood.equals(“”)) && St”ng’ St”ng)
(!topWood.equals (guitar.getTopWood()))) getGuitar(String): Guitar
continue; search(Guitar): Guitar
} T

return null;

} Inventory.java

you are here » 5

Download at WoweBook.Com

the case of the missing guitar

But then Rick started losing customers...

It seems like no matter who the customer is and what they like, Rick’s new search F"‘déui'l:av-Tcs{;cr java simulates 3

program almost always comes up empty when it looks for good guitar matches. But {:YPiCJ' day for R
Rick knows he has guitars that these customers would like... so what’s going on? tomes in, tells him

itk now... 3 tustomer
what they like,

and he vuns 3 searth on his invcn'l:ov-\/.

public class FindGuitarTester {)

public static void main(String[] args) {
// Set up Rick’s guitar inventory
Inventory inventory = new Inventory();
initializeInventory (inventory) ;

private static void initializeInventory(Inventory inventory) {
// Add guitars to the inventory...

}

6 Chapter 1

Guitar whatErinLikes = new Guitar (“”, 0, “fender”, “Stratocastor”,

Guitar guitar = inventory.search (whatErinLikes);
if (guitar != null) { Brin is \oo\('"\‘j

“electric”, “Alder”, “Alder”):;

System.out.println (“Erin, you might like this ” + ‘(:ovaFC“d“
guitar.getBuilder () + “ ” + guitar.getModel () + “ ” “SJ(XG{'«" 5“.‘{_/“,
guitar.getType () + ™ guitar:\n o4 of Aldev.
guitar.getBackWood () + ™ back and sides,\n "7+ made
guitar.getTopWood () + ™ top.\nYou can have it for only $” +
guitar.getPrice() + “!7);

} else {
System.out.println (“Sorry, Erin, we have nothing for you.”);

FindGuitarTester.java

I'm sorry, Rick, I guess T'll
just go to that other store
across fown.

File Edit Window Help C7#5

%$java FindGuitarTester

Sorry, Erin, we have nothing for you.

! hen E‘r'm
Heve's what happens W .
L::\CS inko Ritk's store, and Riek

Lries to £ind her 3 3u\{-,3r.

Download at WoweBook.Com

well-designed apps rock

But I know I have a killer
Fender Strat guitar. Look, it's
right here:

inventory.addGuitar (*V95693”,

1499.95, “Fender”, “Stratocastor”, 3
“electric”, “Alder”, “Alder”); \

These spets seem

to mateh up
Pevfccécly with
what Evin asked
Heve's part of the tode e o
that sets wp Riek’s inventory. o on?
Looks like he's aot the
pecfect guitar zov Evin.

harpen Vour penci
f&i YO P I How would you redesign Rick’s app?

Look over the last three pages, showing the code for Rick’s app, and the results
of running a search. What problems do you see? What would you change? Write
down the FIRST thing you’d do to improve Rick’s app in the blanks below.

you are here » 7

Download at WoweBook.Com

how do you write great software?

What's the FIRST thing you'd change?

It’s obvious that Rick’s app has problems, but it’s not so obvious what we
should work on first. And it looks like there’s no shortage of opinion:

Look at all those Strings!
That's terrible... can't we use
constants or objects instead?

Guitar

serialNumber: String
price: double
builder: String
model: String

type: String
backWood: String
topWood: String

getSerialNumber(): String
getPrice(): double
setPrice(float)
getBuilder(): String
getModel(): String
getType(): String
getBackWood(): String
getTopWood(): String

Joe's fairly new
+o YY‘OSY'Q"‘"‘.‘V‘S’
but he's a big
believer in
wriking objeet-
oviented tode

thank)s been avound for a
wlTnlc. and rca“\/ knows his 00
printiples and design patterns.

8 Chapter 1

This design is terrible! The

Whoa... these notes from the
owner says he wants his clients
to have multiple choices. Shouldn't
the search() method return a list of
matches?

Inventory

guitars: List

String, String)
getGuitar(String): Guitar
search(Guitar): Guitar

addGuitar(String, double, String, String, St

~N

Inventory and Guitar classes

depend on each other too much, and T
can't see how this is an architecture

that you'd ever be able to
build upon. We need some
restructuring.

Download at WoweBook.Com

Y,

e ook 3 ve for always
Il 808 2 Tor g what

delivering exat
the tustomer wants.

What would you do first?

well-designed apps rock

How am I supposed to know where to start? I
feel like every time I get a new project to work
on, everyone's got a different opinion about what
to do first. Sometimes I get it right, and sometimes I
end up reworking the whole app because I started in the
wrong place. I just want to write great software!
So what should T do first in Rick's app?

How do you
write great
software,

every time?

you are here »

Download at WoweBook.Com

9

what does great software mean?

to butt in, but what does “great

Wait a second... I hate

software” mean? That's sort of a
vague term to be throwing around,
isn't it?

Good question... and there are
lots of different answers:

The customer-friend]y programmer says:

“Great software always does what the customer
wants it to. So even if customers think of new
ways to use the software, it doesn’t

break or give them unexpected results.”

7 is all
This approach is 2 the

The object-oriented programmer says:

“Great software is code that is object-oriented.
So there’s not a bunch of duplicate code, and

each object pretty much controls its own
behavior. It’s also easy to extend because your
design is really solid and flexible.”

Good 00 Programmers
are always lookihg For
ways to make their

tode more flexible.

Not sure abouk what all

that meansS [t's 0¥... \It.:u'“
leavrn about all Lhese things

in the uvtoming L\\a‘?%,crs.

10 Chapter 1

The design-guru programmer says:
“Great software is when you use tried-and-true
objects loosely coupled, and your code open for
helps make the code more reusable, so you

don’t have to rework everything to use parts of
your application over and over again.”

design patterns and principles. You’ve kept your

extension but closed for modification. That also

about making sure .
customer is happy with
what theiv app does

This dCSiSn“‘pOCused
dpproath optimizes
¢ode for CX{:Cnsioh
and veuse, and {akes
adva"{aﬂcs of design
Patterns and Proven

00 fcthhiqucs

N ar it/

v

Download at WoweBook.Com

aharpen your pencil

-~

Wite your name heve..-

well-designed apps rock

What do you think “great software” means?

You've seen what several different types of programmers think
great software is... so who is right? Or do you have your own
definition of what makes an application great? It's your turn to write
down what you think makes for great software:

~and write what You think great

Sof‘(:wavc means heve.

you are here » 11

Download at WoweBook.Com

great software satisfies the customer and the programmer

Great software is...
more than just one thing

It’s going to take more than just a simple definition to
figure out exactly what “great software” means. In fact,
all of the different programmers on page 10 talked
about a part of what makes software great.

First, great software must satisfy
the customer. The software must
do what the customer wants it to do.

Win your customers over

Customers will think your software
is great when it does what it’s
supposed to do.

Building software that works right is great, but what
about when it’s time to add to your code, or reuse it
in another application? It’s not enough to just have
software that works like the customer wants it to; your
software better be able to stand the test of time.

Wow, if my code could do all
that, then it really would be great
software! I even think I see how you
could turn this into a few simple steps
that work on every project.

Second, great software is

well-designed, well-coded, and
easy to maintain, reuse, and extend.

Make your code as
smart as you are.

You (and your co-workers) will think
your software is great when it’s easy
to maintain, reuse, and extend.

12 Chapter 1

Download at WoweBook.Com

well-designed apps rock

Great software in 3 easy steps

\ " Cas\l now, bu‘h

00AED and
|| show You how
:J:mcsbas\t,\!?v'mc\\?\cs ¢an thange

your softwavre focever-

1. Make sure your
software Joes what the
customer wants it to do. — Lfic‘ﬁiffiifil;’ s e

supposed to do FIRST. This is
where 9etting 90od requirements
and doin5 some analysis tomes in.

2, Apply bhasic
00 principles to
(add {lexibility.

Onte Your software works, you
tan look ‘:or any du?licalcc tode

that might have slipped in, amé
make sure You've using good 0 S . {
yrog,vammi:(g techniques. 3. trlve or a

maintainable,

fo{: ;\ 3;0;1 obJecf{—:oricn{cd

PP that does what it should? 1) J 1

[t's time to apply Fa{‘.‘l:csms and reusa le QSIgn.
principles to make sure Your

softwave is veady to use for
Years to come.

you are here »

Download at WoweBook.Com

13

applying the steps

Rewmewmber Rick? Remewber his lost customers?

Let’s put our ideas about how to write great software to the test and see if they hold
up in the real world. Rick’s got a search tool that isn’t working, and it’s your job to

fix the application, and turn it into something great. Let’s look back at the app and
see what’s going on:

Heve's our

Lest program ™

khatvaCNs public class FindGuitarTester {

a \7\rob|cvn)

with the public static void main(String[] args) { R'{fs aFP. s}hould
xard\{od. // Set up Rick’s guitar inventory mateh Evin's

Inventory inventory = new Inventory();
initializeInventory (inventory) ;

prefeventes heve... %o this

\L gui'bar

.)
Guitar whatErinLikes = new Guitar(“”, 0, “fender”, “Stratocastor”, n R|Lks
“electric”, “Alder”, “Alder”); inVanOOY"/'
Guitar guitar = inventory.search(whatErinLikes) ;
if (guitar != null) { ;2
| p—__ N ga— : -

inventory.addGuitar (*V95693”,

FindGuitarTester.j 1499.95, “Fender”, “Stratocastor”,
IndSurtarfesterjava “electric”, “Alder”, “Alder”);

So let’s apply our 3 steps:

1. Make sure your
ol :

Remember, we So{tware (:[OCS Wllat tlle
need to start out

by making sure the customer wants it to do.
app actually does

what Rick wants.- \
and it's definitely ,
not doing that 2, APPly l)aSiC D on t worry too muth about
vight now. 00 orinciol - trying to apply patterns or
principles to other 00 techniques to Your app
add ﬂexil)ility. at this ‘)Join'{:-.. Just get it 4o
\ where it's working like it should.
3. Strive for a Q
maintainal)le,

reusable Jesign.
14 Chapter 1

Download at WoweBook.Com

well-designed apps rock

If we're starting with functionality,
let's figure out what's going on with
that broken search() method. It looks like
in Rick's inventory, he's got "Fender” with a
capital "F," and the customer's specs have
“fender” all lowercase. We just need to do a
case-insensitive string comparison in the
search() method.

Let’s get a little
hC,P rom some o(—‘ our
Programmer buddies.

Frank: Sure, that would fix the problem Rick’s having now, but
I think there’s probably a better way to make this work than just
calling toLowerCase() on a bunch of strings all over the place.

Joe: Yeah, I was thinking the same thing. I mean, all that string
comparison seems like a bad idea. Couldn’t we use constants or
maybe some enumerated types for the builders and woods?

Jill: You guys are thinking way too far ahead. Step 1 was
supposed to be fixing the app so it does what the customer
wants it to do. I thought we weren’t supposed to worry about
design yet.

Frank: Well, yeah, I get that we’re supposed to focus on the
customer. But we can at least be smart about /0w we fix things,
right? I mean, why create problems we’ll have to come back and
fix later on if we can avoid them from the start?

Jill: Hmmm... I guess that does make sense. We don’t want our
solution to this problem creating new design problems for us
down the road. But we’re still not going to mess with the other
parts of the application, right?

Frank: Right. We can just remove all those strings, and the

string comparisons, to avoid this whole case-matching thing. DOH,t Cre a‘te

Joe: Exactly. If we go with enumerated types, we can ensure
that only valid values for the builder, woods, and type of guitar

are accepted. That’ll make sure that Rick’s clients actually get to Pr OLlems to

look at guitars that match their preferences.

Jill: And we’ve actually done a little bit of design at the same SOlve PrOLlemSO
e —

time... very cool! Let’s put this into action.

you are here » 15

Download at WoweBook.Com

step 1: satisfy the customer

Ditching String comparisons

The first improvement we can make to Rick’s guitar search tool is getting
rid of all those annoying String comparisons. And even though you could
use a function like toLowerCase () to avoid problems with uppercase
and lowercase letters, let’s avoid String comparisons altogether: Thes
¢ are all Java €nums,
enumerated -[:YPCS tha t
unttion sort of like tonstants
public enum Type {

/—> ACOUSTIC, ELECTRIC;

Eath enum b1) .
Lakes the pu :!_C Strlrllg toString () {
lacco(:onc switch (this) {
v . case ACOUSTIC: return “acoustic”; TypeIava
of the auitar] . .
properties ZZ; public enum Builder {
that is }
tandard FENDER, MARTIN, GIBSON, COLLINGS,
Sc } OLSON, RYAN, PRS, ANY;
atvross }
1 . T —
all 5u|{:a\'5 public String toString() {
switch (this) { Buildekiava
— case FENDER: return “Fender”; eI'j
these case [TTT ‘ e
We tan vefer 1o public enum Wood {
as Wood SITKR o d e
case
B\.‘\\dcv.é\BSON’ a,“ INDIAN ROSEWOOD, BRAZILIAN ROSEWOOD, MAHOGANY,
avaid 3l fhose strind ™™, MAPLE, COCOBOLO, CEDAR, ADIRONDACK, ALDER, SITKA;
t,ov'\\’\c{"‘\\f'

tomp arisons

2 public String toString() {

switch (this) {
case INDIAN ROSEWOOD:

0 return “Indian Rosewood”;
ne of the big advants £ case BRAZILIAN ROSEWOOD:
enums is that il | Jes o using W e ”
’ ot it limits the possible return “Brazilian Rosewood”;
olues you ean SUPPlY to & methog e N

no move mj i
muspc”mas or Lase issues.

~_

therq are 1o .
"""""""" DUMD QUEGHIONYG

Qj P've never seen an enum before. What is that, exactly? Enumerated types let you define a type name, like Wood, and then

a set of values that are allowed for that type (like COCOBOLO,
SITKA, and MAHOGANY). Then, you refer to a specific value like

A: Enums are enumerated types. They're available in C, C++, this: Wood . COCOBOLO.

Java version 5.0 and up, and will even be a part of Perl 6.

Q,: And why are enumerated types so helpful here?
16 Chapter 1

Download at WoweBook.Com

well-designed apps rock

public class FindGuitarTester {

We €an
replace
public static void main(String[] args) { Pr“cﬂ‘cm:es W%JH those Strin
// Set up Rick’s guitar inventory enumerateg {:l h the pey,
Inventory inventory = new Inventory(); YPe values.

initializeInventory (inventory) ;

Guitar whatErinLikes = new Guitar (“”, 0, Builder.FENDER,
/————3" “Stratocastor”, Type.ELECTRIC, Wood.ALDER, Wood.ALDER) ;
G

) uitar guitar = inventory.search (whatErinLikes) ;
The only String if (guitar != null) {
left is for the
mOdC\; sinte ,
there veally isw & |
5 limited set FindGuitarTester.java
Lhese like there
is with builders
and wood- L
public Guitar search(Guitar searchGuitar) {
for (Iterator i = guitars.iterator(); i.hasNext();) {
Guitar guitar = (Guitar)i.next();
// Ignore serial number since that’s unique L The °"“Y
// Ignore price since that’s unique 1 wo\’c\‘{:‘/
if (searchGuitar.getBuilder () !'= guitar.getBuilder()) that we need
cgntinue; . to worry
;;rl(r:g ;ﬂoie% S STTTCZEUl(EarathMOdej—L ()(\"(ﬁ"()ﬂ;O:ircase ()} asbouk ease on
It looks [; i model != nu 'model.equals) e
o_o s like (!model.equals (guitar.getModel () LoLowerCase (1))) is the MOd, '
"°'H"h3 has continue; sinte that's
thanged, but if (searchGuitar.getType() != guitar.getType()) still a String.
with enums, we / continue;
don’t have to __ = if (searchGuitar.getBackWood() != guitar.getBackWood())
worry about continue;
these Comparisons if (seejtrchC.Suitar.getTopWood() != guitar.getTopWood())
ettin " continue;
3 94 rewed return guitar;
up b\/ mnssPc“inss }
or Case issues. return null;
} .
ﬂJ‘Mq'J""

A: The cool thing about enums is that methods or classes that Q, I'm using an older version of Java. Am | stuck?
use them are protected from any values not defined in the enum.

So you can’t misspell or mistype an enum without getting a compiler

error. It's a great way to get not only type safety, but value safety; you A No, not at all. Visit the Head First Labs web site at http://
can avoid getting bad data for anything that has a standard range or www . headfirstlabs.com, where we've posted a version of

set of legal values. Rick’s Guitars that doesn’t use enums, and will work with older JDKs.

you are here » 17

Download at WoweBook.Com

fragile apps break easily

Now the addQuitar() method

S1€kcs in severg| enums, instead of

¥ings or integer tonstants.

Let’s take a look at the big picture:

, Guitar
We've veplaced

most of Lhose serialNumber: String
String properties price: double

with enumerateq | bUilder: Builder
types. — model: String

type: Type
backWood: Wood
topWood: Wood

getSerialNumber(): String
getPrice(): double

Inventory

guitars: List

Wood, Wood)
getGuitar(String): Guitar

search(Guitar): Guitar

addGuitar(String, double, Builder, String, Type,

setPrice(float) ‘ Builder h
e s (a0 s____Tpe 1
Y gefType(): Type toString(): Str Wood

The scria.l number getBackWood(): Wood
is still unique, and | getTopWWood(): Wood

we left model as a /

String sinte theve
are {?\ousands of C» The Guitar ¢lass uses these

diffevent quitar enumevated types to rc\ircscn:
models out there.. data, in @ way H\BJC. won't 9e
way too many for an strewed wp b\/ tase issues or

evvors in spelling.

enum 1o be hcl?('\u\-

So what have we really done here?

We’ve gotten a lot closer to completing step 1
in building great software. Rick’s problem With\

searches coming up empty when he’s got a matching
guitar in his inventory is a thing of the past.

Even better, we’ve made Rick’s application less
Jragile along the way. It’s not going to break so
easily now, because we’ve added both type safety
and value safety with these enums. That means less
problems for Rick, and less maintenance for us.

Code that is not Fragilc
is genevally veferved 4o as

vobust ¢code.

18 Chapter 1

toString(): String

e

—_—
HCV‘C are our

enumevated +’YP¢“

1. Make sure your

Even though it
looks like no{hing’s
changed in seareh(),
now we're using
enums o make sure
we don't miss any
matcthes because

of spelling or
capitalization.

software Joes what the
customer wants it to do.

Download at WoweBook.Com

aSharpen your pencl

K Apply Step 1 to your own project.

It's time to see how you can satisfy your own customers. In the
blank below, write a short description of the current project you're
working on (you can also use a project you finished recently):

Now, write down the first thing you did when you started working on
this project. Did it have anything to do with making sure your code
did what the customer wanted it to?

If you started out focusing on something other than the customer,
think about how you might have approached things differently if
you knew about the 3 steps to building great software. What would
have been different? Do you think your application would be any
better or worse than it is right now?

Download at WoweBook.Com

— Dumb Questions —

well-designed apps rock

tlﬁeY‘ qre no

Q,: So it's OK to do a little design
when I'm working on Step 1, right?

Yeah, as long as your focus is
still on the customer’s needs. You want
the basic features of your application in
place before you start making big design
changes. But while you’re working on
functionality, you can certainly use good
00 principles and techniques to make
sure your application is well designed
from the start.

Q: That diagram over on page
18 is a class diagram right? Or is it

class diagrams, since it's more than
one class?

AZ Itis a class diagram, and a single
diagram can have multiple classes in it.

In fact, class diagrams can show a lot
more detail than you've seen so far, and
we'll be adding to them in the next several
chapters.

Q: So we're ready to move on
to Step 2, and start applying 00
principles, right?

A: Not quite... there’s one more
thing Rick would like us to help him with
before we're ready to start analyzing
our code for places we might be able to
improve it. Remember, our first job is to
please the customer, and then we really
focus on improving our OO design.

you are here » 19

similar, but different

So I thought this was
perfect, but then I realized...
T have two guitars that Erin would
love. Could you make the search
tool return both of them?

.Rick's happy with Your
'mProvements but he veall
needs .{:hc 3PP o veturn 3|
mafthmg uitars, not \jus'[::he.

inventory.addGuitar (“V95693”,
1499.95, Builder.FENDER,

“Stratocastor”, Type.ELECTRIC,
Wood.ALDER, Wood.ALDER) ;

-

These ouikars are almost
exactly the same. OnlY
the sevial nuber and inventory.addGuitar (“V9512”,
price are dikberent. 1549.95, Builder.FENDER,
“Stratocastor”, Type.ELECTRIC,

Wood.ALDER, Wood.ALDER) ;

20 Chapter 1

Download at WoweBook.Com

well-designed apps rock

Rick’s customers want choices!

Rick’s come up with a new requirement for his app: he wants his
search tool to return @/l the guitars that match his client’s specs, not
just the first one in his inventory.

Inventory

We want seareh() to be able
ﬁo‘ veturn muH:iPlc éuifak
ochc{:s if Riek has more than

one quitar that matehes his
tlient’s spees.

guitars: List

addGuitar(String, double, Builder, String, Type,

Wood, Wood)
getGuitar(String): Guitar
search(Guitar): List

Code Magnets

Let’s continue with Step 1, and make sure we've got the app working right. Below
is the code for the search() method in Rick’s inventory tool, but it's up to you to fill
in the missing pieces. Use the code magnets at the bottom of the page to return
all the matching guitars from Rick'’s inventory.

public search (Guitar searchGuitar) {
= new ()
for (Iterator i1 = guitars.iterator(); i.hasNext();) {
Guitar guitar = (Guitar)i.next();

// Ignore serial number since that’s unique
// Ignore price since that’s unique

if (searchGuitar.getBuilder () != guitar.getBuilder())
continue;
String model = searchGuitar.getModel () ;
if ((model !'= null) && (!model.equals(“”)) &&
(!'model.equals(guitar.getModel())))
continue;
if (searchGuitar.getType () != guitar.getType())
continue;
if (searchGuitar.getBackWood () != guitar.getBackWood())
continue;
if (searchGuitar.getTopWood () != guitar.getTopWood())
continue;
();
}
return ;

21

you are here »

Download at WoweBook.Com

maintenance, design, and requirements

N 1 Code Ma nets

Let’s keep on W|th Step 1, and make sure we've got the app working right. Below is
the code for the search() method in Rick’s inventory tool, but it’s up to you to fill in
the missing pieces. Use the code magnets at the bottom of the page to return all
the matching guitars from Rick’s inventory.

You ac{ually tould
have used either 3
LinkedList or an
) { Aveaylist heve..

both thoites are OK.

le—

LinkedListl) ;
.hasNext () ;

= new

ars.iterato
(Guitar)i.next () ;

Guitar guitar =
// Ignore serial number since that’s unique
// Ignore price since that’s unique

if (searchGuitar.getBuilder ()
continue;
String model = searchGuitar.getModel () ;
if ((model !'= null) && (!model.equals(“”)) &&
('model.equals(guitar.getModel())))

!= guitar.getBuilder())

continue;
if (searchGuitar.getType () != guitar.getType())
Ma{ching quitars continue;
9et added to the if (searchGuitar. getBackWood () != guitar.getBackWood())
list of options continue;

for Riek's tlient. if (searchGuitar.getTopWood ()

continue;

gé |matchingGuitars i_) ;

}

return |matchianuitars i,.

!'= guitar.getTopWood ())

} 7
Leftover magncks-

ther are no

Dumb Questions

Qj And why is it so important to
finish Step 1 before going on to Step 2?

Q: So I’'m not done with the first
step until the application works like my
customer wants it to?

You seem sort of hung up on this
“Step 1” and “Step 2” business. What if |
don’t code my apps that way?

A: You're going to make lots of

AZ Exactly. You want to make sure that
the application works like it should before
you dive into applying design patterns or
trying to do any real restructuring of how the
application is put together.

22 Chapter 1

changes to your software when you're
getting it to work right. Trying to do too much
design before you've at least got the basic

functionality down can end up being a waste,

because a lot of the design will change as
you're adding new pieces of functionality to
your classes and methods.

Download at WoweBook.Com

There’s nothing that says you have
to follow these steps exactly, but they do
provide an easy path to follow to make
sure your software does what it's supposed
to, and is well-designed and easy to
reuse. If you've got something similar that
accomplishes the same goals, that's great!

well-designed apps rock

Test drive

We've talked a lot about getting the right requirements from the
customer, but now we need to make sure we’ve actually got those

requirements handled by our code. Let’s test things out, and see if our
app is working like Rick wants it to:

)
Heve's > public class FindGuitarTester {

the test We've using en
program, public static void main(String[] args) { {:YPCSi i umerated
updated // Set up Rick’s guitar inventory {:)'P n this Lest drive. N,
; = . NG mij .
4o use the Inventory inventory = new Inventory(); 9 mistakes £his time!
vevsion initializeInventory (inventory);
new
.)
°£ Riek's Guitar whatErinLikes = new Guitar (“”, 0, Builder.FENDER, In this
searth tool: “Stratocastor”, Type.ELECTRIC, 1S new
Wood.ALDER, Wood.ALDER) ; vevsion, we need
List matchingGuitars = inventory.search(whatErinLikes) ; to l“:cra{:c over
if ('matchingGuitars.isEmpty()) (=< N all the ehoites
This time System.out.println(“Erin, you might like these guitars:”); 2=k veturned from
we ‘3‘{: a for (Iterator i = matchingGuitars.iterator(); i.hasNext();) { the seareh tool
whole list Guitar guitar = (Guitar)i.next(); '
0(: witavs — System.out.println(® We have a “ +
b teh guitar.getBuilder () + “ “ + guitar.getModel() + ™ ™ +
{hatfa) guitar.getType () + “ guitar:\n N 4
the tlient's guitar.getBackWood () + “ back and sides,\n N+
spets- guitar.getTopWood () + “ top.\n You can have it for only $” +
guitar.getPrice() + “!'\n ----");
}
} else {

System.out.println(“Sorry, Erin, we have nothing for you.”);

File Edit Window Help SweetSmell

%java FindGuitarTester
Erin, you might like these guitars: ,
We have a Fender Stratocastor electric guitar: Yes! That's exactly what T

Alder back and sides, want it to do.
Alder top.

You can have it for only $1499.95!

We have a Fender Stratocastor electric guitar:
Alder back and sides,
Alder top.

You can have it for only $1549.95!

Everything worked! Evin gets
seveval guitar vetommendations,
and Riek’s tustomers are going

[itars anain.
1o start buying guitars a9y I i
Download at WoweBook.Com

apply your oo principles

Back to our steps

Now that Rick’s all set with our software, we can begin to use some
OO principles and make sure the app is flexible and well-designed.

Now that the app does what
l(Rick wants, we've finished up
' ake sure y our’ = with this step-

software does what the
customer wants it to do.

So this is where we can
make sure there's no duplicate
code, and all our objects are well
designed, right?

2. Apply bhasic
00 principles to
add {lexibility.

N

Heve's wheve Yyou take
softwave that works, and

3. Strive {Or a make sure the way it's put
together actually makes sense-

maintainal)le,
reusable Jesign.

24 Chapter 1

Download at WoweBook.Com

well-designed apps rock

Looking for problems

Let’s dig a little deeper into our search tool, and see if we can find any
problems that some simple OO principles might help improve. Let’s start by
taking a closer look at how the search () method in Inventory works:

I'm looking for a Martin
acoustic guitar... you got
anything, Rick?

The ctlient provides a set of spees

; for their ideal guitar, in the
-!f form of a Quitar ob‘)c(‘.{;‘

Builder.MARTIN
' Type.ACOUSTIC
"OM-18"

Wood .MAHOGANY

The seaveh() method is
called with the spees Lrom
the tlient, and begins 3
searth on Rick’s inventory:

The client doesn’t
Provide 3 price or
serial number., sinte

those are unique fo Eac\': gui{:ar in
eath particular quitar. Riek’s inventory
She just provides is compaved
spees to mateh on, against the specs

& in the tlient’s
Guitar objett.

RANVN
QWEWR

Is anything wrong here? What
problems might there be with
Rick’s search tool?

(/-
¢£Ppo wass bulyifuy "uonounj
s3I 0] Jey} asedwod pue ‘paweu si Theve's a Quitar ob)cd: for eath
108/qo yoe® Jeym Jnoge YuyL JulH guitar in Rick's inventory, storing
the sevial number, price, and

specs for eath instrument.
you are here » 25

Download at WoweBook.Com

analysis of the search() method

Analyze the search() method

Let’s spend a little time analyzing exactly what goes on in the
search () method of Inventory. java. Before we look at
the code, though, let’s think about what this method should do.

Q The client provides their guitar preferences. < 1|, ;|icnt can svcci«cy only

geneval properties ot an
insbrument. So {:hcy never Suﬂ?\\/

a sevial number or 3 Yr\cc.

Each of Rick’s clients has some properties that they’re interested
in finding in their ideal guitar: the woods used, or the type of
guitar, or a particular builder or model. They provide these
preferences to Rick, who feeds them into his inventory search tool.

Q The search tool looks through Rick’s inventory.

Once the search tool knows what Rick’s client wants, it starts to
loop through each guitar in Rick’s inventory.

e Each guitar is compared to the client’s preferences.

For each guitar in Rick’s inventory, the search tool sees if that K
guitar matches the client’s preferences. If there’s a match, the
matching guitar is added to the list of choices for the client.

All the 9eneral properties,
like the top wood and guitar
builder, are tompared {o the
tlient’s preferences.

Q Rick’s client is given a list of matching guitars.

Finally, the list of matching guitars is returned to Rick and his
client. The client can make a choice, and Rick can make a sale.

Use a textual Jescription of the prol)lem
you're trying to solve to make sure that
your Jesign lines up with the intended
functionality of your application.

26 Chapter 1

Download at WoweBook.Com

well-designed

The Mystery
of the
Mismatched
Object
Type

STOP! Try and solve
Ehis mystery before
furning the page-

In the better-designed areas of Objectville, objects

are very particular about their jobs. Each object is
interested in doing its job, and only its job, to the best
of its ability. There’s nothing a well-designed object
hates more than being used to do something that really
isn’t its true purpose.

Unfortunately, it's come to our attention that this is
exactly what is happening in Rick’s inventory search
tool: somewhere, an object is being used to do
something that it really shouldn’t be doing. It's your job
to solve this mystery and figure out how we can get
Rick’s application back in line.

To help you figure out what's gone amiss, here are
some helpful tips to start you on your search for the
mismatched object type:

1. Objects should do what their names indicate.

If an object is named Jet, it should probably takeOff()
and land(), but it shouldn’t takeTicket()—that’s the job
of another object, and doesn’t belong in Jet.

2. Each object should represent a single concept.
You don’t want objects serving double or triple duty.
Avoid a Duck object that represents a real quacking
duck, a yellow plastic duck, and someone dropping
their head down to avoid getting hit by a baseball.

3. Unused properties are a dead giveaway.

If you've got an object that is being used with no-value
or null properties often, you’ve probably got an object
doing more than one job. If you rarely have values for a
certain property, why is that property part of the object?
Would there be a better object to use with just a subset
of those properties?

What do you think the mismatched object type is? Write your answer in the blank below:

What do you think you should do to fix the problem? What changes would you make?

Download at WoweBook.Com

27

duplicate code sucks

Encapsulation
allows you to
hide the inner
worlcings of your
application’s
Parts, but yet
make it clear

what each part
does. A\

New %o encapsulation’ Flip

i ad
head to Appendi* H,.rc
i;ajc short inkroduction to

Ob)cd:v\\\c, and then tome
back here and

28 Chapter 1

keep veading

You know, Rick's clients really
aren't providing a Guitar object...
I meahn, they don't actually give him
a guitar to compare against his
inventory.

Frank: Hey, that’s right, Joe. I hadn’t thought about that before.

Jill: So what? Using a Guitar object makes it really easy to do
comparisons in the search() method.

Joe: Not any more than some other object would. Look:

A small
if (searchGuitar.getBuilder() != - ﬁragmcnf
guitar.getBuilder()) { from the

continue; searth()
method in
I'\Vch'l:or\/.

Joe: It really doesn’t matter what type of object we’re using there, as
long as we can figure out what specific things Rick’s clients are looking
for.

Frank: Yeah, I think we should have a new object that stores just the
specs that clients want to send to the search() method. Then they’re not
sending an entire Guitar object, which never seemed to make much
sense to me.

Jill: But isn’t that going to create some duplicate code? If there’s an
object for all the client’s specs, and then the Guitar has all its properties,
we've got two getBuilder() methods, two getBackWood() methods...
that’s not good.

Frank: So why don’t we just encapsulate those properties away from
Guitar into a new object?

Joe: Whoa... I was with you until you said “encapsulate.” I thought
that was when you made all your variables private, so nobody could use
them incorrectly. What’s that got to do with a guitar’s properties?

Frank: Encapsulation is also about breaking your app into logical
parts, and then keeping those parts separate. So just like you keep the
data in your classes separate from the rest of your app’s behavior, we
can keep the generic properties of a guitar separate from the actual
Guitar object itself.

Jill: And then Guitar just has a variable pointing to a new object type
that stores all its properties?

Frank: Exactly! So we’ve really encapsulated the guitar properties out
of Guitar, and put them in their own separate object. Look, we could
do something like this...

Download at WoweBook.Com

well-designed apps rock

o, harpen your PenCiI Create the GuitarSpec object.

& Below, you'll see the class diagram for Guitar, and the new GuitarSpec object that Frank, Jill, and
Joe have been discussing. It's your job to add all the properties and methods that you think you'll
need to GuitarSpec. Then, cross out anything you don’t need anymore in the Guitar class. Finally,
we've left you some space in the Guitar class diagram in case you think you need to add any new
properties or methods. Good luck!

Guitar GuitarSpec
serialNumber: String
price: double
builder: Builder
model: String \, t »./>
fype: Type e
backWood: Wood Guitar objett
topWood: Wood Ehat you think

belongs in the new
QuitarSpet tlass.

getSerialNumber(): String
getPrice(): double

setPrice(float) You tan add
getBuilder(): Builder ex;cra Proper-ties
. : and methods 4o
getModel(): String Guitar i yo
getType(): Type think you need 4

getTopWood(): Wood

getBackWood(): Wood)

*|£ you 5:{', skuek, think about the ﬂ\ings that ave
tommon between the Guitar object and what a
client would supply to the search() method.

you are here » 29

Download at WoweBook.Com

encapsulate what varies

L7 harpen YOUF pencil Create the GuitarSpec object.

'« ANSWEI'S Below you'll see the class diagram for Guitar, and the new GuitarSpec object
that Frank, Jill, and Joe have been discussing. It's your job to add all the
properties and methods that you think you'll need to GuitarSpec. See if you
made the same changes that we did.

These two properties are
still unique 4o each Quitar,

so they stay. Guitar GuitarSpec
\’ serialNumber: String builder: Builder
price: double wodel: String
These ave the Jbuilder-Builder type:Type
proper ties Frodel-Sing- backWood: Wood
that Riek's type—Type- topWood: Wood We'
clients swpply — ThEerees—Aaad 3 v‘c vemoved
to searthl), so oplilosd-Weed- duplicated
e an move spee: GuitarSpee < tode by moving
them inko all the %ommon
QuitarSpet- getSerialNumber(): String aetBuilder(): Builder EIZP:“EES;
getPrice(): double getModel(): String core
We also need a setPrice(float) getTypel): Type methods—into
TC‘FCV‘CN',C {',o -getBu#de&Q—Bwlder mEaﬂkwo.Qdﬂ:_wo.Qd_ an ob\)CC‘(‘, ‘H\a‘ﬁ
3 6ui ‘E&YSPCC T . we £an use ‘Cov
object for ' getior both search
each guitar-. vequests and
guitar details.

-

The methods follow the same pattern
as the properties: we vemove any
duplication between the tlient’s spets
and the Quitar ob\)cd:-

Now update your own code

With this class diagram, you should be able to add the
GuitarSpec class to your application, and update the Guitar
class as well. Go ahead and make any changes you need to
Inventory. java so that the search tool compiles, as well.

30 Chapter 1

Download at WoweBook.Com

ther are no

Dumb Questions —

Q: | understand why we need an object for the client
to send specs to search()... but why are we using that
object to hold properties for Guitar, too?

A: Suppose you just used GuitarSpec to hold client
specs for sending to the search () method, and you kept
the Guitar class just the same as it was. If Rick started
carrying 12-string guitars, and wanted a numStrings
property, you'd have to add that property—and code for a
getNumStrings () method—to both the GuitarSpec
and Guitar classes. Can you see how this would lead to
duplicate code?

Instead, we can put all that (potentially) duplicate code into
the GuitarSpec class, and then have Guitar objects
reference an instance of it to avoid any duplication.

Anytime you see
él_xplicate code, look for a

place to encapsulate!

Q} | still am confused about how this is a form of
encapsulation. Can you explain that again?

A: The idea behind encapsulation is to protect information

well-designed apps rock

Leb's see how we've toming along on

our three steps to great software.

‘/l./ﬂa]ce sure your

software does
what the customer
wants it to do.

Heve's what we've doing
now: working on design.

C. 2, Apply bhasic

00 principles to
add ﬂexi]oilitys.

This is where

You look for b|5

in one part of your application from the other parts of your
application. In its simplest form, you can protect the data
in your class from the rest of your app by making that data
private. But sometimes the information might be an entire
set of properties—like the details about a guitar—or even
behavior—like how a particular type of duck flies.

problems, especially
velated o ‘Ehings

like duplicate code
or bad ¢lass design.

3. Sirive for a
maintainalole,

When you break that behavior out from a class, you can
change the behavior without the class having to change as
well. So if you changed how properties were stored, you
wouldn’t have to change your Guitar class at all, because
the properties are encapsulated away from Guitar.

~ reusable Jesign.

That's the power of encapsulation: by breaking up the different
parts of your app, you can change one part without having to
change all the other parts. In general, you should encapsulate
the parts of your app that might vary away from the parts that
will stay the same.

Remember, we've got even
move design wovk 1o do in this
step, so before \/ou'rc done,

Your software is veally easy to

extend and veuse.
you are here » 31

Download at WoweBook.Com

updating the inventory

Update the Inventory class

Now that we’ve encapsulated away the specifications of a guitar,
we’ll need to make a few other changes to our code.

Inventory

guitars: List

addGuitar(String, double, Builder, String, Type,
Wood, Wood)

getGuitar(String): Guitar

search(GuitarSpec): List

.

Now seareh() takes a

éuf'a“ggc.z"s%';_ai;g an public class Inventory {
entive Quitar object

// variables, constructor, and other methods

public List search (GuitarSpec searchSpec) {

List matchingGuitars = new LinkedList();

for (Iterator i = guitars.iterator(); i.hasNext();) {

Guitar guitar = (Guitar)i.next();
- L ormation _—> GuitarSpec guitarSpec = guitar.getSpec() ;
Al of the in orm) if (searchSpec.getBuilder () != guitarSpec.getBuilder())
we use in tomparin continue;
. ; e
opirkars is in 6“‘#8*8?:,\355 String model = searchSpec.getModel () .toLowerCase () ;
now, ot he Guitar if ((model != null) && (!model.equals (™)) &&

(!model.equals (gquitarSpec.getModel () . toLowerCase())))
continue;

. 7 if (searchSpec.getType () != guitarSpec.getType())
This code is almost the continue;
same as it was chorc, if (searchSpec.getBackWood() != guitarSpec.getBackWood())
extept now we've using continue;
ihﬁorma{:ion in the if (searchSpec.getTopWood() != guitarSpec.getTopWood())
6ui'f;ar8|>cc ol’{)c(.{. continue;

matchingGuitars.add (guitar);

}

return matchingGuitars;

}
} \ .
Inventory.java

d our
Even though we thanged o
L\Vacs:cs a bit, this method still
veturns 3 lisk of gu\{ars that
mateh the client’s spets:

32 Chapter 1

Download at WoweBook.Com

well-designed apps rock

Getting ready for another
test drive

You’ll need to update the FindGuitarTester
class to test out all these new changes:

public class FindGuitarTester {

public static void main(String[] args) {
// Set up Rick’s guitar inventory
This time, the Inventory inventory = new Inventory();
client sends 3 initializeInventory (inventory);
GuikarSyet to
searth). —> GuitarSpec whatErinLikes =
new GuitarSpec (Builder.FENDER, “Stratocastor”, Type.ELECTRIC,
Wood.ALDER, Wood.ALDER) ;
List matchingGuitars = inventory.search (whatErinLikes) ;
if (!matchingGuitars.isEmpty()) {
System.out.println (“Erin, you might like these guitars:”);

for (Iterator i = matchingGuitars.iterator(); i.hasNext();) {
Guitar guitar = (Guitar)i.next();
GuitarSpec spec = guitar.getSpec() ; R
System.out.println(“ We have a ” + We've using the new
spec.getBuilder () + “ ” + spec.getModel() + “ ” + émtmswcth“
spec.getType () + “ guitar:\n o+ heve as well.
spec.getBackWood () + ™ back and sides, \n ”o+
spec.getTopWood () + “ top.\n You can have it for only $” +
guitar.getPrice() + “!'\n ---=-");
}
} else {

System.out.println (“Sorry, Erin, we have nothing for you.”);

private static void initializeInventory (Inventory inventory) {
// Add guitars to the inventory...

I D Gg{- ONL?NE FindGuitarTester.java
=D

You can download the current version of Rick’s search tool at
http://www.headfirstlabs.com. Just look for Head First OOA&D,
and find “Rick’s Guitars (with encapsulation)”.

you are here » 33

Download at WoweBook.Com

using object-oriented principles

*

* wHyY Da \ MA‘:;‘!’ER?

You've learned a lot about writing great software, and there’s still more to
go! Take a deep breath and think about some of the terms and principles
we’ve covered. Connect the words on the left to the purposes of those

techniques and principles on the right.

FrexibiLity

EncaPSuLation

FunctionalLity

DeSiEn Dattern

Without me, you'll never actually make the
customer happy. No matter how well-designed your
application is, I'm the thing that puts a smile on
the customer’s face.

I'm all about reuse and making sure youre not
trying to solve a problem that someone else has
already figured out.

You use me to keep the parts of your code that
stay the same separate trom the parts that change;
then it’s really easy to make changes to your code
without breaking everything.

Use me so that your software can change and grow
without constant rework. I keep your application
from being {ragile.

—— > Answers on page 52.

tber are no

Q: Encapsulation isn’t the only 0O principle | can use at

this stage, is it?

A: Nope. Other good OO principles that you might want to think
about at this stage are inheritance and polymorphism. Both of these
relate to duplicate code and encapsulation though, so starting out by
looking for places where you could use encapsulation to better your

design is always a good idea.

We'll talk about a lot more OO programming principles throughout this
book (and even see a few sing in Chapter 8), so don’t worry if you
are still getting a handle on things at this point. You'll learn a lot more

about encapsulation, class design, and more before we’re done.

34

Dumb Questions

Q: But | don’t really see how this encapsulation makes my

code more flexible. Can you explain that again?

making changes is going to be a pain.

into your code, it's easier to make these changes, and your
application becomes a lot more flexible.

Download at WoweBook.Com

Once you've gotten your software to work like it's supposed
to, flexibility becomes a big deal. What if the customer wants to
add new properties or features to the app? If you've got tons of
duplicate code or confusing inheritance structures in your app,

By introducing principles like encapsulation and good class design

well-designed apps rock

Getting back to Rick’s app...

Let’s make sure all our changes haven’t messed up the
way Rick’s tool works. Compile your classes, and run the
FindGuitarTester program again:

File Edit Window Help NotQuiteTheSame

%java FindGuitarTester
Erin, you might like these guitars:
We have a Fender Stratocastor electric guitar:
Alder back and sides,
Alder top.

The vesults aven't You can have it for only $1499.95!

di‘C‘(:CV'CV\'h this time, —_———

but the ay\vhca{ion [We have a Fender Stratocastor electric guitar:
bekter desiogned, and Alder back and sides,

Alder top.

muth move flexible You can have it for only $1549.95!

RANN
QWEWw

Can you think of three specific ways that well-
designed software is easier to change than software
that has duplicate code?

you are here » 35

Download at WoweBook.Com

time for some serious design

Pesign once, design twice

Once you've taken a first pass over your software and applied
some basic OO principles, you’re ready to take another look,
and this time make sure your software is not only flexible, but
casily reused and extended.

ﬁ./ Malce sure yOUI'

software Joes
wllat the customer
wants it to do.

It's time to really think about
reuse, and how easy it is o make
changes to your software. Here's where
you can take some well-designed classes
and really turn them into a reusable,
extensible piece of software.

\Z./ Apply basic
00 principles to
add flexilyility.

Once ?’ou've applied some basie
o Principles, you're ready
3PPly some Patterns and

veally fotus on veuse.

3. Strive for a J

maintainal)le,
reusable Jesign.

36 Chapter 1

Download at WoweBook.Com

well-designed apps rock

(really)
Let’s make sure Inventory.java is'well-designed

We’ve already used encapsulation to improve the design of Rick’s
search tool, but there are still some places in our code where we
could get rid of potential problems. This will make our code easier

: : Now that you’ - :
to extend when Rick comes up with that next new feature he wants «— 4ol i‘/w VI: :nadc Riek a working search
. . . . Ol
in his inventory search tool, and easier to reuse if we want to take » Jou Xnow he's gonna call you back when

h
just a few parts of the app and use them in other contexts. ¢ wants thanges made to the tool.

1

= public List search (GuitarSpec searchSpec) {
List matchingGuitars = new LinkedList () ;
for (Iterator i = guitars.iterator(); i.hasNext();) {
Guitar guitar = (Guitar)i.next();
\ GuitarSpec guitarSpec = guitar.getSpec():;
Heve's the if (searchSpec.getBuilder() != guitarSpec.getBuilder())
searth() continue;
mcﬂwdgvm“ String model = searchSpec.getModel () .toLowerCase () ;
In%hﬁ”ijm' if ((model '= null) && (!model.equals (V")) &&
Take a tlose ('model.equals (guitarSpec.getModel () .toLowerCase())))
look at this continue;
code. if (searchSpec.getType () != guitarSpec.getType())
continue;
if (searchSpec.getBackWood () != guitarSpec.getBackWood())
continue;
if (searchSpec.getTopWood () != guitarSpec.getTopWood())
continue;
matchingGuitars.add (guitar);
}
return matchingGuitars;
‘#}. ‘_f-j ‘—r-‘j‘r_-'—'—-—r-v-“v‘f-u‘

Inventory.java

anarpen your pencl

See what we said on page 53.

_ What would you change about this code?
L9
There’s a big problem with the code shown above, and it's up to you to figure it out. In
the blanks below, write down what you think the problem is, and how you would fix it.
k—#
you are here » 37

Download at WoweBook.Com

are simple changes simple?

You know, I've always loved
playing 12-string guitars. How hard
would it be to update my app so T
can sell 12-string guitars, and let my
clients search for them, too?

How easy is it to make this
change to Rick’s application?

Take a look at the class diagram for Rick’s
application, and think about what you
would need to do to add support for
12-string guitars. What properties and
methods would you need to add, and to
what classes? And what code would you
need to change to allow Rick’s clients to
search for 12-strings?

How many classes did you have to modify
to make this change? Do you think Rick’s
application is well designed right now?

Guitar

serialNumber: String
price: double
spec: GuitarSpec

getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): GuitarSpec

38 Chapter 1

Download at WoweBook.Com

GuitarSpec

builder: Builder
model: String
type: Type
backWood: Wood
topWood: Wood

getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood

well-designed apps rock

aSharpen your penci

-~

Annotate Rick’s class diagram.

Rick wants to be able to sell 12-string
guitars. Get out your pencil, and add notes
to the class diagram showing the following things:

1. Where you’d add a new property, called numStrings, to store the
number of strings a guitar has.

2. Where you'd add a new method, called getNumStrings(), to return
the number of strings a guitar has.

3. What other code you think you’d need to change so that Rick’s
clients can specify that they want to try out 12-string guitars.

Finally, in the blanks below, write down any problems with this design
that you found when adding support for 12-string guitars.

Here's a hint: You should get

Inventory

an answer here velated +o
what You wrote down in the

guitars: List

blanks back on page 37.

Wood, Wood)
getGuitar(String): Guitar
search(GuitarSpec): List

Builder |

addGuitar(String, double, Builder, String, Type,

toString Type

BRANN

toString Wood

. PAQWEWR

What's the advantage of using a

toString(): String

numStrings property instead of
just adding a boolean property to
indicate if a guitar is a 12-string?

you are here » 39

Download at WoweBook.Com

we have an encapsulation problem

Sharpen your pencil
W answers

Annotate Rick’s class diagram.

Rick wants to be able to sell 12-string guitars. Get out your pencil,

and add notes to the class diagram showing the following things:

1. Where you'd add a new property, called numStrings, to store the number of strings a
guitar has.
2. Where you’d add a new method, called getNumStrings(), to return the number of strings
a guitar has.
3. What other code you think you’d need to change so that Rick’s clients can specify that
they want to try out 12-string guitars.

Finally, in the blanks below, write down any problems with this design that you found when

adding support for 12-string guitars.

We're adding a property fo GuitarSpec, but we

have to change code in the Inventory class’s

search() method, as well as in the constructor
1o the Guitar class.

7‘

Here's what we came up
with... did You write down
something similav?

We need to add a
numStrings Vrovcr{:\, to
the QuitarSpet elass.

We need @

getN umShrings()
method in this
tlass o vetuen
how many strings
a 5ui{:ar has.

GuitarSpec

builder: Builder
model: String
type: Type
backWood: Wood
topWood: Wood

getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood

getTopWood(): Wood

40 Chapter 1

Guitar

serialNumber: String
price: double
spec: GuitarSpec

getSerialNumber(): String
getPrice(): double
setPrice(float)

getSpec(): GuitarSpec

We need to chan3¢
the tonstruetor

O‘F this class, sinte
it takes in all

the properties in
GuitarSpee, and
ereates a éui'&\rSPe{,
ob\)cc{: itself.

This ¢lass’s addGuitar() method
deals with all of a gui‘b‘!r)s

properties, too. New properties
means thanges 4o this method-

that's a yrobly

Inventory

i

guitars: List

/

addGuitar(String, double, Builder, String, Type,

Wood, Wood)
getGuitar(String): Guitar
search(GuitarSpec): List

L" Another problem:

toStrin

Builder L

Type

we have +o
thange the
searth() method

toString Wood

here to actount

toString(): String

Download at WoweBook.Com

for the new
Property in
éui{:arSPcc.

So that's the problem,
right? We shouldn't have to
change code in Guitar and Inventory to
add a new property to the GuitarSpec
class. Can't we just use more

encapsulation to fix this?

That’s right—we need to
encapsulate the guitar
specifications and jsolate
them from the rest of Rick’s
guitar search tool.

Even though you’re adding a property

only to the GuitarSpec class, there

are two other classes that have to be
modified: Guitar and Inventory.

The constructor of Guitar has to take

an additional property now, and the
search () method of Inventory has to
do an extra property comparison.

This construetor ereates 3
QuitarSpee objeet, so every
time the spee changes, this
tode has to thange, too.

publictring serialNumber,

Builder builder,
String model, Type type,
backWood, Wood topWood)
serialNu

List matchingGuitars
for (Iterator i
Guitar guitar
GuitarSpec guitarSpec
if (searchSpec.getBuilder ()

this.serialNumber
this.price

this.spec

= price; =
(ﬁew GuitarSpec (pullder, model,
ype, backWood, topWood);

continue;
} String model = searchSpec.getModel () .toLowerCase () ;
e N if ((model != null) && (!model.equals(“”)) &&
(!model.equals (guitarSpec.getModel () .toLowerCase())))
continue;]
Guitarjava if (seérchSpec.getType() != guitarSpec.getType ()

continue;

if (searchSpec.getBackWood () != guitarSpec.getBackWood())
continue;

if (searchSpec.getTopWood() != guitarSpec.getTopWood ())
continue;

matchingGuitars.add(guitar);
}

return matchingGuitars;

"t—-—-l'} E'‘---_"""'-F"----—’_"' ol

Download at WoweBook.Com

public ListuitarSpec searchSpec) {

new LinkedList () ;
guitars.iterator(); i.hasNext();) {
(Guitar)i.next () ;

guitar.getSpec();

well-designed apps rock

This eode is ﬁ{c easy to
veuse. The tlasses ave all
in{:e\rdcycndcn{:, and You
tan't use one tlass without
using all the others, too.

!= guitarSpec.getBuilder())

Inventory.java

M

you are here »

strive for reusable applications

Design Puzz]e

It’s not enough to know what’s wrong with Rick’s app, or even to figure out that

we need some more encapsulation. Now we,need to actually figure out how to fix
his app so it’s easier to reuse and extend. /2%

The problem:

Adding a new property to GuitarSpec. java results in changes
to the code in Guitar. java and Inventory. java. The
application should be restructured so that adding properties to
GuitarSpec doesn’t affect the code in the rest of the application.

Your task:

Q Add a numStrings property and getNumStrings () method to
GuitarSpec. java.

e Modify Guitar. java so that the properties of GuitarSpec are

Not sure what
encapsulated away from the constructor of the class. delegation is? _—’_/
e Change the search () method in Inventory. java to delegate —7 Cheek this out...
| vou shold comparing the two GuitarSpec objects to the GuitarSpec class,
}:vaozo do instead of handling the comparison directly.

heve is update > e Update FindGuitarTester. java to work with your new classes, and

your tode that make sure everything still works.
treates 3 sample

Lo use e Compare your answers with ours on page 44, and then get ready for
iV\VC“bYYé _ J(,‘;r another test drive to see if we’ve finally got this application finished.
the new Qw
LonchruLJwV'

42 Chapter 1

Download at WoweBook.Com

tber are no

well-designed apps rock

"""""""""""""" Dumbd Questionsg s

Q: You said | should “delegate”
comparisons to GuitarSpec. What's delegation?

A: Delegation is when an object needs to
perform a certain task, and instead of doing that
task directly, it asks another object to handle the
task (or sometimes just a part of the task).

So in the design puzzle, you want the search ()
method in Inventory to ask GuitarSpec to
tell it if two specs are equal, instead of comparing
the two GuitarSpec objects directly within the
search () method itself. search () delegates
the comparison to GuitarSpec.

Q: What’s the point of that?

A: Delegation makes your code more
reusable. It also lets each object worry about
its own functionality, rather than spreading the
code that handles a single object's behavior all
throughout your application

One of the most common examples of delegation
in Java is the equals () method. Instead of a
method trying to figure out if two objects are equal,
it calls equals () on one of the objects and
passes in the second object. Then it just gets back
a true or false response from the equals ()
method.

Q: And what does delegation have to do
with code being more reusable?

A: Delegation lets each object worry about
equality (or some other task) on its own. This
means your objects are more independent of each
other, or more loosely coupled. Loosely coupled
objects can be taken from one app and easily
reused in another, because they're not tightly tied
to other objects’ code.

Q,: And what does loosely coupled mean
again?

A: Loosely coupled is when the objects in
your application each have a specific job to do,
and they do only that job. So the functionality of
your app is spread out over lots of well-defined
objects, which each do a single task really well.

QZ And why is that good?

A: Loosely coupled applications are usually
more flexible, and easy to change. Since each
object is pretty independent of the other objects,
you can make a change to one object’s behavior
without having to change all the rest of your
objects. So adding new features or functionality
becomes a lot easier.

é985}1013,13’5 Corner

dclcga{:ion. The act of one ob\‘)cc{: ‘Forwa\rding an
o?cra{:ion 4o another ob)c(:{:, +o be ?cr‘pormcd on
behalf of the fivst objcd’c-

) 4

you are here »

Download at WoweBook.Com

43

more encapsulation

Design Puzz]e Solution

It’s not enough to know what’s wrong with Rick’s app, or even to figure out that
we need some more encapsulation. Now e,need to actually figure out how to fix
his app so we can test it out. rey

The problem:

Adding a new property to GuitarSpec. java results in changes
to the code in Guitar. java and Inventory. java. The
application should be refactored so that adding properties to
GuitarSpec doesn’t affect the code in the rest of the application.

Your task:

e Add a numStrings property and getNumStrings () method to
GuitarSpec. java.

public class GuitarSpec {

D)
e ot forget £, update the
//_other_propertie; onstructor or 6"5{33*3Pcc.
¢ : private int numStrings;
This is pretty -
easy s{u(: public GuitarSpec (Builder builder, String model,
— Type type, int numStrings, Wood backWood, Wood topWood)

this.builder = builder;
this.model = model;
this.type = type;
this.numStrings = numStrings;
this.backWood = backWood;
this.topWood = topWood;

}

// Other methods

public int getNumStrings () {
return numStrings;

}

GuitarSpec.java

44 Chapter 1

Download at WoweBook.Com

well-designed apps rock

e Modify Guitar. java so that the properties of GuitarSpec are
encapsulated away from the constructor of the class.

public Guitar (String serialNumber,
this.serialNumber = serialNumber;
this.price = price;
this.spec = spec;

double price, GuitarSpec spec) ({

Just £ake in a GuitarSpet divectly
now,instcad of cha*jhg one in

this tonstruetor. Guitar.java

e Change the search () method in Inventory. java to delegate

comparing the two GuitarSpec objects to the GuitarSpec class, instead
of handling the comparison directly.

. hspec) |
. itarSpec searc

ist search(Gu LinkedList ()7
i .hasNext ()7

public L : . wrope
. st matchingGuitars . :
?li (Iterator i = guitars.lteratif(),
° i i .next ()7
i uitar = (Guitar)i.
géliZiiiar getSpec().matches(searchSpec))
i .

matchingGuitars.add(guitar);

)

}

return matchingGuitars;

‘-}—#"‘ T'."Jhr-.,ln e
public boolean matches (GuitarSpec otherSpec) {

Most of the code ___=if (builder != otherSpec.builder)

Leom seareh() has . return false;
" d £ if ((model = null) && (!model.equals(\\u)) Py
bc:\wgf*::» (!model.equals (otherSpec.model)))
and put In roturn falces
ma‘{:t\'\cso mC‘H\od

if (type != otherSpec.type)
return false;
if (numStrings
return false;

in QuitarSpee.java:
!= otherSpec.numStrings)

if (backWood != otherSpec.backWood)
return false;

if (topWood != otherSpec.topWood)
///;27 return false;

Adding \;ro‘:crjdcs Jco. return true;
S
GuitarSpee now Ve P e N S
only a thange to J'chat
¢lass, not é“‘b*'Java o GuitarSpec.java
|nVCh{DVYQava'

you are here » 45
Download at WoweBook.Com

test drive

One last fest drive
(and an app ready for reuvse)

Wow, we’ve done a lot of work since Rick showed us that first version
of his guitar app. Let’s see if the latest version still works for Rick
and his clients, and manages to satisfy our own goal of having a well-
designed, easily maintainable application that we can reuse.

T\'\\S s w\\a{; File Edit Window Help ReuseRules

you should see %$java FindGuitarTester
hen You vun Erin, you might like these guitars:

;. déu\{;arTchc,c\' We have a Fender Stratocastor 6-string electric guitar:
m

Alder back and sides,
Alder top.

You can have it for only $1499.95!

with your new tode. —>

We have a Fender Stratocastor 6-string electric guitar:
Alder back and sides,
Alder top.

You can have it for only $1549.95!

Congratulations!

You've turned Rick’s hroken
inventory search foo] into a we]l-
designed piece of great software.

46 Chapter 1

Download at WoweBook.Com

well-designed apps rock

What we did

Rem
Let’s take a quick look back at how we got Rick’s 07’ o:::ezhow 3 steps? We
search tool working so well: roker Scarzl'::: ’f?rn Riek’s
we”_dcsiﬂncd sof‘{,:v;:i ‘cun%i%a’,
We skavted out by Fixing
s:msc of the Qundi\oha\‘b/
Jblems with Riek's M k
ol L 1. Make sure your
software does
We went.on 4o add some what the customer
Z\o\re Funcfionali{:\/, so
hat the h veturns . C[
ottt o ywrants 1t to do.
ino Features)
While we weve adding _ .
we v:adc sure our desion thoites 2. A P P y aslc
weve veally solid-
00 prm(:l]oles to
/v add ﬂemlnllty.
We also entapsulated out
the guitar properties, and
made sure we could add new
properties to the app easily. .
o 3. Strive for a
mamtama]ale,
We added delegation = 7 l)l J <
S: {;\::, our ob)cd{:s ave less r eusa e QSIgn.
dc?cndcn{ upon €ath othev,
and tan be veused easily-
you are here » 47

Download at WoweBook.Com

ooa&d helps you build great software

Remewber this poor quy?

well-designed apps rock

How the heck am I supposed to know where
o start? I feel like every time I get anew
project fo work on,everyone's gt e differert
opinion about what to do first. Somefimes I get it right,
but other times T end up reworking the whole opp
bevause I started in the wrong place. T just want
to write great software!

He just wanted to write
How do you great software. So

write great what’s the answer?
How do you write great
software consistently?

software,

every time?
You just need a set of steps to follow
that makes sure your software works

and 1s well designed. It can be as simple
as the three steps we used in working

on Rick’s app; you just need something
that works, and that you can use on all
of your software projects.

Object-Oriented Analysis &
(’> Design helps you write great

:/c all software, every time

his

00A D All this time that we’ve been talking
Cor s.\'\or L about the three steps you can follow to

write great software, we’ve really been
talking about OOA&D.

OOA&D is really just an approach

to writing software that focuses on
making sure your code does what it’s
supposed to, and that it’s well designed.
That means your code is flexible, it’s
easy to make changes to it, and it’s
maintainable and reusable.

48 Chapter 1

Download at WoweBook.Com

well-designed apps rock

00AED is about writing great software,

not doin

we'll talk
all about
rcu\uircmcnb

in Chapter 2-

\/ou'vc -
learned a bit
about (:ragilc
apps alveady.

r——>

Waw{', movre
on delegation,
(,om\?osi{:ion, ahd
agsrgsa{:ion? we'll
talk about all of
fhese in detail in
Cha‘a{;c\rs 5, and
then aga'm n
Chapter @

Youll get to see
these principles
veall S'bru'f‘, '{:hcir
stuff in Chapter 8.

g a bunch of paperwork!

Customers are satisfied when their apps WORK.

We can get requirements from the customer to make sure that we build
them what they ask for. Use cases and diagrams are helpful ways to do
that, but it’s all about figuring out what the customer wants the app to do.

Customers are satisfied when their apps KEEP WORKING.
Nobody is happy when an application that worked yesterday is crashing
today. If we design our apps well, then they’re going to be robust, and
not break every time a customer uses them in unusual ways. Class and
sequence diagrams can help show us design problems, but the point is to
write well-designed and robust code.

. D
Customers are satisfied when their apps can be UPGRADED. T‘:'S s N_’l_’ OOA' D
There’s nothing worse than a customer asking for a simple new feature, [t's not about domg

and being told it’s going to take two weeks and $25,000 to make it sill\/ diaSVAms... it's

happen. Using OO techniques like encapsulation, composition, and
delegation will make your applications maintainable and extensible.

about writing killer
applications that
leave \/ow Cus‘tomcr

happy, and You

Programmers are satisfied when their apps can be REUSED.
Ever built something for one customer, and realized you could use Leelina i)
something almost exactly the same for another customer? If you do just a “l"“b like You ve
little bit of analysis on your apps, you can make sure they’re casily reused, kicked ma\‘)o\‘ ass.
by avoiding all sorts of nasty dependencies and associations that you don’t

really need. Concepts like the Open-Closed Principle (OCP) and the

Single Responsibility Principle (SRP) are big time in helping here.

Programmers are satisfied when their apps are FLEXIBLE.
Sometimes just a little refactoring can take a good app and turn it into a
nice framework that can be used for all sorts of different things. This is
where you can begin to move from being a head-down coder and start
thinking like a real architect (oh yeah, those guys make a lot more money,
too). Big-picture thinking is where it’s at.

1

Chaptevs b and 7 are all about
looking at the big picture,
and veally developing a good
arthiteeture for your applications.
you are here » 49

Download at WoweBook.Com

review and a request

4

See? You've already
getting vequests for
move work. Riek will have
+o wait until Chay{cr 5,
though... we've got some
haivier issues to tackle in
the next ehapter.

This is fantastic! I'm selling
guitars like crazy with this new
search tool. By the way, I had a few
ideas for some new features...

@BULLET POINTS

It takes very little for something to go wrong with an
application that is fragile.

¢ You can use OO principles like encapsulation and
delegation to build applications that are flexible.

& Encapsulation is breaking your application into logical
parts that have a clear boundary that allows an object to
hide its data and methods from other objects.

¢ Delegation is giving another object the responsibility of
handling a particular task.

& Always begin a project by figuring out what the customer
wants.

& Once you've got the basic functionality of an app in
place, work on refining the design so it's flexible.

With a functional and flexible design, you can employ
design patterns to improve your design further, and
make your app easier to reuse.

Find the parts of your application that change often, and
try and separate them from the parts of your application
that don't change.

Building an application that works well but is poorly
designed satisfies the customer but will leave you with
pain, suffering, and lots of late nights fixing problems.

Object oriented analysis and design (OOA&D) provides
a way to produce well-designed applications that satisfy
both the customer and the programmer.

50 Chapter 1

Download at WoweBook.Com

chapter. Good luck!

well-designed apps rock

SER 00ABD Cross
Let’s put what you've learned to use, and stetch out your left brain a

bit. All of the words to answer the puzzle below are somewhere in this

ANEEEEEEEEEEE

Across

4. These help you avolid solving problems
someocne else has already solved.

7. Customers focus on this part of your
applications.

8. Objects in loosely coupled applications are
more than tightly coupled ones.

9. Flexible applications are wsually easy to

10. This is one type of code you don't want to
write.
12, Your applications should be easy to

13. You usually need some sort of process to
write great software
14, Encapsulate what
15. These types of applications satisfy
proegrammers.

1. Once your application works correctly, focus
on this.

2. Grouping your application infe legical parts.
3. The goal of OOA&D is to help you write this
type of software.

B. Use this to let objects focus on mare
specific tasks.

6. A good way to aveid duplicate code

7. An application that things can ge wrong in
easlly.

11, Thiz is a four letter word your mom will be
proud you know,

you are here »

Download at WoweBook.Com

51

exercise solutions

* WHY D \ aTTER? ExerciSe
- SoLutions

You've learned a lot about writing great software, and there’s still more to
go! Take a deep breath and think about some of the terms and principles
we've covered. Connect the words on the left to the purpose of those
techniques and principles on the right.

B Without me, you'll never actually make the
FLex‘BiLitg customer happy. No matter how well-designed your
R application is, I'm the thing that puts a smile on

the customer’s face.

- e I'm all about reuse and making sure you're not
EncaPSuLation trying to solve a problem that someone else has

already figured out.

You use me to keep the parts of your code that

Fy“ctioﬂaﬁw stay ﬂte same separate from the parts that change;
then it’s really easy to make changes to your code
without breaking everything.

_ C Use me so that your software can change and grow
Deﬁgﬂ Patteaﬂ without constant rework. 1 keep your aPPlicatiQn
Lrom being fragile.

52 Chapter 1

Download at WoweBook.Com

well-designed apps rock

aSharpen your pencil
. answers

What would you change about this code?

There’s a big problem with the code shown above, and it’s up to you to figure it out. In
the blanks below, write down what you think the problem is, and how you would fix it.

Every time a new property is added to GuitarSpec.java, or the methods in GuitarSpec change,
the searchl() method in Inventoryjava will have to chanae, f00. We should let GuitarSpec handle

comparisons, and encapsulate these properties away from Inventory.

b’
.
public List search(GuitarSpec searchSpec) {
List matchingGuitars = new LinkedList () ;
TMsBN{VﬂYS“” for (Iterator i = guitars.iterator(); i.hasNext();) {
desi _Evevy Lime Guitar guitar = (Guitar)i.next();
esiyn yt GuitarSpec guitarSpec = guitar.getSpec();
?"3;2?:r7 — == if (searchSpec.getBuilder() != guitarSpec.getBuilder())
s adae continue;
6W£N£W9+i“ String model = searchSpec.getModel () .toLowerCase () ;
U”Cisﬁm“5{° if ((model != null) && (!model.equals (™)) &&
have to thange- (!model.equals (guitarSpec.getModel () . toLowerCase ())))
continue;
if (searchSpec.getType () != guitarSpec.getType())
continue;
if (searchSpec.getBackWood() != guitarSpec.getBackWood())
continue;
if (searchSpec.getTopWood () != guitarSpec.getTopWood())
continue;
matchingGuitars.add (guitar) ;
}
return matchingGuitars;
}
-— J‘_,' J Mﬂv"ﬁ —

/ Inventory.java

Think about it i Inventor
¥ 3o rea i

::a/zu:k 1 mvcn'l:ory.? Or is nyf fo::ln’aysif;‘:::ms
Samc?n\; es two 6ui‘l:a\r3[>ed obJed‘,s the
fhdr.. :u want Your L'asscs to ‘(:oCus on
Co_m 5): s, no.{: the J'obs of other ¢lasses
e J ing éun‘l:a\rSPec objects is Some‘l:h'.

"tarSpee should worry about, not yomrm9

nventory ¢lass.

you are here » 53

Download at WoweBook.Com

Download at WoweBook.Com

T hope you like it... I've been
paying attention to every word
you've said lately, and I think
this is just perfect for you!

2 gathering requirements

Give Them What
They Want

———

Everybody loves a satisfied customer. You already know
that the first step in writing great software is making sure it does what the
customer wants it to. But how do you figure out what a customer really
wants? And how do you make sure that the customer even knows what
they really want? That's where good requirements come in, and in this
chapter, you're going to learn how to satisfy your customer by making
sure what you deliver is actually what they asked for. By the time you're
done, all of your projects will be “satisfaction guaranteed,” and you’ll be

well on your way to writing great software, every time.

this is a new chapter

Download at WoweBook.Com

55

welcome to the big leagues

You've got a new programwing gig

You've just been hired as the lead programmer at a new start-up,
Doug’s Dog Doors. Doug’s got a pretty high-tech door under
development, and he’s decided you’re the programmer that can
write all the software to make his killer hardware work.

56

Tired of cleaning up your dog’s mistakes?
Ready for someone else to let your dog outside?

Sick of dog doors that stick when you open them?

It’s time to call...

Doug’s Dog Doors

* Professionally
installed by our
door experts.

* Patented
all-steel
construction.

* Choose your own
custowm colors
and imprints.

* Custom-cut door
for your dog.

Chapter 2

Heve's the new sales
insert that's running
in all the Sunday
papers this week.

Download at WoweBook.Com

Every night, Fido barks and barks at
the stupid door until we let him go
outside. I hate getting out of bed, and
Todd never even wakes up. Can you
help us out, Doug?

Todd and Gina: your
first customer

Todd and Gina want more than a “normal”
doggie door. Todd has everything from his plasma
TV to his surround sound stereo to his garage
door operating off of a remote control, and he
wants a dog door that responds to the press of

a button. Not satisfied with a little plastic flap
letting their dog in and out, they’ve given Doug’s
Dog Doors a call... and now Doug wants you to
build them the dog door of their dreams.

gathering requirements

Let’s start with the dog door

The first thing we need is a class to represent the dog door. Let’s call this class
DogDoor, and add just a few simple methods:

Assume the DogDoor elass will

interface with Y
public class DogDoor { door hardw;y-c Douss tustom

private boolean open;

public DogDoor () {
this.open = false;
}
This is pretty

public void open() {
simple: open)

System.out.println (“"The dog door opens.”);
opens the door:- open = true;
}
.and tlose() ,>publlc void clo§e() {“)
el System.out.println (“"The dog door closes.”);
oses the dooy-
open = false;
}
This veturns public boolean isOpen () {
the state /

return open;

of the doov: }
whether it's }

open or tlosed. ;_’\//\/
All this eode.

--goes into
DogDoor.\)ava...

DogDoor.java

whith will tontroll ————=>
£he hardware in
Todd and Gina's
dog doov-

Fido's depending on Yo —_—
not to mention Todd, 6"\8,
and Your boss, Doug:

you are here » 57
Download at WoweBook.Com

writing the dog door code

Code Magnets

Let’s write another class, Remote, to allow a remote control to
operate the dog door. Todd and Gina can use the remote to

open the dog door without having to get out of bed. Yes, we know this is a veally

€asy one. We've Just 9etting

Be careful... you may not need all the magnets.
Y y 9 You warmed up, don't worry.

public class Remote {
private door;

public Remote () |

this.door = door;

public void pressButton () {
System.out.println (“Pressing the remote control button...”);

if | . 0) |

door. ()
} else {
door. ()
}
}
: ———— Once you're done, compare your answeF with ours on page 108.

58

tru
[true|

false

oahn
isOpen

ok (]

-~ .

h

These azc the methods S 3 " Z:::i:az;ickwii a

You wrote to tontrol , This keeps up wi oy

Tre g gomm ntro Every L|ass. nccés a?ln{:{:lc whether the door is dog door objett
boolean logie, right? open o closed:

Chapter 2
Download at WoweBook.Com

Test drive

Let’s see if everything works. Go ahead and take your
new dog door for a test drive.

gathering requirements

Q Create a class to test the door (DogDoorSimulator.java).

public class DogDoorSimulator {
public static void main(String[]
DogDoor door = new DogDoor () ;

args) |

7y
.. ;

Remote remote = new Remote (door);
System.out.println(“Fido barks to go outside...”);
remote.pressButton() ;

System.out.println (“\nFido has gone outside...”);
remote.pressButton () ;

System.out.println (“\nFido’s all done...”);
remote.pressButton () ;

System.out.println(“\nFido’s back inside.
remote.pressButton () ;

DogDoci'SimuIator.java

Q Compile all your Java source code into classes.

javae *.\)ava

DogDoor.java

Remote.java

DogDoorSimulator.java

© Run the code!

File Edit Window Help Woof

%java DogDoorSimulator

Fido barks to go outside...

Pressing the remote control button...
The dog door opens.

Fido has gone outside...
Pressing the remote control button...

The dog door closes.

Fido’s all done...
Pressing the remote control button...
The dog door opens.

Fido’s back inside...
Pressing the remote control button...
The dog door closes.

Download at WoweBook.Com

loal I DogDoor.class
Remote.class

DogDoorSimulator.class

It works! Let’s go

show Todd and Gina...
o

59

you are here »

a broken dog door

But when Gina tried it...

Not so fast, there...
what the heck is a rabbit
doing in my kitchen?

How did a
vabbit get into
é"ma,s k|ﬂh€h?

)

aharpen your penci
How do you think the rodents are getting into Gina'’s

kitchen? In the blanks below, write down what you think is "i_ ‘-
wrong with the current version of the dog door.

%
Don't g0 4o the next page
until you’vc written dowvr
an answev Lor this exertise.

60 Chapter 2

Download at WoweBook.Com

gathering requirements

There's nothing wrong
with our code! Gina must have
forgotten to press the button on

the remote again after Fido came

back in. It's not my fault she's
using the door incorrectly!

But the door doesn’t work the
way Todd and Gina want it to!

Todd and Gina didn’t expect to have to close
the dog door, so they pressed the button on
the remote only once: to let Fido out.

Even worse, in this case, the way they used the
door created new problems. Rats and rabbits
started coming into their house through the
open door, and you’re taking the blame.

Let’s tackle Todd and Gina’s dog door again,
but this time, we’ll do things a little bit
differently. Here’s our plan:

© Gather requirements for < | ooks like we've oo
going to spend a
the dog door. lot. more time ‘l:&”(inss wiJchP‘Igdd

and Gi is 4
Figure out what the door ¢— nd Gina this time around.

should really do. /

© Get any additional information
we need from Todd and Gina.

Build the door RIGHT!

g s 1. Make sure your

We've payn9g i

aiwon fo Step | in software does
weiting tycajc software

Lhis £imes aven't we? what the customer

wants it to do.

61

Download at WoweBook.Com

what is a requirement?

So what exactly s a requirement, anyway?

A vequirement. is usually It,s a

a single {:hing, and you

z:h tﬁ'[’- fha’c 'l‘)\ins -f- t h m
make sure you'v
~iir specific thing

requirement.

your
i e —= SYSTOM

or yro)ccjc \/ou’rc working on.
The dos doov SYs{;c”\ has 4o “do”

In £his ease, your system is
Todd and Gind's comylc{:c dog has to lots of -U\ihgs: open, tlose, let
door setup (which intludes the Fido mt. s cfen ¢ “:r'om

vemote tontrol, b\/ the wa\/). d o / SC‘H‘,ina inside... a")"{:hihﬁ that
Todd and Ging tome up with js

Part of what the system “does.”

to

work correctly.
P

Remember, the customer decides when a system
works torreetly. So if You leave out a requirement,
or even if {:hcy forgcf to mention something to You
the system isn't working Covrchcl\/! ,

“Schelar’s Corner j

vequivement. A requivement is a sinqular need detailing
what a particular product or service should be or do.
[£ is most eommonly used in a formal sense in

systems engineering or software engineering.

62 Chapter 2
Download at WoweBook.Com

gathering requirements

Listen to the customer

When it comes to requirements, the best thing you can do is let the

H)
customer talk. And pay attention to what the system needs to do; you res what Todd 4 .
pay Y b4 it’s vour nd Ging s,
can figure out kow the system will do those things later. req your J‘é’ to '(:Vahslafe thi)’: &
Ulremeh ‘FOP‘ fh . IS In
eir dom..

Fido's about a foot tall, and we don't
want him having to hurt his back
leaning over to get out the door.

Gina: And we want the door to automatically close after a few

seconds. I don’t want to have to wake back up in the middle of
the night to close the door.

You: Do you want a single button on the remote, or both an
“Open” and “Close” button?

Todd: Well, if the door always closes automatically, we really
don’t need separate “Open” and “Close” buttons, do we? Let’s
just stick with a single button on the remote control.

K, You: Sure. So the button opens the door if it’s closed, and it can
also close the door if it’s open, just in case the door gets stuck.

’ e
E‘: " t ;':W\I Todd: Perfect. Gina, anything else you can think of ?
oW’
tode at this Gina: No, I think that’s it. That’s the dog door of our dreams.

S{:age-\')us{: make
sure You know
what the system
should do-

Hcrc’s \/ow new sc£ o£ Vog Vom: ver. 2
vemote tontrol and dog D
door plans, based on Todd

and Qind’s rca\uiVCanB.

/ =

Clogg
’N
Rewmote Control,

Theve's just b
Just one button,
ver. 2 which toggles between

opening and closing the door.

This OPcnihg
needs to be at
least 12" 4,4]]..
so Fido doesn’t
have to “lean.”

IIZ”

you are here » 63

Download at WoweBook.Com

a simple requirements list

Creating a requirements list

Now that we know what Todd and Gina want, let’s write down our new
set of requirements. We don’t need anything too fancy...

Todd and Gina's Dog Door, version 2.0
Requirements List =

L This is just a list
JUS ah
of the 'l:hings

1. The dog door opening wwst be at least 12” tall. i:ai four cusiomcr
': [4 SYs em
< 2. A button on the remote control opens the dog door e building
Compare these if the door is closed, and closes the dog door if the em 4o do.
wi odd .
% > door is open.
“’“’“7,’;’“ - 3, Once the dog door has opened, it should close
B how we automatically if the door isn't already closed.
Lurned theiv
wovds 'mélo‘g ?
basit set o . Shev
. Il just ¢lose the door 3
chwrc"\cw{:s? ‘:/C‘(:c \;1) etonds of being open.

Be sure)
space... addiz:,::)cxﬁa
) . requi m
A special bonus prize a \;uy:cao:fs u;’:: s;
ou

In addition to having a list of things you need to do to work on g Project.

complete Todd and Gina’s dog door, now you can show
your boss exactly what you’re working on, and what work
you think is left to finish the project.

64 Chapter 2

Download at WoweBook.Com

gathering requirements

Ts this list really going to
help? Todd and Gina completely
forgot to tell us they wanted the door
to automatically close before... won't
they just forget something

You need to understand how
the dog door will be used.

You've figured out one of the hardest
parts about getting a customer’s
requirements—sometimes even the
customer doesn’t know what they really
want! So you've got to ask the customer
questions to figure out what they want
before you can determine exactly what
= the system should do. Then, you can

In Todd and begin to think beyond what your customers

asked for and anticipate their needs, even

before they realize they have a problem.

Gina's ase, the
s\is{;cm is the dcg
door and the
vemote tontrol-

—— agharpen your pencil

w What sorts of things do you think Todd and Gina might not have
thought about when it comes to their new dog door? Make a list
of any concerns you might have in making sure Todd and Gina
are happy with the new door you're building them.

you are here » 65
Download at WoweBook.Com

figuring out what todd and gina need

What does the dog door really need to do?

You know what Todd and Gina want the dog door to do, but it’s your job to
make sure that the door actually works. In the process, you may even come across
some things that Todd and Gina want, but didn’t think about on their own.

Let’s write down exactly what happens when Fido needs to go outside:

Hevre’s Your

requirements |ist

from Page 4
\[This is 3 new

. list, which details
Todd and Ginas Yog Poor, version 2.0 ety g door
Requirements List ;
1 The Todd and ¢ina’s Pog Poor, version 2.0
tall What the Poor Does
2. A b 1. Fido barks to be let out,
2;! 2. Todd or ¢ina hears Fido barking.
‘3 Todd or ¢ina presses the button on the
%.0n remote control,
°||‘ 4. The dog door opens. e can use
all) these s{:ch +o
9. Fido goes outside. see if we've
6. Fido does his business. ':I:liiig::v?{:s‘
7 Fido goes back inside.

< 8. The door shuts automatically.

When step 8 is omplete, Fido's back
inside after doing his business, and
Todd and Gina are happy.

66 Chapter 2
Download at WoweBook.Com

tl}er qre no

Dumbd Questions

Q,: So a requirement is just one of
the things that a customer wants the
application you build for them to do?

Actually, a requirement is a lot more
than just what the customer wants—although
that's a good place to start. Begin by finding
out what your customer wants and expects,
and what they think the system you're building
for them should do. But there’s still a lot more
to think about...

Remember, most people expect things to

work even if problems occur. So you've got

to anticipate what might go wrong, and add
requirements to take care of those problems as
well. A good set of requirements goes beyond
just what your customers tell you, and makes
sure that the system works, even in unusual or
unexpected circumstances.

Q,: And the system for Todd and Gina
is just the dog door, right?

A: The system is everything needed to
meet a customer’s goals. In the case of the
dog door, the system includes the door, but it
also includes the remote control. Without the
remote, the dog door wouldn’t be complete.

And even though they aren't part of the
system, Todd and Gina and Fido are all
things you have to at least think about when
designing the system. So there’s a lot more to
worry about than just the actual dog door.

Q- | don’t see why | have to figure out
how Todd and Gina are going to use the
dog door, and what can go wrong. Isn’t that
their problem, not mine?

Do you remember the first step we
talked about in writing great software? You've
got to make sure your app works like the
customer wants it to—even if that's not how
you would use the application. That means
you've got to really understand what the
system has to do, and how your customers
are going to use it.

In fact, the only way to ensure you get Todd
and Gina a working, successful dog door is
to know the system even better than they do,
and to understand exactly what it needs to
do. You can then anticipate problems, and
hopefully solve them before Todd and Gina

ever know something could have gone wrong.

Q,: So I should just come up with all
sorts of bad things that might happen when
Todd and Gina use their door?

A: Exactly! In fact, let's do that now...

Download at WoweBook.Com

gathering requirements

The best
way to

get gooJ
rec[uirements
is to
understand
what a
system 1s
supposec[

to do.

67

what can go wrong will go wrong

Plan for things going wrong

Below is a diagram of how Todd and Gina’s dog door should work; all
the numbers match up with the steps in our list on page 66. But things

aren’t always going to go according to plan, so we’ve written down some
things that might go wrong along the way.

Gina, open the dog
door... Fido won't
quit barking!

What if Todd ang
Gina aren't home?
What if ‘(:hey don’t
hear Fido ba\rking?

=2
@ Fido barks to be let out

/‘ (@) Todd or Gina hears Fido barking /
Does Fido always ®) Todd or Gina presses the button on

bark when he needs

tside? What the remote control.
4o 00 outsides

W ac \')us{‘, stratehes | s
at the door? What if Fido barks becau

extited, or hunary? Will it be a
problem if Todd and éim;i open

+he door and Fido doesn't need
to 9o outside?

|‘(: Fido is stuek outside,
tan Todd and Gina \r\cav"
him bavk to press “Open e
on the vemote and let ~

him back in? (® The door shuts automatically

68 Chapter 2

Download at WoweBook.Com

gathering requirements

Can You think of other things that

¢ould 90 wrong? That’s 9reat... the more
Problems you ean think of, the less fragile
You can. make Your application. Go ahead
and write anyzhing else that might happen
unexpectedly below, diveetly on the diagram.

Do we need 4o think
about what happens
it the door Jams? Oy
”‘aybc ‘{:"baf‘s more O'F
a hardwarc PVOHCM?

I feel much
better now!

. "-.r_v__. O
/ !” Q
@The dog door opens
@ Fido goes outside < ——— ypat if Fido stays inside?
Fido does his business

What happens if the door
has automatically ¢losed by
the time Fido is finished?

-

@ Fido goes back inside

you are here » 69

Download at WoweBook.Com

expect things to go wrong

Alternate paths handle system problems

Now that you've figured out some of the things that can go wrong, you
need to update your list of things that needs to happen to make the

dog door work. Let’s write down what should happen if the door closes
before Fido gets back inside.

We ¢an use these
“sub—numbevs” to
show some sub—
steps that might
happen as pavt
of Step b.

|€ Fido stays
outside, theve ave
a few add]{jona\
steps veauived

o get him back
'mS\d& T\'\CSC
extra steps

ave talled an
alternate path

70 Chapter 2

Todd and Gina’s Pog Poor; version 2.0
Requirements List

s Todd and ¢ina’s Pog Poor, version 2.0

o What the Door Poes

2. ‘: 1. Fido barks to be let out.
£ 2. Todd or ¢ina hears Fido barking.

3.0 3. Todd or Gina presses the button on the
' (Femote control.

¢ 4 The dog door opens.
9. Fido goes outside.
6. Fido does his business.
6.DThe door shuts automatieally.
6.2 Fido barks to be let back inside.

This is that same requivements
list £eom page b4 We mg
need to update these later,
but for now, fhcy'\rc still 0K

-

Al of these new
s{;c?s handle the

voblem o(" the
6.3 Todd or 6ina hears Fido barking (again). pretl

64 Todd or Gina presses the button on the
remote control.

6.5 The dog door opens (again).
7 Fido goes back inside.

doovr Llosin5 before
Fido tan get back
inside the house.

With Some extig

steps added, Fig,
8. The door shuts avtomatically, = |

T can stij) 9et back

Download at WoweBook.Com

ihsidc, even tho, h
d Problem Tod4 and
na hadn’{ {:hough{:

3bout otturpeq,

gathering requirements

Hey, I took a course in college
on this stuff... aren't we just
writing a use case?

Yes! You’ve been writing
use cases all along

When you wrote down the steps in getting
Fido outside to use the bathroom, you
were actually writing a use case.

A use case s what people call the steps that Look! s 4 use case.
a system takes to make something happen. /

In Todd and Gina’s case, the “something

that needs to happen is ge.ttmg Todd and Gina's Jog Toor, version 2,0
Fido outside to do his business, What the Foor oes

and then back inside.

1. Fido barks to be let out,
2. Todd or ina hears Fido barking.

3 Todd or Gina presses the button on the
remote control.

4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.
6.1 The door shuts avtomatically.
6.2 Fido barks to be let back inside.
6.3 Todd or Gina hears Fido barking (again).

64 Todd or Gina presses the button on the
remote control.

6.5 The dog door opens (again).
7. Fido goes back inside.
8. The door shuts automatically.

YOV)VC ac{;ua“\l alY‘Cad\‘lc /

written the use tase tor

Todd and Gina's dog door.

you are here » 71

Download at WoweBook.Com

what’s a use case?

(Re) infroducing use cases

You’ve been writing a use case for almost 10 pages now, but let’s take a
closer look at exactly what that list of steps—the use case for Todd and

Gina’s dog door—is really all about:

A use case describes

Use tases are all about the / w h at

»n dos
“yhat” What does the
d ? RCmCmbCY,
To do your system

doov need “how”
) e about the how
o o N
3 little bit later oes o +’° e
happen in order to get Fido
outside (and then back into

to accomplish a s

A simole vs€ cas\c f“:\?::\s\c :
).\ \e 003l : . t I
ezl particular
Syl T
ithout € ¢:£ . t I
Lt customer goal.
. . !
|£ Todd and Gina detide (.C > B
- Wéh{: {-;jraci:\i:‘ The usev (or users) are ‘l‘ﬁs—‘g—%og % f the use ease: what
many {-mcSJc». ‘JC° ‘:,.,\d be a fhe system, not 3 part ,o(: it |d‘;c £ i SJCCPlS o
d°e doov, a\ v oud need uses the system and he's outside i b ‘FocuSinS
- 503, sog o it; Gina has 2 goal for the system Th € tustomer, remembey-2
o and she’s also outside of the system. ¢ :&OS)’chcm has to help that
ustomey accomplis}, their 508"

So we're the
outsiders, huh?

The doa door
and remote are
Part of Lhe
S)'sfc.h, or inside
B

{:he SYS'ECM.

72 Chapter 2

Download at WoweBook.Com

gathering requirements

The entive use tase /\

destvibes exactly whaJc., the
dooy doov does when Fido

reads bo o oukside. Todd and Gina‘s Dog Door, version 2.0

What the Poor Does

1. Fido barks o be let out.
2. Todd or ¢ina hears Fido barking.

3. Todd or Gina presses the button on the
remote control.

4. The dog door opens.
9. Fido goes outside.
6. Fido does his business.

This is an
The use tase cni:‘ :‘;“"‘ 6.1 The door shuts automatically. al’cefn)azc path,
tti\f\:tx:a%s Fido 6.2 Fido barks to be let back inside. :’L‘fuf; ;ﬁl’i_ms
back 'mg.di, {hC:C;V ik 6.3 Todd or Gina hears Fido barking (again). the same goal as
i:ﬁ :»:1 513 <l 64 Todd or Gina presses the button on the fg‘: ‘::r'z Eﬁ"}:
tomfortable in bed- remote control. Same use case.
6. The dog door opens (again).
7 Fido goes back inside.

8. The door shuts automatically.

) &

ﬁleScholax’s Corner

use £ase. A use tase is a ‘[:cchnit\uc ‘COV‘ ca\?{:wing the
potential vequivements of a new system or softwave change.
Eath use tase provides one or move stenarios that convey how
the S\/S‘[:Cn\ should interact with the end user or another
system to athieve a sm goal-

you are here » 73

Download at WoweBook.Com

one use case, three parts

One use case, three parts

There are three basic parts to a good use case, and you need
all three if your use case is going to get the job done.

“Clear Value

(5 Every use case must have a clear
race value to the system. If the use case
The use doesn’t help the customer achieve their

ThC use Lase
when Fido ba starts “p

‘ rks... it sto
must hel ., when he’s baek inside ps
must. help oal, then the use case isn’t of much use done with ’
Todd and 804 ’ With his business.
é'ma deal

Start and Stop

Every use case must have a definite A
9 starting and stopping point. Something

must begin the process, and then there must be a
condition that indicates that the process is complete.

—

In the dog door, EXternal Ini'ti&tor

ido is the .
Flio [a{l-" histor Every use case is started off by an external
n ° o o.e . .
;ﬁl cvnhajc stacks initiator, outside of the system. Sometimes
{: s w{;‘rc protess that initiator is a person, but it could be
e enti :

anything outside of the system.

74 Chapter 2

Download at WoweBook.Com

gathering requirements

=

"

Clear Value s.;per

(o=24 Use Case Magnets

- [

Below is Todd and Gina’s use case, and a magnet for each of the
three parts of a good use case (one part, Start and Stop, actually
has two magnets). Your job is to identify where each magnet
goes and attach it to the right part of the use case.

Todd and Gina’s Dog Poor, version 2.0 Externa] Initiator
What the Door Poes
1. Fido barks to be let out. Ki’:f, dol:: of ”“‘“‘
2. Todd or Gina hears Fido barking. if you look%cyt%z;m.
% Todd or Gina presses the button on the
remote control.
4. The dog door opens.

9. Fido goes outside.
6. Fido does his business.
6.1 The door shuts automatically.
6.2 Fido barks to be let back inside.
6.3 Todd or Gina hears Fido barking (again).

64 Todd or Gina presses the button on the
remote control.

6.5 The dog door opens (again).
7 Fido goes back inside.
8. The door shuts automatically.

What kieks off the yse
¢ase? This is usuall

some action outside of

< the s\/s'l:em.
Put this g - (-
magv\c{: on the '
tondition in =

Put the Super Buy magnet the use ease 6

on the part of the use that indicates

tase that is the tlear value the protess Who starts the
4o Todd and Gina. should stop- use tase?

you are here » 75
Download at WoweBook.Com

the parts of a use case

Use Case Magnet Solutions

Below is Todd and Gina’s use case, along with several use case
magnets. Your job was to identify where each magnet goes, and
attach it to the right part of the use case.

(H g]

:}O/ Todd and Gina’s Doa Door, version 2.0
What the Door Does
£ Fido is the
s xternal initiator
(Jc_ﬁ lbarks to be let out. o thi ace Cove
2311::?:: s:::: 2. Todd or Gina hears Fido barking.
e k. 3. Todd or Gina presses the button on the
. remote control.
4. The dog door opens.

9. Fido goes outside.
6. Fido does his business.
6.1 The door shuts automatically.
6.2 Fido barks to be let back inside.
6.3 Todd or Gina hears Fido barking (again).

64 Todd or Gina presses the button on the
remote control.

6.9 The dog door opens (again).
7 Fido goes back inside.
<> 8. The door shuts automatically.

Heve's the stop
condition...
Fido is back in,

and the door,
is tlosed.

76 Chapter 2

Download at WoweBook.Com

Q: So a use case is just a list of the
steps that a system has to do to work
correctly?

In most cases, yes. But, remember,
one of the key points about a use case is
that it is focused on accomplishing one
particular goal. If your system does more
than one thing—like let Fido outside and
track how many times he’s been out in an
entire day—then you'll need more than one
use case.

Q: Then my system will have a use
case for every goal it accomplishes,
right?

A: Exactly! If your system just does one
single thing, you'll probably only need one
use case. If it does ten or fifteen things, then
you're going to have a lot of use cases.

Q: And a use case is what the system
does to accomplish a goal?

Now you've got it. If you write down
what the system needs to do to perform a
task, you've probably got a use case.

therq are no

Dumb Questions

Q,: But the use case isn’t very
specific. Why didn’t we talk about the
Remote class or the DogDoor class?

Use cases are meant to help
you understand what a system should
do—and often to explain the system to
others (like the customer or your boss). If
your use case focuses on specific code-
level details, it's not going to be useful to
anyone but a programmer. As a general
rule, your use cases should use simple,
everyday language. If you're using lots of
programming terms, or technical jargon,
your use case is probably getting too
detailed to be that useful.

