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Preface

This book focuses on the development of cloud-native applications. A cloud-native ap
plication is architected to take advantage of specific engineering practices that have 
proven successful in some of the world’s largest and most successful web properties. 
Many of these practices are unconventional, yet the need for unprecedented scalability 
and efficiency inspired development and drove adoption in the relatively small number 
of companies that truly needed them. After an approach has been adopted successfully 
enough times, it becomes a pattern. In this book, a pattern is an approach that can be 
duplicated to produce an expected outcome. Use of any of the patterns included in this 
book will impact the architecture of your application, some in small ways, some in large 
ways.

Historically, many of these patterns have been risky and expensive to implement, and 
it made sense for most companies to avoid them. That has changed. Cloud computing 
platforms now offer services that dramatically lower the risk and cost by shielding the 
application from most of the complexity. The desired benefit of using the pattern is the 
same, but the cost and complexity of realizing that benefit is lower. The majority of 
modern applications can now make practical use of these heretofore seldom used 
patterns.

Cloud platform services simplify building cloud-native applications.

The architecture patterns described in this book were selected because they are useful 
for building cloud-native applications. None are specific to the cloud. All are relevant to 
the cloud.
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Concisely stated, cloud-native applications leverage cloud-platform services to cost-
efficiently and automatically allocate resources horizontally to match current needs, 
handle transient and hardware failures without downtime, and minimize network la
tency. These terms are explained throughout the book.

An application need not support millions of users to benefit from cloud-native patterns. 
There are benefits beyond scalability that are applicable to many web and mobile ap
plications. These are also explored throughout the book.

The patterns assume the use of a cloud platform, though not any specific one. General 
expectations are outlined in Scalability Primer (Chapter 1).

This book will not help you move traditional applications to the cloud 
“as is.”

Audience
This book is written for those involved in—or who wish to become involved in—con
versations around software architecture, especially cloud architecture. The audience is 
not limited to those with “architect” in their job title. The material should be relevant 
to developers, CTOs, and CIOs; more technical testers, designers, analysts, product 
managers, and others who wish to understand the basic concepts.

For learning beyond the material in this book, paths will diverge. Some readers will not 
require information beyond what is provided in this book. For those going deeper, this 
book is just a starting point. Many references for further reading are provided in Ap
pendix A.

Why This Book Exists
I have been studying cloud computing and the Windows Azure Platform since it was 
unveiled at the Microsoft Professional Developer’s Conference (PDC) in 2008. I started 
the Boston Azure Cloud User Group in 2009 to accelerate my learning, I began writing 
and speaking on cloud topics, and then started consulting. I realized there were many 
technologists who had not been exposed to the interesting differences between the 
application-building techniques they’d been using for years and those used in creating 
cloud-native applications.

The most important conversations about the cloud are more about 
architecture than technology.
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This is the book I wish I could have read myself when I was starting to learn about cloud 
and Azure, or even ten years ago when I was learning about scaling. Because such a 
book did not materialize on its own, I have written it. The principles, concepts, and 
patterns in this book are growing more important every day, making this book more 
relevant than ever.

Assumptions This Book Makes
This book assumes that the reader knows what the cloud is and has some familiarity 
with how cloud services can be used to build applications with Windows Azure, Amazon 
Web Services, Google App Engine, or similar public or private cloud platforms. The 
reader is not expected to be familiar with the concept of a cloud-native application and 
how cloud platform services can be used to build one.

This book is written to educate and inform. While this book will help the reader un
derstand cloud architecture, it is not actually advising the use of any particular patterns. 
The goal of the book is to provide readers with enough information to make informed 
decisions.

This book focuses on concepts and patterns, and does not always directly discuss costs. 
Readers should consider the costs of using cloud platform services, as well as trade-offs 
in development effort. Get to know the pricing calculator for your cloud platform of 
choice.