Q- Is a use case the same as a use
case diagram?

No, use cases are usually a list
of steps (although you can write them
differently, something we talk about in the
Appendix). Use case diagrams are a way to
show use cases visually, but we've already
been working on our own diagram of how
the system works (check out page 69 for
a refresher). Don’t worry, though, we'll still
look at use case diagrams in Chapter 6.

Download at WoweBook.Com

gathering requirements

Q} Then how do | turn my use case
into actual code?

That's another step in the process
of writing your application. In fact, we're
going to look at how to take our use case
for Todd and Gina and update our code in
just a few more pages.

But the purpose of the use case isn't to
detail how you'll write your code. You'll
probably still have to do some thinking
about how you want to actually put the
steps of your use case into action.

Q,: If the use case doesn’t help me
write my code, then what’s the point?
Why spend all this time on use cases?

A: Use cases do help you write your
code—they just aren’t specific about
programming details. For instance, if you
didn’t write a use case for Todd and Gina,
you never would have figured out that Fido
might get stuck outside, or realize that the
dog door needed to close automatically.
Those all came from writing a use case.

Remember, you'll never write great software
if you can't deliver an app that does what the
customer wants it to do. Use cases are a tool
to help you figure that out—and then you're
ready to write code to actually implement the
system your use case describes.

77

did you cover all the features?

Checking your requirements
against your use cases

So far, you'’ve got an initial set of requirements and a good solid
use case. But now you need to go back to your requirements and
make sure that they’ll cover everything your system has to do.
And that’s where the use case comes in:

£

Todd and Gina’s Dog Poor, version 2.0 Heres our list of vequivements
Requirements List that we got from Todd and Gima...

1. The dog door opening wmust be at least 12~ tall.

2. A button on the remote control opens the dog door

if the door is closed, and closes the dog door if the .and here's what we know the

door is open. g dog door needs to do-
3. Once the dog door has opened, it should close
autowmatically if the door isnt already closed. Todd and Gina's Pog Poor, version 2.0
What the Poor Poes

1. Fido barks to be let out.
2. Todd or Gina hears Fido barking.

3. Todd or Gina presses the button on the
remote control.

4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.
| H iccinng? 6.1 The door shuts automatically.
S a"Y‘thl"g WllSSl"g) 6.2 Fido barks to be let back inside.
Now you need to look over the use case and see 6.3 Todd or Gina hears Fido barking (again).

if everything the system needs to do is covered by 64 Todd or Gina presses the button on the
the requirements. remote control.

6.9 The dog door opens (again).
7. Fido goes back inside.
8. The door shuts automatically.

78

Download at WoweBook.Com

gathering requirements

aSharpen your pencil
& Do your requirements handle everything?

Below on the left is the list of things that the dog door does, pulled straight
from our use case on page 78. Your job is to identify the requirement that
handles each step of the use case and write that requirement’'s number
down in the blank next to that step of the use case. If a step in the use case
doesn’t require you to do anything, just write N/A down, for “not applicable”.

Here ave the three rca\uircmcn{:s we
have... You £an use any of these for

eath step in the use tase. 7
Todd and Gina’s Dog Door, version 2.0
What the Door Does Todd and Gina’s Pog Poor; version 2 0

Requirements List

1. Fido barks to be let out.

2. Todd or Gina hears Fido barking. o 1 }'ge”liO?Idoor Opening must be at [east
all.

3. Todd or Gina presses the buttononthe 2. A butt
e . : on on The remote contro| opens
the dog door if the door is closed, and

. . - closes the dog door if the door is open.
6 Fido goss outsde. - 3. Once the dog door has opened, it shoylq

6. Fido does his business. close avtomatieally if the door jp
r
already closed. ot

4. The dog door opens.

6.1 The door shuts automatically.
6.2 Fido barks to be let back inside.
6.3 Todd or Gina hears Fido barking

(again). R Weite |, 2,3, or N/A
6.4 Todd or Gina presses the button on S in eath of these blanks.
the remote control. /

6.5 The dog door opens (again).

7. Fido goes back inside.

8. The door shuts automatically.
Did you find any steps in the use case that you don't think
you have a requirement to handle? If you think you need
any additional requirements, write what you think you need

to add to the requirements list in the blanks below:

79

Download at WoweBook.Com

inquiring minds want to know

aharpen your pencil

80

w answers

Below on the left is the list of things that the dog door does, pulled straight
from our use case on page 78. Your job was to identify the requirement that
handles each step of the use case, and write that requirement’s number down
in the blank next to that step of the use case. You should have written down
N/A for a step that didn’t require our system to do anything.

Do your requirements handle everything?

Todd and Gina’s Dog Door, version 2.0

What the Door Does

1. Fido barks to be let out.
2. Todd or Gina hears Fido barking.

3. Todd or Gina presses the button on the
remote control.

4. The dog door opens.

5. Fido goes outside.

6. Fido does his business.
6.1 The door shuts automatically.
6.2 Fido barks to be let back inside.

6.3 Todd or Gina hears Fido barking
(again).

6.4 Todd or Gina presses the button on
the remote control.

6.5 The dog door opens (again).
7. Fido goes back inside.

8. The door shuts automatically.

Chapter 2

A lot of the thi t
InQs h
happen 45 3 sys{:crg don?{f
N/A = vequive you £o do anything.
N/A

- miaht have put N/ A hevre,
2 \s{':\‘:',c Ehcm pushing +he button

isnt somc{',hing that's you have

2 {0 handle... then again; 2is 0K,

1 4oo, sinte they wouldn £ push a
E bukton without a remote.

3 Did){‘/Ougd: this one? Fido
A tant get outside if th :
NA isn't the vight size. € opening
N/A

<~ The alternate path should
2 have been easy onte You
ﬁigwcd oul the vequivemen

-2 for the main path.
i
3

Did you find any steps in the use case that you don't think
you have a requirement to handle? If you think you need
any additional requirements, write what you think you need
to add to the requirements list down in the blanks below:

No, our requirements cover everything the system needs

to do. We're ready to actually write code to handle these

requirements now, right?

Download at WoweBook.Com

So now can we write some code?

With use case and requirements in hand, you’re ready to
write code that you know will make Todd and Gina satisfied
customers. Let’s check out our requirements and see exactly
what we’re going to have to write code for:

This is

something for
Doug and the
hardware guys
4o deal with...
we don){: Y\CCd

any tode for Todd and Gina’s Dog Poor, version 2.0
’ch\ils requivement. Requirements List

K_,? 1. The dog door opening wust be at least 12” tall.

2. A button on the remote control opens the dog door — |
if the door is closed, and closes the dog door if the

gathering requirements

We've alrcad\/

9ot ¢ode to
door is open. take care this
3. Once the dog door has opened, it should elose reqivement.
f, automatically if the door isn't already closed.
This is what Todd
ahd éi“a addCd when — —
we talked to them-.
we need to write
tode 1o take tave
of ¢losing the door
awtomatically:
We're getting pretty psyched
about our new door. We love that
you thought about Fido getting
stuck outside, and took care of
that, too.
you are here » 81

Download at WoweBook.Com

adding a timer to the dog door

Automatically closing the door

The only requirement left to code is taking care of
automatically closing the door after it’s been opened. Let’s go
back to our Remote class and handle that now:

import java.util.Timer;
import java.util. TimerTasTck
public class Remote {

use Javals

private DogDoor door;

public Remote (DogDoor door) {
this.door = door;

This ¢heeks the }
state of the

doovr before
oPening or
losing it. —— i¥ (door.isOpen()) {

door.close () P = The vemote alveady has
} else {

door.open() ;

public void pressButton () {

Remote.java

You'” need these fio
import statements to

{:i”‘ihg C’asscs.

System.out.println (“Pressing the remote control button...”);

tode to
handle ¢losing the door if it's open.

N All £h i
C:;a¥\mcv final Timer timer = new Timer(); 4, doco\‘rl:a :‘:\dd?l:c: 'SélOSC
n oan timer.schedule (new TimerTask () { off the :l: en turn
o e public void run() { e
sthe oo door.close() ;
o : ; .
(:Ti'mg- } timer.cancel () ; Th.:s tells the timer
}, 5000); Mt before exepyd .) lorg o
L M—_—/ his Case, ue've yarg) t;c task... i
Wh' . ITIn
} } i¢h is 5000 mi’lisec?:ndss.ccowsl
therg are no

Dumb Questions

Q/: Why did you make the timer
variable final?

Q: What's all this Timer stuff? Can’t |
just use a Java thread to close the door?

A: Because we need to call its
cancel () method in the TimerTask
anonymous class. If you need to access
variables in your anonymous class from
the enclosing class (that's Remote in this
case), those variables must be final. And,
really, just because it makes things work.

A: Sure, there’s nothing wrong with
using a Thread to close the dog door. In
fact, that's all the Timer class does: kick
off a background Thread. But the Timer
class makes running a task in the future
easy, so it seemed like a good choice for the
Remote class.

82 Chapter 2

Download at WoweBook.Com

Q: Why are you calling cancel()?
Won'’t the timer quit automatically after
running the TimerTask?

It will, but it turns out that most
JVMs take forever before they garbage
collect the Timer. That ends up hanging
the program, and your code will run for
hours before it actually quits gracefully.
That’s no good, but calling cancel ()
manually takes care of the problem.

We need a new simulator!

Our old simulator isn’t that useful anymore... it assumes Todd and Gina are
closing the door manually, and not letting the timer do its work. Let’s update
our simulator to make it work with the updated Remote class:t

public class DogDoorSimulator ({

public static void main(Stringl]
DogDoor door = new DogDoor () ;
Remote remote = new Remote (door);

This is the same
as in our earlier
version, but

pressing the ———== ropote .pressButton () ;

button will open
the door and
start a timer 1o
tlose the doov.

System.out.println (“\nFido’s all done...”);

—remoterpressbButtont+

) /

Sinte the door's
on 3 Limev, Fido

has plenty of

Lime o get back
inside before the

doov tloses: Gina
doCSY\"{; Y\CCd b

open the door to

let Fido baek in-

System.out.println (“"\nFido’s back inside...”)

r

-~

args)

gathering requirements

DogDoorSimulator.java

{

System.out.println (“Fido barks to go outside...”);

System.out.println (“"\nFido has gone outside...”);

- = n the new improved dog

door, Gina doesn’t need

to press a button 4o tlose

the door. That will happen
. au‘l:oma'l:iCa“y now.

’

Heve’s another spot where we
ean 9et vid of some code...
the door ¢tloses achoma{:ically.

Q: You lost me on that timer code.
What’s going on there again?

That's OK... you don’t need to
get too hung up on Java here. The point
is that our use case helped us write good
requirements, and our requirements made
it easy to figure out how to write a working
dog door. That's a lot more important than
how—or even in what language—you write
the dog door code.

Q: So the new simulator tests out the
main path we figured out, right?

AI That's right. Flip back to page 78
and review what the dog door does... that's
what the new DogDoorSimulator tests
out. We want to make sure that Todd and
Gina’s new door works just like they want

it to.

Download at WoweBook.Com

Q: Why aren’t we testing out that
alternate path we found?

A: That's a very good question. Let's
test this version of the door, and then we'll
talk more about that...

you are here » 83

does it work?

Test drive, version 2.0

It’s time to see if all our hard work is going to pay off. Let’s
test out the new and improved dog door.

0 Compile all your Java source code into classes.

javae *.\)ava

class
DogDoor

DogDoor.java

Remote.java

DogDoorSimulator.java DogDoorSimulator.class

© Run the code!

File Edit Window Help InAndOut

%java DogDoorSimulator

Fido barks to go outside...

Pressing the remote control button...
The dog door opens.

Fido has gone outside. Tlck‘

Fido’s all done.

Fido’s back inside...
’ojaVT.J"k rS:Lmulator
g Fido)c &> go outside.
A Lew setonds will e = Bk ressing the remote control button.
pass between when . @ dog T ck -
the door opens:- ’2 P8/ ido has gone outside...

Fido’s all done...

...d i
nd when it loses. \> Fido’s back inside...
The dog door closes.

84 Chapter 2

Download at WoweBook.Com

gathering requirements

It works! Let’s go show Todd and Gina...

YOllt'

system
must
work in
the 1Lal

world..

.50 plan

and test
for when
things go

WI'Ollg)

But I don't think we're ready to
show Todd and Gina yet... what about that
alternate path, when Fido stays outside
and the door closes behind him?

Good catch... we need to g &
test alternate paths as
well as the main path.

Wouldn’t it be great if things worked just
like you expected them to every time?

Of course, in the real world, that almost
never happens. Before we can show the
new door off to Todd and Gina, let’s take
a little extra time to make sure the door
works when Fido doesn’t come right back
inside after doing his business.

BRANN
TAwEwR

How would you change the DogDoorSimulator
class to test for Fido staying outside longer?

[T\ AA)
S ERam

Can you come up with at least one more alternate
path for Todd and Gina’s dog door? Write out the
use case and update the requirements list for your
new alternate path, too.

Download at WoweBook.Com

85

alternate paths

Reviewing the alternate path

Let’s make sure we understand exactly what happens on the
alternate path, and then we can update DogDoorSimulator
to test the new path out. Here’s the original main path diagram
from page 68, along with the alternate path we figured out

and added to our use case:

Gina, open the dog
door... Fido won't
quit barking!

@ Fido barks to be let out
@ Todd or Gina hears Fido barking

@ Todd or Gina presses the button on
the remote control.

This part of the
diagram is the main path,
wheve cvcr\/{:hing goes
exactly as planned.

86 Chapter 2

Download at WoweBook.Com

gathering requirements

Rcmcmbcr, this is
K\ an alternate path...
h.mgs don’t h‘FPcn
'S Way every Lime
he system is used.

Here's wheve the

alternate path

skarks... the door.

huks while Fido is T

S't\“ ou‘{',S]dC-

(0]
aQ

I feel much
better now!

The door shuts automatically

O
0
Lem alveady Fido barks to be let back inside.
Our system alve
handled all of
these Lhinos. - but
we wouldn t have Again with the
known £hat un\CSS_ barking! SorneF)ne let o
Fido does his business we mapped ot this Fido back inside.
alternate path-
1 Todd or Gina hears
Fido barking (again)
NO{ZC {',\'\a‘t when
Lhe door opens heve,
things tontinue \"f
vetwening +o the

Todd or Gina presses
the button on the
remote control

The dog door opens (again)

you are here » 87
Download at WoweBook.Com

testing the alternate path

{2+ Code Magnets
— b . L. ey .

[l It's time to update the simulator, but this time it's your job
to actually write some code. Below is what we have so far for

DogDoorSimulator. DogDoorSimulator.java

Your job is to match the code magnets at the bottom of the page
to where they belong in the simulator. If you get stuck, check the diagram on
the last page to see what'’s going on at each step of the way. Oh, and there’s
a twist... all the magents for periods, semicolons, and parentheses fell off the
fridge, so you'll have to add those wherever they're needed, too.

public class DogDoorSimulator {
public static void main(String[] args) {

DogDoor door = new DogDoor () ;
Remote remote = new Remote (door);

Here's where System.out.println (“\nFido has gone outside...”);
the alternate System.out.println(“\nFido’s all done...”);

ath begins.
P 9 _— We want the Program 1o
h £ _ Pause and let the 4
read.currentThread() . (10000) ; tlose 3 tomali oor
} catch (InterruptedException e) { } roma ""3”7‘
System.out.println (“\nFido’s back inside...”); T
} N ¢ alternat, path
\ returns 4, the maiy

Path Fight heye.

= Here ave the methods {o use
the vemote control.

System.out.println
System.out AglpressButton

System.out.println pressButton i pressButton

System.out .println pressButton
System,Qu .println
System.out.println e&r—)
peint vt These ave methods

tan
Heve ave several messages You

s

88 Chapter 2

ou tan tall on 3
Java ‘{',h‘(cad-

W . .so Gina grabs the remote CO orl.
om

gathering requirements

Test drive, version 2.1

Make the changes to your copy of DogDoorSimulator. java,
and then recompile your test class. Now you’re ready to test out the
alternate path of your use case:

File Edit Window Help InLikeFlynn

%java DogDoorSimulator

Fido barks to go outside...

Pressing the remote control button.,.
The dog door opens.

Fido has gone outside...

Fido’s all done...

The door ofens: and

Fido ooes oukside to §/> barks to go outside...
is business: ssing the remote control button...
do his bu But Fido starts ==
ut ido he dog door opens.
chasing bugs, and the

d05 door tloses while Fido has gone outside...

he’s still outside. Fido’s all done...
\ The dog door closes.
Fido barks o get back ...but he’s stuck outside!

inside, and Gina uses her Fido starts barking...
remote control... ...so Gina grabs the remote control.
\—> Pressing the remote control button...
i The dog door opens.

File Edit Window Help ThereAndBackAgain do’ b X d
. . 8 Fido’s back inside...
%java DogDoorSimulator

Fido barks to go outside... :
Pressing the remote control butty o .and Fido gets

The dog door opens. | 3 i to veturn 4o air
Fido has gone outside... tonditioning,
Fido’s all done...
The dog door closes.
...but he’s stuck outside!
Fido starts barking...
...so Gina grabs the remote control.
Pressing the remote control button... door
The dog door opens. Before lond the ¢
i {14}

Fido’'s back inside... / tloses agam‘»j::;\i ;:\d
The dog door closes. vabbits, ¥o Lade.

bugs sakely vt

you are here »

Download at WoweBook.Com

89

completing the simulator

Code Magnets
Solution

Here’s what we did to complete the simulator. Make sure you got
the same answers that we did.

public class DogDoorSimulator {

public static void main(String[] args) {

DogDoor door = new DogDoor () ; You should have written

in i :
Remote remote = new Remote (door) ; Periods, semicolons,

and paventheses s You
/ needed them.

gone outside...”); \{ rould have thosen
System.out.println (“"\nFido’s all done...”); J\“ essage about Tod
e m
vabbing the emote, but
39 ina o test for
try f we've teying ember?
Thread.currentThread () .(lOOOO) ; the Eca\ wog.\d,,vc(;v:’.m‘5
. ioure Qind s
} catch (InterruptedException e) { } ’W“Zs£2£ the work heve:

System.out.printl . ..but he's stuck outside!"h B /
System.out.printl] (m\nFido starts barking..." Y)r

DogDoorSimulator.java

90

Chapter 2

Download at WoweBook.Com

gathering requirements

Pelivering the new dog door

Good use cases, requirements, main paths, alternate paths, and a
working simulator; we’re definitely on the road to great software.
Let’s take the new dog door to Todd and Gina.

This dog door rocks! We
don't have to get out of bed to let
Fido out anymore, and the door
closes on its own. Life is good!

TBfid and Ging’s nights are
umn'l:ewur'l:cd now, whith makes
them satisfied tustomers.

Fido's inside, and the
vabbits, woodehueks, and
mite are outside.

This was exactly he outcome we Working app, happy customers
weve hoping Tor way back on page Not only did we turn Todd and Gina into satisfied
bO. What a diffevente good

customers, we made sure their door worked when Fido did
rco\uircmcw{',s make, huh? something they didn’t expect—Ilike stay outside playing

you are here » 91
Download at WoweBook.Com

when things go right

92

Use Cases Exposed

This week’s interview:

Getting to Know the Happy Path
HeadFirst: Hello there, Main Path.

Happy Path: Actually, I prefer to be called “Happy Path.” I know a lot of books refer to me as “Main
Path,” but I find lots more people remember who I am when I go by “Happy Path.”

HeadFirst: Oh, I apologize. Well, in any case, it’s great to have you with us today, Happy Path, and you’re
right on time, too.

Happy Path: Thanks... I'm always on time, that’s really important to me.
HeadFirst: Is that right? You’re never late?

Happy Path: Nope, not a single time. I never miss an appointment, either. I never make a mistake, nothing
ever goes unexpectedly... you can really count on me to come through just like you want, every time.

HeadFirst: That’s quite a statement to make.
Happy Path: Well, it’s just part of who I am.

HeadFirst: And that’s how you got your name? You make people happy by always being on time and never
making a mistake?

Happy Path: No, but that’s close. They call me “Happy Path” because when you’re hanging out with me,
everything goes just as you’d hope. Nothing ever goes wrong when the “Happy Path” is at the wheel.

HeadFirst: I have to admit, I'm still a bit amazed that nothing ever goes wrong around you. Are you sure
you’re living in the real world?

Happy Path: Well, don’t get me wrong... things definitely go wrong in the real world. But when that
happens, I just hand things off to my buddy, Alternate Path.

HeadFirst: Oh, I think I see now... so things can go wrong, but that’s Alternate Path’s job to handle.

Happy Path: Yeah, pretty much. But I don’t worry too much about that. My job is to take care of things
when the sun is shining and things are going just like people expect.

HeadFirst: Wow, that must be really satisfying.

Happy Path: Well, most of the time it is. But things do tend to go wrong a lot. It seems like hardly anyone
sticks with me from start to finish. Alternate Path usually gets involved at some point, but we get along well, so
it’s no big deal.

HeadFirst: Do you ever feel like Alternate Path is butting in? I could imagine some tension there...

Happy Path: No, not at all. I mean, we’re all after the same thing: getting the customer to their goal, and
making sure they’re satisfied. And once we’re defined well, actually coding an application is a lot simpler.

HeadFirst: Well, you heard it here folks. Next week, we’ll try and catch up with Alternate Path, and get her
side of the story. Until then, try and stay on the Happy Path, but remember to plan for problems!

Download at WoweBook.Com

gathering requirements

W, *
TWHAT'S MY P;)RPQGE

Below on the left are some of the new terms you've learned in this chapter. On the right
are descriptions of what those terms mean and how they’re used. Your job is to match
the term on the left with that term’s purpose on the right.

Exteaﬂa’_ Kicks off the list of steps described in a
use case. Without tl:is, a use case never gets
going.

__Case .

Sometlung a system needs to do to be a
success.

Lets you know when a use case is finished.
Without t11is, use cases can go on forever.

Req,!ﬂkeﬂe“t Helps you gather gooJ requirements. Tells a
story about what a system does.
VaL,!Ie What a system does when everything is

going right. This is usually what customers

o e describe when they're talking about the
____ Compition e ng

C This is always the first step in the use case.
Paty

- Without tllis, a use case isn't worth anythin
ything

> to anyone. Use cases without this alwazs fail.

he
Uh oh... parts of some of the terms on t
lef4 have gone missing. You've 9ot to use the
definitions on the \'ig\'\{: +o mateth to 3 term,
and fill in the missing part of the term.

Download at WoweBook.Com

93

i have a purpose

Exercise
SoLutions . N
FWHAT' 'S MY vuwvose

Below on the left are some of the new terms you've learned in this chapter. On the right
are descriptions of what those terms mean, and how they’re used. Your job is to match
the term on the left with what that term’s purpose is on the right.

Exteaﬂa[_ [nitiator —_ Kicks off the list of steps described in a

use case. Without this, a use case never gets
going.

Something a system has to do to be a success.

Use Case

s ¢ aR i L. Lets you know when a use case is finished.
& t M Without this, use cases can go on forever.
Helps you gat]ner gooJ rec[uirements. Tells a

story about how a system works.

Requirement

How a system works when everytlling is
going right. This is usually what customers
describe when they're talking about the
system.

Clear VaLve

Stop Conpition

This is always the first steP in the use case.

Without this, a use case isn't worth anything
to anyone. Use cases without this always fail.

Main vatl'l

N

Makc Sure yok
b’anks cxac,Hy ’lk

'F'”Cd in | {:hc

¢ we did.

94

Download at WoweBook.Com

gathering requirements
aSharpen your pencil

Time to write some more use cases.
L

Below are three more potential customers that are interested in

Doug’s Dog Doors. For each customer, your job is to write a use
case to solve the customer’s problem.

Doug's Do

— 9 Doors is

Bitsie is constantly nudging Vith the local seCuri Pathmha

open our back door, or nosing open the andle theiy. arow..,y °ompan

kitchen bay windows. I want a system that dse, and requests [ik %c.usﬂ’"‘"
locks my dog door and windows behind € This one
me every time I enter a code, so Bitsie

can't get out.

Bruce is constantly barking, so
I never know if he really wants
out or not. Can you build a door
that opens up when he scratches it
with his paws?

Tex is constantly
tracking mud inside the house. I
want a dog door that automatically
closes every time he goes outside, and
stays closed until I press a button to let
him back in.

tolly

f

Brw‘.c

——» Answers on page 9.

you are here » 95
Download at WoweBook.Com

use case bonanza

aSharpen your pencil

. ' i !
k. answers Time to write some more use cases!

You've seen the customers; now let’s look at the use cases. Here is

how we wrote our use cases for the dog-loving folks on page 95.
See if your use cases look anything like ours.

Bitsie is constantly nudging
open our back door, or nosing open the
kitchen bay windows. I want a system that
locks my dog door and windows behind
me every time I enter a code, so Bitsie

Kristen's use ease is
can't get out.

J'AS{: ‘l:wa S{CPS: she
enters a tode, and
then

the dog door and
[the windows |ock.

Kristen and Bitsie’s Dog Door

1. Kristen enters a code on a keypad.

2. The dog door and all the windows
P in the house lock.
N hou\\‘{',h\S\sa e ——— — —
Ed:; dtov,sB'\’csic actually

has no ekfect on how

fhe system behaves!

Tex is constantly tracking
mud inside the house. I want a
dog door that automatically closes
every fime he goes outside, and stays
closed until I press a button to let
him back in.

e

John's vequest $urns out 1o be very
similar 4o what Todd and Gina
wanted. Part of gathering good
rcquircmcn’cs is vetognizing whcb .
you ve alveady built, something similar
Lo what a tustomer wants.

96 Chapter 2

Download at WoweBook.Com

Holly and Bruce’s Pog Door

1. Bruce scratches at the dog door.
2. The dog door opens.
3. Bruce goes outside.

(—> 4, The dog door closes avtomatically.

Gome of this 4. Bruce does his business.
el ‘f.s“% 5. Bruce scratches at the door again.
aid owt \n) .
what telly 3d 6 The dog door opens up again.
bu{: \Iou shov\d .) /»
have figured it 7 Bruce comes back inside. aay
owk when Yyou

thouaht theough 8, The door closes automatically.
how her system

will be used-

We \rca"\/ need move information
4o write this use ease... looks
like we need to ask John some
additional O\ucsﬁons.

John and Tex’s Pog Poor
1. (Somehow) the dog door 4. Tex does his business.
opens. . 41 Tex gets muddy
2. Tex goes outside. 4.2 John cleans Tex up
3. The dog door closes 5. John presses a button.
automatically.
6. The dog door opens.
7. Tex comes back inside.
ﬁ

8. The door closes automatically.

/61; is constantly barking, so
T never know if he really wants

out or not. Can you build a door
that opens up when he scratches it
with his paws?

gathering requirements

f

B\rw‘,c

Even 'l:hough John said Tex
usua“y gets muddy, he doesn’t
have to get mudd\/... so that’s
veally an altevnate path.

Download at WoweBook.Com

you are here » 97

the three components of a use case

More Use Case Magnets

Remember the three parts of a use case? It's time to put what
you've learned into action. On these pages, you'll find several
use cases; your job is to match the use case magnets on the
bottom of the page to the correct parts of each use case.

Externa] Initiator

Holly and Bruce’s Pog Poor 4y

You tan veview all

of these by ‘cliFFi“S
Bruce scratches at the dog door to be let out. back £o pae 14,

The dog door automatically opens, and Bruce
goes outside. The dog door closes after a preset
time. Bruce goes to the bathroow, and then _ You should be able o follow —————
seratches at the door again. The dog door opens gfffaﬁzﬁfffﬁuﬁ:Sivoublc.
automatically, and Bruce returns inside. The dog

1€ you get confused, theck out
door then closes automatically. Aopendix | for the stoop on

o |tevnate use tase Lormats.
I Bruce seratches at the door but stays inside afternd
(or stays outside), he can scrateh at the door

again to re-open it, from inside or outside. Kriston and Bitsie’s Pog Poor

1. Kristen enters a code on a keypad.

2,]’he dog door and all the windows
in the house lock.

(\C\ This magnet indicates
_anan | ~ - the start condition for

a use Lase.

Use these magnets to
inditate the elear value
o‘c a use tase.

98 Chapter 2

Download at WoweBook.Com

John and Tex’s Pog Poor

Primary Actor: Tex
Secondary Actor: John
Preconditions: The dog

gathering requirements

Main Path
1. Tex goes outside.
2. The dog door closes avtomatically.

Download at WoweBook.Com

Answers on page 100.

door is open for ex 1080 3 1,y 4oes his business.
L 4. John presses a button
, a .
= @oal: Tex uses the bathroom P
and comes back inside, 9. The dog door opens.
without getting wmwud 6 Tex comes back inside.
inside the house. 7 The door closes automatically.
Extensions
31 Tex gets muddy.
3.2 John cleans Tex up.
Fido heve
vepresents
Use U\iS(: i the c*{:e:vz?l
magnet for the initiator ot a
stop tondition —_— re use tase, which
of a use tase. G kieks {hings off.
How do you
know when
the use case is
-C'mishcd?
you are here »

99

use case magnets solutions

Use Case Magnets Solutions

Remember the three parts of a use case? It's time to put what
you've learned into action. On these pages, you'll find several
use cases (in different formats, no less!); your job is to match the

use case magnets on the bottom of the page up to the correct
parts of each use case.

Holly and Bruce’s Dog Door

) Super

S Bruce can get
rlee'scratches at the dog door to be let out. F“?. u’?side %o usg the
dog door automatically opens, and Bruce bathroom without
goes outside. The dog door closes after a preset Holly having to open
time. Bruce goes to the bathroow, and then and close the dog door
seratches at the door again. The dog door opens (or even listen for
ammautomatically, and Bruce returns inside. The dog Bruce to bark)

or then closes automatically. f
If Bruce seratehes at the door but stays inside =~

lue of 3 w
(or stays outside), he can scrateh at the door I:;f!:a::jcuﬁ:maisjc
again to re-open it, frow inside or outside. g i Do
tase, so you'll need to
. £i it out on .
Look elosely for the ch:E gure on Your own
tondition in this s{‘,\/lc

use tases, i‘l:’s usuall vﬁ
the last sentente i theve (

are any alternate paths. :@
Krisgm and Bitsie’s Pog Poor
The start tondition ang

Kristen enters a code on a keypad.
sl bot ot _~" 2.The dog door and all the win
rst step of 3 use ¢aeq. in the house lock.

' Bitsie can't get outside without

risten Ietﬂ"q her out. The stop tondition is /
almost always the last
step in the use tase.
100 Chapter 2

Download at WoweBook.Com

[n this use ease
Lormat, the external
initiator is always the

yrimar\/ attor. \

John and Tex’s Po@oor

Primary Actor: Tex
Secondary Actor: John

Preconditions: The dog
door is open for Tex to go
outside.

Goal: Tex uses the bathroom
and comes back inside,
without getting wmud

adinside the house.

An\I{-j\mc the ‘5_93\
of a use tase is
explieithy s ted,
\/ou"lc 50{-, your
tlear value-

Extensions

gathering requirements

~.| L
Main Path ’;LQ

1. Tex goes outside. @
2. The dog door closes automatically.
3. Tex does his business.

4. John presses a button.

5. The dog door opens.

6 Tex comes back inside.

7 The door closes automatically.

31 Tex gets muddy.
3.2 John cleans Tex up.

Look for 4,
last sng in fche
main Paﬂl,
the last Sfcpoif

he CXansio,,S_

you are here » 101

Download at WoweBook.Com

the power of use cases

aSharpen your pencl

What'’s the real power of use cases?
L 9

You've already seen how use cases help you build a complete requirements list. Below are
several more use cases to check out. Your job is to figure out if the requirements list next
to each use case covers everything, or if you need to add in additional requirements.

Kristen and Bitsie’s Pog Door
Use Case

1. Kristen enters a code on a keypad.

2. The dog door and all the windows
in the house lock.

Kristen and Bitsie’s Pog Poor
Requirements List

1. The keypad must accept a 4-digit
code.

2. The keypad must be able to lock the

(‘, dog door.

Heve's the vco\ui\rancn{:s
list for Kristen's dog
door. [s an\/'[:hing missing
or intomplete based

on the use case? £

so, write in the extra
rcquivmcn{:s you £hink
the door needs to handle.

Remember Kristen
and Bitsie?

102 Chapter 2

Download at WoweBook.Com

gathering requirements

Holly is chm

s about i with h
Holly and Bruce’s Pog Poor e s 5 e
Use Case Just needs 4o work,

and she’s 3)| set/

1. Bruce scratches at the dog door.

2. The dog door opens.

3. Bruce goes outside.

4. The dog door closes avtomatically.
4. Bruce does his business.

5. Bruce seratches at the door again.
6. The dog door opens up again.

7. Bruce comes back inside.

8. The door closes automatically.

Holly and Bruee’s Pog Poor

Requirements List

1. The dog door must deteet seratching
from a dog.

2. The door should be able to open on a
command (from #1).

<

Is amything missing?
[£'s up to you to

make sure Holly is a
satisfied tustomer.

—— > Answers on page 104

you
Download at WoweBook.Com

are here » 103

from use cases to requirements

aSharpen your pencl

W answers What'’s the real power of use cases?

In each situation below, the use case describes how the dog door should work-but the

requirements aren’'t complete. Here are the things we saw that were missing from the
requirement list, based on the ever-helpful use case.

Kristen and Bitsie’s Pog Poor
Use Case

1. Kristen enters a code on a keypad.
2. The dog door and all the windows

in the house lock. _
R Kristen and Bitsie’s Dog Poor
Requirements List
1. The keypad must accept a 4-digit
This one was a little trickier... code.
use tase doesn't mention This
J;:;Jcm:;ibco jc ot ;c g 2. The keypad must be ab_le to lock the requirement
back in, so veally the use case dog door and all the windows, is incomplete. .
ond Jc:led::ﬂg?;:"’“ h?: o 3. The keypad must be able to vilock— — E”Ef‘:[,,‘“"’z’:‘
intom . Kristen wouldn . ¢
be too happy if she couldn't B The dog door and a" fhe WI”dows lock {he doors
unlotk cvcv‘/{')\ih% would she? in fhe house' 2nd windows.
s — — — — J

Be caveful! Good use tases make for go0d rcquivemcn{:s, but a
bad—or intomplete—use tase tan vesult in BAD rca\uirmcn{'s.’

104

Chapter 2

Download at WoweBook.Com

gathering requirements

Holly and Bruce’s Dog Poor
Use Case

1. Bruce scratches at the dog door.

2. The dog door opens.

3. Bruce goes outside.

4. The dog door closes avtomatically.
4. Bruce does his business.

5. Bruce scratches at the door again.
6. The dog door opens up again.

7 Bruce comes back inside.

8. The door closes automatically.

——

Holly and Bruce’s Pog Poor
Requirewments List

1. The dog door must deteet seratching
from a dog.

2. The door should be able to open on a
command (from #1).

3. The dog door should close
avtomatically.

you are here » 105
Download at WoweBook.Com

ooad&d foolbox

Tools for your 00AZP Toolbox

OOA&D is all about writing great software, and
you can’t do that without making sure your apps do
exactly what customers want them to.

In this chapter, you learned several tools for making
sure your customers are smiling when you show them the
systems you’ve built. Here are some key tools to keep handy:

P HCVC dre
RCO\WV‘CMCV\{:S some of {he
’key tools yo,
earned
Qood rca\uivcmcn{:s ensure Your system < in £ ;‘: . ::;zf
works like your customers expett. .
Make sure Your rcquivcmcn{:s tover all the
steps in the use cases for your system.
Use your use eases +o find out about
{:h'mgs your tustomers (:orgo{: o tell you- we'll bcl .
add'mg o
Your use tases will veveal any incomplete ore Lools to
or missing \rea\uiremcn{;s that you might Fhese other
to add to Your system. categories¥
e ! in the toming
t)\a?{:crs.

00 Basics | \‘) >

F

BULLET POINT&

= Requirements are things your
system must do to work correctly.

= Your initial requirements usually
come from your customer.

= To make sure you have a good
set of requirements, you should
develop use cases for your
system.

= Use cases detail exactly what your
system should do.

= Ause case has a single goal, but
can have multiple paths to reach
that goal.

= Agood use case has a starting
and stopping condition, an
external initiator, and clear value
to the user.

= Ause case is simply a story about
how your system works.

= You will have at least one use case
for each goal that your system
must accomplish.

= After your use cases are complete,
you can refine and add to your
requirements.

= Arequirements list that makes all
your use cases possible is a good
set of requirements.

= Your system must work in the real
world, not just when everything
goes as you expect it to.

= When things go wrong, your
system must have alternate paths
to reach the system’s goals.

¥* Readers of Head Fivst Design Patterns will find these categories

106

Download at WoweBook.Com

Lamiliar... that's because OOAZD and design patterns 90 hand in hand.

Across
4, The main path is sometimes called the

path,
5. A use case must have this (two words) to
the user,
8. Requirements ensure that your system
works
10. In the dog door system, who was the
external initiator?
13 Use coses focusona_______ user

fwm Fida iz here_the dog door has hit its
stop condition,

16, A use cage ig just a list of things thet a
system _.

18. A use case tellz a
System works,

21, Use cages are sageist to understand when
they're in this kind of lanquage.

22. Good use cases make for
requirements.

24, A use case helps you understand how a
system will be _

25. Use cases help you gather

about how a

1. A use case details how a system
with users or other systems.

2. When things go right. you're on this,

3. Use cases are all about the "___" of your
system.

&, Without use cases, you won't know if your
requirements are
7. If you hove four goals in a system, you'll
have at lenst this many use coses.

9. Guod systemswork inthe |

11. Fido does this to signal the start of the dog
door system's use case.

12, When things go wrong, you end up on an

path.
15, Fido isn't part of thig, but hig dog door is.

17. This is what you should do to the customer
to gather an initial get of requirements,

19, How many use cases are there in Todd and
Gina's dog door?

20. Fido was chasing these when he got stuck
outgida.

23. A requirement documents this many needs.

you are here »

Download at WoweBook.Com

gathering requirements

107

exercise solutions

Code Magnets Solutions

The DogDoor class is done, so all you need now is to write a class for
the remote control. We've started this class below, but it’s your job to
finish things up. Using the code magnets at the bottom of the page,

complete the code for the Remote class.

Be careful... you may not need all the magnets.

public class Remote {

private door;

this.door door,

}

public void pressButton() {
System.out.println (“Pressing the remote control button...”);

} else {

door. - OF
} /

| Heve's what's leftover.

108 Chapter 2

Download at WoweBook.Com

gathering requirements

‘c|LE/lARIVIAILIU

&4

[0 o |m 4 [Z [W]

1]

EEEE

ﬂﬂﬂﬂﬂﬂﬂﬁﬂ
T

A

. 50 E
S[T/OIRY] R
N N

you are here » 109

Download at WoweBook.Com

Download at WoweBook.Com

3 requirements Change

I Love You, You’re Perfect...
Now Change

What in the world was T
thinking? I just found out he
doesn't even like NASCAR.

Think you’ve got just what the customer wanted?
Not so fast... So you've talked to your customer, gathered
requirements, written out your use cases, and delivered a killer application.
It’'s time for a nice relaxing cocktail, right? Right... until your customer
decides that they really wanted something different than what they told
you. They love what you’ve done, really, but it's not quite good enough
anymore. In the real world, requirements are always changing, and it’s

up to you to roll with these changes and keep your customer satisfied.

this is a new chapter 111

Download at WoweBook.Com

welcome to paradise

You're a hero!

A nice pifia colada to sip on, the sun shining down on you, a roll of
hundred dollar bills stuffed into your swim trunks... this is the life of a Tired of cleaning up your dog’s mistakes?
programmer who’s just made Doug’s Dog Doors a successful venture. The Bl omeone else to let your dog outside?

door you built for Todd and Gina was a huge success, and now Doug’s
selling it to customers all across the world.

But then came a phone call... fryou s

112

Todd aV\d 6\'\3:)
\\av\i\\\, '\V\{ZC"Y“"{M%

\IO\AY' Va(,a{jow

Chapter 3

Listen, our dog door's
been working great, but we'd
like you to come work on it

Qver
10,000

SO .
Dougs making Doug’s Dog Deors

some sevious butks

with your tode.
* Professionally
installed by our
door experts.

* Patented
all-steel
construction.

* Choose your own
custom colors
and imprints.

* Custom-cut door

Call Doug today at 1'800'998'9938

gedoors that stick when you open them?

some more...

You: Oh, has something gone wrong?

Todd and Gina: No, not at all. The door works just like you said
it would.

You: But there must be a problem, right? Is the door not closin
p g g
quickly enough? Is the button on the remote not functioning?

Todd and Gina: No, really... it’s working just as well as the day
you installed it and showed everything to us.

You: Is Fido not barking to be let out anymore? Oh, have you
checked the batteries in the remote?

Todd and Gina: No, we swear, the door is great. We just have a
few ideas about some changes we’d like you to make...

You: But if everything is working, then what’s the problem?

Download at WoweBook.Com

requirements change

We're both tired of having

to listen for Fido all the time.
Sometimes, we don't even hear him
barking, and he pees inside.

And we're
constantly losing that
remote, or leaving it in
another room. I'm tired of
having to push a button to
open the door.

Todd and Gina’s Dog Poor, version 2.
What the Door (Currently) Does
1. Fido barks to be let out.
2. Todd or Gina hears Fido barking.

3. Todd or Gina presses the button on the
rewmote control.

4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.
6.1. The door shuts automatically.
6.2. Fido barks to be let back inside.
6.3. Todd or Gina hears Fido barking (again).

64. Todd or Gina presses the button on the
remote control.

6.9. The dog door opens (again).
7 Fido goes back inside.

What if the dog door opened
automatically when Fido barked at it? Then,
we wouldn't have to do anything to let him
outside! We both talked it over, and we
think this is a GREAT ideal

you are here » 113

Download at WoweBook.Com

the customer is right

Back to the drawing hoard

Time to get working on fixing up Todd and Gina’s dog
door again. We need to figure out a way to open the
door whenever Fido barks. Let’s start out by...

Wait a minute... this totally
sucks! We already built them a

working door, and they said it was
fine. And now, just because they had
some hew idea, we have to make more
changes to the door?

The customer is always right

Even when requirements change,
you’ve got to be ready to update your
application and make sure it works

like your customers expect. When your
customer has a new need, it’s up to you

to change your applications to meet
those new needs.

K Doug loves it when this
happens, sinte he gets o
tharage Todd and Gina for
the thanges You make.

%v BN
You've just discovered the one constant in software
analysis and design. What do you think that constant is?

114

Download at WoweBook.Com

requirements

The one constant in software analysis and design*

Okay, what’s the one thing you can always count on in writing software?

No matter where you work, what you’re building, or what language you are programming in, what’s
the one true constant that will always be with you?

JOVAHD

(use a mirror to see the answer)

No matter how well you design an application, over time the application
will always grow and change. You’ll discover new solutions to problems,
programming languages will evolve, or your friendly customers will come up

with crazy new requirements that force you to “fix” working applications. Requirements

always change.

@ harpen your Pencil Requi.rements change all the time.... sometimes in y
the middle of a project, and sometimes when you I{ you ve got
& think everything is complete. Write down some
reasons that the requirements might change in gOOc[use cases,

the applications you currently are working on.

t]mough, you can

My tustomer decided that they wanted the application to work diffevently.

usuau.y Cltange
My boss thinks my application would be better as a web application than a desktop app- your SO{tWﬁI'e
o[uickly to ac[just

to those new

requirements.

*|£ \/ou'vc vead Head Fivst Design Patterns, this page might look a bit Lamiliav.
They did such a 9ood job deseribing thange that we detided to just vip off their
ideas, and just CHAN%E a few things heve and theve. Thanks, B)c{:h and Evie!
115

Download at WoweBook.Com

add an alternate path

Add bark recognition to Todd and Gina’s dog door.

Update the diagram, and add an alternate path where Fido barks, Doug’s
new bark recognizer hears Fido, and the dog door automatically opens. The
remote control should still work, too, so don’t remove anything from the
diagram; just add another path where Fido’s barking opens the door.

Gina, open the dog
door... Fido won't
quit barking!

@ Fido barks to be let out

@ Todd or Gina hears Fido barking

@ Todd or Gina presses the button on
the remote control.

116 Chapter 3

Download at WoweBook.Com

requirements change

Woof! Woof!

O
Q

The door shuts automatically

I feel much
better now!

Fido barks to be let back inside.

Again with the
barking! Someone let
Fido back inside.

Todd or Gina hears

Fido barking (again)

@ Fido does his business

Todd or Gina presses
the button on the
remote control

The dog door opens (again) you are here » 117

Download at WoweBook.Com

meeting fido’s needs

Doug’s invented hardware to recognize barks, but it'’s up to you to
Counolea figure out how to use his new hardware in the dog door system.
Exercise g doorsy

sOLU'EiONs Here’s how we solved Todd and Gina’s problem, and implemented their
SR TS bark-recognizing dog door. See if you made similar additions to the diagram.

/V'
Oi\\/
0
v
Dl ¢35
t We need to add _
The bark recognizer
handy—dandy bark @‘hears” a bark
vetognizer to the
dog door- @The bark recognizer
sends a request to the
Most of the diagram door to open
stayed the same... we . te path, we tan
like on the alternate path
"Cid;d E:\Z these e ‘.),::{:st—s{:cy numbers to show these ave
extra steps

on an a"{'ﬁvv‘a{x ?a{.’h

118

Download at WoweBook.Com

requirements change

I feel much

better nowl The door shuts automatically

We also need 3 couylc of
alternate steps heve, too

g ‘ The bark recognizer

“hears” a bark (again)

The bark recognizer
sends a request to the
door to open

@ Fido does his business

Sinte these steps
ave already on an
alternate path,

we need two sub—

step numbers.

Fido barks to be let back inside.

--._____-H

barking! Someone let
Fido back inside.

Todd or Gina hears
Fido barking (again)

Woof! Woof!

O
aQ

\

(L
Again with the

The dog door opens (again)

Download at WoweBook.Com

%
Todd or Gina presses '&
the button on the
remote control
you are here » 119

which path do i follow?

But now my use case is totally
confusing. All these alternate
paths make it hard to tell what in the
world is going on!

Optional Path?
Alternate Path?
Who can tell?

Todd and Gina’s Dog Poor, version 2.1
What the Poor Does

1. Fido barks to be let out.
2. Todd or Gina hears Fido barking.

Th
ar::,w _> 2. The bark recognizer “hears” a bark.
alternate 3. Todd or Gina presses the button on the remote control.

steps for

I~ These ave listed as sub—
steps, but they veally ave
providing a completely
different path through

B\c use tase.

These sub—steps
\Yrov\dc an addihona\
cet of steps that can
be followed.--

..but these sub—steps
I —— aveveally a diffecent
E—— way to work through
the use case.

both #9 > 31.The bark recognizer sends a request to the door to <
and #3. open.
4. The dog door opens.
9. Fido goes outside.
6. Fido does his business.
6.1. The door shuts automatically.
6.2. Fido barks to be let back inside. 1&/‘\
Even the 6.3. Todd or Gina hears Fido barking (again).
altecnate —= 6.31. The bark recognizer “hears” a bark (again).
j\t‘\f”“‘havc 64. Todd or Gina presses the button on the remote
sltecnate control.
steps. 64.1. The bark recognizer sends a request to the door
to open.
6.9. The dog door opens (again).
7. Fido goes back inside.
8. The door shuts avtomatically.
120 Chapter 3

Download at WoweBook.Com

requirements change

I still think this use
case is confusing. It looks
like Todd and Gina always hear Fido
barking, but the bark recognizer only
hears him sometimes. But that's not
what Todd and Gina want...

Do you see what écva\,d .'% {:fa\king
about? Todd and é'ma, s big idea
was that they wouldn't have to
lisken for Fido's barking anymore

Todd and Gina’s Dog Poor, version 2.1
What the Door Does

1. Fido barks to be let out.
= 2.Todd or Gina hears Fido barking.

[n the new use tase, N e
we veally vant tos3y = 2.1. The bark recognizer “hears” a bark.

that cither Step 2 or 3. Todd or Gina presses the button on the remote control.

Step 2 happens- / 3. The bark recognizer sends a request to the door to
“ond then cither Chep 3 Open.
or Step 3.1 happens. 4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.
6.1. The door shuts automatically.
6.2. Fido barks to be let back inside.
Heve, either Skep b3 _——=6.3. Todd or Gina hears Fido barking (again).
or b3] happens.. ——==6.31. The bark recognizer “hears” a bark (again).

64. Todd or Gina presses the button on the remote
and then either b4 / control.

oc bl happens ————— . 641, The bark recognizer sends a request to the door
to open.

6.9. The dog door opens (again).
7 Fido goes back inside.
8. The door shuts automatically.

you are here » 121
Download at WoweBook.Com

write it any way you want to

Use cases have to make sense to you

If a use case is confusing to you, you can simply rewnite it. There are tons of
different ways that people write use cases, but the important thing is that

So let’s rewrite the

Now we've
added a label
to Lell us {:\'\a{:
these steps on
4he lekt ave
part of the
main ya{')\

When there's
only a single step,

wc'|| a|wa_y_s use 1

7

C'Ve oV
it makes sense to you, your team, and the people you have to explain it to. t C:n :(i ﬂ'f SfCPS
use case from page 121 so it’s not so confusing. the ste S on w% of
over here 4, ﬂ’: :;;,1 Path
Todd and Gina’s Pog Poor, version 2.2
What the Door Does

Main Path Alternate Paths
1. Fido barks to be let out.
2. Todd or Gina hears Fido barkinag. 2.1. The bark recognizer “hears” a

bark.
3. Todd or Gina presses the button on the 31. The bark recognizer sends a

remote control. \ (’ request to the door to open.

4. The dog door opens. This is 3 ikl cleaver: ve can
9. Fido goes outside. use Step 2, OR S{f Z%'] and
6. Fido does his business. then Step 3, OR Step =7

that step when —F
we 9o fh\rough
the use case.

These sub—steps

ave optional... you

may {-smc'm b“{/
ou don't have

+o. But Jd\c‘/'"

still on the left,
because they don't
veplate steps on

the main \73{‘,\'\-

122 Chapter 3

6.1. The door shuts automatically.
6.2. Fido barks to be let back inside.

6.3. Todd or Gina hears Fido barking (again). 6.31. The bark recognizer “hears”

a bark (again).
64. Todd or Gina presses the button on the 64.1. The bark recognizer sends a
rewmote control. \ request to the door to open.
6.9. The dog d (again) 4
9. g door opens (again). I

. . ese steps on the vight can
7. Fido goes back inside. replate Steps 63 ang b4
8. The door shuts automatically. You can only {ake one step Lo

work through the wse ¢ase:
either the step on the I:Et
OR the step on the vight.

No matter how you work '
through this use ease, you Il
M end wp a{‘, S{',t? @ on
the main path.

Download at WoweBook.Com

requirements change

If we can really write the use
case however we want, can we make the
bark recognizer part of the main path?

That's really the path we want to follow
most of the time, right?

Excellent idea!

The main path should be what you want to
have happen most of the time. Since Todd
and Gina probably want the bark recognizer
to handle Fido more than they want to use the
remote, let’s put those steps on the main path:

Todd and Gina’s Dog Poor;, version 2.3

What the Door Does
Main Path Alternate Paths
1. Fido barks to be let out.
2. The bark recognizer “hears” a bark. 2.1. Todd or Gina hears Fido barkina.
/ 3. The bark recognizer sends a request 3. Todd or Gina presses the button
to the door to open. on the remote control.
— P 4
Now bhe shers 4. The dog door opens. Ty -
ow . . . odd and Qina won't use th
+hat mvglvc.{:\\c 5 Flldo goes OI.JTSIde.. remote most of the {',,:c' SZ
bavk VCE:S"'Z;“ 6. Fido does his business. the steps velated to the remote
on the man
;:1h inskead of an 6.1. The door shuts automatically. ave better as an alternate path.
alternate path 6.2. Fido barks to be let back inside. ¢ \,
< 6.3. The bark recognizer “hears” a 6.3.1. Todd or Gina hears Fido
bark (again). barking (again).
64. The bark recognizer sends a 64.1. Todd or Gina presses the
request to the door to open. button on the remote control.

6.9. The dog door opens (again).
7 Fido goes back inside.
8. The door shuts automatically.

you are here » 123
Download at WoweBook.Com

getting to the goal

Start to finish: a single scenario

With all the alternate paths in the new use case, there are lots of
different ways to get Fido outside to use the bathroom, and then
back in again. Here’s one particular path through the use case:

Todd and Gina’'s Pog Door, version 2.3 ;#’C"IE“ .
1s diternate
What the Door Does bath, and lek
Todd and éina
Main Path Alternate Paths - J’c*indie °Pcv~_i125
Eath \’aJch/ 1. Fido barks to be let out. / Jch: r: orlcw‘ h
through q p N : : H o
fhis use 2. The bark recognizer “hears” a bark. 2.1, Todd or Gina hears Fido barking. — —
case stavts | 3, The bark recognizer sends a request 31. Todd or Gina presses the button ~
with Step |- 10 the door to open. on the remote control.
4. The dog door opens. (//
5. Fido goes outside. We'll £ake the optional

. . b—path here, where
6. Fido does his business. 1 / ;:u;do";dcs stuek outside.

6.1. The door shuts avtomatically.
6.2. Fido barks to be let back inside.

6.3. The bark recognizer “hears” a 6.3.1. Todd or Gina hears Fido
bark (again). barking (again).
64. The bark recognizer sends a 64.1. Todd or Gina presses the

request to the door to open. / button on the remote control.
6.9. The dog door opens (again). T
7 Fido goes back inside. We've letting Todd and Gina

i handle opening the door
8. The door shuts au’ro/vfu\a’ﬂcauy ey oo e aHberate path

Following the avrows gives you a \

pactieular path Lhrough the use case. You'll always end

A path like this is talled a stendvio up at Step 8, with
Theve ave usually several possible Fido back inside.
stenavios in a single use tase:

124 Chapter 3

Download at WoweBook.Com

tlzer are no

Dumbd Questions

Q: I understand the main path of a
use case, but can you explain what an
alternate path is again?

AZ An alternate path is one or more
steps that a use case has that are optional,
or provide alternate ways to work through the
use case. Alternate paths can be additional
steps added to the main path, or provide
steps that allow you to get to the goal in a
totally different way than parts of the main
path.

Q} So when Fido goes outside and
gets stuck, that’s part of an alternate
path, right?

A: Right. In the use case, Steps 6.1,
6.2, 6.3, 6.4, and 6.5 are an alternate path.
Those are additional steps that the system
may go through, and are needed only when
Fido gets stuck outside. But it's an alternate
path because Fido doesn't always get stuck
outside—the system could go from Step 6
directly on to Step 7.

Q: And we use sub-steps for that,
like 6.1 and 6.2?

AZ Exactly. Because an alternate path
that has additional steps is just a set of steps
that can occur as part of another step on the
use case’s main path. When Fido gets stuck
outside, the main path steps are 6 and 7,

so the alternate path steps start at 6.1 and
go through 6.5; they're an optional part of
Step 6.

Q: So what do you call it when you
have two different paths through part of a
use case?

Well, that’s actually just another kind
of alternate path. When Fido barks, there’s
one path that involves Todd and Gina hearing
Fido and opening the door, and another path
that involves the bark recognizer hearing a
bark and opening the door. But the system
is designed for one or the other—either
the remote opens the door, or the bark
recognizer does—not both.

requirements

Q: Can you have more than one
alternate path in the same use case?

Absolutely. You can have alternate
paths that provide additional steps, and
multiple ways to get from the starting
condition to the ending condition. You can
even have an alternate path that ends the
use case early... but we don’t need anything
that complicated for Todd and Gina’s dog
door.

A COmPlete Patlt tllrouglt
a use case, from the first
step to the last, is called

a §genario.

Most use cases have

several different scenarios,

but tltey always share the

same user goal.

Download at WoweBook.Com

125

alternate paths are optional

126

Use Cases Exposed
This week’s interview:
Confessions of an Alternate Path

HeadFirst: Hello, Alternate Path. We’ve been hearing that you’re really
unhappy these days. Tell us what’s going on.

Alternate Path: I just don’t feel very included sometimes. I mean, you can
hardly put together a decent use case without me, but I still seem to get ignored
all the time.

HeadFirst: Ignored? But you just said you’re part of almost every use case. It
sounds like you’re quite important, really.

Alternate Path: Sure, it may sound that way. But even when I'm part of a use
case, I can get skipped over for some other set of steps. It really sucks... it’s like
I'm not even there!

HeadFirst: Can you give us an example?

Alternate Path: Just the other day, I was part of a use case for buying a CD at
this great new online store, Musicology. I was so excited... but it turned out that I
handled the situation when the customer’s credit card was rejected.

HeadFirst: Well, that sounds like a really important job! So what’s the
problem?

Alternate Path: Well, yeah, I guess it’s important, but I always get passed over.
It seems like everyone was ordering CDs, but their credit cards were all getting
accepted. Even though I was part of the use case, I wasn’t part of the
most common scenarios.

HeadFirst: Oh, I sce. So unless someone’s credit card was rejected, you were
never involved.

Alternate Path: Exactly! And the finance and security guys loved me, they just
went on and on about how much I'm worth to the company, but who wants to
sit there unused all the time?

HeadFirst: I'm starting to get the picture. But you're still helping the use case,
right? Even if you’re not used all the time, you’re bound to get called on once in
a while.

Alternate Path: That’s true; we all do have the same goal. I just didn’t realize
that I could be important to the use case and still hardly ever get noticed.

HeadFirst: Well, just think... the use case wouldn’t be complete without you.

Alternate Path: Yeah, that’s what 3.1 and 4.1 keep telling me. Of course,
they’re part of the alternate path for when customers already have an account
on the system, so they get used constantly. Easy for them to say!

HeadFirst: Hang in there, Alternate Path. We know you’re an important part
of the use case!

Download at WoweBook.Com

Sharpen your pencil

requirements change

K How many scenarios are in Todd and Gina’s use case?

How many different ways can you work your way through Todd and Gina’s use casg?
Remember, sometimes you have to take one of multiple alternate paths, and sometimes

you can skip an alternate path altogether.

Todd and Gina's Doq Poor, version 2.3

What the Door Poes

Main Path Alternate Paths

1. Fido barks to be let out.

2. The bark recognizer “hears” a bark. 2.1. Todd or Gina hears Fido barking. — >
3. The bark recognizer sends a request 31. Todd or Gina presses the button <

to the door to open.

on the remote control.
4. The dog door opens. (/_/

5. Fido goes outside.

6. Fido does his business.
6.1. The door shuts automatically.
6.2. Fido barks to be let back inside.

6.3. The bark recognizer “hears” a 6.31. Todd or Gina hears Fido
bark (again). barking (again).
64. The bark recognizer sends a 64.1. Todd or Gina presses the

request to the door to open./ button on the remote control.

We've written 6.5. The dog door opens (again).
out the steps we 7 Fido goes back inside.

~c°“°“?d ‘i;:‘\g:,u 4 8 Thedoor shuts avtomatically.
stenadvio

above 1o help oet
YOU S‘&’,&Y"{',Cd'

hY

1. ,; 2-’1 3,; 4—1 6; 61 b'; 62-: 63‘, 64-,; 661 7) \ 5

—— Check out our answers on the next page

2 6.
3. 7.
4. 8

N~ You might not need /

all 0‘(" {hcsc blanks.

Download at WoweBook.Com

you are here »

127

one use case, multiple scenarios

aSharpen your pencl
. ahswers

How many scenarios are in Todd and Gina’s use case?

How many different ways can you work your way through Todd and Gina’s use case?
Remember, sometimes you have to take one of multiple alternate paths, and sometimes
you can skip an alternate path altogether.

Todd and ¢ina’s Dog Poor, version 2.3

What the Door Does

Main Path
1. Fido barks to be let out.

2. The bark recognizer “hears” a bark.

3. The bark recognizer sends a request
to the door to open.

4. The dog door opens.

5. Fido goes outside.

6. Fido does his business.
6.1. The door shuts avtomatically.
6.2. Fido barks to be let back inside.

6.3. The bark recognizer “hears” a
bark (again).

64. The bark recognizer sends a
request to the door to open.

6.9. The dog door opens (again).
7. Fido goes back inside.
8. The door shuts automatically.

Alternate Paths

2.1. Todd or Gina hears Fido barking.

31. Todd or Gina presses the button
on the remote control.

6.31. Todd or Gina hears Fido
barking (again).

64.1. Todd or Gina presses the
button on the remote control.

This is just the use
ease’s main path.

1.1, 21,31, 4,5,6, 61,52, b3, b41,65,7, 8

When YOu 'l:akc 5.3.1, y:;u’”
also take Step 6.4.].

LN\

5 1,2,3, 4,5 b bl,b2,b31, b4, 65,7, 8

These two
donl{'. 'bakc /,2_ ') 2) 3) 4—) 5, 6) 7: 6

6.1,2,3 4,5 b,b1,62,b3 64,65, 7,8

the o\ﬂjona\ ~

7. <nothing else>

8. <nothing else>

alternate 3.1,21,3],4,546,7,8

\:‘;h w\:“ 4.1,21,31,4,56bl,b2,63, 64,657, 8
ido o€

stuek outside:

|£ you Lake Step 21, \,ou’\l
always also take Step 3.

128 Chapter 3

Download at WoweBook.Com

Let’s get ready to code...

Now that our use case is finished up, and we’ve figured out all
the possible scenarios for using the dog door, we’re ready to
write code to handle Todd and Gina’s new requirements. Let’s
figure out what we need to do...

Qo ahead and write

in any addihov\a\)
rco\u'nmmcnts that you've
distovered working.
through Lhe stenavios
for the new dogy doov
on page 128.

T think we should recheck our
requirements list against the new use
case. If Todd and Gind's requirements
changed, then our requirements list
might change too, right?

Any time you change your use
case, you need to go back
and check your requirements.

Remember, the whole point of a good
use case 1s to get good requirements. If
your use case changes, that may mean
that your requirements change, too. Let’s
review the requirements and see if we
need to add anything to them.

Todd and Gina’s Pog Door; version 2.2
Requirements List

1. The dog door opening wmust be at least 12~ tall.

2. A button on the remote control opens the dog door

if the door is closed, and closes the dog door if the
door is open.

3. Once the dog door has opened, it should close
automatically if the door isn’t already closed.

Download at WoweBook.Com

requirements

129

evolving the requirements list

Finishing up the requirements list

So we need to handle the two new alternate paths by adding a couple
extra requirements to our requirements list. We’ve gone ahead and
crossed off the steps that our requirements already handle, and it looks
like we need a few additions to our requirements list:

Todd and Gina’'s Pog Door, version 2.3
What the Door Does
Main Path Alternate Paths
Theee ave _—> 2. The bark recognizer “hears” a bark. J\ ,ie'hc»\beh these
veally two 3. The bark recognizer sends a request . o ; J:PS on the
rca\uivc'ncn{:s\ to the door to open. ag v 5 :L"”:}‘(:c Path weye
heve: “hearing’ & The dog door-opeis— on-therewotetumtrot. far' the use
dogs bark, and Sfidogocsoutsile, | We book care the I g oEh in
then opening the ’ . e f most of ¢ last ChaP'[;cv...
dog door. l | tieall 2" these main [50 we've alvead
. o path steps in | handled the
Mwmmmg- Cha?{;cr 2. requirements 4o
6.3. The bark recognizer “hears” a _ _ take tave of these.

These ave bark (again). mmm&dﬂ

diffevent 64 The bark recognizer sends a bw

steps than 2 request fo the door to ope. 64-+-—Todd-or-dimarpresses the

aV\d 3, bu‘t ‘{:\'\C _ﬁmmﬂ_dmnpmm)___ Mmmhmm

rquiv-emcn{:s . .

ave the same Z-Fido-goesback inside:)

as for those 8. The door-shuts-avtonatis:

eavlier steps.

130

Chapter 3

Todd and Gina’s Pog Poor, version 2.3
Requirements List

1. The dog door opening must be at least 12~ tall.

door is open.
3. Once the dog door has opened, it should ¢close
autowmatically if the door isn’t already closed.

Heve ave the £wo new — 4'

rcO\ui\rcmCh{:S we need \
o add to our list.

is barking.

it hears barking.

2. A button on the remote control opens the dog door
if the door is closed, and closes the dog door if the

A bark recognizer wmust be able to tell when a dog

5. The bark recognizer must open the dog door when

Download at WoweBook.Com

Now we can start coding the
dog door again

With new requirements comes new code. We need some
barking, a bark recognizer to listen for barking, and then
a dog door to open up:

(o)
° This is the method in our
software that we want 1o '
have talled every Lime Doug's
havrdware heavrs a bark.

recognize ()

DogDoorSimulator.java

Remember, Fido is
ou‘{',sidc ‘{')\C S\IS{ZC"‘;
so we don,{‘, need an
ob\')cl.{‘, £or him. We
¢an just simulate
him a‘rkin5 n
DogDoorSimula‘th

BarkRecognizer.java

We still need 4o write
the tode for the bark
retognizer. We'll do

that on the next Page.

We dont need awf[:\\'mg new n

‘o elass .
?\:i,\fod for the vetodn

eall, so Lhis tode doesn
thange 3t 3 \

Download at WoweBook.Com

requirements change

Just like the bavrk retognizer
there’s hardware and I
software in the dog door: the
doov itself and Your éode.

DogDoor.java

J

We've 9ot an oFen
\zev
% need to

Even {:hough we've still

. k.
9etting the software {::’ :{: I:/ha?l:h
the tustomer wants, this is 3

90od indication that i
is solid. Nice work/ pour desgn

you are here » 131

recognizing barks

Was that a “woot” | heard?

We need some software to run when Doug’s hardware “hears”
a bark. Let’s create a BarkRecognizer class, and write a

method that we can use to respond to barks:

BarkRecognizer.java

We'll store the dog door that this

bavrk retognizer is attached to in

thi -
public class BarkRecognizer { is member variable.

The BarkRetognizer needs +o know
¢ which door it will open.

public BarkRecognizer (DogDoor door) { E)
this.door = door; V"x time the hav
) bavk, it will eall £

private DogDoor door;

dware hears 5

s method wi
F\ the sound of the bark it hocav-z’.{: h

public void recognize (String bark)

System.out.println (%
bark + “7);
door.open() ;

N

the dog door-

ther are no

Dumb Questions

Q: That’s it? It sure seems like the BarkRecognizer
doesn’t do very much.

A: Right now, it doesn’t. Since the requirements are
simple—when a dog barks, open the door—your code is
pretty simple, too. Any time the hardware hears a bark, it
calls recognize () in our new BarkRecognizer
class, and we open the dog door. Remember, keep things as
simple as you can; there’s no need to add complexity if you
don’t need it.

132 Chapter 3

...and {')\cn open up

{

BarkRecognizer: Heard a ‘" +

7
Al we need 4o do is ou'l:Fu{: a

message lett; th
we heard 3 b:?k..‘ ¢ system know

Q: But what happens if a dog other than Fido is
barking? Shouldn’t the BarkRecognizer make sure it’s
Fido that is barking before opening the dog door?

A: Very interesting question! The BarkRecognizer
hears all barks, but we really don’t want it to open the door
for just any dog, do we? We may have to come back and

fix this later. Maybe you should think some more about this
while we're testing things out.

Download at WoweBook.Com

This is another Requirements List
hardware
r:;ui:c:\cn{: for 1. The dog door opening must be at least 127 tall.

D°“5‘ For now,
we tan use the

simulator to get

i door is open.
3 bavkzr a:\ d % Once the dog door has opened, it should close
“;cci?’:hc s;%warc automatically if the door isn’t already closed.

we weote. —— = 4 Abark recognizer must be able to tell when a dog

requirements change

T think with this new class, we've got
everything we need. Let's test out the
BarkRecognizer and see if we can make
Todd and Gina happy again.

First, let’s make sure we’ve taken care of Todd
and Gina’s new requirements for their door:

Todd and Gina's Dog Poor, version 2.3

2. A button on the remote control opens the dog door
if the door is closed, and closes the dog door if the

is barking.

5. The bark recognizer wmust open the dog door when
it hears barking.

—————————————————

This is the tode)

we Jusf wrote...
i:ZjI:;f: ch cavsa = — Hmmm... ouwr bark rccégbigcr ;ISV\ t r::\‘v
bark? " opens the e £05n'lzin " 3 bark, is ‘LWHZS:YC\:;VE
dog door. the door tor ANY bark. We may

tome batk to this later:

you are here » 133

Download at WoweBook.Com

test drive

Power up the new dog door

Use cases, requirements, and code have all led up to this. Let’s
see if’ everything works like it should.

o Update the DogDoorSimulator source code:

DogDoorSimulator.java

public class DogDoorSimulator {

public static void main(String[] args) { Create the
DogDoor door = new DogDoor () ; BarkRetognizer)
BarkRecognizer recognizer = new BarkRecognlzer(door) 7 tonnett it to
Remote remote = new Remote (door) N the door, and

~—>// Simulate the hardware hearing a bark

We don't have
veal hardware,
so we “ \)“5{3
simulate the
havdware
heaving 3
bavk. ¥

7
We simulate

some time
passing hevre.

134 Chapter 3

lek it listen for

some barking,
System.out.println (“Fido starts barking.”);

recognizer.recognize (“Woof”) 6\
Here’s wheve

System.out.println (“\nFido has gone outside...”); our new
BaTkRCCQSNRV.
System.out.println (“"\nFido’s all done...”); Jf‘“a“ Scfs to
90 into action.
try |

Thread.currentThread () .sleep (10000) ;
} catch (InterruptedException e) { }

We test the
protess when
Fido's outside,
S jusk 4o make sure
cvcry{:hmg wovks
like it should.

System.out.println(“...but he’s stuck outside!”);

// Simulate the hardware hearing a bark again
System.out.println (“Fido starts barking.”);
recognizer.recognize (“Woof”) ;

System.out.println (“"\nFido’s back inside...”);

)\ Notice that Todd and
éma never press a
button on the vemote
Lhis Lime around-

¥The authors of this book sincevely wanted to
intlude havdware that could hear dogs barking..
but markc{:mg msns{‘,s that nobod\/ would bu\/ a
book priced at ’2.'7‘7 . 60 -anwc,

Download at WoweBook.Com

requirements change

Q Recompile all your Java source code into classes.

1o javae *.")ava

DogDoor

DogDoor.class

I[leol &9 Remote.class
ol

leol 19 BarkRecognizer.class
|||m§
oolol

ool
N lial
BarkRecognizer.java oolol
DogDoorSimulator.java DogDoorSimulator.class

6 Run the code and watch the humanless dog door go into action.

File Edit Window Help YouBarkLikeAPoodle

%java DogDoorSimulator

Fido starts barking.
BarkRecognizer: Heard a ‘Woof’

The dog door opens.

Fido has gone outside...

Fido’s all done...

...but he’s stuck outside!

Fido starts barking.
BarkRecognizer: Heard a ‘Woof’

The dog door opens. @%P
Fido’s back inside... P A . N

A (:ew scconds %

pass here
while Fido
\7\8\/5 outside.

- agoharpen your penci

"« Which scenario are we testing?

Can you figure out which scenario from the use case we're testing?
Write down the steps this simulator follows (flip back to page 123 to
see the use case again):

you are here » 135

Download at WoweBook.Com

answers and open doors

When Todd
and Gina press
the button on
the vemote,
Lhis tode

also sets up

a timer to
¢lose the door
automatically:

136 Chapter 3

aSharpen your pencil

'« answers Which scenario

are we testing?

Did you figure out which scenario from the use
\N case we're testing? Here are the steps from the
é@?w [=N N use case on page 123 that we followed:

'I 2') 3' 4‘] g) 6I 6‘) 62') bg} 64-) 66) 7) e

ar \d \t S\ \OWS Up n t\ e S\HIU\aKOI.

Can you figur® out st
is? What wou

Did You figwe out what
washwron with our latest
version of {he dog door?

L/——__/

In our new version of the dog door,
the door doesn’t automatically close!

In the scenarios where Todd and Gina press

the button on the remote control, here’s the
code that runs:

publié void pressButton() {

System.out.println (“Pressing the remote control button...”);
if (door.isOpen()) {

door.close();

} else {
door.open () ;
final Timer timer = new Timer(); Remember, this timer waits
/ timer.schedule (new TimerTask() { % setonds, and the sends 3
O R request to the dog door 4o
-~ = door.close(); tlose itself.
timer.cancel();
}
}, 5000);

}
}

—

Remote.java

Download at WoweBook.Com

requirements change

But in BarkRecognizer, we open the
door, and never close it:

public void recognize (String bark) {
System.out.println (% BarkRecognizer: ” +
“Heard a ‘7 + bark + “7);
door.open() ; ~—
} We open the o
ut never C’OSC it.

BarkRecognizer.java

Doua, owner of Doug’s
DZgSDoors, detides that
he knows c*aCH\/ what
you should do.

Even I can figure this one
out. Just add a Timer to your
BarkRecognizer like you did in the
remote control, and get things
working again. Todd and Gina are
waiting, you know!

What do YOU think about
Doug’s idea?

you are here » 137
Download at WoweBook.Com

duplicated code sucks

138

Even though Lhis is 3
detision, iEs part @
software to wovk like "
wants it to- RCmCM\JC‘r, s

as youre working

use 90od design

£)
on Your SYS em

S ‘(:\AV\

I think Doug's lame. I don't want to
put the same code in the remote
and in the bark recognizer.

dcs'\gn

of aetting the !
et “fusw;v -7
%

¢+;|ona\\£\/~

Duplicate code is a bad idea.
But where should the code
that closes the door go?

Well, closing the door is really
something that the door should

do, not the remote control or the
BarkRecognizer. Why don't we have the
DogDoor close itself?

Let’s have the dog door close
automatically all the time.

Since Gina never wants the dog door left
open, the dog door should always close
automatically. So we can move the code
to close the door automatically into the
DogDoor class. Then, no matter what
opens the door, it will always close itself.

Download at WoweBook.Com

requirements change

Updating the dog door

Let’s take the code that closed the door from the Remote
class, and put it into our DogDoor code:

DogDoor.java

) YOu’H have o

public class DogDoor { imports f.

public void open() { imer ahdo'.ﬁ
System.out.println (“"The dog door opens.”); i

open = true;

add
Java.util.

final Timer timer = new Timer(); <=— L\h;c is the same tode
timer.schedule (new TimerTask() { . z¥df»bem
public void run() { mote;java.

close();<.=_._____ﬁ\‘S

} timer.cancel () ; Now the door ¢tloses

. itself... even if we add
\ }, 5000); new devites that can
open the doov. Nice!

public void close () {
System.out.println (“"The dog door closes.”);
open = false;

}

Simplifying the remote control

You’ll need to take this same code out of Remote now, since
the dog door handles automatically closing itself:

public void pressButton () {)
System.out.println(“Pressing the remote control button...”);
if (door.isOpen()) {
door.close();
} else {
door.open() ;

- - < N L .
fipat—fimer CImer = New Ttmei{——
£imer—scheduletnew—TimerTask—i

eTrmeE

Remote java you are here » 139

Download at WoweBook.Com

test drive the door

A final test drive

You’ve made a lot of changes to Todd and Gina’s dog door
since they first called you up. Let’s test things out and see if
everything works. Make the changes to Remote. java and
DogDoor . java so that the door closes itself, compile all your
classes again, and run the simulator:

File Edit Window Help PestControl

%$java DogDoorSimulator

Fido starts barking.
BarkRecognizer: Heard a ‘Woof’

The dog door opens.

Fido has gone outside...

Fido’s all done...

(—5 The dog door closes.
...but he’s stuck outside!
\{CS! The door is

. Fid tarts barking.
¢losing by iksel§ now: i¢o starts barking

BarkRecognizer: Heard a ‘Woof’
The dog door opens.

Fido’s back inside...
The dog door closes.

What would happen if Todd and Gina decided they wanted the door
to stay open longer? Or to close more quickly? See if you can think of
a way to change the DogDoor so that the amount of time that passes
before the door automatically closes can be set by the customer.

140 Chapter 3
Download at WoweBook.Com

requirements change

Sometimes a cltange n rea[uirenwnts reveals
pro]olems with your system that you didn't
even lmow were there.

Change 1s constant, and your system should
always improve every time you work on it.

- aharpen your pencl

w Write your own design principle!

You've used an important design principle in this chapter related to
duplicating code, and the dog door closing itself. Try and summarize the
design principle that you think you've learned:

Design Principle
- g P
e

You wor't find an answer +o this /‘

le in th chay’ccr, but we've
":?v;c%:co:c batk to this a little

?akcr. Still, take your best 5ucss!

you are here » 141

Download at WoweBook.Com

ooad&d toolbox

142

More

I Tools for your 00A&P Toolbox

*f You’ve learned a lot in this chapter, and now it’s

time to add what you’ve picked up to your OOA&D

toolbox. Review what you’ve learned on this page,

and then get ready to put it all to use in the OOA&D

cross on the next page.

Requivements r

Qood rcquivcucn’cs ensure Your system
works like your tustomers expett.

Make sure Your Y'C‘-'\ui?‘tmth‘{',s tover all the
steps in £he use tases for your sys{-,cm.

Use your use eases +o find out about
things your tustomers (:orgo{ 1o tell you

Your use tases will veveal any intomplete
or missing rcquivemcwts that You migh{',
have 4o add to \Your syr(:cm.

Your rcv\ui\rcmcn{:s will always change (and
grow) over time.

3

00 Peintiples

Encagsula{:c what vavies.

F

Entapsulation helped us vealize that

dog door should handle tlosing ikself. We

sepavated the door’s behavior Trom
vest of the tode in our apy:

Chapter 3

There was
Just one new
requirement
PV‘inCiFlc You
learned, but it's

an i"‘FOV“{Zah‘(: onc!

the

the

Download at WoweBook.Com

BULLET POINT?Q

= Requirements will always change
as a project progresses.

= When requirements change, your
system has to evolve to handle
the new requirements.

= When your system needs to work
in a new or different way, begin
by updating your use case.

= Ascenario is a single path
through a use case, from start to
finish.

= Asingle use case can have
multiple scenarios, as long as
each scenario has the same
customer goal.

= Alternate paths can be steps
that occur only some of the time,
or provide completely different
paths through parts of a use
case.

= [fastep is optional in how a
system works, or a step provides
an alternate path through a
system, use numbered sub-
steps, like 3.1, 4.1, and 5.1, or
21.1,2.2.1,and 2.3.1.

= You should almost always try
to avoid duplicate code. It's
a maintenance nightmare, and
usually points to problems in how
you've designed your system.

requirements change

OOAGD Cross

The puzzles keep coming. Make sure you've gotten all the key
concepts in this chapter by working this crossword. All the
answer words are somewhere in this chapter.

Across Down

2. We made this respensible for closing the 1. If a step is optional, use this in your use
dog door. case.

4, This is who! you follow in o use cuse most of 2 Alwaysovoid ____ code,

the time, 3, A set of steps that don't always oceur in
5. When your use case changes, these often Your use case.

change as well. 7. Do this to things that vary.

6. Requirements always change over . 9. The main path is also called this.

8. We had to add this to our dog door to 10. Every scenario in a use case shares the
satisfy Todd and Gina, some

10. When your system changes, you should

always update this before writing code,

11, Use cases oftenhave

scenaries.

12. Many real-world applications invalve bath
sof tware and this.

13, The one constant in sof tware analysis and
desian.

you are here » 143

Download at WoweBook.Com

exercise solutions

-3

Exegcise
SoLutions

DoeDbloor
mnamﬂnﬂm
‘7]z M|

L
.
EEEEEHEEEEEE
T
EHHHEEEEEEEEEH

T

1|
c
Al
bd
E|
D

N
<
A b
& YisEclals
s s
ululTizlelLlE]

& R

A 6

&

L

T

o
ARIDWARE EEEEEE
L

144 Chapter 3

Download at WoweBook.Com

4 analysis

Taking Your Software
into the Real World

T think I'm
finally ready!

It’s time to graduate to real-world applications.
Your application has to do more than work on your own personal
development machine, finely tuned and perfectly set up; your apps
have to work when real people use them. This chapter is all about
making sure that your software works in a real-world context. You'll
learn how textual analysis can take that use case you've been
working on and turn it into classes and methods that you know are what
your customers want. And when you’re done, you too can say: ‘I did it!

My software is ready for the real world!”

this is a new chapter 145

Download at WoweBook.Com

it’s a dog-loving world

One dog, two dog, three dog, four...

Things are going well at Doug’s Dog Doors. The version of the dog door you

just developed in Chapter 3 is selling like crazy... but as more doors get installed,
complaints have started coming in:

T loved your new model, with the bark
recognizer. But now that you've got it installed at
my house, it opens up every time the neighbors’

dogs bark. That's not what I wanted when T
bought this thing!

Rowl!f! Rowlf!
()

Ho\\\f’s dogy door
should only open when
Brute barks.-

~but is openin

up when gl| ‘{:hca @
& O'l:hcv- doas in .l:hc
neigborhood bark, too. ©
Ruff! Ruff!

N o

Yip! Yip!
O #

Q i
X
>

Download at WoweBook.Com

146 Chapter 4

Your software has a context

So far, we’ve worked on writing software in a vacuum, and
haven’t really thought much about the context that our

software is running in. In other words, we’ve been thinking
about our software like this:

[n the \ver(:cc‘c
world, everyone
uses ouwr
software \')us{:
like we expeet

them to-

Ever

—d<>5

The Perfect World < "¢19hborhoods he.

analysis

fhcrcy::c i::ﬂi""éd; and Aﬂal)’SiS llel])s

yOU eénsure

But our software has to work in the real world, not just your SYStem

in a perfect world. That means we have to think about our
software in a different context:

I s eonbert
{',\'\'\V\Ss 0o wiron9 a

works in a

ot move often real-worlJ
~_)
context.

s = |n the veal world, theve ave

T dogs, eats, vodents, and a host
of other problems, all set to
The Real World strew up Yyour software.

The key to making sure things work and that the real world
doesn’t screw up your application is analysis: figuring out
potential problems, and then solving those problems—before
you release your app out into the real world.

you are here »
Download at WoweBook.Com

147

what’s going wrong?

Identify the problem

The first step in good analysis is figuring out potential
problems. We already know that there’s a problem when
there are multiple dogs in the same neighborhood:

ote \\\\\\\\\

’ f We alrcady
Ho"\/ tan use her \ " - have ¢lasses for
vemote tontrol to all the Parts

O‘F the SYS":Cm
= that ve need.

open the door... no
problems heve.

Rowl!f! Rowlf! 4

BarkRecognizer
The bark rccosmu\r/ T

heavs Brute and opens
the doov,) whieh is)us{;
what Ho“\/ wants-

ﬁ Aroooo!

o

But here's the
problem... the bark
vetognizer also hears

O
other dogs, and opens
the doovr for them, too. Ruff! Ruff!
Yip! Yip!
©

0 vy
i g .j. ‘-

Download at WoweBook.Com

148 Chapter 4

analysis

Plan a solution

It looks like there’s a change we need to make in what our
system does. Do you know what it is? Below is a part of the 1)
diagram detailing how the dog door system works: o

Bruce, I'm
opening the door...
hang on a sec.

Brute has taken Fido's
place... better update
Your diagram a bit.

The vemote is part 0‘(:
the alkernate path in

the latest €50 2 @) oty hears 8
o y hears Bruce
{he dog door: barking

M Holly presses the
® button on the remote
Rowlf! Rowlf!

control

/

DO

@ Bruce barks to be let out

The bark vee ognizer @ The bark recognizer \ / @The dog door opens

is part of the main hears” a bark _ (® Bruce goes outside
path, and it’s ICH;'.,.S in / ®) The bark recognizer
all dogs, not Jus{ the sends a request to the

owner’s dog, door to open

--------------- QGRONATDN YOU PRI v

"« What's wrong with this diagram?

It's your job to figure out how you would fix the dog door. You
can add steps, remove steps, or change steps... it's up to
you. Write down what you think you need to change, and then
mark your changes on the diagram above.

you are here » 149

Download at WoweBook.Com

adding the missing step

Sharpen your peni
"N answers

What's wrong with this diagram?

Bruce, I'm
opening the door...
hang on a sec.

@ Holly hears Bruce /

barking @ Holly presses the

button on the remote

Rowlf! Rowlf! control

a © ‘ J

@ Bruce barks to be let out

— 7
The bark recognizer \ @The dog door opens
® “hears” a bark /

@ Bruce goes outside
The bark retognizer hears A ®m fizer
all dogs, which is OK... but a request to the
it's the next step that’s door to open

Causing & problem. ® Ifit's Bruce barking,

/ send a request to the
door to open
In step 3, the bark g’

vetognizer needs

evaluate the bark it heavs I the bark is Bruce's,

and see if it's Brute, or the bark vecognizer ean

some other dog send an open vequest to
the dog door-

150 Chapter 4

Download at WoweBook.Com

t]aer are no

Dumb Questions

Q: | came up with a different solution.
Does that mean my solution is wrong?

A: No, as long as your solution kept all the
dogs except for Bruce from going in and out of
the dog door. That's what makes talking about
software so tricky: there’s usually more than one
way to solve a problem, and there’s not always
just one “right” solution.

Q- In my solution, | turned step 3 of the
original use case into two steps, instead of
just replacing the existing step. Where did | go
wrong?

You didn’t go wrong. Just as there is
usually more than one solution to a problem, there
is usually more than one way to write that solution
in a use case. If you use more than one step,
but have the scenario with other dogs barking
handled, then you've got a working use case.

Q: So these use cases really aren’t that
precise, are they?

AI Actually, use cases are very precise. If
your use case doesn’t detail exactly what your
system is supposed to do, then you could miss
an important requirement or two and end up with
unhappy customers.

But, use cases don't have to be very formal; in
other words, your use case may not look like
ours, and ours might not look like anyone else’s.
The important thing is that your use case makes
sense to you, and that you can explain it to your
co-workers, boss, and customers.

analysis

Write your use cases in
a way that makes sense
to you, your lgo_ss, and
your customets.

Analysis and your use
cases let you show
customers, managers,
and other Jevelo]oers
how your system works
in a real world context.

, RANN

PQwEWw

There’s an important addition that needs to be made to the dog
door system, in addition to what's shown on page 150. What is it?

151

Download at WoweBook.Com

keep your use case up to date

Update your use case

Since we’ve changed our dog door diagram, we need to go
back to the dog door use case, and update it with the new
steps we’ve figured out. Then, over the next few pages, we’ll
figure out what changes we need to make to our code.

)
We've vemoved all the vefeventes
to specific owners and dogs, so
now this use ase will work for

all of Doug's tustomers.

The Ultimate Pog Poor, version 2.0

?;TI; o e What the Door Does
us \\‘t\\
¢ Alternate Paths

owner's dogn Main Path
from now o1 The owner’s dog barks to be let out.

2. The bark recognizer “hears” a bark.

> 3Ifit’s the owner’s dog barking, the
Hevre is the bark recognizer sends a request to
updated step the door to open.

that deals
with only 4. The dog door opens.

allowing the 5. The owner’s dog goes outside.

owner's dog 6. The owner’s dog does his business.
in and out

the door. 6.1. The door shuts automatically.
6.2. The owner’s dog barks to be let
back inside.
6.3. The bark recognizer “hears” a
Don't «Covsg bark (again).
noe \S
ﬁbi:iv?bo. —— 64 If it’s the owner’s dog barking,

the bark recognizer sends a
request to the door to open.

6.9. The dog door opens (again).
7. The owner’s dog goes back inside.
8. The door shuts automatically.

2.1. The owner hears her dog
barkinag.

3. The owner presses the button
on the remote control.

6.2.1. The owner hears her dog
barking (again).

64.1. The owner presses the
button on the remote control.

Instead of
Todd and
éina, or Ho“\/,
let’s Just use

“The owner.”

152 Chapter 4

Download at WoweBook.Com

analysis

Don't we need to store the
owner's dog's bark in our dog door?

Otherwise, we won't have anything
to compare to the bark that our
bark recognizer gives us.

We need a new use case to
store the owner’s dog’s bark.

Our analysis has made us realize we need
to make some changes to our use case—
and those changes mean that we need to
make some additions to our system, too.

If we’re comparing a bark from our bark
recognizer to the owner’s dog’s bark, then
we actually need to store the owner’s
dog’s bark somewhere. And that means
we need another use case.

~ agSharpen your pencil
"« Add anew use case to store a bark.

You need a use case to store the owner’s dog’s bark; let’s store the
sound of the dog in the dog door itself (Doug’s hardware guys tell
us that’s no problem for their door technology). Use the use case
template below to write a new use case for this task.

The Ultimate Dog Door, version 3.0 Since this is
. our setond use

Storingadoghbark —— £ .. o
You should need it GCCordins fco
?l\l a‘flo Sf:\’s _— 1' what it destribes.

or 1S w

tase, and {:hcvc\
aven't any .
alternate paths
to worry about.

you are here » 1563

Download at WoweBook.Com

a new use case

— aSharpen your pencil

'« ANSWEerS Addanew use case to store a bark.

You need a use case to store the owner’s dog’s bark; let’s store the
sound of the dog in the dog door itself (Doug’s hardware guys tell us
that's no problem for their door technology). Use the use case template

below to write a new use case for this task.

We don't need to know the

exact details of this, sinte

it's a hardware issue. —
1. The owner’s dog barks “into”

The Ultimate Pog Poor, version 3.0
Storing a dog bark

the dog door.

2. The dog door stores the

This is what we need to / _OMLMGJ.QQ:S_baYk-

do... add 3 method 4o

DoyDoor to store the

owncv’s dog’s bark.

J[LGT qre no

............................ Dum Q/uestiQnS

Q,- Is this really the result of good
analysis, or just something we should
have thought about in the last two
chapters?

Q: Do we really need a whole new
use case for storing the owner’s dog’s
bark?

Yes. Each use case should detail
one particular user goal. The user goal
for our original use case was to get a dog
outside and back in without using the
bathroom in the house, and the user goal of
this new use case is to store a dog’s bark.

Probably a bit of both. Sure, we
probably should have figured out that we
needed to store the owner’s dog’s bark
much earlier, but that's what analysis is
really about: making sure that you didn’t

Q,: How are we representing the
dog’s bark?

A: That’s a good question, and it's one
you're going to have to answer next...

Since those aren’t the same user goal, you
need two different use cases.

154 Chapter 4

forget anything that will help your software
work in a real world context.

Download at WoweBook.Com

analysis

% Design Puzzle

You know what classes you already have, and you’ve got two use cases
that tell you what your code has to be able to do. Now it’s up to you to
figure out how your code needs to change:

Your task:

Add any new objects you think you might need for the new dog door.

Add a new method to the DogDoor class that will store a dog’s bark, and
another new method to allow other classes to access the bark.

If you need to make changes to any other classes or methods, write in those
changes in the class diagram below.

© 0 00

Add notes to the class diagram to remind you what any tricky attributes or

operations are used for, and how they should work.
/_ MPda{‘ D°5Doolr o
1 SMFPOV{; {:he new
We used ¢lass diagrams new use
" Chavter |; they DogDoor tase we detailed op,
back in Lhap? level Page /54
dhow he basic ode-le open: boolean ‘
Lons{:\‘uﬂ{'ts in Yyour ary:

<o

Remember, these Remote
are the a{:{ribu&sl door: DogDoor
of your tlass, which g

usua”\/ mateh up

with the elass’s pressButton()
member variables...

open()
close()
isOpen(): boolean

BarkRecognizer

door; DogDoor

.and these ave the
tlass’s o\?cra{\ov\s,
whith ave usually the
tlass’s publie methods-

recognize(String)

/

Remember, Doug’s
hardware sends
the sound of the
turvent dog's bark
to this method.

you are here » 155

Download at WoweBook.Com

fixing the dog door |7 inthes of vaw

Apple and Intel power:

A tale of two coders

There are lots of ways you could solve the design puzzle on page 155.
In fact, Randy and Sam, two developers who Doug’s Dog Doors just
hired, both have some pretty good ideas. But there’s more at stake
here than just programmer pride—Doug’s offered the programmer
with the best design a sparkling new Apple MacBook Pro!

Randy: simple is best, right?

Randy doesn’t waste any time with unnecessary code. He
starts thinking about how he can compare barks:

Bark sounds are just
Strings, so T'll store a String for
the owner's dog's bark in DogDoor, and
add a couple of simple methods.
Piece of cakel

R’andy adds an
allowedBark vayih)

_ e to
his D °3D oor ¢lass.

public class DogDoor {

private boolean open;
private String allowedBark; @J

public DogDoor () {
open = false;

}

public void setAllowedBark (String bark) {
this.allowedBark = bark;

' \ This handles setting

+he bark, which was
public String getAllowedBark() {

what our new use tase
return allowedBark;
} fotused on.

/) etc Other classes ¢an get

} the owner’s dog's bavrk DogDoor
with this method.

open: boolean
allowedBark: String

open()
close()
)) __—> |isOpen(): boolean
Heve's Randy's clas setAllowedBark(String)
getAllowedBark(): String

diagyram for DogDooY-

156 Chapter 4

Download at WoweBook.Com

analysis

Sawm: object lover extraordinaire

Sam may not be as fast as Randy, but he loves his
objects, so he figures that a new class devoted to
dog barks is just the ticket:

T've got the power
of objects!

Sam plans to store
Samsnew |} — = Bark the sound of 3 do i

Bavk tlass. . Bark as a S'l:\ring in
sound: String <———————— his new Bark ¢)as..

getsound(): Strlng < ...a method to return
equals(Object bark): boolean | the sownd of the Bark..

\ ..and an cquals() method
1o allow other ob\')cc’cs to
tompave +wo Bark instantes.

% harpen YOUI' Peng“ Writing code based on a class diagram
N is a piece of cake.

|
L]

You've already seen that class diagrams give you a lot of information
about the attributes and operations of a class. Your job is to write
the code for Sam’s Bark class based on his class diagram. We've
written just a bit of the code to help get you started.

public class {
private ;

public () |
this. = ;
}

public 0 A

if | instanceof) |
Bark otherBark = () ;
if (this. .equalsIgnoreCase (.)) |

return ;

return ;

you are here » 157

Download at WoweBook.Com

writing the Bark and DogDoor classes

aSharpen your pencil
. answers

Your job was to write the code for Sam’s Bark class based on his
class diagram. Here’s what we did:

Writing code based on a class diagram
is a piece of cake.

Sam'’s Bavk ¢)ass
diagram.

4

Bark
Just like Randj public class .BL { sound: String
did, Sam is wsing private S’rrmg sound ; -
2 Shring 4o getSound(): String
stove the ac‘cval/y public Bark (String sound) equals(Object bark): boolean
bark sound.- this. gound = sound ;
}
bu{: he’s —7
:’o'::‘;?‘ui {n"; public String getSound () ¢ Sam is Planning on othey ¢las
[} . S|
Bark ohjet return sound ; z‘:’fsa’cmg Bark comparison 4,
) e Bark elass’s €qualsO) methog.
public boolean equals (_ Object bark) 1 bhed
if (bark instanceof Bark) ‘(_\ makes sure it has
Bark otherBark = (Bark) bark ; another Bark
if (this. sound .equalsIgnoreCase (0therBark . sound)) ¢ ob‘)gc{; +o compare
return frue ; |{SCI‘F agains‘b..
} --and then
} Compares the fyo
return false ; ark sounds.

Sawm: updating the Dogloor class

Since Sam created a new Bark object, he takes a
slightly different path than Randy did in updating
his version of the DogDoor class:

Caw's version of

DogDoor stoves 3

(Sam’s) DogDoor Bark ob\')cc{;, not

(Randy’s)

DogDoor

open: boolean
allowedBark: Bark

just a String sound- [open: boolean

allowedBark: String

getAllowedBark()(Bark) with Bark objects,
not Sfrihgs.

158 Chapter 4

Download at WoweBook.Com

open() open()

close() close()

isOpen(): boolean Sam’s get and set isOpen(): boolean
setAllowedBark(Bark) operations dega setAllowedBark(StringD

getAllowedBark():Stringy

~_ 7

analysis

Comparing barks

All that’s left to do is add a comparison of barks into BarkRecognizer’s
recognize () method.

Randy: I'll just compare two strings Thgc iryment
sén

When the BarkRecognizer class gets a signal from the vecognize() s 5
hardware that a dog 1s barking, it also gets the bark, and Sﬁ'i"ﬁ with the

compares it to what’s stored in the door: doy’s bark.
public class BarkRecognizer ({ Compare khe bark we
. : . . £ from the vetognizer
public void recognize (String bark) { 9e ko the bavk
System.out.println (% BarkRecognizer: ” hardware
“Heard a ‘” + bark + “/7); skoved in the door-

if (door.getAllowedBark () .equals(bark)) {
door.open() ;
} else {
System.out.println(“This dog is ” +
“not allowed.”);

// etc

Sam: I'll delegate bark comparison

Sam is using a Bark object, and he lets that object Sam has £, hardwa
take care of all the sound comparisons: "

guys make sure he gets
sent 3 Bark object now,
public class BarkRecognizer { /_‘ ho{:Jus{; the S{:riha
bark sound, like Randy.
public void recognize (Bark bark) ({
System.out.println (" BarkRecognizer:
“Heard a ‘” + bark.getSound() + “'");
if (door.getAllowedBark () .equals(bark)) {
door.open() ;

”

Saw's tode lets the bavk

stored in the DogDoor ha"d,\e } else {
tomparisons: ths BarkRecognizer System.out.println(“This dog is not allowed.”) ;
delegates bark comparison o }
fhe Bark dbject }
// etc

you are here » 159

Download at WoweBook.Com

Delegation Detour

Pelegation in Sam’s dog door:
an in-depth look

Sam is doing something very similar in his Bark and
DogDoor classes. Let’s see exactly what’s going on:

Q The BarkRecognizer gets a Bark to evaluate.

Doug’s hardware hears a dog barking, wraps the sound of
the dog’s bark in a new Bark object, and delivers that Bark
instance to the recognize () method.

oo @ _—> Bark _—>
; / ’(— Y|p| e
Doug's hardware hears a — / BarkRecognizer

dog barking, and ereates The dog’s bark is pg
. ! d
a new Bark °b\)cc+" into recognize(). e

e BarkRecognizer gets the owner’s dog’s bark from DogDoor

The recognize () method calls getAllowedBark () on the dog door it’s
attached to, and retrieves a Bark object representing the owner’s dog’s bark.

l class
DoaDoor.

getAllowedBark ()

BarkRecognizer DogDoor

Bark 4o d Luens the
The dog door veturn

ROWIfI K Bavk ob:)cc{: rc‘yrcscn{ing
Lhe owner's dog’s bark.

160 Chapter 4

Download at WoweBook.Com

e BarkRecognizer delegates bark comparison to Bark
The recognize () method asks the owner’s dog’s Bark object to see
if it is equal to the Bark instance supplied by Doug’s hardware, using

Bark.equals().

Hey there, allowedBark. Can you see if this
other Bark that I have matches you? I really
don't know much about what makes Barks the
same, but T'll bet that you do.

.

rccogniz_c() ealls cc\uals() on the
allowed bark, and passes it in the
bark from Doug’s havdware.

e Bark decides if it’s equal to the bark from Doug’s hardware
The Bark object representing the owner’s dog’s bark figures out if it is equal to

the Bark object from Doug’s hardware... however that needs to happen.

It really takes one Bark to understand another
Bark, you know? So let's see if we're really equal.

/

Bark
Rowlf!

You got that right. Let's compare properties.

N

vk to handle Com"arisov\s... _j

s wp to Ba
oy ust tell the ob)ct{ that called

hen |
nd ‘“L) hese two bavks ave the same.

ga\ua\s() !

Download at WoweBook.Com

Delegation Detour

We'll come back to Sam and
Rahdy‘s a'l:‘l:emps to win the
MaeBook Pro onte we've

90t a handle on dc,ega‘l:ion-

of how this
appens 3¢
tom
\\":dan feom all the
other dbjects {.“c
dogy door 3?\’“3)(“0“'

The dc{;a'\\s
Yar\SOV\ h

Bark
~VYipl

you are here » 161

Delegation Detour

The power of loosely
coupled applications

In Chapter 1, we said that delegation helps our
applications stay loosely coupled. That means that
your objects are independent of each other; in
other words, changes to one object don’t require
you to make a bunch of changes to other objects.

By delegating comparison of barks to the

Bark object, we abstract the details about

what makes two barks the same away from the
BarkRecognizer class. Look again at the code
that calls equals () on Bark:

public void recognize (Bark bark) {
System.out.println (% BarkRecognizer:

“Heard a '” + bark.getSound ()
(door.getAllowedBark () .equals (bark))

door.open () ;

} else {

if

System.out.println(“This dog is not allowed.”);

}

Now suppose that we started storing the sound
of a dog barking as a WAV file in Bark. We’'d
need to change the equals () method in the
Bark class to do a more advanced comparison
of sounds and account for the WAV files. But,
since the recognize () method delegates bark
comparison, no code in BarkRecognizer
would have to change.

So with delegation and a loosely coupled
application, you can change the implementation
of one object, like Bark, and you won’t have to
change all the other objects in your application.
Your objects are shielded from implementation
changes in other objects.

162

+ \\r//) .
’

”

{

The details of how
ct\uals() wovks are
shielded away Lrom the
rccogniu() method.

Delegation shields
your ol)jects from
implementation cltanges

to other ol)jects n your
software.

Download at WoweBook.Com

analysis

Back to Sam, Randy, and the contest...

With Randy’s quick solution, and Sam’s more object-oriented one, let’s see
how their applications are working out:

Remember,

Randys bark ;
]
¥ing, and Sz’ S is an ol::jcc{:

Randy's eode ")us{: does some
sim?lc S‘br'mg tompavison. 2
if (door.getAllowedBark (
.equals (bark))
door.open() ;
}

if (door.getAllowedBaﬂ(()
.equals (bark)) {
door.open() ;

Rowlf' Rowlf!

-—__ (1] }

Sam'’s tode uses objeets and
chcga'(:ion to 56{ the Job done.

Randy ANPD Saw: I+ works!

Both Randy and Sam ended up with a working
dog door that let in only the owner’s dog.

We both got it right? So
who won the laptop?

you are here » 163

Download at WoweBook.Com

dog doors and the real world

Maria won the MacBook Pro!

To both Randy and Sam’s surprise, Doug announces
that Maria, a junior programmer he got to work for the
company as a summer intern, has won the laptop.

This is Mavia. Tey not to hate
her gu{:s 4oo muth... ma\/bc you
tan borrow her MaeBook Pro

when she's on vatation.—— s

Randy: Oh, this is ridiculous. My solution worked! That
laptop is mine, not some intern’s!

Sam: Whatever, man. My solution worked, too, and I used
objects. Didn’t you read Head First Java? An object-oriented
solution 1s the way to go... the laptop’s mine!

Maria: Umm, guys, I don’t mean to interrupt, but I'm not
sure either one of your dog doors really worked.

Sam: What do you mean? We tested it. Bruce barked,
“Rowlf!” and the door opened up... but it stayed shut for the
other dogs. Sounds like a working solution to me.

Maria: But did you do any analysis on your solution? Does
your door truly work in the real world?

Randy: What are you talking about? Are you some sort of
philosophy major? Is this like a “there is no spoon” sort of
thing?

Maria: No, not at all. I'm just wondering... what if Bruce
were to make a different sound? Like “Woof™ or “Ruff™?

Sam: A different sound? Like if he’s hungry...
Randy: ...or excited...

Maria: ...or maybe... he really needs to get outside to use the
bathroom. That’s, ummm, sort of how things work in the real

Rawlf! Rawlf!

Randy and Sam: I guess we hadn’t thought about that...) @
O

world, isn’t it?

Rooowlfl
Brute is a complex, sensitive
a::na\ that communicates through —
the subleties of bark—ese, using
mﬂcc{wh and Cnunclahon to 56{',

164 Chapter 4 his point acvoss.

Download at WoweBook.Com

analysis

So what did Maria do differently?

Maria started out a lot like Sam did. She created a Bark object to
represent the bark of a dog

T knew objects and
delegation were
important!

Bark
sound: String

getSound(): String
equals(Bark): boolean

Maria knew she'd need

deleaation via the equals()
method, ‘)us{: as Sam did.

But Maria went even further: she decided that since a
dog might have different barks, the dog door should
store multiple Bark objects. That way, no matter how
the owner’s dog barks, it still gets outside:

DogDoor

Here’s wheve Marvia really ;
went down 3 diffevent

Path. She decided that

the dog door should store

movre than Just one bark
')
since the owner

bark in diffeve

open: boolean
allowedBarks: Bark [*]

open()
close()
isOpen(): boolean
addAllowedBark(Bark)
getAllowedBarks(): Bark [*]

s dog ¢an
nt ways.

Wondexing about this
astevisks? Cheek this out--

ﬁ UML Up Clase <
Anytime you see brackets, it

We’ve added something new to our class diagrams: indicates the mulipli ty of an

attribute: how many of a tevtain
&— type that the attribute can hold.

allowedBarks: Bark [#]
S

The Lype of the allowedBarks And this asterisk means that
attribute is Bavk. allowedBarks ¢tan hold an unlimited
numbeyr o\c Bavk obJecfs.

you are here » 165

Download at WoweBook.Com

the use case tells you what to do

How in the world did you know
to store multiple barks? I never
would have thought about a dog
having multiple barks.

Randy's not theilled
he lost either, but
Liaures Mavia mig\\{:
be his ticket to
winning the V_CL{}
Yvog\ramming Lov\{:cs{:-

The Ultimate Dog Poor, version 30

It's right here
in the use case...

We've Foéusing on our
main use tase here, not
'l:hc.new one we developed
earlier in this chapter.

Opening/closing the door

Main Path
1. The owner’s dog barks to be let out.
2. The bark recognizer “hears” a bhark.

[+'s the dog that is
the fotus here, ot
just specifie bark.

3. If it’s the owner’arking, the
bark recognizer sends a request fo
the door to open.

4. The dog door opens.

5. The owner’s dog goes outside.

6. The owner’s dog does his business.
6.1. The door shuts automatically.

6.2. The owner’s dog barks to be let
bhack inside.

6.3. The bark recognizer “hears” a
bark (again).

64 If it's the owner’s dog barking,

cmemmiiicawv anuadaa

166 Chapter 4

Alternate Paths

2.1. The owner hears her dog
barking.

31. The owner presses the button
on the remote control.

I, version 3.0

6.31. The owner hears her dog
barking (again).

64.1. The owner presses the
button on the remote control.

Download at WoweBook.Com

Pay atfention o the nouns in your use case

!Vlaria’s figured out something really important: the nouns
in a use case are usually the classes you need to write and

focus on in your system.

use case below. Then, in the blanks at the bottom of the page, list all the

@ harpen your Pencil Your job is to circle each noun (that’s a person, place, or thing) in the
2N

analysis

nouns that you found (just write each one a single time; don’t duplicate any
nouns). Be sure to do this exercise before turning the page!

The Ultimate Dog Poor, version 3.0

Opening/closing the door

Main Path
1. The owner’s dog barks to be let out.
2. The bark recognizer “hears” a bark.

“dog" is a nown (o‘,

>
you tould cirele 3,If it’s the owner'{dogarking, the
Cumer's dog") bark recognizer sends a request to
the door to open.

4. The dog door opens.

5. The owner’s dog goes outside.

6. The owner’s dog does his business.
6.1. The door shuts automatically.

6.2. The owner’s dog barks to be let
back inside.

6.3. The bark recognizer “hears” a
bark (again).

64. 1f it’s the owner gdogyarking,
the bark recognizer sends a
request to the door to open.

6.5. The dog door opens (again).
7 The owner’s dog goes back inside.
8. The door shuts automatically.

Alternate Paths

21. The owner hears her dog
barking.

31. The owner presses the button
on the remote control.

6.31. The owner hears her dog
barking (again).

64.1. The owner presses the
button on the remote control.

—

Write the nouns
that You tivetled
in ‘H\c use £ase in

these blanks.

v

you are here » 167

Download at WoweBook.Com

noun analysis

L7 h(lrpen your Peﬂdl Your job was to circle each noun (that’s a person,

place, or thing) in the use case below. Here’s the

:'-\ aVlSWQI'S use case with all the nouns circled.

The Ultimate Dog Poor, version 3.0
Opening/closing the door

Main Path Alternate Paths
1. The owner'dogyarks to belet out.
2. Tnpark recognizery hears” 2.1, Thaqwwerpears hexoa)

barking.
3.1 it’s the owner Sdogbarking, the 31. Thigowwer presses th€butTon
CHark recognizersends a€equesPro on the@emote confrol
th€doorYo open.
4. Theog door ppens.
5, The owner sdog noes@uiside)

6. The owner 'sdaaroes his business.
6.1. Theooprshuts avtomatically.
6.2. The owner ‘s@ogibarks to be let

backTnsider
6.3, Th&bark recognizep“hears” a 6.31. Themumer-hears her@TS
again). barking (again).
64 If it’s the owner 'sogharking, 64.1. TheGunerpresses the
théhark recognizepsends a AGTToten thedEMOTECORTTOL: »
@eguesdto the@aapto open

6.5. Thpens (again)
7 The owner 'sdomyoes back inside.

8. Thédgor shuts automatically.

/

the (owner’s) dog bark recognizer dog door
the owner request remote control
the button inside/outside bark

Here are all the nouns we

tivetled in the yse tase.

168 Chapter 4

Download at WoweBook.Com

OK, T get it..

are the classes
system.

almost all of these nouns

in my

analysis

Maria: That’s right. That’s how I figured out I needed a
Bark class... it showed up in the use case as a noun in Steps 2
and 6.3. So I created a Bark class.

Randy: So that’s where I went wrong... if I had looked at the
use case and circled the nouns, I would have known to create

a Bark class, too.

Maria: Probably. A lot of times, even if I think I know what
classes I need, I double-check my ideas with the nouns in my

use case to make sure I didn’t forget anything.

Sam: But you don’t need a class for some of those nouns, like

“the owner” or “request,” or even “inside.”

Maria: That’s true...

sense, and understand the system that
you’re building. Remember, you need

classes only for the

parts of the system you

have to represent. We don’t need a class for

“outside” or “inside” or

our software doesn
things.

“the owner” because

’t have to represent those

Randy: And you don’t need a class for
“the button” because it’s part of the remote
control—and we already do have a class for

that.

Sam: This is all great, but I was just

thinking... I came up with a Bark class, too,
and I didn’t need the use case to figure that

out.

Maria: Yeah... but then you didn’t end up
with a dog door that really worked, did you?

Sam: Well, no... but that’s just because you
stored more than one Bark object in the
dog door. What does that have to do with

the use case?

Download at WoweBook.Com

you still have to have some common

Looking at the
nouns (and verhs)
in your use

case to figure

out classes and

methods is called

textual analysis,

you are here » 169

the nouns are the objects

It’s all about the use case

Take a close look at Step 3 in the use case, and see
exactly which classes are being used:

03" s @ noun, but

“owner's d
we don't need a ¢lass for
this sinte the dog is an attor,
and outside the sys{:cm.

3. 1f it’s the owner’s dog barking, the
ark recognizer sends a request to

b
Qhe door to opeh. ~ ool v

represented by the bark !
recognizer ¢alling 4h
method o the d?)g d::eh()

BarkRecognizer

DogDoor

door: DogDoor

open: boolean

recognize(Bark) allowedBarks: Bark []
R
open() e

close()

isOpen(): boolean
addAllowedBark(Bark)
getAllowedBarks(): Bark []
R

There is no Bark class here!

—————

The classes in use here in Step 3 are BarkRecognizer and
DogDoor... not Bark!

170 Chapter 4

Download at WoweBook.Com

analysis

Wait a second... T don't buy

that. What if T happened to
use just a slightly different
wording?

3. 1f the owner’s dog’s bark
matches the bark heard by the
bark recognizer, the dog door — ™ ... ster 3 from the we

tase that Randy wrote for

should open. ot door. I s ket 3

“bark” is 3 noun.

Step 3 in Randy’s use case looks a lot like Step 3 in our
use case... but in his step, the focus is on the noun “bark”,
and not “the owner’s dog.” So is Randy right? Does this
whole textual analysis thing fall apart if you use a few
different words in your use case?

What do you think?

\

HINT: Look closely at Randy's Step 3. Does

it deseribe 3 system that
m k
same as the system on Pagew 7;05;*““‘/ .

you are here » 171

Download at WoweBook.Com

words matter in use cases

One of these things is not like the other...

It looks like Randy’s Step 3 is actually just a little bit different than our original

Step 3... so where did Randy go wrong?

Heve's our Step 3, from the ;
ov\g'ma\ use tase we wrote batl

in Chapter 3.]

3. 1fit’s the owner’s
dog barking, the bark
recognizer sends a request
to the door to open.

Focus: owner’s dog

Our original Step 3 focuses on the owner’s dog...
no matler how the dog sounds when it barks. So if the
owner’s dog barks with a loud “Rowlf!” one
day, but a quiet “ruft” the next, the system will
let the dog in, either way. That’s because we’re
focusing on the dog, not a particular bark.

Rawlf! Rawlf!
o Lo
Q o ©

Wikh the v\%\\{: Step

3, khe dog doo
w.‘“ open £o¥' a\\ V
B\’ubt’s barks

172 Chapter 4

And here’s Step 2 from the use
tase that Randy tame up with
for the same d05 doov-.

3. 1f the owner’s dog’s bark
matches the bark heard
by the bark recognizer,
the dog door should open.

Focus: owner’s dog’s bark

Randy’s use case focuses on the owner’s
dog’s bark... but what if the dog has more
than one sound it makes? And what if two
dogs bark in a really similar way? This step
looks similar to the original Step 3, but %
really not the same at all!

o
O

Wl'l',h -] Foor'y
written Step 3,
O",Y one of Bruce's
barks will get him

in and out of the
dog doo-.

Download at WoweBook.Com

tllel“ qre no

Dumb Questions

Q,: So you’re telling me as long as |
write use cases, all my software will work
like it should?

A: Well, use cases are certainly a good
start towards writing good software. But
there’s a lot more to it than that. Remember,
analysis helps you figure out the classes
from your use case, and in the next chapter,
we'll spend some time talking about good
design principles in writing those classes.

Q~ I've never used use cases before,
and I've never had any problems. Are you
saying that | have to write use cases to
create good software?

AI No, not at all. There are plenty of
programmers who are good at their jobs,
and don’t even know what a use case is.
But if you want your software to satisfy the
customer more often, and you want your
code to work correctly with less rework,
then use cases can really help you nail
your requirements down... before you make
embarrassing mistakes in front of your boss
or a customer.

Q; It seems like this stuff about
nouns and analysis is pretty tricky, and
I’'m not any good at English grammar.
What can | do?

A: You really don’t need to focus too
much on grammar. Just write your use

cases in conversational English (or whatever
language you speak and write in). Then
figure out what the “things” are in your use
case—those are generally the nouns. For
each noun, think about if you need a class to
represent it, and you've got a good start on a
real-world analysis of your system.

analysis

Qi But what if | make a mistake like
Randy did, and use a noun in my use case
when | shouldn’t?

A: Randy’s mistake—using “bark” as a
noun in step 3 of his use case—had nothing
to do with Randy’s grammar. He didn't think
through the use case, and how his system
would work in the real world. Instead of
focusing on getting the owner’s dog outside,
he was worrying about one specific bark. He
focused on the wrong thing!

When you write your use case, reread it, and
make sure that it makes sense to you. You
might even want to let a couple of friends or
co-workers read through it, too, and make
sure it will work in the real world, not justin a
controlled environment.

A good use case clearly and

accurately explains what

a system cloes, in language

that's easily understood.

With a good use case complete,

textual analysis is a c[uiclc and

easy way to figure out the

classes in your system.

Download at WoweBook.Com

173

the power of analysis

OK, I see what Randy's mistake was:
he got hung up on a bark, not the owner's
dog. But even in the correct use case, we
don't have a Dog object. So what's the
point of all this, if our analysis doesn't tell
us what classes to create and use?

Textual analysis tells you what
to focus on, not just what
classes you should create.

Even though we don’t have a Dog class, textual
analysis gave us an important clue about what our
system really needs to do: get the owner’s dog in
and out of the door, regardless of how he barks. In
other words, our analysis helped us understand
what to focus on... and it’s not a specific bark.

Once you've figured that out, it makes sense to
think about what a dog really does. Does a dog
always bark the same way? That’s when Maria
figured out her real-world solution: she realized
that if the owner’s dog could bark in more than
one way, and the point was getting the owner’s dog
outside, then the dog door needed to store all the
ways that the dog could bark, not just one of them.
L But Maria would have never figured this out if she
hadn’t really analyzed her use case.

@ harpen our pencil
S Y

Why is there no Dog class?

When you picked the nouns out of the use case, one that kept showing up was “the
owner’s dog.” But Maria decided not to create a Dog object. Why not? Below, write
down three reasons you think Maria didn’t create a Dog class in her system.

174 Chapter 4 —— > Answers on Page 179.

Download at WoweBook.Com

Rewewmber: pay attention to those nouns!

Even if the nouns in your use case don’t get turned into classes in your

system, they’re always important to making your system work like it should.

) » .
[n this use ease, “owner's dog 1S
i{:’s not 3 tlass...

3 noun, but

4 noun in 'H‘Iis s
Bark ¢lass.

-and even '(:hough “barking" isn't

tep, we have 3

3. 1f it’s the owner’s dog barking,
the bark recognizer sends a
request to the door to open.

The point is that the nouns are what you should
focus on. If you focus on the dog in this step,
you’ll figure out that you need to make sure the
dog gets in and out of the dog door—whether he
has one bark, or multiple barks.

K_\B’

This tollection of
barks essentially
regrcscv&s the d°3',','
Ehis is the “barking
ok of dhe vie €35

DogDoor

open: boolean
allowedBarks: Bark [*]

open()
close()

isOpen(): boolean
addAllowedBark™=—

getAllowedBarks

BarkRecognizer

door:

DogDoor

recognize(Bark)
R

Even {:hough this method gets a
single bark, its purpose is to find
out which dog barked. £ vuns
Jchrough all the allowed barks in the
dog door o see if this bark comes

vom the owner’s d°5'

Download at WoweBook.Com

analysis

Pay attention to
the nouns in your
use case, even
when tltey aren’t
classes in your
system.

Think about how
the classes you @

have can su]o]nort
the hehavior your
use case describes.

175

the verbs are operations

It seems like if the nouns in the
use case are usually the classes in
my system, then the verbs in my use
case are my methods. Doesn't that
make sense?

The verbs in your use case
are (usually) the methods of
the objects in your system.

You've already seen how the nouns in
your use case usually are a good starting
point for figuring out what classes you
might need in your system. If you look at
the verbs in your use case, you can usually
figure out what methods you’ll need for
the objects that those classes represent:

The Ultimate Dog Door, version 3.0

Opening/closing the door

Main Path
1. The owner’s dog barks to be let out.
2. The bark recognizer “hears” a bark.

3. 1f it's the owner’s dog barking, the
bark recognizer sends a request fo

The D°5D°°* the door to open.

¢lass needs to 4. The dog dggr(@pens)

have an open() 5. The owner’s dog goes outside.

and ¢lose() 6. The owner’s dog does his business.

method to BE okshuTutomatically.
6.2. The owner’s dog barks to be let
SMWO% fchcse back inside.
verb actions. 6.3, The bark recognizer “hears” a
bark (again).

64 If it’s the owner’s dog barking,
the bark recognizer sends a
request o the door to open.

6.5. The dog door opens (again).
7. The owner’s dog goes back inside.
8. The door shuts avtomatically.

f

176 Chapter 4

Alternate Paths

2.1. The owner hears her dog
barking.

31. The owneKpresses the but{om
on the remote control.

6.31. The owner hears her dog
barking (again).

64.1. The owner presses the
button on the remote control.

Download at WoweBook.Com

a”

Heve's another verb
-Fragmcr\{:i “Prcsscs
the button.” Our
Remote tlass has

a pressButton()
method that
matehes up ?crfel.{-,l\/.

analysis

Code Magnets

It's time to do some more textual analysis. Below is the use case for the dog door
you've been developing. At the bottom of the page are magnets for most of the
classes and methods we've got in our system so far. Your job is to match the class
magnets up with the nouns in the use case, and the method magnets up with the
verbs in the use case. See how closely the methods line up with the verbs.

The Ultimate Dog Poor, version 3.0
Opening/closing the door

Main Path Alternate Paths

1. The owner’s dog barks to be let out.

2. The bark recognizer “hears” a bark. 2.1. The owner hears her dog

barking.

3.1f it’s the owner’s dog barking, the 3. The owner presses the button
bark recognizer sends a request to on the remote control.
the door to open.

4. The dog door opens.

5. The owner’s dog goes outside.

6. The owner’s dog does his business.
6.1. The door shuts automatically.
6.2. The owner’s dog barks to be let

back inside.

Theve ave 6.3. The bark recognizer “hears” a 6.3.1. The owner hears her dog
lots of bark (again). barking (again).
""j;“ d‘:“;c 64. If it’s the owner’s dog barking, 64.1. The owner presses the
J'c“:_'s °°.m n the bark recognizer sends a button on the remote control.
" Jc:kc ’ request to the door to open.
Your time. 6.9. The dog door opens (again).

7. The owner’s dog goes back inside.

8. The door shuts automatically.

Remote

recognize .
recognize ()

peecome |
—
IIEE::EEE‘.‘.Il-l-1%aa====:illl
getAllow-dEarks()

getAllowedBarks ()

BarkRecognize

getSound ()

voll are here »

Download at WoweBook.Com

textual analysis

Code Magnets Solutions

It's time to do some more textual analysis. Below is the use case for the dog door
you've been developing. At the bottom of the page are magnets for most of the
classes and methods we've got in our system so far. Your job is to match the class
magnets up with the nouns in the use case, and the method magnets up with the
verbs in the use case. See how closely the methods line up with the verbs.

The Ultimate Dog Poor, version 3.0
Opening/closing the door

Main Path Alternate Paths
1. The owner’s dog barks to be let out.

2.1 BarkRecogni m 21. Thli owner hears her dog
barking.

he 31. The owner| pressButton()

tto onthere

Notice that X
most of these N\

steps vithou any 5. The owner's dog goes outside.
magnets ave things 6. The owner’s dog does his business.

ot S BT U
that the system 6.2. The owner’s dog barks to be let

then veatts fo. back inside.

6.3.1. The owner hears her dog
barking (again).

64.1. The owne pressButton ()

/k The use case still makes a lot of sense with the
magnets in placel That's a good sign that our classes
and methods ave doing exactly what they've supposed
4o so that the system will be a suceess.

178 Chapter 4

Download at WoweBook.Com

analysis

Why didn’t Maria create a Dog class?

Sharpen your pencil
w answers

When you picked the nouns out of the use case, one that kept showing up was “the
owner’s dog.” But Maria decided not to create a Dog object. Why not? Here are three
reasons we think Maria made the right choice.

The dog is external to the system, and you usually don't need
to represent things external to the system.

(ﬁ' 1.

Theve ave times when
you migH‘, do this, but
usua"Y on\y when You
need to intevact with
fhose external things.
We don't need to
inteact with the dog

2 _Dog isn't a software object (and shouldn't be)... you usvally don’t represent living things
with a class unless the system is going to store long-term information about that thing.

3. _Even if you had a Dog class, it wouldn't help the rest of the systew. For example, you
cant really ‘store” a Dog in the dog door: that doesn't make any sense.
/(\ You'll often see elasses
th Do tlass in like User or Ma"a5c""
You ¢ould have 3 vefevente to the Doy but these represent

your DogDoor objeet, but how do Z:“Rs:"::ﬁser, voles in a system, or

[N in the veal wovl] store eredit card
dog wnﬂ\l:sai :::Eé‘:arc doesn't always wovk in or ad drcsslcs. Ar d:
what wor lications ave veal- doesn't £ ?
veal life. Make suce your 3FF esnt tit any of

world comva{:'lb‘c! +those Pa‘H'.crns.

t}zer are no

Dumb Questions

Q,: It looks like the nouns that are outside the system don’t
get turned into classes. Is that always true?

Q: So the nouns in the use case turn into classes, and the
verbs turn into methods?

A: That’s almost it. Actually, the nouns are candidates for
classes... not every noun will be a class. For instance, “the owner” is a
noun in the use case (check out Steps 2.1 and 3.1, for example), but
we don't need a class for that noun. So even though “the owner” is a
candidate for a class, it doesn’t become a class in the actual system.

In the same way, the verbs are candidates for operations. For example,

one verb phrase is “does his business,” but we just couldn’t bear to
write a pee () or poop () method. We hope you'll agree that we
made the right choice! Still, textual analysis is a really good start to
figuring out the classes and methods you'll need in your system.

A: Most of the time it is. The only common exception is when

you have to interact with something outside the system—Iike when
there’s some state or behavior that the system needs to work with on a
recurring basis.

In the dog door system, for example, we didn’t need a class for the
owner because the Remote class took care of all the owner-related
activity. If we ever needed to track owner state, though—like if the
owner was asleep or awake—then we might have to create an Owner
class.

179

you are here »

Download at WoweBook.Com

maria’s class diagram

From good analysis fo good classes...

Once I knew the classes and
operations that I needed,
I went back and updated my
class diagram.

Maria’s Dog Door Class Diagram

Remote

pressButton()

Wheve did the
doovr atbribute
on the Remote
elass 9%

BarkRecognizer

door

recognize(Bark)

DogDoor

open: boolean

Why did the

allowedBarks / open()
a’efribu{:c move C|OSe()
from up heve...

4o down heve?

&» allowedBarks

isOpen(): boolean
addAllowedBark(Bark)
etAllowedBarks(): Bark [*

*

Bark

sound: String

180 Chapter 4

getSound(): String
equals(Bark): boolean

Download at WoweBook.Com

<_\sﬂ/] i’ dfﬁcihite’)' ot
oort\c hew sty £f 30'.2
" In her g3 diaﬂ*’fm

T Remember, the
astevisk means that
5c{:N|owchavks()
pan veturn multiple
Bark ob)ccts»

analysis

2-UML Investigation

Maria’s gone pretty crazy with her UML diagrams... do you think you can figure
out what all she’s done? On the diagram below, add notes to all the new things
she’s added, and try and figure out what the lines, numbers, and additional
words all mean. We’ve written a few notes of our own to get you started.

Remote BarkRecognizer

pressButton() recognize(Bark)

The Remote ¢tlass has
a veferente to the /

DogDoor ¢lass.

door

DogDoor

open: boolean

open()

close()

isOpen(): boolean
addAllowedBark(Bark)
getAllowedBarks(): Bark []

DogDoor s an
attribute eglleq
dllowedBarks — < allowedBarks

*

Bark

sound: String

getSound(): String
equals(Bark): boolean

——— Answers on page 184.

you are here » 181

Download at WoweBook.Com

associations and multiplicity

Class diagrams dissected

There’s a lot more to a class diagram than boxes
and text. Let’s see how some lines and arrows can
add a lot more information to your class diagrams.

A solid line from one tlass to

another is ealled an assotiation-

[+ means that one elass is
assotiated with another

Y .
class, by vekevente, extension,

Remote

This line goes from the
sourte ¢lass (Remote)
to the target class
(DogDoor). This means
that the source tlass,
Remote, has an attribute
of {:\/?c DogDoo\r, the
Jca\rgc‘f: elass.

inhevitante, ete- \ i

O
When \/ou'rc

using associa{:ions

to rc‘)‘rcsth‘t
attributes, you
usua“\/ do
not write the
“Stheibute that
the assotiation
rc\wcscn{’,s in the
class's attribute

pressButton()

sc(,{'\onv Thalc's al |0Wed Barks

w\\\/ Remote no

longevr has 3 door
attribute here.

Bark

sound: String

getSound(): String
equals(Bark): boolean

182 Chapter 4

Download at WoweBook.Com

The DogDoor ¢lass has
an a{:{'xibuj(:c named
allowedBarks, whith
stoves Bavk ob)cc{:s.

analysis

The name of the athvibute

This number. :
in the sourte class is of 'Z;:: abc rcfs:hc T“'ﬁ lieit
n i otiation. [{s |
. heve, at the £ 4 . s how man
Elﬂ‘;i: CV\C(ICO‘(: the line. So .th 5 _&_:Zr's:f fYPc is stored in
H:S)Rcmo{:c tlass has an ,h his cas: 'Z':‘Fdfhe SO{:W‘CC elas
) € do .
a:’cxi\gﬁg chl\:d door, of stores 3 single DOSDO:oj tribute
yre Ve '
door 1
N
4

DogDoor
open: boolean

open()

close()

IsOpen(): boolean
addAllowedBark(Bark)

e [getAllowedBarks(): Bark [*]

-

though the classes are in
diffevent places, t's the SAME
tlass diagram. So the position
of the ¢lasses on the diagram

Answers 4o this exere;
) . eréise
dosn’t matier are on page /5.
g dharpen Your percl
Based on the class diagram above, what types could you use for the
\\\\ allowedBarks attribute in the DogDoor class? Write your ideas below:

you are here » 183
Download at WoweBook.Com

more um/

m UML Investigation Comp]ete

Maria’s gone pretty crazy with her UML diagrams... see if you can
figure out everything that she’s done.

The line goes Lrom the

Remote doesnt tlass with the veferente to
[t looks like Remote doesn

Ehribukes... but bhe class that is the type
have any & vibutes... oW

being veferented.
when one ¢lass vefers being

4o another tlass) that Remoto —
vcvrcsen{s an attribute. So
fhe Remote tlass still does
have one atbrbute pressButton() recognize(Bark)
The Remote ¢tlass has

BarkRecogp;
a vefecente to the / %9nizey

has an a{;_(: .
DogDoor class, using an vibute

door

\ nam
1 ed d .
attribute named door- / type Do oor, of
DogDoor 9Door,

ot bool fe‘:fit rold 2 singe
The doo¥ athbribute open: boolean - Dcm:e to s
holds a single “Jz open() 3Door object.
DogDoor object close()
isOpen(): boolean
addAllowedBark(Bark)
getAllowedBarks(): Bark [*]
D°5D°°r has an This asterisk means “an
attribute called _—=>-allowedBarks / ‘ml‘-‘m.‘{cd mumber-”
allowedBarks. The type
O‘c the a{-ty-ibu{',c is BaYk‘
Bark
sound: String
Doov tlass £ - NNy
The DogPoo" Led mumber getSound(): String
hold an unlimitee khe equals(Bark): boolean
°£ Ba"\‘ o\,:)cc{’,s n

a\\owch avks aHx'\bu{;c.

184 Chapter 4

Download at WoweBook.Com

q.%rpen your pencl

analysis

Exesqise
SoLutions

W answers

Based on the class diagram below, what types could you use for the barks
member variable in your DogDoor class? Write your ideas in the blank below:

List, Array, Vector, etc.

You tould write any type
that su\?yor{:s multiple
values... most of the Java
Collettion tlasses would work.

Remote

door 1

DogDoor

open: boolean

pressButton()

open()

close()

isOpen(): boolean
addAllowedBark(Bark)

allowedBarks

Bark

sound: String

getSound(): String
equals(Bark): boolean

getAllowedBarks(): Bark [*]

Notice that ths
very differently,

assotiations as

+this dias\ram

diagram, aH:hough Positioned
has the same ¢lasses and

you are here »

Download at WoweBook.Com

185

why use class diagrams?

(9»

Remember how we

said OOA‘:D helps you
write oreat s_ltil:hwarc,
every fime? I\r\\s is
;\-c_\‘lua\, 00AED ean
help you avoid making
mistakes in your tode.

T guess I'm still
just not sure why
you need all these
diagrams...

Randy: I may have missed creating a Bark class, but my
solution wasn’t that bad, and I didn’t waste a bunch of my
time drawing squares and arrows.

Maria: Haven’t you ever heard that a picture is worth a
thousand words? Once I had my class diagram, I had a pretty
good idea about how my whole system was going to work.

Randy: Well, yeah, I guess I can see that... but I had a good
idea of how my system would work, too. It was just in my head,
not drawn out on paper.

Sam: I think I'm starting to come around on this UML thing,
Randy. I mean, once you’ve got the use case, it’s pretty natural
to do some analysis, and turn the nouns into classes. It seems
like you wouldn’t have to spend as much time worrying about
what should be a class, and what shouldn’t.

Maria: Exactly! I hate writing a bunch of classes and then finding out I did something
wrong. With use cases and class diagrams, if I make a mistake, I can just scribble things
out and redraw my diagram.

Randy: Well, I guess that’s true. Rewriting code takes a lot more time than rewriting a
use case or redrawing a class diagram...

Maria: And you know, if you ever have to work with anyone else, you’re going to have to
explain that system in your head to them somehow, right?

Sam: I think she’s right, Randy. I've seen your whiteboard when you’re trying to explain
your ideas... it’s a mess!

Randy: OK, even I can’t argue with that. But I still think class diagrams don’t tell the
whole story. Like, how is our code actually going to compare barks and figure out if the
dog door should open up?

DogDoor BarkRecognizer

open: boolean
sound: String allowedBarks: BarK Remote

getSound(): Sttr)ing‘ ; olpen(()) door: DogDoor
equals(Bark): boolea close

: isOpen(): boolean PressBution()
addAllowedBark(Bark)
getAllowedBarks(): Bark [*]

or: DaaDoor

!

186 Chapter 4

Download at WoweBook.Com

Class diagrams aren’t everything

Class diagrams are a great way to get an overview of your system, and
show the parts of your system to co-workers and other programmers.
But there’s still plenty of things that they don’t show.

Class diagrams provide limited
type information

analysis

Bark
sound: String

getSound(): String
equals(Bark): boolean

We know that allowedBa

hold mu\JCl\?\c Bark o\J\:)c{,{:s, but
what is its type? 3 List? A

Veetor? Something else?

Class diagrams don’t tell you how
to code your methods

BarkRecognizer

door: DogDoor

recognize(Bark)

Class diagrams only give you a
10,000 foot view of your system

Remote

door: DogDoor

pressButton()

*

vks tan

<~
< ihe Remote elass,

allowedBarks DogDoor

open: boolean

open()

close()

isOpen(): boolean
addAllowedBark(Bark)
getAllowedBarks(): Bark [*]

This diagram says no{:hing

about what recognize() shoyld

do... or even why it {akes 3
Bark as an argument.

.

¢ 4o Fioure
idea behind
buk it's
appavent Lom this
::i:gvz: what the purpose ©
Lhis elass veally is- You only
know its purpose from your

ase and eqivements

You might. be abl
out the 5‘“”3\

use &

Download at WoweBook.Com

The same problem

exists for veturn

types... what type does
9etAllowedBarks() veturn?

187

you are here »

what’s missing from the diagram?

*

*

WHAT' S MISSI\NG

..*‘.

*

Class diagrams are great for modeling the classes you need to create, but they don’t provide all
the answers you’ll need in programming your system. You've already seen that the dog door
class diagram doesn’t tell us much about matching up return types; what other things do you
think are unclear from this diagram that you might need to know to program the dog door?

Add notes to the diagram below about what you might need to figure out in order to program
the door. We’ve added a note about comparing barks to get you started.

Remote

BarkRecognizer

pressButton()

188 Chapter 4

recognize(Bark)

1

This method needs o sqp

door ¥ the Bark o) ect it
1 receives "‘a{xhu
the dog barks o of
DogDoor the doa J S};ﬁoked in
oor
open: boolean that h 3Ppen? oW does

open()

close()

isOpen(): boolean
addAllowedBark(Bark)
getAllowedBarks(): Bark [*]

allowedBarks

*

Bark
sound: String

getSound(): String
equals(Bark): boolean

Download at WoweBook.Com

Answer on page 190

analysis

So how does recognize() work now?

Maria’s figured out that her BarkRecognizer class should be able to compare
any bark it receives against multiple allowed barks, but her class diagram doesn’t
tell us much about how to actually write the recognize () method.

Instead, we have to look at Maria’s code. Here’s the recognize () method of
her BarkRecognizer, and how she solved the barking problem:

public void recognize (Bark bark) { A/La\;ials 2‘3‘}3"5 a
whole I
[terator is a Java System.out.println(® BarkRecognizer: Heard a ‘7 + ob\;:ﬁ;}r i:‘rk
. om
obJeC‘l: that lets us bark.getSound () + “'"); dog door . ¢
,\flk .{h""ﬁ: each List allowedBarks = door.getAllowedBarks () ; /
i .
el for (Iterator i = allowedBarks.iterator(); i.hasNext();) {
Bark allowedBark = (Bark)i.next();, =—__ t
) if (allowedBark.equals (bark)) { We tast eath tem we o€
st [l i Sam ' rom the lterator 03
tode, Mavia dooz.open () ; Bark ob)cd:-
delegates Bark TetUrn; S ——Thic vakes sure we don't keep
tomparisons to the } looping onte we've found a mateh.
BaY‘k ob\')cﬂ{:- }

System.out.println (“This dog is not allowed.”);

This method vepresents
an entire doy: all the
barkin5 sounds that
the dog tan make.
Maria’s textual analysis helped her figure out that /
her BarkRecognizer needed to focus on the dog

A
involved, rather than the barking of that dog.
Q | door.getAllowedBark () '

This method is focused on a single
bavk... on one sound the dog makes,
vather than the dogy itself.

you are here » 189

Download at WoweBook.Com

puzzle solutions

. - ExerciSe

WHAT' S MmMISSI\NG SoLutions
'3 *

Add notes to the diagram about what you might need to figure out to
program the door.

Remote BarkRecognizer

recognize(Bark)

1

pressButton()

-

What does the This methog
pressButton() door i the By :;:2 fz see
method dof 1 FECEiVes matep the d
DogDoor rtored i the dog dooy-
/ ow does {}, at ha >
Does eath system open: boolean Ppen
have Jus{‘, a Sihglc Open()

DogDoor object? close()
isOpen(): boolean
getAllowedBarks(): Bark [*]

Do open() and ¢lose()

Just thange the door’s
te, or do '(:hcy do

somc{:hing else, to0?

/7 allowedBarks
Bark [€s untlear what any of the

<
What type is used — tonstructors for these classes
4o store the mvH‘,i?lC sound: Strmg migh{l do... or what aY'SWnChb
Bark objects? getSound(): String they might vequive.

equals(Bark): boolean

* These ave just a few of the things we thought of. Your
answers may be totally diffecent, if you thought of
other things that the class diagram doesn’t veally show.

190 Chapter 4

Download at WoweBook.Com

analysis

Ran
sam a\: ‘ tode J\g’\\a‘c So when do we get to
—_— . .
see the atBook P see the final version of

Maria's dog door?

— BULLET POINT?Q

Analysis helps you ensure that your software works
in the real world context, and not just in a perfect
environment.

Use cases are meant to be understood by you, your
managers, your customers, and other programmers.

You should write your use cases in whatever format
makes them most usable to you and the other people
who are looking at them.

A good use case precisely lays out what a system
does, but does not indicate how the system
accomplishes that task.

Each use case should focus on only one customer
goal. If you have multiple goals, you will need to write
mutiple use cases.

Class diagrams give you an easy way to show your
system and its code constructs at a 10,000-foot view.

The attributes in a class diagram usually map to the
member variables of your classes.

The operations in a class diagram usually represent
the methods of your classes.

Class diagrams leave lots of detail out, such as class
constructors, some type information, and the purpose
of operations on your classes.

Textual analysis helps you translate a use case into
code-level classes, attributes, and operations.

The nouns of a use case are candidates for classes in
your system, and the verbs are candidates for methods
on your system’s classes.

you are here » 191

Download at WoweBook.Com

brush off your coding chops

192

Design Puzzle

T'll bet you expected to find
all the code I wrote here, didn't you? I
wish... when I was transferring files to
my new MacBook Pro, almost all of the
code for my dog door got corrupted.
Can you help?

Maria’s old computer screwed up all the code she wrote for her dog

door except for DogDoorSimulator. java, shown on the next page.
All we’ve got to go on are the code fragments from her solution in this
chapter, her class diagrams, and what you’ve learned about good analysis,
requirements and OO programming. It’s your turn to be a hero...

The problem:

You need to code the dog door application so that it satisfies

all of Doug’s new customers (that’s a lot of potential

sales), especially the ones with more than one dog in the
neighborhood. The door should operate just as the use cases in
this chapter describe the system.

Your task:

0 Start out by re-creating the dog door application as it was described in Chapter
3. You can download this code from the Head First Labs web site if you want a
jump start.

6 Copy or download DogDoorSimulator. java, shown on the next page.
This 1s the only file that survived Maria’s laptop meltdown.

6 Make your code match up with Maria’s class diagram, shown on page 180.

G Start coding! First concentrate on getting all of your classes to compile, so you
can begin testing.

Q Use the DogDoorSimulator class to see if things are working like they
should.

G Keep up the analysis and coding until your test class’s output matches the
output shown on the next page. Don’t give up!

6 Once you think you've got a working dog door, check your code against ours at
the Head First Labs web site. We’ll be waiting.

Chapter 4

Download at WoweBook.Com

public class DogDoorSimulator {

public static void main(String(]
DogDoor door new DogDoor () ;
door.addAllowedBark (new Bark
door.addAllowedBark (new Bark
door.addAllowedBark (new Bark
door.addAllowedBark (new Bark
BarkRecognizer recognizer
Remote remote

args) {

“rowlf”));
“rooowlf”));
“rawlf”));
“woof”));

—~ e~~~

new Remote (door) ;

// Simulate the hardware hearing a bark
System.out.println (“Bruce starts barking.”);
recognizer.recognize (new Bark (“rowlf”));

System.out.println (“\nBruce has gone outside...”);

try {
Thread.currentThread () .sleep (10000) ;
} catch (InterruptedException e) { }

System.out.println (“\nBruce’s all done...”);
System.out.println(“...but he’s stuck outside!”);

// Simulate the hardware hearing a bark
Bark smallDogBark new Bark (“yip”);

(not Bruc

System.out.println (“A small dog starts barking.”);

recognizer.recognize (smallDogBark) ;

new BarkRecognizer (door) ;

analysis

DogDoorSimulator.java

This is 'H\C '{:CS*(:
C'BSS FV'OM Maria’s
old ’aP{bP' Use this
oF Your own d°3

dOOV '(:c;-ti ha'

el)

’

try {
Thread.currentThread () .sleep (5000) ;
} catch (InterruptedException e) { }

// Simulate the hardware hearing a bark again
System.out.println (“Bruce starts barking.”);
recognizer.recognize (new Bark (“rooowlf”));

System.out.println (“\nBruce’s back inside...”);

_——

Hcrgs the °“kY“£ you
want, which proves
that the door wovks
for Brute, but rot for

other doos

File Edit Window Help HollyLovesBruce

%$java DogDoorSimulator

Bruce starts barking.
BarkRecognizer: Heard a ‘rowlf’

The dog door opens.

Bruce has gone outside...
The dog door closes.

Bruce’s all done...
...but he’s stuck outside!

Bitsie starts barking.
BarkRecognizer: Heard a ‘yip’

This dog is not allowed.

Bruce starts barking.
BarkRecognizer: Heard a ‘rooowlf’

The dog door opens.

Bruce’s back inside...
The dog door closes.

193

you are here »

Download at WoweBook.Com

define me, please

*

WHAT' S MY DETINITIAON
S

UML and use cases have a lot of terms that are similar to, but not quite the same

as, the programming terms you're already familiar with. Below are several OOA&D-
related terms, and their definitions... but everything is all mixed up. Connect the
term to the definition, and unscramble the mess.

Noun AnaLysis
MuLtiPLicity
AttriBute
CLass Diagram
GPeration
Association

VerB AnaLysis

194

Lists all the code-level construets, along with
their attributes and operations.

This is the UML term that usually represents a
method in one of your classes.

Helps you figure out the candidates for methods
on the objects n your system.

Visually shows that one class has a relation to
another class, often through an attribute.

Equivalent to a member variable in a class.

Describes how many of a specific type can be
stored in an attribute of a class.

You do this to your use case to figure out what

classes you need in your system.

Download at WoweBook.Com

analysis

OO0AGED Cross

You know you love it... try another puzzling crossword
to get those new concepts lodged firmly in your brain.

Across Down
1. Use cases should use this kind of language. 2. Analysis makes sure your application works
5. Every cluss disgrum hus one of these for in this place,
each member variable, 3. An ocperation is UML-ese for this,
10. This fecuses an putting your application 4. You do this to your use cases to figure out
inte the correct context. the classes and operations in your system.
12. Software always works better in the 6. He replaced Fido as this chapter's star.
testing [nh than here. 7. Class dingrams are a grent way o get this of
13. Maria won the laptop becouse she paid your systam.
attention to the 8. How many of a type an attribute can hold is
14, This relates one class to another its .
16. You write your use case so you can 9. These types of diagrams are worth a

your custemers thousand weords to a pregrammer.
17. Use cases should be as well as easily 11, Use cases aren't formal, but they are
understood.
18. UML iz this type of modeling language. 15. Verk is to operation as this is te attribute.

you are here » 195

Download at WoweBook.Com

answers, answers, answers

= ®mm< 0O

L=

.i';ﬂ

AlLWo R

A S5 0

H O H M~ B H g~

AlCIC/UIRIAITIE
Y

WHAT'S Mvgew*\w \TI\aw
[J

UML and use cases have a lot of terms that are similar to, but not quite the same

as, the programming terms you're already familiar with. Below are several OOA&D-
related terms, and their definitions... but everything is all mixed up. Connect the
term to the definition, and unscramble the mess.

Noun AnaLysis
MuLtiPLicity

their attributes and operations.

method in one of your classes.

CLass Diagram
CGPeration
Association
VerB AnaLysis

on the objects in your system.

stored in an attribute of a class.

classes you need in your system.

196 Chapter 4

Download at WoweBook.Com

vlr|no €]

b=
-
-
o

Lists all the code-level construets, along with
This is the UML term that usually represents a
Helps you figure out the candidates for methods
Visually shows that one class has a relation to
another class, usually through an attribute.

Equivalent to a member variable in a class.

Describes how many of a specific type can be

You do this to your use case to figure out what

E
A

w0

Z oo |

—'

-
-
| =4

mn Ccoo o

.xlm'

L=
=

<|-(=zlx|r|»|c

w
-

mwtH A m T o

o
=t

5(part 1) good design = flexible software

Nothing Ever Stays
the Same

Molly, T hope we never have
to grow up. Let's just stay like
this forever!

Change is inevitable. No matter how much you like your
software right now, it's probably going to change tomorrow. And the
harder you make it for your software to change, the more difficult

it's going to be to respond to your customer’s changing needs. In
this chapter, we’re going to revisit an old friend, try and improve an
existing software project, and see how small changes can turn into
big problems. In fact, we’re going to uncover a problem so big that
it will take a TWO-PART chapter to solve it!

this is a new chapter 197

Download at WoweBook.Com

going beyond guitars

¢S’rrinqed Instruments
Rick’s Guitars is expanding

Fresh off the heels of selling three guitars to the rock group Augustana,
Rick’s guitar business is doing better than ever—and the search tool you
built Rick back in Chapter 1 is the cornerstone of his business.

Your software is the best—I'm selling
guitars left and right. I've been getting
a lot of business from Nashville, though,
and want to start carrying mandolins, too.
I figure I can make a killing!

b
-y

Mandolins ave 3
lot like guitars--
hey shouldn't

be 4oo havd to
su\?\?OV"b vig\'\{?

Let’s put our design to the test

We've talked a lot about good analysis and design being the key to
software that you can reuse and extend... and now it looks like we’re
going to have to prove that to Rick. Let’s figure out how easy it is to
restructure his application so that it supports mandolins.

198 Chapter 5 (part 1)

Download at WoweBook.Com

aSharpen your pencil

-~

good design = flexible software

Add support for mandolins to Rick’s search tool.

Below is the completed class diagram for Rick’s guitar search app, just like it was
when we finished up with Chapter 1. It's up to you to add to this diagram so that Rick
can start selling mandolins, and your search tool can help him find mandolins that
match his clients’ preferences, just like he already can with guitars.

[dd\{:\ovxa\
've added the 3
:I:'\:\;sa\fou’vc \ca‘rncd A\Joch
WML ¢tlass diagrams-

inventory

Inventory

)
= We've moved most

addGuitar(String, double, GuitarSpec)
getGuitar(String): Guitar
search(GuitarSpec): Guitar [*]

Guitar GuitarSpec
serialNumber: String model: String
price: double numStrings: int

getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): GuitarSpec

getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
getNumStrings(): int

06 orI hem 2y} 2q Fybru FFuETIYW
933! © 29Aew ‘os :” Suowwoy ut Gugq:}kue
aney wijopuely pue ae3mb e o : | NIH

Builder '

toString(): String
ﬁ Type

topWood

. :
toString(): String Wood
0o

toString(): String

Download at WoweBook.Com

of the properties
out of the elass
box and used
assotiations instead.

S <)

backWood <

Notice that we

tan write these
Properties on
either side of the
assotiation... theve’s
no “righ't thoice”;
Just use what works
bcs‘l’, ‘For you-

you are here » 199

updating rick’s

class diagram

L 7 harpen your pencil Add support for mandolins to Rick’s search tool.

A partial

Below is the completed class diagram for Rick’s guitar search app, just like it

a“swers was when we finished up with Chapter 1. Here’s what we did first to add support
for mandolins (we’ll make some more changes over the next few pages).

CQinte 6“‘*’” and
Mandolin share <@
man propECUIES

Looks like we've

Instrument

PR e

90t yet more new

serialNumber: String
price: double

MML "Ofafion

90ing on here...

getSerialNumber(): String

we'll look at these

Inventory

ereated 3 nev Lo on page 206, addGuitar(String, double, GuitarSpec)
\::,s&vad: base gef?r.lce(). double getGuitar(String): Guitar
Plass that stores setPricelfioat) search(GuitarSpec): Guitar [*]
-t,o/"\ on \wo\?ﬂ \es-
inventory ” Y
spec
Mandolin) Guitar y GuitarSpec
| —_— model: String
getSpecl): MandolinSpee sree—aemsc numStrings: int
—_— getBuilder(): Builder
—_— getModel(): String
Let's create anes seiRsiee(fioat— getType(): Type
elass, Mandolin getSpec(): GuitarSpec getBackWood(): Wood
4o vepresent getTopWood(): Wood
mandolins. [n)us{'. Almost everything in getNumStrings(): int
a set, well eveate Guitar gets pushed matches(GuitarSpec): boolean

a MandolinSpet
dass ‘(:o‘(‘ mando\i"
properties, {oo.

up to Insteument, and
9ets inherited. So we
¢an get vid of lots of
hese properties, as
‘l',hey get moved into the

Instrument base elass.

builder

Builder type

toString(): String

1 | topWood

backWood

Type
toString(): String

1

Wood
toString(): String

200 Chapter 5 (part 1)

Download at WoweBook.Com

Pid you notice that abstract

base class?

Take a close look at the new Instrument class

that we created:

Instrument

serialNumber: String
price: double

getSerialNumber(): String <
getPrice(): double
setPrice(float)

getSpec(): InstrumentSpec

We +ook all the
athributes and opevations
that ave tommon 4o both
éuihar and Mando\in, and
\N{: them in |nsJ('xumcw{'/

Instrument is an abstract class: that means that you
can’t create an instance of Instrument. You have
to define subclasses of Instrument, like we did

with Mandolin and Guitar:

Instrument

serialNumber: String
price: double

getSerialNumber(): String
getPrice(): double
setPrice(float)

getSpec(): InstrumentSpec

=

Instrument is the base
tlass for Mahdo,in:d
Quitar-. they base their
behavior off of it

Guitar Mandolin

getSpec(): GuitarSpec

S—0_

getSpec(): MandolinSpec |

N Quitar and Mandolin

We made Instrument abstract because
Instrument is just a placeholder for actual
instruments like Guitar and Mandolin. An

imPlement. the opevati
| Perat,
defined in Ins{:mmen{'oi:s

ways speeific 3 quitar

and mandolip.

abstract class defines some basic behavior, but it’s
really the subclasses of the abstract class that add the
implementation of those behaviors. Instrument
is just a generic class that stands in for your actual
implementation classes.

Download at WoweBook.Com

good design = flexible software

Abstract classes

are placelnolc[egs

for actual
implementation
classes.

The abstract
class defines
]oelxavior, and

the subclasses
implement that

hehavior.

you are here » 201

adding a MandolinSpec

We'll need a MandolinSpec class, too

Mandolins and guitars are similar, but there are just a few things
different about mandolins... we can capture those differences in a

MandolinSpec class:

GuitarSpec

builder: Builder
model: String
type: Type
backWood: Wood
topWood: Wood
numStrings: int

getBuilder(): Builder
getModel(): String

getType(): Type
getBackWood(): Wood
getTopWood(): Wood
getNumStrings(): int
matches(GuitarSpec): boolean

! it Yo nt know an thing about
eoc o i;vc oZ{: the different

evties in the MandolinSpet ¢lass. The main
need 3

mandolins, or didn,{: ‘(:
prop
new tlass for mandol

tame up with using an
abstract tlass, all the better!

RANVN

ing i ealized we probably
he iy lins and their spets- 1§ You
|ns{',rumcr\{: in{cr‘cacc or

MandolinSpec
builder; Builder

Mandolins ¢an
Come in several

model: String
type: Type styles, like an “A”
Style: Style style, or an “F”

backWood: Wood
topWood: Wood
RemRStRges=iat
getBuilder(): Builder
getModel(): String
getType(): Type
getStyle(): Style
getBackWood(): Wood
getTopWood(): Wood

s{:\/lc mandolin. '\

Just as we used

an cmmcra{:cd

{-,\/yc for Wood and

Buildevr, we tan

(8 total), so eveate a new type

numStrings isnt for mandolin s{:\llcs-

needed heve. /

Style
toString(): String

Mos'k mandohns
have & pairs
o{: s{:‘rihgs

matches(MandolinSpec): boolean

Those spec classes sure
look a lot alike. How about we use
an abstract base class here, too?

PQWERWR

What do you think about this design? Will it do what the customer
wants it to do? How flexible is it? Do you think software designed
like this will be easy to extend and maintain?

202 Chapter 5 (part 1)

Download at WoweBook.Com

ther are no

good design = flexible software

Dumb Questions

Q: We made Instrument abstract because we abstracted the
properties common to Guitar and Mandolin into it, right?

A: No, we made Instrument abstract because in Rick's
system right now, there’s no such thing as an actual “instrument.” All
it does is provide a common place to store properties that exist in
both the Guitar and Mandolin classes. But since an instrument
currently has no behavior outside of its subclasses, it’s really just
defining common attributes and properties that all instruments need
to implement.

So while we did abstract out the properties common to both
instrument types, that doesn’t necessarily mean that Instrument
has to be abstract. In fact, we might later make Instrument a
concrete class, if that starts to make sense in our design...

Q: Couldn’t we do the same thing with GuitarSpec and
MandolinSpec? It looks like they share a lot of common
attributes and operations, just like Guitar and Mandolin.

A: Good idea! We can create another abstract base class,
called InstrumentSpec, and then have GuitarSpec and
MandolinSpec inherit from that base class:

InstrumentSpec

model: String

getBuilder(): Builder

getModel(): String

getType(): Type

getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

[A

numsStrings: int I

getStyle(): Style
matches(MandolinSpec): boolean

GuitarSpec MandolinSpec

getNumStrings(): int
matches(GuitarSpec): boolean

Let’s put everything fogether...

203

Download at WoweBook.Com

abstracting common behavior

Behold: Rick’s new application

It looks like all that work on design back in Chapter 1 has paid off;
it took us less than 10 pages to add support for mandolins to Rick’s
search tool. Here’s the completed class diagram:

Inventory

addInstrument(String, double, InstrumentSpec)
get(String): Instrument =
search(GuitarSpec): Guitar [*]
search(MandolinSpec): Mandolin [*]

inventory | *

We've thanged addGuitar() to addInstrument().

Now 9et0) veturns an Instrument
instead of Jus‘l: a Quitar.

We need two seareh()
methods now: one
for guitars and one

for mandolins.

— Instrument
[nstrument is an - -
abstract elass... serialNumber: String
that's what an price: double
italicized class name - -
means in UML- getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): InstrumentSpec

This is 3 ¢
look at on

petial '(:)'Pc of assotiation we'll
the next page.

Guitar and Mandolin don't do ahy{:hins
but extend Instrument. The diffevences
between the two types of instruments

are encapsulated away in the spet ¢lasses.

Guitar Mandolin

204 Chapter 5 (part 1)

Download at WoweBook.Com

good design = flexible software

Whenever you find common behavior in two
or more Places, look to abstract that behavior

into a class, and then reuse that behavior in
the common classes. N

Now the abstract [nstrument that we used 4o vef,
elass is assotiated with the di"t‘—":'y in 6ui£av~$p¢¢. _—

abstract [nsbrumentSpet tlass. / RB
Q spec

Heve's

the yv‘mcivlc that

led to us eveating both the

n

s{:\rumcn{: and Ins{vumcr\{;g\?cc

abstract base elasses.

InstrumentSpee is assotiated
with all the enumerated types

erence builder

1

WC,VC mo\lcd

3l the common >
cpet. properties
nto another
sostract class:

InstrumentSpec

model: String

getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

Builder
toString(): String

Type
toString(): String

Wood

toString(): String

Style is an enumevated {\’\7.c that
is used only by the MandolinSpee
tlass, sinte iL's sycciﬁic-ho .
mando\ins, and not all instrumen

svctj‘(:ica{:\on b’\?cs.

GuitarSpec

MandolinSpec

numStrings: int

style

getNumStrings(): int
matches(GuitarSpec): boolean

getStyle(): Style
matches(MandolinSpec): boolean

R 7
We need to override matehes() in each

spe¢ ¢lass to handle additional properties
specifie to eath insbrument.

Download at WoweBook.Com

Style
toString(): String

you are here » 205

a little more uml|

Class diagrams dissected (again)

Now that you’ve added abstract classes,
subclasses, and a new kind of association, it’s time
to upgrade your UML and class diagram skills.

This line with a diamond means aaare ation.
A%rcga{:ion is @ s‘?ctia| Lorm oﬁ assotiation, and means
that one thing is made up (in part) of another thing.
When the name of a elass So [nstrument is partly made wp of InstrumentSpec. More italies: fnsty,

bl is also abst,

is in italies, the elass S dlso abstraet.
is abstract. teve, we \

don't want aryone Instrument

eveating instances

nstrument, it . -
-"i}! sf:d " :fr .. |serialNumber: String
JU w oVl

3 common base for | price: double
s?cci{:it, insbrument - -
classes, like Guitar | getSerialNumber(): String

and Mardelin—f getPrice(): double
setPrice(float)
getSpec(): InstrumentSpec

"‘Ch‘l:QPcc

spec

InstrumentSpec

model: String

getBuilder(): Builder

getModel(): String

getType(): Type

getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

éx

A line with an arrow that isn't

¢olored in means 9eneralization. V.
n. ou

use a 5encra|iza£ion to show that

a ¢lass (like Mandolin) extends

Mandolin and inherits behavior from a move

Gui

generalized elass (like Instrument).

[S

206 Chapter 5 (part 1)

Download at WoweBook.Com

FUMI, Cheat Sheet

N
N

good design = flexible software

N

Fold this page down so You

N
i N
can vefer back 4o it when /
Yyou ‘(:orgc{: some of UML's N

notation and symbols.

What we call What we call How we show
itinJava itin UML itin UML
Abstract Class Abstract Class Italicized Class Name
Relationship Association
Inheritance Generalization >
Aggregation Aggregation <
ther are no

Dumbd Questions

Q: Are there lots more types of symbols and notations
that I'm going to have to keep up with to use UML?

A: There are a lot more symbols and notations in UML, but
it's up to you how many of them you use, let alone memorize.
Many people use just the basics you've already learned, and
are perfectly happy (as are their customers and managers).

But other folks like to really get into UML, and use every

trick in the UML toolbox. It's really up to you; as long as you

can communicate your design, you've used UML the way it's
intended.

207

Download at WoweBook.Com

N

N

abstract classes and instruments

Let’s code Rick’s new search tool

We can start off by creating a new class, Instrument, and making it
abstract. Then we put all the properties common to an instrument in this class:

public abstract class Instrument {

private String serialNumber;
private double price;

S [Instrumentis abstratt... you
have to instantiate subtlasses

Lhis base ¢lass, like Quitar

private InstrumentSpec spec;

public Instrument (String serialNumber,

this.

this

this.

// Get

public

double price,
InstrumentSpec spec) { 7‘

serialNumber = serialNumber; Most of this i +t
: N .] IS 1S Prc
E;;Ee: Siz(l:er S~ simple, and looks 3 lofy
; like the old Quitar elass
we had.

and set methods for serial nijfiijand price
InstrumentSpec getSpec() {

return spec;

}

We used the agareqation
orm of assotiation because
each [nstrument is made up
of the sevialNumber and
price member vaviables, and
an lns’crumcw(:Sycc instance.

Instrument

serialNumber: String
price: double

getSerialNumber(): String
getPrice(): double
setPrice(float)

getSpec(): InstrumentSpec

Instrlment.java

Next we need to rework Guitar. java, and create a class for mandolins.
These both extend Instrument to get the common instrument properties,
and then define their own constructors with the right type of spec class:

public class Mandolin extends Instrument {

All eath ,
insbrument public class Guitar extends Instrument ({

tlass needs

is o extend public Guitar (String serialNumber, double price,
[nstrument, = GuitarSpec spec) {

and ‘zrovidc super (serialNumber, price, spec);

a {,ons{:rud’.o? }

fhat takes the |} .

righ{: kind of Guitar

spet ob)CC{'«'

208

Guitar.java

Chapter 5 (part 1)

Download at WoweBook.Com

Mandolin is almost identical

to éu'l‘(:ar; it \')us{: takes in a
MandolinSpet in the tonstruttor,
instead of a GuitarSpec.

Create an abstract class for
instrument specifications

With the instruments taken care of, we can move on to the spec
classes. We need to create another abstract class, InstrumentSpec,
since so many instruments have common specifications:

public abstract class InstrumentSpec {

spec 1 e — Just like Instrument,

InstrumentSpec

private String model;

model: String private Type type;

private Wood backWood;

getBuilder(): Builder
private Wood topWood;

getModel(): String

getType(): Type

getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

this.type = type;
this.backWood = backWood;

InstrumentSpec.java

public InstrumentSpec (Builder builder,

R\Jﬁggg\géckWood, Wood topWood) {
this.builder = builder; This is similar o our old

this.model = model; Guitar constructor..
extept that we've pulled

chis topWOOd N tOpWood; & ouJ(', YYOYCY‘UCS V\O‘{', ('.,:mmon
4o all insbruments, like

private Builder builder; hﬂ*uma&chisabﬂyad;

and \/ou'“ use subtlasses for
eath ins{rumcnf '{:\/Pc

good design = flexible software

String model, Type type,

numStrings and s{:\/\c-

// All the get methods for builder, model, type, etc.

public boolean matches (InstrumentSpec otherSpec) {

if (builder != otherSpec.builder)
return false;

if ((model !'= null) && (!model.equals (™)) &&

(!'model.equals (otherSpec.model)))

return false;
if (type != otherSpec.type)
return false;

if (backWood != otherSpec.backWood)

return false;

if (topWood != otherSpec.topWood)
return false;

return true;

Download at WoweBook.Com

& Th,s version

d°CS\jusf
<— expeet: to

S"bdlasse

5 though.

you are here »

of ma{:ches()
what You'd
mPares)|

Properties i, this elass

anoth .
/ have €r spee .,,5{:8“‘:&

override ths i,

to
we'll

209

completing the spec classes

Let’s code GuitarSpec...

With InstrumentSpec coded up, it’s pretty simple to write the
GuitarSpec class: Just as Quitar extended
[nsbrument, GuitarSpee

/ cx{mds Ins{:rumcvx{',g?ec.

public class GuitarSpec extends InstrumentSpec {

—Onlya guitar has a numS'l:Vinss

private int numStrings; not in the Instrument superelas

P\ropcr{:y; it's
S.

public GuitarSpec (Builder builder, String model, Type type,
int numStrings, Wood backWood, Wood topWood) {

super (builder, model, type, ckWood, topWood) ;
this.numStrings = numStrings;

} = This eonstruetor just adds
the 5ui£ar—s‘>ccif?a propevties

public int getNumStrings () { 4o what’s 8|rcady stored in
} FeTEn mSEEngs the base InstrumentSpee elass.
// Override the superclass matches() <————————_
public boolean matches (InstrumentSpec otherSpec) { i
if (!super.matches (otherSpec)) matehes() uses the su\acrclasss
return false; tehesO), and then \acr(:orms
if (! (otherSpec instanceof GuitarSpec)) ma wtional cthetks 4o make
return false; 0 J::\h spet. is the vight
GuitarSpec spec = (GuitarSpec)otherSpec; sure the <P Lehes the guﬂ:a\r’
if (numStrings != spec.numStrings) §—— {-,\/?c, and m3 {_‘.C
return false; 5\’“.“(:.& propertics

return true;

J InstrumentSpec

model: String

getBuilder(): Builder

getModel(): String

getType(): Type

getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

éui*ta\rSPcc 9ets a lot of its behavior
from Ins{rumcn{:SFec now, so the
eode for GQuitarSpee has slimmed

down a lot from Cha
pter |.
\B GuitarSpec

numStrings: int

getNumStrings(): int
matches(GuitarSpec): boolean

GuitarSpec.java

210 Chapter 5 (part 1)
Download at WoweBook.Com

\ MandolinSpec }

good design = flexible software

..ahd MandolinSpec, too

After seeing GuitarSpec, MandolinSpec is pretty simple.
It’s very similar, with the addition of a member variable to
reference the mandolin’s style (like “A” or “I”” style), and a
slightly different matches () method:

public class MandolinSpec extends InstrumentSpec {

. < is nok
O mandolins have a S{:\/le, so this is no
private Style styles ?us;l\cd up into the [nsbrumentSpee base ¢lass.

public MandolinSpec (Builder builder, String model, Type type,
Style style, Wood backWood, Wood topWood) {
super (builder, model, type, backWood, topWood);
this.style = style;

public Style getStyle() {
return style;

// Override the superclass matches ()
public boolean matches (InstrumentSpec otherSpec) {
if (!super.matches (otherSpec))

return false; Just like éui{:arSPCC, MandolinSpee
if (! (otherSpec instanceof MandolinSpec)) uses its supertlass £o do basie ’
return false; Comparison, and then easts to

MandolinSpec spec = (MandolinSpec)otherSpec; = — MahdolinSPcc and tompares +h
s the

if (!style.equals(spec.style)) ESL~_______—///// mandolin—spe¢ifis ;
return false; pecitic properties.

return true;

public enum Style {
A, F;

style

1

getStyle(): Style
matches(MandolinSpec): boolean

Style =— You'll need a

— toString(): String new enumerated Style.java
{‘/FC; Sf\/lc‘ Use
two enumerated
values, A and F.
MandolinSpec.java
you are here » 211

Download at WoweBook.Com

coding rick’s search tool

Finishing up Rick’s search tool — I

inventory: Instrument [*] I

All that’s left is to update the Inventory class to
work with multiple instrument types, instead of just the

addInstrument(String, double, InstrumentSpec) I
get(String): Instrument

Guitar class: search(GuitarSpec): Guitar [*]
The inventory list now holds search(MandolinSpec): Mandolin [*]
public class Inventory { multiple types of instruments,
not just guitars. Inventory.java

private List inventory;

By using the Instrument and

ublic Tventory() | Insfrumen{:gycc tlasses, we tan £
inventory = new LinkedList (); - 3ddéuitar() into 5 more 9eneric wh‘“‘ d
me
} and ereate any kind of instrument. -

public void addInstrument (String serialNumber, doub\le price,

InstrumentSpec spec)

Instrument instrument = null;
if (spec instanceof GuitarSpec) {
instrument = new Guitar (serialNumber, price, (GuitarSpec)spec);

} else 1f (spec instanceof MandolinSpec) {
instrument = new Mandolin (serialNumber, price, (MandolinSpec)spec):;

} .
inventory.add (instrument) ; — K;I:m ﬂ“? isn't so 9reat. Since
}) ument is abstraet, and we
ean't instantiate it dire(_{ly] we
public Instrument get (String serialNumber) { have to do some extry work
for (Iterator i = inventory.iterator(); i.hasNext();) { bc‘c°"c C\rea'{:ina an ihS‘lZ\f‘umch{;
Instrument instrument = (Instrument)i.next();

if (instrument.getSerialNumber ().equals (serialNumber)) {

return instrument;<\ .
} Heve's another spot where using

} an abstract base tlass makes our

: return null; design more Llexible.

// search (GuitarSpec) works the same as before

public List search(MandolinSpec searchSpec) { é———ﬁ
List matchingMandolins = new LinkedList();
for (Iterator i = inventory.iterator(); i.hasNext();) { We need another search() method
Mandolin mandolin = (Mandolin)i.next(); to handle mandolins.
if (mandolin.getSpec () .matches (searchSpec))
matchingMandolins.add (mandolin) ;
}

return matchingMandolins;
) ' At this point, you've \rcadz to try out
Riek’s improved app. See it you tan update
FindQuitar Tester on Your own, and see how
things are working with these design thanges.

212 Chapter 5 (part 1)

Download at WoweBook.Com

Q; Guitar and Mandolin only have a
constructor. That seems sort of silly. Do
we really need a subclass for each type of
instrument just for that?

We do, at least for now. Otherwise,
how could you tell a mandolin from a
guitar? There’s no other way to figure out
what type of instrument you're working
with than by checking the type of the class.
Besides, those subclasses allow us to have
constructors that ensure that the right type
of spec is passed in. So you can't create a
Guitar, and pass a MandolinSpec
into its constructor.

ittle indica !
These ave \jj“.; ‘.“thn things :)“SJC don't seem

a dcsigv\ pr

1 our . H
o nake Scn::{:;a\{’:c 3 little further.. which is

bout to do.

want o inv

exattly what we've 3

t]iet‘ dre no

Dumb Questions

Q: But with Instrument as an abstract
class, the addInstrument() method in
Inventory.java becomes a real pain!

A: You're talking about
addInstrument () on page 212,

aren’t you? Yes, with Instrument as
an abstract class, you do have some extra
code to deal with. But it’s still a fairly small
price to pay to ensure that you can’t create
an Instrument, which really doesn’t
exist in the real world.

vs that we may have

—

application, you maY

Download at WoweBook.Com

good design = flexible software

Q,- Isn’t there some middle ground,
though? | mean, even if there’s no such
thing as an “instrument” that isn’t a guitar
or mandolin or whatever, it still seems

like we must have a design problem
somewhere. Right?

A: Well, you may be onto something.
It does seem like parts of our code would
benefit from a concrete Instrument
class, while other parts wouldn't.
Sometimes this means you have to make
a decision one way or the other, and just
accept the trade-off. But maybe there’s
more going on here that we're not thinking
about...

Q- Why do we have two different
versions of search()? Can’t we combine
those into a single method that takes an
InstrumentSpec?

A: Since InstrumentSpec is

an abstract class, like Instrument,
Rick’s clients will have to give either a
GuitarSpec or a MandolinSpec to
the search () method in Inventory.
And since a spec will match only other
specs of the same instrument type, there’s
never a case where both mandolins and
guitars would be returned in the list of
matching instruments. So even if you
consolidated the two search () methods
into one, you wouldn’t get any functionality
benefit—and even worse, it might look like
the method would return both mandolins
and guitars (since the return type of
search () would be Instrument
[*1), even though it never actually would.

213

major improvements

Wow, this is really starting to look
pretty good! Using those abstract classes
helped us avoid any duplicate code, and we've
got instrument properties encapsulated
away into our spec classes.

You’ve made some MAJOR
improvements to Rick’s app

You've done a lot more than just

add support for mandolins to Rick’s
application. By abstracting common
properties and behavior into the
Instrument and InstrumentSpec
classes, you’ve made the classes in
Rick’s app more independent. That’s a
significant improvement in his design.

I don't know... it seems like we've still
got a few problems, like the almost-
empty Guitar and Mandolin classes,

and addInstrument() with all that nasty

instrument-specific code. Are we just
supposed to ighore those?

Great software isn’t
built in a day

Along with some major design
improvements, we’ve uncovered a few
problems with the search tool. That’s
OK... you’re almost always going to find
a few new problems when you make big
changes to your design.

So now our job is to take Rick’s better-
designed application, and see if we can
improve it even further... to take it from
good software to GREAT software.

214

Download at WoweBook.Com

good design = flexible software

3 steps to great software (revisited)

a—

Is Rick’s search tool great software?

Remember the three things we talked about that you can do to write great
software? Let’s review them to see how well we’ve done on the latest version
of Rick’s search tool.

1. Does the new search tool do what it's supposed to do?

2. Have you used solid OO principles, like encapsulation, to avoid duplicate
code and make your software easy to extend?

3. How easy is it to reuse Rick’s application? Do changes to one part of the
app force you to make lots of changes in other parts of the app? Is his
software loosely coupled?

/
(Great software every time? I
can hardly imagine what that

Z would be like!

Be sure to answer these a\ucshons,
and then Luen the page 4o see

what we wrote down-

you are here » 215

Download at WoweBook.Com

is this great software?

Is Rick’s search tool great software?

Remember the three things we talked about that you can do to write great
software? Let’s review them to see how well we’ve done on the latest version

EZ@RC‘SQ of Rick’s search tool.

SOL!J":‘OHS 1. Does the new search tool do what it's supposed to do?
Absolutely. It finds guitars and mandolins, although not at the
sawe time. So maybe it just mostly does what it’s supposed to
do. Better ask Rick fo be sure...

2. Have you used solid OO principles, like encapsulation, to avoid duplicate
code and make your software easy to extend?

We used encapsulation when we cawme up with the InstrumentSpec
classes, and inheritance when we developed an Instrument and
InstrumentSpec abstract superclass. But it still takes a lot of work
to add new instrument types...

3. How easy is it to reuse Rick’s application? Do changes to one part of the
app force you to make lots of changes in other parts of the app? Is his
software loosely coupled?

11’s sort of hard to use just parts of Rick’s application. Everything’s
pretty tightly connected, and InstrumentSpec is actually part of
Instrument (remember when we talked about aggregation?).

Looks like there's still
some work to do... but T'll bet

this will be amazing by the
time you're done.

\

|£'s OK i you got some
diffevent answers and
had diffevent ideas
than we did on these
O\ucs{jons‘.‘ \)us{', makf
sure You {')nough{: things
{:\wough, and that you
undevstand why we

answered how we did.

216 Chapter 5 (part 1)

Download at WoweBook.Com

good design = flexible software

I'm loving what you're doing to my
search tool! As long as you're here, I think
T'd like o start carrying bass guitars, banjos,

and dobros (you know, those guitars you play

-~ Let’s Pu{;R

. . . ick’s
with a slide). And how about fiddles, too? software 4, the Lest
One of the best ways to see if software is
well-designed is to try and CHANGE it.
If your software is hard to change, there’s
probably something you can improve about the
design. Let’s see how hard it is to add a couple
of new instruments to Rick’s app:
el have to change Inventory
again, and add support for Jd\c’c
Lour new insbrument. types No £ types
/ a pleasant experiente. Four new instrument P for
= ! means Lour new ¢lasses, one 1O
fnventory £ eath instrument tyFe:

addInstrument(String, double, InstrumentSpec) Banjo I

get(String): Instrument
search(GuitarSpec): Guitar [*]
search(MandolinSpec): Mandolin [*]
inventory | % Dobro
Instrument Guitar
serialNumber: String
price: double / Bass
getSerialNumber(): String
getPrice(): double

- L Fiddle

setPrice(float)
getSpec(): InstrumentSpec

spec | 1
GuitarSpec
InstrumentSpec numStrings: int .
model: String / getNumStrings(): int Banjospec
getBuilder(): Builder matches(InstrumentSpec): b B .
getgod‘il)()'TSVmg numsStrings: int & We need four new
getType(): Type
T T ensoinsree | getNY DobroSpec < sPec objects, foo,
getTopWood(): Wood
matches(InstrumentSpec): boolean match </ CaCh one addma
getStyle(): Style .
bu\\der1 ype matches(InstrumentSpec): bo;; BassSpec lts own SC": O‘c
4 baskWood in .
Builder ! topWood Ne N S'l:'r“'“fh‘l:—spctn«cm
1oString): St Ty) 1 1 FiddleSpec proper-ties.
toString(): Stri Wood Style| matcl sinich- .
toString(): String toString(): String fInISh‘ St”ng

getFinish(): Style
matches(FiddleSpec): boolean

you are here » 217

Download at WoweBook.Com

change is hard

Uh oh... adding new instruments

If ease of change is how we determine if our software is

well-designed, then we’ve got some real issues here. Every

time we need to add a new instrument, we have to add
another subclass of Instrument:

is not easy!

Instrument

Banjo

serialNumber: String
price: double
spec: InstrumentSpec

getSerialNumber(): String
getPrice(): double
setPrice(float)

getSpec(): InstrumentSpec

Then, we need a new subclass of
InstrumentSpec, too:

When You +hink about how many

ins{:rumen{:s Riek tould end wp
selling, a class for eath insbrument

type is a little seary-

BanjoSpec

int We've s{ar{;ina o have

InstrumentSpec
model: String numsStrings:
getBuilder(): Builder getNumStrin

getModel(): String

getType(): Type

getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

Then things start to really get nasty when you
have to update the Inventory class’s methods to
support the new instrument type:

Inventory

inventory: Instrument [*]

addInstrument(String, double, InstrumentSpec)
get(String): Instrument

search(GuitarSpec): Guitar []
search(MandolinSpec): Mandolin [*]
search(BanjoSpec): Banjo [*]

-

218

Chapter 5 (part 1)

Download

matches(BanjoSpec): boolean

some duplicate code heve...
bavu'os have a numS{:\rings
.P\:opcr{:y like guitars, but
TS not a Lommon cnough
Property to move into Lhe
Instrument supevelass.

gs(): int

For a vefresher on the

problems with add|nstey,
: ment(),
£lip back 4o Page 2/2. '

/_

Remember all that
instanceof and if/else stukf
in addlhs{'xumcw{:o? [+

gets worse with every new

insbrument type we support.

The searehQ) situation is 9etting
move annoying with every new
instrument type. We need a new
version that deals with bav:)os now.

at WoweBook.Com

good design = flexible software

So what are we supposed to do now?

It looks like we’ve definitely still got some work to do to turn
Rick’s application into great software that’s truly easy to change
and extend. But that doesn’t mean the work you’ve done isn’t

important... lots of times, you’ve got to improve your design
to find some problems that weren’t so apparent earlier
on. Now that we’ve applied some of our OO

— principles to Rick’s search tool, we’ve been

. able to locate some issues that we’re going

to have to resolve if we don’t want to spend

the next few years writing new Banjo and Fiddle
classes (and who really wants to do that?).

Before you're ready to really tackle the next phase of
Rick’s app, though, there are a few things you need to
know about. So, without further ado, let’s take a quick
break from Rick’s software, and tune in to...

Al BATAETRARIIE!

Objectville's Favorite Quiz Show

219
Download at WoweBook.Com

Download at WoweBook.Com

il BATABTAOPIE

Objectville's Favorite Quiz Show

‘ 2 2 2 ‘ 2 2
Risk Famous Code Maintenance Software

Avoidance P Designers P Constructs P and Reuse P Neuroses p

(- 2 { 2 2 Y8
\- AN I\ 4

/7
” \(& Hello, and welcome to OO CATASTROPHE, A 2
Objectville’s favorite quiz show. We've got quite
an array of OO answers ’ron(gh‘r, I hopg you've

= /b\ \come ready to ask the right ques‘rlcins.l N P
(- Q\ (A Y@ 2
\ U\l U\l U\l 4
(s e e e P
\ U\l U\l L 4

Download at WoweBook.Com

Dum

A- It might not seem like it, but we are working on Rick’s
search tool, in a manner of speaking. We're going to need some
pretty advanced OO techniques to make his application flexible and
reusable, and we wanted to give you a chance to get a handle on
these principles before you had to start applying them to a pretty
complicated problem.

Why are we playing a game show? Shouldn’t we be
fixing Rick’s search tool?

222 OO CATASTROPHE!

We've got some great OO categories
today, so let's get started. Remember,
T'll read of f an answer, and it's your job to

come up with the question that matches the
answer. Good luck!

tber are, No

nswers

A- The questions that match up with the answers in this chapter
aren’t easy, but you should be able to reason them all out. Take
your time; it's important that you come up with these questions on
your own if at all possible, and only then turn the page to get a little
more information on each question and the OO principle it involves.
Besides, we think you're getting to be a pretty kick-ass developer, so
we have lots of confidence in you.

If these are new OO principles, how am | supposed to
figure out what the questions are? That's asking a lot, isn’t it?

Download at WoweBook.Com

il BATABTRAALE!

Objectville's Favorite Quiz Show

Risk Famous Code Maintenance Software
Avoidance Designers Constructs and Reuse Neuroses

4 Y@ P 4 Y@ S
\¢ AN ¢ AN J
4 Y@ Y@ Y
\§ AN 4 \¢ \ 4
4 Y& 2 4 M S
‘o AN & This code construct has the |
” 18 N dual role of defining behavior |)
that applies to multiple types,
w ¥\ & and also being the preferred ”
focus of classes that use
those types.

4

“What is 7”

223

Download at WoweBook.Com

/ aDs,i(ddyou 3:'(: this? You should have
ed this 35 the question Loy the

“What is an INTERFACE?”

Suppose you've got an application that has an interface, and then lots
of subclasses that inherit common behavior from that interface:

answer op Paﬂe 223

<<interface>>
. — Thi
Abhlete def ":jc: ' Athlete | —— ahhfs : how you Fepresent
play() method tha . interface in Ly .
all dhese tlasses getSport(): String the <<interf; e
. pe play() nd ity ertatess yorg
m\?\cmcn in spo Cized ¢)as nam

specikic ways. \\

BaseballPlaver I LL

Footba\iﬁlayer

HockeyPlayer | | getSport()i-<=

getSport()

olay() getSport(): String H nlau) BasketballPlayer
T —

TennisPlqetSport(): String
getSport(): Strin| play()
play()

Anytime you’re writing code that interacts with these classes, you have
two choices. You can write code that interacts directly with a subclass,
like FootballPlayer, or you can write code that interacts with the
interface, Athlete. When you run into a choice like this, you should
always favor coding to the interface, not the implementation.

<<interface>>
ol Athlete
el 0
getSport(): String
Team play)
addPlayer(???)
BaseballPlayer
What ‘{‘,\/Pc should Limiﬁ"g! lay()
this method +ake?]

Why is this so important? Because it adds flexibility to your app.
Instead of your code being able to work with only one specific
subclass—Ilike BaseballPlayer—you’re able to work with
the more generic Athlete. That means that your code will
work with any subclass of Athlete, like HockeyPlayer or
TennisPlayer, and even subclasses that haven’t even been
designed yet (anyone for CricketPlayer?).

224

Download at WoweBook.Com

CoJing to an
interface, rather
than to an
implementation,
makes your
software easier
to extend.

By coJing to

an interface,
your code will
work with all of
the interface's
subclasses—even
ones that
haven't l)_eg_r_l
created yet.

Risk Famous Code Maintenance Software
Avoidance Designers Constructs and Neuroses

e

“What is 7

answers and questions » 225

Download at WoweBook.Com

“What is ENCAPSULATION?~

We've talked a fair bit about encapsulation already, in terms of
preventing duplicate code. But there’s more to encapsulation than
just avoiding lots of copy-and-paste. Encapsulation also helps you
protect your classes from unnecessary changes.

Anytime you have behavior in an application that you think is likely
to change, you want to move that behavior away from parts of your
application that probably won’t change very frequently. In other
words, you should always try to encapsulate what varies.

Here's a very PVCP&Ving an easel and
simple ¢lass that tleaning brushes aye
does three things —> 90ing to stay pretty
prepaves 3 new muth the same.

easel, tleans prepareEasel()

brushes, and cleanBrushes()
paints a icture. paint()

Painter

But what about ?ain{:ing? The s’c\/lc of
painting varies..- the way the brus}.\cs are
used vavies... even the speed aJc; whith
painting oteurs vavies. So here’s where all
the thange tould happen in Painter.

It looks like Painter has two methods that are pretty stable, but

that paint () method is going to vary a lot in its implementation.

So let’s encapsulate what varies, and move the implementation of PaihfSchle represents the
how a painter paints out of the Painter class. Varying paint behavioys.

We've Painter PaintStyle
C:\Lfsu‘a.{:i the prepareEasel() get'Style(): String
v {.VQYLCW.W_ cleanBrushes() pait()

e Eihe setPaintStyle(PaintStyle)

ow

Painter class.

ModernPaintStyle

SurrealPéiotStyle h
paint()

paint) | CubistPaintStyle
paint()

::ofan interface heye, ,,02 ImpressionistPai
n nmplemen'l:a{:ion. / paint()

Now the variante s

Lutked away into all

of these PaintStyle
226 0O CATASTROPHE! implementation classes

Download at WoweBook.Com

~
Famous
Designers

(-
Maintenance

and

~
Software
Neuroses

~
Risk
Avoidance
~

il

~
Code
Constructs
~

D
D

il

il
il

$300

“What is

p
p
p-

il

-

p
P
p-

make sure that i

? P4

Download at WoweBook.Com

answers and questions » 227

“What is CHANGE?”

You already know that the one constant in software is
CHANGE. Software that isn’t well-designed falls apart at the
first sign of change, but great software can change easily.

The easiest way to make your software resilient to change is
to make sure each class has only one reason to change.
In other words, you’re minimizing the chances that a class is

going to have to change by reducing the number of things in

that class that can cause it to change.

Take a look at the
methods in this elass.
They deal with starting
and stopping, how tives

ave thanged, how 3

Siver dvives the €ar, Automobile
washing the ¢ar, and even | start()
thetking and handind—> sfop()
the ol “~—= |changeTires(Tire [*))
\> drive()
wash()
checkOil()
getQil(): int

<= There ave LTS of things that

When you see a class that has more than one reason to
change, it is probably trying to do too many things. Sec
if you can break up the functionality into multiple classes,
where each individual class does only one thing—and

therefore has only one reason to change.

tould cause this tlass 4 thange.
a methanie changcs how he
theeks the ail, or if 3 driver
drives the ¢y

di‘F‘Fﬂ‘Ch‘H) o
cv.en if a ear wash is uygv).;dZd
this ode will need 4o thange. '

Driver and CarWash each do ;
o
. ONE thing, so 'l:hey won't ha‘;):s'&
Automobile thange nearly as ofLep,

‘/ ’ \{ou tould ?vo\aab\\/
start() even break up these
stop() CarWash I bwo Functions if you
getOil(): int wash(Automol= wanted, and separate

ﬁ Driver L the functionality of
4 Mechanic
Aubomabile aot 3 LOT simplev-

|+ handles starting, stopping and
veporting on its oil a{:{ribu{c-,
Muth wore vesilient to thange:

228 OO CATASTROPHE!

drive(Automobile)

a Methanit into two
behavior tlasses.

checkOil(Automobile)
changeTires(Automobile, Tire [*])

Download at WoweBook.Com

You've been doing pretty well, but
now it's time for FINAL CATASTROPHE.
Below is the class diagram for an application that's
not very flexible. To show that you really can avoid an
OO catastrophe, you need o write down how you'd
change this design. You'll need to use all the principles
we've been talking about, so take your time, and

al e
CHATARTRARH

DessertCounter

orderCone(IceCream[*], Topping[*]): Cone Dessert
orderSundae(lceCream[*], Topping[*], Syrup[*]): Sundae serve()
addTopping(Cone, Topping): Cone

addTopping(Sundae, Toppingi): Sundae \

Sundae Cone
iceCream: IceCream [*] iceCream: IceCream [*]
syrups: Syrup [*] toppings: Topping []
toppings: Topping [' addScoop(lceCream)
addlceCream(IceCream) addTopping(Topping)
addSyrup(Syrup) serve()
addTopping(Topping)
serve()

Topping L IceCream h
description: String I taste: String I
getDescription(): String getTaste(): String
serve() serve()

/7 AR

|' WﬁippedCream h Syrup h Vanilla \ \L

| " Nuts h | ingredients: String [*] I Chocolate

. | Peppermint \ i

Cherries
| MintChocolateChip

h getingredients(): String [*]
serve()

serve()

HotFudge
| Caramel h

[S

229

Download at WoweBook.Com

Dcsscr'l:Coun'(:er is ¢oding 1o

HATARTRABIE

Answers

implementations of the Dessert

intevface. We €an veduce these 4o

order ”‘C‘{Zhods
and then retur

DessertCounter

orderCone(IceCream[*], Topping[*]): Cone
orderSundae(lceCream[*], Topping[*], Syrup[*]): Sundae
addTopping(Cone, Topping): Cone

addTopping(Sundae, Topping): Sundae

DessertCounter has movre than

one reason to thange: if the
ordcrin3 protess changcs, or if how
the Cone and Sundae ¢lass adds
toppings thanges. Adding a topping
should be done 4o the Dessert
tlasses divectly, not heve.

S\/vu‘? is an
implementation of
TOPPih5~‘~ we Ycall\/

specifically to add a
Topping, That's toding
{0 an imylcmcn{;a{:ion.

tlxer are, No

.................... Duym nswers

You've seen several times already that when you see a
potential for duplicate code, you should look to encapsulate. In this
case, it's reasonable to assume that serving a Sundae probably
isn’t that different from serving a Cone.

So you could create a new class, called DessertService,

and put the serve () method in that class. Then, all of your
Dessert, IceCream, and Topping classes could simply refer
to DessertService.serve (). If serve () changes, you've
got to update code in only one place: DessertService.

230

toppings: Topping ['] addScoop(IceCream)
addliceCream(lceCream) addTopping(Topping)
—> [addSyrup(Syrup) serve()

don't need a method ~

to one: orderDcsser/c(),
n the in{chcat’,c, Dcsscr{:.

Dessert

\

iceCream: IceCream [*]
toppings: Topping [*]

serve()

Cone

Sundae

iceCream: IceCream [*]
syrups: Syrup [*]

addTopping(Topping)

serve() s _ /
There ave a LOT of serve()

imVICmcn{a{:ions Q\oabng avound. We should
{’,\r\/ and cncaysulake what vavies, and ?u{
all 4he serving tode in one place. ThaJc’ way,
if Lhe serving protess thanges, we don't
need to thange ALL these ¢tlasses.

So you're encapsulating what might vary—the code in the
serve () method—and you're making sure that each class has
only a single reason to change. That’s a double win!

Q: How did you know to encapsulate the serve() methods
out of all those different classes? | missed that.

Download at WoweBook.Com

Topping and eeCrream
both have 3 serve()
method, and seem to be
pretty similar... Maybe ——= [iaste: String

IceCream

we tan abstract out
. Common properties and getTaste(): String

Mos:f O‘Q‘hﬂ“;Ot\JC Z)ovv\mo“ / treate a base elass? Serve()

bstrattin

a\’vSoYcr{:'\cs \eads Yo 0

cnca\?su\a‘h'\o“'

Topp’ng Vanilla \ \ h
Chocolate\ \i\

description: String

getDescription(): String
serve()

Peppermint \ i

MintChocolateChip

Syrup
ingredients: String []

getingredients(): String [*]
serve()

/ %ippedCream

Nuts

Cherries

serve()

HotFudge

Caramel

231

answers and questions »

Download at WoweBook.Com

back to rick’s search tool

232

OO CATASTROPHE!

you back next week, but we just received
an urgent call from a "Rick"? Something
about getting back to work on his

It's been great having you as
a contestant, and we'd love to have

search tool?

You’re ready to tackle
Rick’s inflexible code now
With a few new OO tools and techniques
under your belt, you're definitely ready to
go back to Rick’s software, and make it a
lot more flexible. By the time you’re done,
you’ll have used everything you’ve just
learned on OO Catastrophe, and made it
easy to change Rick’s application, too.

00 Printiples

Enca?sula{c what vavies.

Code to an interfate vather than to an
im?lcmcn{',aﬁon.

Each ¢lass in your a\vylica{:ion should have on|\/
one veason to thange.

?

These three pripe;
th‘_lP’cS ar
HM(SE_/ Take note of fhefm, as

we'll be using them 3 .
lot
UPLoming chapfm_ °% in the

Download at WoweBook.Com

5(part2) good design = flexible software

Give Your Software a
30-minute Workout

And stretch..2...3..4..

Ever wished you were just a bit more flexible?

When you run into problems making changes to your application, it
probably means that your software needs to be more flexible and
resilient. To help stretch your application out, you’re going to do some
analysis, a whole lot of design, and learn how OO principles can really
loosen up your application. And for the grand finale, you’ll see how
higher cohesion can really help your coupling. Sound interesting? Turn

the page, and let’s get back to fixing that inflexible application.

this is (sort of) a new chapter 233

Download at WoweBook.Com

problems with rick’s search tool

Back to Rick’s search tool

Loaded up with some new OO principles, we’re ready to tackle making
Rick’s application well-designed and flexible. Here’s where we left off,
and some of the problems we’ve discovered:

Inventory

addInstrument(String, double, InstrumentSpec)
get(String): Instrument

search(GuitarSpec): Guitar [*]
search(MandolinSpec): Mandolin [*]

inventory | *

Instrument

8dd|hs{‘,rumcn+,() has tode S?cLi(:'\{, to

ime we
eath insbrument Lype; so every ’cm:c
add a new [nsbrument subtlass, weve

- got 4o thange tode heve.

There’s a seareh() method for each and
every Instrument subtlass. Not so 9o0d...

serialNumber: String
price: double

getSerialNumber(): String
getPrice(): double
setPrice(float)

getSpec(): InstrumentSpec

Guitar Mandolin

~N 7

These have nothing but a
tonstruttor, so they've a veal
pain... and we have 4o add one for
every new insbrument type.

234 Chapter 5 (part 2)

Download at WoweBook.Com

This elass seems OK... extept that if
add a new insbrument with diffevent

\aroycr{ics:

this tode, too-

we've going to have 1o thange

we

good design = flexible software

builder

Builder

toString(): String

InstrumentSpec

Type

model: String

getBuilder(): Builde
getModel(): String

getType(): Type

matches(Instrumen

getBackWood(): Wood
getTopWood(): Wood

r

toString(): String

Wood

tSpec): boolean

toString(): String

GuitarSpec

MandolinSpec

numStrings: int

style

getNumStrings(): int
matches(GuitarSpec): boolean

Just like with Ins{:\rumcnf,

getStyle(): Style
matches(MandolinSpec): boolean

e

ever

new type vesuls in 3 new subelass

Ihsfrumcy\-l;chL

Download at WoweBook.Com

Style
toString(): String

235

you are here »

examining the search() method

Guys, T've been looking over
this class diagram for Rick's
application, and there's just got to
be a better way to deal with this
search() method thing.

Frank: Yeah, it’s a pain, but I don’t see any way to get around
it. We have to let Rick’s clients search for each different type
of instrument somehow.

Jim: I still don’t see why we can’t have just one search)
method that takes in an InstrumentSpec. Wouldn’t that cut
down on all those different versions of search()?

Joe: Well, it would, but we still don’t have any way to
return multiple types of instruments. If the client provides
a GuitarSpec, it’s never going to match a BanjoSpec or
MandolinSpec. So the list returned from search() will always
have only the type of instrument that the client’s spec is for.

Jim: Because we can’t instantiate InstrumentSpec, right? It’s
an abstract class, so we have to create a MandolinSpec, or a
BanjoSpec, or whatever.

Frank: So maybe that’s the problem... besides, shouldn’t
we be coding to an interface like InstrumentSpec, not an
implementation like GuitarSpec or BanjoSpec?

Joe: Hmmm. I hadn’t thought about that, but you’re right;
we really should be focusing on the interface, and not all those
implementation classes.

236 Chapter 5 (part 2)

Download at WoweBook.Com

good design = flexible software

A closer look at the search() method

It seems pretty clear that there’s a problem with the way we’re handling
searches for Rick’s clients. We could make InstrumentSpec a
concrete class, but would that solve all our problems?

<3
{ , We have 3
R‘S\\t\r\?‘)’wmcﬂ\od for eath

Inventory.java s e Bt e

el
can make |nskrument>¥

L.
non—a\)s{'xaf‘ \

search (FiddleSpec)

This vevsion of Inventory s« vo longer (InstrumentSpeb
vequives loks of thanges |V\S{W"‘"‘{"g‘m' e model: String
for every new instrument in italies. That means . .
or st Rick sells.. t's not an sbstract class getBuilder(): Bgllder
that R anymore. and theres getModel(): String
..but this version of nothing we need to thange getType(): Type.
Inventory, with onl belasses. getBackWood(): Wood
nventory, with only a in the spet sw .
single seareh() method, is getTopWood(): Wood
J ’ matches(InstrumentSpec): boolean

much easier to thange.

Now we ¢an let Riek’s clients
Pass in an lns{rumcn‘f,g?ct to
the seareh() method.

search (InstrumentSpec) Q

Inventory.java

you are here » 237

Download at WoweBook.Com

moving to a non-abstract InstrumentSpec

The benefits of our analysis inventory

inventory: Instrument [*]

Let’s take what we’ve figured out about turning
InstrumentSpec into a concrete class, and see if it makes
the design of Inventory any better.

addinstrument(String, double, InstrumentSpec)
get(String): Instrument
search(InstrumentSpec): Instrument [*]

public class Inventory {

) —
Here’s the big ¢hange

that this Page highlights. Inventory,java
private List inventory;
public Inventory() { We still have S°f"c
inventory = new LinkedList (); issues heve... this
} method gets
bigger and movre
public void addInstrument (String serialNumber, double price, comylica{:cd every
InstrumentSpec spec) { Lime we add a new
Instrument instrument = null; / type of instrument...
if (spec instanceof GuitarSpec) {

instrument = new Guitar (serialNumber, price, (GuitarSpec)spec):;
} else if (spec instanceof MandolinSpec) {

instrument = new Mandolin (serialNumber, price, (MandolinSpec)spec):;
}
inventory.add (instrument) ; K_/— ~and we're ¢

ding {0 {he imPlcmenfa{:ion

| tlasses, not the /ns{;lrumen{: base ¢lass

public Instrument get (String serialNumber) {
for (Iterator i = inventory.iterator(); i.hasNext();) {
Instrument instrument = (Instrument)i.next();
if (instrument.getSerialNumber () .equals (serialNumber)) {
return instrument;
}
} search() ;
return null; Only one :/S"l::,l:ng ,'M better/
}) and it takes in
/_ an l""l:"'umcnfgpcc now.
public List search (InstrumentSpec searchSpec) {
List matchingInstruments = new LinkedList();
for (Iterator i = inventory.iterator(); i.hasNext();) {
Instrument instrument = (Instrument)i.next ();

if (instrument.getSpec () .matches (searchSpec)) 4 base bype now,
matchingInstruments.add (instrument) ; We've toding to the |ns{rumcn{:. p \ﬁ o
} not the imylcmcn{:a{:ion tlasses like Quitar
Ferurn matehinginstrments; Mandolin. This is @ muth better desugn.

}

C On top of better design, now seareh()
tan retuen all instruments that mateh,

even if that list contains diffevent
types of instruments, like wo guitars

and one mandolin.

238 Chapter 5 (part 2)

Download at WoweBook.Com

good design = flexible software

o aharpen your pencil
One of these things is not like the other... ,
oris it? w
The search() method isn’t the only thing that makes adding new
instruments to Rick’s application difficult. You also have to add a new

subclass of Instrument for each new instrument type. But why? Let's do a
little more analysis.

Why is there a need for an Instrument class in Rick’s application?

What things are common to all instruments?

What things are different between instruments?

If you have any ideas for how you might change Rick’s application so that
you don’t need all the instrument-specific subclasses, mark those changes
on the class diagram below. Feel free to add or remove classes and
properties; it's up to you to decide how you can improve Rick’s design.

Banjo h

Instrument

serialNumber: String
price: double
spec: InstrumentSpec

getSerialNumber(): String
getPrice(): double
setPrice(float)

getSpec(): InstrumentSpec

Mandolin
~~— Fiddle |

Bass

you are here » 239

Download at WoweBook.Com

resistance to change

One of these things is not like the other... A harpen YOUF PenC“
orisit? W, ANSWers

The search() method isn’t the only thing that makes adding new
instruments to Rick’s application difficult. You also have to add a new
subclass of Instrument for each new instrument type. But why? Let's do a
little more analysis.

Why is there a need for an Instrument class in Rick’s application?
Most instruments have at least a few comwon properties, like serial

K—& number and price. Instrument stores the common properties, and then

You didn't need to each specific instrument type can extend from Instrument.
write down exattly

Whaﬁd‘*’; d:t. \T('fts\’:‘: g What things are common to all instruments?
should be thinkin

the same lines heve The serial number, the price, and some set of specifications
€ Sam

S (even though the details of those specs may be different
for different instrument types).

What things are different between instruments?
The specifications: each type of instrument has a ditferent set of

properties that it can contain. And since each instrument has a
different InstrumentSpec, each has a different constructor.

If you have any ideas for how you might change Rick’s application so that
you don’t need all the instrument-specific subclasses, mark those changes
on the class diagram below. Feel free to add or remove classes and
properties; it's up to you how you can improve Rick’s design.

Did
You Come yp \;
- h a.ny ‘idcas for chf;:’ 'iﬂ,
iek’s 3PPlication? "

2

Instrument

serialNumber: String
price: double
spec: InstrumentSpec

getSerialNumber(): String
getPrice(): double
setPrice(float)

getSpec(): InstrumentSpec

Mandolin

Bass

240 Chapter 5 (part 2)

Download at WoweBook.Com

good design = flexible software

A closer look at the
instrument classes

Even though search () is looking better, there are still some
real problems with all the instrument subclasses, and the
addInstrument () method in Inventory.

Remember, we originally made Instrument abstract because
each instrument type was represented by its own subclass:

Instrument
serialNumber: String The [nsbrument class takes
price: double cave of all the tommon
spec: InstrumentSpec properties of an insbrument.
getSerialNumber(): String)
getPrice(): double Each instrument subelass just adds
setPrice(float) a tonstructor specific 4o that

getSpec(): InstrumentSpec instrument. type’s spee ¢lass.

public class Mandplin extends Instrument {

Mandolin (String serialNumber, double price,

MandolinSpec spec)){

public class Guitar extepds Instrument {)i
Banjo ic Guitar (String rialNumber, double price, %
GuitarSpec spec) { -
per (serialNumber, price, spec); Mandolin.java
Guitar
Dobro
Bass | Guitar.java
Mandoli L L
Fiddle

But classes are really about behavior!

But the reason you usually create a subclass is because the
behavior of the subclass is different than the superclass. In Rick’s
application, is the behavior of a Guitar different than that of an
Instrument? Does it function differently in his application than a
Mandolin or Banjo?

you are here » 241

Download at WoweBook.Com

behavior or properties?

Guitar and Mandolin and
the other instruments don't
have different behavior. But they have
different properties... so we have to
have subclasses for each instrument,
right?

we weve writing 3 s\/chm
|{f\na’c vepresented how H\-CS;JC B
instruments played, we mg? ;‘kc
sbelasses to handle bch-avwv
Y\ut.\((), sbrum(), or LeatlO.

All the instruments—at least from Rick’s
perspective—behave the same. So that leaves

only two reasons to have subclasses for each
Instrument type:

1. Because the Instrument class represents
a concept, and not an actual object, it really

. \" r; should be abstract. So we have to have

subclasses for each instrument type.

< 4 00 peintiple 2. Each different type of instrument has
This is 3 900 sin different properties, and uses a different
ok e l's‘c:\au\\ a\c subclass of InstrumentSpec, so we need <= This looks like ,a“othfr
headaches ¥ i\l iomc back an instrument-specific constructor for each tase wheve weve c.odmg
L“}’i‘:ﬁses‘cvt a moment. type of instrument. to an im?ltmcn{:ahon
\S on

instead of an inter«cacc,
So this isn't a good
veason to keep
Ins{:‘rumcn{: abstract.

These seem like pretty good reasons (well, at
least the first one does), but we’re ending up
with lots of extra classes that don’t do much...
and that makes our software inflexible and
difficult to change. So what do we do?

Remember the second step in
Sinee Ritk's a\":‘ . writing great software, from
3\‘13"} d::s d: : back in Chapter 1:
it needs

(Step), we've

. How Can y, ‘68
eady to try 0 A l 1) OO T spep gy o Bk g
e s tbare ppty basic a2 apply it ¢,
move lexiole: }

¢ Problcms we IV'C

princi])les to Finding in Ris e

add flexilaility.

242 Chapter 5 (part 2)

Download at WoweBook.Com

good design = flexible software

aSharpen your pencil

"w Object-Oriented Principles to the rescue!

There’s definitely a problem with Rick’s app, but we're not sure what it is. When you
don’t know what to do to solve a design problem, just run through the OO principles
you know, and see if any of them might help improve your software’s design.

For each principle, check the box if you think it could help us out. Then, if you checked
the box for a principle, it's up to you to write down how you could use that principle to
improve Rick’s search tool design.

[J Inheritance

] Polymorphism

[J Abstraction

[J Encapsulation

See what we thought on the next page.

you are here » 243

Download at WoweBook.Com

sharpen solutions

Sharpen your pencil

w answers

Object-Oriented Principles to the rescue!

There’s definitely a problem with Rick’s app, but we're not sure what it is. When you
don’t know what to do to solve a design problem, just run through the OO principles
you know, and see if any of them might help improve your software’s design.

glnheritance

E{Polymorphism

Q/ Abstraction

é Encapsulation

We're using inheritance already with the Instrument and InstrumentSpec
classes, and their subclasses. But it does seew like the instrument-specific
subclasses don't actually do anything but inherit from Instrument... they just
have slightly different constructors.

We use polymorphism in the search() method to treat all instruments as
instances of Instrument, instead of worrying about whether they're a Guitar
or a Mandolin. So searching is a lot easier... but it would be nice to be able to
use this in addlnstrument(), too, and cut down on some repetitive code.

InstrumentSpec abstracts the details about each instruments specifications
away from the Instrument class itself, so that we can add new instrument
properties without affecting the basic Instrument class.

We're using encapsulation a lot, but maybe we can use it even wore...
remewber, encapsulate what varies! Since the properties in each instrument
type are what varies, can we somehow encapsulate those properties away
trom Instrument and InstrumentSpec completely?

244

Download at WoweBook.Com

Guys, we've been using
inheritance, polymorphism, and

Joe: Yeah, you're talking about encapsulating what varies, right?

Frank: Exactly! And we know that the properties for each
instrument are what varies in the application.

Jim: I thought we’d been over this; that’s why we have all those
subclasses of Instrument, like Guitar and Mandolin. So we can
represent the differences between each instrument.

Frank: But that really didn’t help... and besides, the bekavior of each

instrument doesn’t vary, so do we really need subclasses for each
one?

Joe: So you’re saying we would make Instrument a concrete class,

instead of being abstract, right? And then we can get rid of all those

instrument-specific subclasses.

Jim: But... I'm totally confused. What about the properties that
vary across each istrument?

Frank: What about them? The Instrument class has a reference to
an InstrumentSpec, and all the property differences can be handled
[nskrument by those classes. Look:
isn in italics
anymorc; it's a
tontrete tlass.

\

We made Ins{:\rumcwﬁsycc
non—abs{'xac{:, +oo.

Instrument InstrumentSpec
serialNumber: String builder: Builder
e spec - o8
price: double model: String
getSerialNumber(): String 1 |type: Type

backWood: Wood
topWood: Wood

getBuilder(): Builder

getModel(): String

getType(): Type

getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

getPrice(): double
setPrice(float)
getSpec(): InstrumentSpec

Thcre's veally no vreason to have
‘mss:rumcn{:—speciﬁit subclasscs/ The
Just add ComF,cxi'l:y to our application.

Download at WoweBook.Com

abstraction in this design. But I'm beginning
to think the key is encapsulation. Remember
what we learned about separating what

changes from what stays the same?

good design = flexible software

GuitarSpec

numsStrings: int

getNumStrings(): int
matches(GuitarSpec): boolean

MandolinSpec

getStyle(): Style
matches(MandolinSpec): boolean

245

you are here »

letting bad design die

Peath of a design (decision)

One of the hardest things you will ever do is to let

go of mistakes you made i your own designs. In Rick’s
search tool, it doesn’t make sense to have separate
Instrument subclasses for each type of instrument.
But it took us almost 30 pages (and 2 parts of Chapter
5) to figure that out. Why?

Because it seemed to make sense at the

time, and it’s HARD to change something
you thought was already working!

Code once, look twice (or more!)

Keep looking over your designs when

you run into problems. A decision

you made earlier may be what’s
causing you headaches now.

It’s casy to rip apart someone else’s code, but you've

got to learn to look at your own code, and identify
problems. This is also where peer review, having fellow
programmers look at your code, can really be a lifesaver.
Don’t worry if you have to make changes; a better-
designed application will save you tons of time in the
long run.

Design is iterative... and you have to be
willing to change your own designs, as
well as those that you inherit from other
programmers.

..... A

Pride kills good design

Never be afraid to examine
your own design decisions,

o and improve on them, even if
w&tﬂh lﬂ it means backtracking.

246 Chapter 5 (part 2)

Let’s kill our bad design detision to
eveate ins{'xumcn{:—s?cci(:ic SubF‘&SSCS
onte and for all, and gc{: ov~\ with
weiking oreat software again

Download at WoweBook.Com

Let’s turn some bad design
decisions into good ones

Let’s kill all those instrument-specific subclasses:

good design = flexible software

Just eut Six ¢lass

. - c

S19n and wop’f ncc; ::; :F the
ew

[nsbrument isn't ‘M

abstract anymore. N

f "‘Cn'(;s {:’la‘é R,ck

s Se"ina/

Instrument

~ L

serialNumber: String
price: double

spec: InstrumentSpec

getSerialNumber(): String

getPrice(): double
setPrice(float)

getSpec(): InstrumentSpec

We also probably need a new property in each

istrument to let us know what type of instrument it is:

instrumentType

Instrument

serialNumber: String
price: double
spec: InstrumentSpec

getSerialNumber(): String
getPrice(): double
setPrice(float)

getSpec(): InstrumentSpec

InstrumentType
toString(): String

= We ¢can PU'lZ
QUITAR, B

and so on.

1

values in here like

ANJO, MANDoL N,

M
? 2 bogh ot uth better tha,

subelasses.

This ¢an be another enumevated
{:\/yc, like Wood and Builder So. now
adding a new insbrument '(:\/\7: ‘)\.As{',
means adding @ new value to this

cmmcra{Cd {5‘/\"

This is a huge improvement... but
it still seems like adding a new spec
class for every instrument type is
pretty inflexible.

you are here »

Download at WoweBook.Com

247

encapsulate what varies

One more cubicle conversation
(and some help from Jill)

I hate to butt in, but I've
been thinking about something
you said earlier, Joe: Encapsulate
what varies.

really varies in Rick’s software?

Joe: But we just did that... we made Instrument concrete, and
got rid of all the instrument-specific subclasses.

Jill: Actually, I think that’s really only the first step. What

What varies in Rick’s app?

- YOIA {hlhk

Jill's been \is{cv(mg n on

Lev, and ha each instrument are what vary.
the thapter, and has

Som!

Frank: We've gone through this already: the properties for

¢ ideas on how to Jill: So can we encapsulate them somehow?

improve Riek's app- Joe: We already have: we used the InstrumentSpec class for

that.

Frank: Wait a second, Joe. We used InstrumentSpec because
those properties were used by both clients and instruments. So
that was more about duplicate code...

Jill: Yes! That’s my point... the properties inside
InstrumentSpec vary, too. So maybe we need to add another

layer of encapsulation.

Joe: So since the properties of each instrument vary, we
should pull those out of InstrumentSpec? It’s almost like
double-encapsulation or something,

Jill: Sort of... we encapsulate the specifications common

across client requests and instruments from the Instrument

class, and then we encapsulate the properties that vary from

the InstrumentSpec class.

248 Chapter 5 (part 2)

Download at WoweBook.Com

good design = flexible software

T

“Pouble encapsulation” in Rick’s software

Let’s look at the layer of encapsulation we already

have, and then see how we can add a little more
encapsulation to get those properties that vary out of the
InstrumentSpec class.

This veally is
be surprised
‘cum\\l i You use it in elass.

Instrument InstrumentSpec
serialNumber: String spec | builder: Builder
price: double P model: String

1 type: Type
backWood: Wood
topWood: Wood

getSerialNumber(): String
getPrice(): double
setPrice(float)

getSpec(): InstrumentSpec getBuilder(): Builder

getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood

Since some of these properties vary, we want to move
them out of the InstrumentSpec class. We need a way
to refer to properties and their values, but not have those
properties hardcoded into the InstrumentSpec class.
Any ideas for how we could do that?

What typels) do you think you could use to
represent properties and access their values,
but not have to change your InstrumentSpec
class to support new properties?

Download at WoweBook.Com

matches(InstrumentSpec): boolean

nt an OOA‘:D term, so dont
i your ?rogcsso\' looks at you

We vealized in Chapter | that clients
and instruments both needed to use
these properties, so we treated the
Ins{:!rumcn{‘,gycc tlass to abstract them
away ‘From the Ins{:rumcv‘{‘, elass.

The problem is that these

Vro\?crhcs vary across,
insbruments, and so weve
having to add subelass for
eath b/\?c 0‘(: ins{'xumcn{‘,

By encapsulating
what varies,

you make your
application more

flexible, and

easier to c]aange.

you are here » 249

simple solutions rock

Getting dynawmic with
instrument properties

What did you come up with on the last page to store
properties? We decided that using a Map would be a great
way to handle various types of properties, and still be able

to easily add new properties at any time:

InstrumentSpec

properties: Map
Builder=Builder ~
moder-String

getProperty(String): Object
getProperties(): Map
By B

getTepWesd=Weod

matches(InstrumentSpec): boolean

.k have one
NO‘N we \)\,s‘h

'a\)\C) 3 M3Y
mt"‘\)c‘(Nav! YY.OYCY{‘CSI

b S‘\',OYC a\\

We can et vid of all
fhese properties (and the
velated methods), and
just use the properties
map for everything.

We can use
return the
this wi”\)‘us{; ask the map
or the valye assotiated
with the S{ring that’s
Passed into {he method

Even better, now we can dump all those
InstrumentSpec subclasses!

N

\ GuitarSpec

numStrW

The only veason
& e had these
subtlasses of

\

getNumStrings():
atches(GuitarSpec): baglean

Ins{',rumcv\{sycc was
%o handle additional
'ms{'xumcn{:—s?cc'l‘cid

N

~

\wo\?cr{‘jcs‘

"~ MandolinSpeg—"__
>

We ean

-

g/etwef(ﬁme

matches(MandolinSpec): boolean

3etProperty() ¢,
F*°P€*fy values...

We need this property
to tell us what kind of

ﬂ instrument we're looking at.

properties

@mznﬂype

InstrumentType:
GUIT/

builder
wmodel

type
backWood
topWood

numStrings

Builder MARTIN
“OM-18~
Type.ACOUSTIC

Wood.
MAHOGANY

Wood.SITKA

Gvle

6
Style.ls

o Jcalfe any proper-ties
x 3t were in these sublasses,

) and Just add them in to the

250

Chapter 5 (part 2)

map in Insjcrumcn'l:SPeC-

Download at WoweBook.Com

good design = flexible software

What we did: a closer look

Anytime you see something that varies, you should look for
a way to encapsulate. In the case of InstrumentSpec,
we realized that the properties of an instrument vary.

Now all ¢ .
We to . he ;
hih v s Frofeties represented E;OS::{;S o
is separate :) dtross Pairs in 3 A1 e/Value
|ns’cxumcvj;‘h§\’cc{s ;::ausc instruments and instrument ap data structure.
f{ZL" lja;tc:uv?\y an Eyres, and pulled them out
\ S

[nstrumentSpet to seavth(). I"Sf'fumcn{s‘,cc'

InstrumentSpec
class

Instrument properties

When you have a set of]oro]oerties that vary
across your olajects, use a collection, like a Ma]o,

to store those Pro]oerties Jynamically.

You'll remove lots of methods from your classes,
and avoid Laving to c]uange your code when
new Properties are added to your app.

you are here » 251
Download at WoweBook.Com

using Instrument and InstrumentSpec

Using the new Instrument and
InstrumentSpec classes

Let’s take one last look at how our new Instrument
and InstrumentSpec classes work in practice. Here’s
where we are with the design right now:

Ins-{:lrumem‘:SPcc's Map uses
these enumerated types.

Instrument

InstrumentSpec InstrumentType i

serialNumber: String
price: double

properties: Map

getSerialNumber(): String
getPrice(): double
setPrice(float)

getSpec(): InstrumentSpec

getProperty(String): Object
getProperties(): Map
matches(InstrumentSpec): boolean

Both [nstrument and [nstrumentSpee
are no longer abstract.

If you were accessing a guitar, and wanted to know who
built it, here’s how you could do that:

4

We don’t have instrument—
s?c(,i‘(:ic subtlasses now, so the
quitar is vepresented by an
instante o«c lnsfrumcvxf.

spec

The Instrument has an
Ins{:rumen{:gpcc instance
assotiated with it 1o store
instrument Proper-ties.

toStri Builder
to Type

toSt
toSt

&

Wood

Style

Instrument properties

toString(): String

¢ has a

And the [nskrumentSpe .
Mav o(: hamc/ value ?YOYCY{:\CS.

getSpec ()

instrument.getSpec () .getProperty (“builder”) ;

§<__ This veturns the

252 Chapter 5 (part 2) builder of a guitar.

Download at WoweBook.Com

good design = flexible software

Using a Map for storing properties seems like a good idea, but let’s see how things
look once we actually code up a new version of InstrumentSpec. Your job is to
finish off the code below using the magnets at the bottom of the page.

import java.util. ;
import java.util. ;
import java.util. ;

public class InstrumentSpec {
private properties;

public InstrumentSpec () |
if (properties ==) A
this.properties = new ()7
} else {
this.properties = new ();

public getProperty (String)
return properties.get () ;

public getProperties () {
return ;

public boolean matches (otherSpec) {
for (i = otherSpec. () .keySet () . () ;
i. O) A
String = (String)i. 0);
if (!properties.get () .equals (
otherSpec.getProperty (y)) |
return ;

}

return ;

getProperties
‘ M ropertyName o potrumentspec
— L R) s o
R e f— ™
w s me o
InstrumentSpec fpropertyha getProperti you are here » 253

Download at WoweBook.Com

the new InstrumentSpec class

2= - Code Magnets Solutions

- [

Using a Map for storing properties seems like a good idea, but let’s
see how things look once we actually code up a new version of
InstrumentSpec. Your job was to finish off the code below:

import java.util|
import java.util.
import java.util.

public class InstrumentSpec {

private properties;

public InstrumentSpec (J:) { You could at,hua\\\/ use any
if (properties == m { —— 2 \m‘z\cmmﬂ{‘“ of the Mav
this.properties = ' interkate you wanted here:
} else {
this.properties = new |HashMap '(| h);
}

public @ getProperty (String
returnproperties.get <'

public boolean ma otherSpec) {
for (; .).keySet().();
String i ' () ;
if oA Y

otherSpec.getPrope

return ;

}
) S~ Be sure You got these two vight;

return ,. < otherwise, matehes() will always

veturn the wrong vesult.

getproperties

—
List
Instrumentspec -

}

254 Chapter 5 (part 2)

Download at WoweBook.Com

Q~ So now both Instrument and
InstrumentSpec are concrete classes?

A: Right. Instrument isn't just

a concept anymore; it represents actual
instruments in Rick’s inventory. And
InstrumentSpec is what clients use to
pass in their specs when they're searching,
and what Instrument uses to store
properties for an instrument.

Q: So | can get rid of my Guitar and
Mandolin subclasses?

Yup. As well as Banjo, Dobro,
and any other instrument-specific subclasses
of Instrument you may have created.

Q/: And that’s because we use the
Instrument class directly now, right?

You got it! Remember, you typically
subclass because behavior changes. In the
Instrument subclasses, no behavior
was changing; in fact, all we did for each
instrument subclass was create a new
constructor. That added a ton of classes,
reduced the flexibility of our app, and really
didn’t give us any helpful functionality.

tber are no

Dumbd Questions

Q- | understood getting rid of
Guitar and Mandolin, but I'm confused
about why we don’t need the different
subclasses of InstrumentSpec anymore.

It's OK; that's one of the trickiest
parts of the design of Rick’s application.
Remember, one of the key principles in any
00 design is to encapsulate what varies. In
Rick’s app, the properties of each instrument
varied. So we pulled those properties out of
InstrumentSpec, and put theminto a
Map. Now, when you add another instrument
with a new property, you can just add the
new property as a name/value pair in the
properties Map.

Q: And with less classes to deal with,
our software is more flexible?

A: In this case, that’s true. There

are certainly times where adding

classes will make your design more

flexible, though. Remember, adding an
InstrumentSpec class helped separate
instruments from their properties, and that
was good; but in this chapter, we've been
removing classes, and that's made it easier
to add new instruments to Rick’s software.

Download at WoweBook.Com

good design = flexible software

Q- I never would have figured out
that we didn’t need subclasses for
instruments or their specs. How am |
supposed to ever get good at this?

A: The best way to get good at
software design is to write software! In

Rick’s application, we had to go down some
wrong paths—like adding Guitar and
Mandolin classes—to figure out what the
right thing to do was.

Most good designs come about through bad
designs; almost nobody gets it all right the
first time. So just do what makes sense,
and then start applying your OO principles
and patterns to see if you can make
improvements to what you've got.

Most gp_oil
g[e_siggs_ come
from analysis of

had c[esigns.

N ever Le

afraid to make
mistakes and
then cltange
tltings around.

255

updating rick’s application

Finishing up Rick’s app: the
InstrumentType enum

We’ve almost got ourselves a great piece of software. Let’s
follow through on our new design ideas, starting with a So far, these are the types of
new enumerated type for each instrument type: instruments that Rick sells.

public enum InstrumentType {

GUITAR, BANJO, DOBRO, FIDDLE, BASS, MANDOLIN;

InstrumentType
»String(): String

public String toString() {
switch (this) {

case GUITAR: return “Guitar”;

case BANJO: return “Banjo”;

case DOBRO: return “Dobro”; MSWumelﬂyp&hva

case FIDDLE: return “Fiddle”;

case BASS: return “Bass”;

case MANDOLIN: return “Mandolin”;

default: return “Unspecified”; o _F toString() Just

} makes it easier 4o
} print ﬂlings out.
}

Let’s update lnventory, foo Inventory

inventory: Instrument [*]

With the changes to Instrument and InstrumentSpec,

Inventory cl tarts t t h simpler: .
our y class starts to get much simpler get(String): Instrument

search(InstrumentSpec): Instrument [*]

public class Inventory {

public void addInstrument (String serialNumber, double price,
InstrumentSpec spec) {
Instrumernrt—iastrunent =—avtts;

if {cpoc,ihcf:ﬁhﬂﬁf GHifﬂYQPQP\ L

addInstrument(String, double, InstrumentSpec)

Add'ms an
| insbrumen
just 9ot 3

|ot easier:

instriment = new Gnifnr(carinanmhav' Pr{nn' (GuitarSpec)spec):
) else 1f (spec instanceof M:anr*](\'lﬂ'ﬂsy e
instrument—= new Mandetin{seritatiumber—priece—MandolinSpec) spec) ;

Instrument instrument = new Instrument (serialNumber, price, spec) ;<<

inventory.add (instrument) ; _/_)
& Now we've able 4o instantiate

Instrument divectly, since it's

/) etc no longer abstract.
}

256 Chapter 5 (part 2) Inventory.java

Download at WoweBook.Com

good design = flexible software

L harpen your PenCII Let's see what we've really done.

= We’ve made a ton of changes to Rick’s software, all in the name of “more flexibility.”
Let’s see how things look now. Flip back to the class diagram of Rick’s app on page
234, and recall what things looked like when we started. Then, below, draw a class
diagram for how Rick’s application looks now.

Answers on the next page!

you are here » 257

Download at WoweBook.Com

more flexibility

Behold: Rick’s flexible application

We’ve made a ton of changes to Rick’s application... and it’s easy to
forget what we’ve been working towards. Look at the class diagram below,
though, and see how much simpler Rick’s application is now:

Inventory

[nventory has just one seavreh()
method now, and the method
tan veturn mul‘{:i?lcs Jc\/‘?cs of
ma{:c\'\ing insbruments.

addInstrument(String, double, InstrumentSpec)
get(String): Instrument
search(InstrumentSpec): Instrument [*]

inventory | %

lhs‘{'xumcn{', isnt
abstract anymore, and
we also got vid

all those insbrument—
svcci(:il', subtlasses.

Instrument

serialNumber: String
price: double

getSerialNumber(): String
getPrice(): double
setPrice(float)

getSpec(): InstrumentSpec

We addﬂd a new enum
Lo vepresen the
Lypes ot insbruments

/ ok, Rick sl

InstrumentType h

toStri Builder
Type

toSt Wood

|y\s£rumcn{£?€¢
isnd abstratt ~—
anymove, either.

properties: Map
/ getProperty(String): Object

We've wing a Map getProperties(): Map

———> InstrumentSpec

to
toSt Style
/ toString(): String
/

1o store all the matches(InstrumentSpec): boolean

PV'OPCV"EICS, so

we don't need All of these enumerated types
subelasses for each are used by the properties Map
instrument type. in ’nS'l:rumcn{-,SPcc. So we've very

loosely coupled heve!

258 Chapter 5 (part 2)
Download at WoweBook.Com

good design =

But does the application actually work?

Rick’s software looks a lot better than it did way back at the beginning

of this chapter—and it sure looks better than when we added all those
subclasses for banjos and mandolins. But we’ve still got to make sure his
search tool actually works! So let’s update our test class, and check out how
searches work with the new version of Rick’s software:

flexible software

Findinstrument.java

public class FindInstrument {

public static void main(Stringl[] args) { N°W5“a%sfﬂlowﬁahlm{VWn tS
// Set up Rick’s inventory this test client didn't pecif en ~Spee. Since
Inventory inventory = new Inventory(); 'l:ypg, the seareh could brin Zai: lhs.fv-umcnf
initializeInventory (inventory) ; mandolins, oy ahyﬂxins else iha{; Ral:f&\ﬁ;
sells.

Map properties = new HashMap() ;

properties.put (“builder”, Builder.GIBSON) ;

properties.put (“backWood”, Wood.MAPLE) ;

InstrumentSpec clientSpec = new InstrumentSpec (properties) ;

List matchingInstruments = inventory.search(clientSpec);
if (!matchingInstruments.isEmpty()) {
System.out.println(“You might like these instruments:”);
for (Iterator i = matchingInstruments.iterator(); i.hasNext();) {
Instrument instrument = (Instrument)i.next();

We have to work a
little move diveetly
with the Map that
Ins{:rumcn{',gycc uses,
but it's easy now to
‘")us{', |oo\7 U'nrough eath
instrument’s properties

. and yr'm{: them out.
InstrumentSpec spec = instrument.getSpec(); =—

System.out.println (“We have a ” + spec.getProperty(“instrumentType”) +

“ with the following properties:”);
for (Iterator j = spec.getProperties () .keySet() .iterator();
j.hasNext();) {
String propertyName = (String)j.next();
if (propertyName.equals (“instrumentType”))
continue;
System.out.println (% ” + propertyName + “: ” +

spec.getProperty (propertyName)) ;
} e vant 4o skip over he
System.out.println(“ You can have this ” + lf‘sﬁumf"fTYPc Property,
spec.getProperty (VinstrumentType”) + “ for $” + Sinte we've already handled
instrument.getPrice() + “\n---"); that before we start 'ooPinS.
}
} else {

System.out.println(“Sorry, we have nothing for you.”);

initializeInventor method here)
// y () sheuments to Riek's

| S~ We also need o add some in .
inventory so we tan seavth for more than

quitavs.. we'll do that on the next page-

you are here » 259

Download at WoweBook.Com

initializing rick’s inventory

Inventory Roundu

To see if the new version of Rick’s software works, we need to run a search on
more than just guitars. Your job is to write code for the initializelnventory()
method in FindInstrument.java, and add several guitars, mandolins, and
banjos to Rick’s inventory. Below, we've listed the instruments Rick currently
has, and even written code to add the first guitar to help you get started.

Guitars

Collings CJ 6-string acoustic,
Indian Rosewood back and sides, Spruce
top, Serial #11277, for $3999.95
T Martin D-18 6-string acoustic,
Mahogany back and sides, Adirondack top,
| Serial #122784, for $5495.95

Fender stratocastor 6-stri
Alder back and sides and top,
Serial #V95693, for $1499.95

Mandoling

Gibson F5-G acoustic mandolin,
Maple back, sides, and top,
Serial #9019920, for $5495.99

&_, Rcwcmbth H'\C

rumStrings
attribute doesn't
aﬂ;l\/ to mahdolihs.

Banjos

Fender stratocastor 6-string electric,
Alder back and sides and top,
| Serial #9512, for $1549.95

Gibson SG ‘61 Reissue 6-string electric,

Answers on page 262

Mahogany back, sides, and top,
Serial #82765501, for $1890.95

Heve's the
beginning of
inibializelnventory(,
wheve the fiest
su'u{:a\r shown above
s added to Ritk's
inVcn‘bOV‘f _—
properties
properties
properties
properties
properties
properties
properties

—

260

Chapter 5 (part 2)

s Gibson Les Paul 6-string electric,
Maple back, sides, and top,
Serial #70108276, for $2295.95

.put (“instrumentType”,
.put (“builder”,
.put (“model”,
.put (“type”,
.put (“numStrings”,
.put (“topWood”, Wood.INDIAN_ROSEWOOD);
.put (“backWood”,
inventory.addInstrument (“11277”,

new InstrumentSpec (properties));
// your code goes here

Ban\‘)os do not have
a top wood-

Gibson RB-3 5-string acoustic banjo,
Maple back and sides,
Serial #8900231, for $2945.95

Banjos do not have
a top wood

private static void initializeInventory(Inventory inventory)
Map properties =

new HashMap () ;
InstrumentType.GUITAR) ;
Builder.COLLINGS) ;
“CJ”);
Type.ACOUSTIC) ;
6);

Wood.SITKA) ;
3999.95,

You should write code

heve to add the other

instruments shown above.

Download at WoweBook.Com

Findinstrument.java

Test driving Rick’s
well-designed software

Be sure you’ve added all the instruments shown on
the last page to your initializeInventory ()
method in FindInstrument. java, and then
compile all your classes. Now you’re ready to take
Rick’s software for a test drive...

...well, almost. First, you need to figure out

what a search based on the current version of
FindInstrument should return. Here’s the set of
preferences that Rick’s current client has supplied:

Map properties = new HashMap () ;

properties.put (*builder”, Builder.GIBSON) ;
properties.put (“backWood”, Wood.MAPLE) ;

InstrumentSpec clientSpec =
new InstrumentSpec (properties);

N e

Based on those specs, look over the instruments
shown on the last page, and write in which guitars,
mandolins, and banjos you think Rick’s search tool
should return:

good design = flexible software

Riek’s tlient didn’t spechcy an

instrument type, but he wants

something {, m & .
maple bacak. o \élbson with 3

Findinstrument.java

File Edit Window Help TheSearchlsOn

%java FindInstrument
You might like these instruments:

Write in the instruments
You think that running
Findnstrument should veturn

based on Ritk’s inventory.

=

\SPE_CLALM CREDIT

Try and write the instruments

that £his Program finds
exactly as Findnstrument will

°“'£PU+, them.

you are here » 261

Download at WoweBook.Com

adding to rick’s inventory

To see if the new version of Rick’s software works, we need to run a search on
more than just guitars. Your job was to write code for the initializelnventory()
method in FindInstrument.java, and add several guitars, mandolins, and
banjos to Rick’s inventory.

private static void initializeInventory(Inventory inventory) {
Map properties = new HashMap () ;

1 > properties.put (“builder”, Builder.MARTIN) ;

properties.put (“instrumentType”, InstrumentType.GUITAR) ;

This is 3 properties.put (“builder”, Builder. COLLING"C‘ -“. .

L properties.put (“model”, “CJ”); 0}ngSCJ65tnngacousﬂq

bit) properties.put (“type”, Type.ACOUSTIC) ; IndmnROS&NOOdbaCkandsme&Spnme
shorteut: properties.put (“numStrings”, 6); top, Serial #11277, for $3999.95

we've properties.put (“topWood”, Wood.INDIAN ROS

)w{vﬂh5 properties.put (“backWood”, Wood.SITKA);

the same inventory.addInstrument (“11277”, 3999.95,

NhYoVﬂ' new InstrumentSpec (properties));

and ovevr-

Martin D-18 6-string acoustic,
Mahogany back and sides, Adirondack top,
Serial #122784, for $5495.95

properties.put (“*model”, “D-18");

properties.put (“topWood”, Wood.MAHOGANY) ;

properties.put (“backWood”, Wood.ADIRONDACK) ;

inventory.addInstrument (“122784”, 5495.95,
new InstrumentSpec (properties));

Fender stratocastor 6-string electric,
Alder back and sides and top,
Serial #V95693, for $1499.95

S Fender stratocastor 6-string electric,

Alder back and sides and top,
Serial #9512, for $1549.95

properties.put (“builder”, Builder.FENDER) ;
properties.put (“*model”, “Stratocastor”);
properties.put (“type”, Type.ELECTRIC);
properties.put (“topWood”, Wood.ALDER) ;
properties.put (“backWood”, Wood.ALDER) ;
inventory.addInstrument (“VW95693”, 1499.95,
new InstrumentSpec (properties));
inventory.addInstrument (“V9512”, 1549.95,
new InstrumentSpec (properties));

The spets for these two Strats
are the same; only the properties in
[nstrument ave diffevent.

262 Chapter 5 (part 2)

Download at WoweBook.Com

good design = flexible software

properties.put (“builder”, Builder.GIBSON) ;

properties.put (*model”, “Les Paul”); MaNebaCKSMe&andtop

properties.put (“topWood”, Wood.MAPLE) ; Seﬁal#7010827&for$229595

properties.put (“backWood”, Wood.MAPLE) ;

inventory.addInstrument (*70108276"”, 2295.95,
new InstrumentSpec (properties));

Gibson Les Paul 6-string electric,

Gibson SG'61 Reissue 6-string electric,
Mahogany back, sides, and top,
Serial #82765501, for $1890.95

properties.put (“model”, “SG ‘61 Reissue”);

properties.put (“topWood”, Wood.MAHOGANY) ;

properties.put (“backWood”, Wood.MAHOGANY) ;

inventory.addInstrument (“*82765501”, 1890.95,
new InstrumentSpec (properties));

DOV\,‘t
gwgeh{p properties.put (“instrumentType”, InstrumentType.MANDOLIN) ;
remove properties.put (“type”, Type.ACOUSTIC) ;
rumStrings propertlies.put (:model", :F_BG") ’ Gibson F5-G acoustic mandolin,
QW'UK propert}es.put(“backWoo? , Wood.MAPLE) ; MadebacKSMe&andton
mandolin properties.put ("topfood”, Wood.MAPLE); Serial #9019920, for $5495.99

) ————>= properties.remove (“numStrings”) ;
if you've inventory.addInstrument (*9019920”, 5495.99,
reusing new InstrumentSpec (properties)); Baﬂosdoﬁ{hau
Jd\c same a 'EOP WOOd, so we
?rqmrﬁcs properties.put (“instrumentType”, InstrumentType.BANJO) ; have 1o vemove
map. properties.put (“model”, “RB-3

Wreath”); ‘H\is FroPgr-Ey_
properties.remove (“topWood”) ; ﬁ—‘—//

properties.put (“numStrings”, 5);
inventory.addInstrument (“*8900231”, 2945.95,
new InstrumentSpec (properties));

Gibson RB-3 5-string acoustic banjo,
Maple back and sides,
Serial #8900231, for $2945.95

Findinstrument.java

you are here » 263

Download at WoweBook.Com

rick’s software works like it should

Rick’s got working software,
his client has three choices:

File Edit Window Help SatisfyTheCustomer

%java FindInstrument

You might like these instruments:
We have a Guitar with the following properties:

topWood: Maple
backWood: MapIey

Riek’s elient ends
up with three
insbruments to
thoose from: a
Sui{:ar, a mandolin,
and 3 banjo.

model: Les Paul
numStrings: 6

type: acoustic
model: F-5G

builder: sPecs because it has
type: electric _ maple back and sides, ang

is made by 6ibson.

You can have this Guitar for $2295.95

We have a Mandolin with the following properties:

topWood: Maple .
baEC)kWOOd: ‘m H’crc,s a éibSOV\ mahdoh.h
builder:(Gibson)e=— —— witha maple back... this

)
also meets Bryans specs:

You can have this Mandolin for $5495.99

We have a Banjo with the following properties:

backWood : (MapIe>
builder: Gibso
type: acoustic
model: RB-3 Wreath
numStrings: 5

\ One more maple instrument
= ™~ b\/ Gibson... this one’s a ban\')o.

No ‘{',o\? wood on ban\)os, but
that doesn't matter.

You can have this Banjo for $2945.95

t}zer are no

Dumbd Questions

Q: My output isn’t the same as yours. What did | do wrong?

A: If your version of Rick’s tool returned different guitars, or
output the same guitars but with different properties, then you should
be sure you have the same instruments in your inventory as we

do. Check the exercise on page 260, and the answers on page
261-262, and make sure the instruments you have in Rick’s inventory
match ours.

264 Chapter 5 (part 2)

Q: Is this really a good test since we only have one banjo
and one mandolin?

A: That's a great question, and you're right, it would be better
to have a few more mandolins and banjos to really make sure Rick’s
search tool picks only matching mandolins and banjos. Go ahead
and add a few non-matching banjos or mandolins, and try testing out
Rick’s search tool with the additional instruments.

Download at WoweBook.Com

good design = flexible software

That's great that you've got your software
working right, but don't start patting yourself
on the back for a great design just yet. Me and
my buddies at the bureau of change are here to see
just how cohesive your software really is.

#* How easy is it to change
Rick’s software?

* |s Rick’s software really
well-designed?

#* And what the heck does
cohesive mean?

265

Download at WoweBook.Com

the ease-of-change challenge

How easy is it to change Rick’s search tool?

Let’s add support for dobros and fiddles back into Rick’s application. We
tried to do that earlier, back in the first part of Chapter 5, and it turned into
a total mess. Things should be much easier this time, right? Below is the
class diagram for the current version of Rick’s software.

Heve's what our

ST fesion looks like

‘rig\\{: now-

Inventory

addInstrument(String, double, InstrumentSpec)
get(String): Instrument
search(InstrumentSpec): Instrument [*]

inventory | %

Instrument

serialNumber: String
price: double

getSerialNumber(): String
getPrice(): double
setPrice(float)

getSpec(): InstrumentSpec

InstrumentType h

toStri Builder
to Type

toSt Wood
toSt Style

InstrumentSpec

properties: Map

getProperty(String): Object
getProperties(): Map

matches(InstrumentSpec): boolean

toString(): String

266 Chapter 5 (part 2)

Download at WoweBook.Com

good design = flexible software

‘bureau de change-
?

Seeing how easy it is 4o
¢th S i
Let's apply the ease-of-change test to our software: e Lo b is e

of the best ways to figure
out if You veally have well—
Q How many classes did you have to add to support designed softwave.
Rick’s new instrument types?

e How many classes did you have to change to support
Rick’s new instrument types?

6 Suppose that Rick decided that he wanted to start

keeping up with what year an instrument was made
in. How many classes would you need to change to
support keeping up with this new information?

e Rick also wants to add a new property, neckWood, that
tracks what wood is used in the neck of an instrument.

How many classes would you need to change to
support this property?

———» Answers on page 268

you are here » 267
Download at WoweBook.Com

easy to change?

How easy is it to change Rick’s search tool?

Let’'s add support for dobros and fiddles back into Rick’s application. We

tried to do that earlier, and it turned into a total mess. Things should be
much easier this time, right?

Let's apply the ease-of-change test to our software:
Q How many classes did you have to add to support
Rick’s new instrument types?

None! We got rid of all the instrument-specific
subclasses of Instrument and InstrumentSpec.

6 How many classes did you have to change to support
Rick’s new instrument types?

One: we need to add any new instrument types to the
InstrumentType enumerated type.

6 Suppose that Rick decided that he wanted to start
keeping up with what year an instrument was made
in. How many classes would you need to change to
support keeping up with this new information?

Nowne! You can just store the year that an instrument
was made in the properties Map in InstrumentSpec.

e Rick also wants to add a new property, neckWood, that
tracks what wood is used in the neck of an instrument.
How many classes would you need to change to
support this property?

One in the worst case, and maybe none! neckWood
is just another property we can store in the

InstrumentSpec map... but we might need to add new
wood enumerated values to the Wood enum.

268 Chapter 5 (part 2)

Download at WoweBook.Com

good design = flexible software

Sweet! Qur software is easy to change...
..but what about that “cohesive” thing?

A cohesive class does

COI’\CSiVe C'GSSCS are ,F .
The more cohesive = t h = on spe¢ifie Lasks. Owro e
_ e <
Your clisscs ave, the o n e I n g Invcn{-pry elass worvies about
highev the eohesion just Riek’s i
The Jus 1EK's mvcn‘bo\r)
of your software. nret

really well and ke o b g

a gui{:ar, or how to tompare
two instrument spees.

does not try to
" method: of
l\;;ik::\:;s?:i?rhc\;a\\ores\a{c —_— d o

lass? |
Lo the name of your ¢
you have a method +hat looks

out of y\acc, it mig\\{: belong o r be

lns{\ruma\{: docsn’{: {')r\/ {‘p
et handle searthes, or keep

B wp with what v}oods ;rc
- .
something else. -0,

nothing else.

e -
~Scholar’s Corner

tohesion. Cohesion measures the degree of connettivity among
the elements o‘(: a s'mglc module, ¢lass, or ob\')cd:- The b'ﬁh_cr
the ¢ohesion of your software is, the more well-defined and
velated the vesponsibilities of each individual elass in

your application. Eath ¢lass has a very specific set
B of closely related attions it performs.

you are here » 269
Download at WoweBook.Com

cohesive classes are focused on one thing

Cohesion, and one reason for a
class to change

You may not realize it, but we’ve already talked about
cohesion in this book. Remember this?

~

Every class should
make sure that i
reason

-—
This was one of the answers
from 00 CATASTROPHE!

© You remember what the
ﬂlucsfion was?

Cohesion is really just a measure of how closely related the
functionality of the classes in an application are. If one class
is made up of functionality that’s all related, then it has only
one reason to change... which is what we already talked about

in OO CATASTROPHE! The function of eath of these
. ined. Eath

Here are the classes we talked about when we made sure tlasses is \.ue\l—dc{:mfd E:SS

each class had only a single reason to change: one is a highly cohesive €355

and that makes it easy to

thange, without ¢hanging the
K_’— other tlasses.
arWash

Automobile I /
start()
stop(_) . c l
getOil): int wash(Automolyie L
Driver

drive(Automobile)

Mechanic

checkOil(Automobile)
changeTires(Automobile, Tire [*])

Can you think of
make the Methanie

more Lohesive?

way o

elass

270 Chapter 5 (part 2)

Download at WoweBook.Com

Q: So cohesion is just a fancy
word for how easy it is to change my
application?

A: Not exactly. Cohesion focuses on
how you've constructed each individual
class, object, and package of your software.
If each class does just a few things that are
all grouped together, then it's probably a
highly cohesive piece of software. But if you
have one class doing all sorts of things that
aren’t that closely related, you've probably
got low cohesion.

Q: So highly cohesive software is
loosely coupled, right?

A: Exactly! In almost every situation,
the more cohesive your software is, the
looser the coupling between classes.

In Rick’s application, the Inventory
class really worries just about managing
inventory—and not about how instruments
are compared or what properties are stored
in an instrument spec. That means that
Inventory is a highly cohesive class.
That also means it's loosely coupled with
the rest of the application—changes to
Instrument, for example, don't have a
lot of effect on the Inventory class.

therq are no)
Dumb Questions

Q: But all that means the software
will be easier to change, doesn’t it?

AZ Most of the time, yes. But remember
the version of Rick’s application that

we started with in this chapter? It only
supported guitars, and we didn’t even have
Instrument or InstrumentSpec
classes. That was pretty cohesive software—
Guitar was very loosely coupled with
Inventory. However, it took a lot of work
and redesign to support mandolins.

When you fundamentally change what an
application does—like going from selling only
one type of instrument to multiple types—you
may have to make lots of changes to a
design that's already cohesive and loosely
coupled. So cohesion isn’t always a test

of how easy it is to change software; but

in cases where you're not dramatically
changing how software works, highly
cohesive software is usually easy to change.

Q: And high cohesion is better than
low cohesion?

Right. Good OO design is when
each class and module in your software
does one basic thing, and that one thing
really well. As soon as one class starts
doing two or three different things, you're
probably moving away from cohesion, and
good OO design.

Download at WoweBook.Com

good design = flexible software

Q,: Wouldn’t software that’s cohesive
be easier to reuse, as well as change?

You got it. High cohesion and
loose coupling adds up to software that
can easily be extended, or even broken up
and reused, because all the objects in the
software aren’t interdependent.

Think about it this way: the higher the
cohesion in your application, the better
defined each object’s job is. And the better
defined an object (and its job) is, the easier
it is to pull that object out of one context,
and have the object do the same job in
another context. The object is happy to
just keep on doing its very specific job, no
matter where it's being used.

Q: And we’ve been making Rick’s
application more cohesive throughout his
chapter, haven't we?

For the most part, yes. But let's look
a little bit closer at that question...

271

increasing cohesion

Rick’s software, in review

So have our changes to Rick’s software resulted in high
cohesion? Are our objects loosely coupled? And can we
make changes easily? Let’s take a look:

The Bureaw of Charge

- 3 huae believ .
‘\Svoi:c: Z(: \\\5\\\\, tohesive

high .
soQ{:warc design-

cohesion
rocks

inventory__—

getGutarSting)-Gutar
search(GutarSpec): Gutar]

spoc
Guitar {—3 GuitarSpec 1

seralNumber Strng ode: Sting

pice: doute umSirngs:nt

getPrice(): double:
setPrce(foat)
getspec(): Guiarspec

Guitar | Inventory
seralNumber. Siing quirs: it
price:double
S aaueunar(smg a:lu:;T Sting, Sing, Sting,
model String getGuitar(String): Guitar
ype: Sting search(Guitar): Guitar

backWood: Sting
topWood: Sting

getSerialNumber(): Sting
getPrice(): double
setPrice(oat)
getBuider(): String
gethodel): Sting
getType): Sting
getBackWood(): String
getTopWood(): String

cohesion

well—designed

low

gethiodel): Sting

getToood): Wood
| getNumStings): int

Remember Lhis simple c\a.ss
diagram From way back in
Chapter 13 We just had two

¢lasses, and fhey were no -
or very tohesive.

Inventory

260Gutar(Siring, doubl, GuarSpec) |

Here’s wheve Rick was Just selling
quitars. The app was veally cohesive,
even though we had to do some veal
vedesign to add support for mandolins.

Heve was our fiest attempt

to0 add su‘??or{‘, for mul{:i\?|c
instrument types. but we
definitely have lower tohesion
heve than in the previous version.

)

addinstumen(String, double, nstrumentSpec)
get(Sting): Instrument
search(GuitarSpec): Guitar [
search{MandolinSpec): Mandolin ']

Inventory

inventory [%

Guitar

Instrument

serialNumber: String
price: double

Sting

getPrice(): double
setPrice(foat)
getSpeci):InstumentSpec

spec | 1
InstrumentSpec
‘model: String
getBuilder(): Builder
gethlodel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood

GuitarSpec
numStings: int

matches|(GuitarSpec): boolean

MandolinSpec

getStyle(): Style
maches(MandolinSpec): boolean

).
I
3 style
Style

toSting(): String

Wood
ToSting(): Sting

272 Chapter 5 (part 2)

Download at WoweBook.Com

Heve's where things Aarc .
now with Riek's desion- \5d
tohesion, loose ¢oupling, an

soktware hat's veally easy to

extend and veuse:

This was a veal low point
in our design.. trying 4o
add a new ihsfrumcn":

type was a total disaster.

Inventory

addinstrumen(S
ge(String): Instn
search(GutarSpe
search(Mandolin

bl InstrumentSpec)

inventory | %

serialNur

Tnstrument [Gawr |
mber Sving
o Bass

Fiddle

InstrumentSpec 1

BanjoSpec

getBui

modek: Sting / o
Buider mat

: numStrings: int

Wandolinspec | gEtN DobroSpec
e — matchf
etchesnsumertSpec) book BassSp
N FiddleSpec
sy —
T — T matc| finish: String

getFinish(): Style
matches(FiddleSpec): boolean

good design = flexible software

e thanges to \’,ou‘f
make sure youve

Eath time You mak
<obbware, try and

getting move ¢ohesive:

Inventory

——

double,
get(String): Instrument
search(InstrumentSpec): Instrument [*]

inventory | %

Instrument

serialNumber: String
price: double

getSerialNumber(): String
getPrice(): double
setPrice(float)

getSpec(): InstrumentSpec

spec |1

InstrumentType

properties: Map
getProperty(String): Object
getProperties(): Map
matches(InstrumentSpec): boolean

toString(): String

THIS is Your goal...
softwave that's getting
move tohesive throughout

the design life eyele.

the design life c

Download

cle

t WoweBook.Com

273

you are here »

great software is good enough

This sounds great and all, but how
do you know when you're done? I mean,
is there some sort of scale of cohesion,
and when T get to a "10" or whatever, it
means that I'm finished?

Great software is usually
about being good enough.

It’s hard to know when to stop designing
software. Sure, you can make sure that your
software does what it’s supposed to do, and
then start working on increasing the flexibility
and cohesion of your code. But then what?

Sometimes you just have to stop designing
because you run out of time... or money...
and sometimes you just have to recognize

you’ve done a good enough job to move on.

If your software works, the customer is happy,
and you’ve done your best to make sure
things are designed well, then it just might be
time to move on to the next project. Spending
hours trying to write “perfect software” is a
waste of time; spending lots of time writing
great software and then moving on, is sure to
win you more work, big promotions, and
loads of cash and accolades.

274

Download at WoweBook.Com

good design = flexible software

Knowing when to say “I’s good enough!”

T love it! T can finally sell any

kind of instrument I want,
and help my clients find just what
they're looking for.

Before You ever leave a .

! t
pro cc{, \/ou alwa\/s wan
“ mal\()c sure Your softwave does

Make sure the what ib's supposed 4o do
customer is happy

Really nice design here. High cohesion, the
classes are loosely coupled... I'll bet the next
time Rick needs something changed, we won't have
too much trouble at all.

A
Once You'e st functinality Make sure your
own, move on to makin ood i | i
design decisions, using so?ia? 00 deSlg" 13 erlele

Principles to add Hlexibilty.

If you’ve done both of these things, it may
just be time to move on... fo the next project,
the next application, even the next chapter!

you are here » 275

Download at WoweBook.Com

276

ooad&d toolbox

Tools for your 00AZD Toolbox

Requirements

Good vequivements ensure You
works like your customers exy

Make sure Yyour rco\uircmen{;s
by developing use tases for y

Use your use eases to find o
things your tustomers £or50{',

Your use tases will veveal any
or missing \rco\uirc"\m{:s that
have.

Your requi\rcmcn{:s will always
3\row) over time.

#

00 Printiples

Encapsulate what varies.

Code 1o an interface vather than to an
im\?lcmcwha{:ion.

Eath ¢elass in Yyour ayylica'tion should have onl\/

one veason to thange.

Classes ave about behavior and functionality.

Chapter 5 (part 2)

Wow, you’ve really come a long way since we
started working with Rick way back in Chapter 1.
You’ve learned a ton about design, so let’s do a quick
review of what you’ve added to your toolbox.

We did 4 ton
thapter,

of design in this

so 'l:akc a SCCond '60

review every{:hing we've learned.

Analysis and Design

Well—designed software is easy 4o thange
and c%{:end.

Use basie 00 printiples like entapsulation
and inhevitante to make your software

more lexible.

£ a design isnt Flexible, then CHANGE
[T! Never settle on bad design, even if
s your bad design that has to thange.

Make sure eath of your tlasses is
tohesive: eath of your ¢lasses should
fotus on doing ONE THING veally well

Always strive for higher tohesion as you
move through your software’s design
life eyele.

v

our ‘{',oolbo)(~

Download at WoweBook.Com

Between 00 CATASTROPHE!
o~ and this ehapter, we've added
quite a few new 00 printiples to

=
The 5oa| of good
design is highly
tohesive, looscl\/

coupled software.

<D

good design = flexible software

* 00ASD Cross
This one is a particularly tough puzzle: almost all the

answers are more than one word, and they’re spread
across both parts of Chapter 5. Good luck, and keep
that left brain working.

E“...«.»

Across Down
3. Never code to this if you can help it, 1, Always code to this if possible.
8. Great software is easy to 2. Most good designs come from analysis of
12, Software that's easy to change is these.
4, Abstract classes are written this way in
13, Do thig to what veries, UML clase diagrams.
15, Mever be afraid to do this to your designs. 5. When a clase inherits behavior from ancther
17. This will kill good design. class.
18, Clagges are about this, 6. This was the type of group enguring your
19. When ane thing it made up of anather, saftware was highly cohesive,
7. Apply these to add flexibility to your
software.

9. Cohesive classes do this really well,

10. Don't be afrald To do this; i will help you
find better selutions,

11. We used this test to see if Rick's
application was cohesive.

14, Highly cohesive software is also almost
always coupled.

16, Great sof tware must always do what it is
to do.

you are here » 277

Download at WoweBook.Com

did you get the same answers as we did?

cl
o
AT

il
A
Ll
D]
€] N
Pls U] €]
2§

HH aln
N £
(s N
2

B
€

G AR EEIEDES

EEEHHEI&HW

L
:
"
&l
s
A
x
@]

278 Chapter 5 (part 2)

Download at WoweBook.Com

6 solving reaﬂy l)ig Pmblems

“My Name is Art Vandelay...
I am an Architect”

T was just thinking... do you
remember if we ever tightened
the bolts down on those basement
girders? Oh well...

It’s time to build something REALLY BIG. Are you ready?

You've got a ton of tools in your OOA&D toolbox, but how do you use those tools

when you have to build something really big? Well, you may not realize it, but
you’ve got everything you need to handle big problems. We’ll learn about some
new tools, like domain analysis and use case diagrams, but even these new tools
are based on things you already know about—Ilike listening to the customer and
understanding what you’re going to build before you start writing code. Get ready...

it's time to start playing the architect.

this is a new chapter 279

Download at WoweBook.Com

what about big applications?

Look, all this stuff about writing great
software sounds terrific, but real applications
have a lot more than five or ten classes. How
am I supposed to turn big applications into
great software?

You solve big problems
the same way you solve
small problems.

We’ve been working with fairly simple
applications so far... Rick’s guitar shop
had less than fifteen classes in its worst
state, and Doug’s dog door never had

more than five. But everything you’ve

learned so far applies to working with

big applications, too.

to writin

9 9reat
hey all apply o workl?\a
s ?PF"éaflons

You're Wolrkln
C’asses

Jus‘{: as much s when
with Just a touple of

1. Make sure your
software Joes what the

customer wants it to do.)
2, Apply bhasic
00 prm(:lples to
adc[ﬂexﬂnhty

N\

3. Strive for a
maintainable,

reusable c[esign.
280

Download at WoweBook.Com

solving really big problems

It’s all in how you look at
the big problem

Think about how you work on big problems, in big
software applications. You usually look at the big
picture, but then start working on just one part of
the application’s functionality.

The best way to look at a You Can SOlVQ a

big problem is to see it as lots of

individual pieces of functionality. ng Prol)lem Ly

You can treat each of those pieces as
an individual problem to solve, and

app‘WeThinm already know. l)l‘ eaking it intO

Once you get one part of an application working

like you want it to, then you can move on to another l,()ts O{ {unCtional,

piece of functionality within the app. At each step,
though, you’re applying the same basic principles

we've been talking about for the last 250 pages o so. Pieces, anJ tllen
worlcing on each
of those Pieces

< ROB LEM . e o
e B cuiglt 1nJ1V1c[ually.
tolleetion |

{:uhc{:'lona\'\‘h'\cs,
wheve eath piece ©
‘(:uncf\ona\i{:y is rca\\\[

a smaller \wob\c"\ on

its own-

Big
Problem

you are here » 281

Download at WoweBook.Com

solving big problems

The things you already know...

You've already learned a lot of things that will help you
solve big software problems... you just may not have

realized it. Let’s take a quick look at some of the things
we already know about how to write great (big) software:

By encapsulating what
varies, you make your

aPPlication more ﬂexil:»le,

and easier to c]uange.

The best way
to get gooJ

i e‘{“il‘ ements is 1t You know what

to understand
what a system 15

supposeJ to do.

282 Chapter 6

SuPPoscd .60 ;:.Wha{; 5‘(:’5

Download at WoweBook.Com

Msing enta i

Psu,a'(:lon hc,Ps with bj

.Z?Hms} too. The more You cm:? |
in9s, the easiey it wi ke

break 3 3. ea

Pieces of ‘pl?h . ft‘:};a‘;&;ﬁo di‘”‘eken«(;

-

COc[ing to an
interface, rather
than to an
im])lementation,
makes your
software easier

/ to extend.

This is even more im‘?or{;an{:
in blg apps- B\/ Lod'mg to
an interkate, you vedute
dependenties between
di&crcn’c parts of your
ay\vlica{:ion... and “looscl\/
(,ouplcd" is always 3 good
thing, vemember?

solving really big problems

Analysis ltelps

This sure doesn't thange with bigaer
problems. [n fact, the higher the

tohesion of Your app, the move ‘
ihdc?cndm{: eath piece of ‘('\unc{:ionall‘b/
is, and the easier it is 4o work on those

pietes one at a time. Analysis is even
> move im?ov{:an{:
with large
Great so;tware software... and in
most tases, You

0 start by analyzing

15 easy to indi/:idu;ll ?ictis
of Lunetionali Y

CI‘-ang e a’nc[and then anal\/z-in

the interattion
exten(:[, anJ those pietes.

does what the

customer wants
it to do.

Got a big problem? Take a few
of these little principles, and call

me in the morning. I bet you'll
have things under control in
no time.

So let’s solve a BIG problem!

Enough about what you already know; let’s see how
we can apply these things to a brand new, really

big piece of software. Turn the page to learn a bit
about Gary, his new game company, and a large
software project.

Download at WoweBook.Com

you ensur-e

your system

works in a
real-world

context.

you are here » 283

introducing gary’s games

Heve's the big problem we've
going 4o be working on for the
next few chapters.

Gary’s Games

Vision Statement

Gary’s Games provides frameworks that game designers can use to
create turn-based strategy games. Unlike arcade-style shoot-’em-up
games and games that rely on audio and video features to engage the
player, our games will focus on the technical details of strategy and
tactics. Our framework provides the bookkeeping details to make
building a particular game €asy, while removing the burden of coding
repetitive tasks from the game design.

The game system framework (GSF) will provide the core of all of
Gary’s Games. It will be delivered as a library of classes with a well-
defined API that should be usable by all board game development
project teams within the company. The framework will provide standard
capabilities for:

« Defining and representing a board configuration

+ Defining troops and configuring armies or other fighting units
+ Moving units on the board

¢ Determining legal moves

+ Conducting battles

« Providing unit information

The GSF will simplify the task of developing a turn-based strategic
board game so that the users of the GSF can devote their time to
implementing the actual games. \

284 Chapter6

Download at WoweBook.Com

solving really big problems

I'm not interested in one
of those fancy, flashy Star Wars
rip-off games... I want something with
strategy, that makes you think! A
cool turn-based war game, that's the
tickeft.

This is Gary- e looks pretty
sevious, but he's an absolute

b for skrategy games

aSharpen your pencl
‘w«. What should we do first?

Below are several things that you might start out doing to get going on Gary’s
Games. Check the boxes next to the things you think we should start with.

[] Talk to Gary. [] Gather requirements. [] Starta class diagram.

[] Talk to people who might ~ [] Write use cases. [] Starta package diagram.
use the framework.

you are here » 285

Download at WoweBook.Com

what should you do first?

Hey, this is an easy one.
We start out by writing out the
requirements and use cases, like we did
with Doug's Dog Doors.

Requirements and use cases
are a good place to start...

Starting out working on a system by
building a requirements list and writing
use cases is a great idea. You can figure out
what a system is supposed to do, and just
go down your list adding functionality bit
by bit... solving lots of small problems to
solve one really big problem.

But I'm not sure we really
have enough information to figure out
the requirements or use cases yet... all
we've got is that fancy vision statement.
But that really doesn't tell us much about
what the system we're building is
supposed to do.

One of the

o oo ammers on
your team.

-..but what do we really know
about the system so far?

That vision statement seemed to have a
lot of information about what Gary wants,
but it leaves a lot open to interpretation.

What kind of board did Gary have in
mind? And who’s the customer, really?
Game players or game designers? And

will all the games be historically based, or
do we have to support things like lasers
and spaceships? It sounds like there’s a lot
more we need to know before we can write
a very good set of requirements.

286 Chapter 6

Download at WoweBook.Com

solving really big problems

We need a lot more information

All we’ve got to go on with Gary’s system so far is a vision
statement... and that didn’t tell us very much at all. So
now we’ve got to figure out what the system is supposed
to do. So how do we do that?

This is called Lommo_na\ijc\[-u
what things are similav?

=
What is the system like?

One way you can find out more
about a system is to figure out
what the system is like. In other
words, are there some things that

you do know about that the system
functions or behaves like?

This is ealled variabili{:\/...
what things ave diffevent?

What is the system hot like?

Another great way to find out what
a system should do is to figure out
what it’s not like. This helps you
determine what you don’t need to
worry about in your system.

So let’s listen in on one of Gary’s
meetings, and see what we can find out...

you are here » 287
Download at WoweBook.Com

listening to the customer

Customer Conversation

We need to listen in a little more on what Gary and his
team are planning before we can get started on the game
system framework he wants us to build.

<

Bob in mavketing,

Remember that old computer game,
Zork? Everybody loved that thing,
even though it was pure text.

| — Wc ve a'V'Cad
‘:°”‘"‘0hah{;y

Bethany in desion. S~

Susan and Tom
in sales.

Tom: Yeah, Gary loves text-based games. And people are getting a little tired of
all the fancy graphics in games like Star Wars episode 206 (or whatever the heck
they’re up to these days).

Bethany: And we need all sorts of different time periods. We could have a Civil

C = War version, with battles at Antictam and Vicksburg, and a World War I version

Flexbililty is
5om3 {‘,o be kcy
if we've gomg
{;o su?‘?or‘{:

all these

vaviations.

over in Europe... players will love all the historical stuff, I'll bet.

IY ‘Fouhd Some

The s S'l:cnn

has an inte interfse
like this Zovk ;a:;k{: of

Heve's some
vanabl\l{'«‘[The
system is not @
araphic—vich game:

Susan: Nice idea, Beth! I'll bet we can let game designers create add-on packs, too,

so you could buy a World War II: Allies game, and then buy an add-on for other
forces that the core game didn’t include.

Bob: That’s a cool marketing point, too... if our system supports different time
periods, unit types, uniforms, and offensives, we’re going to be able to sell this to
almost anyone developing games.

Bethany: Do you think we need to worry about battles that aren’t historical? I
mean, we could sell our system to the folks that make the fancy starship games, and
let them create sci-fi battles, right?

288 Chapter 6

Download at WoweBook.Com

K>
A little move
(,ommonali{:\/n-
so we've veally
aiming at turn—
based wargames.

—

S‘E\ra{cay
ames again...
we dhcini'l:cly
havc some
tommonalit:
38mc 'f:o Pay
a‘H‘,cn‘{:ion +o

solving really big problems

Tom: Hmmm... I'll bet Gary would go for that, if they’re still creating turn-based
games. Why not clean up on that market as well as the history buffs?

Bob: Do you think we could market this as a system to create everything from
online Risk to a modern-day Stratego? Those were both killer strategy board
games back in the day... I'd love to sell our system to people that make those sorts
of games.

Bethany: So let’s talk details. We know we’ve got to sell this to lots of game
designers, so we need it to be really flexible. I'm thinking we start with a nice
square board, and fill it up with square tiles.

. . . . s
Tom: We can let the game designers pick how many tiles on the board, right? 0¥, vow weve

They can choose a height and width, or something like that? - o ko
skarting
Bethany: Yeah. And then we should support all different types of terrains: <= | some \dc\as
mountains, rivers, plains, grass... L attwd
)) é/ }\)0‘; e O‘Q the
Susan: ...maybe space or craters or asteroid or something for the space games... eats

game system™

Bob: Even underwater tiles, like seaweed or silt or something, right?

Bethany: Those are great ideas! So we just need a basic tile that can be
customized and extended, and a board that we can fill with all the different tiles.

Susan: Do we have to worry about all those movement rules and things that
these games usually have?

Tom: I think we have to, don’t we? Don’t most of these
strategy games have all sorts of complicated rules, like a
unit can only move so many tiles because he’s carrying

So did you get all that? You're
ready to start working on my new
game system now, right?
too much weight, or whatever?

Bethany: I think most of the rules depend on the Q
specific game, though. I think we should leave
that up to the game designers who use our
framework. All our framework should do is
keep track of whose turn it is to move, and
handle basic movement stuff.

Susan: This is great. We can build a
framework for challenging, fun strategy
games, and make a ton of money, too.

Bob: This is starting to sound pretty
cool! Let’s get this to Gary and those
software guys he’s hired, so they can
get started.

you are here » 289

Download at WoweBook.Com

information, features, and requirements

Figure out the features

You've learned a lot about what Gary and his team
want the game system framework to do, so let’s take that
information and figure out the features of the system.

. tem should
hany said the game syst)
?:‘7\70\'? diffecent Lime yc\r\ods. That's a

Seature of the game system. __\

Bethany: And we need all sorts of different time periods. We could have a Civil
War version, with battles at Antietam and Vicksburg, and a World War I version
over in Africa and Italy... players will love all the historical stuff, I'll bet.

Heve’s another feature: diffevent
types of Lerrain. This single
feature will probably ¢veate several
individual vequirements.

/

Bethany: Yeah. And then we should support all different types of terrains:
mountains, rivers, plains, grass...

Susan: ...maybe space or craters or asteroid or something for the space games...

Bob: Even underwater tiles, like seaweed or silt or something, right?

But what is a
feature, anyway?

A feature is just a high-level description of something a

system needs to do. You usually get features from talking

to your customers (or listening in on their conversations,

like we just did on the last few pages). Starting with the features

a i .
A'lot of times, you can take one feature, and come up bia : :Z)S:C:.{: l's-I |::86' l;/r;,cl\’\cul in
- S game

with several different requirements that you can use to
q y s\/s{:cw\—whcr\ You don’t have tons

satisfy that feature. So figuring out a system’s features is a of details, and ; o b
great way to start to get a handle on your requirements. a handle o,n thi: 't:cz‘: : 9et
start.

290 Chapter 6

Download at WoweBook.Com

solving really big problems

Feature (from customer) Requirement (for developer)
A tile is associated with
a terrain type. S
Supports dlffergn’r . o That singe
types of terrain. \ Gawme designers can create jcca’cwe vesults
custowm terrain types. in multiple
diffecent
Heve's a S"‘,ﬂl-s (—____ca{:wc e requirements.

ot -('\ om the tustomer- R « g8
e Each terrain has characteristics

that affect movewent of units.

Get features from the customer, and
then {igure out the requirements you
need to implement those features.

aoharpen your pencl

w. We need a list of features for Gary’s game system.

You've got plenty of information from Gary and his team, and now you know how to
turn that information into a set of features. Your job is to fill in the blanks below with
some of the features you think Gary’s game system framework should have.

you are here » 291

Download at WoweBook.Com

feature or requirement?

292

aSharpen your pencl
. answers

We need a list of features for Gary’s game system.
You've got plenty of information from Gary and his team, and now you know how to

turn that information into a set of features. Your job is to fill in the blanks below with
some of the features you think Gary’s game system framework should have.

Supports different types of tervain Supports diffevent time periods, intluding
Lietional periods like sei—fi and fantasy.

Supports multiple ‘[‘,ypcs o-c +roops or Suggo\r'{z add—on modules ‘(:o\r addiﬁional

wnits that ave aame—specific. tampaians or battle stenavios. =—
Eath aame has a boavd, made up of The framework keeps up with whose turn
squave tiles, each with a tevvain type. it is and toordinates basic movement.

\/_\

This all seems pretty arbitrary...
some of those features look just like

requirements. What's the big difference
between calling something a feature, and
calling something a requirement?

[t's OK if these aren't
the exaet features You
30{:, or if You had more
detailed things in this
list. These are Just
what we ¢ame up with.

Don’t get hung up on the
“difference” between a
feature and a requirement.

Lots of people use “feature” to mean different
things, so it’s not a term you should get too
worked up about. For some people, a feature s a
requirement; and you’ll even hear some people
say “feature requirement,” which really can get
confusing

Others think of features as higher-level

than requirement, which is how we’ve been
talking about them. So it might take several
requirements to satisfy one feature of a system.

The main thing is that if you’re stuck on where
to get started, especially with a big project, you
can gather features (or requirements!) to get a
handle on the high-level things you know you’ll
need to take care of in the system you’re building.

Chapter 6

Download at WoweBook.Com

Q,: So there’s no difference between a
feature and a requirement?

A: Well, this really depends on who
you ask. For some people, a feature is a
“big” thing that a system does, like “support
different types of terrain.” But to put that
feature into place, there are lots of “small”
things that the system must do, like “define
a base terrain type” and “allow developers
to extend the base terrain type” and “allow
each tile to contain multiple terrain types.”
All of these little things are considered
requirements. So a single feature is satisfied
by several requirements, like this:

Feature
AT i! i;

Requirements

Features ave ‘big H\ing,s"
that lots of rco\uiVCan{:s
tombine to sa*tis(:\/.

ther qre no

Dumbd Questions

Q/: You said, “some people.” So there
are other ways to look at features and
requirements?

A: Right. A lot of other people don’t
make such a distinction between a feature
and a requirement. One feature might be
“supports different time periods” (which is a
pretty big thing), and another might be “allow
for water as a type of terrain” (which is a
pretty small, specific thing). In this approach,
there’s not really a big difference between
what a feature is and what a requirement is.
So these people see things a lot more like
this:

Features

Requirements

In this approath,
theve’s a lot of
ove\rlay in what a
feature is, and what

3 requirement is. The
two terms ave more or
less interchangeable.

Download at WoweBook.Com

solving really big problems

Qj So which is right?

A: Both! Or neither, if you prefer.
There’s no “one right way” to think about
features and requirements, especially if you
don’t want to waste lots of time arguing over
definitions with your programmer buddies.
You're better off thinking about both features
and requirements as the things your system
needs to do. If you want to consider features
the “big picture” things, and requirements the
“smaller, more detailed” things, that's OK...
just don't get into any barroom fights over it,
alright?

Can't we all just get along?

293

you are here »

no value, no use case

OK, so we've got the feature and
requirement thing figured out. Now we can
write some use cases, right?

Use cases don’t always help
you see the big picture.

When you start to write use cases, you're
really getting into a lot of detail about
what the system should do. The problem

1s that can cause you to lose sight of the

big picture. In Gary’s game system, we’re
really not ready for a lot of detail... we’re
just trying to figure out what the framework
actually is at this point.

So even though you could start writing use
cases, that probably won’t help you figure
out exactly what you’re trying to build,
from the big-picture point of view. When
you’re working on a system, it’s a good idea
to defer details as long as you can... you
won’t get caught up in the lttle things when

Alway S c[e{er you should be working on the big things.
details as long
as y01[can.

RANVN
QWERWR

If we did write use cases for Gary’s game
system, who would the actors be?

294 Chapter 6

Download at WoweBook.Com

So what are we supposed to do now?
You've been telling us we need to know
what the system is supposed to do for like
200 pages now, and suddenly use cases
aren't a good idea? What gives?

You still need to know
what your system is
supposed to do... but you
need a BIG-PICTURE view.

Even though use cases might be a little too
focused on the details for where we are in
designing the system right now, you still
need to have a good understanding of what
your system needs to do. So you need a
way to focus on the big picture, and figure
out what your system should do, while still
avoiding getting into too much detail.

Download at WoweBook.Com

solving really big problems

Ever hear that a picture is
worth a thousand words?

Let’s see if we can show what
the system is supposed to do.

you are here » 295

from use cases fo use case diagrams

Use case diagrams

Sometimes you need to know what a system does,
but don’t want to get into all the detail that use cases
require. When you’re in a situation like this, a use case

diagram could be just what you need:

Z_t.,(: big box represents Lhe
X ﬂ:m What's inside the box
e system; what’s outsid
uses the system. S the b |
the system boundar)'- o

This stick fioure is an
actor. He atts on the
S\[ch,cm, whith in this case
is the game Leamework.

Game Designer

(

Remember, the
actor on this s\/s-tc...

s 3 game desianev,
not a game player.

Create New Game

\\ Euth of
— these ovals
e | / vepresents
a singlc use

tase in the

Modify Existing Game
s\/s{:an.

Deploy Game

¥_/W/’_J

296 Chapter 6

iled
This use tase diagram wight not be the most detaile

. m, but it tells you
ko s 3 T o s

T c
;‘va‘;“%:m:; Use tases ave muth mor;hdc:;anl
or?cn‘ccd, and dont help you (_:igwc o;{: s e big
picture like a good use tase diagram does-

Download at WoweBook.Com

solving really big problems

OK, this is just plain stupid. What
good does that diagram do us? Do we
really need to draw a picture to figure
out that game designers are going to
create and modify games?

Use case diagrams are the
blueprints for your system.

Remember, our focus here is on the big
picture. That use case diagram may seem
sort of vague, but it does help you keep
your eye on the fundamental things that
your system rmust do. Without it, you could
casily get so caught up in the details of how
a designer creates a new game that you
completely forget that they need to actually
deploy that game. With a use case diagram,
you’ll never forget about the big picture.

But what about all those
features we worked so hard to figure
out? They don't even show up on the
use case diagram!

Use your feature list to
make sure your use case
diagram is complete.

Once you have your features and a use case
diagram, you can make sure you’re building
a system that will do everything it needs to.
Take your use case diagram, and make sure
that all the use cases you listed will cover

all the features you got from the customer.
Then you’ll know that your diagram—the
blueprints for your system—is complete,
and you can start building the system.

you are here » 297

Download at WoweBook.Com

map your features to your use case diagram

e27 | Feature Magnets

It's time to match up the game framework’s features to the use cases in your use
case diagram. Place the magnet for each feature on the use case that will handle
that feature. If your use case diagram is complete, then you should be able to
attach each feature magnet to a use case on your diagram. Good luck!

Heve's our use £ase

diaoyram,
for owr S\[Stc""

Heve's the list of

eatures we came up with

back on page 292.

298 Chapter 6

the b\uc?\'\n{:

Create New Game

Modify Existing Game

Game Designer

Deploy Game !

Each feature
should be
attached {0 one
of the use eases
 the syskem

Gary’s Game System Framework l _j
Feature List

) The framework supports

1. The frameworlf supports different | 5i fFerent types of terrain.
types of terrain.

2. The framework supports dif ferent ti
periods, including fictional periods lik
sci-fi and fantasy.

3, The framework supports wwltiple
types of troops or units that are gawe
specific.

4. The framework supports add-on

The framework supports
different time periods.

The framework supports

multiple unit types.
wodules for additional campaigns or

The framework supports
i dd- dules.
battle scenarios. a on modules

5. The framework provides a bo'ard wade| 71 . fromework provides a
up of square tiles, and each tile has a

tferrain type.
6. The framework keeps up with whose
turnit is, and coordinates basic
movement.

board made up of tiles, each
with a terrain type.

The framework keeps up
with whose turn it is, and
coordinates basic movement.

Download at WoweBook.Com

tbei‘ qre no

Dumbd Questions

Q,: So an actor is a person that uses the system?

An actor is actually any external entity (it doesn’t have to be
a person) that interacts with the system. So in a cash machine, you'd
obviously have a person that uses the system as an actor, but you
might also have the bank as an actor, because it deposits money in
the system. If it's not part of the system but acts on the system, it's
an actor.

Q: What's the box around everything for? And why are the
actors outside of the box?

The box shows the boundaries of the system. So you have to
code up everything inside the box, but you don't have to worry about
the stuff outside the box. The actors—the game designers using your
framework—are outside of the box because they use your system;
they're not part of it.

Q- And each circle is a use case?

AZ Right. That's part of why use case diagrams are great for
getting a handle on the big picture: they can show you multiple use
cases, and how all those use cases work together to do really big
tasks. It also helps you avoid getting into details about a particular
requirement too early (like now, when you should be worrying about
the overall system design).

features to a use case...

Thanks for all the info, but can we get
back to that Feature Magnets exercise?
I'm stuck trying to match one of the

solving really big problems

Q: I've seen use case diagrams with lines marked with
<<include>> and <<extend>>. What’s that about?

UML and use case diagrams do define ways to specify what
kinds of relationships exist between use cases. So you could say
that one use case includes another, or that one use case extends
another. That's what the <<include>> and <<extend>>
keywords mean.

However, it's easy to spend a lot of time arguing over whether a
use case extends this use case, or includes that one. And suddenly,
you’re spending your time on how a tile can support mountains or
units need to carry a backpack, instead of focusing on the bigger
picture. You can use <<include>> and <<extend>>, but

it's really not that big of a deal, and those keywords should never
distract from the overall design process.

Q: So use case diagrams are more about a general picture
of the system than including lots of little details?

Now you've got it! If you're worrying too much about
what to call a use case, or whether you should use a particular
relationship between use cases, you've lost sight of the big picture.
Use your use case diagrams to get a clear 10,000-foot view of your
system, nothing more.

299

Download at WoweBook.Com

we have a feature problem Well, it , “

/ Solu{:ion ﬂ)is Ji’)’ doncl,

Feature Magnets Solutions

It's time to match up the game framework’s features to the use cases

in your use case diagram. Were you able to find a use case for each Almos{; all

feature in the game framework? have &, do i
)

The framework supports
different types of terrain.

The framework supports
multiple unit types.

The framework supports
add-on modules.

Modify Existing Game

Game Designer \

™S

\{ou could also have

. /‘% Deploy Game £ most of these
PCP"’Y"‘ﬁ fhc Samc IS an impoy- Y\A sves on “Mod'\‘(:‘[
piece of {h Portant feat od!
the tusto e SXS'EC:»; even {:ho,,ah E*]s{:'mg éamc, smlf
Lot ustomer didn't mention an they all can be par
eatures velated specifically to it & 3 vedesion too.

But there’s one feature still left...

wha.t UP w“-h ‘l-ha‘l-’.] The framework keeps up

with whose turn it is, and
There’s probably one feature you had some coordinates basic movement.
trouble placing on the use case diagram. ®
Think about this feature carefully: it’s really
not something the game designer directly ,&

interacts with or worries about, because the
functionality is already taken care of.

We know Lhis is 3

feature, but why

So how is this feature related to the system? doesn't it ha.vc a?
And what actors are involved? And are we in our \,\.,cvrm{'k
missing some use cases in our diagram?

place

What do you think?

300 Chapter 6

Download at WoweBook.Com

The Little Actor

solving really big problems

A swmall Socratic exercise in the style of The Little Lisper

What system are you designing?

A game framework, duh!

So what is the point of the framework?

To let game designers build games.

So the game designer is an actor on the system?

Yes. I've got that in my use case diagram.

And what does the game designer do with the
framework?

Design games. I thought we established that!

Is the game the same as the framework?

Well, no, I suppose not.

Why not?

The game is complete, and you can actually
play it. All the framework provides is a
foundation for the game to be built on.

So the framework is a set of tools for the
game designer?

No, it’s more than that. I mean, the feature
I'm stuck on is something the framework
handles for each individual game. So it’s
more than just tools for the designer.

Interesting. So the framework is part of the game,
then?

Well, I guess so. But it’s like a lower level,
like it just provides some basic services to the
game. The game sort of sits on top of the
framework.

So the game actually uses the framework?

Yes, exactly.

Then the game actually uses the system you’re
building?

Right, that’s just what I said. Oh, wait...
then...

..Af the game uses the system, what is it?

An actor! The game is an actor!

you are here » 301

Download at WoweBook.Com

actors aren’t always people

Actors are people, too
(well, not always)

It turns out that in addition to the game designer,

the game itself is an actor on the framework you’re
building. Let’s see how we can add a new actor to our
use case diagram:

—

We've added 3 ,, ow

Create New Game

N

Game Designer

Modify Existing Game

Create Board

AN
oy,

Add/Remove
Units

actor, for the 9ame
(which {he designer
CV‘CG'{:CS, usiha 'H’C
Yamework).

The Game
N

Rm\cmbc*) attors
dont have to be
YCO"\C"' here, ‘H\C

/1

Heve ave a few of the
things that the game uses
the framework to do.

Do these new use cases
take care of the feature we
couldn’t find a place for?

game '\h{’,evad.’s
3 with ouwr S\,sjccm.

These betome additiong|

use tases that our

system will need to

Perform 1o be Complete.

k The framework keeps up
with whose turn it is, and

coordinates basic movement.

302 Chapter 6

Download at WoweBook.Com

solving really big problems

Use case diagram... check!
Features covered... check!

With a new actor in place, we can finally take our use
case diagrams and our features, and match them all up.

The framework provides a

board made up of til The framework supports
different types of terrain.

with a terrain type.

Create New Game

The framework supports
different time periods.

The framework supports
multiple unit types.

Game Designer

(7

Aﬂost oﬁ £h€
Leatures velate

to what the game
designer does with
the framework.

Hcrc,s our new ac{',o\r,
the game, which also
uses the framework

The framework supports
add-on modules.

Modify Existing Game

Deploy Game

during gameplay-

Create Board

Move Units

The framework keeps up
with whose turn it is, and
coordinates basic movement .

The Game

Add/Remove
Units

The new use tases
assotiated with the
game Lake cave of
the feature we had
Lrouble with earlier.

aSharpen your pencl

‘a. That last feature is still a little funny... —=

The fraMGWOrk ke
With whose turn
Coordinateg basi

€ps up
it isl and
C movement ,

The second part of that last feature, about movement, fits in with the “Move Units™ u
case... but what about keeping up with whose turn it is to move? It seems like there’s
something still missing from our use case diagram. It's your job to figure out two things:

1. Who is the actor on “The framework keeps up with whose turn it is?”

T
us CRED!
- %/\03‘\\1% Lhese Ehand

& Lo the wse case
diagam above:

2. What use case would you add to support this partial feature?

303

you are here »
Download at WoweBook.Com

completing the use case diagram

aSharpen your pencl
. answers
That last feature is still a little funny... /

The second part of that last feature, about movement, fits in with the “Move Units” use
case... but what about keeping up with whose turn it is to move? It seems like there’s
something still missing on our use case diagram. It's your job to figure out two things:

The framework ke

. eps u
With whose turn P

it l'S/ and

1. Who is the actor on “The framework keeps up with whose turn it is?”

The game is still the actor... it’s using the framework to
handle managing whose turn it is.

2. What use case would you add to support this partial feature?

We need a use case for “Take Turn” where the framework
handles basic turn duties, and lets the custom game handle
the specifics of that process.

The
hc 75kc 7Lrn" use Lase

’c*(:s us know ‘l:haf {:hc
9ame needs 1o handle

e . We also broke
The framework supports / " bASCd dufms. {h { (4

The framework provides a different time periods. o ‘Oh

poard made up Of tilqg TFranework supports ﬁca{urC|n{o

with a terrain type. |4ifferent types of terrain. {‘,wo sc?arakc
Create New Game Create Board (:ca{:wcs.

The framework supports ;2
multiple unit types. |The framework supports

add-on modules.

The framework keeps up
with whose turn it is.

Game Designer
Modify Existing Game

Move Units

The framework coordinates
basic movement.

The Game

Deploy Game Add/Remove

Units

304 Chapter 6

Download at WoweBook.Com

So what exactly have we done?

You've got a list of features that Gary’s game system

solving really big problems

framework needs to support, and that tells you all the

major pieces of the system you need to build. This is

a lot like the requirements list you built way back in Gary’s Game System Framework
Chapter 2 for Todd and Gina’s dog door... except it Feature List

focuses on the big picture.

Use a feature or requirement list to
capture the BIG THINGS that your
system needs to do.

Once you've got your features and requirements 3. The framework supports wultiple
mapped out, you need to get a basic idea of how the types of troops or units that are game-
system is going to be put together. Use cases are often specific.
too detailed at this stage, so a use case diagram can help 4. The framew
s : ork su -
you see what a system is like at 10,000 feet... kind of like modules for addiﬂgﬁ;{?a:ldda?n
a blueprint for your application. battle scenarios paigns or
Draw a use case diagram to show 9. The framework provides a board made
what your system IS without getting up of square tiles, and each tile has a
into unnecessary detail. terrain type.
6. The framework keeps up with whose
turnitis.
7 The framework coordinates basic
movement.

1. The framework supports different
types of terrain.

2, The.framework supports different time
periods, including fictional periods like
sci-fi and fantasy.

Heve’s our feature list...
system has 4o do these things.

O

Game Designer

/

Heve's our use (,.asc
d'\35Y6m-~~ {—/\{\s‘(:\S
the \J\“C\""“{" o

owr 5\,5{',6""

Create New Game Create Board

Modify Existing Game
Deploy Game

The Game

Add/Remove
Units

Download at WoweBook.Com

the

305

speaking the customer’s language

Cubicle Conversation

Isn't it about time we started
actually talking about code? I mean, I get
that we need a feature list, and use case

diagrams, and all that, but at some point
we have to actually build something,
you know?

Frank: I don’t know, Jim. I think we %ave been talking about code.

Jim: How do you figure that? I mean, what line of code is
“framework supports different types of terrain” really going to turn
into?

Frank: You're talking about those features we figured out, right?
Well, that’s not just one line of code, but it certainly is a big chunk of
code, right?

Jim: Sure... but when do we get to talk about what classes we need
to write, and the packages we put those classes into?

Frank: We're getting to that, definitely. But the customer really

> doesn’t understand what most of that stuff means... we’d never be

Jim sure we were building the right thing if we started talking about
Frank classes and variables.

Jim: What about class diagrams? We could use those to show what

Domain analysis we’re going to code, couldn’t we?

Frank: Well, we could... but do you think the customer would

) , . .
lets you CllGCl(understand that much better? That’s really what domain analysis is

all about. We can talk to the customer about their system, in terms
that they understand. For Gary, that means talking about units, and

your JeSignsq an(l terrain, and tiles, instead of classes, objects, and methods.
still speak the

customer’s language.

306 Chapter 6

Download at WoweBook.Com

solving really big problems

Let’s do a little domain analysis!

Let’s put all these things we’ve figured out about the game system
together, in a way that Gary, our customer, will actually understand.
This is a process called domain analysis, and just means that we’re
describing a problem using terms the customer will understand.

ThC domaih hCY‘C is

9ame systems.
These chajﬁ““;;afﬁchc Gary’s Game System Framework <_J
. - -
::;2, m:vm‘mdcvs{:a'\ds' Feature List
—’

1. The framework supports different
types of terrain.
2. The framework supports different time
periods, including fictional periods like

sci-fi and fantasy. !’) 4:(;

3. The framework supports wultiple
- types of troops or units that are game-
specific.
4. The framework supports add-on
wodules for additional campaigns or
battle scenarios.

5. The framework provides a board made

sk is up of square tiles, and each tile has a
This whole feature & — ferrain type.
) W
Lorm ok and) g J " 6. The framework keeps up with whose
i\(c o ve been 89 fornitis.
" Loe Ehaptees 7 The framework coordinates basic
cavlier
wovewment.

ﬂle Y -
~Scholar’s Corner

domain anal\/sis. The protess of idcn{:i\cmg, collecting,
organizing, and rcyrcscn'[:ing the velevant information of a

domain, based upon the s‘(:ud\/ of cxis{:ing S\/S‘{:Cms and

theiv development histories, knowledge eaptured from

domain experts, underlying theory, and emerging
fcéhnolog\/ within a domain.

you are here » 307
Download at WoweBook.Com

everyone loves a happy customer

What wmost people give the customer...

What the heck is this? I have no
idea if this is what I want.

Unit

type: String
properties: Map

Unit.java

setType(String)

getType(): String
setProperty(Stringjf
getProperty(Strin

Gary's totally lost -
These are ¢l . betause he's not 3 "
ass and package diagrams, 3 mev! You didnt
and, tode—level details about how vy ;\n |anauase:
youll build Gary's game framework. speak his 1anqudqc:

What we’re giving the customer...

Very cool! That's exactly what I

Gary’s Game System Framework want the system to do.

Feature List

1. The framework supports different m O
types of ferrain. N Qo

2. The framework supports different time
periods, including fictional periods like

sci-fi and fantasy. l !’)4;(;

3. The framework supports wwltiple

types of troops or units that are game- ﬁ
T specific.

4. The framework supports add-on
wodules for additional campaigns or

battle scenarios.
5, The framework provides a board made
up of square tiles, and each tile has a
terrain type. i .

6. The framework keeps up with whose -t ‘.‘
turnitis. / * e
T

7. The framework coordinates basic

N

movewent. ~ ’s theilled, betause he
QVV' ‘p ca{:urc i:;z:s{',ah d W\'\a{l YO!A,V'C
{l_:{:, in language building, and knows it will do
308 Chapter 6 ¢ Customer what he wants it 1o do-

understands.

Download at WoweBook.Com

solving really big problems

Now divide and conquer

With the customer onboard, and a nice completed set

of blueprints, you’re ready to start breaking up your big
problem into different pieces of functionality—and then
you can use what you’ve learned already to tackle each of

those pieces of functionality, one at a time. Time Periods

We may not need to do
Here's a voudh drawing of /’ much here... as long as we
some of the tore \73\’{35 of support different terrains,

the game Lramework-

— =

unit types, and weapons, this
should come naturally.

2

||
Tiles

The framework needs to
have a basic tile, and each
tile should be able to support
terrain types, units, and
probably handle battles, too.

-
ke
e
Units
We .need. a way to represent a Terrain Types
bas.lc unit, and let the game Each tile should support at
designers extend that to create least one terrain type, and
game-specific units. S game designers should be able
71 to create and use their own
We ¢can bresk the lavae custom terrain types, from grass
ramework dowp in'l:oasevc,ra’ to lakes to asteriod dunes.

S
maller, more manageable, pieses.

you are here » 309
Download at WoweBook.Com

breaking up the big problem

~The Big Break-Up

It's time to break up our big problem—Gary’s game framework—into lots of smaller
pieces of functionality. You’ve already seen how we can divide the game and its features
into some basic groups of functionality, so you're already well on your way.

Below are the features and diagrams we’ve been using throughout this chapter to show
what Gary’s system needs to do. You need to look at these, and figure out what modules
you want to use to handle all this functionality, and how you want to split the features
and requirements up. Make sure your modules cover everything you think the game
framework will need to do!

Gary’s Game Systewm Framework
Feature List

1. The framework supports different
types of terrain.

2. The framework supports different time
periods, including fictional periods like
sei-fi and fantasy.

3. The framework supports multiple
types of troops or units that are game-
specific.

4. The framework supports add-on
wodules for additional campaigns or
battle scenarios.

5. The framework provides a board made
up of square tiles, and each tile has a

terrain type. Heve’ L

6. The framework keeps up with whose Fs he 9ame board +o
turnitis. remind You ot some of

7. The framework coordinates basic the major areas 4o foeus

wovement. on. bt idis
isn't everything/
You need to addvess all the
Leatures in the s\/s{‘,cm..,

-.as well - |
; ell as the >

uncfionali{:y laid out in

Your use case di
aﬁ"&m. Game Designer

The Game

Deploy Game Add/Remove
Units

310 Chapter 6

Download at WoweBook.Com

solving really big problems

We've added 3 “Units” module

to get You stavted. This would

be wheve ¢lasses vepresenting

troops, armies, and velated

‘Fuhc{:iov\ali{:y would 90.

mod"\c’

/
For eath PEKSTTC Mt

w\"l‘{',C n w\\a{'« o
modu\c should

olus on

You tan add more modules if you
need, or use less modules than we've

provided. [t's all up to you!

We have BIG problems,
and T just can't handle them. It's
time to break up.

you are here » 311

Download at WoweBook.Ciom

lots of small problems

Our Big Break-Up

The board module
handles the board
itself, tiles, tervain, and
other ¢lasses velated

to ereating the actual
board used in each game.

)

Here’s what we did to handle all the features of Gary’s
system, and to break the big problem up into several
smaller, more manageable pieces of functionality.

-

This takes tave of
Lroops, armies, and all
the units used in 3 game.

We those to NOT have 3 module Jus{:
for terrain, or Liles, sinte t:hcvc .

Id only be one or +wo tlasses in
:::sc :)nno\(liulcs. Instead, we tied that
all into the Board module.

-

We'rve using 3 G4
me
store basic tlasses {:l:h;(:d;’c v
extended by desi b
velate 4o the

basie structure of eachs;:sn:" he /

[¥'s always a good idea to have a Utilities
module, 4o store tools and helper ¢lasses
that ave shaved atross modules.

There’s no single RIGHT

answer to this exercise!
M&x It’s

Here's wheve we ¢an handle the turns of OK if your answers don’t match up

. : ith ours exactly. There are lots of ways
~ , and anythin : oo > 7
each player, basic m?vcmcnﬁmchac{::;/”\/ ’ to design a system, and this is just the one we chose.
else YC|3{3_¢d to kl“‘_’"‘g 2 JCS of the “tra (e ¢ What you do need to worry about is that you've covered
5oin'5.£Th|{s"hmodu e |s{:}::{; desiopers trea fe. : all the features and use cases with your design, and that
Lo?’ or the games :

it makes sense... you don’t want a module to have just

312

one class in it, or one that will have one or two hundred.

Chapter 6

Download at WoweBook.Com

solving really big problems

Dude, this game is gonna SUCK!
You don't even have a graphics package...

even if it's not all fancy, I've gotta at
least be able to see the freaking board
and units.

Pon’t forget who your
customer really is

It might seem like Tony has a good point... until you
remember who the customer for Gary’s game system
framework really is. Your job is to write a framework
for game designers, not to create actual games. Every
game’s user interface will be different, so it’s up to the
game designer to take care of graphics, not you.

Domain analysis helps you avoid
building parts of a system that
aren’t your job to build.

now d \o{ abou{: wha*:
makes for a killer game, but

) stomev!
he's not your tustomer

Ton\/ may k —_— This is somc{;hins
that the 9game
dcsigncr would
ereate... it's pot

Your vesponsibil ity.

PATYTVTERNS
POLOZZ\€E

Take a close look at the modules and groupings in the \D l 3

-

game system framework. Do you recognize a commonly =
used design pattern?

’s 3 hint for you Head
‘;f::{:s];csign Patterns veaders. /

you are here » 313

Download at WoweBook.Com

model-view-conftroller

You know, once the game designer
adds in a Graphics module, this looks an
awful lot like the Model-View-Controller
pattern.

Most people veker to this
as the MVC pattern-

It’s the Model-View-Controller Pattern!

Heve's the game
tontroller that we've
5oih3 to write. It
handles basi¢ turns
and \cigwing out what
needs to happen with
boav'ds, uni{‘,s, ete.

Qame designers

- o : tan extend this
: “K“;m : - module with their
M\Od:‘is ad—’va\\\’) own 5amc—5\>eci it
a\’ Hﬁ“ﬁ. Lon{:ro“cr, bu{:
. this module is still
the basic game
tontroller.

<« These veally don't kit
inko the MVC pattern
but they've still part
314 Chapter 6 of the s\ls{:an-

Download at WoweBook.Com

solving really big problems

What's a design pattern?
And how do | use one?

We've all used off-the-shelf libraries and frameworks. We take them, write some code against their APIs,
compile them into our programs, and benefit from a lot of code someone else has written. Think about
the Java APIs and all the functionality they give you: network, GUI, IO, etc. Libraries and frameworks go
a long way towards a development model where we can just pick and choose components and plug them
right in. But... they don’t help us structure our own applications in ways that are easier to understand, more
maintainable and flexible. That’s where Design Patterns come in.

Design patterns don’t go directly into your code, they first go into your BRAIN. A design pattern is just

a way to design the solution for a particular type of problem. Once you've loaded your brain with a good
working knowledge of patterns, you can then start to apply them to your new designs, and rework your old
code when you find it’s degrading into an inflexible mess of jungle spaghetti code.

v
<
G
bject that
::JJ eoljd:sta{c
1
o
=
Y
<
=3
)
<<
\(ou\" Code, oW .V\CW
and ""‘\"‘o\lCd w‘l
desion YaH:crns.

Head First
eaen R

———

and 3
¢ dekail on what

how o
i Lierns are and
d::‘?:hfi, by picking uP a topy of
W

find this pa%e:

\(ou tan
who\c \0£ mo¥

tead Fiest Desion Patterns:

you are here » 315

Download at WoweBook.Com

confused about design patterns?

I haven't read Head First Design
Patterns, and I'm still a bit fuzzy on
exactly what a design pattern even is.
What should I do?

Keep going! Design
patterns are one of the
last steps of design.

It's OK if you’re not familiar with design
patterns. Design patterns help you take
those last steps of design—once you've
used OO principles like encapsulation
and delegation to make your software
flexible, a well-chosen design pattern can
add just that extra bit of flexibility to
your design, and save you some time, too.

But it’s no big deal if you’re not familiar
with design patterns. You can still work
through this book, and get a handle

on really solid design. Then, we’d
recommend you pick up Head First
Design Patterns, and see how other
people have been handling some classic
design problems, and learn from them.

Chapter 6

Download at WoweBook.Com

Feeling a little bif lost?

We’ve done a lot of things in this chapter, and some of
them don’t even seem to be related...

=> Gathering features
=> Domain analysis
=> Breaking Gary’s system into modules

=> Figuring out Gary’s system uses the MVC pattern.

But how does any of this really help
us solve BIG problems?

Remember, the whole point of all this was to get a
handle on how to deal with really large applications—
like Gary’s game system framework—that involve a lot
more than some basic design and programming;

But here’s the big secret: you’ve
already done everything you need to
handle Gary’s BIG problem.

OK, I must have missed that. Can
you let me in on what I missed?

Download at WoweBook.Com

solving really big problems

317

you know how to solve small problems

The power of 00A&D
(and a little common sense)

We started out with

— T this vather vague, Onte we knew what we
. o stsmen g 1£'a‘r_‘r‘a‘”‘""\ﬁ vision weve building, we eveated a
G e e e et oo statement. Now that’s use tase diagram o help us

ames and games that ely on audio and video features (© cngage the B I 6 ‘{',a {_’ b . {_‘
Slayer,our games vill focus on the technical detals of strategy and a FV'Ob ' em. W\dCY‘S nd he ‘g Y‘L ure.
b ctics, Our framework provides the bookkeeping details to make

building a particular game casy; while removing the burden of coding

repetitive tasks from the game design.

The game system frameswork (GSF) will provide the core of all of
Gary's Games. It w ill be delivered as a library of classes with a well-
defimed APT that should be usable by all board game development

project teams within the company. The framework will provide standard
capabilities for:
' Create New Game Create Bo
 defining and representing a board configuration ard
Modify Existing Game

+ defining troops and configuring armies or other fighting units
 moving units on the board Game Designer
o determining legal moves

+ conducting battles

+ providing unit information

T'he GSF will simplify the task of developing a turn-based stratcgic
board game so that the users of the GSF can devote their time (o

implementing the actual games.
plementing the actual gam Deploy Game The Game
Add/Remove
Units

0 We listened to the customer. e ::e dre\;v up blueprints for
e system we’re building.

Gary’s Game System Framework
Feature List

1. The framework sy i
pports dif
types of terrain. foront

2. :Znﬁlg(::wllve‘rllo;k supports different time
el fa'; 1‘I:St_;v.fm’(mmal periods like
3 1;3: ef:a;\)?::vork suppo_r'rs wultiple
e 00ps or units that are game-
4. The framework supports add-on

wmodvles for additional campai
a
battle scenarios. peigns or

9. The framework provides a board made

up of square tiles, and each tile has a MSMS dom3in ah8|\/5is, -

6 AL made sure we understand
' I::nf:’: P DA what Qavy wanted his
7. The framework coordinates basic S\/s{::m to do.

movewent.

© We made sure we
understood the system.

318 Chapter 6

Download at WoweBook.Com

M'l:b a HucPrin{: and Leature
{,.::Jcbm hand, we were able

o break up Gary's big 3

.m'b.o .,o‘{:s of smaller PiscCczPO‘F
individua| ‘puaniona’i{:)’-

solving really big problems

We even took a design

pattern that we alveady

understand, and applied

e We broke the big problem up into it to our sy;{g,.\.
smaller pieces of functionality.

/

Look! You already know how to
solve these smaller problems, using
everything you've already learned
about analysis and design...

...and you can even figure out

how to apply the MVC pattfern

. . Q We apply design patterns to help
from Head First Design Patterns. us solve the smaller problems.

Con: ations!

You've turned a BIG PROBLEM

into 3 bunch of swarie prosievs that you
already know how to solve.

you are here » 319
Download at WoweBook.Com

ooad&d toolbox

—

Q- BULLET POINTS ™ s

Tools for your 00AZD Toolbox

f You’ve taken on a huge problem, and you’re still

standing! Review some of the things you’ve learned
about handling big problems, and then you’re ready
for the return of the OOA&D crossword puzzle.

Requi

Good vequil

works like

Make sure
b\l dcvclo\fn

Use your w

£hings your

\{ow use &d
or missing \

have.

Yow requiv
3row) over

oMo & —L‘
S\

Analysi

Well—designec
and extend.

Use basic 00
and inhevitar
move flexible

1€ a design i
[T/ Never se
s Your bad

Make sure e
eath of youv
ONE THING

Always strive
move throug

liﬁccyclc.

Solv'mé Bi;LP\roblc"\s

Listen to the tustomer, and ‘(:igu\rc out
what {:hcy want You +o build.

Put together a featuve list, in language
the tustomer understands.

Make sure Yyour features are what the
customer actually wants.

Create blueprints of the s\/s{-,cm using use
case diagrams (and use tases)-

Break the big system up into lots of

smallev sections.

Apply design patterns to the smaller
settions of the system.

Use basic OOAED printiples to design an
tode eath smaller section.

We've 30{: a whole new

category of tethniques

we learned about in
«=— this thapter.

00 Principles

End&?su'&ft what varies.

Code 1o an interface vather
than to an imP|¢mcn{:a{:ion.

Each ¢lass in Your ayylica’cion

should have only one reason to
thange.

Classes are about behavior and

‘Funcfionali{:y.

The best way to look at a big problem is to view it as a =
collection of smaller problems.

Just like in small projects, start working on big projects =
by gathering features and requirements.

Features are usually “big” things that a system does, =
but also can be used interchangeably with the term
‘requirements.”

Commonality and variability give you points of

comparison between a new system and things you
already know about.

Use cases are detail-oriented; use case diagrams are
focused more on the big picture.

Your use case diagram should account for all the
features in your system.

Domain analysis is representing a system in language
that the customer will understand.

An actor is anything that interacts with your system, but
isn't part of the system.

320

Chapter 6

Download at WoweBook.Com

solving really big problems

OO0AGD Cross EE ERU -

their language (2 words)
It’s time for another left-brain workout. 3. You can use your feature list To make sure

Below is a, puzzle with lots of blank your use cnse diulglm i this.)
squares; to the right are some clues. You 5. Use cases don't always help you see this (2

: words).
know what to do, so go for it! 7. These aren't b e

8. A feature isa____ ___ description of
something a system needs to do (2 words)
10. Art Vandelay's "real" last name

12. A use cuse disgrum acts as this for your
system.

14. You can figure out these based on your
features.

16, Thig is the mensure of how things are
gimilar,

Down

1. An ovul in o use cose divgrum represents one

of these.

2 We applied anes of these ta your Gary's

framework,

4. The measure of how things are different.

6. You should solve a big problem by daing this

to it (3 words)

9. You can figure out a system's features by
to the customer,

11. You solve blg problems the _______ you

solve small problems (2 words).

13. Defer these ag long as possible.

15, He wasn't the customer,

you are here » 321

Download at WoweBook.Com

crossword solutions

b

XeRciSe
SoLutions

v
EEMHENHEHEHEEB

€l
H ‘clolm PILIEITIE]
AHEARHANENDE 1B

‘A cTlo

s |
HIzl6 HILIEIVIEN |
H AFaK
Eﬂmﬂﬂﬂﬂmﬂﬁ
;
R EQU I|RIE/MENT|S

EIES
o]c -]=[> m]® |«

6
N
a
Al
T
T
[E]
R
N

o

o

=

=

o
CIESCIES

=
a1

Bl

&l

<[> €]m =]> |

<z

322 Chapter 6

Download at WoweBook.Com

7 architecture

Bringing Order to Chaos

OK, T've got these blueprints
now, but I'm still not sure how the
whatchamacallit connects to the
thingamajiggy.

You have to start somewhere, but you better pick the
right somewhere! You know how to break your application up into lots of

small problems, but all that means is that you have LOTS of small problems. In
this chapter, we’re going to help you figure out where to start, and make sure
that you don’t waste any time working on the wrong things. It’'s time to take all
those little pieces laying around your workspace, and figure out how to turn
them into a well-ordered, well-designed application. Along the way, you’ll learn
about the all-important 3 Qs of architecture, and how Risk is a lot more than just

a cool war game from the ‘80s.

this is a new chapter 323

Download at WoweBook.Com

where do we start?

Feeling a little overwhelmed?

, .
}Slo you've got lots of small pieces of functionality that you know
fow to t..ake care of... but you’ve also got use case diagrams

3
cature lists, and a whole lot of other things to think about

324

Gary’s Game System Framework
Feature List

1. The framework supports different
types of ferrain.

2. The framework supports different time
periods, including fictional periods like
sei-fi and fantasy.

3, The framework supports wultiple
types of troops or units that are game-
specific.

4. The framework supports add-on
modules for additional campaigns or
battle scenarios.

5. The framework provides a board made
up of square tiles, and each tile has a
terrain type.

6. The framework keeps up with whose
turnitis.

7 The framework coordinates basic
wovewent.

We have feature lists..-

Chapter 7

...individual modules to code...

OK, even if I do know how to
handle all these individual pieces, where
the heck am I supposed to start? Can
you at least tell me what to do
FIRST?

Remember our _
programmer friend? — &‘-..\ o
Heve's how we left him . L
back in Chapter b.

Download at WoweBook.Com

/|

Game Designer

Create New Game

Create Board

Modify Existing Game

The Game

Add/Remove
Units

Deploy Game

-.high-level views of what we need to build...

th,
e
the
in <. Yiew, . "Otify \let
N stage” OFa cp s conttoles
i Iy nipu"
'9e ma \
the mod®

Controller

architecture

y Gary’s Games
] Vision Statement Y

Gary’s Games provides frameworks that game designers can use to
create turn-based strategy games. Unlike arcade-style shoot-"em-up
games and games that rely on audio and video features to engage the
Player, our games will focus on the technical detals of strategy and
factics. Our framework provides the bookkeeping details to make
building a particular game casy, while removing the burden of coding
repetitive tasks from the game design.

The game system framework (GSF) will provide the core of all of
Gary's Games. It will be delivered as a library of classes with a well-
defined API that should be usable by all board game development
Project teams within the company: The framework will provide standard
capabilities for:

¢ Defining and representing a board configuration
* Defining Units and configuring armies or other fighting units
* Moving units on the board

* Determining legal moves

¢ Conducting battles

* Providing unit information

The GSF will simplify the task of developing a turn-based strategic
board game so that the users of the GSF can devote their time to
implementing the actual games.

«..the customer’s vision...

RAaNVN

QWEWR

Do you think it matters what you should try to do first? If

you do, why? And what would you work on first?

you are here »

Download at WoweBook.Com

325

the power of architecture

We need an architecture

It’s really not enough to just figure out the individual pieces of a
big problem. You also need to know a little bit about how those
pieces fit together, and which ones might be more important than
others; that way, you’ll know what you should work on_first.

We alveady knew this... i})
a:t,:i;ch:l\rc helps us Arch Itectu re is yo ur
design these big S\IS‘{',CMS‘

. design structure,
Now this i
and highlights the k.

how do we

- fi ure ou
most important = =
\::Pco;fa bh%dso

"]

parts of your app, and the ‘=i
ow..... — relationships

di
S{;ljamm was the

£ of 1y
vy tehe between those parts.
untleay how a”y{:he S
modules i"fekacf,

All this is \var’cicularly
im\?or{:an{: when \/ou’rc working
with other programmers... you
have 4o all understand the
same avthitecture.

: v
“Schelar’s Corner

avehiteeture. Avehitecture is the organizational structure
of) S\/S‘tCM, ihéludinﬁ its dCCOmFosi‘[:ion into Fa\r‘[:S, theivr
ConhCC‘{ZiVi‘{:\/, interaction methanisms, and the 3uid'm3

g Printiples and detisions that you use in the design
= \ it O‘F a S\/S{',Cm.

326 Chapter 7

Download at WoweBook.Com

architecture

Architecture takes a big chaotic mess...

I have no clue what to
do with all of this stuff.

Ever get this (::(:cling?
You've got lots
important diagrams and —
plans, but everything is
\')usf, a huge mess.

chcse lists and Patterns
; ould help, but it’s havd to
now how it all ‘Fl'l:s ‘(:ogcfhe\r

..and helps us turn it into a well-ordered application

This is what we wan{.: -
—;a\\ the '\w(:o‘rma‘-hon "
‘;\avc 4o treate 3 mte, We

c,ov\skwc’ccd a?\v\\ca{\on.
Al the
\ ' ﬂ d.‘aSV'amS ahd
3] atterns ave
o : ‘Y;SCd 4o build
Wow... now I see how

2] <= the tustomer
it all fits together!

exactly what
{:hcy want, all
within 3 flexible,

veusable design-

"_‘ﬁ[
N]

you are here » 327
Download at WoweBook.Com

we’re still building great software

You write great software the same
way, whether you’re working on a
small project, or a huge one. You can
still apply the three steps we talked
about way back in Chapter 1.

We know that these three — >
steps will help us tackle each of

these individual pieces of the

game s\/s{xm ‘Framcwovk.

5

)
when you ve

appl
These three s{',\c‘f’sb.‘g\’a\\iv\.‘ cations)

wov\('mg on ¥ed s{;ad; e w“at
. So we need |

‘:\Z L:s{;mcv wants an ay\y {'Coﬁz

pefore we gc’c inko details 3

fhe attual desiyn of the ary:

328 Chapter 7

—_—

thapter? ThcscF33s vom the first

ap s apply +o
bunldmg 5rca{:B_I6 s 'Ewafrz,y'l:oo.

1wy et gt ey Ik
8 e s DOMD ;\;
\ ks 4 U
1. Make sure your e Ty e
software does what the
customer wants it to do, T e e s b by
P g app et b

By et
vofreiad Lo da FfcT

\

2, HPP[_Y basic
00]:rinci]:lcﬁ to
C add Hexibility.
N\
3. Strive for a
. maintainable,
reusable design,

Dot ymer 10 brgt i e
. it b rtmaret: el it
Jisds e wu poed N3 prachicen

ok 4 ol bt
AT el L g
1€ time ke arply ot ovan s
I"::f'ﬂh-u.u.g -
Tt bbry o iy b s
:l-*---lwr_.m:l e

Really BIG application

Download at WoweBook.Com

Let’s start with functionality

The first step is always to make sure an application does what
it’s supposed to do. In small projects, we used a requirements list
to write down functionality; in big projects, we’ve been using a
feature list to figure those things out:

Gary’s Game System Framework
Feature List

1. The framework supports different
types of terrain.

2. The framework supports different time
periods, including fictional periods like
Featuves ave about sci-fi and fantasy.

funttionality- they 3. The framework supports multiple
Lotus on what the i types of troops or units that are game-
sysbem has to doi o specific.

n what principles o
;a{‘ic‘arns?\/ou use 4. The framework supports add-on
build the system. modules for additional campaigns or

battle scenarios.

5. The framework provides a board made
up of square tiles, and each tile has a
terrain type.

6. The framework keeps up with whose
turnitis.

7. The framework coordinates basic
movewment.

ANl of these

But which of these are
the most important?

Even if we know to start by focusing on
functionality, we still need to figure out which
pieces are the most important. 7hose are the
pieces we want to focus on first.

Download at WoweBook.Com

architecture

We'll come back
to these other
diagrams and
Patterns later...
but ri‘gh{; now,

)
were tolusin

solely on the
‘c"hé‘f:ionali'l:\/ of

the system. (L>

you are here » 329

start with functionality

330

aharpen your penci

w. What do YOU think are the most important features?

Even though our feature list has only seven things on it, there’s a lot of work
in those seven features. It’s your job to figure out which features you think are
the most important, and then in what order you'd work on those things.

Gary’s Game System Framework
Feature List

1. The framework supporis dif ferent
types of ferrain.

2. The framework supports different time
periods, including fictional periods like
sci-fi and fantasy.

3. The framework supports wwltiple
types of troops or units that are game-
specific.

4. The framework supports add-on
wodules for additional campaigns or
battle scenarios.

5. The framework provides a board made
up of square tiles, and each file has a
terrain type.

6. The framework keeps up with whose
turnitis.

7 The framework coordinates basic
wmovewent.

S Vu/ve oot 4o handle al
\{ou ve 9o e, "

/ crc these)
it's up to Yyou 4o Kiguee

/ ou{: Jdnc o‘rdcr \Iou
should {-,ack\c Lhem in.

Wrife down {he 4 thi
irst, in order, in fhcs'

h3s You'd d
¢ b’ahks. ?

2w N o=

Chapter 7

Download at WoweBook.Com

The tlnings

in your
application
that are really
important are
arc]nitecturall_y

mgmflcant
and you should

focus on them

FIRST.

-7 0

architecture

Wait a second... if
architecture is about the relationships
between the parts of an application,
why are we talking about the individual
parts? Shouldn't we be talking about
how the parts work together?

You gotta start somewhere!

It’s awfully hard to talk about the
relationships between parts of a system if
you don’t have any of the parts themselves.
So say you wanted to talk about how the
Board module interacted with the Units
module:

To figure out how these modules interact,
you’d need to have at least the basics of the
two modules in place first.

So architecture isn’t just about the
relationships between parts of your app; it’s
also about figuring out which parts are the
most important, so you can start building
those parts first.

you are here » 331

Download at WoweBook.Com

what is architecturally significant?

The three Qs of architecture

When you’re trying to figure out if something is architecturally
significant, there are three questions you can ask:

1. Is it part of the essence of fhesy,éiem}t_ﬂ

Is the feature really core to what a system ‘
actually 1s? Think about it this way: can you

imagine the system without that feature? If not,
then you’ve probably found a feature that is part of the
essence of a system.

/—\' NO‘{ZC ‘From markc{:inaz
uEAS® \ suggest veplacing

(u . F*°1canilcy with “heek.”
1. What the 8 does it mean?

If you’re not sure what the description of a particular
feature really means, it’s probably pretty important that
you pay attention to that feature. Anytime you’re unsure
about what something is, it could take lots of time, or
create problems with the rest of the system. Spend time on
these features early, rather than late.

3. How the “heck” do | do it? o

Another place to focus your attention early
on is on features that seem really hard to B
implement, or are totally new programming !
tasks for you. If you have no idea how you’re "-_"J
going to tackle a particular problem, you .
better spend some time up front looking at that feature, so it
doesn’t create lots of problems down the road.

332 Chapter 7

Download at WoweBook.Com

_ BE the Architeet

To the right, you'l] find the

by using the three Qs of

& architecture we just talked about.

/
a

What’s significant?

feature]ist we figured out in the

last chapter. Your job is to play
like you're the architect,
and figure out what's

architectura]ly significant

architecture

Gary’s Game System Framework
Feature List

1. The framework supports different
types of terrain.

2. The framework supports different time
periods, including fictional periods like
sci-fi and fantagy.

3. The framework supports multiple
types of troops or units that are game-
specifie.

4. The framework supports add-on

modules for additional campaigns or
battle seenarios.

9. The framework provides a board wmade

up of square tiles, and each tile has a
terrain type.

6. The framework keeps up with whose
turnitis.

7. The framework coordinates basie
movement,

C

losc \/ow
Chetk and see how ¢
answevs heve matth wp o what you

wrote down on page 230.

T~ Write down

=~ whith of the
three Qs applies
You tan write
more ‘(’,han one,

i You need +o)

you are here » 333

Download at WoweBook.Com

figuring out what’s significant

_ BE the Architect
o Solutions

To the right, you']l find
the feature list we
figured out in the
last chapter. Be]ow are
the things we thought were
architecturally significant,
and which of the three Qs we
7 used to make our decisions.

We detided that the
board was tove to
the game... without
2 board, there veally

What’s significant?
The board for the game -
6amc-—s\>e£i-ci£ units

The framework oordinates basic movement.

6. The framework keeps up with whose

7. The framework coordinates basic

Gary’s Game System Framework
Feature List

1. The framework supports different
types of terrain.

2. The framework supports different time
periods, including fictional periods like
sci-fi and fantasy,

3. The framework supports wultiple
types of troops or units t

hat are game-
specifie.

4. The framework supports add-on
modules for additional campaigns or
battle scenarios.

7. The framework provides a board made

up of square tiles, and each tile has a
terrain type.

turnitis.

isn't a gamel —— 8l

®3 (and maybe §2)

movement,
Why? We thought that
roops were essentis|
he 9ame... and
Rl R2 =———— we've not sure what

“game—specific” might

\rca”y mean. So +wo

®s applied heve.

but '\{:’ s
< ceems a little vague,

Th: ss::\c{s',\:ng‘ we e sure a::u
:\ow to do- Dc‘(:in\{:c\y wovr i
socnd‘mg some time up \ron o
Engw\ng out what this means)

334 Chapter 7 what we need %o do-

Download at WoweBook.Com

Q: I'm a little confused about what
you mean by the “essence” of the
system. Can you say more about that?

The essence of a system is
what it is at its most basic level. In other
words, if you stripped away all the bells
and whistles, all the “neat” things that
marketing threw in, and all the cool ideas
you had, what would the system really be
about? That's the essence of a system.

When you're looking at a feature,

ask yourself: “If this feature wasn’t
implemented, would the system still

really be what it's supposed to be?” If the
answer is no, you've found yourself an
‘essence feature.” In Gary’s system, we
decided that the game wouldn't really be
a game without a board and some units,
and there are some more examples in the
Brain Power at the bottom of the page.

Q: If you don’t know what
something means, isn’t that a sign that
you've got bad requirements?

A: No, but it is a sign that you might
need to get some additional requirements,
or at least some clarification. In the early
stages, you can leave some details out

to get a basic sense of a system. But at
this stage, it's time to fill in some of those
details, and that’s what the second Q of
architecture is all about.

XN BRANN

therq are no)
Dumb Questions

Q; If ’'m working on a new system,
| probably won’t know how to do
anything on my feature list. So won’t
the 3rd Q of architecture about not
knowing how to do something always

apply?

A: No, not at all. For instance, even
if you've never written code to decide
whether a player typed in the letter “q”
or the letter “x,” you know how to write a
basic if/else statement, and it's easy
to grab keyboard input from a player.

So a feature like getting keyboard input
isn't something you don’t know how to
do, even if you've never written code
specifically for that task before. It's just a
few new details, really.

But if you had to write a multi-threaded
chat server, and you’re new to threads
and network programming, then that
would be something that you don’t know
how to do. Those are the things to look
out for: particularly hard tasks that you're
unsure about how to handle.

Q: Doesn't this all end up just
being a judgment call, anyway?

A: In a lot of cases, yes. But as
long as you choose to start working on
the things that seem the most important
to the system, you're going to get off to
a good start.

architecture

What you don’t want to do is see some
things that look familiar—perhaps you've
solved the same problem in another
project—and start there. Start with the
core pieces of the system, and the things
that look like they might be particularly
hard, and you'll be on the road to
success.

The essence
of a system
is what that
system 1s

at its most
hasic level.

PQAQWERWR

What do you think the essence of each of these systems is:

¢ A weather-monitoring station?
¢ A home automation remote control?
* A beat-controlling, music-mixing DJ application?

Download at WoweBook.Com

335

moving towards order

We've got a lot less chaos now...

Using the three Qs of architecture, we’ve started to add some

order to all that confusion we started out with: But then we
4 ot
Remember all Thist 11, 5ed on maki
[4
£ Quite a mess when V¢ it SYstem do what
IS su
tarted ovt- Phosed 4o g,
's Game System Framew | a8 Cary ¢
Feature List § Game Systom Framework
1. The framework supports differe i 46 Feature Ligt
types of terrain. I e fram
2. rpr;;mmm"(ﬂmﬂ‘ eriods ke T :work Supports differeps
sci-fiand fantasy. o S— errain,
5 The framework supports multpld SR) - The framework

¢ Supports diff,
types of troops or nits that a Periods, ineluding i erent time
i g ie fode [
4. ;::e::;m i \ sei-fiand fanta sgy tional periogs like

wodules for additional campaigns or % The framew,

ork support.
battle scenarios. types of f Ports multiple
" r00ps o
e j% spesifie, " UMITS that are gam-
forvaintype. e cam 4 The framework

6. The framework” |

turnitis. 1

7 The frameword i
wovewent.

Supports aqq-
odules for aqiti on
battle sr:emm'as.f fonal campaighs or

£
The framework Provides a boarg g,

p of squar,
ferralanw:;.f iles, and eaoh tife ag 5

6. The frame
i k keeps up with whos,

—
i

7 The framework

Wovement - 0Crdinates bagie

6 Gary’s Game Systew Framework
KEY Features

1. The board for the game—essence of the system
2. Game-specific units—essence, and what does this meav.ﬂ - Funally, we've
3. Coordinating movement—what is it, and how do we do it? navrowed that down

to)us{: a few key
‘(:ca{:wcs bo ‘cocus on.

I know I love a man in
uniform, but there are still
choices to be made...

..0ut there’s still plenty left to do

We've gotten Gary’s system down to three key features, but the
big question remains: which one should you work on first?

336 Chapter 7

Download at WoweBook.Com

architecture

_ Argument
Cubicle-Gonversation

Well, we obviously need to build
the board first... I mean, it's
the essence of the system!

Whatever! If you don't even know
what “game-specific units" means,
that's where to start.

Wrong! Start with the hardest thing—
coordinating movement.

Frank

Jim: What in the world are you guys
thinking? What good is it starting with
anything that isn’t the essence of the Jim

system?

Joe: That’s ridiculous. Even if that’s the essence of the system, you've got to figure out

what game-specific units are. That could take weeks to write if it’s harder than we think!

Frank: Maybe... but we know that coordinating movement will be tough, because we don’t have a clue
how to do it! How can you possibly work on anything else when you Anow the movement deal is going to be
difficult?

Joe: But the game-specific units might be difficult, too! We just don’t know, and that’s my point. We’ve got to
figure out the parts of the system we don’t know anything about, or they could be real trouble!

Jim: You guys go on and write movement engines and deal with units. Me, I'm gonna write a board,
because... well... something tells me Gary will want to see a board for his board game system. And I'm not about
to leave the board for later... I'm taking it on first.

Frank: You're both nuts. While you’re putting off the hard tasks, I'm gonna make sure the things that I
don’t have any real idea about are taken care of, right away.

So who do you think is right? Do you agree with:

O Jiwm (build the board) O Joe (build the game-specific units)

O Frank (build the movement engine)
Chetk the box rext h/7
Lo who You agree WLV you are here » 337

Download at WoweBook.Com

the problem is RISK

Leave it to a bunch of
boys to get into a big argument.
I think they're ALL right... the problem
isn't which feature to start with,

\)I” WOV‘,(.
the problem is RISK! s with Frank,

Im, ahd \)oc’ ahd is

used o brcaki,,g wp

Cir akau”\Ch‘l’,s.

The reason that these features are
architecturally significant is that they

all introduce RISK to your project. It
doesn’t matter which one you start
with—as long as you are working towards il
reducing the RISKS in succeeding. g

Take another look at our key features:

Gary’s Game System Framework
KEY Features

1. The board for the game—essence of the system
2. Game-specific units—essence, and what does this mean?
3 %ordi/nta\fing movement—what is it, and how do we do it?

I-F ‘U'IC Core
Fcafu\res of the

system aven’t

-~

, in place, there’
know What hat the =
{-{\\\S means) v Th,s is Som _6 . B CUS‘{:Om)
ton ¢ h"‘ﬂ we're . er won't
B ooy Gl R, e e
o ! won i - —_—
thats 2 %9‘— ke a vealy g e 7 il
n mee N)
sthedules and The point here is to REDUCE RISK,
deadlines- not to argue over which key feature
you should start with first. You can
start with ANY of these, as long as
you’re focused on building what you’re
supposed to be building.
338 Chapter 7

Download at WoweBook.Com

architecture

Well, T still think my risk is bigger
than yours...

aharpen your pencil
" Find the risk in your own project.
Think about the project you’re working on in your day job right now.

Now write down the first thing you started working on when you
started the project:

Now think about the 3 Qs of architecture that we talked about back
on page 332. If you applied those to your project, write down a few
features that you think would be architecturally significant:

If you look at those features closely, you'll probably see that they all
have a lot of RISK connected to them. They’re the things that could
cause you lots of problems, or delay you getting your project done.
In the blanks below, write down which of those features you think
you should have worked on first, and why. What risks did it create?
What risks could you have reduced by working on it first?

you are here » 339

Download at WoweBook.Com

writing the board interface

Architecture Puzz]e

For Gary’s game system, let’s start out by working on the board module. Your
job 1s to write a Board interface that game designers can then use and extend to
build their own games.

The problem:

You need a Board base type that game designers can use to create
new games. The board’s height and width are supplied by the

/ game designers for their games. Additionally, the board can return
the tile at a given position, add units to a tile, and return all the

cquzemﬂ' 4 1:;:(:3:[“ units at a given X-Y position.
o e
i ; Trom 68v-y and ;. Your task:

Sign {anm, is

o Create a new class called Board. java.

e Add a constructor to Board that takes in a width and height, and creates
a new board with that height and width. The constructor also needs to fill
the board with square tiles, one at each X-Y position.

Write a method that will return the tile at a given position, given that tile’s
X- and Y-position.

e Write methods to add units to a tile based on that tile’s X- and Y-position.

e Write a method to return all the units on a tile, given the X- and Y-position
of the tile.

Qo this il would

ThCSC are '&hc \)C a.t (e, q)

\/—COordina{:cs.
— Ahd ‘éhlS o H
RSNEBECES plenti

23 k55— 10

,[% <—
5
&
P
y)
|

340 Chapter 7 ,Q These are the)(—Loordina{cs

Download at WoweBook.Com

Answers on page 346

architecture

Use Cases Expesed
This week’s interview:
Scenarios help reduce risk

HeadFirst: Hi there, Scenario, we appreciate you taking the time to talk with us today.
Scenario: I'm really happy to be here, especially in a chapter that isn’t just about use cases.

HeadFirst: Well, yes, to tell the truth, I was rather surprised when I was told we’d be interviewing
you. We're really focusing on architecture here, and working on features that would reduce risk.

Scenario: Absolutely! Well, that sounds like a very good way to approach big problems.
HeadFirst: Yes, well... ahem... then why are you here?
Scenario: Oh! I'm sorry, I just assumed you knew. I'm here to help reduce risk, also.

HeadFirst: But I thought you were just a particular path through a use case. We haven’t even
written any use cases yet!

Scenario: That’s no problem, I can still be a real help. I mean, look, let’s be honest, lots of
developers just don’t ever really take the time to sit down and write out use cases. Good grief; it took
you something like four pages in Chapter 6 to convince people to even use a use case diagram, and
that’s much easier to draw than it is to write a use case!

HeadFirst: Well, that’s true... there is a lot of resistance to writing out use cases. But they’re really
helpful, I thought they saved the day with Todd and Gina’s dog door.

Scenario: Oh, I agree! But in cases where developers just don’t have the time, or a use case is too
formal for what’s needed, I can really give you a lot of the advantages of a use case, without all the
paperwork.

HeadFirst: Hmmm, that is appealing. So tell me how that works.

Scenario: Well, take that board you’ve been writing. Suppose you wanted to reduce the risks of
Gary seeing it, and thinking of something important you forgot to add to it...

HeadFirst: Ahh, yes, forgetting an important requirement is always a risk!

Scenario: Well, you could come up with a simple scenario for how the board would be used—
that’s where I come in—and then make sure the board works with everything in your scenario.

HeadFirst: But there’s no use case... what steps do we pick in the scenario we make up?

Scenario: It doesn’t have to be that formal. You might say, “The game designer creates a new
board 8 squares wide by 10 squares high,” and “Player 1 kills Player 2’s troops at (4, 5) so the board
removes Player 2’s troops from that tile.”

HeadFirst: Oh, so just little descriptions of how the board is used?

Scenario: You've got it! Then you run through each description, and make sure your board
handles those cases. It’s not quite as thorough as a use case, but I really can help you make sure you
don’t forget any big requirements.

HeadFirst: This is fantastic! We’ll be right back with more from Scenario.

341

Download at WoweBook.Com

figuring out a scenario

Scenario ScrambLe

Write a scenario for the Board interface you just coded.

Reducing risk is the name of the game in this chapter. You've coded a Board P‘if is the risk we've
interface based on a few requirements we gave you, but it's your job to figure out if ‘f'Y"‘S to redute or
we forgot anything—before Gary sees your work and finds a mistake. eliminate using a stengrio

Your job is to take the fragments of a scenario from the bottom of this page, and put
them into an order that makes sense on the bulletin board. The scenario should run
through a realistic portion of a game. When you're done, see if you left out anything
on the Board interface, and if you did, add the missing functionality into your code.
You may not need all the scenario fragments; good luck!

: ,. * Gary’s Game System Framework

Board Scenario

Y T -)
2

| Player 2 moves tanks onto

We've

done a

couple <7

4o help .
Pin the

\I::: ?l;{; stenavrio

e - (:ragmenb
onto this
piece o(:
papev-

Use both tolumns

for the stenario. —
Player 1 battles Player 2. |
Player 1’s units lose the battle. =2 _

layer 2 moves army onto (4, 5)

C‘Slgner creat

' height and widy,.

Game requests terrain at (4, 5). s board wip h
| Plav-e; 1’ units are removed from (4, 5).

Player 2s units win the battle.

Player 1 moves artillery onto (4, 5). -

layer 1 mo
Game designer supplies height a - VoS subs to (2, 2).
342 Chapter 7 .

Download at WoweBook.Com

architecture

Use Cases Exposed
This week’s interview:
Scenarios help reduce risk (cont.)

HeadFirst: We’re back with Scenario, again. Scenario, we’re getting quite a few calls. Would you
mind taking some of our listener’s questions?

Scenario: Sure, I’d be happy to.

HeadFirst: Great. First, here’s one we’re getting a lot. This is from Impatient in Idaho: “So you’re
saying I don’t need to write use cases, anymore, right? I can just use scenarios?”

Scenario: Oh, thanks, Impatient, I actually get that question often. I firmly believe you should

still write use cases whenever possible. I'm helpful for quick problems, and to find the most common
requirements, but remember, I'm only one path through a use case. If there are lots of alternate
paths, you might miss some important requirements if you used just a scenario for your requirements.

HeadFirst: That’s right, we’ve actually had Happy Path and Alternate Path on our show before.

Scenario: Well, they’re really just specialized versions of me, if you want the truth. We try not
to talk much about our family relationships, we all wanted to make it in this world on our own.
But we’re really all part of the Scenario family. And you really need all of us to be sure you’ve got
a system completely right. But if you’re just getting started, and a use case seems like it might be
premature, just using me is a good way to get started.

HeadFirst: OK, here’s another question, from Nervous in Nebraska: “You said you would help me
reduce risk, and I hate risk. Gould you tell me exactly how you can help me avoid risk?”

Scenario: Another good question. Remember, when you’re figuring out requirements, whether
you’re using a use case, a use case diagram, or a scenario, you're trying to make sure you are building
just what the customer wants. Without good requirements, the risk is letting down or upsetting the
customer by building the wrong thing;

HeadFirst: So you’re reducing risk in the requirements phase?

Scenario: Alot of the time, yes. That’s when you’re writing use cases, putting together a
requirements list, and using lots of scenarios to chart out all the paths through a use case.

HeadFirst: But you also help out in big project architecture, right? That’s why we’re interviewing
you now?

Scenario: Exactly. Sometimes, you don’t have a complete requirements list and a bunch of use
cases, but you still need to get some basic work done to see how a system is going to work. That’s
what we’ve been doing here: using a scenario to get the basics of a module or piece of code down, so
you can get the basic building blocks of your application in place.

HeadFirst: So you're really a handy guy, aren’t you?

Scenario: I'd like to think so. I help in gathering requirements, in being sure your use cases are
complete, but also in architecture, helping you reduce risk and reduce the chaos and confusion
around what a particular module or piece of code does.

Download at WoweBook.Com

343

reducing the risks to your success

Scenario ScramBLe SoLution

Write a scenario for the Board interface you just coded.

Below is the scenario we came up with. Yours might be a bit different, but you
should at least have the game designer creating the board, a battle occuring
between Player 1 and Player 2, and units being both added to and removed from

p s N e g 20 _-‘! At t L
ary’s Game Systewm Framework |
Board Scenariq

~ height and widgh.

g El' ! Player 2 moves tanks@nto 4,5 3
R . ‘

+ Player 2 moves army onto (4, 5).

P ayer | moyes artillery onto 4,5). 8B

Ixsa\i?stco{i f\t\c Z-hc;“haﬁo ¢ This Part is o, I

n ontinues in th it ()

a battle between setond Column. : fit‘osb‘;ob‘;ls “s that Z"OCP:;:“:;) bulé
Player | and he fcrz need 4, 13'.3“_6 o will
Player 2. ain e ¢

Player I’s units lose the battle.

] w board. .
Game designer creates a ne (\\ In our stenario,

7 Game designer supplies height and widih. | these Fragments

— weve extras.

344 Chapter 7

Download at WoweBook.Com

architecture

tlﬁel‘ qre no

Dumb Questions

Q/: Where did those requirements for the
Architecture Puzzle on page 340 come from?

From Gary, with some common sense added
in. If you think about what Gary’s asked for, a game
system framework, and then read back over the customer
conversation in Chapter 6, you could probably come up
with these requirements on your own. We did add a few
specifics, like being able to add a unit to a specific tile, but
that's really just thinking through the problem.

Q: But why didn’t we write a use case to figure
out the requirements?

A: We could have. But remember, we're not trying
to complete the Board module, as much as get the basic
pieces in place. That's all we need to reduce the risk of
completing this piece of Gary’s system. In fact, if we got
into too much detail, we might actually add risk to the
project, by working on details that really aren’t important
at this stage of things.

-Architecture Puzzle (Revisited)

What's missing in Board.java?

the missing functionality.

Look closely at the scenario on the previous page. Did the
requirements we used on page 340 cover everything in the
completed scenario? If you think something is missing, write it
in the blank below, and then add code to Board.java to handle

Q,: Now you’re telling me that use cases add
risk? That can’t be right!

No, use cases don’t add risk when used at
the right time. Right now, we’ve come up with some
key features that could cause us headaches if we
don’t figure them out. But that doesn’t mean we need
to perfect the Board interface; we just need to get
an understanding of how it works, so if there are any
potential problem spots, we can catch them and avoid
problems down the line. So at this point, the details
you'd need to write a good use case are a bit of overkill.

But once we've got the key features sketched out, and
handled the major risks, we'll go back to each module
and really start to add detail in. At that point, a use case
is very helpful.

Q,: So that's why we used a scenario, right? To
avoid getting into lots of unnecessary detail?

Exactly. A scenario gives us lots of the
advantages of a use case, without forcing us to get into
lots of detail that we don’t need to worry about right now.

Download at WoweBook.Com

345

how we wrote the board interface

S Architecture Puzzle Solution

For Gary’s game system, let’s start out by working on the Board module. Below
1s the interface we wrote to handle what we thought the basic tasks of a board
would be. See how your solution compares with ours.

package headfirst.gsf.board; =————— We Put the Board tlass
SS in

import
import

import

import

public

3 board—specifie

. ackaqe.
This lines up with '?l:he e
modules we decided op
back in Chapter &,

java.util.ArrayList;
java.util.Iterator;
java.util.List;

)
headfirst.gsf.unit.Unit; e=————— Here's 3 class we'll crca{:;
in 3 minute, sinte we nee

it 4o Finish up Board.

class Board {

private int width, height;

private List tiles;

— THs Comtructon v, g
public Board(int width, int height) { °"f in the requirement.s It
this.width = width; res the width and h : h
. . . i, and then pallc i oy oD t
this.height = height; calls 'h"balizc()

initialize();

private void initialize() {

iles = new ArrayList (width);

Bonus Desigh
Principle: Pull out
setup tode into its
own method, so it
docsv\’{: make ‘H'\C
Y‘CS‘{: O‘C \IOMY‘ COdC
so COh-(:using o vead }

}

346 Chapter 7

for

set up the board.

board as an arvay o

(int 1=0; i<width; 1i++) {
tiles.add (i, new ArrayList (height));
for (int j=0; j<height; j++) {

}

((ArrayList)tiles.get(i)) .add(j, new Tile());

At c.ath toordinate, we add a
new instance of Tile. We'll have 4o
write that ¢lass 4o make Board

work as well... cheek the n
ext
or how we defined Tile. e

Download at WoweBook.Com

We vepresented the Brid on the

arrays, using
width and height as the dimensions.

Board.java

architecture

1;215:ods e —= public Tile getTile(int x, int y) {
\’“H'\/ scl(:— return (Tile) ((ArrayList)tiles.get(x-1)).get(y-1);
c%?lana{:ov'\/; }
and weve
?art of the public void addUnit (Unit unit, int x, int y) {
veauivements Tile tile = getTile(x, y);
on page 340- tile.addUnit (unit);
}
We dcéidth’ public void removeUnit (Unit unit, int x, int y) {
et the Tile ¢lass Tile tile = getTile(x, V);

handle these d—N tile.removeUnit (unit) ;

oycva{iohs» an

“\ You should have figwcd

out

{:haf we
ne
st dc\cg&fc } units .ﬁ.om f& d way to remove
Jadding and exereis ¢ stenario
. . € on pa .
yemoving uni public void removeUnits (int x, int y) { s what was fmssscmaq-‘}- This
that class. Tile tile = getTile(x, Vy); origing| r‘ﬂuiremensﬁm our
tile.removeUnits () ;
}
public List getUnits(int x, int y) {

return getTile(x,

ther qre no

Dumbd Questions

Q: Doesn’t using an array of arrays limit you to a square
: board?

A: No, although it does limit you to a board that uses (x, y)
coordinates. For example, you can use (x, y) coordinates in a board
i made up of hexagon-shaped tiles, if you structure the hexagon tiles
¢ correctly. But for the most part, an array of arrays is more ideally
suited to a square-tiled, rectangular board.

y) .getUnits () ;

Heve's another place where

we delegate to the Tile ¢lass.
Cinte a tile stores the units on
it, it's veally the Lile's ")ob to
handle vetvieving those units.

Q,: So isn’t that limiting? Why not use a graph, or even a
Coordinate class, so you’re not tied to (x, y) coordinates and a
rectangular board?

If you wanted maximum flexibility, that might be a good
idea. For this situation, though, our requirements (back on page
340) actually specified (x, y) coordinates. So we chose a solution
that wasn't quite as flexible, but certainly was simpler. Remember,
at this stage, we're trying to reduce risk, not increase it by going
with a solution that is a lot more complex than we really need.

you are here »

Download at WoweBook.Com

the tile and unit classes

The Tile and Unit classes

To actually make Board compile and work, we need to create a
Tile and Unit class. Here’s how we wrote those classes:

}

package headfirst.gsf.unit;
public class Unit {

public Unit() {

Unit.java

We made Unit as absolu'l:cly Sim
3s possible. Theve are lots of

Ple

dc{:'ails to be added later, but we
don't need those details 4o make

oard work vight now.

/—é

Tile is in {he same yackage
as the Board class.-
Ehey've tightly velated

Tile has a list O‘F the units
on it at any given time. —_|

These are fhe methods

hat Board uses to ,
J:nan'\\?u\a{:c units. Theyve

\asSCS
Letted, so only ¢
\: ‘:\cad‘(:'ws‘c,.gs(: board tan

ateess them.

Keep the right focus

You don’t need to worry about everything that Tile
and Unit will eventually need to do. Your focus is
on making Board and its key features work, not on
completing Tile or Unit. That’s why we left Unit
so bare, and added only a few methods to Tile.

348

package headfirst.gsf.board;

import java.util.LinkedList;
import Jjava.util.List;

import headfirst.gsf.unit.Unit;

public class Tile {

. private List units;

public Tile() {

}

}

units = new LinkedList ();

units.add (unit) ;

units.remove (unit) ;

Download at WoweBook.Com

| -~ Protected void addUnit (Unit unit) {

—> protected void removeUnit (Unit unit)

Tile.java

{

Focus on one
feature at a time
to reduce risk in
your project.

Don't get
distracted
with features
that won't help
reduce risk.

iD

You can download these Board-related classes for Gary’s
framework at http://www.headfirstlabs.com. Just look for Head
First OOA&D, and find “Gary’s Game System - Board classes.”

architecture

t}ler are no

Dumbd Questions

Q- If the Tile class handles adding and removing units,

and you can get the tile at a coordinate from the Board using
getTile(), why add those addUnit() and removeUnit() methods to
Board. Couldn’t you just call getTile(), and then use the Tile to do
those things?

A: You could take that approach, and let all the Uni t-related
operations be handled directly through the Tile object returned
from getTile (). We decided to add the Uni t-related methods

to Board, and have Board be the entry point for game designers.
In fact, you'll see on the next page that we made Tile’s methods
protected, so that only classes in the same package as Tile—like
Board—could call addUnit () and removeUnit () directly. So
we've really ensured that Board is the object used to work with tiles,
units, and eventually terrain.

Q,: | still think it would be easy to go ahead and add some
more of the methods we know we’ll need to Unit and Tile. Why
not spend a little time on those classes now?

A: You're not trying to code the entire game system framework at
this point; you're just trying to tackle a few key features, and reduce
the major risks to your project. Spending time writing the Unit

class, or fleshing out the Tile class, really isn’t going to help you
reduce risk. Instead, do just enough to get the Board class working,
because it's the Board class that we decided was part of the
essence of the system, and where we had a risk of failing if we didn’t
get that piece in place.

Once you've handled your key features, and reduced or eliminated
the big risks to your project, then you'll have plenty of time to work

on other features, like the Unit class. At this stage, though, you're
trying to avoid spending time on anything that doesn’t help you reduce
the risks to your project succeeding.

£} ONLINE
_B(I; 1

349

Download at WoweBook.Com

architecture reduces chaos

More order, less chaos

Our architecture and key feature list has helped us
get the basic Board in place, and make sure we’re
capturing the essence of the system for the customer.
Let’s look back at our key feature list:

Gary’s Game System Framework
KEY Features

\)./(he board for the game—essence of the system <—
2. Game-specific units—essence, and what does this wmean?
3 Coordinating movement—what is it, and how do we do it?

We've aot the basic Board
writken, so we've handled
this key feature enough to

L _— move on {',o Anoﬂ\c\r-

We've got structure now, too...

Even better, we’ve got some basic classes in place, and
we can start to think about our next key feature, and

how it fits into this structure. Even
havc
Mhi{:,

hi

'(:hough Board

d)
any Variables of Z;SP:{:
it’s stil] assotiated to
because of its

. meth
that take in Unit ins‘(:anc::.‘s
Board
width: int =
height: int
tiles: Tile [']["] "

getTile(int, int): Tile units: Unit [*]
addUnit(Unit, int, int) addUnit(Unit)
removeUnit(Unit, int, int) removeUnit(Unit)

removeUnits(int, int)

etUnits(): List
getUnits(int, int): List g U:Lis

removeUnits()

UML doesn't have 3

3ood way to show multi—
dimcns\ona\ arvays, whith

is what the tiles vaviable
veally is- So we tan ")us£
use an ordinary assotiation.

350 Chapter 7

Download at WoweBook.Com

Theve are only three tlasses in
the project, but it's still a lot
move sbructure than what we
had before.

architecture

Which feature should we work on next?

:
]

With some basit
tlasses written, we
¢an look at how
classes interatt, as
well as begin to
build on what we've
alrcady done.

We've got a Unit class now, so why
don't we tackle “game-specific units" next?
Besides, we can also look at how Board and
Unit interact.

Build on what you’ve already
got done whenever possible.

When you’ve got nothing but requirements
and diagrams, you’ve just got to pick a
place to start. But now that we do have
some code and classes, it’s easiest to pick
another key feature that relates to what
we’ve already built. And remember our
definition for architecture?

Architecture is your
design structure,
and highlights the
most important
parts of your app, and the
relationships

between those parts.

You really can’t talk about the relationships
between parts if you don’t have two parts
that Aave a relationship. We know Board
and Unit are related, and that “game-
specific units” are a key feature, so that’s
the obvious thing to work on next.

you are here » 351
Download at WoweBook.Com

know what you don’t know

Game-specific units...
what does that mean?

The simplest way to understand a bit more about what
“game-specific units” means is to talk to some of Gary’s
customers, the game designers who will be using his
framework. Let’s listen in on what they have to say:

Strategy is the key for
our games. We use an advanced
combat system where each unit has an
attack strength, defense strength,
and experience modifier.

T build sci-fi games, big huge space
and planet battles. So I need to be able to
have armies with lasers and create lots of
spaceships.

352 Chapter 7

Download at WoweBook.Com

architecture

Our customers are all
about air battles, so we don't even need

troops. I just want o be able to create a
bunch of different types of planes, with
different speeds, weapons, and that
kind of thing.

Our games are realistic
and long-term... we even keep up
with the ages and relationships
between characters in our

games.

No good war game is good
without weapons... lots of different
types of weapons. And our units can
hold two each, so it gets really
fun fast.

aSharpen your pencl

-~

What does “game-specific units” mean?

Now that you've heard from several of the game designers who want
to use Gary’s game system framework, you should have a good idea of
what our second key feature is all about. Write down in the blanks below

our idea of what you need to do to support “game-specific units.”
y y pport g p Wllen you’l’ e done,
compate your
answers with ours

you are here » 353

Download at WoweBook.Com

exercise solutions

Exercise
QoLutions

aharpen your pencil
o ANSWers What does “game-specific units” mean?
Now that you’ve heard from several of the game designers who want to
use Gary’s game system framework, you should have a good idea of what
our second key feature is all about. Write down in the blanks below your
idea of what you need to do to support “game-specific units.”
Each game based on the framework has different types of units,
with different attributes and capabilities. So we need to be able
to have properties for a unit that are different for each game,
and support wmultiple data types for those properties.

Some arm\f—rc\a{:cd
games mig“{ have

\dievs...
et ..and (—‘ligh{: simulators
éj might use planes, jets

and votkets.

""Fah‘{‘,as . .
have rany 3ames might

3CV'S, ”‘aaiaahs,

and swordsmey,. \ ()
€

354 Chapter 7
Download at WoweBook.Com

architecture

Commonality revisited

We’re starting to learn more about what “game-specific units”
means, but we still need to figure out how to actually add support
for this feature to our game system framework. Let’s start by taking
a look at the different types of units the customers mentioned, and
figure out what’s common between them.

We talked about commonality back

on page 287 of Chapter b, when we
weve brying to gather basic system
vequivements. [t also applies to sma!lcr
problems, like the 3amc—sycci§|c units.

experience =
defense = 9.5

Heve are a ——>
ch o£ fhc
5amc—syeci§ic

units, and their
yvo\?ev{:’ncs;
mentioned on

the last ecouple

of pages.

these different types
of units? What basic
things can we say that
would apply to any
game’s units?

\ What is common among

weapon = Bazooka
name = "Simon"

- gun = Gatling h

’ | model = "A-10 Thunderbolt II" .

you are here » 355
Download at WoweBook.Com

what things are common?

Design Puzz]e

It's your job to figure out what's common, and should be a part of the basic Unit
class, and what varies, and belongs in the game-specific subclasses of Unit. Write
any properties and methods that you think belong in Unit in the class diagram for
that class below, and then add properties and methods that you think belong in the
game-specific subclasses to those diagrams.
Unit
/
Heve's our Unit L\ass,‘
which has no Vvo\?cr{:\cs.
or methods \/c{:. An\fﬂ\mg
{:ha{:’s tommon 4o all Jc\lvcs
of units needs to be put
inko this class:
—_ Commoy\all{:\/
 —
Variability
Tank T
Soldier
the
i bably extend
ames will proba®
e Ac::\t an\{: type: So khings that a::‘
pifie 1o d Yar’dt,u\ar tyre S
= \‘d 9o in these individual suot
WOW!

356 Chapter 7

Download at WoweBook.Com

architecture

12
experience = 22
defense = 9.5

Which of these Properi
perties seem

to .a|>|>|y to all types of units?

Whieh only bclong in 3 game—

specifie Unit subelass?
-

weapon = Bazooka
name = "Simon"

\
27
S

speed = 110
gun = Gatling .

' | model = "A-10 Thunderbolt II" '

you are here » 357
Download at WoweBook.Com

look a little deeper

Solution #1: It’s all different!

At first glance, you might have come up with a solution

that looks something like this:

Theve veally wasn't an\/J}:\\ing
tommon between the di even
u:i{:s. They all have properties, T~
but the Vro\?tr’cjcs ave different
for eath unit- So ho{:\'\ing gc{',s
added to the Unit base tlass.

Unit

weapon: Weapon

You might have put a weapon

yvo\?cr{:\/ up in Unit, sinte it sounds
like most units will have 3 weapon.
But what about units with movre
than one wcayon? Theve ave still
some problems with this approath.

Commonality
— S — —
Variability
Tank Airplane
attack: float Soldier sﬁe?w:; .
. | experience: float weapon: Weapon &:(iel' S’rl")in"
(» defense: float nawe: String - :
i etSpeed(): int
Tanks had 3 Gefﬁﬁactgl- ﬂ°§“‘ getWeapon(): Weapon gefs:eed(im) You might:
ew properties setidtackilioat, setWeapon(Weapon) getGun(): Weapon £i wea? Jcavc
specific bo it [eto getNamel): String ~ete.. 3 Wearon sfacrat
s0 those get setName(String) is 3 a0od id N
added to the efe... T
) n
Tank elass. store inz:\rma-l;ion

358 Chapter 7

Download at WoweBook.Com

aboch wedpons and
reuse those acvoss
instantes of the
Unit elass.

£

That was sort of dumb... why go
there's nothing common between the

of time.

Commonality is about
more than just the names
of properties... you need to
look a little bit deeper.

It might seem like there’s not anything
common across all the units used in
different games, but let’s take a step back
from focusing on the actual names of the
properties for each unit. What’s really the
same for each unit?

Eath unit has a diffevent
‘E\/Pc there ave tanks, soldievs,
Flancs, spateships, ete.

\ type = unitType

through all this commonality stuff when

different units? That seemed like a waste

architecture

l

name = "Simon"

gun_= Gatling

model = "A-10 Thunderbolt II" i

Download at WoweBook.Com

has 3 bunth
/EELK\EE&:\;,OYYO\’«{\CS ~€ath with a value.

ropertyValue

7

So what is common is that a
unit has a type and a set of
properties, each of which is a
simple name/value pair.

you are here » 359

commonality creates flexibility

Solution #2: It’s all the same!

At first glance, you might have come up with a solution that This is ve 3”)’ similar 4,
looks something like this: stored in trument ;:r hzw we
. operti
back in Chapter 5. perties

{

Unit

type: String Weapons (even multiple weapons per
/: properties: Map unit), strength, speed, experiente,
L.) . f {:h’mS else a Samc
This time, we've made Unit a setTypelString) age, and any
lo{ism;r: 5::&1& [£ supports getTypel): String designer might need tan all be
a unit type, and @ Map of setProperty(String, Object) stored in the properties Map-

getProperty(String): Object

name/ value ?roycr{:ics.

Commonali{:\/

—— S ———— —_—

Variability

l

There’s no longer a need for

lots of Unit subelasses... we

¢an simply use the Unit ¢lass

with a different type and
360 Chapter 7 property set.

Download at WoweBook.Com

This fiest o

row is what
we've looked
at so fav: 3
diffevent
unit ‘l:‘]\’CS-

IOO may SCC
M(C a ’o-é bu,é

in massive way
James, it’s ot
So ‘Fa"—-pcuhed

architecture

OK, this is ludicrous. First,
nothing was the same, and now everything
is the same? How in the world is this

helping me reduce risk or write better
software?

Commonality analysis: the
path to flexible software

Wondering why we spent all that time on commonality
analysis? Look back at the first solution on page 358,
and then again at the second solution, on the left, and
then fill out the table below to see what commonality
has really bought us in terms of our design:

Number of
unit ‘[:\'/Pes

Number of unit

¢lasses — Solution #| [¢lasses — Solu'{:lon #2

3

5

10

25

%0

100

Which solution do you think is better?
Why?

you are here » 361

Download at WoweBook.Com

commonality and flexibility

Number of Number of unit Number of unit
unit types | elasses — Solution #l |elasses — Solution #2
3 & I
5 b |
10]| |
25 26 |
50 S| |
100 > 101 |

Wi‘.(:h Solution #2, the single
Unit ftlass supported 3| {:)'Pcs
um{;s, with any numbey cnc

diffevent 4 ‘
and a{fv\‘ribuZEsc.s o Properties

-~
With Solution #l, you alwa\/s
had a Unit base class, and 3
subelass for eath unit type:

Unit

type: String
properties: Map

setType(String)

getType(): String
setProperty(String, Object)
getProperty(String): Object
T —

-

With a single well—
dcsigncd Unit elass,

we £an support an
number o«g di‘(‘\‘FCY‘CYn‘E
unit types.

Good Jesign

will always
reduce risk.

362 Chapter 7

We identified what was
common, and put it in the Unit

~—base class. The result was that

game designers now only have
to keep up with ONE unit class,
instead of 25, 50, or 100!

ther are no .
Dumbd Questions

Q: I can see how this would help me with my design,
but what does any of this have to do with reducing risk?

A: Good design always reduces risk. By figuring out

how best to design the Unit class, we can get it right the

first time... before we're deep into working on the entire game
system framework, and might have to make drastic changes to
Uni t that affect lots of other code.

Not only have we figured out what “game-specific units”
means, but we've defined the basic Uni t class, and now
other classes like Board can relate to it without worrying
about its design drastically changing in the middle or near the
end of the project’s development cycle.

Download at WoweBook.Com

architecture

And still more order...

We've figured out another key feature, Garys G‘angsﬁ s:'em Framework
eatures

reduced risk to our project even further, and

only have one feature left to worry about. \J’(
~— “The board for the game—essence of the system

~Game-specific Units—essence, and what does this mean?

3 Coordinating Wovement—what is it, and how do we do {17

Wait a second... we haven't
written any code for the Unit class.
Don't we need to do that before we
go on to that last feature?

We’re focusing on doing just
the things that reduce risk.

Remember, the point of architecture is

to reduce risk, and to create order.
There are plenty of other things to work
on in your application, but those are for
after you've got a handle on how your
application will be structured, and have
the major risks reduced to the point where
they are manageable.

We were trying to get a handle on the
Unit class, and what “game-specific units”
meant; at this point, we’ve done that:

Unit
type: String
properties: Map
v i is all setType(String)
This elass diagram is 8 y .
o:nccd at this Vo‘m’c- It getType(): String
Yivcs ou the strutture setProperty(String, Object)
?hc he Unit elass) and getProperty(String): Object

answevs the t\ucs{;\on, N
“What does ‘game—spec! e
)N

W\'\Jcs' meand

you are here » 363

Download at WoweBook.Com

ooa&d and great software

Q- When we worked on the Board,
we did code the Board class, but now
you say we shouldn’t code the Unit class.
What gives?

The question you need to be always
asking at this stage of a project is, “Will this
reduce the risk to my project succeeding?”
If the answer is yes, you should go ahead; if
it's no, you probably can leave the task for a
later stage of the project.

In the case of the Board, we needed to
have a basic understanding of what the
game board does, so we went ahead and
coded a basic implementation. But for Unit,
a class diagram and understanding its basic
functionality was all we really needed to do.
In both cases, we were reducing risk to our
project, rather than focusing on coding or not
coding a certain class or package.

Q: But couldn’t we have just done a
class diagram for Board, like we did for
Unit, and stopped there?

A: You probably could have just done
a class diagram. It's really a judgment call,
and as long as you feel you're focusing on
reducing the risk in your project, it's OK to
stop with a class diagram, or take things a
level or two deeper.

364

tber are no

Dumbd Questions

Q: Is it really good to ask the
customer and users of a system about

what it should do? Couldn’t they lead us
astray, or distract us?

A: It's usually a good idea to ask the
customer, because it is their system that
you're building. And really, the customer

is only going to confuse you, or get you
working on the wrong thing, if you're unsure
of what you're supposed to be working on.
As long as you go into a conversation clear
on what your goals are, and you're listening
for something specific, you should be able
to filter out anything that might confuse or
distract you.

Q: I'm still not sure | would have ever
come up with using a Map for storing
properties in the Unit class on my own.

A: That's OK; that’s what tools like
commonality and the three Qs of architecture
are for. They help you get to solutions that
you might not think of on your own, in a way
that works on any type of project.

In the case of the Unit class, the pointisn't
that we used a Map to store properties. It's
that we figured out that all units are basically
just a unit type and a set of name/value
pairs. Once we figured that out, the details
about how we stored those name/value pairs
were a piece of cake.

Download at WoweBook.Com

Q: So there’s really not a lot of code
involved in OOA&D, is there?

A: OOA&D is all about code—it's
about writing great software, every time. But
the way you get to good code isn't always
by sitting down and writing it right away.
Sometimes the best way to write great code
is to hold off on writing code as long as you
can. Plan, organize, architect, understand
requirements, reduce risks... all these make
the job of actually writing your code very
simple.

Sometimes
the best
way 1o write
great code is
to hold off
on writing
code as long
as you can.

architecture

BE the Author

All that’s left is to hand]e
coordinating game movement. But ﬁ
what would you do next to figure

that out? Your job is to outline -

the next few pages of Head ‘\b‘

First 00AGD, and :

giure out how you'd &‘ T
e care of this last

key feature.

366 Chapter 7

architecture

» 367

368 Chapter 7

*Hint: cheek out
what we did for the
last key feature that
we weren't ¢lear on

how +o get started.

» 369

you are here » 365

Download at WoweBook.Com

ask the customer

s to the
Want to see the answer . N
. ubhov exevtises Read the
Wha‘r does rr mea"? ?itiiﬁ \>a¢3:s and see how tlose

W we did-
Ask the customer. (e gangs ave o what

When you’re not sure what a feature really means, one of
the best things you can do is ask the customer. We did this
with the game-specific units, so let’s try the same thing for
figuring out what coordinating movement means.

Each unit has a movement property
that says how many squares it can move,
r‘} and the game checks the terrain to see if
the move is legal.

T"\is looks pretty straightforward...
its a ‘Fairly sim\?ly ealeulation.

We hate games that aren't
realistic... like when airplanes can

fly through buildings! Our games check
all the surrounding tiles for other units,
and then apply a wind factor to the
plane’s speed property.

This is a\u’\{c 3 bit move
complicated-- and totally
diffevent Leom the other
game designc\r’s veauirements:

~

Theyve tratking
wp ;,Jc \[e{: another
aiv game that lets
(:\\/ places you
ow
Z\\ou\dn’{: be able to-

366 Chapter 7

Download at WoweBook.Com

Do you know what “coordinating
movement” means?

Listening to the customers should have given you a pretty
good idea of what the third key feature of Gary’s game
system framework is all about. Write what you think that
feature really means in the blanks below:

Now do sowme
comwmonality analysis

Next you need to try and figure out what’s common about
the different movement scenarios that the customers on
page 366 have been talking about. Are there some basic
things that apply to all the different types of movement? If
you think that there are, write those common things in the
blanks below:

So now what would you do?

If you have an understanding of what “coordinating
movement” means, and you know what things are
common across all games, you should have an idea about
what you need to do to the game framework to make this
feature work. Write your ideas down in this final set of

blanks:

architecture

You ean use these three basie
steps anytime Zou're unsure
about what 3 eature means,

and how You need +o imp|
'H\a‘{: pcafwrc in Your ;;‘:‘:::c"t

4

1. Ask the customer

¢ UBBW 8Injes} ay) S80p JRUM

v

2, Commonality analysis

;Wa)sAs A ul
a.in)es) Jey) zijeal | op MOH

v

3. Implementation]:)lan

you are here »

Download at WoweBook.Com

367

whose job is this?

Is there anything common here?

Here’s what we thought we needed to do based on what
Gary’s customers were saying about movement:

Units should be able o move from one tile on the
board to another. Movement is based on a ealeulation or

alaorithm specific to eath aame, and sometimes involves

the aame—specific properties of a unit.

So what exactly is common among all the different
possible movement scenarios? Remember what the
customers said?

We hate games that aren't
realistic... like when airplanes can

fly through buildings! Our games check
all the surrounding tiles for other units,
and then apply a wind factor to the
plane’s speed property.

theve's an algorithm

[n £his situation
4o see ik a move
a\gor'\{:\\m 4o Kigure ou
unit tan 9 based pav

W\'\‘E s \Wo\’c‘{‘cs'

is legal and another
t how fac a

{;\\, on that

What’s common?

Each unit has a movement property
that says how many squares it can move,

and the game checks the ferrain to see if
the move is legal.

J Q
In this tase, 'H‘)Ck)
d move s ’658’,

a unit's moveme

and anothe, theek
nt Propcr{;y_ eck of

What's variable?

There’s a check prior to a move
to see if the move is legal.

The algorithm to check a move’s
legality is different for every game. P—j

A unit’s properties are used to
see how far the unit can move.

The number and specific properties <=—— See 5 FeCury;
used are different for every game. theme here? "3

Factors other than the unit
- affect movement.

This is wheve things like
wind s?ccd tome into yla\/.

368 Chapter 7

The factors that affect movement
are different for every game.

Download at WoweBook.Com

architecture

lt’s “different for every game”

Did you see what kept showing up in our chart? Every
time we found some commonality, the variability
column had the same words: “different for every game.”

When you find more things that are

different about a feature than things that
are the same, there may not be a good,

\—/’ch
t

generic solution.

them.

" —

Q: How is this really that different
from game-specific units?

A: With units, we did find some
commonality: every unit had a type, and

then name/value properties. With movement,
every single game looked like it would handle
things differently. So it made sense to leave
movement to the game designers, rather
than come up with a solution that was so
generic that it was essentially useless.

Gary, we've thought it through,
and we think we should let the game
designers handle movement on their own.
Anything we do in the framework would
Jjust make things a pain for

- Dumb Questions

tker are no

Q,: But there is some commonality,
isn’t there? A movement algorithm, and a
check to see if a move is legal, right?

You're right. So, in theory, you
could write a Movement interface,
with a method like mowve () that took
in a MovementAlgorithmand a
LegalMoveCheck, or something
similar. And then each game designer could
extend MovementAlgorithm and
LegalMoveCheck. If you thought of
something like this, nice work! You're really
ahead of the game.

Download at WoweBook.Com

In the ease of Gar

OK, it seems like you've
thought things through, so I'm OK
with that. Game designers love

having more control, anyway.

y's Sysfem) |‘F

)
€re’s no generie solution, it

veaHy doesn’t belop,

€ 9ame tramework.

9 as part of

But then ask yourself: what does this really
gain? Game designers are going to have

to learn your interfaces, and if they don’t
have a legality check, they might pass

in null for the LegalMoveCheck
parameter, and what would the interface for
MovementAlgorithm look like, and...
well, you’re probably adding complexity,
rather than really removing it.

Your job is to reduce risk and complexity,

not increase it. We decided that it would

be simpler to let game designers handle
movement, and just change the position

of units on the board (using methods on
Board, which we did take care of for them).

369

you are here »

great code or great software

Great. So we've got a little
sheet of paper with some checkmarks,
a few classes that we know aren't finished,
and lots of UML diagrams. And I'm
supposed to believe this is how you
write great software?

CUStOmers Absolutely! Remember,

great software is more
c[9 t than just great code.
011 Great code 1s well-designed, and
generally functions like it’s supposed
to. But great software not only is well-

Pa'y you designed, it comes in on time and does

what the customer really wants it to do.

'[or g re at That’s what architecture is about:

reducing the risks of you delivering
your software late, or having it not work

COJe, tl‘ey like the customer wants it to. Our key

feature list, class diagrams, and those
partially done classes all help make sure

a Ou we’re not just developing great code, but
P y y that we’re developing great soffware.
for great

software.

370

Download at WoweBook.Com

architecture

Redueing risk helps you
write great software

With all three key features figured out, we’ve

got a handle on the major risks to our project \)./(he board for the game—essence of the system
succeeding. Look at how each step we’ve taken

succe : & Came-specific units—essence, and what does this mean?
in this chapter has reduced the risks to our

project: \ﬁ}oordinafing movement—what is it, and how do we do it?

Gary’s Game System Framework
KEY Features

Heve's wheve we started. We
knew what we needed o

build, but not muth else. _/N

We figurcd out the basie
tlasses for the Board, but
wrote just enough tode to
lower fhe visk of 9etting the

.....

To
Unitjava [sonito | Tilejava
b

Board.java

Not a chance in hell of
@ coming in on time.

p
board wrong for the eustomer. 'g
|}

Next, we figured out
what “gpme=spetific ———> o
\AY\.\‘{;S" mcah{:) aY\d setType(String)

) getType(): String
\ahhcd \'\OW we d hahd\c setProperty(String, Object)

{.’ha«h Eca{-,wc W.l'H\ a3 getProperty(String): Object

lass diagram-

class €199 N Only a few things can
o go really wrong.
s

Fina”\/, we used ’/_>

COmmohali{:y to realize
that handling movement
was for the 9ame ¢

o As close to a sure
ab::%ﬁrat:’cv:::rma\;or 7 | thing as software gets! I
We don't have a lot of ctode, but '/

visk £aken tare of.
we do have a projett fhat we've

confident we can deliver on time,
with the rig\\{: qu\c{‘,’lona\d:y.

Orne in a hundred that
you get it right.

you are here » 371

Download at WoweBook.Com

coming up next

— BULLET POINT?%

Architecture helps you turn all your diagrams, plans,
and feature lists into a well-ordered application.

The features in your system that are most important to
the project are architecturally significant.

Focus on features that are the essence of your system,
that you're unsure about the meaning of, or unclear
about how to implement first.

Everything you do in the architectural stages of a
project should reduce the risks of your project failing.

If you don't need all the detail of a use case, writing a
scenario detailing how your software could be used can
help you gather requirements quickly.

When you're not sure what a feature is, you should ask
the customer, and then try and generalize the answers
you get into a good understanding of the feature.

Use commonality analysis to build software solutions
that are flexible.

Customers are a lot more interested in software that
does what they want, and comes in on time, than they
are in code that you think is really cool.

372

Download at WoweBook.Com

OO0AGD Cross

The march of the crossword continues. Have you

gotten every answer so far? Here’s another set of
clues to help you store all this architectural info

in your brain for good.

Across
6. Focus on the things in your system that are
architecturally first,

9. These are the features that you should
focus on first.

11. Use cases add risk when used at this time.
12 The essence of a system is what the
system ig at its mest .

13. Fucusing on more Thun one fealure ol o
time does this To the risk in your project,

15, Use this type of analysis when you're not
sure how fo implement a confusing set of
features,

16. Architecture highlights these parts of your
application, (2 words)

17. Commonality analysis is one path to this
type of software,

1. Always start a project by focusing on this.

2. The second @ of architecture is about the
of a feature.

3. The first Q) of architecture is abeut this.

4. You focus on key features to reduce this in

yaur project.

5. These are a way te get basic requirements

wilhoul The detoil of u use cuse,

7. This is not The same as greaf code.

8. You usually trade of f flexibility for this in

your project's design.

10, You use architecture to turn a mess into

this kind of application.

14, You write this type of software the same

way, whether it's a big system or a small one.

you are here »

Download at WoweBook.Com

architecture

373

puzzle solutions

. harpen your pencl

A answers What’s missing in Board.java?

Look closely at the scenario on the last page. Did the requirements
we used on page 340 cover everything in the completed scenario? |_— We added 3 removeldnit()

If you think something is missing, write it in the blank below, and / and vremoveldni £s0) thod
meétho

then add code to Board.java to handle the missing functionality. Boar. dJ 3va 4o handl
R andle

The scenario talks about removing units, but there is no this requirement.
requirement to remove units on page 340.

wf
HEEEE
=z

FlLlEix[z[8]L]

o momolmiol |- = |m <

374 Chapter 7

Download at WoweBook.Com

8 design principles

Originality is Overrated

Baby, somebody better call
heaven, ‘cause they're missing an I must have heard that line a
angel tonight! thousand times, but it works
on me every timel

Imitation is the sincerest form of not being stupid.
There’s nothing as satisfying as coming up with a completely new and original
solution to a problem that’s been troubling you for days—until you find out
someone else solved the same problem, long before you did, and did an
even better job than you did! In this chapter, we’re going to look at some
design principles that people have come up with over the years, and how
they can make you a better programmer. Lay aside your thoughts of “doing it

your way”; this chapter is about doing it the smarter, faster way.

this is a new chapter 375

Download at WoweBook.Com

what’s a design principle?

Design principle roundup

So far, we've really been concentrating on all the things that
you do before you start coding your application. Gathering
requirements, analysis, writing out feature lists, and drawing use
case diagrams. Of course, at some point you actually are going
to have to write some code. And that’s where design principles
really come into play.

l,-/

You've already seen a few design principles in earlier chapters:

A design principle is a basic tool or USiﬂg Pr Ovell

technique that can be applied to designing :

or writing code to make that code more .
maintainable, flexible, or extensible. QSIgn

Principles

00 P | results in more

vintiples _ .

- maintainable,
Encapsulate what varies.

Code to an interfate vather than to {leXil)le, anC[

an implementation.

Eath class in Your application should eXteﬂSil)le

have onl\/ one veason to thange.

Classes ave about behavior and SO{tware.

‘(:unc'l:ionali{:\/'
———————————————

In this chapter, we’re going to look at several more key design
principles, and how each one can improve the design and
implementation of your code. We’ll even see that sometimes
you’ll have to choose between two design principles... but we’re
getting ahead of ourselves. Let’s begin by looking at the first of
our design principles.

376

Download at WoweBook.Com

design principles

Principle #1:
The Open-Closed Principle (OCP)

Our first design principle is the OCP, or the Open-Closed
principle. The OCP is all about allowing change, but doing

it without requiring you to modify existing code. Here’s
how we usually define the OCP:

Open-Closed Principle

Classes should be open for extension,
and closed for modification.

You tlose ¢lasses by not
allowing anyone {0 touch
Your working tode.

Closed for modication...

Suppose you have a class with a particular behavior, and you’ve
got that behavior coded up just the way you want it. Make sure
that nobody can change your class’s code, and you’ve made
that particular piece of behavior closed for modification. In
other words, nobody can change the behavior, because you've
locked it up in a class that you’re sure won’t change.

..but open for extension

But then suppose someone else comes along, and they just have
to change that behavior. You really don’t want them messing
with your perfect code, which works well in almost every
situation... but you also want to make it possible for them to use
your code, and extend it. So you let them subclass your class,
and then they can override your method to work like they want
it to. So even though they didn’t mess with your working code,
you still left your class open for extension.

‘/ou open tlasses b\/
a“owing them 1o be
subtlassed and extended.

you are here » 377
Download at WoweBook.Com

ocp in action

Remewmber working on Rick’s

Stringed Instruments?

You probably didn’t realize it, but we were using the Open-
Closed Principle when we wrote those InstrumentSpec
classes for Rick’s Stringed Instruments, back in Chapter 5:

GuitarSpec

InstrumentSpec

numStrings: int

model: String

getNumStrings(): int

getBuilder(): Builder

getModel(): String

getType(): Type

getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

(=
m +Spet 1s an abs{‘rac
l\:::uc\acs';- |E defines 3 matehes()
method that has a ba.s‘\c spet—

ma{',(,\'\'mg '\mv\Cmcn{a{lon

InstrumentSpec 15

/

matches(GuitarSpec): boolean

N\

c

Eath of the ins{’,rum:n{:—s\?cci(:ic
subelasses extend the matehes()
method... they use the base version
from [nstrumentSpee, but then add
some extra matehing detail sycci(:it,
4o the instrument they work with.

closed for modification; the

matches() method is defined in the hase class
and doesn't change.

But it's open for extension, because all of the
subclasses can c]nangg the behavior of matches().

378 Chapter 8

Download at WoweBook.Com

The parts of
mafchcs() {;ha{:

MandolinSpec thange atross
SU‘bC’asscs are
entapsulated

getStyle(): Style i‘;fzz from the
matches(MandolinSpec): boolean base :L\cnﬁsnc
SS.

design principles

The OCP, step-by-step

Let’s take what we did back in Chapter 3, and look at in terms
of the OCP, one step at a time.

Q We coded matches() in InstrumentSpec.
java, and closed it for modification.
This version of matches () works just fine, and we don’t
want anyone messing with it. In other words, once we're
done coding InstrumentSpec and this version of
matches (), they shouldn’t change.

InstrumentSpec

model: String

getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood This method
getTopWood(): Wood e wedont want anyone

matches(InstrumentSpec): boolean clse Louehing it

‘NOY'\(S ‘C]V\CJ

e But we needed to modify matches() to work
with instrument-specific spec classes.
Even though matches () works great for other
InstrumentSpec objects, it doesn’t quite do what it should
for guitars and mandolins. So even though matches ()
is closed for modification, we need a way to extend and
change it... otherwise, InstrumentSpec isn’t very flexible,
which is a big problem.

© So we extended InstrumentSpec, and
overrode matches() to change its behavior.
We don’t want to change the code in InstrumentSpec, but
we can extend it, with GuitarSpec and MandolinSpec,
and then override matches () in each of those classes to
add instrument-specific behavior.

GuitarSpec
InstrumentSpec numStrings: int

e / getNumStrings(): int
getBuilder(): Builder matches(GuitarSpec): boolean <
getModel(): String T j

getType(): Type We don't thanae the but we tan extend

getBackWood(): Wood oviginal version of .
¢, and still

getTopWood(): Wood 22— ma'?,éhes() fon Ins{:nvncv:ii\"" n

matches(InstrumentSpec): boolean 3:{ new behavior.

you are here » 379

Download at WoweBook.Com

more than inheritance

Gee, inheritance is powerful. Really,
this is supposed to be some sort of great
design principle? Come on.

The OCP is about flexbility, and
goes beyond just inheritance.

It’s certainly true that inheritance is a simple
example of the open-closed principle, but

there’s a lot more to it than just subclassing and
overriding a method. Anytime you write working
code, you want to do your best to make sure that
code stays working... and that means not letting
other people change that code.

But there are going to be times when that code
still needs to be changed, maybe for just one or
two particular situations. Rather than just diving
into your code and making a bunch of changes,
the OCP lets you extend your working code,
without changing that code.

There are lots of different ways to accomplish
this, and while inheritance is often the easiest
to implement, it’s certainly not the only option.
In fact, we’ll talk about another great way to
achieve this later in the chapter, when we talk
about composition.

380 Chapter 8

Download at WoweBook.Com

aharpen your pencil

Find the OCP in your own project.

design principles

Think about the project you're currently working on. Can you find any places where
you've used the OCP already? If so, write how you used the OCP in the blanks below:

Now think about a place in your project where you should be using the Open-Closed
Principle, but you aren’t yet. Write down in the blanks below what you think you need
to do to put the OCP into place in your current project:

tller are no

Q: What'’s the big deal about
modifying code in a base class, or a class
that you’ve already written?

A: Once you have a class that works,
and is being used, you really don’t want to
make changes to it unless you have to. But
remember, CHANGE is the great constant
in software development. With the OCP, we
allow for change through extension, rather
than having to go back and modify your
existing code. Subclasses can add and
extend the base class’s behavior, without
messing around with code that you already
know is working and making the customer

happy.

Dumb Questions

Q: Isn’t the OCP just another form of
encapsulation?

It's really a combination of
encapsulation and abstraction. You're finding
the behavior that stays the same, and
abstracting that behavior away into a base
class, and then locking that code up from
modification. But then when you need new
or different behavior, your subclasses handle
the changes by extending the base class.
That's where encapsulation comes in: you're
encapsulating what varies (behavior in the
subclasses) away from what stays the same
(the common behavior in the base class).

Download at WoweBook.Com

Q,: So the only way to use the OCP is
by extending another class?

A: No, anytime your code is closed for
modification but open for extension, you're
using the OCP. So for example, if you had
several private methods in a class, those
are closed for modification—no other code
can mess with them. But then you could
add several public methods that invoked
those private methods in different ways.
You're extending the behavior of the private
methods, without changing them. That's
another example of the OCP in action.

381

don’t repeat yourself

Principle #Z:
The Don’t Repeat Yourself Principle (PRY)

Next up is the Don’t Repeat Yourself principle, or DRY for short. This is
another principle that looks pretty simple, but turns out to be critical in
writing code that’s easy to maintain and reuse.

Don’t Repeat Yourself

Avoid duplicate code by abstracting out
things that are common and placing
those things in a single location.

A prime place to apply PRY...

You've seen the DRY principle in action, even if you didn’t realize it.
We used DRY back in Chapter 2, when Todd and Gina wanted us to
close the dog door automatically after it had been opened.

= he RCmofc th we had tode ip
public void pressButton() { C'osc {ihc do dSS to du ma{:,ca”y
System.out.println(een o > O0F onge it had
“Pressing the remote control button...”); Pened
if (door.isOpen()) {
door.close() ;
} else {

door.open() ;

final Timer timer = new Timer () ;
timer.schedule (new TimerTask() { .
public void run() { l Remote.java

door.close() ;
timer.cancel() ;

}5000) public void recognize (String bark) {

System.out.println(“ BarkRecognizer: ” +
“Heard a ‘" + bark + “'7);

r.open();
--_.--_r door .open ()
final Timer timer = new Timer () ;
timer.schedule (new TimerTask() {
public void run() {

wt the same COdC door.close() ;

Doug 5\\:;%3;5:’,6:7—‘:: Ybu{: setor d\v\‘_’) } timer.cancel() ;
: B\?rt\\a‘c?a BAD idea- }, 5000) ;
DRY, |

BarkRecognizer.java
382 Chapter 8

Download at WoweBook.Com

1. Let’s abstract out the common code.

Using DRY, we first need to take the code that’s common
between Remote and BarkRecognizer, and putitin a

single place. We figured out back in Chapter 2 the best place
for it was in the DogDoor class:

public class DogDoor
public void open() {

open = true;

Using DRYJ we "“"
out all this tode
feom Remote al‘é—
BarkRetognizev,

final Timer timer = new Timer () ;

timer.schedule (new TimerTask() {
public void run() {

and ?“{" it in ONE_) Ei::i (c):;ncel 0
place: the DogDoor } ' '
tlass. So no move }, 5000);

duplicate code, no
move maintenante
nigh’cmarcs-

2. Now rewmove the code from other locations...
3. ...and reference the code from Step #1.

The next two steps happen at the same time. Remove all the code

that you put in a single place in Step #1, and then reference the code
you abstracted out explicitly if you need to:

public void recognize(String bark) {
System.out.println (%

“Heard a ‘” + bark + “7);
door.open(); =<=—

Fivest, we 5°J° id of

~Firret—Fimer—timer T Timer{)
i s all “imer—sehedutetnew—FimerTasi—
‘u’\ISDLO%C-" ‘,S OYC“() t,ub—l—_;_ 3¢}) {
in Doy oo¥ eoorTCTIose) ;
mc{hod now: mer—ean 1O
~}_
56660+

BarkRecognizer:

design principles

System.out.println (“"The dog door opens.”);

DogDoor.java

We don’t have o

— explicitly call £he
tode we abstracteq

out... that’s handled

alrcady by our ¢all
to d°°V-°PCh().

BarkRecognizer.java

Download at WoweBook.Com

you are here »

383

using DRY the right way

PRY is really about ONE
requirement in ONE place

Abstracting out duplicate code is a good start to using DRY,
but there’s more to it than just that. When you’re trying to
avoid duplicate code, you're really trying to make sure that
you only implement each feature and requirement in your
application one single time.

In the dog door we just looked at, the feature we were trying
to implement was automatically closing the door.

Todd and Gina’s Dog Poor, version 2.0
Requirements List

1. The dog door opening must be at least 12~ tall.

2. A button on the remote control opens the dog door Heve's the single
if the door is closed, and closes the dog door if the requirement we've

doov is-open- — OCuSin5 on here.
3. Once the dog door has opened, it should close & |
automatically if the door isn’t already closed.

Originally, though, we implemented that single feature in o
places: Remote. java and BarkRecognizer. java.

pressButton ()

Remote.java BarkRecognizer.java

poTH of these
mods have tode that

tloses the dog door-

By using DRY, we removed the duplicate code. But

more importantly, we moved the implementation of this
requirement, automatically closing the door, into one place,
mstead of fwo places:

S~ Now theve is Just ONE place

we au{:omalcically tlose the
DogDoor.java door: open(), in DogDoor.

384 Chapter 8

Download at WoweBook.Com

design principles

tlzer are no

pr— Dumb Questions -

DiRY

Q: So DRY isn’t about duplicate code, and
¢ avoiding copy-and-paste?

DRY is about avoiding duplicate code, but it's
also about doing it in a way that won't create more
problems down the line. Rather than just tossing code
that appears more than once into a single class, you :
need to make sure each piece of information and
behavior in your system has a single, clear place where °
it exists. That way, your system always knows exactly ls a Out

where to go when it needs that information or behavior.

Q: If DRY is related to our features and llaVing eaCII Piece

requirements, then shouldn’t we apply it to
gathering those features and requirements as well

as writing our code? 0{ in'formati()n anc[
N pomsemne - hehavior in your

coding, you want to be sure that you don't duplicate :
things in your system. A requirement should be . .

implemented one time, use cases shouldn’t have system ln a SIng e
overlap, and your code shouldn’t repeat itself. DRY is —_— —’
about a lot more than just code.

s sensible place

AZ Right. But it's more than just avoiding a need to
update code in more than one place. Remember, DRY
is about having a single source for a particular piece

of information or behavior. But that single source has
to make sense! You wouldn’t want the bark recognizer
to be the single source for closing the dog door, would
you? Do you think the dog door should be asking the
recognizer to close itself?

So DRY is not just removing duplication, it’s also about
making good decisions about how to break up your
system’s functionality.

385

Download at WoweBook.Com

applying DRY to requirements

5 Design Puzzle

DRY is about a lot more than just finding duplicate code in your system. It also
applies to your features and requirements. It’s time to put DRY into action on
your own now, and to do it in more than just code.

The problem:

Todd and Gina have come up with yet more features for their dog
door. It’s your job to make sure the feature list we’ve assembled
doesn’t have any duplication issues, and that each feature is handled
once and only once in the system you’re designing for them.

Your task:

o Read through the requirements and features list on the right. We’ve bolded
the requirements and features that have been added since you last worked
on the dog door.

e Look through the new features and requirements, and see if you see any
possible duplication in the new things you’d need to build.

6 Annotate the requirements and features list indicating what you think has
been duplicated.

e Rewrite the duplicate requirements at the bottom of the list so that there is
no more duplication.

e Write a new definition for the DRY principle in the space below, and make
sure you talk about more than just duplicate code.

ZI/;/ri'l:c Your own definition for
: that intludes what vou’
€arned over the)3 e

t few Pages.

Don’t Repeat Yourself

386 Chapter 8

Download at WoweBook.Com

design principles

Todd and Gina’s Pog Poor, version 3.0
Requirements and Features List

1. The dog door opening must be at least 12” tall.

2. A button on the remote control opens the dog door
if the door is closed, and closes the dog door if the
These ave the door is open.

. w Ve
VCK“‘:"‘:::\S:IO 3. Once the dog door has opened, it should close
alveady automatically if the door isn’t already closed.

4. A bark recognizer wwst be able to tell when a dog
and these are the is barking.

new -(:ca{:wcs and
vequivements. 5. The bark recognizer wmust open the dog door when
\ it hears barking.

6. The dog door should alert the owner when
something inside the house gets too close for the
door to open without knocking it over.

7. The dog door will open during certain hours of the
day.

8. The dog door can be integrated into the house’s
overall alarm system to ensure the alarm doesn’t
go off when the dog door opens and closes.

9. The dog door should make a noise if the door
cannot open because of a blockage outside.

10. The dog door will track how many times the dog
enters and leaves the inside of the house.

11. When the dog door closes, the household alarm
system re-arws if it was active before the door
opened.

Write any Y\C‘O.J or
wpdated vequivements
w'\{',\\ou{’, du\’\\t&hon,
heve at the bottom
of the list

—— Solutions on the next page.
you are here » 387

Download at WoweBook.Com

don’t repeat anything

388

25 Design Puzzle Solutions

DRY is about a lot more than just finding duplicate code in your system. It also
applies to your features and requirements. Your job was to put DRY into action
on your own, in the context of requirements rather than just code.

The problem:

Todd and Gina have come up with yet more features for their dog
door. It’s your job to make sure the feature list we’ve assembled
doesn’t have any duplication issues, and that each feature is handled
once and only once in the system you’re designing for them.

Your task:

a Read through the requirements and features list on the right. We’ve bolded
the requirements and features that have been added since you last worked
on the dog door.

e Look through the new features and requirements, and see if you see any
possible duplication in the new things you’d need to build.

e Annotate the requirements and features list indicating what you think has
been duplicated.

a Rewrite the duplicate requirements at the bottom of the list so that there is
no more duplication.

6 Write a new definition for the DRY principle in the space below, and make
sure you talk about more than just duplicate code.

H ']
eve’s what we wrote for ou

definition of DRY.

Don’t Repeat Yourself

PRY is about having each piece of
information and behavior in your
systew in a sinale, sensible place.

Chapter 8

Download at WoweBook.Com

Todd and Gina's Pog Poor, version 3.0
Requirements and Features List

Here's what
we did to the
1. The dog door opening must be at least 12” tall. requirements |ist.
2. A button on the remote control opens the dog door

it the door is closed, and closes the dog door if the
door is open.

3. Once the dog door has opened, it should close
automatically if the door isn’t already closed.

4. A bark recognizer wwst be able to tell when a dog
is barking.

5. The bark recognizer wmust open the dog door when
it hears barking.

$b and #9 ave

a\mos{', '\dev\hca\. One

the inside; 7. The dog door will open during certain hours of the
on
iﬁsﬁe other on LT

the outside, but the

8. The dog door can be integrated into the house’s <
basit ‘(:uh(,fma\'\‘h\l is

overall alarm system to ensure the alarm doesnt
fhe same —~___ go off when the dog door opens and closes.

9-The-dog-door-shevld-wmakeanoise it thedoor
oannot-open besavseof-ablockageoutside.

ke #7 —= 10.The dog door will track how many times the dog
Rc:u;;clgc::m fine, enters and leaves the inside of the house.
z:d stayed the same- 11. When the dog door closes, the household alarm <

system re-arws if it was active before the door
opened.

H,)
eve's how we

tombined and ve_. The door alerts the owner if there is an obstacle
wrote #b and #9 inside or outside of the house that stops the door
from operating.

When the door opens, the house alarm system will
disarm, and when the door closes, the alarm

system will re-arw (if the alarm systew is turned
on).

S —

design principles

#8 and #I| both
velate to the house
alavm... they've
veally duplicates

of the same basie
‘('\unc{ionali‘(:\/; to0.

_

)

Weve's our new
rC"\u'wcmC"& wom

#8 and #l.

Download at WoweBook.Com

you are here » 389

the single responsibility principle

Principle #3:
The Single Responsibility Principle (SRP)

The SRP is all about responsibility, and which objects in your
system do what. You want each object that you design to have just
one responsibility to focus on—and when something about that
responsibility changes, you’ll know exactly where to look to make
those changes in your code.

Single Responsibility Principle

Every object in your system should
have a single responsibility, and all the
object’s services should be focused on
carrying out that single responsibility.

Hey, we've talked about
this before... this is the same as
a class having only one reason to
change, isn't i+?

You've implementec[the
Single Responsibility
principle correctly when
each of your oLjects has Lo\

only one reason to c]mange_.

390 Chapter 8

Download at WoweBook.Com

t})er are no

— Dumb Questions

Q3 SRP sounded a lot like DRY to
me. Aren’t both about a class doing
the one thing it's supposed to do?

They are related, and often
appear together. DRY is about putting a
piece of functionality in a single place,
such as a class; SRP is about making
sure that a class does only one thing,
and that it does it well.

In good applications, one class does
one thing, and does it well, and no other
classes share that behavior.

Q: Isn’t having each class do
only one thing kind of limiting?

It's not, when you realize that
the one thing a class does can be
a pretty big thing. For example, the
Board class in Gary’s Games does a
lot of different small tasks, but they're
all related to a single big thing: handling
the board in a game. It does that one
thing, and that’s all the Board class
does, so it's a great example of using
the SRP.

Q: And using SRP will help my
classes stay smaller, since they’re
only doing one thing, right?

A: Actually, the SRP will often
make your classes bigger. Since you're
not spreading out functionality over

a lot of classes—which is what many
programmers not familiar with the SRP
will do—you're often putting more things
into a class.

But using the SRP will usually result in
less classes, and that generally makes
your overall application a lot simpler to
manage and maintain.

Q: This sounds a lot like
cohesion, are they the same thing?

Cohesion is actually just another
name for the SRP. If you're writing
highly cohesive software, then that
means that you're correctly applying
the SRP.

Y
A

R
| Y

Download at WoweBook.Com

design principles

391

srp analysis

Spotting multiple responsibilities

Most of the time, you can spot classes that aren’t using the
SRP with a simple test:

€ On asheet of paper, write down a bunch of lines like this: The [blank]
[blanks] itself. You should have a line like this for every method in the class
you're testing for the SRP.

e In the first blank of each line, write down the class name; in the second
blank, write down one of the methods in the class. Do this for each
method in the class.

e Read each line out loud (you may have to add a letter or word to get it to
read normally). Does what you just said make any sense? Does your class
really have the responsibility that the method indicates it does?

If what you’ve just said doesn’t make sense,
then you’re probably violating the SRP with
that method. The method might belong on a
different class... think about moving it.

Here's what your

SRP ahaf)'sis sheet
should look like.
/

SRP Analysis for

-

Wuite the ¢lass name
wn this blank, all the
way down Lhe sheet-

The

Write eath method
from the class in this

/ blank, one per line.

itself.

The

itself.

The

itself.

| <= Reye

v

2t b line For each
mekthod in your 635

392

Download at WoweBook.Com

design principles

aSharpen your pencil
'« Apply the SRP to the Automobile class.

Do an SRP analysis on the Automobile class shown below. Fill out the sheet with
the class name methods in Automobile, like we’ve described on the last page.
Then, decide if you think it makes sense for the Automobile class to have each
method, and check the right box.

Automobile
7 [
We looked at stop() = Yes [
this tlass in ChangeTires(Tire [*]) i 'C:’C V{;CQ 1€ You £an Fcek back
CATASTROPHE drive() ,hapter 5 and cheat heve, but
back in Chapter 5 wash() we've trusting ou not 4o Try the
checkOil() exertise on Your own first, and
getOil(): int only look back at what we did in
: Chapter 5 if you get stuck.

SRP Analysis for __Automobile

Follows Violates

SRP SRP
The itself. O O
The itself. Ll 0l
The itself. O]}
The itself.))
The itself. [} [}
The itself. 0l 0l
The itself. [} [}

=~ I£ what You vead doesn’t
make sense, then the method
on that line is Probab'y

violating the SRP.

you are here » 393

Download at WoweBook.Com

single responsibility

aSharpen your pencl
W answers Apply the SRP to the Automobile class.
Your job was to do an SRP analysis on the Automobile class shown below. You

should have filled out the sheet with the class name methods in Automobile, and
decided if you think it makes sense for the Automobile class to have each method.

It makes sense SRP Analysis for _ Automobile

that the
auwtomobile is Follows
rcsyonsiblc for You may have SRP

starting, and 4/_\ to add an s”
stopping; That's or a word or

a funetion of —> The __Automobile startls] itself. two to make

S\

the autorndble > Thg _ Avbomobile _stopls] ifgelf, e sentence

The __Automobile thangesTives itself readable. 0
An automobile is The __Automobile dvivels] itself. 3
'\{o—‘or-’;:::g;v\ssiblc —> The _Automobile washles] itself. O
its own tives, \>Th8 Automobile ¢heeklsJ oil itself. D
:V:S:::gkim{;; c'f{; The _ Automobile getls] oil itself. Q/
own oil.

Violates

This one was 3 little
‘l:rick\/... we 'l:hough'l: that

You should have *{‘)\oug\ﬁ{‘. CﬁVC£ :“‘/ while an automobile mi ht
about Lhis one, and what “act start and stop itself ?t’s
means. This is a method that just veally the \rcSPor\Sibil‘E, of
veturns the amount of oil in the driver 4o dvive the ¢a)\lr_ a

aukomobile... and that is something
£hat the automobile should do-

Cases like this ar,
' e wh is i
Just a 9uideline. %uws{:)ilug fvz ;:?r’x;s'{s:o's

have 4o .
Judgment ¢3))s using

our .
Your own €xpeviente.

make some
sénse and

394 Chapter 8

Download at WoweBook.Com

Going from wmultiple responsibilities

to a single responsibility

Once you’ve done an analysis, you can take all the methods
that don’t make sense on a class, and move those methods to
classes that do make sense for that particular responsibility.

Automobile
ed our analys's start()
e Bre on £ |siop)
Ehese fowr methods changeTires(Tire [*])
veally avent the drive()
chvons\b\ ‘{'4\! WaSh()
A‘,J(pmob\\o checkOil()
getQil(): int
Now Automobile Automobile
rcsyonsubllr{:\/- — |stop()
dcalimj with its getOil(): int
own basit Lunetions. |

Good question! For your SRP analysis to make any sense,
you need to include the parameter of the method in the method blank.
So you would write “The CarWash washes [an] automobile itself.”

That method makes sense (with the Automobaile parameter), so it

would stay on the CarWash class.

tber are no .
Dumbd Questions

Q: How does SRP analysis work when a method takes
parameters, like wash(Automobile) on the CarWash class?

design principles

)
/'é S a d"'ivcr's

drive

Driver

drive(Automobile)

A CarWash
¢tan handle
washing an

CarWash

automobile.

wash(Automobile)

Mechanic

checkOQil(Automobile)

\

A methanic is vesponsible for
thanging tives and thecking
the oil on an au{‘,omobilc.

changeTires(Automobile, Tire [*])

Q,: But what if CarWash took in an Automobile parameter
as part of its constructor, and the method was just wash()?

Wouldn’t SRP analysis give you a wrong result?

A: It would. If a parameter that might cause a method to
make sense, like an Automobi le for the wash () method on
CarWash, is passed into a class’s constructor, your SRP analysis

might be misleading. But that's why you always need to apply a good
amount of your own common sense and knowledge of the system in
addition to what you learn from the SRP analysis.

Download at WoweBook.Com

you are here »

395

find the single responsibility principle

ORP Dightings

The SRP has already made a few appearances in our work so far; now that
you're getting familiar with the SRP, it’s time for you to figure out where and
how it’s been used. Your task is to look at the page below and figure out how

SRP was used, and why.

" This is from the

roquinemenis ¢ oangn

Updating the doa door

Lat's take the codde that choned the doo from the Romate l -
clais, and pat it i oU Dogoor code: —
public class Dogboor |
public void openi) [.
System.out.println("The dog door opens.t); Timer Tack,
open = true;

Thaa i
final Timer bimsr = few Timer(): ==— mh::;:m;
timer schedule (new TimerTask() 1 Rewste. -
public wodd roni} { o
close () ;=

. -—_“
bimer.cancel(l; yl by doo does

L Hoedl. even i s 34
V. F0090; wew dieviter that cdm

! wpen bhe dooe Wiee!

public veid closel) i e
system.out.println("The dog door closes.¥);
open = false!

1

1

Simplifying the remote control

Vi e b ok thim game eode out of L
the ddog door handles sutomatically closing iteelE

% .
zeasButtondl | .
W;:::.:u:::lfpx-.mlnl'huilm the Temcte contssl Button...®ls
AT idoos.isogenil) |
dooz.elosa b
b wlae {
ooz apei ()i

Remote jrvs you are harg » 149

dog doo, back in
Chapter 3.

396

Chapter 8

Download at WoweBook.Com

design principles

—~y |

How do you think the Single Responsibility Principle was used in Todd and Gina’s dog
door? Write your answer in the blanks below:

Now see if you can find two more instances in the book’s examples so far where we've
used the SRP to make our design better and more flexible. You can find the SRP in the
dog door, Rick’s instrument inventory searcher, or Gary’s game framework. Write down
each instance you found, and how you think the SRP is being used.

First Instance

Example application: __ Rick’s Instruments — Doug’s Dog Doors — Gary’'s Games

N Chetk off which

How SRP is being used: example application

Write in how you ‘(-\otmdd{‘)\c SRP
i . -

you {:\\'m\(—> bcmg used In

the SRP was

aﬂz\'\cd n

this ocAvn\’\C- There's the SRP!

Second Instance 0

o
Example application: __ Rick’s Instruments — Doug’s Dog Doors — Gary’s Games

How SRP is being used:

you are here » 397

Download at WoweBook.Com

finding single responsibility

SBP Sightings Revealed!

Let’s look back on the times that SRP has already shown
up in our software. Here are the SRP sightings we came
up with; see if your answers are similar.

> This is from the
dog door, back in

requirements <1300 Chapter 3.

Updating the doa door

Lei's take the code that chosed the door from the Romate
clais, and pat it i oU Dogoor code:

public class Dogboor | -
public void open() N Toer g .
System.out.println("The dog door opens.t); I'H’brﬂ."!::.h
open = truej
Tha
firal Timar bimer = new Timar(): -=— ':‘dli.::\: “::hdd
timer schedule (new TimerTask() | Remte jﬂ L
publie wold roni} { s
close [} ——
, timer.cancalll’ . b door e
el even if e 2dd
V. F0090; e dievater that cim
1 open bhe door. Nieel
sel) |
intln ("The dog deor closes.®):

public woid cl«
Systen.ocut.p
open = false!
1
]

Simplifying the remote control

Vi e b ke thim game code out of L
the ddog door handles sutomatically closing iteelE

1
saasbuttondl | .
Pﬁ’:;::;?:ﬂfn:munl'huum the Temcbe cofitfel BULLON... 18

AT idoos.isogenil) |
dobs.cloas (b

b alas |
Ao . opal ()1

fina)—Timel t'l-'r"m"rﬂﬂH-
T
Prubliawead SucE——
demrerridnr -t
BT e —
3=
50 .

b e

139

398 Chapter 8

Download at WoweBook.Com

design principles

h
|
P

How do you think the Single Responsibility Principle was used in Todd and Gina’s dog
door? Write your answer in the blanks below:

We wmoved the code to close the dog door out of Remote.java, and avoided Heve's what we
(. 1) wrote abou'l:
. how SRP (and
d dled DRY) helped us
operation of the dog door—it has that single responsibility. out with the
d05 door-.

Now see if you can find two more instances in the book’s examples so far where we've
used the SRP to make our design better and more flexible. You can find the SRP in the
dog door, Rick’s instrument inventory searcher, or Gary’s game framework. Write down
each instance you found, and how you think the SRP is being used.

First Instance
Example application: 2 Rick’s Instruments — Doug’s Dog Doors — Gary’'s Games
o You don't have to have

How SRP is being used: £ e same examples
We created a matches() method on InstrumentSpec, rather than leaving that we °J::d‘ g{\;
the code to compare instruments in the search() method of Inventory. So an "‘akca su{‘id ;: similav
InstrumentSpec handles everything related to an instrument’s properties— \::Is ‘z, {he ones we
that code isn't spread out over other classes. That’s SRP in action. weote down heve, an

\Iou,VC ‘_’)"{' it
Second Instance
Example application: —— Rick’s Instruments — Doug’s Dog Doors XGary’s Games

How SRP is being used:

When we used a Map to store properties for all types of units in the Unit

into the nit class. So handli e properties feature is taken care of in ONE

single place—the Unit class

you are here » 399

Download at WoweBook.Com

liskov substitution principle

Contestant #4:
The Liskov Substitution Principle (LSP)

Next up in our design principle parade is the Liskov Substitution
Principle, or the LSP. It’s definition is as simple as it gets:

Liskov Substitution Principle

Subtypes must be substitutable for
their base types.

OK, earlier you convinced
me that the OCP is more than just
basic inheritance, but here you are
with the subclassing thing again. We're

programmers, we know how to use
inheritance correctly by now.

The LSP is all about well-designed
inheritance. When you inherit from
a base class, you must be able to
substitute your subclass for that
base class without things going
terribly wrong. Otherwise, you’ve
used inheritance incorrectly!

400 Chapter 8

Download at WoweBook.Com

Misusing subclassing: a case study in
misusing inheritance

Suppose that Gary’s Games has a new client who wants to use their
game system framework to create World War II air battles. They
need to take the basic Board base type, and extend it to support a
3-dimensional board to represent the sky. Here’s what they’ve done:

Board
width: int
height: int
tiles: Tile [*][*
This is the Board — = [e (11
base Lype we getTile(int, int): Tile
developed baek in addUnit(Unit, int, int)
Ci\ tee T removeUnit(Unit, int, int)
ar removeUnits(int, int)
getUnits(int, int): List
3DBoard
zpos: int
3dTiles: Tile [][*][*]
Ginte Board3D getTile(int, int, int): Tile
vequives (%,y,2) addUnit(Unit, int, int, int)
toordinates, it adds —= removeUnit(Unit, int, int, int)
a bunth of new removeUnits(int, int, int)
methods o support getUnits(int, int, int): List
T —

3D toovindates.

design principles

~ The game designers

subelassed Board
and Crea-l;cd a new
'EYFC' 3DBoav-d.

threads
wait()
no{:i‘c\/()

Make it Stiek

One of these things is Just like another,
Use the base or its subclass, it's not a bother
Substitute, exchange, it doesn't rattle me, ‘

They all work the same, they use the LsPI

you are here » 401

Download at WoweBook.Com

Isp reveals inheritance problems

LSP reveals hidden problems with
your inheritance structure

At first glance, it may seem like subclassing Board and
using inheritance is a great idea. But look closer, there are
lots of problems that this approach creates:

Board
width: int
height: int
tiles: Tile [*][*]
getTile(int, int): Tile
addUnit(Unit, int, int)
removeUnit(Unit, int, int)
removeUnits(int, int)
getUnits(int, int): List

When 3DBoard .
subc\asscsgzard, it
ts all ok these
?:c{\\odS, in addition
1o the new methods

it defines.

addUnit ()

removeUnit ()

removeUnits ()
rom

getUnits ()

3DBoard

zpos: int

3dTiles: Tile [*][*][*]
getTile(int, int, int): Tile
addUnit(Unit, int, int, int)
removeUnit(Unit, int, int, int)
removeUnits(int, int, int)
getUnits(int, int, int): List

But these are —~
JC\'\C methods {')\8‘{2
work with (%,\/,z)
toordinates... so

what did we veally
gain from subtlassing
the Board type?

The 3DBoard class is not substitutable
for Board, because none of the
methods on Board work correctly in a
3D environment. Calling a method like
getUnits(2, 5) doesn’t make sense for

3DBoard. So this design violates the LSP.

402 Chapter 8

Download at WoweBook.Com

=
o All of these methods,
o that ave inhevited

Boa\rd don'{
have any meanin

@ a%'
\/

9 in

Even worse, we
don't know
«— what passing 3
l‘,oo‘rd'ma{:c like
(2.,5) even means
{',0 EDBOQVd. This
is V\‘g‘__t a 5ood use

o£ 'm\\t\ri‘{',&ndc'

design principles

“Subtypes must be substitutable
for their base types”

We already said that LSP states that a subtype must be
substitutable for its base type. But what does that really
mean? Technically, it doesn’t seem to be a problem:

Board board = new 3DBoard();

A

From the tompiler’s point of
view, 3DBoavd tan be used in
place of a Board heve.

But when you start to actually use that instance of 3DBoard
like a Board, things can get confusing very fast:

Unit unit = board.getUnits (8, 4);

Remember, board hevre is ;{\
ac{ua\l\/ an instante o(: the ut what does +his method

subbype, 3DBoard mean on 3DBoard?
So even though 3DBoard is a subclass of Board, it’s not Inhevitance (and the LSP) indicate
substitutable for Board... the methods that 3DBoard that any method on Board should
inherited don’t have the same meaning as they do on the be able to be used on 3DBoard...
superclass. Even worse, it’s not clear what meaning those that 3DBoard ¢tan stand in for
methods do have! Board without any problems.
method from Board, bu width: int :

: Zpos: int

on an .IV\S{',AV\CC O‘C 3DBoard. he|ght |nt p

3dTiles: Tile [*][*][*]
getTile(int, int, int): Tile

L tiles: Tile [*][*]
getTile(int, int): Tile

addUnit(Unit, int, int, int)
removeUnit(Unit, int, int, int)
removeUnits(int, int, int)
getUnits(int, int, int): List

Unit unit = removeUnits (8, 4); [nit(Unit, int, int)
eUnit(Unit, int, int)

removeUnits(int, int)
getUnits(int, int): List

BIA'E Wha‘t do '{')\CSC
methods mean for

3D}Bo3vd? They probably
don't mean anything/ you are here » 403

Download at WoweBook.Com

avoid confusing code

Violating the LSP makes for confusing code

It might seem like this isn’t such a big deal, but code that violates LSP
can be confusing, and a real nightmare to debug. Let’s think a bit about
someone who comes to use the badly designed 3DBoard for the first time.

They probably start out by checking out the class’s methods:

3DBoard

width: int

height: int

zpos: int

tiles: Tile [*][*]
3dTiles: Tile [*][*][*]

/ getTile(int, int): Tile

getTile(int, int, int): Tile

Even though some © - |addUnit(Unit, int, int)

of these methods addUnit(Unit, int, int, int)
aven't defined on — |removeUnit(Unit, int, int)
3DBoard, they've all removeUnit(Unit, int, int, int)

inhevited from the ~> removeUnits(int, int)
base ¢tlass, Board. \> removeUnits(int, int, int)
getUnits(int, int): List

getUnits(int, int, int): List

Hmm, I'm not sure which
version of getTile() and addUnit() to
use. Maybe those methods take an X- and
Y-coordinate for the current board... I'm
just not sure.

It’s hard to understand code
that misuses inheritance.

When you use inheritance, your subclass gets
all the methods from its superclass, even if
you don’t want those methods. And if you've
used inheritance badly, then you’re going to
end up with a lot of methods that you don’t
want, because they probably don’t make
sense on your subclass.

So what can you do to avoid this? First, be
sure your subclasses can substitute for their
base types, which is just following the LSP.
Second, learn about some alternatives to
using inheritance in your code...

404 Chapter 8

Download at WoweBook.Com

Solving the 3PBoard problem
without using inheritance

Instead of extension, we've usi
an assotiation. So 3DBoard
¢an use the behavior of Board
without having to extend ‘From,
it and violate the LSP.

This is a form of delegation
The 3DBoard tlass delegates
alot of its ‘("uv\é{',ionali{:‘{ to
the indiVidual Board instantes.

")

It’s not enough to just know that inheritance isn’t the answer...
now we’ve got to figure out what we should have done. Let’s look
at the Board and 3DBoard classes again, and see how we can
create a 3-dimensional board without using inheritance.

Board

width: int
height: int
tiles: Tile [*][*]

getTile(int, int): Tile
addUnit(Unit, int, int)
removeUnit(Unit, int, int)
removeUnits(int, int)
getUnits(int, int): List

boards

\»

3DBoard

zpos: int
3dTiles: Tile [*[*]"]

getTile(int, int, int): Tile

addUnit(Unit, int, int, int)
removeUnit(Unit, int, int, int)
removeUnits(int, int, int)
getUnits(int, int, int): List

N

These methods look a lot

like the methods in Board,
but they need to use the
‘(:und‘{‘,ionali{:\/ in Board, vather
than extend it. So inheritance
isnt a good o?{:ion heve.

design principles

The Board tlass has
functionality hat 3DBoard
seeds, but it's not 4he base

{:‘I\’c for 3DBoard.

T

3DBoard tan
store an arvay
0‘(: Boavd
ob:)CL'hS; and
end up with 3
3D collettion
o‘(: boavds-

So what options are there besides inheritance?

Download at WoweBook.Com

you are here » 405

use another class’s functionality

Delegate functionality fo another class

You've already seen that delegation is when one class hands off the
task of doing something to another class. It’s also just one of several
alternatives to inheritance.

Delegation is when you hand over
the responsibility for a particular
task to another class or method.

Delegation was what we used to solve the 3DBoard problem we’ve
been looking at, without resorting to inheritance:

Board

width: int

height: int
tiles: Tile ["][*]
getTile(int, int): Tile
addUnit(Unit, int, int)

We just removeUnit(Unit, int, int)
talked about removeUnits(int, int)
delegation. v, |getUnits(int, int): List
use @ normg|
assotiation line

for delegation. —_ .

boards °|' *

3DBoard

zpos: int

3dTiles: Tile ["][*][*]

getTile(int, int, int): Tile <\,

addUnit(Unit, int, int, int)

removeUnit(Unit, int, int, int) 3DBoard

removeUnits(int, int, int) delegates .

getUnits(int, int, int): List functionality
velated to o
specific boavds

the Board class

406 Chapter 8

Download at WoweBook.Com

design principles

When to use delegation

Delegation is best used when you want to use another class’s functionality,
as is, without changing that behavior at all. In the case of 3DBoard, we
wanted to use the various methods in the Board class:

Board
width: int

These methods ave all fine...
in ‘("BC{; we Wah{‘, o S"',OY'C an
height: int entive array of Boards, and
tiles: Tie [then use eath individual Board
getTile(int, int): Tile via these methods.
addUnit(Unit, int, int)

removeUnit(Unit, int, int)

removeUnits(int, int)
getUnits(int, int): List

Since we don’t want to change the existing behavior, but we do want to
use it, we can simply create a delegation relationship between 3DBoard
and Board. 3DBoard stores multiple instances of Board objects, and
delegates handling each individual board-related task.

3DBoard Board

width: int

height: int

tiles: Tile [*][*]

getTile(int, int): Tile

/ addUnit(Unit, int, int)
3DBoard uses the z Femovegnit(L(Jnit, int), int)

Now o removeUnits(int, int

Loo\rdina{zc to gc{: a Board getUnits(int,int) List

instante in its aveay, and

4hen delegates {0 a method —

on that Boavrd using the

supplied * and Y toordinates.

zpos: int

3dTiles: Tile [*][*][*]
getTile(int, int, int): Tile
addUnit(Unit, int, int, int)
removeUnit(Unit, int, int, int)
removeUnits(int, int, int)
getUnits(int, int, int): List

I you need to use functionality in another class,
but you don't want to clxangg that Jf‘unctioni:llity,
consider using Jelegation instead of inheritance.

you are here » 407
Download at WoweBook.Com

use multiple classes’s behaviors

Use composition fo assemble behaviors
from other classes

Sometimes delegation isn’t quite what you need; in delegation, the behavior
of the object you’re delegating behavior to never changes. 3DBoard always
uses instances of Board, and the behavior of the Board methods always
stay the same.

But in some cases, you need to have more than one single behavior to
choose from. For example, suppose we wanted to develop a Weapon
interface, and then create several implementations of that interface that all
behave differently:

Weapon defines an

a{:Jcack() method...

<<interface>>
Weapon

attack()

attack() [i Club | that method-

attack()

Now we need to use the behavior from these classes in our Unit class.
One of the properties in our properties Map will be “weapon”, and
the value for that property needs to be an implementation of the Weapon
class. But a Unit might change weapons, so we don’t want to tie the
weapon property to a specific implementation of Weapon; instead, we just
want each Unit to be able to reference a Weapon, regardless of which
implementation of Weapon we want to use.

Theve's 3 \>ro\7cr‘§:\/ "
Lhis map called "weapen =

i tations
e _ .ad these m\?\tmtn
| = oJ;ana\?on all define
= Sun \ é_—//' di“crm{: behaviors Qov

We don't want to be stuck with
one ?a\r{:i(,ula\r weapon... instead,
we want to thoose between the
available weapon types.

Unit

~that we want 4o

assotiate with an

type: String

<<interface>>
Weapon

properties: Map

th i
setType(String) ¢ Weapon interface

getType(): String

implementation of attack()

setProperty(String, Object)

L} Sword

getProperty(String): Object

attack()

408 Chapter 8

Download at WoweBook.Com

attack()

Club |

attack()

design principles
When to use composition

When we reference a whole family of behaviors like in the Unit
class, we’re using composition. The Unit’s weapons property is

composed of a particular Weapon implementation’s behavior. We
can show this in UML like this:

This tlosed—in diamond at ‘l‘ti)
end 0‘(: a3 line means Lomposition:

<<interface>>
Unit
Weapon

type: SFring attack()

properties: Map These subtlasses of Weapon
sett:lr_ype((?tg?g) xca all substitutable for
getType(): String ‘ €dPon, so inhevitance is 3
oo ol | o e

Club

T
it has a Weapon and/ —
i;tshﬂ\c (:unLJciona\'\{:\/ ?‘(:
that tlass. But we d-on
want 3 bunth of Unit
subtlasses for eath JC\I{‘ZC
on, SO (,om‘?oﬂ on
fb\:a,‘;v than inhevitante
for the velationship
between Unit and Weapon-

Composition is most powerful when you want to use behavior defined
in an interface, and then choose from a variety of implementations
of that interface, at both compile time and run time.

Composition allows you to
use behavior from a family of
other classes, and to change

that behavior at runtime.

Pizza is actually a

_ great example of s .
¢ omposition: it's tomposed of d}:&‘crcwl: e [noke from mavketiny h'oﬁw w‘“comYarc
m%v-edicnﬁs: bu You tan swap out anyone Lake us scr'\ous\\[W we
diffecent ingredients

. 'ua?.l
ith) uv\cs o pizz3d
the overall pizza slicc.w' ot amcc{lhs

Yvogvamm\hs prin

you are here » 409
Download at WoweBook.Com

composition and ownership

When the pizza is gone, so are the
ingredients...

There’s one important point we haven’t mentioned so far about
composition. When an object is composed of other objects,
and the owning object is destroyed, the objects that are part of the
composition go away, loo. That’s a little confusing, so let’s take a
closer look at what that actually means.

Here’s our Unit class again, which has a composition
relationship to the Weapon interface and its implementations:

<<interface>>

Unit Weapon

type: String

attack()
properties: Map

setType(String)

getType(): String
setProperty(String, Object)
getProperty(String): Object

attack() " Club

attack() This Unit is

tomposed with
an instante of

Suppose we create a new Unit, and assign its weapon property
to an instance of Sword:

Unit pirate = new Unit();
pirate.setProperty (“weapon”, new Sword());

What happens if this Unit is destroyed? Obviously, the
pirate variable is trashed, but the instance of Sword
referenced by pirate is also thrown away. It doesn’t exist outside of
the pirate object.

This Sword ob\')cd'«

does &{3 Q‘_‘-s—t

outside o& the
context his
" + vid °£ the ‘H':c.n You're au{;omahcall ?avbcu\aY‘
‘\f\‘f\éiC ?’{c““h OB:)C&"" Scf‘{:ma vid of the Swordyob\jcc‘{:

assotiated with pivate, too.

410 Chapter 8

Download at WoweBook.Com

design principles

In composition, the ol)ject composeJ of other
hehaviors owns those behaviors, When the
object is JestroyeJ, so are all of its behaviors.

The behaviors in a composition do not exist
outside of the composition itself.

I get it... composition is
really about ownership. The main
object owns the composed behavior,
so if that object goes away, all the
behavior does, too.

RBRRANN
TAaweEwR

Can you think of an example where the ownership
aspect of composition would be a negative in your
application? When might you want the composed
objects to exist outside of the composing class?

411

Download at WoweBook.Com

aggregating behaviors

Aggregation: composition, without
the abrupt ending

What happens when you want all the benefits of
composition—flexibility in choosing a behavior, and adhering
to the LSP—but your composed objects need to exist outside
of your main object? That’s where aggregation comes in.

/

Aggregation is when one class is
used as part of another class, but {
still exists outside of that other class. :

, o

The ice eream, bananas, and

therries exist outside of 3
banana split. Take away that
‘cam:y tontainer, and \/ou)vc still
9ot the individual tomponents.

You've already used aggregation...

We’ve been using aggregation already, in Rick’s Stringed
Instruments, from Chapter 5:

A line with an open
diamov\d at the end

means aggvcgajt'w"- j/
spec

Ins{kumcn{‘,gpcc is used 3s Part of

an Ins{:\rumen‘(:, but the
also exist: outside of 3,

(hke when i'l;)s suppli
d
CuS‘bomcr \(—'ov. seaPF € by a

Instrument (}—1

InstrumentSpec

serialNumber: String properties: Map

price: double

getPrice(): double
setPrice(float)

getSpec(): InstrumentSpec
T

We weve able +o avoid
all those 'Ins{'xumcn{:— .
s\vcci(:ic subtlasses by using

aggreaation heve

412 Chapter 8

getProperty(String): Object
getSerialNumber(): String getProperties(): Map
matches(InstrumentSpec): boolean

Download at WoweBook.Com

spe¢ tan
Ihsfkumcy,{;

rthing).

Agaregation versus composition

It’s casy to get confused about when you should use composition,
and when you should use aggregation. The easiest way to figure
this out is to ask yourself, Does the object whose behavior I want to use
exist outside of the object that uses its behavior?

If the object does make sense existing on its own, then you should
use aggregation; if not, then go with composition. But be careful!
Sometimes the slightest change in the usage of your objects can
make all the difference.

e o
Five-Minute Mystery
Joel leaned back in his seat, arched his back, and thought again
about buying that new Aeron chair once his stock options came
in. Being a game programmer was hard work, and Joel was the last
coder in the office yet again.

“People are gonna go nuts over Cows Gone Wild,” he thought. He
pulled up the user guide for Gary’s Game System Framework, and
started to think about how he was going to implement the cowboys,
one of the last features he had to deal with. Suddenly, his eyes lit

upon the Unit class, and he realized that he could

use Units for cowboys, and the Weapon interface
for lassos, revolvers, and even branding irons.

Joel created Lasso, Revolver, and Brandinglron
classes, and made sure they all implemented the
Weapon interface. He even added a Weapon property
to his Building class, so the cowboys could hang their gear up at the
end of long days chasing the cows.

“This is so money... a little bit of composition, and I'll bet boss-
man Brad will put me as the lead designer in the game credits.”
He quickly drew up a class diagram of what he had done for the
morning shift, colored in his composition diamond between the
Unit and Weapon classes, and headed for Taco Bell on the way
back to his apartment.

Little did Joel know that when he got back into work the next day,
Brad would be yelling at him, instead of congratulating him...

What did Joel do wrong?

Download at WoweBook.Com

design principles

Answer on page 421

you are here » 413

going beyond inheritance

Inheritance is just one option

We started out this section talking about the LSP, and the
basic idea that subclasses must be substitutable for their
base classes. More importantly, though, now you have
several ways to reuse behavior from other classes, beyond
inheritance.

Let’s take a quick look back at our options for reusing
behavior from other classes, without resorting to subclassing.

Delegation

Delegate behavior to another class when you
don’t want to change the behavior, but it’s
not your object’s responsibility to implement that
behavior on its own.

Composition

You can reuse behavior from one or more
classes, and in particular from a family of
classes, with composition. Your object
completely owns the composed objects, and they
do not exist outside of their usage in your object.

Aggregation

When you want the benefits of composition,
but you’re using behavior from an object
that does exist outside of your object, use
aggregation.

\

ese 00 tethni

w'l{',hou{: vio

All thvee of th

4o veuse behavior

414

Download at WoweBook.Com

If you favor
Jelegation,
c0mposition, and
aggregation over
inheritance, your
software will
usually he more
ﬂexi]ole, and easier
to maintain, exteml,
and reuse.

ques allow Yyou
lating the LSP.

design principles

tlzer are no

Q,: | thought subclassing was a good
thing. Now you’re saying it’s a bad thing?

A: No, subclassing and inheritance

are key to any good OO programming
language. The LSP is not about subclassing,
though; it's about when to subclass. If your
subclass really is substitutable for its base
type, then you've probably done a good job
using inheritance. If your subclass is not
substitutable for its base type, then you might
look at other OO solutions like aggregation
or delegation.

Q- But it is OK to use delegation,
composition, or aggregation in a class
that really shouldn’t extend another
class?

A: Sure. In fact, the LSP doesn’t apply
at all to aggregate or delegate classes,
because those are two great ways to fix

an inheritance tree that doesn’t conform to
the LSP. You might even say that good use
of the LSP goes hand-in-hand with more
delegation, composition, and aggregation.

Dumbd Questions

Do we really need to apply the
LSP all the time to figure this out? Isn’t
this just writing good 0O software?

A: Lots of times, you don’t need to
worry about the formal name of a design
principle to write good code. For example,
look back at the Board example on page
401; to make 3DBoard extend Board,
all of the methods had to be changed! That
should be a real tip-off that you're got some
inheritance problems.

Q: There were a lot of weird UML
symbols in there. How am | supposed to
remember what they all mean?

A: You really don't need to memorize
these symbols at all. While UML provides
specific notation for aggregation and
composition, they are all just different forms
of association. So just like we did with
delegation, you can use a normal line with an
arrow, a normal association, for composition
and aggregation.

Download at WoweBook.Com

Q: But won’t that be confusing to
developers if they don’t know what type
of association should be used?

That's possible, but it also allows for
a lot more flexibility. Suppose that you decide
later on that when an army is destroyed, you
don’t want the individual units destroyed as
well. So you might change the relationship
between army and unit from composition to
aggregation.

If you're using a basic association arrow,
you won’t need to change your class
diagram at all. It also gives the developer
freedom to come up with their own ideas
about how to implement the association.

There’s nothing wrong with using the
aggregation and composition symbols,

but you shouldn’t get too hung up on

it, especially if you're early on in the
development cycle. You never know what
might change later, and flexibility is always
better than rigidity in your design.

415

who am i?

I’'m substitutable for my base type.

| let someone else do things for me.

A bunch of classes involved in OO principles, all in full costume, are
playing a party game, “Who Am |?” They give a clue, and you try to
guess who they are, based on what they say. Assume they always
tell the truth about themselves. If they happen to say something that
could be true for more than one of them, choose all for whom that
sentence can apply. Fill in the blanks next to the sentence with the
names of one or more attendees. The first one’s on us.

Tonight’s attendees:
Subclass Delegated Class Aggregated Class
Delegating Class Composite Class

My behavior is used as part of
another class’s behavior.

| change the behavior of
another class.

| don’t change the behavior
of another class.

| can combine the behavior of
other classes together.

I’'m not gonna go away, even
if other related classes do.

| get my behavior and
functionality from my base type.

416 Chapter 8

—— Unmask the principles on page 420

Download at WoweBook.Com

— BULLET POINT?Q

design principles

The Open-Closed Principle keeps your software
reusable, but still flexible, by keeping classes open
for extension, but closed for modification.

With classes doing one single thing through the
Single Responsibility Principle, it's even easier to
apply the OCP to your code.

When you're trying to determine if a method is

the responsibility of a class, ask yourself, s it this
class’s job to do this particular thing? If not, move the
method to another class.

Once you have your OO code nearly complete, be
sure that you Don’t Repeat Yourself. You'll avoid
duplicate code, and ensure that each behavior in
your code is in a single place.

DRY applies to requirements as well as your code:
you should have each feature and requirement in
your software implemented in a single place.

The Liskov Substitution Principle ensures that you
use inheritance correctly, by requiring that subtypes
be substitutable for their base types.

When you find code that violates the LSP, consider
using delegation, composition, or aggregation to
use behavior from other classes without resorting to
inheritance.

If you need behavior from another class but don’t
need to change or modify that behavior, you can
simply delegate to that class to use the desired
behavior.

Composition lets you choose a behavior
from a family of behaviors, often via several
implementations of an interface.

When you use composition, the composing object
owns the behaviors it uses, and they stop existing as
soon as the composing object does.

Aggregation allows you to use behaviors from
another class without limiting the lifetime to those
behaviors.

Aggregated behaviors continue to exist even after
the aggregating object is destroyed.

Download at WoweBook.Com

417

ooad&d toolbox

Tools for your 00A&D Toolbox

We’ve got a lot more OO principles to add to
the toolbox. Let’s add what we’ve learned to our

notes—and remember: these principles are best
used together, not separately!

Rc3 rements | [Solvi i
< Aﬂ&flﬂahd DCS.“'\E OlVin B PV‘OHCMS

Listen o the tustomer, and figwc out

Qood vequirem

. what they want you 4o build.
works fike your Well—designed software is easy to thé ' :
Make sure your and extend. Put together 3 feature list, in 'a"":)“aﬂc
el the eustomer undevstands.

Y Use basic 00 printiples like encapsula

.) o your features ave what the
{::lc“g:‘:lou 00 PV‘thWlCS c’cually wants.

Your use ¢ E"‘a?s“la{"c what vavies. prints of the system using use

or missing ~ 40 bo an interface vather than to an ms (and use cases).

o | mplementation i system up into lots of
Your vequ Eath tlass in your application should have only ions.
5row) ove one veason to thange.

. . Pa{:'l:erns 4o the sm Il
Classes ave about behavior and functionality. he system e smaller

Classes should be open for extension, but tlosed N
s for modification (the 0CP) A<D principles o desian and

. llev section.
Avoid duplicate tode by abstracting out things €
that ave common and placing them in a single
lotation (khe DRY principle)

Every object in your system should ha\,lc 3
s'mglz rcs‘;onsibili{:\/, and all the objectt's servites
should be fotused on tarrying out that single
vesponsibility (£he SRP)

Qubelasses should be suitable for their base
classes (the LSP)

418 Chapter 8

Download at WoweBook.Com

O0AGD Cross

design principles

This one is a particularly tough puzzle: almost all the

answers are more than one word. Good luck, and keep

that left brain working.

Across

1. A variation on composition.

3. This is when one object owns behaviers from
other objects,

6. This is when you hand over responsibility for
a particular behavior.

7. He was all about substitution.

8. The L5SP reveals problems related to this.

11. You should keep a single piece of code in
this many places.

13. You should have each piece of your
infarmation and this in a single, sensible place.
14, out things that are commen in
your code,

15. Each object in your system should have this
many respensibilities.

16, This is overrated in good OO software
design.

17, Another term for SRP is this,

2. Aggregated objects exist of the
closses that use them.

4. Subtypes must be substitutable for these.
5. Classes should be closed for this.

9, 00 principles work best when used this way,
10. A well-designed class has only one reason to
do this.

12. Classes should be open for this.

you are here »

Download at WoweBook.Com

419

exercise solutions

A bunch of classes involved in OO principles, all in full costume, are
playing a party game, “Who Am I?” They give a clue, and you try to

o Am I?
Soluions

I let someone else do things for me.

My behavior is used as part of
another class’s behavior.

I change the behavior of
another class.

| don’t change the behavior of
another class.

| can combine the behavior of
other classes together.

I’m not gonna go away, even if
other related classes do.

| get my behavior and

functionality from my base type.

Chapter 8

Subclass Delegated Class

Delegating Class

I’'m substitutable for my base type.

Tonight’s attendees:

Composite Class

subelass

guess who they are, based on what they say. Assume they always
tell the truth about themselves. If they happen to say something that
could be true for more than one of them, choose all for whom that
sentence can apply. Fill in the blanks next to the sentence with the
names of one or more attendees. The first one’s on us.

Aggregated Class

<« Thisis @ basie

dc|cqa{:inq ¢lass, «‘,omposi'[:c tlass

aggregated class

subdass

delegated class, aggregated class,

dclcqa{:ino, ¢lass, Lom\?osi{:c tlass

tomposite ¢lass, deleaating elass

agareaated tlass, delegated class

subelass

Download at WoweBook.Com

delegation

de(:'m'\k\om

but a ¢lass
that uses
Lom\;os‘\{jon
uses other
tlasses ¥ov
behavior also-

-— A subelass is

{th onl\/ Class
that Chahac
another ¢lass’s
behavior-

In agpreaation

and dc\csa{,\om

ob\)CC‘t

instances ave
‘E\Cd {pgc{:\\c\',
but not
dependent on
eath other o
Lheir existente:

design principles

‘aleleln|elelalr(zlo|n

v
CloOMPOSITION

- Exegcise
BEEIEI SoLutions

™
o
D
E]
b
H
<
A

N

E
o

Five-Minute Mystery Solved

Joel’s big mistake was revealed in this line:

He even added a Weapon property to his Building class, so
the cowboys could hang their gear up at the end of long days
chasing the cows.

When Joel decided that cowboys could hang up their weapons,
he committed to the Lasso, Revolver, and Brandinglron classes
existing outside of any individual Unit instance. No cowboy owned
the gear; they just used the behavior of the gear for a time.

Since the Weapon implementations exist outside of a specific
cowboy, Joel should have used aggregation instead of composition.
Different cowboys could use the same Weapon implementation at
different times, and those weapons should stay in existence, even if
the cowboy using them was trampled by a mad cow.

you are here » 421
Download at WoweBook.Com

Download at WoweBook.Com

9 iterating and testing

The Software is Still
Lo i N, TOF HhE CUStOMeEr

what I could give you to show
how much I think of your ideas,

and then I had it: a beautiful
new set of tests!

Oh, Jim! You really do care
about what I want, don't you?

- ;z;;a:rf,_.i!;’ "’f E ‘ vt
- e =
b - "

It’s time to show the customer how much you really
care. Nagging bosses? Worried clients? Stakeholders that keep asking,
“Will it be done on time?” No amount of well-designed code will please
your customers; you’ve got to show them something working. And now
that you’ve got a solid OO programming toolkit, it's time to learn how you
can prove to the customer that your software works. In this chapter, we
learn about two ways to dive deeper into your software’s functionality, and
give the customer that warm feeling in their chest that makes them say,
Yes, you’re definitely the right developer for this job!
this is a new chapter 423

Download at WoweBook.Com

kick-ass developers

Your toolbox is filling up

We’ve learned quite a bit so far, and our toolbox of analysis 3k iag
and design tools is getting pretty full. We even added some OO Y acea-(-,we list

Simple vision state
an application ape

to turn g
ment into
hi{cc’éukc.

programming techniques in the last chapter:

00 \7\"\\'\(,'\\’\55
%::m Chapker 8 he'?

us write well-designedh

Llexible 00 soktwavre: Wflvc 90t 3 whole slew of
Principles and fcchhiﬂucs
to gather requivements,
ana,yzc and d“iﬁ'\;
and solve || Lypes of
ch‘ui\rcmcn{s l S {:warc FV'OHCms. l. Make sure your
4ot reri Amalysis and Design software does what the
:T lk« Wall-desgped soFbare s 5 o chinte customer wants it to do.
by develoi and extend:

» Solving Bi
- o Use basic 00 printiples like u»::;su jon Bl Problcms
a-.»g’?;. and inheritance o make your sof buare Listen to the customer, and figure out
more flexible. [what et you o build,

N\

\ﬁh:‘:;; Ilfr'a'?::?“‘:; L0 PY'.W\C.‘ lCS_ ature list, in language Zo APPI'y l)asic

tac s your bad Encapsulate what varies. inds. . -

Kw" ;‘ :‘,: Make :CM eal _Cv:le h:;;:t‘"““ vather than an 00 Prln(:lples to
yrow) o cath of yow| mPlementat

ONE THING Classes ave about behavior and functiondlity.
| Classes should be open for exbension, but closed
— m\'l:t:; Sor modification (the OCP)
Beeyele. Avoid duplicate code by abstracting owt things
| — that are ommon and placing them in 3 single

of the system using use

use eases).

8 add {lexil;ility.

The 3 steps \

up into lots of

eater (.u:PKY Fi::jfshwu have 3 sl to wﬁ‘E‘:E 3. Strive {Ol" a
E:;IYJ::?:“-.;IEZM all the ﬁii e 1 srca‘l'. soktwavre
e Sotused on careyng ovt that svale fouiile £, 4o .o
i’;‘,i'».’u.r.eyffisx;ml § st desn nd showed up batk maintainable,
5 should be suitable for their base K .
pATH in Chapter |, reusable design.
)
but we've been
using them
{hroughou{'-

every thapter-
424 Chapter 9

Download at WoweBook.Com

iterating and testing

That's great, really, you're an amazing
developer, I'm sure. But I really don't
care about any of that...

where's my application?

But you're still writing
your software for the

CUSTOMER!

All the tools and techniques
you’ve been learning are
terrific... but none of them
matter if you don’t use them
to produce great software that
makes your customer happy.

And most of the time, your
customer won’t care about all
the 0O principles and diagrams
you create. They just want the
software to work the way that
it’s supposed to.

you are here » 425

Download at WoweBook.Com

iterate deeper

? ’CJill Jo?

Frm\k

You write
great software
iteratively.

Work on the l)_lg

Picture, and then
1terate over]meces
of the app until

it'’s mplete.

426 Chapter 9

We really don't have anything to
show Gary yet. All we've done is
start on a few of these key features,
like the Board class and the Unit
class diagram.

Joe: Yeah, maybe we shouldn’t have spent all this time on so
many diagrams, and all this architecture stuff. We’ve got nothing
to show Gary except a bunch of ovals with things like “Play
Game” written inside them.

Frank: Come on guys, we've got a lot more done than that. It’s
going to be simple to finish up the Board class, because we’ve
already got a start on writing a lot of that functionality.

Jill: Well, sure, but that’s the only class we’ve written any code
for. How are we supposed to show that to Gary?

Joe: Well, I guess we could write the Unit class pretty easily,
since we did that class diagram. So it wouldn’t take a lot more
time to write the code for that class.

Frank: Exactly. And, really, we know how to write all of these
classes. We can just take each class, or even an entire package,
and apply all those OO principles and analysis and design
techniques to each chunk of functionality.

Jill: But we've got to work on functionality now. We don’t have
time for a bunch more big-picture analysis and design.

Frank: But that’s just the thing, Jill: we don’t need to change
what we’re doing, we just need to iterate deeper.

Joe: Iterate deeper? What does that mean?

Frank: It just means we keep doing analysis and design, but
now on cach individual part of Gary’s game system framework.

Jill: And as we build up the application, we’ll have lots of pieces
working that we can show to Gary, right?

Joe: And we get to use all these tools we’ve got to make sure the
software is well-designed, too, right?

Frank: Exactly. But first, we've got a choice to make...

Download at WoweBook.Com

iterating and testing

lterating deeper:
two basic choices

When it comes to developing software, there is more than
one way to iterate into specific parts of your application.
You've got to take on smaller pieces of functionality, but
there are two basic approaches to figuring out which
small pieces to work on—and even what a “small piece”
means in terms of your application.

You can choose to focus on specific

features of the application. This

approach is all about taking one BOtll aPPI‘OaCheS to
piece of functionality that the

customer wants, and working on that iterating are Jriven
functionality until it’s complete.

loy gooJ requirements.
Feature driven development

R, ---/s when you pick a specific feature
¢ in your app, and plan, analyze, and
develop that feature to completion.

Because rec[uirements
come from the

You can also choose to focus on L 1‘
specific flows through the application. CUStOmeI', Ot

This approach takes a complete path

through the application, with a clear approaclles ‘[OCUS on
start and end, and implements that

path in your code. Jelivering what the

Use case driven development CUStomer Wants.

...Is when you pick a scenario
through a use case, and write code
to support that complete scenario

through the use case. Q

You'll often see H\c, Lerms

.n
“flow’ and “seenavrio used
inkevehangeably

427

Download at WoweBook.Com

features or use cases?

Feature driven development

When you’re using feature driven development,
you work on a single feature at a time, and then
iterate, knocking off features one at a time until
you've finished up the functionality of an application.

428

Gary’s Game System Framework
Feature List = ——

1. The framework supports different types
of ferrain. S

1. The framework supporis different time
periods, including fictional periods like sei-
fi and fantasy.

3. The framework supports multiple types of
troops or units that are game-specific.

4. The framework supports add-on modules
for additional campaigns or battle
scenarios.

5. The framework provides a hoard made
up of square tiles, and each tile has a
terrain type.

6. The framework keeps up with whose turn
it is.

7. The framework coordinates basic
movewment.

o we might take feature

#I, and work on the

Tecvain tlass, as well as

Lhe Tile class, to suwor’c.
diffevent Lypes of Levrain

ﬁ.” these other plans and
1agrams ave used, but
feature list is the po.;us?low

Download at WoweBook.Com

iterating and testing

Use case driven development

With use case driven development, you work on completing
a single scenario through a use case. Then you take another
scenario and work through it, until all of the use case’s scenarios

are complete. Then you iterate to the next use case, until all your
use cases are working.

Wikh use case dviven

Heve, you tould take the
dcvc\o\mcn{:’ o Y j‘::’: Crcafc Board use ease, and
dovle c‘:shd.agr:':;c anwrc out all the stenavios
lists the dirrever

or that use case, and write
¢ode to handle all of them.

/

Create Board

cases in Your system:

Create New Game

O

Game Designer
Modify Existing Game

The Game

Deploy Game Add/Remove

Units

8ary's Game sty
Gary's Games
Vision Statement

 Framewoy
Feature Ljst Work

‘ VARV,

e . Board L
‘ "bnﬂs

| !
e

{ > ‘—“--—1-946 o =
Game t Graphis ’ M o g
. — —V-c =y
—h—l.__'_"' A ~ Controller
1 | utiities — e
Controller °_ | o
1 \fmara =
Pr—

you are here » 429
Download at WoweBook.Com

use case or feature driven

Two approaches fo development

There’s just one basic way to write code, isn’t there? Well, there
are actually a ton of different ways to go about iterating deeper
and finishing up parts of your application. Most of these
different approaches fall into the two basic categories we’ve been
looking at, though. So how do you decide which to use?

What's the difference hetween feature driven and
use case driven development?

Feature driven development is Use case driven development is

wore granvlar
]

A single feature —> 2
is often pretty

small, and every
awhaa{jov\ has 3

‘lgf, 0‘(: them.

wore “big picture”

P You'll be wov-kin3
on pretty

major thunks of
tode at 3 time,
sinte a Sin ’c
stenavio ten
involves 3 |of of
fund'l:ionali-(;y_

)

Works well when you have a lot
of different features that don’t
interconnect a whole lot.

Allows you to show the customer
working code faster.

Is very functionality-driven. You're not
going to forget about any features
using feature driven development.

Works particularly well on systems
with lots of disconnected pieces of
functionality.

430 Chapter 9

Works well when your app has lots
of processes and scenarios rather
than individual pieces of functionality.

Allows you to show the customer
bigger pieces of functionality at each
stage of development.

Is very user-centric. You'll code for
all the different ways a user can use
your system with use case driven
development.

Works particularly well on
transactional systems, where the
system is largely defined by lengthy,
complicated processes.

Download at WoweBook.Com

iterating and testing

* * *

WNAME THAT APPRQOACH!

Welcome to “Name That Approach!” Below are several statements, and
each one is about a particular approach to iterating over parts of your
system. Your job is to figure out which approach each statement refers to.
Note that sometimes, a statement might apply to both approaches.

Use Case Driven Feature Driven

This approach deals with really small pieces
of your application at a time. D D

This approach lets you focus on just a part
of your application at a time. D D

This approach is all about a complete
process in your application. D D

Using this approach, you can always test
to see if you've completed the part of the D D
application you’re working on.

When you use this approach, your focus is
on a diagram, not a list. D D

431

Download at WoweBook.Com

name that approach solutions

" * + Exegecisa
NAMNME THAT APPRQAOACH 50 Y
OLutiONS

Welcome to “Name That Approach!” Below are several statements, and
each one is about a particular approach to iterating over parts of your
system. Your job is to figure out which approach each statement refers to.
Note that sometimes, a statement might apply to both approaches.

Use Case Driven Feature Driven

This approach deals with really small pieces g
of your application at a time. D

This approach lets you focus on just a part
of your application at a time.

~d

This approach is all about a complete
process in your application.

Using this approach, you can always test
to see if you've completed the part of the
application you’re working on.

LN
U

When you use this approach, your focus is
on a diagram, not a list.

ol
O

432

Download at WoweBook.Com

iterating and testing

Let’s use feature
driven development

Since Gary’s losing patience, let’s go with feature driven development. We can
take just a single feature and work it through to completion, and it shouldn’t
take as much time as it would to write the code to support an entire use case.

Anytime you’ve got a customer impatient to see results, you should consider
feature driven development, and starting with a feature you’ve already done
some work on.

ture

We ao baek to our fea

\\:{,5 Zvom C\\aVJCCYS band 1
G

Gary’s Game System Framework
Fea‘l'Ul'C Llst We alY‘Cad\f have {;\'\C C‘QS}S
1. The framework supports different types diagram for Unit, so let's
of ferrain. write the code for that elass,
: ; and knotk off feature #3.
Z. The framework supports different time "
periods, including fictional periods like sei- / \
fi and fantasy. %
3. The framework supports multiple typ Unit
troops or units that are game-specific. type: String
4 properties: Map
for additional campaigns or battle setType(String)
scenarios. getType(): String
5. The framework provides a board made setProperty(String, .Objgct)
up of square tiles, and each tile has a getProperty(String): Object |
terrain type.
6. The framework keeps up with whose turn /
it is.
7. The framework coordinates basie We also know that most of our
wovewent. other features depend on this
tlass, so that makes it an even

better candidate 4o start with.

RANVN
PQWERWR

If you decided to go with use case driven development,
what would you start working on first?

you are here » 433
Download at WoweBook.Com

analyze your features

Analysis of a feature

Once you've decided on a feature to start with, you’ve got
to do some more analysis. Let’s start with what we had
written down on the feature list:

3. The framework supports multiple types of

troops or units that are game-specific. = Here's what we've ot so far..

but this is still 3 pretty
We also have the start of a class diagram, from Chapter 7: genevic descvi\?'l:ion of what

we need to tode.

Unit
type: String
properties: Map
thtggz(()suslrt]ﬁr:g <\ This looks like Jihc‘b\ucvgjv\:
: Unit class.
setProperty(String, Object) for ;K5°°:i ss::g?
getProperty(String): Object anything

It looks like we've got everything we need to start coding, ‘@ — Gary’s Games_@‘

right? To help us make sure we haven’t forgotten anything, Vision Statement

let’s go back to using some textual analysis. Gary’s Games provides frameworks that game designers can use to

.. create turn-based strategy games. Unlike arcade-style shoot-"em-up
We don’t have a use case to analyze, but we can revisit games and games that rely on audio and video features to engage the

the vision statement for Gary’s games, and see if we’re player, our games will focus on the technical details of strategy and

. . . : ics. Our framework provides the bookkeeping details to make
ed his units to do. (ERSiitEs p pmng
covering everythlng that Gary wanted building a particular game easy, while removing the burden of coding

repetitive tasks from the game design.

. — The game system framework (GSF) will provide the core of all of
HC"‘C)S 68?‘/,5 vision s‘{',a‘tCMCV\{:; Gary’s Games. It will be deliveredF?is a library of classes with a well-
Lrom way back in Chaytcr b. defined API that should be usable by all board game development
project teams within the company. The framework will provide standard
capabilities for:

¢ Defining and representing a board configuration
¢ Defining troops and configuring armies or other fighting units

¢ Moving units on the board

Compare the class diagram for Unit with
this vision statement. Are there things
missing from our class diagram?

¢ Determining legal moves
¢ Conducting battles

¢ Providing unit information

What else Might Gal'y expeCt to see when The GSF will simplify the task of developing a turn-based strategic
you say, “]’'m done with ert'ng code for board game so that the users of the GSF can devote their time to
the units in your framework?” implementing the actual games.

434 Chapter 9
Download at WoweBook.Com

iterating and testing

Fleshing out the Unit class

In our class diagram, all we’ve really figured out is how to

represent the properties of a unit. But in Gary’s vision statement, E"S f:jtcs sense, because the
he’s expecting his game system framework to support a lot more \ in \éha {::c7wc were ‘c°"’“5i"5 on
than just those game-specific properties. Unit CESS) fwc?s not the entive

. o bu J"S’C same—spcci(:ic
Here are the things we came up with that Gary is expecting units Properties of a Unit.

in his framework to do:

0 Each unit should have properties, and <— Our tlass diagram is ‘('\ot,usi(: on
game designers can add new properties this \aav{:icu\ar aSPCCJC ¢
to unit types in their own games. Unit elass vight now:

Units have to be able to move from one < You should have some ideas about
tile on a board to another. how to handle this from our
work on a velated key feature
back in Chayfcr 7

(, e Units can be grouped together into armies.

These new
features are
all pulled
sheaight from
63"715 vision

s‘{:a{',c m CY\{}

Wow, great. Another list
of things you're going to do. Look,
I trust you and all, but I need to
see something more than scraps
of paper to believe your code is
working.

Gary st satisfied with your
use tases and lists... what do you
Ehink would make Gary believe

that what \/ou,vc working on will
sa{:is(:\/ his rco\uircan{:s? —_—

you are here » 435

Download at WoweBook.Com

customer demonstrations

Unit groups
Showing off the Unit class

We worked on supporting game-specific units, and how
to store the properties of a Unit, back in Chapter 7.
But Gary wants more than a class diagram before he’s
convinced you’re getting any work done.

This may be what
: You need +o
/ start toding the Unit tlass, but

. Unit 23 doesn't do :?h)"l:hing to prove 4o
type: String Gary that you've 9ot working units
properties: Map n the game system Framework
setType(String)

getType(): String
setProperty(String, Object)
getProperty(String): Object

How about a test? Can't you come
up with a way to show me the unit has
properties, and can move around, and that
you've got support for armies? I want fo see
your code actually running.

Your customers want to
see something that makes
sense to them

Your customers are used to seeing
computer programs run on a computer.
All those diagrams and lists may help
you get on the same page with them in
terms of requirements and what you’re
supposed to build, but you’re going to
need more than that before they think
you’ve built anything useful.

You need to come up with some test
scenarios that you can show to your
customer, which will prove that your
code works, and that it behaves like
your customer expects it to.

436 Chapter 9

Download at WoweBook.Com

iterating and testing

Writing test scenarios <—— ;|| o) i ccosns it bhe

. n)
same as the “stenavio” we've been

T 'th lex; they j .
est cases don’t have to be very complex; they just talking about in 3 use tase stenario.

provide a way to show your customer that the
functionality in your classes is working correctly.

Tor the properties of a unit, we can start out with a
simple test scenario that creates a new Unit, and adds a
property to the unit. We could just show our customer a
running program that displays output like this: ,
_ ou
el w”ﬂ"ﬁ ”a”)’ erk:c
We start out by

ereating the Unit...

File Edit Window Help [tWorks

%$java UnitTester
Testing the Unit class...
...Created a new unit

..then we set some 5 C .get “;ype” to “infaxzns:ry”
: ...Set “hitPoints” to
?roycrhcs ...Getting unit type: “infantry”
é: ...Getting unit hitPoints: 25
_and finally oet Test complete.
the propertics

and make sure the
\la\ucs "‘a‘u\‘ it
with what we s€v
Write the ou{;Fu{:

You want Gavy 4,
in these blankz. o

File Edit Window Help Scenario2

BE the Customer [REHrarnng

We've already got one test
scenario. It’s your job to
play Gary, and think of two

more test Scenarios that Test complete.
we can use fo prove
that the Unit class is File Edit_Window Help Scenariod
WOI;king er it shou]d. $java UnitTester

Write the OufPuf 0[‘ each Testing the Unit class...

scenario in the code
windows on the right.

Test complete.

you are here » 437
Download at WoweBook.Com

exercise solutions

BE the Customer
Solutions

Unit properties Unit groups

Your job was to think of

i two more test scenarios

~ that we can use {o prove
that the Unit c]ass

is working like it
shou]d. Here are
the two scenarios
we came up with:

Scenario #2: Changing property values

We decided to test setting, and then changing, the value of
a property. If the hitPoints property is set, for example,
and then set again, getting the value of hitPoints should
return the most recent value for that property:

We always beain

...Set “hitPoints”
...Getting unit type: “infantry”
...Getting unit hitPoints: 25

File Edit Window Help [tWorks

%java UnitTester
Testing the Unit class...
...Created a new unit

...Set “type” to

“infantry”
to 25

Test complete.

Heve's the fivst test
stenario, whith Lests
sc{:{:ing and SCffihg
Property values.

This is Pv-c'l:'l:y similar—looking to
the first stenario, above, but it
tests thanging 5 Property value,
vather than Jus‘t sc'l:‘l:ing and
vetrieving a Property.

by ¢reating a new File Edit Window Help Scenario2

Mhi‘tl so we tan {:cs£

£hings out. \
...Created a new unit

Next we s.c{: {'.,\\c e " Set “hitPoints” 4o 25
RIS . “hitPoints” Lo 15
and then ve .Getting unit hi Poin : |5

{‘p 3 new va\uc/ 00

Finaly, we make Test complete.

sure hi‘l:Poiy\{;s has
the most turrent
value, and not the
original value of 25.

%java UnitTester

438 Chapter 9

Testing the Unit class...

Download at WoweBook.Com

Scenario #3: Getting non-existent property values

For our third scenario, we decided to test what would happen when
you tried to retrieve the value of a property that had never been set.
Error conditions like this crop up all the time, and we don’t want our
program crashing every time a game designer makes a small typo or
mistake in their code. Here’s what we did to test this:

iterating and testing

This Lest shows the tustomer that
\/ou’\rc not just dealing with happy
Ya{',hs... you've thinking about how
4o deal with uses of the software

that ave outside of the norm.

Start out by eresting [Te BT Widow Help Scenario?
a new Unit again. %java UnitTester

Next, we set a Testing the Unit class...

hitPoints property, ..Created 3 vewoit
I Cct itPont to25

Unit usage.

F'mall\/, make sure Test complete .

the Unit still behaves
when Yyou ask for a
property that does
have a value.

Now let’s try and -) it hitPoints: 25
attess a property
that has no value.

You should test your software for every
]oossi]o_le usage you can think of. Be creative!

Don't Jf'orget to test for incorrect usage of
the so{tware, too. You'll catch errors g@ﬂy,

and make your customers very ha]o]oy.

you are here »

Download at WoweBook.Com

questions on testing

t]ﬁer are no

Unit properties Unit groups

Dumbd Questions

Q; We don’t have any code
written yet. Aren’t we doing things a
bit backwards by worrying about tests
right now?

A: Not at all. In fact, if you know what
tests you're going to use before you write
your code, it's easy to figure out what
code you're going to need to pass those
tests. With the three test scenarios we
just developed, it should be pretty simple
to write the Unit class, and the tests tell
us exactly how our code should behave.

Q: Isn’t this just test driven
development?

A: For the most part, yes. Formally,
test driven development focuses on
automated tests, and usually involves a
testing framework like JUnit. But the idea
of writing test cases, and then writing the
code that will pass the test, is the core
idea behind test driven development.

Q: So are we using test driven
development or feature driven
development? I’'m confused...

A: Both. In fact, most good software
analysis and design mixes lots of different
approaches. You might start with a use
case (use case driven development),

and then choose just a small feature

in that use case to start working on
(which is really a form of feature driven
development). Finally, you might use
tests to figure out how to implement that
feature (feature driven development).

440

Q,: Why are the tests so simple? |
expected something a little fancier.

You want to keep your tests
simple, and have them test just a small
piece of functionality at a time. If you start
testing multiple things at once, it's hard to
tell what might have caused a particular
test to fail. You may need a lot more tests,
but keep each one focused on a very
specific piece of functionality.

Q/: And each test makes sure
a single method in the class works
correctly, right?

No, each test really focuses
on a single piece of functionality. That
might involve one method, or several
methods. For example, you can’t test
setting a property’s value (which uses
setProperty ()) without getting
that property’s value as well (using
getProperty ()). Soit's one piece
of functionality—setting a property—but
it takes two methods.

Q- Can you explain why you tested
getting a property that you didn’t set?
Isn’t that testing the wrong way to use
the Unit class?

A: Testing incorrect usage of your
software is usually at least as important
as testing it when it's used properly.
Game designers could easily mistype

a property name, or write code that
expects some other piece of a game to
set a property and asks for a property
that doesn’t exist. It's your job to know
what will happen in these situations.

Q: Now that we’ve got our tests
planned out, we can finally start coding
the Unit class, right?

A: Well, there’s one more bit of
design we need to think about first...

Test driven Jevelopment
focuses on getting the behavior
of your classes rig]nt.

Download at WoweBook.Com

Unit

type: String
properties: Map

setType(String)

getType(): String
setProperty(String, Object)
getProperty(String): Object

Here's the curvent tlass diagram
(:ov Unit that Frank, Jill, and
Joe ave distussing

Guys, I've been looking
at our class diagram for Unit,
and I'm not sure that this is the best
way to handle things. I think our
commonality analysis might have
been a little off.

iterating and testing

Joe: What do you mean? We figured out that all properties in a Unit
have a name and a value. So we decided to use a Map to store them all.

Frank: And game designers can add any new properties they want by
just creating new property names, and sticking name/value pairs in the
Map with the setProperty() method.

Jill: Right. But then, we also added a type property, since all units will
have a type. And that’s something common for all units...

Joe: Sure. See, we did do the commonality analysis right.

Jill: ...but we also now know that units can be assembled into groups,
like armies or fleets or whatever. So what happens if we have two units
of the same type in the same group... how can we tell the difference
between them?

Frank: You think we need some sort of ID, don’t you?

Jill: Yeah, maybe. Or at least a name... but even then, you can’t really
prevent duplication with a name property, can you?

Joe: OK, but that still doesn’t mean we need to change our design. We
can just add the ID property into our property Map. So we’ve got a
nice, uniform way to access all those properties, using the getProperty()
method.

Frank: He’s right, Jill. And since we encapsulate away the details about
property names into the properties Map, we could even change from
using an ID to a name, or something totally different, and code using
the Unit class wouldn’t have to change much... you’d just need to use
the new property name in getProperty(). That’s a pretty slick design!

Jill: But what about commonality? If ID is really common to all types
of Unit, shouldn’t it be moved out of the Map, sort of like we did with
the type property?

Joe: Whoa... encapsulation or commonality. That’s tough... it seems like
we can’t do one without screwing up the other.

you are here » 441

Download at WoweBook.Com

commonality revisited

@@pen your pencil

-~

Refine your commonality analysis.

Before we close the book on dealing with Unit properties, there are a few things you
still need to think through. Below are several properties that different units might
have, and two sheets of paper. Write down on the Commonality sheet the properties
that you think all units, regardless of their type, would have; on the Variability sheet,

write down properties you think only specific types of units might have.

Potential Unit Properties

hame weapon allegiance gear
type hitPoints wingspan lastName
strength weight landSpeed id
speed intelligence experience groundSpeed
stamina firstName weapons hunger
Mhi{:——syctixcic stuff
) goes on this sheet
Anything —> i I of paper.
et o Cowmonality Paper->
think is PN
genevie e Variabili
cnough
to apply
4o all
units 56415
written
down heve.
¢
e
T ———
442 Chapter 9

Download at WoweBook.Com

iterating and testing

Now update the Unit class diagram.

With the details from your revised commonality analysis on page 442, you (might) need
to update the Unit class diagram, shown below. Make any changes that might improve the

design of the Unit class below, and add notes to remind yourself what the purpose of any
additions you’ve made are going to be used for.

Unit

type: String

o tross ot)

oot s =7 |properties: Map

i?slilh%' Vvo\’t\r"bcs » .
.E I l{; adding Fr_"Perfics You

add- |ov‘\c‘(: (/ ﬂ"hk Mni{:

e needs heye.

setType(String)
getType(): String
dadd{' setProperty(String, Object)
%ﬁ“%ggo:;ﬂ:f getProperty(String): Object
ey

vaviability analysis on
the last page:

Download at WoweBook.Com

you are here » 443

a matter of opinion

Unit properties Unit groups

q-'%r)p\en your pencil
ANSWEI'S Refine your commonality analysis.

On page 442, we showed you several properties that different units might have.
Your job was to write down on the Commonality sheet the properties that you think
all units, regardless of their type, would have; on the Variability sheet, you should
have written down properties you think only specific types of units might have.

We didn't find a lot

‘/ou should dmcini{‘,cl\/ of Pro\?cr{:ics that
have written down “type”, tould apply to any

sinte we ‘Figurcd out ' P 'E\/PC O‘C W\i‘{;, SO our
that was common 4o all (}Ql"mmm tommonality page is
units baek in Chap{:cr 7\

FV‘C‘H:\/ thin.

e fype
) e
“hamcn and u.ldl e — = ::iam
Prc{-,{:\/ basie, and we weapons

thought that all units
would P‘robabl\/ have “ ”

both properties. :lca{om Mi?% ety

ontroversial detision. We [

{;Haf sinte these are warcgﬁg::cill

;hfs would have at least one w:eapon
ut that some might have move 'H\an)

one. So a generie “weapons” propert

seemed a good £it for) unit {:ypcs).l

We also detided that we would never
need just a single “weapon” property..
units with one weapon would have

just a single weapon in the “weapons”
property. So we ditehed this property.

You may have a different idea
about what makes a good game. !

Relw(You might have played different games

than we have, and come up with different
common properties. That’s OK—just focus on /ow
and why you made your own decisions. We’re going to
use our choices in the rest of the chapter, so you should

* be comfortable with how we made our choices, too. :
444 Chapter 9 O RR TR :

Download at WoweBook.Com

We moved most of the
properties onto the
Vaviability list, since they
only apply to certain

{',\/\765 o‘(: units. —

\\'\{:Poin{:s was ont Jd\a{: —_—, m ’

tould have Yo{:c“{:"\a“\[Ak
been Lommon to all ime"ige”ce
uniks, and gone on the ﬁVSTName
Commov\a\\{:‘f list. We a"egia"ce
kept it on \/av\ab'\\\‘cy, allegia
sinte some ob\')cLJc wnits) l dé ban
like Lank or airplane, an peed
didnt map as tleanly to experience
witPoints, whith 1s usually gear
used or units Jcha’c“ar'c , lastaMe
human, oF 3t least “alive: gmu"dspeed
hunger
diet‘ are no

Dumb Questions

Q3 | didn’t have anything on the
Commonality list except for “type”. Where
did | go wrong?

A: You didn’t go wrong at all. Analysis
and design are all about making choices,
and sometimes you're going to make a
different choice than another programmer.
There’s nothing wrong with that, as long as
you have good, well thought out reasons for
the decision you made.

Variability

strength
speed
stamina

Q; But won’t different choices at
least result in different code and design
implementations?

A: Yes, they sure will. But OOA&D,
and software development, aren’t about
making a particular decision, since many
times there isn’t an exactly “right” or exactly
“wrong” choice. They’re about writing well-
designed software, and that can happen in
a lot of different ways.

Download at WoweBook.Com

iterating and testing

Most of these
Properties applied to
ci{:_icr human—like units
or 1o vehicular units,
but not to both.

)

In fact, even if two programmers made

the same decision about commonality and
variability in this exercise, it can lead to
totally different design decisions when it
comes to actually writing your classes.
Let's assume for a moment that two
developers both came up with the answers
for commonality and variability shown here,
and then tried to revise the Unit class to
reflect what they figured out...

445

you are here »

solution #1: focus on commonality

Uil (e
Solution #1:

Emphasizing Commonality

I pulled the properties that
were common to all units into their
own variables and methods, and then
left the properties that varied in the
properties Map.

Unit
type: String f»{, the Properties
properties: Map ac:ossw::iefsa:::‘ ”
id: int vepresented s

variables outside of

nawme. s{rmg - 'l:he PV‘oPcr'l:ics MaP

weapons: Weapon *

setType(String)

getType(): String Sam fiqured that id

setProperty(String, Object)
getProperty(String): Object

would gc{: set in the Unit
Cons{:\rud‘tor, so no need

for a setld)) method.

getld(): int
e ek, Sam back i setName(String)
Chapter 4, when he was get Nawmel): S‘Iﬁ"g Eath of the new
working on the dog door addWeapon(Weapon) properties gets its

with Mavia and Randy: O et of mekhods.

getWeapons(): Weapon *

In this solution, all game designers can directly access the
id, name, and weapons properties, instead of having to
use getProperty () and work through the more generic
properties Map.

The emphasis is on keeping the common properties of
aUnit outside of the properties Map, and leaving
properties that vary inside the properties Map.

446 Chapter 9

Download at WoweBook.Com

Design decisions are always a tradeoff

Sam chose to emphasize the things that are common
across all types of Units. But there are some negatives

to Sam’s design, too:

We’re repeating ourselves

iterating and testing

You defintely found some
commonality between different unit
types, but what about good encapsulation?
That Unit class doesn’t seem very
resistant to change, if you ask me.

Now there are two different ways

to access properties: through the Ra”d)"s ’earned a lot
o
getId(), getName (),and 39Ut 00 design e
property-specific methods, and the We saw him last i ‘
getProperty () method. Two ways Chancr 4.

to access properties is almost certainly going to

mean duplicate code somewhere.

When You see the
potential for duplicate
tode, \/ou’" almost always
‘C'md maintenante and
Qlcﬁibili{:\/ issues, as well.

Maintenance is a problem -

Now you’ve got property names,

like id and name, hard-

coded into the Unit class.

If a game designer doesn’t .

want to use those, or wants to 2
change them, it’s going to be a

real hassle, and require changes to the Unit class.
This is usually where encapsulation would help,
and that leads us to Randy’s design choice...

you are here » 447

Download at WoweBook.Com

solution #2: encapsulate everything

Solution #Z:
Emphasizing Encapsulation

T encapsulated all the

properties of every kind of Unit
into the properties Map. My class
is extremely resistant to change

now.

Unit properties Unit groups

properties: Map

Randy didn’t add

any new properties
or "\thods, and

{setType(String)— =

getFype()-String

setProperty(String, Object)
getProperty(String): Object

he 9ot vid of Lhe
type vaviable and
the 9et Type()
"\C'u\od, movin
that property into
the Properties Map.

This solution focuses on encapsulating all the properties for a Unit
into the properties Map, and providing a standard interface—the

448

Chapter 9

getProperty () method—for accessing all properties. Even
properties that apply to all units, like type and id, are accessed
through the properties Map in this solution.

The emphasis is on encapsulation, and a flexible design. Even if
the names of common properties change, the Unit class can stay the
same, since no property names are hardcoded into the class itself.

Download at WoweBook.Com

iterating and testing

But you're totally ignoring what's
common across Units. And how are
game designers going to know that we
infended name, type, id, and weapons
to be standard properties?

Tradeoffs with this decision, too...

Randy’s solution is more resistant to changes, and uses a lot
more encapsulation, but there are tradeofls with this design,
as well. Here are a few of the downsides to Randy’s design:

We’re ignoring commonality
Randy encapsulated all of the
properties into the properties
Map, but now there’s nothing to
indicate that type, name, id, and
weapons are intended to be properties
common to all Unit types.

Lots of work at runtime

getProperty () returns an Object,
and you’re going to have to cast that
into the right value type for each
different property, all at runtime. That’s
alot of casting, and a lot of extra work
that your code has to do at runtime,
even for the properties that are commor
to all Unit types.

RANVN
PQWEWR

Which developer’s solution do you think is best? Are there
times where you think one solution might be the best choice,
and other times where the other might work better?

you are here » 449
Download at WoweBook.Com

you have to make a choice

Unit properties Unit groups

Let’s go with the
commonality-focused solution \ il bl art
For Gary’s game system framework, let’s use Sam’s solution, of dealivd w\JC: unit-

Yvo\wv{’;‘cs

which pulls the common properties of a Unit out into
their own properties and methods, and leaves unit-specific
properties in a separate Map.

Unit

type: String

: id: int
These yro\?cr{:nes are .
tommon +o all wits. =\ |name: String

weapons: Weapon [*]

properties: Map
Any other e

unibe o setType(String)
game-specific getType(): String
Fropertes go in getld(): int
is Map. setName(String)
getName(): String
addWeapon(Weapon)

getWeapons(): Weapon [*]
setProperty(String, Object)
getProperty(String): Object

450 Chapter 9

Download at WoweBook.Com

ther are no

— Dumb Questions —

Q: | thought the other design, that focused on
encapsulation, was better. Is that OK?

AI Absolutely. Both design choices have
positives, and either one might work well. The only
thing you cannot do is be unwilling to change your
design—whichever one you start with—if it turns out to
not work well down the line. At each stage of iterating
through your app, you need to reevaluate your design
decisions, and make sure they're still solid.

Q} So how do | know when | need to change
my design? My code won't just stop working, so
what should | look out for?

A: Iteration is really the key point here. Lots

of design decisions look great at one stage of your
development, but then turn out to be a problem as you
get deeper into a particular part of your app. So once
you make a decision, stick with it, and iterate deeper
into your application. As long as your design is working,
and you're able to use good OO principles and apply
design patterns, you're in good shape. If you start
running into trouble with a decision, though, don’t ever
be afraid to change designs and rework things.

Q: What happens when | can’t decide between
a couple of good design choices?

A: You always have to make a choice, even if
you're not 100% sure if it’'s the right one. It's always
better to take your best guess, and see how things
work out, rather than spend endless hours debating
one choice or another. That's called analysis
paralysis, and it's a sure way to not get anything done.
It's much better to start down one path, even if you're
not totally sure it's the right one, and get some work
done, than to not make a choice at all.

iterating and testing

Good software is built
1terat1vely. Analyze,
Jes1gn, anc[then

iterate again, worlcing

on smaller and smaller

parts of your app.

Each time you iterate,

reevaluate your Jesign

decisions, and don't be
alraid to CHANGE

sometluing if it makes

sense for your c[esign.

you are here » 451

Download at WoweBook.Com

connecting code and tests

Unit groups
Match your tests to your design

We’ve got test scenarios we want to show Gary, and a design
for the Unit class. The last thing we need to do before
coding is to make sure our design for Unit will allow us to
code a solution that passes all the tests.

Unit

type: String
id: int

have name: String
wc;:::;\sd;n Lhis elass ———= |weapons: Weapon []
:: Mow s £o do properties: Map
everything in all sefType(String)
our Lests: getType(): String
getld(): int
setName(String)
getName(): String
addWeapon(Weapon)
getWeapons(): Weapon [*]
setProperty(String, Object)
getProperty(String): Object

. it is just
C‘fca‘tm‘? a url{h ‘); File Edit Window Help [tWorks
calling new Unitt 2o

e g Eheve. %java UnitTester

Testing the Unit class... .' tests re—setd;
. .Created a new unit n

/} ...Set type to “infantry” tPro . ther eall
...Set hitPoints to 25 tovereq TS 50 we've
We tan use sc{:T\/F-cO/) ...Getting unit type: “infantry” on this senario
and SCH-‘/PCO {0 ...Getting unit hitPoints: 25
hahdlc ‘H\is, sinte i-t’s LY=o File Edit Window Help Scenario2
a tommon property %$java UnitTester
for all Unit {:\/Pcs. Testing the Unit class...
...Created a new unit
...Set hitPoints to 25
vLies like hitPoints ...Set hitPoints to 15
A"‘IJ“"‘, ,C'wmon o ...Getting unit hitPoints: 15
‘t:}a a‘{::h b SCJC ahd / File Edit Window Help Scenario3
all units tan be

; i 0 Test compl %java UnitTester
retrieved using sc{:Pro?cr{:\/ Testing the Unit class...

and 5C+«P\“°?C"{"‘/o' ...Created a new unit
...Set hitPoints to 25
For this test, we jvsf need to call) ...Getting unit strength: [no value]
getProperty(“strength”), without ...Getting unit hitPoints: 25

ever setting the “strength” property,
and see what happens. Test complete.

452 Chapter 9

Download at WoweBook.Com

iterating and testing

Let’s write the Unit class

It’s been two chapters in coming, but we’re finally ready to
write the code for the Unit class. Here’s how we did it:

Unit.java
package headfirst.gsf.unit;

public class Unit {

private String type;

private int id;

private String name;

private List weapons;

private Map properties;)

. e Wetake the ID of the Unit

public Unit (int id) { n {hroug\r\ the tonstruetor...
this.id = id;

} 50 we only need a getld0),

public int getId() { and not a setld() as well.

return id;
} We didn't list the eode for
—— these simple getters and
// getName () and setName () methods / cebters ko save 3 likle space.
// getType () and setType () methods | .
\/ou,\\ need 3 S"ﬂ\"c eap

public void addWeapon{Weapon3weapon) { tlass to make H‘E ;'o:c
if == null ile. We treated an
' wézezizni newnzinieéList()' We wai COka \ava with no
p i d Ve wait unti) there's 5 empty Weavow% ‘E,
) need for 5 Weapons [ist methods, for Testuny
weapons .add (weapon) ; "‘s'éahfia{:c an l_s,{; to
} ° ew List.
:3Ve; a litte bit of mcmThat
S H oy
public List getWeapons() { Pec'a”y when 'l:hcre may b, :
return weapons; ousands of units, 7 e

}

public void setProperty(String property, Object value) {

if (properties == null) { L'£ we
. S \S
properties = new HashMap(); < ———— Just like the wc&\’O“M ,ov
} don't treate a HashMap ted
properties.put (property, value); YrochJC‘CS w\{j\ ks nee .

}

public Object getProperty (String property) {
if (properties == null)

{
eturn null; \ . | |
| _(propext ince properties might not be

, initialized, theye’
7 chetk here bof S an extrg

ve looki
} Property’s valye. e up 2

return properties.get (property)

you are here » 453

Download at WoweBook.Com

test cases examined

Unit groups
Test cases dissected...

We’ve talked a lot about test cases, but so far,
you haven’t seen how to actually write one.
Let’s examine a test case up close, and see
exactly what makes up a good test.

Tv-y not 4o vefer)
tests as Lest, test2, ete.

o Each test case should have an ID and a name. /s deseriptive names

. . . whenever i
The names of your test cases should describe what is being tested. er possible.

Test names with nothing but a number at the end aren’t nearly as
helpful as names like testProperty () or testCreation().
You should also use a numeric ID, so you can easily list your tests
cases out (something we’ll do on the next page).

— Orne piece of Func{:ionali‘l:y

ags may i
e Each test case should have one specific 'NCZH:C\II:"I:VOM mcfl;zd,l two
- -) even multi
thing that it tests. elasses... but 4o stard 'Eizh
Each of your test cases should be atomic: each should test otus on very simple picees) .
only one piece of functionality at time. This allows you ‘Fund‘f:ionalify, one at a ‘(:imco

to 1solate exactly what piece of functionality might not be
working in your application.

e Each test case should have an input you S [yo've sctting hitPoints
supply. 4o 15, then ‘1% betomes
the in?u{: You 5“"\7\\/ to your

You're going to give the test case a value, or a set of values,
Lest case.

that it uses as the test data. This data is usually then used to
execute some specific piece of functionality or behavior.

e Each test case should have an output I 's what you want 4,
n e

that you expect. Program to ouftput—, ; :
Given your input, what should the program, class, or set '(:YPC to "inz;hfk o
method output? You’ll compare the actual output of the then call 9c‘éT)’PC())’oz ond
program with your expected output, and if they match, exepeted OUfPu{: is)“;h,ﬁ:: '(:\ry"

then you’ve got a successful test, and your software works.

e Most test cases have a starting state. \

Do you need to open a database connection, or create a
’ There’s not muth starting

state for the Unit elass. We
do need to treate a new Unit,
but that’s about it.

certain object, or set some values before running your test?
If so, that’s all part of the starting state of the test case, and
needs to be handled before you run the actual test.

454 Chapter 9

Download at WoweBook.Com

aSharpen your pencl

iterating and testing

“m. Design your test cases.

Below is a table with 5 columns, one for each of the 5 important parts of a test

case. Your job is to fill in the table with information for the test cases we've

laid out in this chapter already. We've even done the first one to help get you

started, and filled in a few empty spots on the rest of the tests.

This test sets the “type” propert
/‘l:o a value of “imcan{:ry." U
D What we've testing [nput f Expected Starting State
Ou{:?u{:
Remember, I Setting/Getting the ‘ “type”, e “type”, | Existing Unit object
J;“‘EE::C:LC > type property ‘infantey” | “infantry
\
bc‘{',WCCV\ “hitPoi'\b”,
a tLommon / 2_5
vrovcvad ke Existing Unit object
JC‘/,\’EI :‘;‘w . with hitPoints set 4o 25
wnit—
yro\?cv{:ics. 4’
{:ua“‘[L
Theve ave 3¢ : ted
'\v\d'w\dva\ {'f\‘m‘bs bend tcs
. these three stenavios: N

The fivst —

stenavio tests

5e££iv\5 and
sc{:{‘jng the

File Edit Window Help

ItWorks

%$java UnitTester
Testing the Unit class...

..Created a new unit
...Set type to “infantry”
..Set

.Getting unit type: “infantry’' oot hitPoints to 25
.Getting unit hitPoints: 25

hitPoints to 25

Test complete.

“{;\/‘Jc" ?Yo?cr‘{:\/:

as shown her

e.

File Edit Window Help Scenario2
%java UnitTester

Testing the Unit class...
...Created a new unit

...Set hitPoints to 15

...Getting unit hitPoints: 15

File Edit Window Help Scenario3

%java UnitTester

Testing the Unit class...
...Created a new unit
...Set hitPoints to 25
...Getting unit strength:

Test complete.

Download at WoweBook.Com

[no value]
...Getting unit hitPoints: 25

you are here »

455

testing matters

Unit groups
aSharpen your pencil
W answers

Design your test cases.

Below is a table with 5 columns, one for each of the 5 important parts of

a test case. Your job was to fill in the table with information for the test
cases we've laid out in this chapter already.

In most of our tests, we

want as output c%at'{:l\/ what
we supplied as input.

Y\
D What we've testing Input | Expected Starting State
Output
“t c", Existing Unit object
“in ah{:\r\/" “in‘(:;li{:ryn))
\/ou should have 2 SC{',{', 66‘{:‘{2 a .{_ “"\.‘tP B ‘tS"; “h'l'(:P . ‘(:S”, Exis{:i " i‘[’, b'CC‘t
e ek o e e A ng Unit. obj

with common E Changing an existing [*hitPoints”, [*hitPoints”,| Existing Unit object
\woycr{jes, and PYO?CY"[',\/,S value |15 |5

I Setting/Getting a “type”,
-~ 3 2 YP

tommon proper \/

with hitPoints setto 25

one ("ov. working 4' ﬁcf{:ing a non—existent N/ A “s{‘,\rcnq{h", Exisﬂng Unit ob\)cb{:

with E’;‘k’cs property’s value Vi no value | without strength value

syc&u \C ones.

o is test Did you £; /\
The entire point of this tes You Fiqure out £,
< E_; not supply 3 value for a needed 4o make sure -(;itlo:la .
propecty and then ‘rx\/’ and "o Property with 4 Previous
vebvieve that ?roycr{',\l s value. Value for this test ease?
t}ler are no

Dumb Questions

Q: How did our three test scenarios turn into four test cases? Q: And all these tests will let us know that our software works
like it should, right?

A: Because the first test case really tested two things: setting and
retrieving a common property, which has its own variable and access It's a good start on that, yes, but remember, we started out
method (like getType ()), and setting a retrieving a unit- or game- writing the tests so that we could prove to the customer that the
specific property, which is accessed through getProperty () (like software we've been writing actually will work. Our test cases let the
hitPoints). That's two pieces of functionality, so two different test customer see some code actually running, as well as help us find bugs
cases are required. in our code before we get too far along in our development cycle.

456 Chapter 9

Download at WoweBook.Com

iterating and testing

Test Puzz]e

Now that you know what test cases are, and have several written up in table form,
you're ready to code a test class to show your customer that your software works,
and prove to yourself that there aren’t any bugs in the code that you’ve written.

The problem:

Gary wants to know that you’re making progress on supporting
units in his game system framework, and you want to be sure that
the code you’ve written for Unit. java works properly.

Your task:

o Create a new class called UnitTester. java, and import the Unit
class and any related classes into it.

Add a new method for each test case you figured out from the table on
page 456. Be sure to use descriptive names for the test methods.

e Each test method should take in an instance of Unit with any starting
state already set, and any other parameters you think you’ll need to run
the test and compare an input value with an expected output value.

e The test method should set the supplied property name and property value
on the provided Unit, and then retrieve the expected output property
value using the expected output property name.

e If the provided input value and expected output value match, the method
should print out “Test passed”; if they don’t match, the method should
print “Test failed”, along with the mismatched values.

e Write amain () method that sets up the starting state for each test, and
then runs each test.

Bonus Credit:

0 There are several things in Unit. java that are not being tested by the
scenarios on page 456. Identify what each of these are, and create a test
method for each.

6 Run these tests from your main () method as well.

457

Download at WoweBook.Com

test puzzle solutions

% Test Puzzle Solutions

public class UnitTester {

Here's the ¢lass we wrote to

‘{ZCS‘E the Unit elass.

public void testType (Unit unit, String type, String expectedOutputType) {

System.out.println (“\nTesting setting/getting the type property.”);
unit.setType (type) ;

String outputType = unit.getType();

Ve H
Eath test if (expectedOutputType.equals (outputType)) { Most {:FS{"S :Edd:'{-’h . ched
method has System.out.println (“Test passed”); tompavrison e expecte
diffevent } else {

ou{?uf and the actual outpu

” + outputType + “ didn’t match ” +

avameters, sinte
eath method is
Lesting diffevent Properties stored in the 11,
H\'mgs in the } take OBJCC{:S as i"PM‘l: and P
Unit elass. output values.

CL__;;_ public void testUnitSpecificProperty (Unit unit, String propertyName,é;::>

Object inputValue, Object expectedOutputValue) {
System.out.println (“\nTesting setting/getting a unit-specific property.”);
unit.setProperty (propertyName, inputValue);

Object outputValue =
if

System.out.println (“Test failed:
expectedOutputType) ;

unit.getProperty (propertyName) ;
(expectedOutputValue.equals (outputValue)) {
System.out.println (“Test passed”);
} else {
System.out.println (“Test failed:
: expectedOutputvValue) ; This 4est is almost identical 4o {cs-{:l(),
} because the starting state takes cave of
—— pre—setting the property to another value.

_— public void testChangeProperty (Unit unit, String propertyName,

” + outputValue + “ didn’t match ” +

Thi {5&: Object inputValue, Object expectedOutputValue) {
s
' e System.out.println (“\nTesting changing an existing property’s value.”);
sum
“‘&cset unit.setProperty (propertyName, inputValue);
g: ﬁjvbng Object outputValue = unit.getProperty (propertyName) ;
N if (expectedOutputValue.equals (outputValue)) {
state . . .
System.out.println (“Test passed”);
Lorvcciﬂyn~

o{hcvwhmi{) ilsi { . e (oot fiieds
wﬂlALJVAYS ystem.out.println es ailed:

” + outputValue + “ didn’t match ” +
QJ\ expectedOutputvValue) ;
\"\.

458 Chapter 9 UnitTester.java
Download at WoweBook.Com

Unit properties Unit groups

This last £est doesn't need an input value,

because that's what
\Wo?cr{:\/ without 3

is being tested for: a

chsc£ value. \

public void testNonExistentProperty (Unit unit,

iterating and testing

String propertyName) {

System.out.println (“\nTesting getting a non-existent property’s value.”);

Object outputValue

if

(outputValue == null) {

System.out.println(“Test passed”);
} else {

System.out.println(“Test failed with value of ” + outputValue);

public static void main(String args[]) {

A“ our main()
method needs to
do is treate a new
Unit, and then vun

UnitTester tester
Unit unit
tester.testType (unit,

new Unit (1000);

“infantry”,

new UnitTester();

“infantry”);
tester. testUnitSpecificProperty (unit, “hitPoints”,

unit.getProperty (propertyName) ;

hitPoints is set to 25 in

fcstuni'tgyccixciLProPcrfy(), so
we ¢an ¢all testChangeProperty()
knowing that the value will be veset

in that test case.

D

-Uwou§\£h6£5d§' new Integer (25), new Integer(25));
tester. testChangeProperty (unit, “hitPoints”,
new Integer (15), new Integer(15));
tester.testNonExistentProperty (unit, “strength”);
}
}
And now for some bonus credit...
We added three new test cases to our table, to handle the three
properties common to all units that aren’t tested in UnitTester. You
should be able to write three additional test methods based on this
table. Did you figure these out on your own?
D What we've testing Input | Expected Starting State
This test case l Output
doCSV\){Z _{_’cs‘t‘al , Sc{:{:in /6 '&'t ‘{Zh “{: » « » E S‘{', M { b {
o 9/ Qettin e ‘Dc,)“ Pc,” XisTInG nit obyel
-L{:'?mz“{‘:::,‘s’c’::s”/'/—a’ type property “imc\a/n{:r\/' imc;/n{:r\/ J
‘{: Jus by, 2| Setting/ 6C‘Hjn3 a unit—[“hitPoints”, ["hitPoints”, E%is{:ing Unit objc(:{:
ype property spetitic ?ro\?cr{:\/ 25 25
3 Changing an existing ~ [“hitPoints”, [*hitPoints”,| Existing Unit object
property’s value 15 15 with hitPoints set™to 25
4 éc{:{:ing a non—existent N/A “s{:\rcr\q{;h", E%is‘[;ing Unit ob‘)cc{:
?ro\?cr{:\/'s value no value | without strength value
S | Qetting the id propert N/A 1000 Existing Unit objeet
We need to tcstha“ = 3 property with an5 id of 1000
three of the ST g Cebbing/actting the | “mame’, | “name’, | Existing Unit object
CémMOV\ L\:“;\::: : B) - name propevty “Damon” | “Damon’
::tcs;ic_‘g ¢ methods | 7| Adding/getting weapons |Axe object |Axe object| Existing Unit object

Download at WoweBook.Com

you are here »

459

show the customer

Unit properties Unit groups

Prove yourself to the customer

With a Unit class and a set of test cases, you're ready to
show Gary some working code, and prove that you’re on the
right track to building his game system framework just the
way he wants it. Let’s show him the test class running:

File Edit Window Help ProveToMe

Test ¢tlasses avent ——~> %java UnitTester
su‘?\?oscd ‘ho be c%t,lhng

just
or SC‘A\I... {\\C\l :;{_' \IOW‘ Test passed

Testing setting/getting the type property.

need to prove :
sofbware does what it's Testing setting/getting a unit-specific
supposed to do. property.

Test passed

Testing changing an existing property’s
value.
Test passed

Testing getting a non-existent property’s
value.
Test passed

This is great! You really do
know what you're doing. T'll put a check
in the mail, and you just keep on with
the Unit class. Do you have units moving

around the board yet?

Customers that /

S€¢ vunning tode tend

to get happy, and keep paying You.

—ustomers that only see dia
impatient and Fruszrafcd,'sgv:::'g "
expect much support or ¢ash.

460 Chapter 9

Download at WoweBook.Com

iterating and testing

It's not perfect for me—I don't need your
framework returning null all the time, and my guys
having to check for it. We'll write our code correctly,
so if your framework gets asked for a property that
doesn't exist, just throw an exception, OK?

Let’s change the programming
contract for the game system

When you’re writing software, you’re also
creating a contract between that software and
the people that use it. The contract details how
the software will work when certain actions are
taken—like requesting a non-existent property
on a unit.

If the customer wants an action to result in
different behavior, then you’re changing the
contract. So if Gary’s framework should throw
an exception when a non-existent property

is queried, that’s fine; it just means that the
contract between game designers and the
framework has changed.

MCC{: Sue. Che
manages 3 team of
£°F'"°'l'1-"l 9ame
dCVC,oPcy-SI and
#hcy're intevested
n Msih 6ay-y’5

When you program l_)y contract, 3ame Framework.
you and your software’s users are
agreeing that your software will

hehave in a certain way, N

Want 4o know move about
what this means? Tuen the

‘C"\d ou‘t move...

page to

you are here » 461

Download at WoweBook.Com

programming by contract

Unit groups
We've been programwing by »\

contract so far

You probably didn’t notice, but we’ve been doing
something called programming by contract in the how we handle non—existent
Unit class so far. In the Unit class, if someone asks for a properties, so we've still on this
property that doesn’t exist, we’ve just returned null. We’ve first bit of Unit £uhcfionali£\/.
been doing the same thing in getWeapons () ; if the

weapons list isn’t initialized, we just return null there, too:

The detisions we've makin

now affeet the Unit tlass and

This list might not
be initialized, so
this could vetuen : public List getWeapons() {
null £ there a::h{i __T return weapons; Even ‘U\ough
e o 04
// other methods it, this code
is dc‘(:in'mg a
I€ there aven't public Object getProperty(String property) { contract for
any properties, we el e B < what happens
rc{:u\rn null... —/> return null; when 3 yro\?cv{:\/
: . doesn't exist.
and -P(: theve ;s,\’{/ return properties.get (property);
a value for the) .
rcv\ucS{Cd \aro?cr{:\/, PR Y WS e SR

this will veturn null.

Unit.java

This is the contract for Unit

The Unit class assumes that people using it are
competent programmers, and that they can handle null
return values. So our contract states something like this:

Hey, you look pretty smart. I'm gonna return null
if you ask for properties or weapons that don't
exist. You can handle the null values, OK?

This is our tontraet...

.vf states what we’ll do
n a tertain si{:ua'l:ion.

462 Chapter 9

Download at WoweBook.Com

iterating and testing

Programwming by contract is
really all about trust

When you return null, you’re trusting programmers to
be able to deal with null return values. Programmers are
basically saying that they’ve coded things well enough that
they won’t ask for non-existent properties or weapons, so
their code just doesn’t worry about getting null values back
from the Unit class:

Hey, you look pretty smart. I'm gonna return null
if you ask for properties or weapons that don't
exist. You can handle the null values, OK?

Look, we know what we're doing. Our code will
only ask you for properties that exist. So just
return null... trust us to do the right thing, OK?

AN

And we can always change the
contract if we need to...

Back on page 461, we were asked to stop returning
null, and throw an exception instead. This really isn’t a
big change to the contract; it just means that now game

Code using the
: Unit class
designers are going to have big problems if they ask for

non-existent properties or weapons. /
Q& You know what? We're really confident we're not

going to ask you for non-existent properties. In
fact, if we do, just throw an exception, and it will
crash the program, and we'll hunt down the bug.
Trust us... throwing an exception is no problem.

Sure. As long as you know I'm going to start throwing
an Exception, we're good to go. T'll just change my
code, and we'll start using this new contract.

S

you are here » 463

Download at WoweBook.Com

defensive programming

Unit groups

Unit properties

But if you don’t frust your users...

But what happens if you don’t think your code will be used correctly?
Or if you think that certain actions are such a bad idea that you don’t
want to let users deal with them in their own way? In these cases, you
may want to consider defensive programming.

Suppose you were really worried that game designers using the
Unit class, and asking for non-existent properties, were getting
null values and not handling them properly. You might rewrite the
getProperty () method like this:

¥

public Object getProperty (String property)
throws IllegalAccessException {

This version of
if (properties == null) { \ SCfProPcr{:\/() tan
—return—mial

— throw a CHECKED

We don't throw new IllegalAccessException (exception, so tode using
ebuen nll PSR CUC et 2 o2 AR Unit will have 4o eateh
anymore.. We } . his exepla,

ke aBlé —EeEurprepertresTyet{propertyy-
:a ! ab t Object value = properties.get (property);

eal abow

i (: \:: (value == null) {
asking Yor 3 throw new IllegalAccessException (

non—C‘ﬁis{‘aC“{: “You’re screwing up! No property value.”);

Pro?ﬂ'b[- } else {
return value;

}

This is 3 defensi
; nsive
version of lAnitJava.

Unit.java

I'm sure you're great code and all, but I just don't
trust you. I could send you null, and you could
totally blow up. So let's just be safe, and I'll send
you a checked exception that you'll have to catch,
to make sure you don't get a null value back and do
something stupid with it.

{ ™ ‘H\C
D (:c sive ?rog\rammmg assw .cs
w:\rs’:, and tries to vvo{:cc{: ikself .
(and \Iou) agains{: misuse or bad data-

464 Chapter 9

Download at WoweBook.Com

-or if they don’t trust you...

Of course, when programmers use your code, they might not
trust you either... they can program defensively as well. What if
they don’t believe that you’ll only return non-null values from
getProperty () ? Then theyre going to protect their code,

iterating and testing

Heve's 3 sample o
tode that uses the

and use defensive programming, as well:

%
i

// Some method goes out and gets a unit
Unit unit = getUnit();

// Now let’s use the unit...
String name = unit.getName () ;
&& (name.length() > 0)) {

if ((name '= null) .
/ System.out.println (“Unit name:

Unit elass.

/

7+ name) ;

T\\\s COdC dOCS }
a LOT evror ‘h Object value = unit.getProperty (“hitPoints”);
thetking- it docsn T~ if (value '= null)
ot hus\d:a{:a tml/ { hitp = (I lue; This eode is
rc{:WV\ vali nteger hitPoints = (rllteger)va ue; wonh CX'l:rcmcl
} catch (ClassCastException e) ({ dcf "\~—7
// Handle the potential error c"S'VC\/

}
}
// etc...

Bt —| Sl

tlaer are no

Dumbd Questions

Q,: You said on page 463 that we could change the contract
to throw an exception, but then you said here that throwing an
exception is defensive programming. I'm confused...

It's really not that important what kind of exception is
thrown. What's important is how your customers and clients are
involved in that decision. In programming by contract, you work
with the client to agree on how you're going to handle problems;
in defensive programming, you make that decision in a way that
ensures your code doesn’t crash, regardless of what the client
wants to have happen.

<

When we decided to switch from returning null to throwing an
exception, we did that by listening to the client, and agreeing on
that particular action as a response to a request for non-existent
properties. And we made the exception a RuntimeException,
again because the client didn’t want to add lots of try/catch
blocks to their code. They could have just as easily asked for a
checked exception, and we could have agreed—and still been
programming by contract.

Compare that to defensive programming, where we're not really that
interested in what the client wants. In defensive programming, we're
making sure that we aren’t responsible for crashing a program,

and we even go out of our way to try and prevent the client from
crashing their program.

465

you are here »

Download at WoweBook.Com

fireside chat: protect the programmer?

Fireside Chats

Programming by Contract

It’s nice to sit down with you and meet face to face,
we really don’t see each other like this very often.

What do you mean?

Well, sure, I guess... but you can’t live your whole
life in fear of bad code. At some point, you have
to just commit to how you’re going to behave, and
trust other programmers to use you right.

Boy, it sounds like you have trust issues.

No. I trust programmers understand the contract
that I provide them.

466 Chapter 9

Tonight’s talk: Programming by Contract and Defensive
E__H Programming duke it out over trust issues with programmers.

Defensive Programming

Yeah, I really don’t like to get out much.
There’s just so much that can go wrong.

Well, I could be crossing the street, and slip on
some Banana.peel() that hadn’t been garbage
collected, or some for loop without a good
termination condition could come screaming
through the intersection... there’s a lot of bad
code out there, you know?

Are you kidding me? Have you met most of the
programmers writing the code you’re talking
about trusting? They’re too busy watching

Lost to worry about checking for bugs in their
software. If they’d stop gawking at that Kate
and her freckles, maybe I wouldn’t have to
double-check their work so much.

And you don’t?

Contract? Oh, you still think that if you
explain what you’ll do in a certain situation,
that a “good” programmer will use you
correctly? Boy, what naivete!

Download at WoweBook.Com

Programming by Contract

Look, my contract explicitly states what I have to do,
and what people that use me have to do.

Look, if programmers and users don’t keep their end
of the bargain, I can’t be held responsible for that. If
they violate the contract, they deserve what they get.

I can’t be held liable.

With tons of extra code, little “if (value == null)”
checks everywhere? What a beating. Sounds like you
slow things down more than anything.

Superman? You did not just say that...

But that’s the point! I may not be great for lazy
programmers, but I'm ferrific for programmers who
do check their work. They get a performance bump,
and their code is shorter when they use me.

And that’s what I provide, just without all the trust
issues and baggage you bring along..

I'll show you safe code, you little...

iterating and testing

Defensive Programming

Haven’t you heard? Over 50% of contracts
today end in divorce... or maybe that was a
different stat, I'm not sure... anyway, do you
really think programmers are paying attention
to your little contract?

Sounds pretty callous to me. I try and help my
users, and even protect them from themselves.

Sure, sometimes I’'m not the best performer, but
I sure keep everyone safe from disaster. I often
like to think of myself... a bit like Superman.

It’s true! Besides, how many times has your
code gone up in smoke because of a lazy
programmer who ignored your contract?

Short code, humph. I'd much rather have good
code. Code that keeps programmers and users
safe.

Hey, I've got a trust issue for you right here...

...transmission ended... Veuillez nous aider! ... 48 15 ...

467

Download at WoweBook.Com

identify the technique

Who M 1 * Feature Driven Development, Use Case Driven Development,

468

Programming by Contract, and Defensive Programming have

all showed up for a masquerade party, but none of them bothered to
wear name tags. They’re all a chatty bunch, though, so it’s up to you
to listen to what they’re saying, and try and figure out who’s behind
the masks. Be careful.... sometimes more than one masked guest
could be saying the same thing.

I’'m very well-ordered. | prefer to take
things one step at a time, until I've
made it from start to finish.

Well, sure, she said she would call,
but how can you really believe

anyone anymore?

Oh, absolutely, requirements really
get me motivated.

I’'m very well-behaved. In fact, I've been
focusing on all of my own behavior

before moving on to anything else.

Really, it's all about my customer. |
just want to satisfy them, after all.

Hey, you're a big boy. You can deal
with that on your own... it’s really not
my problem anymore, is it?

As long as you’re good with it, so
am |. Who am | to tell you what to do,
so long as you know what you can
expect from me.

—— Figure out who is who on page 481.
Chapter 9

Download at WoweBook.Com

iterating and testing

Unit properties Unit groups

anarpen your pencil
‘. Change the programming contract for Unit.
Gary'’s clients want Unit to assume they’re using it correctly. That means
that if a non-existent property is being queried, then something has truly
gone wrong in the game, and an exception needs to be thrown. Your job
is to:
1. Update Unit.java so that requests for a non-existent property result in
an exception being thrown. Figuring out the type of exception to use

is up to you.

2. Update UnitTester and the test cases that this contract change affects
to reflect this new contract.

3. Re-run UnitTester and make sure Unit.java still passes all of the tests.

\

Our answers are on the next page.

you are here » 469

Download at WoweBook.Com

changing the contract

aSharpen your pencl
W answers

Unit properties Unit groups

Change the programming contract for Unit.

Gary’s clients want Unit to assume they’re using it correctly. That means
that if a non-existent property is being queried, then something has truly
gone wrong in the game, and an exception needs to be thrown.

The only method in Upn;i

£
ha You needed J3va

to ¢than
was 5cfProPcv'l:y(). ¥

Asking for a 3 ' F/
Yroycr‘{:\/ when public Object getProperty(String property) {
the ‘Jro\?crhcs if (properties == null) { We ﬂilrow 5
Map is wllis T— 1 weturn—auldi— | Runti .
S'Eil‘l? ask'mg Lor thfow new Runt.:imeExcept:i.on(é"’—/’_' 5 Pro;:::fxc{:efilon ay,y;(jm .
2 non—existent : No properties for this Unit.”); exist i ‘Iu)c'ﬁc: doesn’t
yrovcr{‘,\/- .

P

We tant ")usjc vebwn 3 }
value in Lhe Map now:)
We have to ma\(c. suve
Lhe propecty cmfic,s, |
and the value iont null-

} else {
return value;

t]aer are no

ratiien Pvnpgrfipq o +(Pvnp v+¥Lf
Object value = properties.get (property) ;
if (value == null) {

throw new RuntimeException (- |

“Request for non-existent property.”);

\

Code that uses

Unit doesn't

have o tatth a

Run{',\mcﬁvﬂcc‘?{\on...
so we've still)
\oaramming bY
‘;,on?:rac{:, and not
defensively:

Unit.java

Dumbd Questions

Q/: Why are you throwing a RuntimeException, and not a
checked exception, like lllegalAccessException?

A: If you used a checked exception, code that calls
getProperty () would have to check for that exception, in
tryl/catch blocks. That's not what the client wanted; we agreed
to a contract that would let them code without having to catch for
any exceptions. So by using a RuntimeException, no extra
worked is required for their client code to use the Unit class.

470 Chapter 9

Q/: What about the get methods for other properties, like
weapons, nhame, and id?

A: id and name are an int and String, respectively, so
those aren’t a problem (id is required to create a new Unit, and
name will either be null or a String with a value). The weapons
property is a List, so if you call getWeapons () when there
aren’t any it's going to result in a null list being returned. You could
change that method to throw an exception if the weapons list was
empty, although that wasn't specifically asked for by the clients.

Download at WoweBook.Com

iterating and testing

When you are programming L)y contract, you’re worlcing with client
code to agree on how you'll handle Prol:)lem situations.

When you're programming Je{ensively, you're malcing sure the client

gets a "safe” response, no matter what the client wants to have ltappen.

LestA() Lests asking for a

non—existent, property:

=g

public void test4 (Unit unit,

We expect asking System.out.println (

Qor a non—c%is{:cn{:
value to throw a == try {
RuntimeExeeption, N

String propertyName) {
“\nTesting getting a non-existent property’s value.”);

Object outputValue = unit.getProperty (propertyName) ;

so we tatth it catch (RuntimeException e) {
/ System.out.println (“Test passed”); Be suve
..and use that return; = P
ke s : | C*CCP{Zion is
for sueeess. System.out.println (“Test failed.”); tepbion .

|-(: no e%ﬂq’{jon is thrown,
we have a vrob\cm..‘ the

test Lailed.

print a “Passcd"
message, You exit

the test method.

UnitTester.java

Q: You said that programming by contract resulted in less
code, but it seems like we just added a lot of code to Unit.java.

A: That's because instead of directly returning null, we throw
a new RuntimeException. But that's more of a special case
here than the rule. Most of the time, you'll not have much extra
code on the service side, because you're simply returning objects
and values without checking to see if they’re non-null, or within a
particular data range.

Q: | still don’t see why we’re switching to programming by
contract here. Why is it so much better?

A: It's not a matter of being better or worse; it's a matter of
what your customer wants. In fact, you'll rarely decide on your
own if you want to do programming by contract or defensive
programming. That's something that’s usually determined by what
your customer wants, and the types of users that will be using the
software that you're writing.

you are here » 471

Download at WoweBook.Com

testing the new contract

Unit properties nit groups

Moving units 1
[t took a while, but we've

We've finally finished up unit properties, and can) .
move on (o the next item on our list: :gmall?' on .+'° ﬂ“ next piece of
unt‘f:lonah'{:y in the Unit ¢lass.

Each unit should have properties, and
game designers can add new properties
to unit types in their own games.

Units have to be able to move from one

We've on to - tile on a board to another.

dealing with
movement, nOW: © Units can be grouped together into armies.

Haven’t we been here before?

This should sound pretty familiar... we already dealt
with movement in Chapter 7:

BTy

T e

Ihed you o sl by hmetng o i o et? By
o o] ot oA, s varish iy
o . i s v o ey ™

[7, we
aek in Chapter b
Ecc\dCd that handling

movement Was dikkeven

for every 93me:

Q. Pl il Mt e G Bera oy
= . ¥ et
flempirtrsd B b b syl s el e e s 2
W e e s e, g i e g b My it

A v it e

e L IR VY i ooy
L R ooy
::--M.q.m. WS e i Byt it p—— e e
i Iy ok s abed B mora] M e ke by e
s = M L g 4 il o

e s o dngn il - b sl g

Fan b B s e st gy et e —
- i T i T i i

Lt Bervetianciy, 1§ o g e o ——
i B bl Wy e 0t R i
o e e b

472 Chapter 9

Download at WoweBook.Com

Break your apps up into smaller
chunks of functionality

We’ve been talking a lot about iterating deeper into your
application, and at each stage, doing more analysis and
design. So you're taking each problem, and then breaking it
up (either into use cases or features), and then solving a part
of the problem, over and over. This is what we’ve been doing
in this chapter: taking a single feature, and working on that
feature until it’s complete.

But you can still break things up further...

But once you choose a single feature or use case, you can
usually break that feature up into even smaller pieces of
behavior. For example, a unit has properties and we have
to deal with unit movement. And we also need to support
groupings of units. So each of these individual pieces of
behavior has to be dealt with.

Just like when you broke your app up and began to iterate,
you’ll have to do more analysis and design at each step.
Always make sure your earlier decisions make sense, and
change or rework those decisions if they don’t.

Your decisions can iterate down, t00

Lots of times you’ll find that decisions you made earlier save
you work down the line. In Gary’s system, we decided that
game designers would deal with movement on their own. So
now that we’re talking about how to handle unit movement,
we can take that decision we made earlier, and apply it here.
Since it still seems sensible—there’s no reason to change that
decision—we can have game designers worry about handling
unit movement, and move on to the next piece of behavior.

Jusk add a rote —

%o your dots
for the game

designers tha
is wp

t
movemen
to them L

We ¢an eheck off Lhis next bit
ot behavior in the Unit elass.

iterating and testing

The problem heve is

63\"7’5 aamc sy;-tc”‘
— "‘Vamcwmrk.

Proble®
Fegture Featur®
Featur®

We ¢those one
feature, and

— fotuscd on it: units
in the \c\ramcwo\rk-

Units

— T

“opert® Group®

Hoverne®

isi t
Detisions You make abou o
fhe ovevall problem.. ﬂ‘; 'i‘cen apply to

— @ e o
o~ © 2

Aeatu

SN AN AN

0 290¢ QO

Behaio

Units have to be able to move from one
tile on a board to another.

you are here » 473

Download at WoweBook.Com

grouping units is up to you

Unit properties Unit groups |

25 Feature Puzzle

By now, you should have feature driven development, iteration,
analysis, and design down pretty solid. We’re going to leave it up
to you to handle the last bit of behavior and finish off the Unit

feature of Gary’s game system framework.

The problem:

Gary’s framework needs to support groups of units.

Your task:

f

Solve this puzzle,
and \/ou)Vc
completed the
behavior for the
Unit feature.

0 Create a new class that can group units together, and both add and remove

units to the group.

e Fill out the table below with test case scenarios that will test your software,

and prove to Gary that the grouping of units works.

e Add methods to UnitTester to implement the test scenarios in the table,

and make sure all your tests pass.

What we've testi [nput | Expected
eve Testing Pu O‘Y{C:Pu£

Starting State

—

Thevre's no
5uaran{:cc that

‘IOu'H use all these
YOWS... OF {ha{

You won £ need

more Yows.

474 Chapter 9

——» See how we solved the puzz]e on page 476.

Download at WoweBook.Com

— BULLET POIN'I'?%

iterating and testing

The first step in writing good software is to
make sure your application works like the
customer expects and wants it to.

Customers don't usually care about diagrams
and lists; they want to see your software
actually do something.

Use case driven development focuses
on one scenario in a use case in your
application at a time.

In use case driven development, you focus
on a single scenario at a time, but you also
usually code all the scenarios in a single
use case before moving on to any other
scenarios, in other use cases.

Feature driven development allows you to
code a complete feature before moving on to
anything else.

You can choose to work on either big or small
features in feature-driven development, as
long as you take each feature one at a time.

Software development is always iterative.
You look at the big picture, and then iterate
down to smaller pieces of functionality.

You have to do analysis and design at each
step of your development cycle, including
when you start working on a new feature or
use case.

Tests allow you to make sure your software
doesn’t have any bugs, and let you prove to
your customer that your software works.

A good test case only tests one specific piece
of functionality.

Test cases may involve only one, or several,
methods in a single class, or may involve
multiple classes.

Test driven development is based on the
idea that you write your tests first, and
then develop software that passes those
tests. The result is fully functional, working
software.

Programming by contract assumes both
sides in a transaction understand what
actions generate what behavior, and will
abide by that contract.

Methods usually return null or unchecked
exceptions when errors occur in
programming by contract environments.

Defensive programming looks for things to
go wrong, and tests extensively to avoid
problem situations.

Methods usually return “empty” objects
or throw checked exceptions in defensive
programming environments.

Download at WoweBook.Com

475

finishing up the unit class

Unit properties Unit groups I

% Feature Puzz]e So]utions

Gary’s framework needs to support groups of units, and
should also allow groups of those groups (in as many
nestings as the game designer wants to allow).

‘/ov treate 3 new Mnifé\rou\? b\l

public class UnitGroup { : \ d
We detided to use a __» private Map units; / passing in a List o(: the wnits o ad
Map, s{;oring the D Lo the oroup ',,\'.{;.ally.

of a unit as the kc\/, public UnitGroup (List unitList) {
and the Unit Ob:)cc‘t units = new HashMap () ;
'rl',sc\‘(: as the value for (Iterator 1 = unitlList.iterator(); 1i.hasNext();) {
an CV\‘{‘X\I- Unit unit = (Unit)i.next();
units.put (unit.getId(), unit); €— Thf COV\S#VuL{'pr Jus‘f: adds all the units
} to its units Map, sc'l:{:i:B the key of
) each entry to the ID of eath wnit.
public UnitGroup() {
this (new LinkedList()); Heve's the tlass diagram for .
} UnitGroup: 1o gjve you an overview
public void addUnit (Unit unit) { of what we did-
units.put (unit.getId(), unit); (UnitGroup
J units: Map
public void removeUnit (int id) { addUnit(Unit)
. units.remove (id) ; removeUnit(int)
Eg usnz? a Map } removeUnit(Unit)
units, we ¢an getUnit(int): Unit
vetrieve and public void removeUnit (Unit unit) { getUnits(): Unit [*]

remove units b removeUnit (unit.getId());

theiv [D, whith }

s 3 mice bi
"(: acz.'cc ?I{'ﬁ:o«c ~— public Unit getUnit (int id) {
unctionality. return (Unit)units.get (id);

}

public List getUnits() {
List unitList = new LinkedList();

for (Iterator i = units.entrySet().iterator(); i.hasNext();)
{
Unit unit = (Unit)i.next();
} unitList.add(unit); N There’s a little bit of work
return unitList; " \re'{:wning a list of all units,
: sinte we store the units in a
} Ma?, but we fhough{: it was

worth having units stored by ID.

476 Chapter 9
Download at WoweBook.Com

And now for the test cases:

We stacted the [Ds higher, so they
wouldn't confliet with the [Ds of
khe Lest cases we alveady have.

iterating and t

esting

[D| What we've testing [nput | Expected Output Starting State
10 | Creating a new UnitGroup| List of | Same list of units | No existing instance of
vom a list of units units Mni?ﬁrov‘?
Il | Adding a unit to a aroup | Unit with | Unit with [D of UnitGroup with no
§ T iD ot oo ioo enbies
12 6C'{:{:ih5 a unit b\/ its [D 100 Unit with [D of Mniférou? with no
100 entries
) éc‘[:‘ting all the units in a N/A List of units that UnitGroup with a known
9roup matehes initial list ist uni
14| Removing a wnit by th 100 List of units (none UnitGroup with no
’ ID C?‘F the unil ‘ with [D of 100) cn{‘,‘:iCS -
15| Removing a unit b\/ the | Unit with | List of units (none UnitGroup with no
Unit instante ID of 100| with [D of 100) entries

D

/

Here are the test eases
for unifﬁrou\? that we
¢ame up with. Did you
think of any othevs?

Q _B(I;ﬁ ONLINE

You should be able to write the code for UnitTester using the test
case table shown here. If you want to see how your code compares
with ours, visit http://www.headfirstlabs.com, click on Head First
OOA&D, and look for “UnitGroup Test Cases.”

s |
(s

We like to stavt with

an Cm?‘{’,\/ Mnl{é\rou\?, {:?
make sure the units we've
working with don't alveady
appear in the Mni{‘,é\rou\?.

Download at WoweBook.Com

you are here »

a77

ooad&d toolbox

Tools for your 00AZD Toolbox

f We learned about several approaches to

Ty iterating through your project, and even a bit
about two common programming practices in this

chapter. Add all these to your toolbox:

Requivements | Solving Bi
= Analysis and Dcsign oing Big Problems

Findlys Listen to the tustomer, and figurc out
what {:hcy want You to build.

Qood requirem

works like your Well—designed sofbware is easy to ché

Make sure Your and extend.

00 Printiples

Encapsulate what varies.

Code 1o an interface vather than an
im?ltmcwf;a{:ion.

Put together a feature list

the tustomer understands.
e encapsula

our soktwe Make sure your features ave what the
tustomer ac’cually wants.

) In languagc

then CM Create blucprin{s of the SYS“:cm usin5 use

| Development APPro%s

Use case driven development takes a single use
ease in Your system, and fotuses on Complc{:ing
the tode to implement that entive use tase,
intluding all of its stenavios, before moving on to
an\/‘{:hing else in the application.

Eath ¢lass in your apylica£ion should have only
one veason to chansc.
bk balai oo [

Classcs Ave : . :
Classe: ongvammmg PV'aC'bCCS
‘(:OY mc

Avoid | Programming by contract sets up an
that a agvccmcn“: about how Yyour software

lotatic behaves that you and users of your
software agree {0 abide by.

Feature dviven development fotuses on a single
feature, and codes all The behavior of that

feature, before moving on to anything else in the
aPPIiLa‘l:ion

Every
single ¥ Defensive programming doesn't trust
should | Jther sofbwave, and does extensive ervor
vespons 5.4 data cheeking o ensure the other
Cubclas sof buare docsn't ge you bad or usafe
information.

Tﬁf'dvi&n development writes test stenarios
for a piete of functionality before writing the
¢ode for that ‘FunC‘l'.ionali{:\/. Then You write
software 4o pass all the tests.

Good softwave development usually intorporates
all of these development models at diffecent
stages of the development eyele.

elasses

478 Chapter 9

Download at WoweBook.Com

iterating and testing

OOAGD Cross

Lots of new terms in this chapter, so lots of little

square boxes to fill in for this chapter’s crossword.
Review the chapter and see if you can get them all!

Across

3. Never be afraid to do this in design.

4. This type of programming protects you and
focuses on preventing errors and invalid data,
6. You should test your software for this kind
of usage.

11, Iterating your development based on
specific pieces of functionality.

12. Feature driven development is very

15, Good development is driven by these,

16. Customers just want their software to do
this.

17. Developing your software based on
scenarios through a system,

18, Getting stuck trying to decide on cne
design decision or another.

1. This is what you use to prove to the
customer that your software works.

2. Program this way when you trust your users,
and they trust you.

5, Testing weird and strange usages of your
code will help you catch errors .

7. Use case diagrams and feature lists don't
make sense to the
B. Design decisions are always a
9. A single test case can focus on this many
pieces of functionality,

10. Great sof tware is written like this.

13. You write software for the -

14, Once you choose a feature or use case, you
need to do this again,

you are here » 479

Download at WoweBook.Com

exercise solutions

EEEEEEEHE
1/NcloRrRRECT
0 o

E2

H[z]aln <«

[N T | A
EEEEEEEEEEHB
'6/R AN U LIAR id
i3 A |
REQUIREMENTS, s |
2] i
WEHE

Hn [
]

=
E
5
:
s |
c|
e
N
A
®
B
o

v
EEEHEHBHHHHEN
L

480 Chapter 9

Download at WoweBook.Com

iterating and testing

Programming by Contract, and Defensive Programming have
all showed up for a masquerade party, but none of them bothered to
wear name tags. They're all a chatty bunch, though, so it's up to you
to listen to what they're saying, and try and figure out who’s behind
the masks. Be careful.... sometimes more than one masked guest
could be saying the same thing.

°
SOl_llt10nS Feature Driven Development, Use Case Driven Development,

I’'m very well-ordered. | prefer to take

things one step at a time, until I've ,
made it from start to finish. Use Case Priven Development

Well, sure, she said she would call,

but how can you really believe _ . g:" ""5“#“3"; added
anyone anymore? Pefensive Programwing ogramming by
' Contratt heve, since

a tontraet is veally a

Oh, absolutely, requirements really Feature Wi‘{m Development, Form of vequivements.
get me motivated. Use Case Driven Pevelopment

I’'m very well-behaved. In fact, I've been
focusing on all of my own behavior

before moving on to anything else. Feature Uriven Development
Really, it’s all about my customer. | Al of thew — of these

just want to satisfy them, after all.

Lethniques and tools
ave veally about

Hey, you’re a big boy. You can deal acttin the tustomer
with that on your own... it’s really not . he sortware that
my problem anymore, is it? Programwming by Contract {{:-,hcc\/ want-

As long as you’re good with it, so
am |. Who am | to tell you what to do,

so long as you know what you can .
expect from me. Programwming by Contract

you are here » 481

Download at WoweBook.Com

Download at WoweBook.Com

10 the ocadd lifecycle

Putting It
All Together

You may hot see it yet, Walter,
but I'm going to take all these
pieces and turn them into one big

beautiful cake of OO goodness.
Just you wait and see...

Honey, I think you're a great
programmer, but I just don't see how
you're going to combine all those little
bits and pieces into anything that
makes sense.

Are we there yet? we've been working on lots of
individual ways to improve your software, but now it’s time to
put it all together. This is it, what you've been waiting for: we're
going to take everything you’ve been learning, and show you
how it’s all really part of a single process that you can use over

and over again to write great software.

this is a new chapter 483

Download at WoweBook.Com

assembling the pieces

Peveloping software, 00A&D style

You've got a lot of new tools, techniques, and ideas about how
to develop great software by now... but we still haven’t really
put it all together.

That’s what this chapter is all about: taking all the individual
things you know how to do—like figuring out requirements,
writing up use cases, and applying design patterns—and
turning it into a reusable process that you can use to tackle
even your trickiest software problems, over and over again.

So what does that process look like?

Break Up the Problem Requirements

Figure out the individual
requirements for each

Use Case Viagrams into modules.of functionality, module, and make sure those
and then decide on an order

Break your application up

Feature List Eglgg:vegmtb;%u a0 in which to tackle each of fitin with the big picture.
Flgure out what your performs, and any external your modules.
app is supposed to do .
. forces that are involved.
at a high level

' .
The 0 jec’r—Orieﬁfed Anal*sis

[
1. Make sure your software does what the customer wants it to do

7

Does it seem like You sy;nd a LOT of time
worrying about 1cund:iona|i{:\/? That'’s because
Yyou do... if the customer isn't happy with
what your software does, You won't succeed.

484

Download at WoweBook.Com

the ooad&d lifecycle

This entive section applies 4o eath

| solve 3
maller problem.. so youll =€
s\vrob\cm\’using these phases: ikevate

1o another Vrob\cm, and use these

phases again

Iterative Development

Domain Analysis

Figure out how your use
cases map to objects in your
app, and make sure your
customer is on the same
page as you are.

Preliminary Pesign
Fill in details about your
objects, define relationships

Implementation

Write code, test it, and make

betweeq the objects, and sure it works. Do this for —Hehver
apply principles and patterns.

You're done! Release your
software, submit your
invoices, and get paid.

each behavior, each feature,
each use case, each
problem, until you're done.

|
2, Apply hasic 00 principles
to add ﬂexil:ility.

x 3. Strive for a maintainable,
/ reusable Jesign.

like small parts of the protess:
o‘(: \Iou\' chc\oYmCV\{:
im\vlcmcnb’cion phases-

These may seem
but \[ou’“ S\7cnd most
Lime in the design and

you are here » 485

Download at WoweBook.Com

skeptical?

Look, I love your pretty arrows
and all those labels, but I'm not
convinced. We've used parts of that
process, but how am I supposed to
know using all those steps together
like that really works?

Let’s build a software
project, from start to
finish, using this process.

We've used all of the different parts of
this process to work on software projects
throughout the book, but we haven’t yet
really put it all together. But that’s all
about to change... we’re going to let you
build a pretty complex piece of software
in this chapter, from feature list to
implementation and delivery.

Along the way, you’ll see for yourself how
all the things you’ve been learning really
do help you build great software. Get
ready, this will be your final test.

486

Download at WoweBook.Com

the ooa&d lifecycle

OOA&D GENERAL'S WARNING: Ans
appear on the next
and we'll come bac

wers to this exercise do NOT
page. Go ahead and work through this chapter
k to these answers at the end of the chapter, ,

00A&D Magnets

Before we dive into the problem we're going to be solving in this chapter, you
need to make sure you see where all the things you've been learning fit in the
big OOA&D Project Lifecycle. At the bottom of this page are OOA&D magnets for
lots of the things you've learned about already; your job is to try and put those
magnets on the right phase of the OOA&D lifecycle, shown again below.

You can put more than one magnet on each phase, and there are some magnets
you may want to use more than once, so take your time, and good luck.

We've started a list for
the Requirements Phase to

help Yyou out. \

Feature| UseCase | Break Up the .
List | Diagrams Problem ,Rei??;reems'

1
Textual Analysis

Pomain
Analysis

[Test Driven Development

st Scenario pnalysis e IEsIgn P
e |External Initiator ===

ey Feature List .

Cohesion {Design Principles
Talk to the Customer
\ 5ncb

You tan use eath of these md
es as You like.

—

m Architecture
J—

Textual Anal

OO Principles
[R€Q

iemerts U
Alternate Path [|Alternate Path

teration[Architecture = Feature Driven Development
- Delegation
\Variability

as many tim

you are here » 487

Download at WoweBook.Com

objectville travel

The problem

Hf:re’s the project we’re going to work through in
this chapter, from beginning to end:

%, Objectville Travel, Inc.
210 Tourist Ave.
Objectville, HF 90210

statement of Work

Congratulations! Based on your amazing work for Rick’s Stringed
Instruments and Doug’s Dog Doors, we’d like to commission you
to program our brand new Objectville Travel RouteFinder.

With the recent increase in travel to Objectville, we want to
provide tourists an easy way to see the wonderful sights that make
Objectville so unique. The RouteFinder should be able to store
Objectville’s complete network of subway lines, as well as all the
stations along each line. Objectville’s subways are state-of-the-art,
and can go backwards and forwards between stations, SO you don’t
need to worry about the direction of any of the lines.

The RouteFinder should also be able to take a starting station, and a
destination station, and figure out a route to travel. Our travel agents
should be able to print out the route, indicating which lines to take,
which stations are passed on a line, and when travelers may need to
get off one line and get on another at a connecting station.

We pride ourselves on flexibility and extensibility in Objectville,

so we expect the RouteFinder to be easy to extend as we come up
with new ways to provide our tourists the best experience around in
object-based travel.

We look forward to seeing your design and a working RouteFinder
soon. We’re all counting on you!

Sincerely,

Orbin Traveloctic, CEO

P.S. To help you get started, we’ve provided a map of Objectville’s
subway lines, and a file with all of the stations and lines.

488 Chapter 10

Download at WoweBook.Com

the ooa&d lifecycle

This page left in‘{:cn‘l:iona”\/ blank,
so You tan tut out the eool
Objectville Map on the next page
and hang it up on Your eubitle wall.

[note from mavketing; What ave you Jc,hinkivj\cg? ?C]an t we
s::\ fhe poster as an add—on and thavge € val

you are here » 489
Download at WoweBook.Com

Objectville Subway Map
Legend

O Local train station

@ Interchange with
other lines

Booch Line

Gamma Line

. . 1
Jacobson Line Objectville \
PizzaStore [\
— ~ 4
'
Liskov Line ‘s‘
Infinite Circle JavaBeans Boulevard
ouzz
Meyer Line 0 o
® a
SR o A
“n e¥®
Rumbaugh Line G4

Wirfs-Brock Line

Algebra Avenue

CSS Center
O

DRY Drive

490 Chapter 10

Download at WoweBook.Com

Lounge

-
-~

Mighty Gumball, Tne.

---_-------...

¢""O-- Se
\ 0“ O...
) > JavaRanch See,
1 : Servlet Springs %
1 © .
1 . "'
| . K
| 5 H
oY s H

L d
om
%

SimUDuck Lake
¢ [e e
=

-
.....,.!

Head First Labs

OCP Orchard

Web Design Way &

@' F)B Estates

/\

5
PMP Place

you are here » 491

Download at WoweBook.Com

scratch paper

This page left in‘l:cu{:iona"\/ blank, so
You ¢an ¢ut out the ool Ob\')CC‘Evi"c

< May on the previous page and han3
it up on Your eubitle wall.

492

Download at WoweBook.Com

aSharpen your pencil

w. Write the feature list for the RouteFinder app.

We’re throwing you right into things. Your job is to take the Statement
of Work on page 488, and use it to develop a feature list. You can refer
back to Chapter 6 if you need help on what features are, and what a
typical feature list looks like.

Objectville RouteFinder

Feature List
1.
2,
3
4,
9.
6.
7

You ave HERE: . -

Tt g | rroow Rewirewents (R0

Download at WoweBook.Com

the ooa&d lifecycle

s

You don't have to use
all of these blanks if
You don’t think You
need 'H\crn all.

you are here » 493

RouteFinder feature list

L harpen Your PenCil Write the feature list for the RouteFinder app.
W answers

Your job was to take the Statement of Work on page 488, and use it to
develop a feature list for the RouteFinder we’re going to build.

Heve's what we tame up with.
Your answers may not mateh
ours c%aéﬂ\/, but {:hc\/ should

be pretty close, d et Objectville RouteFinder

these same basic Lour Featuves.

K; Feature List

1. We have to be able fo represent a subway line,
and the stations alona that line. Lins ovrlap wher,

2. We wwust be able to load wwltiple subway lines they both share the
into the program, including overlapping lines. < *"¢ station.

3. We need to be able to figure out a valid path
A “valid voute” might be——— between any two stations on any lines.

all on one line, or involve

several diffevent line. 4. We need to be able to print out a route '*"\ —
between two stations as a set of directions. Prinking is 3 separate

featuve... be sure
you have this in your

featuve list
t}ler are no .
— Dumb Questions
Q/: Why aren’t we gathering requirements? I'm still Q} Why did you list printing out the route as a separate
not clear on how a feature is really that different from a feature? That’s pretty easy once you've got a valid route
requirement, anyway. between two stations, isn’t it?
Features and requirements are often used almost A: It probably will be, yes. But the feature list isn’t just

interchangeably. Most of the time, though, people say “feature” a list of hard problems you have to solve—it’s a list of all the
when they're talking about BIG things that an application needs things your application has to be able to do. So even if a feature
to do. So it might take several requirements to satisfy one seems easy or trivial, put it on your feature list anyway.

feature. And since features are usually a little bigger-picture

than requirements, it's a good idea to start any new project by

writing out a feature list, like we’'ve done with the RouteFinder.

494 Chapter 10

Download at WoweBook.Com

Now you should really know
what you’re supposed to do

At this point, you've finished up that first phase.

Pomain
Analysis

Feature | UseCase | Break Up the

List | Diagrams Problem Requirements

With a feature list in hand, you should have a good
understanding of the things that your app needs to
do. You probably even can begin to think about the
structure of your application, although we’ll spend
a lot more time on that in just a bit.

Once you've got your feature list down, you should
move on to use case diagrams. Those will help you
connect what your app does to how it will be used—
and that’s what customers really are interested in.

Your feature lists are all about unJerstanJing
what your software is supposec[to @.

the ooa&d lifecycle

Your use case c[iagrams let you start tlxin]cing

about how your software will be usec[, without

getting into a bunch of unnecessary details.

Download at WoweBook.Com

you are here »

495

use case diagrams

aSharpen your penci

-~

Decide on the structure for the RouteFinder code.

With feature lists in hand, let’s look at how our app is going to be used. Below, we've
started a use case diagram for the RouteFinder app. For this project, there are two
actors, and just two use cases (sounds sort of simple, doesn't it?).

It's up to you to figure out who (or what) the two actors are, and to label the two use
cases. If you need help, refer back to Chapter 6 for more on use case diagrams.

—— Answers on page 498.

496

Download at WoweBook.Com

15

..-I'".-___

1. We have to be able to represent a subway line,
and the stations alona that line.

2. We wwst be able o load wmultiple subway lin
3. We need to be able to figure out a valid pat

4. We need to be able to print out a route

the ooa&d lifecycle

Feature Magnets

Once you've got your use case diagrams figured out, you need to make sure that
your use cases match up with the features you have to deliver to the customer.
Below is the feature list for RouteFinder, as well as magnets for each feature. Place
each magnet below on one of the use cases you filled in on page 496. Make sure
you have each feature covered before turning the page.

Objectville RouteFinder
Feature List

Represent subway lines, and
stations along each line.

Load multiple subway

lines into the program.

into the prograw, including overlapping lines:

Figure out a valid route
between two stops.

between any two stations on any lines.

between two stations as a set of directions.

Print directions for a
particular route.
-—
Each one of these magnets _/

should 90 on one of the use

tases over heve.

You are HERE.

Feature | UseCase | Break Up the
List | Diagrams Problem

Pomain

Requirements i

you are here » 497
Download at WoweBook.Com

exercise solutions

Exercise
SoLutions

O

Decide on the structure for the RouteFinder code, and map your
use cases back to your feature list.

You had a Sharpen Your Pencil, and a Feature Magnets to solve. You
were supposed to figure out the actors and use cases for your system,

and then make sure those use cases covered all the features we
decided RouteFinder had to support.

This feature is vequived
‘(:unc{:'lonah{')l Lor this
use tase Joo wov'k, so we
sttaehed it heve

S

Represent subway lines, and
stations along each line.

Load network of

Adwinistrator

You might have put down Teavel
Agent or another name for
this attor... ")us{: make sure You
had someone loading in the
Ob")CC‘{ZVillC subway lines.

O

SUban Il“es Load multiple subway
lines into the program.

Figure out a valid route
between two stations.

Get directions

Print directions for a
particular route.

_Travel Agent
“or Tourist)__
In Jc.hcory, 3 travel agent OR a
; wrs{: Could use $his Piece of
un{nonalify in the system.
498 Chapter 10

Download at WoweBook.Com

the ooa&d lifecycle

Use cases reflect usage,
features reflect functionality

Let’s look more closely at one of the feature-use case
matches we showed you on the last page:

Represent subway lines, and

Load Vlefwork (stations along each line.
subway lines

The “Load network of subway lines” use case really
does not directly use our feature that deals with
representing the subway. Obviously, we have to be able
to represent the subway for this use case to work, but
it’s a stretch to tie the two together like this.

That’s not a mistake, though; when we’re writing
use cases, we're dealing with just the interactions

between actors and a system. We're just talking about This is something the RouteFinder
the ways that your system is used (which is where the 'z:“f do for 3 use ease to work, but
term “use case” came from). it’s not atfually an interaction on i L

own. [t's NoT
These are ways that our =1 part of any use case.
g is used. [
Rou{:eFde“ ' Represent subway lines, and e)
A stations along each line.

Get directions

~— A use tase may depend upon 3 Leature to
Lunetion, but the feature may not ac_’cuallz
be part of the steps in the use case itselk.
“L_oad network of subway lines” depends on 3
vcyrcscn{;a{:ion of the subway, but onl\/ uses
that feature indiveetly.

The features in your system reflect your
system’s functionality. Your system
must do those things in order for the
use cases to actually work, even though
the functionality isn’t always an explicit
part of any particular use case.

You are (still) HERE.

§

Feature| UseCase | Break Up the
List | Diagrams Problem

Pomain

Requirements et

you are here » 499

Download at WoweBook.Com

features and use cases

ther are no

Dumb Questions

Q: Didn’t you say that | should be able to match up every
feature to a use case in my system?

A: Yes, and that's still true. Every feature in your system will

be at least a part of addressing one or more uses cases in your use
case diagram. But that doesn’t mean that the use case has to actually
directly use that feature. Lots of times, a feature makes it possible

for a use case to function without being directly used by the use case
itself.

In our RouteFinder, there would be no way to load a network of
subway lines into the system (one of our use cases) without having a
representation of a subway in the first place (one of our features). But
the “Load Network” use case doesn’t have any steps that match up
directly with that feature... the steps in the use case just assume that
a representation of the subway exists. So the use case indirectly uses
the feature, without explicitly referring to it.

Q- So is a use case a requirement, or is a feature a
requirement?

A: Both! Use cases are requirements for how people and things
(actors) interact with your system, and features are requirements
about things that your system must do. They're related, but they are
not the same. Still, to implement a system’s use cases, you're going
to need the functionality in the system'’s features. That's why you
should always be able to map your features to the use cases that
they enable and are used by.

500 Chapter 10

Q: What happens if | find a feature that | can’t match up to a
use case, even indirectly?

A: You should take a hard look at the feature, and make sure
it really is a required part of your system. Your customer—and her
customers—only interact with your system through the use cases.
So if a feature doesn’t at least indirectly make a use case possible,
you're customer really isn’t going to see a benefit. If you think
you've got a feature that doesn’t really affect how your system is
used or performs, talk it over with the customer, but don’t be afraid
to cut something if it's not going to improve your system.

The {features in your
system are what the
system Joes, and are not
always reflected in your
use cases, which show how
the system 1s used.

Features and use cases
work toget]uer, but tltey
are not the same tlning.

Download at WoweBook.Com

the ooa&d lifecycle

The Big Break-Up

We’re starting to pick up some steam. With use case diagrams in place, you're
ready to break this problem up into some smaller pieces of functionality. There
are several ways to do this in any application, but our goal here is to keep the
RouteFinder system very modular. That means keeping different pieces of
functionality separate—each module should have a single responsibility.

Go ahead and break up the RouteFinder system into four different “modules”.
Think carefully about the best way to break up your system... it isn’t necessarily
going to line up with your four features (although it might!).

We've veally moving along:

Write the name of
what this module
does in the blank.

)

HINT: Remember, d

handle the sys{Cvn'ZoEu:zzio:;i'l:y,
but you also need +o prove to the
tustomer that Your system works.

Feature
List

Use Case
Diagrams

Break Up the
Problem

Requirements

you are here » 501

Download at WoweBook.Com

breaking up isn’t hard to do

The Big Break-Up, Solved

We're starting to pick up some steam. With use case diagrams in place, you're
ready to break this problem up into some smaller pieces of functionality.

These three modules make
up the system... they form
3 “black box” that is used by
4ouvists and travel agcr\{‘} to
get divections.

—
The Subway module has all
Lhe tode that vepresents

stations, tonnettions o like loading
between those stations, and We could have several different ways Printing is 2 ot ke Joading

Test is outside the

, system... it i
the entive subway system o load 3 subvay: from 3 fil, or wigy L0 scvava:: (:r'z:\el?‘c‘l'kis WZ“‘ the syszf:ﬁ:
tself. [£ also knows how wer input, or even from 3 database. VY ST T L he isn't part of th,
‘{-p et divetions Lrom one Loading is veally separate from 'l:ke. modle bardles : r\::\ccmc?v system itself. ’
station to another on its ‘“"‘”37 representation itself, so it subuay to any & iaht need:
tonnettions and lines. gets its own module. format that we miy

wSharpen your pencil
.. Which OO principles are we using?

Check the box next to the OO principles you think we’re using to break up
the RouteFinder functionality in this manner.

Answers on
[] Single Responsibility Principle [] Delegation page 504
[] Don't Repeat Yourself [Polymorphism
[] Encapsulation [] Liskov Substitution Principle

502 Chapter 10

Download at WoweBook.Com

the ooa&d lifecycle

I

Now start to iterate

Once you’ve broken up your software into several individual pieces
of functionality, you’re ready to start iterating over each piece of
functionality, until the application is complete. i

—
D
=
Q
=
o
>
—_

At this point, we need to take our big-picture view of the system,

o0ad network o
subway lines
from our use case diagram, and refine that into requirements that a
. . . . ministrator
we can begin to tackle, one by one. For this first iteration, let’s take
— Get directions

the “Load network of subway lines” use case, and turn that into a
set of requirements that isn’t so big-picture. Then we can take care

Travel Agent
(or Tourist)

of that use case, and iterate again, working on the next use case.

We've aking the
fivsk use tase 1O
owr diaoram and

g it it harpen your peri

Y What approach to development are we using?

-
aSharpen your penci e

Write the use case for loading subway lines.

L Y

Turn that little oval into a full-blown use case. Write the steps
that RouteFinder needs to take to implement the “Load network
of subway lines” use case.

Load network of subway lines
Use Case

1. Yol& €an use

2- more room, or
move S{ZCPS; if

3. You need them.

4

:)

6.

Not too sure about this use case? It’'s OK... turn the page for some help...

you are here » 503

Download at WoweBook.Com

what’s a subway?

B‘f breaking *j?
YY\V\‘E\V‘SI loading

and chrcscv\f\'\‘b

we've making sure
cac\\ mod\t\c has

OV\\\’ one veason
+o thange: \

We've entapsulated
Prih‘l:ing and ,oading,
which ""ish'l: vav-y,
away £rom the

e subw into .
o moiles q-%rpen your penci

L

How am I supposed to write this use
case? I'm not totally sure I know what a
subway line even is yet. And what about that
file that Objectville travel said they were going
to send over to us? Won't that affect how we
write our use case?

You’ll often have to do some extra
work between breaking up the
problem and writing your use cases.

You've just uncovered a “secret step” in our process
for writing software the OOA&D way:

) We veally don't undevsta
Hcrc's ‘{’)\C \\cﬁ‘{"Ya s{;c? {'.\'\3{'« FV‘OHCM well cnoushez w:?e:w

. ke. d
we sometimes need to take —s- 2::’;2":“:"“ / better requirements yet.
S—

Feature| UseCase | Break Up fhe‘ ; Dowmain
List | Diagrams Problem L T Analysis

If you get stuck writing a use case, there’s nothing
wrong with taking a step back, and examining the
problem you’re trying to solve a bit. Then, you can
go back to your use case, and have a better chance of
getting it written correctly.

'« alNswers Which OO principles are we using?

Check the box next to the OO principles you think we used to break up the
RouteFinder functionality into separate modules.

[t’s not ¢lear

if we've using

— deleaation

yet, aH:hough
with SRP and
cnca?sula{:‘lon, we

dSingle Responsibility Principle E Delegation/
[J Don’t Repeat Yourself [] Polymorphism
gEncapsulation [J Liskov Substitution Principle

Probabl\/ will at

some point.

subway, which should
s{;ay the same. J

504 Chapter 10

Download at WoweBook.Com

the ooa&d lifecycle

A closer look at representing a subway

5]
. o
Before we can figure out how to load a subway line, there are two We've on [teration |, eying =8
things we need to get a good grasp of: 4o handle the Liest use i
. . . : loading a network
o Understanding the basics of what a subway system is. tase: Joct
subway lines:

Understanding the information an administrator would have
when they’re loading a set of subway stations and lines.

What is a station?

A subway system has stations, and connections between those stations,
and lines that are groups of connections. So let’s begin by figuring out
exactly what a station is.

T C
X station is yus
point on the w3p =7 OOA&D Oval 0
with a8 name- _S
C
@
g
And a connection between two stations? e«
> 2
As soon as you start adding several stations, you’ve got to deal with the 3 °§’
connections between those stations: 26 =
e S
8 3
: — & This Connection is g_ E) ':
& part of 3 subway fine §' £ =
C OOAZD Oval § 2 =
. 2 s
These ave both SimUDuck Lake \ - §
skations, eath with S :—5 S
imple name. s S
a simple n S ;
— N
3 =
] e . . > “
Then a line is just a series of connections... P
. . P |
If you put several connections together, then you’ve got a subway line. 5
<

T

T,
AL el i

Sk Lk |
=]

._f.’. T T N— A subway line is a sevies of
"’:"""f:_ﬁ"'. e stations, eath tonnetted
~ one 1o another.
.
you are here » 505

Download at WoweBook.Com

loading a subway network

Let’s take a look at that subway file

We've got a basic idea now of what a subway is, so let’s see what kind
of data we’ve got to work with. Remember, Objectville Travel said
they would send us a file with all the stations and lines, so this should
give us an idea of what an administrator will use to load the lines into
the subway system.

Ob\')cc{',vi"cSubwa\/-{:%{:. —
the file that Objectville Ajax Rapids
Travel sent us to load HTML Heights

the subway lines from. JLaSvsiiir;s ol

Head First Labs
Objectville PizzaStore

UML Walk The file stavts out

XHTML Expressway , i
Choc-0-Holic, Inc. with a list of all £he

Head First Theater station names.
Infinite Circle

CSS Center

OO0A&D Oval

SimUDuck Lake

Web Design Way

... more station names...

Booch Line e | N 8 ?“ name
Ajax Rapids of the line.-
TTMlB‘ Heigfgs levard ...and heve ave the

LaSV;l LZiZS oulevar & stations on this

Head First Labs line, in order.

Objectville PizzaStore

UML Walk Qinte these lines Lorm loops, the
Ajax Rapids $/ Livst station also appears as the
Gamma Line last station, forming a eyele
OO0A&D Oval

Head First Lounge
OO0A&D Oval

Jacobson Line
Servlet Springs
... more stations on this line...

<«—— Thevre is an Cm‘?‘t\/ line
between each subway line.

... more lines...

T —————————

We've HERE.

Pomain
Analysis

Feature | UseCase | Break Up the

List | Diagrams Problem Requirements

506 Chapter 10

Download at WoweBook.Com

the ooa&d lifecycle

| uoness)

aSharpen your pencl
' Write the use case for loading subway lines.

You should have enough understanding of what a subway system is, and

the format of the Objectville Subway input file, to write this use case now.

Load network of subway lines
Use Case

; You €an use
; e o
4

: o
6.

7

8.

9,

you are here » 507

Download at WoweBook.Com

the finished use case

eharpen your penci
. answers

You should have enough understanding of what a subway system is, and
the format of the Objectville Subway input file, to write this use case now.

Write the use case for loading subway lines.

The first step is the .
et e Load network of subway lines

loader gets a new file Use Case
folesd o ~—=_ 1. The administrator supplies a file of stations and lines.

2. The systew reads in the name of a station.
Did you agt s ster? > 3, The system validates that the station doesn't already exist.
We velly dor' 27 % g fho systom adds the mew station fo the subway,
system Lo have duplicate
chations . that tld be 5 Tho systew repeats steps 2-4 until all stations are added.
6. The system reads in the name of alinetoadd.

a veal problem later on-
. skep ——= 7 The systew reads in two stations that are connected.
8. The systew validates that the stations exist.

9. The systew creates a new connection between the two
stations, going ivboth directions;on the current line.

10. The systewm repeats steps 7-9 until the line is complete.

Steps like this, which =
st vepeti &h‘“’] 1. The system repeats steps 6-10 until all lines are entered.

Here's anothe
wheve we validate
mvu{: to make sure H\c
com\cd‘,lon is valid -(:or
the curvent subway:

steps, help make Your
use Lases g h't‘uc movre
veadable and contise.

tber are no

Dumbd Questions

Q My use case looks totally different. Is your use case the

only solution to the puzzle? that OK?

A: No, not at all. By now you realize that there are lots of
decisions you have to make to solve any problem, and our use case
simply reflects the decisions we made. We're going to work with this
particular use case throughout the rest of this chapter, so make sure
you understand our reasoning behind it, but it's perfectly OK if you
came up with your own use case that solves the same problem of
loading a network of subway stations and lines.

508 Chapter 10
Download at WoweBook.Com

This is \rca“y onl\/

one possible way to
write the use tase.
Instead of eveating a

“Subwa\/Linc" ob\)ct‘{:,

we detided {‘,o‘)us‘{:
give the subway

eath connettion,

and assotiate the
tonnettion with a
particular subwa\/ line.

You didnt have +
W“""«C this down,
bu‘l: we ‘{:hough{

it was lmPorfan'l:
{30 V‘cmcmbcr

fha{: subwa\/s in
ObJCC{:vu”c tan

90 in E[THER
divection.

| didn’t add any steps about validation to my use case. Is

Validation is something that you should add to your use
case if you left it out. Making sure the stations for a connection
actually exist is a lot like not having a dog door automatically close. It
seems innocent enough, until the real world creeps in, and someone
misspells a station name. Suddenly, you have the equivalent of
software rodents: a connection that goes to a non-existent station. So
if you left out validation, be sure to add it in to your own use case.

the ooa&d lifecycle

Let’s see if our use case works

The use case for loading a network is a little tricky, and has several
groups of steps that repeat. Let’s check the flow of things against our
text file before we go on to analyzing the use case, and starting to
design the classes in our system.

| Uoless))

#l. The adminis{:va{;o.r
supplies 3 Lile like this to

the system loader-
~a

(Bjax Rapids) =———— 37 The system veads in a
HTML Heights station name.

JavaBeans Boulevard
::ISPdL'a:,net o #3. The sys{:cm makes sure

ead First Labs . . 7

h hasn't alvead

Objectville PizzaStore t * ‘J“t:: ; ‘l’:" ready
UML Walk cen en :
XHTML Expressway #4. The system adds the
Choc-0-Holic, Inc. station to the subway.
Head First Theater
Infinite Circle #5. The system vepeats
CSS Center these steps until all the
OO0A&D Oval stations are entered.

SimUDuck Lake
Web Design Way

... more station names

(Eooch Line) @———— #b. The S\/s{:cm reads in

Ajax Rapids wme of a line.
HTML Heights S~ #7 The system veads in the two

JavaBeans Boulevard
stations connetted on the line.

LSP Lane
Head First Labs #8. The system makes sure both
Objectville PizzaStore stations at{ua"\/ exist on the subwa\/-
UML Walk # "
Ajax Rapids 9. The system eveates a new

o tonnettion between the stations.
O?)n/lrgg OIC; #10. These steps are vepeated
Head First Lounge for each suceessive pair of 4

OA&D Oval stations on the line.
Jacobson Line #1]. The entive protess of
Servlet Springs = adding a line is vepeated for |
... more stations on this line... each line in the file.
... more lines... /
B———— S

you are here » 509

Download at WoweBook.Com

analysis and design puzzle

% ~Analysis and Design Puzz]e

This time, it’s your job to take on two phases of the OOA&D process at once.
First, you need to perform textual analysis on the use case below, and figure out
the nouns that are candidate classes, and the verbs that are candidate operations.
Write the nouns and verbs in the blanks provided below the use case.

Load network of subway lines
Use Case

1. The administrator supplies a file of stations and lines.

2. The systewm reads in the name of a station.

3. The systewm validates that the station doesn’t already exist.
4. The systewm adds the new station to the subway.

5. The system repeats steps 2-4 until all stations are added.
6. The system reads in the name of a line to add.

7. The system reads in two stations that are connected.

8. The system validates that the stations exist.

9. The systewm creates a new connection between the two
stations, going in both directions, on the current line.

10. The systewm repeats steps 7-9 until the line is complete.
11. The system repeats steps 6-10 until all lines are entered.

Nouns (candidate classes):

Verbs (candidate operations):

510 Chapter 10

Download at WoweBook.Com

the ooa&d lifecycle

It’s on to preliminary design. Using the candidate nouns and verbs you got from
the use case, draw a class diagram below of what you think the subway system

might look like modeled in code. Use associations and any other UML notation
you think will help make your design clear and understandable.

- Thi
is domain ana|\/sis--- \

Feature
List

Use Case
Diagrams

Break Up the
Problem

Pomain

Requirements fei

Download at WoweBook.Com

..and this part is
yrcliminary design.

| uoijesa)]

you are here » 511

puzzle solutions

SER Analysis and Design Puzzle Solutions

Load network of subway lines
Use Case

1. The adwinistrator supplies a file of stations and lines.

2. The systew reads in the name of a station.

3. The system validates that the station doesu’t already exist.
4. The system adds the new station to the subway.

5. The systew repeats steps 2-4 until all stations are added.
6. The system reads in the name of a line to add.

7. The systew reads in two stations that are connected.

8. The systew validates that the stations exist.

9. The systew creates a new connection between the two
stations, going in both directions, on the current line.

10. The systewm repeats steps 7-9 until the line is complete.
11. The systewm repeats steps 6-10 until all lines are entered.

These are easy.. they all

Nouns (candidate classes): appear on our class diagram. -

We krovw —= adwministrator- S i

that ackors —systen J subway line

ave outside file station connection

the system, S This :

so no ¢tlass 'S 1S an input 'éioulr .

needed heve. system, not somethin e fiwdCd not to ereate

we model in our st) a Line ¢tlass... more on that
- ystem. when you turn the page.
Verbs (candidate operations):
. supplies a file validates station ~epeats—

We tan use Java's . . :
170 opevations to — -reads-in- adds a station x ~ adds a connection
handle this.

Most of these diveetly mav_/

+o methods on our elasses.
512 Chapter 10

Download at WoweBook.Com

The attual load

\ittle (:uv\c{:\ona\i{:\f...

a File, and oener
of Subway from

Station is pretty
simple... it has a
name, and that's
about it We'll come
back o why we
added an equalsQ)
and hashCode()

This is the main object
we'll be working with, and
we need a method to
add stations, and to add

tonnettions.

Subwa\/ has a collettion of
the stations in the subway,
as well as the tonnettions

ates a new

hat Kile:

ev tlass has very

& .)"S{: Lakes in

the ooa&d lifecycle

SubwayLoader

—
(4
e
QO
=F
o
>
N

loadFromFile(File): Subway

AN
This elass uses all the functionality
in Subway to treate a subwa\/ from
a text file of stations and lines.

i t
should have ‘c\gwcd ot
\gt\;m the use tase that you |\

Subway

need an opevation toseeix d

_—7

among its stations.

stations

addStation(String)
hasStation(String): boolean
addConnection(String, String, String)

<o exists. This is Yav{;
sj;{:l::‘da‘bng skations, in skeps
#1 and #5.

A tonnettion has
{',wo S{:&‘Uons and
the name of the
line the COY\V\CC‘EIOV\

v is a part of

connections

[——=- Station

station1

Connection

name: String

lineName: String

method in @ minute.

getName(): String
equals(Object): boolean
hashCode(): int

getStation1(): Station
getStation2(): Station
getLineName(): String

station2

You should not ¢all these attributes
start and stop, or bcginning and
end, sinte subways in Objectuille

g0 both ways. We Jus{: went with
stationl and station2.

We've doing design, and heading towards
implementation for this iteration.

Feature
List

Use Case
Diagrams

Break Up the
Problem

Pomain

Requirements ol

you are here » 513

Download at WoweBook.Com

design decisions

To use a Line class or not to use a
Line class... that is the question

It was pretty easy to look at our use case and figure out that we
need a Station, Connection, and Subway class—those
are fundamental to our system. But then we decided to not

create a Line class. Instead, we just assigned a line name to
cach connection:

Your Jesign

Lines onl\/ exist

Connection -
ai,f;::g v;mcs station1: Station (:[ECISIOIIS ShOUlJ
2 sekicular station2: Station
zzmcwm ——> [lineName: String Le l)aseC[on 110W

getStation1(): Station
getStation2(): Station
getLineName(): String

your system

will be useJ, as

We made this decision based on one thing: we know how the

system is going to be used. In the original Statement of ll J OO
Work (back on page 488) from Objectville Travel, we were told we as goo

we needed to represent a subway, and get directions between . . l

one station and another. Once we have those directions, we can PrlnCIP es.

simply ask each connection for its line; there doesn’t seem to be

a need for an actual Line class.

Even if it turns out we need to

add a Line class later, that's no big
deal. This is a preliminary design, and
we can change it if we need to once
we start writing our code.

514

Download at WoweBook.Com

tber are no

Dumb Questions

Q: | found the “validates that a station exists” verb,
but where does that operation appear on any of the classes
in your design?

A: We modeled that operation as hasStation ()

on the Subway class. You could have called that operation
validate () orvalidateStation (), but those aren’t
as descriptive as hasStation (), and you should always try
and make your code as readable as possible.

Q,: Could you talk a little more about how you showed
those repeated steps in the use case?

Lots of times a use case has a set of steps that need
to be repeated, but there’s not a standard way to show that in
use cases. So we just made one up! The point of a use case
is to provide you with a clear set of steps that detail what your
system should do, and we thought the clearest way to show
those repeated steps was to write down “Repeat Steps 7-9.”

Q,: I've been thinking about that subway
representation, and it looks a lot like a graph data structure
to me. Why aren’t we using a graph?

Our desion detisions heve--

the ooa&d lifecycle

Wow, you must have taken a data structures or
algorithms class recently! Yes, you can use a graph to
represent the subway. In that case, each station would be a
node, and each connection would be a labeled edge.

Q: So then why aren’t we using a graph structure in
this example?

A: We think it's really overkill in this situation. If you
already know about graphs and nodes and edges, and you
happen to have code for that sort of data structure lying
around, then go ahead and use them. But from our point of
view, we'd do more work adapting a graph to our needs than
just coming up with a few simple classes for Station and
Connection. Like almost everything else in the design
stage, there are several ways to solve a problem, and you need
to choose a solution that works well for you.

Q: You lost me on the whole graph thing... what’s all
this about edges and nodes?

A: It's OK; you don’t need to know about graphs in order
to understand and solve this particular problem. It's nothing to
worry about, at least until we come up with a Head First Data
Structures book (anyone? anyone?).

have a lot of impact here.

/

Break Up the
Problem

Use Case
Diagrams

Feature

List Requirements

Dowmain
Analysis

Preliminary
Pesign

515

you are here »

Download at WoweBook.Com

| Uoless))

the station class

Code the Station class

We’ve got requirements in the form of a use case, a class
diagram, and we know the Station class will fit into our
Subway model. Now we’re ready to start writing code:

IF \/ou wan{:, \/ou -
tan Yu{: Station

in a package like
ob‘)cc{:vilk-subwa\/‘

I+s up +o you if Yyou
want to break up Yyour
modules by package-

public class Station {
private String name;

public Station (String name) {

this.name = name;

public String getName () {
return name;

}

public boolean equals (Object obj) {

if (obj instanceof Station)

Station otherStation =

if
return true;

}

}

return false;

}

public int hashCode () {

N

Jus{: 3 named ob‘)'ec{;.

We tame up with the
Subwa\/ module back on
Page 502.

Station
name: String

getName(): String
equals(Object): boolean
hashCode(): int

This is our tlass diagram Lor
Gtation, from page 5l3.

A Station is basically

This ensuves, for example, that 3
station named “AJA)(RAPIDS” is
tonsidered the same as a station

{ named “A\)ax Rapids".

(Station)obij;
(otherStation.getName () .equalsIgnoreCase (name)) {

Wf figqured Lheve's going to be a lot
of tomparisons between stations, so ‘.uc
made sure we defined equalsO)- [n this
vevsion, two Station ob\')cc{:s ave equal
if they have the same name.

return name.toLowerCase () .hashCode () ;

) .
}
We base the hash ¢ode of a Station on

the same Property that comparisons ave
based on: the name of the station.

For a lot more on equals() and
hashCode(), ehetk out Chapter 16
of Head First Java. — >~

516 Chapter 10

When you override equals() in
| Java, you should usually also
* override hashCode() to ensure
correct comparisons.

The Java specification recommends that if two objects
are equal, they should have the same hash code. So
if you’re deciding on equality based on a property, it's
a good idea to also override hashCode() and return

a hash code based on that same property. This is
particularly important if you’re using your object in a
Hashtable or HashMap, which both make heavy use

of the hashCode() method.

Download at WoweBook.Com

aSharpen your pencil

}h

Using the class diagram on the right, complete the
Connection class by filling in the blanks with the correct lines
of code. Be sure your class will compile before you turn the
page and see our answers.

public class Connection {

Write the Connection class.

the ooa&d lifecycle

| Uoless))

Connection

: station1: Station
station2: Station
lineName: String

getStation1(): Station
getStation2(): Station
getLineName(): String

private ’ ;
private ;
public Connection (, ,
) A
this. = stationl;
this. = station2;
this. = lineName;
}
public 0 A
stationl;
}
public 0 A
station2;
}
public 0 |
lineName;
}
}
We've well into the
implementation phase of our
Fws{i{crabon,now.
Fea.’rure U_se Case | Break Up the Requirements Vomalgl
List | Piagrams Problem Analysis

you are here » 517

Download at WoweBook.Com

the connection class

aSharpen your pencil
o Answers Write the Connection class.

Using the class diagram on the right, your job was to fill in Connection

the blanks and complete the Connection class.

station1: Station
station2: Station
lineName: String

getStation1(): Station
getStation2(): Station
getLineName(): String

public class Connection {

private Station stationl , station2 ;

private String lineName
public Connection (_ $tation stationl , _ Station station2
String lineName) ¢
this. stationl = stationl;
this. gtation2 = station2;
this. |ineNawme = lineName;

}

public _ Station getStationl () ¢
return stationl;

}

public Station getStation2 () {
return station2;

}

public _ String getlineName () {
return lineName;

}

You are HERE.

/

Pomain
Analysis

Feature | UseCase | Break Up the

List | Diagrams P Requirements

518 Chapter 10

Download at WoweBook.Com

Code the Subway class

Next up 1s the Subway class itself. With Station and
Connection done, and a good class diagram, nothing
here should be a surprise:

public class Subway {

private List stations;
private List connections;

public Subway () {

the ooa&d lifecycle

| Uoless))

Subway

stations: Station [*]
connections: Connection [*]

addStation(String): Station
hasStation(String): boolean
addConnection(String, String, String): Connection

this.stations = new LinkedList(); =—__ These will store all the

this.connections = new LinkedList() ;e——

s {;iohs, and the tonnettions

bc{;wecn ‘H\osc s{:a'(:ions.

public void addStation (String stationName) {
if (!this.hasStation(station)) { << —— Fiest, we validate the name, and make

Station station = new Station (stationName) ; sure we don't already have this station.

stations.add(station);

~_

-~ — £ not, we ereate a new

Station insfam:e, and add it

} 'EO 'H\C S"bway.
public boolean hasStation(String stationName) {<=——— This ethod ihetks b .s“
return stations.contains (new Station (stationName)) ; o o a\“ad\l e
‘ .
| subwa\f's skations List.

public void addConnection (String stationlName, String station2Name,
String lineName) { Like addStation(), we begin

if ((this.hasStation(stationlName))
(this.hasStation (station2Name)))

Station stationl = new Station(stationlName) ;
Station station?2 = new Station (station2Name) ;

&i(> with some validation: this
time, we make sure both

stations exist in the subwa\/.

Connection connection = new Connection(stationl, station2, lineName) ;

connections.add (connection) ;

connections.add (new Connection(station?2, stationl,
connection.getLineName ()))?

} else {

} throw new RuntimeException(“Invalid connection!”); e VER\{ ,‘mvwb“{? -
| Ob)cc’c,v\\\c subways r:: d\n{—’wo
\ 1ons, We
} o | both divettions p
Pretty rough in terms of ervor connettions’ one tonn

handling‘.. see i“-‘

way .'bo handle the case wheve one of the
stations in the tonnettion doesn’t exist.

You £an Lome up with a betier Cor both d\rcb‘\f‘m‘s'

you are here » 519

Download at WoweBook.Com

understand the system

Points of interest on the
Objectville Subway (class)

We threw a couple of new things into the Subway class;
first, you’ll see this line of code quite a bit:

Station station = new Station (stationName) ;

For example, when we create a new Connection, we
have code like this:

Station stationl = new Station(stationlName) ;
Station station2 = new Station(station2Name) ;
Connection connection =

new Connection(stationl, station2, lineName):;

Lots of programmers would take stationlName,

and iterate through the list of stations in the Subway

class to find the Station object that has a name of
stationlName. But that takes a lot of time, and there’s a
better way. Remember how we defined an equals () and
hashCode () method on our Station class?

Station

name: String

getName(): String
equals(Object): boolean
hashCode(): int

Normally, ca\uals() in Java \')us{: thetks to see

These methods allowed us to tell Java that when it £ Lo ob\')ct{'} actually ave the SAME objcct..

compares two Station objects, just see if their name is in okher words, it looks to see if they ave

the same. If the names are equal, even if the objects don’t refer ctually both veferentes to the same plate in
e—— attually

to the same .Zocation n memory, they shoul(.i be treate.d as th.e memory. But that's NOT what we want to use
same. So instead of looking for a particular Station object for comparison of +wo Station ob)gg{g.

in the Subway class’s list of station, it’s much easier to just

create a new Station and use it.

Because we overrode equals() and
hashCode(), we can save search time
and complexity in our code. Your
design decisions should always make
your implementation better, not more
complicated or harder to understand.

520 Chapter 10

Download at WoweBook.Com

the ooa&d lifecycle

What Java's default equals() implementation does...

Station
“HTML Heights”

name =

3

These two instantes of Station have the same
name, but they vefer to two dikferent memory

lotations... so cv\uals() says: \

Object.equals()

What our equals() implementation does...

Station
“HTML Heights”

name =

Our version of equalsO) tells Java 4o base
cquali'f:\/ on the value of Lhe name attribute,

instead of a memorry lotation. L

Hmr are no

Dumb Questions

Q: What does any of this have to do with OOA&D?

A: This is the very core of what makes OOA&D useful: because
we understand our system, we realize that two stations should be
considered identical if they have the same name. And, our design is
improved by being able to compare stations based on their name,
rather than their location in memory.

Station.equals()

Station
“HTML Heights”

name =

These two stations are NOT equal!

/

This makes our
imylmcn{aﬁov\
tode a big pain-

Station
“HTML Heights”

name =

These two stations ARE equal!

/

This vesult makes
dcaling with Stations

muth easiey-.

So the time we spent on requirements and getting a good grasp of
our system made our design better, which in turn made implementing
that design a lot simpler. That's the power of OOA&D: you can turn
knowledge of your system into a flexible design, and even end up
with cleaner code—all because you spent time up front listening to
the customer and gathering requirements, rather than diving right into
an IDE and typing in source code.

521

you are here »

Download at WoweBook.Com

| Uoless))

abstract your classes

Why aren't we just taking ina
Station object in addStation(),
and a Connection object in
addConnection()? Wouldn't that
make sense?

Frank: That’s true. So we could change our Subway class to look
more like this:

Subway Joe and Frank ave
N H . .
stations: Station [*] — 0;93:::'}5 taking in
connections: Connection [*] A . c\){:h ; °VJchhhcse
ods, ra
addStation(Station) <—— i ¢r than

he strings that are
he Property values
or those OBJ'CC{:s.

hasStation(String): boolean
addConnection(Connection)

Jill: But then you’re exposing the internals of your application!

Joe: Whoa... not sure what that means, but it sure doesn’t sound like
something I want to do. What are you talking about?

Jill: Well, look at our code right now. You don’t have to work with a
Station or Connection at all to load up the subway. You can just call
methods on our new Subway class.

Frank: How is that any different from what we’re suggesting?

Jill: If we went with your ideas, people that use the Subway class
would have to also work with Station and Connection. In our version
right now, they just work with Strings: the name of a station, and the
name of a line.

Joe: And that’s bad because...

Frank: Wait, I think I get it. Their code is getting tied in to how we
implement the Station and Connection classes, since they’re having to
work with those classes directly.

Jill: Exactly! But with our version, we could change up Connection
or Station, and we’d only have to change our Subway class. Their
code would stay the same, since they’re abstracted away from our
implementations of Connection and Station.

522 Chapter 10

Download at WoweBook.Com

the ooa&d lifecycle

Protecting your classes (and your
client’s classes, t00)

Frank, Joe, and Jill are really talking about just one more
form of abstraction. Let’s take a closer look:

—
D
=
Q
=
o
>
—_

Client tode never deals divectly
Subway subway = new Subway () ; w::h the S'lj.a‘l:ion or Connection
subway.addStation (“00A&D Oval”); =—— _° jects. It just works with Strings.

subway.addStation (“Head First Lounge”);)
subway.addConnection (YOOA&D Oval”, “Head First Lounge”,
“Gamma Line”);

addStation (String)
/ ‘ Subway
T

{ bwa elass
Rioht now, on\\/ the Su . Y
in?,cracjcs with £he Station and

Conncc{joh ob\')c{,{;s.

You should only expose clients of your code to the
classes that they NEED to interact with.

(lasses that the clients don't interact with can be

c]mangec[with minimal client code Leing affected.
A

In this application, we could ¢hange how
Station and Conneetion wovrk, and it

wouldn't affect code that Ohl‘/ uses our
Subway objeet; they've protected from

changcs +o our im?lemcn‘(:a{:ion
you are here » 523

Download at WoweBook.Com

loading the subway

We're working on the
<— Loader module now

(see Page 502.).

The Subwayloader class

We’re almost done with our first iteration, and our first use
case. All that’s left is to code the class that loads a subway
based on the test file we got from Objectville Travel, Inc. R

SubwayLoader

public class SubwayLoader {
private Subway subway;

loadFromFile(File): Subway

public SubwayLoader () {
this.subway = new Subway () ;

}

public Subway loadFromFile (File subwayFile) throws IOException {
BufferedReader reader = new BufferedReader (
new FileReader (subwayFile)); We start out by ,oading

/_ all ‘ch S'l'.&‘l‘,ions.
loadStations (subway, reader);

String lineName = reader.readLine();
while ((lineName != null) && (lineName.length() > 0)) {
loadLine (subway, reader, lineName);) ymcdko
lineName = reader.readLine(); S~ Onte weve 50{: {he stations, wcb " lne
get the nexk line, whith should be o
"ame, and 3dd the stations underne

Lhat line into the subway-

return subway;

private void loadStations (Subway subway, BufferedReader reader)
throws IOException {
String currentLine;

currentlLine = reader.readLine(); lin) J“%ihwh)
while (currentLine.length() > 0) { < add"‘ﬂ that ine into e Vcad.,,a a
subway.addStation (currentLine) ; < 9 new stati, nam into the g, way g
currentLine = reader.readLine(); until we hit 5 blank' l?:d then cheafinal
} <

private void loadLine (Subway subway, BufferedReader reader,
String lineName)

throws IOException { . We vead the first station, and the
String stationlName, station2Name

’ ion after that..
stationlName = reader.readLine(); g station att

station2Name = reader.readLine();

while ((station2Name != null) && (station2Name.length() > 0)) {
subway.addConnection (stationlName, station2Name, lineName) ;
stationlName = station2Name; $<_
station2Name = reader.readLine();) ~-and then add a new tonnettion
} S 4 using the eurvent line name.
} We take the cwrmi:i:" st
. it w ¢ ’
} station, bur? Y{-,hcr line to

and then vead ano .
524 Chapter 10 3:’(, fhe new setond station-
apter

Download at WoweBook.Com

the ooa&d lifecycle

. Method Magnets

: [l Let’s see exactly what happens when you call loadFromFile() in SubwayLoader, and
give it the text file we got from Objectville Travel. Your job is to place the magnets
from the bottom of this page—which match up to methods on the SubwaylLoader

and Subway classes—next to the lines in the text file where they’ll be called.

| Uoless))

Ob\jcc{:vi HcSubway.'l:x‘l:

Ajax Rapids

HTML Heights
JavaBeans Boulevard
LSP Lane

Head First Labs
Objectville PizzaStore
UML Walk

XHTML Expressway
Choc-0-Holic, Inc.
Head First Theater
Infinite Circle

CSS Center

OO0A&D Oval
SimUDuck Lake

Web Design Way

... more station names...

Booch Line

Ajax Rapids

HTML Heights
JavaBeans Boulevard
LSP Lane

Head First Labs
Objectville PizzaStore
UML Walk

Ajax Rapids

Gamma Line
OO0A&D Oval
Head First Lounge
OO0A&D Oval

Jacobson Line
Servlet Springs
... more stations on this line...

... more lines...

addStation(m’

dStation addConnection ()

There ave only 5 methods that ToadLine O

are involved heve, but you'll need
1o use most of these magnets \‘Z/
several times eath. V

you are here » 525

Download at WoweBook.Com

loading a subway

ob\')eé{:. and then

ca"ing \oadS{:a{jons().

—
The Loader starts by
tveating a new Subway

Method Magnet Solutions

Let's see exactly what happens when you call loadFromFile() in
SubwayLoader, and give it the text file we got from Objectville Travel. Your
job was to place the magnets from the bottom of this page next to the
lines in the text file where they’ll be called.

Objectville PizzaStord
XHTML Expressway addStation ()]

< addS‘(:a{:ioyaO is talled
- ’on every line unt;| the
oader hits a blank line.

Infinite Circ
CSS Cente
00AD Ovalzdastation V)]
SimUDuck Laki20astation O

Web Design Wa loadLine() SC{?‘ ¢alled
... more station names... at the bcginning of

§ eath new line.
Ajax Rapids

- 4 sekier-

addConnection ()) a little Lt
HTML Heights g < This was 3 ¥
JavaBeang Boum addConnectl.OIl g L/addConncb\‘,\onO ?:C*:
LSP Lane addconnectionl) called Lor every T2 s
Head First Labs —L&ddConnection sations fhat ave vedd:
Objectville PizzaStore addconneCtl?n 0
UML Walk —— | addConnection ()
Ajax Rapids> addConnection ()
Gamma Lin
OOA&D Oval

addConnection ()
Head First Lounge

OOA&D Oval

Jacobson Line [LoadLine ()

Servlet Springs -
... more stations on this line...

addConnection ()

addConnection ()

... more lines...

526 Chapter 10

Download at WoweBook.Com

Ochcfvi ”cSubway-{:x‘l:

the ooa&d lifecycle

Test Puzzle

You're almost done with the first use case, and our first iteration! All that’s left is
to test out our solution, and make sure it actually works.

| Uoless))

The problem:
You need to test loading the ObjectvilleSubway . txt file,
and make sure that SubwayLoader correctly loads in all stations
and connections in the file.

Your task:

o Add a method to Subway to check if a particular connection exists, given
the two station names and the line name for that connection.

e Write a test class, called LoadTester, with amain () method that loads
the Objectville Subway system from the text file we got from Objectville
Travel, Inc.

6 Write code in LoadTester that checks a few of the stations and
connections from the text file against the Subway object returned from
SubwayLoader’s loadFromFile () method. You should check to
make sure that at least three stations and three connections on three
different lines were all entered correctly.

e Run your test program, and verify that we’re really done with Iteration 1.

Load network of subway lines
Use Case
Heve's the use tase = 1. The adwinistrator supplies a file of stations and lines.
we've tes {""“5 n 2. The systew reads in the name of a station.
this puzzle. 3. The system validates that the station doesw’t already exist.
4. The system adds the new station to the subway.
9. The systew repeats steps 2-4 until all stations are added.
6. The systew reads in the name of a line toadd,
7 The systew reads in two stations that are connected.
8. The system validates that the stations exist.
9. The s'xsfem creates a new connection between the two Tchcmg IS rcally ?a\r{: of
stations, qoing in both directions, on the current line. the implementation phase.
10. The systewm repeats steps 7-9 until the line is complete. Code isn't tomplete until
11. The system repeats steps 6-10 until all lines are em‘eredJ it's Lested F o

Feature | UseCase | Break Up the : Pomain
List | Diagrawms Problem LB Analysis

you are here » 527

Download at WoweBook.Com

test puzzle solutions

Test Puzz]e Solution

Your job was to test the SubwayLoader and our subway representation to

make sure you can load a subway system fro

0 Add a method to Subway to check if

m a text file.

a particular connection exists, given

the two station names and the line name for that connection.

public boolean hasConnection

This is pretty
s{:raighu:orwavd---
it itevates through
eath tonnettion in

the subway, and \')“‘S‘t /
(4
x/}'

Station station2
for (Iterator i
Connection connection

return true;

Station stationl = new Station(stationlName) ;
new Station (station2Name) ;
connections.iterator(); i.hasNext();

if (connection.getLineName () .equalsIgnoreCase (lineName))
if ((connection.getStationl () .equals(stationl))
(connection.getStation2 () .equals(station2)))

(String stationlName, String station2Name,
String lineName) {

) o

(Connection) i.next();

{
&&

{

and stations to see i

tompares the line nam
}

Subway

we've go{: a matth. }

return false;

}

stations: Station [*]
connections: Connection [*]

‘-h---l-.-"*--i'-nh‘ﬂ

ad

tber are

A: It would. If we had a Line object, we could look up the line
using the name passed into hasConnection (), and just iterate
over the Connection objects for that line. So in most cases,
hasConnection () would involve less iteration, and return a

528 Chapter 10

Download a

addStation(String)
hasStation(String): boolean

hasConnection(String, String, String): boolean

dConnection(String, String, String)

no .
Dum Queéiﬂf?é&& if we had a Line object.

Q: Wouldn't it be easier to write the hasConnection()
method if we used a Line object, like we talked about a few
pages ago?

We still decided not to use a Line object, though, because we've
only added hasConnection () to help us test our classes.

So adding a Line object just to make a test method return

faster doesn’t seem like a good idea. If we find that we need the
hasConnection () method in other parts of our app, though, this

t WoweBook.Com

the ooa&d lifecycle

@

e Write a test class, called LoadTester, with amain () method that loads %"
the Objectville Subway system from the text file we got from Objectville >
Travel, Inc.

6 Write code in LoadTester that checks a few of the stations and This tode simply passes in
connections from the text file against the Subway object returned from the text file, and then
SubwayLoader’s loadFromFile () method. You should check to tests a few stations and
make sure that at least three stations and three connections on three tonnections {o see if {:hcy
different lines were all entered correctly. 90t loaded.

4

public class LoadTester {
public static void main(String[] args) {
try {
SubwaylLoader loader = new SubwayLoader () ;
Subway objectville =
loader.loadFromFile (new File (“ObjectvilleSubway.txt”));
System.out.println (“Testing stations...”);
if (objectville.hasStation (“DRY Drive”) &&
objectville.hasStation (“*Weather-O-Rama, Inc.”) &&
objectville.hasStation (“Boards ‘R’ Us”)) {
System.out.println(“...station test passed successfully.”);
} else {
System.out.println(“...station test FAILED.”);
System.exit (-1);

\(ou tan use an\/
stations and

. . . 1 ow
System.out.println (“\nTesting connections...”); connettions

if (objectville.hasConnection (“DRY Drive”, &— like heve
“Head First Theater”, “Meyer Line”) && yf
objectville.hasConnection (“*Weather-O-Rama, Inc.”,
“XHTML Expressway”, “Wirfs-Brock Line”) &&
objectville.hasConnection (“Head First Theater”,
“Infinite Circle”, “Rumbaugh Line”)) {

System.out.println(“...connections test passed successfully.”);
} else {
System.out.println(“...connections test FAILED.”);

System.exit (-1);
}
} catch (Exception e) {
e.printStackTrace (System.out) ;

class
Load-
} Tester

main (
=

LoadTester.java

you are here »

Download at WoweBook.Com

529

test and iterate

Test Puzz]e Solution (cont.)

Your job was to test the SubwayLoader and our subway representation to
make sure you can load a subway system from a text file.

e Run

your test program, and verify that we’re really done with Iteration 1.

File Edit Window Help NotVeryExciting

%java LoadTester -—
Testing stations...
Tests dre usua”y not

...station test passed successfully.

V‘C&”y C*Ci{:ihs '(:o

Testing connections... un... undil .
...connections test passed successfully. that fhcy You realize
Prove your

software is WORKING!

RANN
QWEWR

Try and write a test case that gets all the stations and

It’s time to iterate again

Our test proves that we really have finished up our first iteration.
The “Load network of subway lines” use case is complete, and that

connections in the Subway and prints them out, to

verify your subway is loading the network correctly.

)
We've done hevre.

Load network of &
subway lines

means it’s time to iterate again. Now, we can take on our next use -

case—"“Get directions”—and return to the Requirements phase
and work through this use case.

Get directions

Feature
List

Use Case
Diagrams

Pomain

Break Up Requirements .
Analysis

Problem

530 Chapter 10

Onte an itevation is complete, if
Lheve are movre use tases or Leatures
1o implement, you need to take your
nexk feature or use tase, and start
again at the vequivements phase.

Download at WoweBook.Com

the ooa&d lifecycle

But before we start lteration Z...

| uoess))

It'’s heen a LONG iteration, and you've
done some great work. ST_OP, take a
BREAK, and eat a bhite or drink some water.
Give your brain a chance to REST.

Then, once you've caught your breath, turn the
page, and let's knock out that last use case. Are
you ready? Then let’s iterate again.

ZZZ...

< " <~ Seviously, things only movF (:ast,cr
Lrrom here. Let your brain take 3

break before going o

DISTORB|f

you are here » 531

Download at WoweBook.Com

how far have we come?

What's left o do?

We’ve made a lot of progress, on both our use cases, and
our feature list. Below is the feature list and use case
diagram we developed earlier in the chapter:

Objectville RouteFinder
Feature List '

i

Represent way lines, and
stations\#long each line. S Y
1. We have to be able fo represent a subwa

and the stations alonq that line.

We took care of both of these

2. We wmust be able to load wmultiple subwavM Load mujrip

lines in

into the prograw, including overlapping lin

P features in [teration #|.
%J

3. We need 1o be able to figure out a valid pat
between any two stations on any lines.

4. We need to be able to print out a route

Figure out a valid route
between two stops.

between two stations as a set of directions

N~ Our setond itecation should

Print directions for a
particular route.

< Lake tave of both of these

Lwo remaining Leatuves.

Adwinistrator

0
A

Travel Agent
(or Tourist)

-+
Get directions

| We've also got our Lirest use
case taken tave of.

This use ease is the foeus of

our setond iteration.

532 Chapter 10

Download at WoweBook.Com

the ooa&d lifecycle

Back fo the requirements phase...

Now that we’re ready to take on the next use case, we have to go
back to the requirements phase, and work through this use case the
same way we did the first one. So we’ll start by taking our use case
title from our use case diagram, “Get directions,” and developing
that into a full-blown use case.

| uoess))

Pomain
Analysis

Feature| UseCase | Break Up the

List | Diagrams i Requirements

aharpen your penci
Write the complete use case for “Get directions.”
We’re back to writing use cases again. This time, your job is to write a

use case that allows a travel agent to get directions from one station to
another on the Objectville Subway.

Get directions
Use Case

1.
‘/ou shouldn't —
need as many
steps to write
£his use case. 3.

4.

you are here » 533

Download at WoweBook.Com

the get directions use case

wSharpen your penci
. ANSwers Write the complete use case for “Get directions.”

Get directions
Just like our ‘F‘nrs{; Use case

use tase, . . .

should ;.avy::ddcd 1. The travel agent gives the system a starting station

some validafion.\-> and a station to travel to.
2.

e systew validates that the starting and ending ,
stations both exist on the subway. '

is is the bi i
E‘i 9 " ok > 3. The systew caleulates a route from the startin

tatkle in this station to the ending station.
itevation.

4. The systewm prints out the route it caleulated.

Onte we have a voute, printing
should be pretty simple.

I'm a little confused. We
went to all that work to break
our code up into modules, but our use
cases involve code in more than one

module. Why do we keep jumping
back and forth between modules
and use cases?

534 Chapter 10

Download at WoweBook.Com

These are the +wo
modules we'll be workin
with to put this use

tase into action.

the ooa&d lifecycle

Focus on code, then focus on customers.

Then focus on code, then focus on customers...

When we started breaking our application up into different modules way back We've veally been

on page 502, we were really talking about the structure of our application, a0ing batk and orth
and how we are going to break up our application. We have a Subway and between our tode, and
Station class in the Subway module, and a SubwayLoader class in the how our S‘ISJ“"‘ is used)
Loader module, and so on. In other words, we’re focusing on our code. on both ikevations.

But when we’re working on use cases, we’re focusing on how the customer uses
the system—we looked at the format of an input file to load lines, and began to
focus on the customer’s interaction with your system. So we’ve really been going
back and forth between our code (in the Break Up the Problem step) and our
customer (in the Requirements step):

This step is about our
tode, and how we break

wp ‘("und:ionali‘{:y N

This step is about
how the tustomer
uses our so@{:warcA

Feature
List

Use Case | Break Up the
Piagrams Problem

Pomain

Requirements A

When you’re developing software, there’s going to be a lot of this back-and-
forth. You have to make sure your software does what it’s supposed to, but it’s
your code that makes the software actually do something.

It's your jo]o to bhalance making sure the customer
gets the functionality they want with making sure
your code stays flexible and well-Jesignec[.

you are here »

Download at WoweBook.Com

K}

535

| uoess))

textual analysis and preliminary design

~Analysis and Design Puzz]e

It’s time to take on more domain analysis and design for your system. look £5. 1 these eXereises
Take the use case below, figure out the candidate classes and candidate oK Tamiliar? v, use
operations, and then update the class diagram on the right with any . a:hséTmc M{'&s in
changes you think you need to make. d CVCIJP"Q'_(Z"" °
ment eyele.

Do Some o-p

Your

Get directions
Use Case

1. The travel agent gives the system a starting station
and a station to travel to.

e systewm validate e starti d endi
stations both exist on the subway.

3. The systew caleulates a route from the starting
station to the ending station.

4. The systewm prints out the route it calculated.

Nouns (candidate classes):

Verbs (candidate operations):

536 Chapter 10

Download at WoweBook.Com

the ooa&d lifecycle

| uoljessy]

Add in any mew tlasses) SubwayLoader

stbeibutes, and opevations

ou think you need based
! alysis on the

loadFromFile(File): Subway

on \low' an

—
@D
=
QO
=
o
>
N

previous page:

Subway

addStation(String)

hasStation(String): boolean
addConnection(String, String, String)
hasConnection(String, String, String): boolean

stations connections

station1

Station Connection

name: String lineName: String

station2

getStation1(): Station
getStation2(): Station
getLineName(): String

getName(): String
equals(Object): boolean
hashCode(): int

Pomain
Analysis

Feature | UseCase | Break Up the

List | Diagrams P Requirements

We've taking these two Phases

on at the same time again.
Download at WoweBook.Com

you are here » 537

class diagrams

m Analysis and Design Puzzle Solutions

We know we need a new ¢tlass 4o
handle printing a voute once we
get it from the Subway ¢lass.

SubwayLoader

(SubwayPrinter
out: PrintStream
printPirections(Connection 1))

loadFromFile(File): Subway

This Yr'm{ mekthod Lakes is
.\V\Y\A‘{’, the same thing tha
5:{:'D'wcc’c'\ov\s() outputs

Subway

This is the main addition... . .
we need to be able to pass addStation(String)

in the name of a start hasStation(String): boolean

o i d end station addConnection(String, String, String)

statien 2n Jznog di L£;°hs —> [hasConnection(String, String, String): boolean
and ot @ set ot AR gotDirestions(String, String): Conmection [*1

We decided ¢, represent
a route as g set op
Connections (and each
Conneetion will tell us
the line it’s on).

stations connections

station1

Station Connection

name: String

lineName: String

station2

getStation1(): Station
getStation2(): Station
getLineName(): String

getName(): String
equals(Object): boolean
hashCode(): int

¥ We didn't show the nouns and verbs... by
now, You should be comfortable with that
step, and be able to translate them into

he ¢l i hown heve.
538 Chapier 10 the ¢lass diagram shown heve

Download at WoweBook.Com

the ooa&d lifecycle

lteration makes problewms easier

The class diagram on the last page really isn’t that much
different from our class diagram from the first iteration (flip
back to page 513 to take a look at that earlier version).
That’s because we did a lot of work that applies to all our
iterations during our first iteration.

Load network of subway lines

Use Case

—
(1]
=
QO
=
(@]
>
N

Iteration 1 | ————p>

7. The system reads in two stations that are connected,
8. The system validates that the stations exist.
9,

e system er e "

betwe
stations, going in both directions on the current fine.
10. The system repeats steps 7-9 until the line is complete.
11. The system repeats steps 6-10 until all lines are entered,

We did a LOT of work in our fivst
iteration... we worked on three modules,
and completed an entive use case.

Once you’ve completed your first iteration, your successive
iterations are often a lot easier, because so much of what
you've already done makes those later iterations easier.

[N
/

We still have plent
of work 4o d: bufy
not nearly as muth as
<— we did in the first
iteration. Most of {he
Subway module is done,
and we've evep 90t
some tests in Placc.

Iteration 2

Al the work we did on

the Subwa\/ module laid
the 5roundwork ‘COM

SCCOV\d [CYa‘b‘"\'

We've veady to move to the
implementation phase... but this itevation

is moving a lot Laster, and there's less
4o do, than the Livst iteration.

\

Feature | UseCase | Break Up the
List | Diagrams | Problem Requirements

you are here » 539

Download at WoweBook.Com

getting directions

Implementation: Subway.java

Figuring out a route between two stations turns out to be a
particularly tricky problem, and gets into some of that graph stuff’
we talked about briefly back on page 515. To help you out, we’ve
included some Ready-bake Code that you can use to get a route
between two stations.

public class Subway {
private List stations;

We need 4 Maf’ to

private List connections; station, and ; sk ;cfore each
private Map network; <=—— s{ifi,,. that it COhnc:L’s?:
public Subway () {
this.stations = new LinkedList();
this.connections = new LinkedList () ;
this.network = new HashMap() ;

// addStation (), hasStation (), and hasConnection ()
public Connection addConnection (String stationlName,
String lineName) {

hasStation(stationlName)) &&
hasStation(station2Name))) {

Station stationl new Station(stationlName) ;
Station station2 new Station(station2Name) ;
Connection connection new Connection (stationl,
connections.add (connection) ;
connections.add (new Connection(station2,

if ((this.

(this.

Ready-bake Code

Rcady—bakc tode is tode that
we've already Vrcvavcd for you
Just b/\?c it in as its shown heve,
or You tan down\oad a LOmV\chd
version of Subway.java from the
Head Fivst Labs web site.

stay the same

String station2Name,

station2, lineName) ;

stationl,

connection.getLineName ()));

addToNetwork (stationl,
addToNetwork (station2,
return connection;

} else {

station2) ;
stationl) ;

throw new RuntimeException (“Invalid connection!”);

} Z{/,——”*

——— When we add connettions, we need

to uyda{z our Map of stations
and how {')\cylrc tonnetted in the
Subway's nc{work.

o Everybiing startig

private void addToNetwork (Station stationl, Station station2) { W%hfhsmeﬂwd

if (network.keySet () .contains(stationl)) {
List connectingStations
if (!connectingStations.contains (station2)) {

connectingStations.add(station?2);

: <$~\\\\\\\\\~
} else {

List connectingStations new LinkedList () ;
connectingStations.add (station?2);

540 Chapter 10

Download at WoweBook.Com

down IS new tode.

(List)network.get (stationl) ;

we Map has as its keys eath .
?ﬁa{'jon.‘?—rhc value for that sta .lon
is a List containing all £he stations
fhat it connetts to (vegardless of
which line connetts the stations).

the ooa&d lifecycle

network.put (stationl, connectingStations);

| uoess))

public List getDirections (String startStationName,
String endStationName) {

if (!'this.hasStation(startStationName) | | <:—~__§_§~__
R e —

'this.hasStation (endStationName)) Hﬂ?gfhevduaﬂonoffhc

throw new RuntimeException (ﬂﬁrfandcndmbfbm.awf
“Stations entered do not exist on this subway.”); WCV&&H@d{ninom.“c
} Case on page 534

Station start = new Station(startStationName) ;
Station end = new Station (endStationName) ;
List route = new LinkedList () ;

List reachableStations = new LinkedList();

ST This method is based on
a3 well-known bit of tode

Map previousStations = new HashMap () ; cdkd[ﬁyﬁyisdww&hm
whith figures out the
List neighbors = (List)network.get (start); shortest path between two
for (Iterator i = neighbors.iterator(); i.hasNext();) { nmksonayﬁﬂ*
Station station = (Station)i.next();
if (station.equals(end)) {

route.add (getConnection (start, end));

return route; Am{?“%offh
} else { Code hahdle; fhc , e
reachableStations.add (station); ecmiﬁzﬁ ase whey,
. . . [e] N
previousStations.put(station, start); cmm“fbna "”J“fOM

List nextStations = new LinkedList();
nextStations.addAll (neighbors) ;
Station currentStation = start;

— These loops begin to
itevate through eath set

searchLoop: of skations veathable by
for (int i=1; i<stations.size(); 1i++) { 4 dmhomahd
List tmpNextStations = new LinkedList(); {hedﬁr‘fS least
for (Iterator j = nextStations.iterator(); Jj.hasNext();) { tﬁCSb’£Md{¥cc sible
Station station = (Station)j.next(); number of stations \:s
reachableStations.add (station); {DCOW‘Ct&MCdjf :?
currentStation = station; vdhha“d£h6d5{malow
List currentNeighbors = (List)network.get (currentStation);
for (Iterator k = currentNeighbors.iterator(); k.hasNext();) {
Station neighbor = (Station)k.next();

if (neighbor.equals(end)) {
reachableStations.add (neighbor) ;
previousStations.put (neighbor, currentStation);
break searchLoop;

you are here » 541

Download at WoweBook.Com

getting directions, continued

542

} else if
reachableStations.add (neighbor) ;
tmpNextStations.add (neighbor) ;
previousStations.put (neighbor,

}

nextStations = tmpNextStations;

// We’ve found the path by now
boolean keepLooping = true;
Station keyStation = end;
Station station;

while

return route;

private Connection getConnection (Station stationl,
(Iterator i = connections.iterator();
(Connection)i.next () ;

Station one = connection.getStationl();

Station two = connection.getStation2();
(station2.equals (two))) {

for

}

(keepLooping) {

station =

route.add (0, getConnection(station,

if (start.equals(station)) {
keepLooping = false;

}

keyStation = station;

This 1s

stations,

Connection connection =

if ((stationl.equals(one)) &&
return connection;

return null;

Chapter 10

(!reachableStations.contains (neighbor)) {

currentStation) ;

Ready-bake
de

(Station)previousStations.get (keyStation) ; 0Mcw€ugaﬁapﬁ$ w
keyStation)) ;) e

Jus{: “unwind” the path,
N and ereate a List of
tonnections o get from

the Sfa\r'l:ing station 4o
destination S‘l:afion.h e

a whility method that Lakes two

and looks for a tonnettion

between them (on any line)-

Station station2) {
i.hasNext ();) |

Download at WoweBook.Com

Thanks:

Felir Gellen

ou tode vealy
\’savcd Lhe d3Y

the ooa&d lifecycle

OK, this is just ridiculous. I
spent 500 pages reading about how
great OOA4&D is so you can just give
me the hardest code in the book? I

thought I was supposed to be able
write great software on my
own by now.

| uoljesa)]

Sometimes the best way

to get the job done is find
someone else who has
already done the job for you.

It might seem weird that at this stage,
we’re giving you the code for getting a
route between two stations. But that’s
part of what makes a good developer: a
willingness to look around for existing
solutions to hard problems.

In fact, we had some help from a college
student on implementing a version of
Dijkstra’s algorithm that would work
with the subway (seriously!). Sure, you
probably can come up with your own
totally original solution to every problem,
but why would you want to if someone
has already done the work for you?

Sometimes the hest code for a particular]orol)lem has
alreac[y heen written. Don't get lnung up on writing code
yourself if someone alreac[y has a working solution.

You ave HERE.

J

Feature
List

Use Case
Diagrams

Powmain Preliminary
Analysis Design

Break Up the

Problem Requirements

you are here » 543

Download at WoweBook.Com

a series of connections

What does a rouvte look like?

The getDirections () method we just added to Subway
takes in two Strings: the name of the starting station, and
the name of the station that a tourist is trying to get to:

@
@/

JSP Junction
XHTML Expressway ®
...and this name is passed in as the
. d i i i :
This is passed in as the starting station... estination station

getDirections () then returns a List, which is filled

with Connection objects. Each Connection is one part
of the path between the two stations:

All of +his is represented in
a singlc Connettion ochct.
Infinite Circle

5 XHTML Expressway

\Th\s tonnettion starts at

XHTML Expresswayy and
goes ko Inkinite Cictle, on
the R\mxbaug\'\ {,\hc.

S oI
Rumbaugh Lina

So the entire route returned from getDirections () looks
like a series of Connection objects:

The fivst
skation on the
Livest tonnettion
is Your S{:a\"t‘“?)

Yo'lh{',- \9

Station
“Infinite Circle”

The ’lS‘l: SOCS on
until it ends i 3

Station 1]
“Infnite Circle™

Tine - “Rumbaugh Line”

Station Station 1!
“Infinite Circle” ead First Theater

544 Chapter 10

Download at WoweBook.Com

the ooa&d lifecycle

Printing Puzz]e

You’re almost done! With a working getDirections () method

in Subway, the last feature to implement is printing those directions
out. Your job is to write a class called SubwayPrinter that takes the
data structure returned from getDirections (), which is a list of
Connection objects, and prints out the directions. The directions
should be printed to an OutputStream, supplied to the constructor
of the SubwayPrinter class when an instance of the printer class is
created.

| uoess))

Here’s the class diagram for SubwayPrinter that you should follow:

SubwayPrinter

out:PrintStream

REDIT: o ahead

printDirections(Connection [*]) BONUS Jcc—g loway Tester 400, 3

and weite Suov o
class to Lest ouk \oadz\f, “

V L stem)

Bcﬂ'h. b‘/ Your output should look similar to this: o\,\-)cc)gw\\c subwa;{ ;\Lccﬁ‘,,\S_

i;mtrizu{; then Yr\n{mg out OV

¢ n
File Edit Window Help ShowMeTheWay
S‘ta‘{',ion.

%$java SubwayTester “XHTML Expressway” “JSP Junction”
You tan get the Start out at XHTML Expressway.

line for this — Jel NIRRT Rumbaugh Line heading towards Infinite Circle.
Connettion using

5:‘{:Connccflon~
Print the line When you get to Head First Theater, get off the Rumbaugh Line.

Continue past Infinite Circle...

PR Syitch over to the Meyer Line, heading towards DRY Drive.

towards.
to head tow /7 Continue past DRY Drive. ..

Print out eath

station on a line Switch over to the Wirfs-Brock Line, heading towards Boards ‘R’ Us.
that is passed-

Anytime the line _ '
thanaes, print ot =7 When you get to EJB Estates, get off the Wirfs-Brock Line.

When you get to Web Design Way, get off the Meyer Line.
Continue past Boards ‘R’ Us...

AN RNl Switch over to the Liskov Line, heading towards Design Patterns Plaza.

to get off of..

..as well as the
new line 1o 56{3 on-

Continue past Design Patterns Plaza...

Get off at JSP Junction and enjoy yourself!

S— The last thing You should have is
a Connettion with the destination
station as the stopping point.

you are here » 545

Download at WoweBook.Com

printing directions

Printing Puzzle Solution

Here’s how we wrote the SubwayPrinter class. You might have
come up with a slightly different approach to looping through the route
List, but your output should match ours exactly for full credit.

SubwayPrinter

out:PrintStream

printDirections(Connection [*])

public class SubwayPrinter {

private PrintStream out; Rather than printing diveetly to i\/:’cci::fél:f
/_——-—— . ‘h\m‘hgtﬂa"‘ FY ON:
¢lass takes in an Ou 3
public SubwayPrinter (OutputStream out) { That allows diveetions to be ou{"«\’@ {': wv\zh e
. O
this.out = new PrintStream (out); ou{,’\,u{; sourte, not ‘)‘AS{': a tonsole Win

1 user' s streen:

public void printDirections (List route) {

Connection connection = (Connection)route.get (0);

String currentlLine = connection.getLineName () ;

String previousLine = currentLine; We begin by printing the

out.println(“Start out at ™ + y Sfa‘f{ing station...
connection.getStationl () .getName () + “.”);

out.println (“Get on the “ + currentlLine + “ heading towards “ +
connection.getStation2 () .getName () + “.”); _ .and the fivst line to get

for (int i=1; i<route.size(); i++) { on, as well as the next
connection = (Connection)route.get (i); station to travel towards.

currentLine = connection.getLineName () ;

This looks 3
if (currentLine.equals (previousLine)) {<— € the Curvent

::onncd:ion, and «Figu\res out

R . AN . w4 . .
out.println(Continue past it a line Changc is required.

connection.getStationl () .getName () + “...”);

} else { ~~— [£ it's the same line, Jus{‘.
out.println(“When you get to “ + yr'm{ +he station name. I£ Lhe line
connection.getStationl () .getName () + “, get off the “ + changcs, Fr'm{
previousLine + “.”); S out how o

out.println(“Switch over to the ™ + currentLine + 5/— thange lines.
Y%, heading towards “ + connection.getStation2().getName() + “.”);

previousLine = currentline;

out.println (“Get off at “ + connection.getStation2().getName () +

“ and enjoy yourself!”);
| TT— Finally, we've throudh i\&

| the connettions.- 9€
the subway:

546 Chapter 10
Download at WoweBook.Com

the ooa&d lifecycle

One last test class...

All that we need to do now is put everything together. Below
1s the SubwayTester class we wrote to load the Objectville

Subway system, take in two stations from the command line, and /’
print out directions between those two stations using our new
getDirections () method and printer class.

| uoess))

We tan't prove our
software works
without some test

cases and test ¢lasses.

public class SubwayTester {
public static void main (String[] args) {
if (args.length != 2) {
System.err.println (“Usage: SubwayTester [startStation] [endStation]”);
System.exit (-1); O 7
} We want two stations Passed in on the

. tommand line for this test.

SubwayLoader loader = new SubwayLoader();
Subway objectville = <=
loader.loadFromFile (new File (“ObjectvilleSubway.txt”));

We've Lested this earlier,
so we know that loading
the subway works fine.

if (!objectville.hasStation(args[0])) {
System.err.println(args[0] + “ is not a station in Objectville.”);
System.exit (-1);

} else if (!objectville.hasStation(args([1l])) {
System.err.println(args[l] + “ is not a station in Objectville.”);
System.exit (-1); We also validate that

| the two stations supplied
exist on Lhe subway.

List route = objectville.getDirections (args([0], args[l]);
SubwayPrinter printer = new SubwayPrinter (System.out); Wikh fwo valid stations,
printer.printDirections (route); we tan 3&: 3 voute

} catch (Exception e) { between them...

e.printStackTrace (System.out) ; and
--and use our new

J SubwayPrinter elass to
} print out the voute.

you are here » 547

Download at WoweBook.Com

visit

objectville

Check out Objectville for yourself!

It’s time to sit back and enjoy the fruits of your labor. Compile all

your

classes for the Objectville Subway application, and try out

SubwayTester with a few different starting and stopping stations.
Here’s one of our favorites:

548

File Edit Window Help CandylsKing
$java SubwayTester “Mighty Gumball, Inc.” “Choc-O-Holic, Inc.”
Start out at Mighty Gumball, Inc..

Get on the Jacobson Line heading towards Servlet Springs.

When you get to Servlet Springs, get off the Jacobson Line.

Switch over to the Wirfs-Brock Line, heading towards Objectville Diner.

Continue past Objectville Diner...
When you get to Head First Lounge, get off the Wirfs-Brock Line.
Switch over to the Gamma Line, heading towards OOA&D Oval.
When you get to OOA&D Oval, get off the Gamma Line.
Switch over to the Meyer Line, heading towards CSS Center.
Continue past CSS Center...
When you get to Head First Theater, get off the Meyer Line.
Switch over to the Rumbaugh Line, heading towards Choc-0-Holic, Inc..

Get off at Choc-O-Holic, Inc. and enjoy yourself!

Where do Yol
Wah‘{‘, fo SOT
Objectville today?

/

j— 4
s

v

N

N3

Objectville
PizzaStore

Y

,_-
@
&
H
2

Weather-0-Rama, Inc.

. XHTML Expressway

i
qLr s
Head First Theater

3 Choc-O-Holic, Inc.

BoardsR'Us

PMP Place

Chapter 10

Download at WoweBook.Com

e
.
K

Mighty Gumball, Tne- w’
“o..

e,
.,
s,

Lo
GoF Gardens

Servlet Springs

OCP Orchard

(] £JB Estates

the ooa&d lifecycle

00A&D Magnets

Way back on page 487, we asked you to think about where lots of different things
you've been learning about fit on the OOA&D lifecycle below. Now that you've
written another piece of great software, you're ready to take this exercise on,

and see how we answered it, too. Go ahead and work this exercise again; did you
change where you put any of the magnets after working through this chapter?

Oh, and don't forget, you can put more than one magnet on each phase, and
there are some magnets you may want to use more than once.

Feature
List

Use Case | Break Up the : Pomain
Diagrams Problem s Analysis

OO Principles

Alternate Path

hitecture =
Arc l Delegation
\/ariability

.

[Scenario] Architecture _ - _[Test Driven Development
P Test Scenario | T 1Design Patter
Textual Anal o |External Initiator B

ey Feature List [PIClass Diagrammms
Design Principles

Cohesion
Talk to the Customer

Alternate Path
Feature Driven Development

Even {:hough eath magnet appears

only onte, You €an use eath one as
many times as You like.

——» This time, answers are on the next page!

you are here » 549

Download at WoweBook.Com

| uoess))

ooa&d is about options

00A&D Magnet Solutions

Your job was to try and put the different magnets on the right phase of the
OOA&D lifecycle, shown below. You could put more than one magnet on each
phase; how do your answers compare with ours?

Encapsulation] [0O Principles

Design Principles
Talk to the Customer g .
List | Piagraw TNV s Feature Driven Development

. . Tox _Itration _-Test Driven Develop
Key Feature List I=="at0r § Textual Analyshy cpmert
\nitl r . TOResIo :
Extema\ oty | TRe lteration [Foriiecture Baeson | lteratlo

Loments s Design 5

Alternate Path Class Diagra " NCipleg

tber are no
Dumb Question . .
uestions 00A&D is about havmg
Q,: It seems like | could put almost every magnet on lOtS O‘[OPtiOﬂS. Tllere is
each phase... but that can’t be right, can it? e

never one rigltt way to
A: That's exactly right. Although there are definitely

some basic phases in a good development cycle, you can SO[VQ a Plf' OI)lem, S0 tlte
use most of the things you've learned about OOA&D, OO .

principles, design, analysis, requirements, and everything more OPtlons you I‘ave,
else at almost every stage of development.

The most effective and successful way to write great software tl‘e Letter cllance you,ll
is to have as many tools as you can, and to be able to choose

any one (or more) to use at each stage of your development _[J J l .

cycle. The more tools you have, the more ways you'll have md a gQQ_. S0 utl()ﬂ to
to look at and work on a problem... and that means less time

being stuck or not knowing what to do next. every Pr Ol)lem.

550

Download at WoweBook.Com

the ooa&d lifecycle

lteration #3, anyone? =

No, we’re not going to launch into any more design problems. But, you %‘

should realize that there is plenty more that you could do to improve the -

design of our RouteFinder application. We thought we’d give you just a few

suggestions, in case you're dying to take another pass through the OOA&D =

lifecycle. S
§-—.
[\

Make loading wmore extensible

Right now, we’ve just got a single class that handles loading, and it only
accepts a Java File as input. See if you can come up with a solution

—
D
—
Q
=
o
>
w

that allows you to load a subway from several types of input sources (try

starting with a File and InputStream). Also make it easy to add new /7

input sources, like a database. Remember, you want to minimize changes

to existing code when you’re adding new functionality, so you may end up 0OALD and great

. . , _
with an interface or abstract base class before you’re through. <ol bwave are onaoing

Pro\')ct,{:s.». You tan alwa\/s
add new Quncﬁonah{:\/, or

improve Your desion.

- <// 5k SubwayLoader

loadFromFile(File): Subway

Allow different output sources (and formats!)

We can only print subway directions to a file, and the directions are
formatted in a particular way. See if you can design a flexible Printing
module that allows you to print a route to different output sources (like
aFile, OutputStream, and Writer), in different formats (perhaps
a verbose form that matches what we’ve done already, a compact form
that only indicates where to changes lines, and an XML form for other

programs to use in web services).
\ Here's a hint: theek out the

Shrategy pattern in tead First
Design Patterns for ideas on how
You might make this work.

SubwayPrinter
out:PrintStream I
printDirections(Connection [*])

you are here » 551

Download at WoweBook.Com

ooad&d cross

* (the last) OOAGD Cross
Yes, it’s a, sad day: you're looking at the last crossword

in the book. Take a deep breath, we've crammed this
one full of terms to make it last a little longer. Enjoy!

NN

5652 Chapter 10

Download at WoweBook.Com

Across

2, All of your features should map to these, at
least indirecthy.

3. When you override equals() in Java, you
should create a related implementation of this
method,

B, Your features reflect this in your
application.

6. You do this once you complete one feature
or use case.

10. A feature list focuses on what your
software
12. When you complete this phase, you're
either done or need to iterate again.

15. Break your application up into these, based
on your app's functienality.

17. Understanding how a system is used should
help you make better decisions.

18. The appreach to development we used in
this chupter (3 words).

19, Mever be afraid to use a toa
problem that someone else came up with,

21. Your design decisions are based on how this
is used as well as good OO principles.

22. Iteration makes preblems

23. Each module in your application should have
a single

the ooa&d lifecycle

Brown

1. Make a list of these to get your development
started.

4, You usually create this type of diagram
based en your domain analysis.

7. This iteration Is usuvally the toughest.

8. O0A4D is about giving you lots of these.

9. You sometimes have to add a step to do this
with your preblem before writing use cases.
10. The kind of analysis that involves speaking
to the customer in language that they
understand.

11, This proves that your implementation is
working.

13. The nouns inyour use case are these Types
of clasces.

14. You have to balence what the customer
wants with your software’s .

16. This is the stage where you apply goed OO
principles.

20. Uze case diagrams focus on how your
software will be _____.

you are here »

Download at WoweBook.Com

553

last answers

3

Exercise
SoLutions

i
EEHE EIEEE
L
EI!II!IEEI!IEIE EEEEE
s

554 Chapter 10

Download at WoweBook.Com

the ooa&d lifecycle

The journey’s not over...

She's a real peach, isn't she? T
can't wait to see how she handles
once we get back to our own

neighborhood.

L | .
v

rd

Now take 00A&D for a spin on your own projects!

We've loved having you here in Objectville, and we're sad to see you go.
But there’s nothing like taking what you've learned and putting it to use on
your own development projects. So don’t stop enjoying OOA&D just yet...
you've still got a few more gems in the back of the book, an index to read
through, and then it’s time to take all these new ideas and put them into
practice. We’re dying to hear how things go, so drop us a line at the Head
First Labs web site, http://www.headfirstlabs.com, and let us know how
OOAA&D is paying off for YOU.

you are here » 555

Download at WoweBook.Com

Download at WoweBook.Com

appendix i leftovers

The Top Ten Topics
(we didn’t cover)

Believe it or not, there’s still more. Yes, with over 550 pages
under your belt, there are still things we couldn’t cram in. Even though these
last ten topics don’t deserve more than a mention, we didn’t want to let you
out of Objectville without a little more information on each one of them. But
hey, now you’ve got just a little bit more to talk about during commercials

of CATASTROPHE... and who doesn’t love some stimulating OOA&D talk

every now and then?

Besides, once you're done here, all that’s left is another appendix... and the

index... and maybe some ads... and then you'’re really done. We promise!

this is a new chapter 557

Download at WoweBook.Com

assembling the pieces

#], IS-A and HAS-A

Lots of times in OO programming circles, you’ll hear someone
talk about the IS-A and HAS-A relationships.

IS-A refers to inheritance

Usually, IS-A relates to inheritance, for example: “A Sword IS-
A Weapon, so Sword should extend Weapon.”

<<interface>>
Weapon

attack()

D You'll see inhevitance veferred
4o as [S—A velationships.

‘ attack()

attack() - Club h
attack() I

HAS-A refers to composition or aggregation.

HAS-A refers to composition and aggregation, so you might
hear, “A Unit HAS-A Weapon, so a Unit can be composed

with a Weapon object. This is sometimes referved 4,
as

a HAS-A velationship.

Unit I ' <<interface>>
ni Weapon
type: String attack()
properties: Map

setType(String)

getType(): String
setProperty(String, Object)
getProperty(String): Object
T

attack() : Club h
attack() |

658 Appendix|
Download at WoweBook.Com

The problem with IS-A and HAS-A

The reason we haven’t covered IS-A and HAS-A much is that they tend to
break down in certain situations. For example, consider the situation where
you’re modeling shapes, like Circle, Rectangle, and Diamond.

If you think about a Square object, you can apply the IS-A relationship:
Square [S-A Rectangle. So you should make Square extend
Rectangle, right?

Rectangle i

setHeight(int)
setWidth(int)

T ~— Square 5 Reetangle.

Square

setHeight(int)
setWidth(int)

But remember LSP, and that subtypes should be substitutable for their base

types. So Square should be a direct substitute for Rectangle. But what
happens with code like this:

Rectangle square = new Square(); . 2 Move
square.setHeight (10) ; What does this m;{g\"gutg\z Y&:\m?
square.setWidth(5) ; \m\’O“JD?“H‘I’ what SR~

/./

. . . /_\&_.—J_s\
System.out.println (“Height is ” + square.getHeight());

The problem here is that when you set the width in setWidth () on
Square, the square is going to have to set its height, too, since squares
have equal width and height. So even though Square IS-A Rectangle,
it doesn’t behave like a rectangle. Calling getHeight () above will return
3, not 10, which means that squares behave differently than rectangles, and
aren’t substitutable for them—that’s a violation of the LSP.

Use inheritance when one object
behaves like another, rather than just
when the IS-A relationship applies.

Download at WoweBook.Com

leftovers

559

use case formats

#7. Use case formats

Even though there’s a pretty standard definition for what a use
case 1s, there’s not a standard way for writing use cases. Here are
just a few of the different ways you can write up your use cases:

Todd and Gina’s Poq Poor; version 2.0
What the Poor Does

1. Fido barks to be let out.
2. Todd or Gina hears Fido barking.

3. Todd or Gina presses the button on the
remote confrol.

4. The dog door opens.

5. Fido goes outside.

6. Fido does his business.
6.1 The door shuts automatically.
6.2 Fido barks to be let back inside.

6.3 Todd or Gina hears Fido barkil Todd and ina’s Po a Door, version 2.0

Heve's the format we've been using so
fav. |'s a simple, step-based format
that works well for most situations.

-

This use ¢ase is in 3 easual style. T

- The
sfgps that the system followz ave
written out in paragraph form.

64 Todd or Gina presses the butt
remote control.

6.5 The dog door opens (again). Fido barks to be let outside. When Todd and ¢ina

. - hear him barking, th :
7 Fido goes back inside. g, they press a button on their
: eall rewote control. The button opens up the dog door,
8. The door shuts avtowatically. and Fido goes outside. Then Fido d0es his busimess

and returns inside. The dog door then shuts
automatically.

lf Fido stays outside too long, then the dog door
will shuf. wf»ile he’s still outside. Fido will bark to be
let back inside, and Todd or Gina presses the button

ok the remote control again. This opens the dog door,
K) and allows Fido to return back inside. '

What the Door Does

Any alternate paths ave usually
added to the end of the text
in casual form, and presented in
an “[f—then” form.

560

Download at WoweBook.Com

leftovers

Focusing on interaction

This format is a little more focused on separating out what is in This ‘CW"‘B‘{Z fotuses on what
a system, and how the actors outside of the system interact with is external 4o the system (Lhe
your software. attors), and what the system

HZSCH" docs,Z

Todd and Gina’s Dog Poor, version 2.0
What the Door Does
RCmcvnch'; Ac.l.or s f
attors ave T ystem
i:ﬁe:;icﬁ Fido barks to be let out.
repeeie™ Todd or Gina hears Fido
system. barking.
Todd or Gina presses
the button on the
remote control. I
The dog door opens. Ln F:fd anfhéana'z
. . 09 door, the system
Fido goes outside. s pretby Sim?,c:/
. q q and usua”y is just
F!do does his business. vespondin toJJchc
Fido goes back inside. gg’cions of Todd,
The door shuts automatically. né and Fido
SN
Extensions
If Fido stays outside and the dog door shuts before he
cowmes back in, he can bark to be let back in. Todd or
Gina can press the button on the remote again, and he
can return inside.
This Sormat doesn’t offer a very
I\ convcn‘u:n’c way to handle alternate
Ya{-)\s, so {-,hc\/'rc ")us‘{: added a£ ‘{')\C
bottom of the use case.
561

Download at WoweBook.Com

more use case formats

A wore formal use case

The attors ave —
external fortes =
that affect
the system.

Pre—tonditions
detail any
assumptions
that the
s\,s{:cm makes
before things
35*{; s’car{:cd-

/

Alternate paths ave
also called extensions,
and in this format,
ave listed below the
main \73{:\\ steps.

562

This IS Sim

been usina,
Some cx-&ra

Todd and Gina’s Pog Door; version 2.0
What the Door Does

Primary Actor: Fido
Secondary Actors: Todd and Gina
Pre-condition: Fido is inside, and needs to use the restroom.

Goal: Fido has used the bathroom and is back inside the
house, without Todd or Gina having to get up and open

or close the dog door. \—

Main Path

1. Fido barks to be let out.

2. Todd or Gina hears Fido barking.

3 Todd or Gina presses the button on the remote control.
4. The dog door opens.

5. Fido goes outside.

6. Fido does his business.

7 Fido goes back inside.

8. The door shuts automatically.

Extensions

6.1 The door shuts automatically.

6.2 Fido barks to be let back inside.

6.3 Todd or Gina hears Fido barking (again).

64 Todd or Gina presses the button on the remote control.

ilar 4o the

use Case (‘om at we've

bu'{; adds
details.

. Evc\ry{:hing in the use
Case is geared towards
accomylishing this goal.

—— These are {he S‘ECFS
vom the alternate
Pathl but ﬂ‘icylrc Jus{:

listed scparafcl\/.

6.9 The dog door opens (again).

All of these use cases say the same thing..
it's up to You (and proba |\/ Your boss) to
decide whith format works best for You.

Download at WoweBook.Com

#3, Anti patterns

We've talked a lot in this book about design patterns, and
described them this way:

Design Patterns

Design patterns are proven solutions to

particular types of problems, and help us
structure our own applications in ways
that are easier to understand, more
maintainable, and more flexible.

But there’s another type of pattern you should know about,
called an anti-pattern:

Anti Patterns

Anti-patterns are the reverse of design

patterns: they are common BAD solutions
to problems. These dangerous pitfalls
should be recognized and avoided.

Anti patterns turn up when you see the same problem get solved
the same way, but the solution turns out to be a BAD one. For

example, one common anti pattern is called “Gas Factory”, and
refers to designs that are overly complex, and therefore not very

maintainable. So you want to work to avoid the Gas Factory in
your own code.

We've ac’cually not maki
this up/ AL Your next "
serious devclopmcn{:
meeting, be sure 4o

mention ‘l:\ryin to avoid
the Qas Fac:{:o?ry‘

Download at WoweBook.Com

leftovers

Design patterns
help you recognize
and im])lement

GOOD solutions to

common Prol)lems.

Anti patterns are
about recognizing
and avoio[ing
BAD solutions to

common prol)lems.

you are here » 563

crc cards

#4 ORC cards

CRC stands for Class, Responsibility, Collaborator. These cards are
used to take a class and figure out what its responsibility should be,
and what other classes it collaborates with.

CRC cards are typically just 3x5 index cards, with each individual

card representing a class. The card has two columns: one for the

responsibilities of the class, and another for other classes that are This elass is the elas
collaborators, and used to fulfill those responsibilities. You're de Levminin ¢

/ responsibilities fo.

Class: Barchwgnizc\r
Pescription: This elass is the interface to the bark vecognition hardware.

Responsibilities:
Nawme Collaborator

I£ theve are

Tell the door to open DoaDoor = other ¢lass
es
List eath / involved is {h;s
job this elass Job list them i
needs to do. his Cohmm,
Class: DogDoor
Deseription: Represents the physical dog door. This provides an interfate
to the hardware that actually eontrols the doov.
Responsibilities:
Nawe Collaborator
" T Open the door ~
Be sure You write T T—> Close the door ‘\\
down ‘l:hings that \ \
this ¢lass does on its \\\
own, as well as ‘{‘,hinﬁs AN
it collaborates with TFhere.s-»o collabor ator
other ¢tlasses on. elass Yor these:

564 Appendix |
Download at WoweBook.Com

leftovers

CRC cards help implement the SRP

You can use CRC cards to make sure your classes follow the Single
Responsibility Principle. These go hand in hand with your SRP
Analysis, as well:

SRP Analysis for _ Automobile

The __Automobile startls] itself. %
The __Automobile stopls] itself. H you've 9ot a elass
that seems to violate
The __Automobile thangesTives jtself. the SRP, You €an use
The __Automobile drivels] itself. a fRi C:*d, to sort
. . out whith elasses
The _Automobile washles] tself. should be dosnaewhat.

The _ Automobile theekls] ol itself.

The _ Automobile getls] oil itself.

Class: Automobile

Pescription: This ¢lass vepresents a ear and its velated functionality

((Ahy Eimc YQu see
éczcsjc h it's probably Responsibilities:
N o
Lo} e \r'csPohs:bd.{y Nawe Collaborator

this elass 4o do a

certain task. Stavts itself.
\ Stops itself.
Qets tives thanged Mechanie, Tive

e Driver
Gets washed o —
_Gets oil theeked Py
/ — Reports on ol levels
y to

Teohseal Yo b Sy T
list rcsyons\b'\\'\’dcs -{:\\a{“ M

I b

tan help you 1@ ¥ -
\:‘i\al“\l :\'\ou\dh’{', be on this tlass

you are here »

Download at WoweBook.Com

565

metrics and sequence diagrams

48, Metrics

Sometimes it’s hard to tell how solid your design really is, because design is such

a subjective thing. That’s where metrics can help out: while they don’t provide

a complete picture of your system, they can be helpful in pointing out strengths,
weaknesses, and potential problems. You usually use software tools to take as input
your class’s source code, and those tools then generate metrics based on your code
and its design.

These metrics are more than just numbers, though. For example, just counting the
number of lines of code in your application is almost a total waste of time. It’s
nothing but a number, and has no context (and also depends a lot on how you’re
writing your code, something else we’ll talk about in this appendix). But if you count
the number of defects per 1000 lines of code, then that becomes a useful metric.

. This number ai
ce evvors found in tode humber gives yYou some ideg
defect density = total lines o eode / 1000 g\ of how well You've writing)’Oucr

eode. [£ it's high, |
problems or ineff;
You can also use metric to measure things like how well you’re using abstraction in
your code. Good design will use abstract classes and interfaces, so that other classes
can program to those interfaces rather than specific implementation classes. So
abstraction keeps one part of your code independent from changes to other parts
of your code, at least to the degree that it’s possible in your system. You can use
something called the abstractness metric to measure this:

l/\—_ This number will alwa\/s be

ook ‘For dcsign
Cientes.

A = Na I Nc between O and |. Higher mm.\bcrs
/ & mean move abs{'xacﬁovr is bcw{\P
i d, lower numbers vepresen
N_is the nurbev of abstract Nc is the total numbey- r::s abstraction.

: i iewlav package or of ¢l ‘
c\ai:c\sc 'Zgayii:{-’;o}{:w:rc (this Patkazs:c:rm '(33:’ Same
. m
in:,\:dcs inkevfates). odule.

Packages that have lots of abstractions will have a higher value for A, and packages
with less abstractions have a lower value for A. In general, you want to have each
package in your software only depend on packages with a higher value for A. That
means that your packages are always depending on packages that are more abstract;
the result should be software that can easily respond to change.

Robert Martin's book callcd”

“Aojle Softwave Development
has a lot move of these 00—
velated metrits.

Robery ©, A .
o Rt :..r.:”!_

566 Appendix |

Download at WoweBook.Com

#0, Sequence diagrams

When we were working on the dog door for Todd and Gina, we developed
several alternate paths (and one alternate path actually had an alternate
path itself). To really get a feel for how your system handles these different
paths, it’s helpful to use a UML sequence diagram. A sequence diagram
is just what it sounds like: a visual way to show the things that happen in a
particular interaction between an actor and your system.

This is the attor this
sequente is stavted by-

G

owner’s dog

1: bark

These boxes wi Lh

underlined names vepresent:

objects in the system.

BarkRecognizer

leftovers

4: bark

DogDoor

These are notes, and
indicate things that ave

These are the messages in the
sequente. The numbey i the
order that {:hey

otlur in.

2: open

/

[n 00 s\/s{:tms, these messages
equate to methods being called
on the ob\')cc{:s in the sequente.

5: open

>
I

=

L~

~

~

oing on in the s\/$~(:c"\
?:hat aven't specifically
velated o the objects
in this diagram.

The owner’s dog
goes outside

1

~
| 3: close

The owner’s dog

~ comes inside

| | 6: close

|
\<7Thcsc ave talled lifelines. They

vepresent the life of these

ob\')cc{',s and attors {',hroug\\ou{:

this Var‘dtu\a\r sequence.

_/

Download at WoweBook.Com

Some‘{:imcs an ob\jcf.{:
ealls a mc{:hod on
itself. In that tase,
he message originates
Yom, and is divected

to, the same ocht‘l:.

567

you are here »

state diagrams

#7, State diagrams

You've already seen class diagrams and sequence diagrams. UML also
contains a diagram called a state machine diagram or statechart
diagram, which is usually just referred to as a state diagram. This
diagram describes a part of your system by showing its various states,
and the actions that cause that state to change. These diagrams are
great for describing complex behaviors visually.

State diagrams really come into play when you have multiple actions
and events that are all going on at the same time. On the right page,
we’ve taken just such a situation, and drawn a state diagram for how
a game designer might use Gary’s Game System Framework. If game
designers were going to use the framework, they might write a game
that behaves a lot like this state diagram demonstrates.

Sywbols commonly used in state diagrams

;hc end state o the

buagram is indieateq

Y a solid Cirtle insig
— dnother tirele. ‘

O

A solid civtle indicates
a starting state.

“®

A ac{'w'\‘c\[d‘\ag.rams
beoin at this pont

Ready to .
make move [units able to move > 0]
Play make move [ynits able to move > f
} . \ This is called 2
These arrows are IE'?E: {j:ca "‘?L'fc 3?*dfcxprcssion. £
.q. e transition, indita R
h vounded ch"a'“b\c transitions. Thcy take and desevibes what that e 3 Condition
tae Le The s{’,a{'zc the app ‘FkOm one . must be -{;y-uc
2 shaa ¢, and is On¢ state to another- 3‘3?;:: the change or this transition
has 3 MM\ states state. ottur.
e
ha .
s guen bme
568 Appendix|

Download at WoweBook.Com

me (the atkivity
1\\"‘“‘5 ?:\agram) starts heve:

J/

' select game scenario Ready to

leftovers

Sometimes a transition is

Jjust part of the protess, and
doesn’t have 3 spetial name or
Condi'é:ion. I’ JuS‘l: the “next
stage” of the state of the app-

fight battle [units able to attack > 0]

end phase

(Player1 | |

Play
start game
)

Movement €an "

ottur ¥ there]

ve units that ave Player 1

ab\c ko move (Ehe¥ Movement

’ chvncvx‘\', 3{£V‘bu+'c

'\: oreater han zevo™

make move [units able to move > 0]

make move [units able to move > 0]

Combat

end phase [Player 1 to move]

end phase

Player 2 end phase [Player 2 to move] Victory

Movement

These aven't actual mcfhgj
or ¢lasses... they've particular

states that the 3PP tan be end phase

in at a particulay Point.

Player 2
Combat

fight battle [units able to attack > 0]

Check T
There’s a theek

for vic‘Eo!r\/, and
the game ends
if the check

end phase veturns true.

victory

@

e

This is the end state
for this diagram. The
protess doesn't stop

undil it 56{”5 heve.

you are here » 569

Download at WoweBook.Com

unit testing

#8, Unit testing

In each chapter that we’re worked on an application, we’ve built
“driver” programs to test the code, like SubwayTester and
DogDoorSimulator. These are all a form of unit testing. We
test each class with a certain set of input data, or with a particular
sequence of method calls.

While this is a great way to get a sense of how your application
works when used by the customer, it does have some drawbacks:

You have to write a complete program for each usage of
the software.

e You need to produce some kind of output, either to the
console or a file, to verify the software is working correctly.

e You have to manually look over the output of the test, each
time its run, to make sure things are working correctly.

e Your tests will eventually test such large pieces of
functionality that you’re no longer testing all the smaller
features of your app.

Fortunately, there are testing frameworks that will not only allow
you to test very small pieces of functionality, but will also automate
much of that testing for you. In Java, the most popular framework
is called JUnit (http://www.junit.org), and integrates with lots of
the popular Java development environments, like Eclipse.

t}zer are no .
Dumb Questions
Q: If the tests we wrote in the main part of the book made The reason that you need both types of tests is because you'll

sure our software worked at a high level, why do we need more never be able to come up with scenarios that test every possible
tests? Aren’t those enough to be sure our software works? combination of features and functionality in your software. We're all
human, and we all tend to forget just one or two strange situations

A: Most of the tests we wrote really tested a particular scenario,
such as opening the door, letting a dog out, having another dog bark,
and then letting the owner’s dog back in. Unit tests, and particular the
tests we're talking about here, are far more granular. They test each

class’s functionality, one piece at a time.

570

now and then.

With tests that exercise each individual piece of functionality in your
classes, you can be sure that things will work in any scenario, even if
you don't specifically test that scenario. It's a way to make sure each
small piece works, and one that lets you assume pretty safely that
combining those small pieces will then work, as well.

Download at WoweBook.Com

What a test case looks like

A test case has a test method for each and every piece of functionality
in the class that it’s testing. So for a class like DogDoor, we’d test
opening the door, and closing the door. JUnit would generate a test
class that looked something like this:

import junit.framework.TestCase;

/**

* This test case tests the operation of the dog door by using the
* remote button.

g — TestCase is JUnit's base elass

Fublic class RemoteTest extends TestCase cbr{xsﬁhasoffwarc
public void testOpenDoor () <\
{ There's 3 method
ascvtT}“d) DogDoor door = new DogDoor () ; £ cad\YkLc
Remote remote = new Remote (door) ; ovr : . Doo\'~
Lhccks ‘kp see - a\rt [14) DOS
“Cd remote.pressButton() ; Qunbbo“

\£ {hCSVYY —\\\‘~§ assertTrue (door.isOpen()) ;

method }

vekurns teve,

wmth\{shoﬂd public void testCloseDoor () {

1 Lhis tase: DogDoor door new DogDoor () ;

n Remote remote = new Remote (door) ; .

remote.pressButton () ; H\ This method tests for
assertFalse() try | JChC_doo\r automatically
theeks a Thread.currentThread () js].eep(6000) i _— closm3, vather than \)us{:
e{:h d {‘p } catch. (ImlzerruptedExceptlon e) { Ca“ing doohclosc(), which

metho fail (“interrupted thread”); isn't how the d)
ensure that } | ¢ door is
it’s NOT +vue. —> assertFalse (door.isOpen()); usud Y used.

}
}

Test your code in context

Notice that instead of directly testing the DogDoor’s open () and
close () methods, this test uses the Remote class, which is how
the door would work in the real world. That ensures that the tests are

simulating real usage, even though they are testing just a single piece of
functionality at a time.

The same thing is done in testCloseDoor (). Instead of calling
the close () method, the test opens the door with the remote, waits
beyond the time it should take for the door to close automatically, and
then tests to see if the door is closed. That’s how the door will be used,
so that’s what should be tested.

you are here »
Download at WoweBook.Com

leftovers

571

coding standards

#9, Coding standards and readable code

Reading source code should be a lot like reading a book. You should

be able to tell what’s going on, and even if you have a few questions, it
shouldn’t be too hard to figure out the answers to those questions if you
just keep reading. Good developers and designers should be willing to
spend a little extra time writing readable code, because it improves the
ability to maintain and reuse that code.

Here’s an example of a commented and readable version of the
DogDoor class we wrote back in Chapters 2 and 3.

/**
* This class represents the interface to the real dog door.
*

* Qauthor Gary Pollice é\
*

@uersion Aug 11, 2006 <= JavaDoe tomments hel eop|
*/ veading the code, and EIP .
public class DogDoor used 1o . ") so tan be
{ wilh Josnerate dotumentation
// the number of open commands in progress GVGS\)avadoc tool.

private int numberOfOpenCommands = 0;

boolean doorIsOpen = false;\
/e Metho

* @return true if the door is open ‘ e Va"'ablc
g names are deseriptive, and

public boolean isOpen()<_/ easy to dctiphcr.

{ <_/
return doorIsOpen;

}

/Hx
* Open the door and then, five seconds later, close it.
*/

public void open()

{

This tode is tlear and spaced out.

// Code to tell the hardware to open the door goes here
doorIsOpen = true;

/“} numberOfOpenCommands++;
TimerTask task = new TimerTask() {

Even variables public void run() f{
USchus{: within if (--numberOfOpenCommands == 0) {
a Sihglc method // Code to tell the hardware to close the door goes here
are named &w : doorIsOpen = false;
rcadabili{:\/.
}
Vs Any skatements that
Timer timer = new Timer () ; avent ?CV"(:CLHY L‘C.ar ave
timer.schedule (task, 5000); Lommcv\{'ﬁd 4o tlavi Y-

5§72 Appendix|

Download at WoweBook.Com

Great software is more than just
working code

Many developers will tell you that code standards and formatting are
a big pain, but take a look at what happens when you don’t spend any
time making your code readable:

public class DogDoor

{

mm t all here.- Ww's wp to
No cammcnts 2 ding this code to

he developer ved .
/ Ei;wc everything oul on their own-
No ‘l:c”ina what these

private int noc = 0; €— variables are acoy-".
boolean dio = false;

public boolean returndio() { return dio; }

public void do my job() & ..or these methods.

{ The names are not at
dio = true; all dcstxi‘?{ivc-
noc++;

TimerTask tt = new TimerTask() {
public void run() { The lack o‘(:

if (--noc == 0) dio = false; '\\ indentation and
fp&&——roo___ i
g spating makes

Timer t = new Timer (); ‘H\ings even havder
t.schedule (tt, 5000); to understand.

From a purely functional point of view, this version of DogDoor works
just as well as the one on the last page. But by now you should know
that great software is more than just working code—it’s code that is
maintainable, and can be reused. And most developers will not want to
maintain or reuse this second version of DogDoor; it’s a pain to figure
out what it does, or where things might go wrong—mnow imagine if
there were 70,000 lines of code like this, and not just 25 or so.

Writing readable code makes that code
easier to maintain and reuse, for you
anJ other Jevelo]oers.

you are here »

Download at WoweBook.Com

leftovers

573

refactoring

#10. Refactoring

Refactoring is the process of modifying the structure of your code
without modifying its behavior. Refactoring is done to increase the
cleanness, flexibility, and extensibility of your code, and usually is
related to a specific improvement in your design.

Most refactorings are fairly simple, and focus on one specific design
aspect of your code. For example:

public double getDisabilityAmount () {
// Check for eligibility
if (seniority < 2)
return 0;
if (monthsDisabled > 12)
return 0;
if (isPartTime)
return 0;
// Calculate disability amount and return it

}

While there’s nothing particularly wrong with this code, it’s not as
maintainable as it could be. The getDisabilityAmount ()

method is really doing two things: checking the eligibility for disability,

and then calculating the amount.

By now, you should know that violates the Single Responsibility
Principle. We really should separate the code that handles eligibility

requirements from the code that does disability calculations. So we can

refactor this code to look more like this:

public double getDisabilityAmount () {
// Check for eligibility
if (isEligibleForDisability()) {
// Calculate disability amount and return it

} else { mc£h°d% adhe

return 0;

}

Now, if the eligibility requirements for disability change, only the

isEligibleForDisability () methods needs to change—and

the method responsible for calculating the disability amount doesn’t.

Think of refactoring as a checkup for your code. It should be an

Refactoring
cllanges the
internal structure
of your code

WITHOUT
affecting your

code’s behavior.

We've {3k
and Placede :Hiw o responsibilities

m n '(:wo ScPakafe

Ving to the SRP.

ongoing process, as code that is left alone tends to become harder and
harder to reuse. Go back to old code, and refactor it to take advantage
of new design techniques you’ve learned. The programmers who have
to maintain and reuse your code will thank you for it.

574

Download at WoweBook.Com

appendix ii: weleome to objectville

It says here that you want ' eaking th e
to change my composition to L a n gua g e o f o 0

aggregation, add some delegation,

and that I'm not well-encapsulated.

I'm totally lost, and I think I might
even be insulted!

Get ready to take a trip to a foreign country. it's time

to visit Objectville, a land where objects do just what they’re supposed

to, applications are all well-encapsulated (you'll find out exactly what that
means shortly), and designs are easy to reuse and extend. But before we
can get going, there are a couple of things you need to know first, and a few
language skills you're going to have to learn. Don’t worry, though, it won't
take long, and before you know it, you'll be speaking the language of OO like

you've been living in the well-designed areas of Objectville for years.

this is an appendix 575

Download at WoweBook.Com

a care package for you

Welcome to Objectville

Whether this is your first trip to Objectville, or you've visited
before, there’s no place quite like it. But things are a little
different here, so we’re here to help you get your bearings before
you dive into the main part of the book.

Welcome to Objectville! I picked
up a few things I thought you might
need to help make you comfortable
right away. Enjoy!

well start with

just a little bit
UML, so ve €20
Jbout classes easity
Lhwouhout the bock

Then, we'll do a quick
review of inheritanse
just 4o mak "
J make sure YOu re
veady for the more
advanced tode

in this book. e mpls

Onte we've 50{:
inhevitante tovered,
we'll take a quick look
at polymorphism, too

Fnallys well £alk :{us‘t,o:,

bit about entat=y
and make sure we rcb
on the same 7392 2 ow
wha£ Jd\ah ‘NoY'd means:

576 Appendix I
Download at WoweBook.Com

UML and class diagrams

We’re going to talk about classes and objects a lot in this book, but it’s
pretty hard to look at 200 lines of code and focus on the big picture.
So we’ll be using UML, the Unified Modeling Language, which is a
language used to communicate just the details about your code and
application’s structure that other developers and customers need,
without getting details that aren’ necessary.

This is how Yyou show 3
tlass in a tlass diagram:
That's the way that
UML lets you vepresent
details about the tlasses

in Your application- x

These ave the member
vaviables of the tlass.
Eath one has 3 name,
and then 3 type
a‘“',ﬂ' the Lo\on.

These are the
methods of the
¢lass. Eaeh one has
3 name, and then
Y Parameters the
J‘cfhod {:akcs, and
en a re
after fheﬁc‘:?ofwe

welcome to objectville

This is the name of
the elass. [¢'s always

in bold, at the top of
the ¢lass diagram.

Cirplane <

speed: int

getSpeed(): int
setSpeed(int)

/ Zhis line sepavates
he member variables

rom 'H’IC ”‘C'U\Ods O‘F

e ¢lass.

\ A class diagram makes it veally easy

. . . .‘y
4o see the big picture: you can €as!
{:cl\sc‘:ha‘c 3 tlass does at a glante.

‘{ou tan eV

en leave out the vaviables

and/ o methods if it helps you
communitate better.

aSharpen your pencil

B,

Write the skeleton for the Airplane class.

Using the class diagram above, see if you can write the basic skeleton for
the Airplane class. Did you find anything that the class diagram leaves out?
Write those things in the blanks below:

Download at WoweBook.Com

you are here » 577

coding from a class diagram

aSharpen your pencl
. answers

Write the skeleton for the Airplane class.

Using the class diagram on page 577, you were supposed to write
the basic skeleton for the Airplane class. Here’s what we did:

public class Airplane {

The tlass diagram
d'ldh% tell uws W .
s?ccd should be \Nb\\t,

\’r\va’cc, or YW{C(‘{"Cd'

private int speed;

public Airplane() {
}

There was hoﬂ'\ihg about 3 tonstruetor in

the elass diagram. You eould i

. have writt
a tonstruttor that ook in an initial Ispccc:l
value, and that would be 0K, {0

0.

)\ public void setSpeed(int speed) {

Ac’cuall\/, elass diagams
¢an provide this
imco\rma{‘,ion, but in
most Lases, it’s not
needed for tlear }
tommunitation. }

this.speed = speed; ‘é\
} The ¢lass diagram didn’t

o tell us what this method
public int getSpeed() { did... we made some
return speed; assumptions, but we can’t

be sure if this code is
veally what was intended.

Q: So the class diagram isn’t a very
complete representation of a class, is it?

A: No, but it's not meant to be. Class
diagrams are just a way to communicate
the basic details of a class’s variables and
methods. It also makes it easy to talk about
code without forcing you to wade through
hundreds of lines of Java, or C, or Perl.

Q,: I've got my own way of drawing
classes; what's wrong with that?

578 Appendix I

tker are no

Dumbd Questions

There’s nothing wrong with your
own notation, but it can make things harder
for other people to understand. By using
a standard like UML, we can all speak the
same language and be sure we're talking
about the same thing in our diagrams.

Q: So who came up with this UML
deal, anyway?

The UML specification was
developed by Rational Software, under the
leadership of Grady Booch, Ivar Jacobson,
and Jim Rumbaugh (three really smart
guys). These days it's managed by the
OMG, the Object Management Group.

Download at WoweBook.Com

Q: Sounds like a lot of fuss over that
simple little class diagram thing.

UML is actually a lot more than
that class diagram. UML has diagrams for
the state of your objects, the sequence of
events in your application, and it even has
a way to represent customer requirements
and interactions with your system. And
there’s a lot more to learn about class
diagrams, too.

At this point, though, you just need the
basics on page 577. We'll talk about other
things you can show in a class diagram,
and other types of diagrams, when we need
them later in the book.

welcome to objectville

Next up: inheritance

One of the fundamental programming topics in Objectville is
inheritance. That’s when one class inherits behavior from another
class, and can then change that behavior if needed. Let’s look at how
inheritance works in Java; it’s similar in other languages, too:

d ‘(:vom the
Jet “‘is%_:;s That means

A\v\?\anc : :
s e S’&w — /_\— it inhevits all of A\Y.\’\anc s
behavior +o use Lor its own.

. irplane s
of A\rv\ay\i- i‘\&r Jet. public class Jet extends Airplane {
as
{he supertie™
private static final int MULTIPLIER = 2;
public Jet () { Thf subelass an add its owp,
variables o {he ones that it

super () ; . .
Super is a special _/_T inherits from Aivplane.

keyword. [t vefers o
the elass that +his elass public void setSpeed(int speed) {

has inhevited behavior super.setSpeed (speed * MULTIPLIER) ;)
from. So heve, his ’ J The subtlass ean ”‘a“‘-’)cnﬂ‘c blclhi:\m
ealls the const of its superelass, as well as ¢all the
Airplanc, J:zfs Z:;E:;,:i public void accelerate() { suycvclassls methods. This is called

super.setSpeed(getSpeed () * 2); ovevviding the su\?cralassls behavior.

}
\/‘/ou ¢an eall su

A subtlass can add its P"‘SC{'SFcch, but

}
own methods to the You €an also just ¢all 1S
L ; . 9etSpeed(),
MC%?ds it inherits Jet also inhevits the 5c£§?6cd() method Just as, i 9°‘£SFCCd0 were 3
from its supertlass. from Pivplane. But since Jet uses the normal method defined in Jet.

<ame vevsion of that method as Airplane,

we don't need to write any tode to
thange that method. Even though you
can'k see it in Jet, it's perkectly 0K to

¢all getSpeed() on Jet.

Inheritance lets you build classes
based on other classes, and avoid

duplicating and repeating code.

you are here » 579

Download at WoweBook.Com

pool puzzle

public class FlyTest {
public static void main(String[] args) {
Airplane biplane = new Airplane();

biplane.setSpeed () ;
System.out.println() ;

P@@l PUZZIG Jet boeing = new Jet();

Your job is to take code snippets from boeing.setSpeed ()i

the pool below and place them into System.out.println ()i
the blank lines in the code
you see on the right.

’

You may use the same while () Hd
snippet more than once, ;
and you won’t need System.out.println () ;
to use all the snippets. if | > 5000) {
Your goal is to create a (x 2);
class that will compile, run, ’
and produce the output listed. b else {
Output: }
File Edit Window Help LeavingOnAJetplane -
%java FlyTest }

System.out.println ()i

212
844 }
1688
6752
13504
27008
1696

boeing.getSpeed ()
422 x<5

biplane.accelerate()

x<4 boeing.setSpeed

Rt 424 boeing.accelerate ()

. B . x<3
int x = 0 biplane.setSpeed biplane.getSpeed ()

—— Solution on page 588
580 Appendix Il

Download at WoweBook.Com

And polymorphisw, too...

welcome to objectville

Polymorphism is closely related to inheritance. When
one class inherits from another, then polymorphism allows a

subclass to stand in for the superclass.

Heve's another elass

This little avrow means that Jet
inherits “&n AirP'anc. Don’t wory

about +his notation +o0 muth, we'll

diagyam, this Time talk a lot more about inheritance in
with ,two tlasses. elass di&arams la'tﬂ’ on.
~N
Airplane < Jet
speed: int MULTIPLIER: int

getSpeed(): int
setSpeed(int)

' . That
belasses Pivplane
\E:fa:: that An\[whcrc that you

A\r\’\&nc~-~

£an use an

Airplane plane =
So on the left side, you
have the supertlass...

Airplane plane =

ther are no .
Dumb Questions

Q,: What'’s so useful about polymorphism?

A: You can write code that works on the superclass, like
Airplane, but will work with any subclass type, like Jet or

Rocket. So your code is more flexible.

new Airplane();

accelerate()

~You eould also use 3 Jet. \

new Airplane();

Airplane plane = new Jet();

~-and on the vight, You
tan have the supertlass OR

any of its subclasscs. -’_M

Airplane plane = new Airplane();

; - . Pretend that
Airplane plane = new Jet(); ket i
Airplane plane = new Rocket(); «— Rotket is

another subtlass

O‘F A'nr?lanc-

Q: | still don’t get how polymorphism makes my code
flexible.

AI Well, if you need new functionality, you could write a new
subclass of Airplane. But since your code uses the superclass,
your new subclass will work without any changes to the rest of our
code! That means your code is flexible and can change easily.

581

you are here »

Download at WoweBook.Com

information hiding

Last but not least: encapsulation

Encapsulation is when you hide the implementation of a
class in such a way that it is easy to use and easy to change. It

makes the class act as a black box that provides a service to its Encapsulation

users, but does not open up the code so someone can change
it or use it the wrong way. Encapsulation is a key technique in

being able to follow the Open-Closed principle. Suppose we ls Wllen
rewrote our Airplane class like this:

public class Airplane { you Protect
— public int speed; . .
We made ‘H‘c public Airplane() { ln{ormatlon

speed Vaﬂzbl':d } .
\Ab\\c; inste
\:,Q Yv\vaJCC: and public void setSpeed(int speed) { ln your
now all YaY{ZS this.speed = speed;
of yowr ¥ code from
tan attess
speed diveetly- public int getSpeed() {

: return speed; Leing useJ

}

Now anyone can set the speed directly

This change means that the rest of your app no longer has to call
setSpeed () to set the speed of a plane; the speed variable can be
set directly. So this code would compile just fine:

incorrectly.

public class FlyTest2 {
public static void main (String[] args) {
Airplane biplane = new Airplane();

)
biplana speed = 2127 = Ve don't have fo use

System.out.println (biplane.speed); <«— ;:;S“‘:Zdo a"f 9‘*’3{“"0
e W H
} e tan Jus

| access speed dircd:l\/.

Ty this tode ou‘b..-
a:\,f{:\\\ng surprising in the
rcsu\{s \,ou 3:{:?

582 Appendix Il

Download at WoweBook.Com

welcome to objectville

So what’s the big deal?

Doesn’t seem like much of a problem, does it? But what happens if
you create a Jet and set its speed like this:

public class FlyTest3 {
public static void main(String[] args) {

Using \)c‘c Jet Jetl = new Jet(); S:mcc Jet inherits from
wr‘:\\o‘* jetl.speed = 212; Al\rplanc, You an use the
“ca\,w\a ion- System.out.println (jetl.speed); speed variable from its

superelass J“s'{: like it was
Jet jet2 = new Jet (); a part of Jet.

Msmg Jet wn-{:h jet2.setSpeed(212) ; é\
CnCaPsula{:loh System.out.println (jet2.getSpeed());
} N __ This is how w

| vaviable when we hid spee
diveetly attessed-

¢ set and ateessed fhe speed

d from being

aSharpen your pencl

X What's the value of encapsulating your data?
._"k

Type in, compile, and run the code for FlyTest3.java, shown above. What
did your output look like? Write the two lines of output in the blanks below:

Speed of jet1:

Speed of jet2:

What do you think happened here? Write down why you think you got the
speeds that you did for each instance of Jet:

Finally, summarize what you think the value of encapsulation is:

you are here » 583

Download at WoweBook.Com

the value of encapsulation

q%arpen your penc

W answers

You didn't have to write
down uactl\/ what we

did, but you should have
gotten something similar.

584

the
N ——J—9_ _m
Schelar’s Corner
ChcaPSula{:ion. The protess of cndlosing programming

elements inside larger, more abstract entities. Also known
_ as ih‘Corma{:ion hidihs, or sc?a\ra{:ion o‘: tontevrns.

What'’s the value of encapsulating your data?

Type in, compile, and run the code for FlyTest3.java shown above. What
did your output look like? Write the two lines of output in the blanks below:

Speed of jet1: 212

Speed of jet2: 424

What do you think happened here? Write down why you think you got the
speeds that you did for each instance of Jet:

In the Jet class, setSpeed() takes the value supplied, and wmultiplies

it by two before setting the speed of the jet. When we set the

speed variable manvally, it didn't get wwltiplied by two.

Finally, summarize what you think the value of encapsulation is:

Encapsulation protects data from being set in an improper way. With
encapsulated data, any calculations or checks that the class does on
the data are preserved, since the data can't be accessed directly.

So entapsulation does more than \')us{:
hide information; it makes sure the
methods You write 4o work with your
data ave actually used/

Takin5 a college elass in P\rog\rammiha?

Here's the official definition of
/_‘ entapsulation... if \/ou'vrc 'Eaking an
exam, this is the definition to use.

Appendix I

Download at WoweBook.Com

tber are no

Dumbd Questions

Q: So encapsulation is all about
making all your variables private?

A: No, encapsulation is about
separating information from other parts of
your application that shouldn’t mess with
that information. With member variables,
you don’t want the rest of your app directly
messing with your data, so you separate
that data by making it private. If the data
needs to be updated, you can provide
methods that work with the data responsibly,
like we did with the Airplane class, using
getSpeed () and setSpeed ().

Q/: So are there other ways to use
encapsulation besides with variables?

A: Absolutely. In fact, in Chapter 1,
we'll be looking at how you can encapsulate
a group of properties away from an object,
and make sure that the object doesn’t use
those properties incorrectly. Even though
we'll deal with an entire set of properties, it's
still just separating a set of information away
from the rest of your application.

Q/: So encapsulation is really about
protecting your data, right?

Actually, it's even more than
that! Encapsulation can also help you
separate behavior from other parts of your
application. So you might put lots of code in
a method, and put that method in a class;
you've separated that behavior from the
rest of your application, and the app has to
use your new class and method to access
that behavior. It's the same principles as
with data, though: you're separating out
parts of your application to protect them
from being used improperly.

Q: Wow, I'm not sure I’'m following
all of this. What do | need to do?

A: Just keep reading. Make sure you
understand the exercise solutions on page
584, and you're ready for Chapter 1. We'll
spend a lot more time on all of these 00

principles and concepts, so don't feel like
you need to get everything down perfectly
at this point.

Download at WoweBook.Com

welcome to

Encapsulation
separates
your data
from your
app’s

hehavior.

Then you can
control how
each part is
used Ly the
rest of your
application.

585

reviewing the basics

— BULLET POINT&

Already gone through

everything? Then you're definitely
ready for the rest of this book. And
welcome again to the well-designed

part of Objectville... we love it here,

I'm sure you will, too.

= UML stands for the Unified
Modeling Language.

= UML helps you communicate
the structure of your application
to other developers, customers,
and managers.

= Aclass diagram gives you an
overview of your class, including
its methods and variables.

= |nheritance is when one class
extends another class to reuse
or build upon the inherited
class’s behavior.

® |ninheritance, the class being
inherited from is called the
superclass; the class that is
doing the inheritance is called
the subclass.

= Asubclass gets all the behavior
of its superclass automatically.

A subclass can override its
superclass’s behavior to change
how a method works.

Polymorphism is when a
subclass “stands in" for its
superclass.

Polymorphism allows your
applications to be more flexible,
and less resistant to change.

Encapsulation is when you
separate or hide one part of your
code from the rest of your code.

The simplest form of
encapsulation is when you make
the variables of your classes
private, and only expose that
data through methods on the
class.

You can also encapsulate
groups of data, or even
behavior, to control how they are
accessed.

586 Appendix Il

Download at WoweBook.Com

welcome to objectville

OO0AGD Cross

Take a moment to review the concepts in this appendix,
and then you're ready to step firmly into the world of
analysis, design, OO programming, and great software.

Across Down

3. Thig is when a subclags can substitute for 1. Ancther term for encapsulation is separation
its superclass. of this.

4. Cluss disgrums don't show details obout this 2, Pulymorphism helps moke your code

part of cur class.

5. A class that inherits from another class is 4. Use this kind of diagram to aveid wading
this, through lots of code.

6. Encapsulation lets you do this to

infarmation.

7. A class that is inherited from is called this,

you are here » 587

Download at WoweBook.Com

pool puzzle solution

Poo] Puzzle
Selutien

Your job was to take code snippets
from the pool below, and place them
into the blank lines in the code you see
on the right. You may use the same
snippet more than once, and you won’t
need to use all the snippets. Your goal
was to create a class that will compile,
run, and produce the output listed.

Output:

File Edit Window Help LeavingOnAJetplane

%$java FlyTest
212
844
1688

6752
13504
27008
1696

588 Appendix Il

public class FlyTest {
public static void main(String[] args) {
Airplane biplane = new Airplane();
biplane.setSpeed(212) ;
System.out.println (biplane.getSpeed()) ;
Jet boeing = new Jet();
boeing.setSpeed (422) ;
System.out.println (boeing.getSpeed()) ;
int x = 0;
while (x<4) {
boeing.accelerate();
System.out.println (boeing.getSpeed()) ;
if (boeing.getSpeed() > 5000) {
biplane.setSpeed (biplane.getSpeed() * 2) ;
} else {
boeing.accelerate();
}
X++;
}
System.out.println (biplane.getSpeed()) ;

whion to the

Hc‘rc,s our sol

Voo\ Yuu\&

Download at WoweBook.Com

welcome to objectville

¥
EEIEIEII!BEI
xEclo/Ns TRUICTO
B
'slulslclilals]s
a
HEE

you are here » 589

Download at WoweBook.Com

Download at WoweBook.Com

¥

Numbhers

3DBoard, solving without inheritance 405

A

abstract base class 200-203, 212

abstracting behavior 205

abstraction 243

actors 294, 299, 300, 302

aggregation 208, 412-417, 414, 558
versus composition 413

Airplane class 577

alternate paths 70, 85-87
dog door 123
dog door requirement changes 120
questions and answers 125
analysis xiii—xxii, 145-196, 283
identifying problems 148
planning solutions 149
textual 169
use cases and 151
Analysis and Design Puzzle 510, 536-538
anonymous class 82
anti patterns 563

architecturally significant features 331

architecture
defined 326-328
purpose of 351
three questions 332
Architecture Puzzle 340
revisited 345
solution 346-347

array of arrays 347

*
Index *

association 194

attributes 194

B

Bark object 158, 159
multiple 165

BarkRecognizerjava 131, 132, 135
Don’t Repeat Yourself Principle 382
BarkRecognizer class 132, 135, 159

delegation 161

questions and answers 132
recognize() method 160, 189

base classes, modifying 381

behavior
of subclasses 241

reusing from other classes 414

Be the Browser 333, 334, 365, 437, 438

big problems

breaking into smaller pieces 281, 309, 310-314

looking at 281
versus little problems 280

Board class 346, 348, 349, 364

boolean property versus numStrings property 39

Bullet Points 106, 142, 191, 820, 372, 417, 475, 586

C

cancel() method (TimerTask anonymous class) 82

case diagrams, versus use cases /77

change 228

constant in software development 115

changing requirements 115

checked exception 470

Download at WoweBook.Com

This is the index

591

the index

class diagrams 19, 194
abstract classes 206 D
annotating guitar application 39

h of a desi
dissected 182183 death of a design 246

Guitar 29 Decorator Pattern
limitations 187 disadvantages 92, 126, 341, 343
subclasses 206 interview 92, 126, 341, 343
UML and 577 defensive programming 464465
what’s missing 188, 190 delegation 43, 45, 162, 414, 504
classes, protecting 523 3DBoard 406
clear value 74, 75, 98, 100 BarkRecognizer class 161

DogDoor class (Sam’s) 160

closed for modification 377-381, 417, 418
versus inheritance 407

code, robust 18 when to use 407

coding standards 572

design
cohesion 269-276 death of a 246
collections 251 preliminary 485
commonality 355-361, 367, 441-450 design lifecycle 273
commonality-focused solution 450 design patterns 8, 10, 22, 34, 50, 52, 313, 315, 316, 319,
emphasizing 446447 563
commonality analysis 361, 367 design principles 376, 377, 380, 400, 415
common behavior 205 writing your own 141
composition 408417, 414, 558 Dessert interface 230
assembling behaviors from other classes 408 DessertService class 230
ownership and 411 dog door
versus aggregation 413 alternate paths 123

when to use 409 automatically closing 82

Connection class 514, 517 barking focus 172
coding changes in 131
final test drive 140

main path 123

constant in software analysis & design 115
context 147

contract, programming by 461-463 planning for things going wrong 6871

coordinating movement 337, 366, 367 single scenario 124
CRC cards 564-565 Todd and Gina’s Dog Door 387, 389
updating after analysis 152

customer’s language 306)
where code should go for closing door 138

customer goal 72 DogDoorjava 57, 59, 131, 135, 139, 140

customers Don’t Repeat Yourself Principle 383
listening to 63 gathering requirements 61
satisfying 12 test drive 59
understanding customer’s requirments 65 second 83

592 index

Download at WoweBook.Com

DogDoor class 59, 135
allowedBarks attribute 183
updating 139
DogDoor class (Sam’s) 158
delegation 160
Dog Door Class Diagram (Maria’s) 180
DogDoorSimulator.java 59, 83, 88-90, 131, 134, 135, 192

code magnets 88, 90
test drive 89

DogDoorSimulator class 59, 135
updating 134
domain analysis 306, 313, 317, 320, 485
Don’t Repeat Yourself Principle (see DRY) 382
double encapsulation 249
DRY (Don’t Repeat Yourself Principle) 382-388

main idea 384

E

encapsulate what varies 115-116
encapsulation 28, 34, 52, 226, 231, 243, 245, 282, 504,
582, 585
Bullet Points 50
double 249
emphasizing 448-449
guitar specifications 41
OCP and 381

questions and answers 31
enumerated types 16
enums 16-18

equals()
Java’s default 521
overriding 516
RouteFinder 521

essence of a system 332, 335
external initiator 74, 75, 93, 94, 98, 100

F

feature analysis 434435

index

feature driven development 427, 428, 433, 475, 478
versus use case driven development 430432

feature lists 484, 495

Feature Magnets
RouteFinder feature list 497

Feature Puzzle 474
solutions 476-477

features 290
architecturally significant 331
interpreting 366
mapping to use case diagrams 298, 300
versus requirements 292

versus use cases 499, 500
Final CATASTROPHE! 230
FindGuitarjava

updating 42
FindGuitar class 33
FindInstrument.java 259, 260

mitializeInventory() method 261
test driving 261, 264

flexibility 34, 49, 52, 380
interfaces and 224
versus functionality 535

fragile 18
Friedman, Dan 301

functionality 34, 52, 324, 329, 330, 342, 345, 364, 371,
374, 499
breaking applications into smaller chunks of 473
versus flexibility 535

G

game-specific units 352-353
game system framework (GSF) 284
Gary’s Games

customer conversations 288-289

features 290
vision statement 284

593

you are here»

Download at WoweBook.Com

the index

Gary’s Game System Framework

coordinating game movement 365
feature list 305, 324, 329

determining significance 333, 334
key features 336, 350, 363, 371
risk 338

getNumStrings() method (GuitarSpec.java) 42, 44
good enough software 274-275
graph structure 515
great software
3 steps to 215, 216
consistently writing 48
satisfying customers 12

three easy steps 13
what does this mean? 10

Guitar.java

adding class for mandolins 208

encapsulating properties of GuitarSpec 45
Guitar class diagram 29
GuitarSpec.java

adding new property 44

getNumStrings() method 42, 44

numStrings property 42, 44
GuitarSpec class 29, 210

adding property to 40

encapsulating properties of 45

questions and answers 31

H

HAS-A 558-559
hashCode(), overriding 516
Head First Labs website 17

Head First learning principles xxvi

I

implementation 485

inheritance 243, 380, 558, 579
alternatives 405, 414
hidden structure problems 402

594 index

misusing 401
versus delegation 407
(see also LSP)
instrument-specific subclasses
killing 247
Instrument.java 208
Instrument abstract base class 201
instrument application
ease-of-change challenge 266—-269
Instrument class
adding new subclasses 218
completed class diagram 201
extending 208
updated 252
InstrumentSpec 203-220
creating abstract class for 209

making concrete class 237-238
matches() method 378

InstrumentSpec.java 209
InstrumentSpec class
updated 252
InstrumentType.java 256
InstrumentType enum 256
interface 224, 226, 230, 232
coding to an 282
Inventoryjava 212, 256

making sure is well designed 37

search() method 37, 42, 45, 237
Inventory class 32

addInstrument() method 241

updating 256

updating to work with multiple instrument types 212
Inventory Roundup 260

solutions 262-263
IS-A 558-559
iterating over all choices (guitar application) 23
iterative design 503, 530, 539
iterative development 475, 485

Download at WoweBook.Com

J

Java’s default equals() 521

L

Line class 514

Liskov Substitution Principle (see LSP)
LoadTester class 529

loosely coupled 162

LSP (Liskov Substitution Principle) 400405, 412-418
hidden structure problems 402
violating 404

M

main path 92,99, 101

dog door 123
Mandolin.java 208
MandolinSpec.java 211
MandolinSpec class 200, 202, 205, 211
Map for storing properties 253, 254
Method Magnets 525

solutions 526
metrics 566
mismatched object type 27
Model-View-Controller pattern (see MVC pattern)
multiplicity 165, 183, 194
MVC pattern 314

N

noun analysis 194
nouns in use cases 167, 175
numStrings property (GuitarSpec.java) 42, 44

numStrings property versus boolean property 39

index

0]

Object-Oriented Analysis & Design (see OOA&D)
Object Oriented Design Principles 141

objects
concepts 27
forwarding operation to another object 43

naming 27

ObjectvilleSubway.txt file 527

Objectville Subway Map 490491

OCP (Open-Closed Principle) 49, 377-381, 400, 417,
step-by-step 379

OOA&D (Object-Oriented Analysis & Design) 48, 49,

power of 318-319
process overview 484

OOA&D Cross 51, 107, 143, 195, 277, 321, 373, 419,
479, 552

OOA&D Magnets 487, 549
solutions 550
OOA&D Toolbox 276, 320, 418, 478

more tools for 142
tools 106

OO CATASTROPHE! 223-232

OO Cross 587

OO Principles 232

Open-Closed Principle (see OCP)

open for extension 377, 378, 381, 417,418
operation 194

optional paths 120

P

Painter class 226

Patterns Exposed 92, 126, 341, 343
placeholders 201

planning for things going wrong 68-71
polymorphism 243, 581

pressButton() xii, 136, 139

you are here»

Download at WoweBook.Com

418

50

595

the index

programming Rick’s Search Tool 3-54
by contract 461-463, 471 download 33
versus defensive programming 466468 encapsulation 28
defensively 464465, 471 iterating over all choices 23
properties looking deeper for problems 25
storing 250, 251, 253 making well-designed and flexible 234-235
that vary across objects 251 mismatched object type 27
unused 27 problems with 6

revisiting problems 14
String comparisons 16

R search() method 21, 22
analyzing 26
test drive 23, 46
risk 338, 339
reducing 349, 362, 371
use cases and 341

protecting classes 523

readable code 572-573
refactoring 574
relationships 326, 331, 343, 351, 353

Remotejava 59, 135, 140
Don’t Repeat Yourself Principle 382
Remote class 58, 59, 135

robust code 18
RouteFinder 488-556

back to requirements phase 533

automatically Closing door 82 breaking into modules 501, 502

code magnet solutions 108 closer look at representing a subway 505

remote control coding
simplifying 139 Station class 516
requirements 93, 94, 484 Connection class 514, 517

different output sources 551
feature list 532

checking against use cases 78 getDirections() method 544
creating list of 64, 66 iterative design 503, 530, 539
defined 62 Line class 514

gathering xi—xxii, 55-110 LoadTester class 529
good 67, 142, 282 more extensible loading 551

changes xii—xxii, 111-144
changes in use cases 129

list 81 statement of work 488

Station class 514

Subway class 514
coding 519
equals() 520
hashCode() 520

list, checking 133
list for changes to dog door 130
questions and answers 67

versus features 292

requirements list 286 subway file 506
reusable 49 SubwaylLoader class 524
reusable design 36 SubwayPrinter class 545

SubwayTester class 547
textual analysis 510-513

RuntimeException 470

596 index

Download at WoweBook.Com

5

satisfying customers 12

scenarios 73
Board interface 342, 344
questions and answers 125
risk and 343
single, for dog door 124

search() method (guitar application) 21, 22
analyzing 26

search() method (Inventoryjava) 37, 42, 45

seeing the big picture 294-295

sequence diagrams 567

Sharpen your pencil
adding support for mandolins to search tool 199
answers 200
analysis 149
answers 150
annotating guitar application class diagram 39, 40
breaking RouteFinder into modules 502
Connection class 517
answers 518
designing test cases 455
answers 456
design principle 141
Dog class, not including 174
answers 179
DogDoor class
allowedBarks attribute 183, 185
dog door requirements 65
drawing class diagram for updated instrument applica-
tion 257
game-specific units 353
answers 354
Gary’s Games, things to do first 285
Gary’s Games features 291, 303
answers 290, 304
Gary’s Game System Framework
most important features 330
great software 11
guitar application 7, 19
GuitarSpec object 29, 30

instrument-specific subclasses 239, 240

Inventoryjava 37

letting GuitarSpec handle comparisons 53

OCP, finding in your project 381

OO principles 243
answers 244

potential Unit properties 442-443
answers 444445

power of use cases 104

reasons requirments might change 115

requirements for dog door 79
answers 80

risk 339

rodents getting into kitchen 60

RouteFinder feature list 493
answers 494

scenarios in use cases 127
answers 128

scenario testing 135
answers 136

skeleton for Airplane class 577
answers 578

SRP, applying to automobile class 393
answers 394

structure for Routelinder code 496
answers 498

Unit class programming contract 469
answers 470

use case for Get directions 533

use case for loading subway lines 503, 507
answers 504, 508

use case nouns 167
answers 168

use cases 95
real power of 102-103
real power of] solution 104-105
writing more 96-97

use case to store a bark 153
answers 153

value of encapsulating your data 583
answers 584

writing code based on class diagram 157
answers 158

you are here»

Download at WoweBook.Com

index

597

the index

software SubwayLoader class 524
good enough 274-275 making sure correctly loads in all stations and
great (see great software) connections 527
well-designed 217 SubwayPrinter class 545-546

software, great 283 SubwayTester class 547

software release 485 system boundary 296

solutions, questions and answers 151

SRP (Single Responsibility Principle) 49, 390-399, 504 T

analysis 392 terrain types 309

oing from multiple to single 395
sOm8 P s test cases 454,477,571

SRP Analysis
CRC cards and 565 test driven development 440
SRP Sightings 396-397 Test Puzzle 457, 527
answers 398-399 solution 528-530

solutions 458-459

test scenarios
Unit class 437—439

textual analysis 169, 173, 174, 189, 510
code magnets 177

start condition 93, 94
statechart diagram 568-569
state machine diagrams 568-569

Station class 514

coding 516 solution 178
String comparisons 16 The Little Lisper 301
Style.java 211 There are no Dumb Questions
subclasses advanced OO techniques 222
adding new instruments 218 aggregation 415
behavior of 241 alternate paths 125
behavior versus properties 242 array of arrays 347
instrument-specific BarkRecognizer class 132
killing 247 class diagrams 19, 578
misusing 401 cohesion 271
standing in for superclass 581 commonality 445
versus abstract base classes 201 commonality versus variability 369
subtype must be substitutable for its base type 403 composition 415

. deciding between design choices 451
Subway.,java .)
defensive programming 465
delegation 43,415

DessertService class 230

implementation 540-542
Subway class 514

coding 519 Don’t Repeat Yourself Principle 385
equals() 520 encapsulation 31, 34, 585
hashCode() 520 enumerated types 16

equals() 521
essence of a system 335

598 index

Download at WoweBook.Com

features versus requirements 293, 494
fewer classes and flexibility 255

FindInstrument.java, getting different results 264

hasConnection() method 528
holding off writing code 364
inheritance 415

Instrument class 213

making Instrument abstract 203
matching up every feature to a use case 500
multiple solutions 151

nouns and verbs in use cases 179
OCP 381

options 550

polymorphism 581
programming by contract 471
reducing risk 362

repeated steps in use case 515
requirements 67
RuntimeException 470
scenarios 125

Single Responsibility Principle 391
SRP analysis 395

steps in coding 22

subclassing 415

test cases 456

test driven development 440
textual context 173

Tile and Unit classes 349
Timer class 82

UML 207

unit testing 570

use case diagrams 299

use cases 77

use cases for storing a bark 154
uses cases and risk 345
validation 508

Thread class, using to close door 82
Tile.java 348

Tile class 348, 349

tiles 309

time periods 309

Timer class
using to close door 82

TimerTask anonymous class
cancel() method 82

U

UML and class diagrams 577
UML Cheat Sheet 207
UML diagrams 181, 184
Unit.java 348

Unit class 348, 349, 435437

class diagram 441
matching tests to design 452
programming by contract 462463
test scenarios 437-439
writing 453

UnitGroup class 476-477

units 309

finding what is common between 355
game-specific (see game-specific units)
moving 472

unit testing 570-571

upgradable 49

use case diagrams 296-297, 305, 484, 495
mapping features to 298

use case driven development 427,429, 475, 478
versus driven development 430432

use cases 71-86, 286
analysis and 151
changes and requirements 129
checking against requirements 78
clear value 74
definite starting and stopping point 74
exposed 92, 126
external initiator 74
formats 560-562
Get directions 533
answers 534
identifying classes to use 170

you are here»

Download at WoweBook.Com

index

599

the index

use cases (continued)

loading subway lines 507 V
checking flow 509 N

Load netwfrk of subway lines 527 validation 508

magnets 75, 98-99 variability 356, 358, 360, 442, 444, 445
solution 76, 100 verb analysis 194

nouns 167,175

questions and answers 77

verbs in use cases 176

real power of 102 vision statement 284, 286

risk and 341
seeing the big picture 294 W
storing a bark 153

Weapon interface 408-410
three parts 74

updating after analysis 152 well-designed software 217
verbs 176 Who Am I? 416, 468
versus case diagrams 77 solutions 420, 481
versus features 499

writing so not confusing 122-123

600 index

Download at WoweBook.Com

	Table of Contents
	Intro
	Chapter 1. well-designed apps rock
	Chapter 2. gathering requirements
	Chapter 3. requirements change
	Chapter 4. analysis
	Chapter 5. (part 1) good design = flexible software
	Chapter 6. solving really big problems
	Chapter 7. architecture
	Chapter 8. design principles
	Chapter 9. iterating and testing
	Chapter 10. the ooa&d lifecycle
	Appendix i: leftovers
	Appendix ii: welcome to objectville
	Index