This book includes patterns useful for architecting cloud-native applications. This book 
is not focused on how to (beyond what is needed to understand), but rather about when 
and why you might want to apply certain patterns, and then which features in Windows 
Azure you might find useful. This book intentionally does not delve into the detailed 
implementation level because there are many other resources for those needs, and that 
would distract from the real focus: architecture.

This book does not provide a comprehensive treatment of how to build cloud applica
tions. The focus of the pattern chapters is on understanding each pattern in the context 
of its value in building cloud-native applications. Thus, not all facets are covered; em
phasis is on the big picture. For example, in Database Sharding Pattern (Chapter 7), 
techniques such as optimizing queries and examining query plans are not discussed 
because they are no different in the cloud. Further, this book is not intended to guide 
development, but rather provide some options for architecture; some references are 
given pointing to more resources for realizing many of the patterns, but that is not 
otherwise intended to be part of this book.

Contents of This Book
There are two types of chapters in this book: primers and patterns.

Preface | xi



Individual chapters include:
Scalability Primer (Chapter 1)

This primer explains scalability with an emphasis on the key differences between 
vertical and horizontal scaling.

Horizontally Scaling Compute Pattern (Chapter 2)
This fundamental pattern focuses on horizontally scaling compute nodes.

Queue-Centric Workflow Pattern (Chapter 3)
This essential pattern for loose coupling focuses on asynchronous delivery of com
mand requests sent from the user interface to a processing service. This pattern is 
a subset of the CQRS pattern.

Auto-Scaling Pattern (Chapter 4)
This essential pattern for automating operations makes horizontal scaling more 
practical and cost-efficient.

Eventual Consistency Primer (Chapter 5)
This primer introduces eventual consistency and explains some ways to use it.

MapReduce Pattern (Chapter 6)
This pattern focuses on applying the MapReduce data processing pattern.

Database Sharding Pattern (Chapter 7)
This advanced pattern focuses on horizontally scaling data through sharding.

Multitenancy and Commodity Hardware Primer (Chapter 8)
This primer introduces multitenancy and commodity hardware and explains why 
they are used by cloud platforms.

Busy Signal Pattern (Chapter 9)
This pattern focuses on how an application should respond when a cloud service 
responds to a programmatic request with a busy signal rather than success.

Node Failure Pattern (Chapter 10)
This pattern focuses on how an application should respond when the compute node 
on which it is running shuts down or fails.

Network Latency Primer (Chapter 11)
This basic primer explains network latency and why delays due to network latency 
matter.

Colocate Pattern (Chapter 12)
This basic pattern focuses on avoiding unnecessary network latency.

Valet Key Pattern (Chapter 13)
This pattern focuses on efficiently using cloud storage services with untrusted cli
ents.
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CDN Pattern (Chapter 14)
This pattern focuses on reducing network latency for commonly accessed files 
through globally distributed edge caching.

Multisite Deployment Pattern (Chapter 15)
This advanced pattern focuses on deploying a single application to more than one 
data center.

Appendix A
The appendix contains a list of references for readers interested in additional ma
terial related to the primers and patterns presented in the book.

The primers exist to ensure that readers have the proper background to appreciate the 
pattern; primers precede the pattern chapters for which that background is needed. The 
patterns are the heart of the book and describe how to address specific challenges you 
are likely to encounter in the cloud.

Because individual patterns tend to impact multiple architectural concerns, these pat
terns defy placement into a clean hierarchy or taxonomy; instead, each pattern chapter 
includes an Impact section (listing the areas of architectural impact). Other sections 
include Context (when this pattern might be useful in the cloud); Mechanics (how the 
pattern works); an Example (which uses the Page of Photos sample application and 
Windows Azure); and finally a brief Summary. Also, many cross-chapter references are 
included to highlight where patterns overlap or can be used in tandem.

Although the Example section uses the Windows Azure platform, it is intended to be 
read as a core part of the chapter because a specific example of applying the pattern is 
discussed.

The book is intended to be vendor-neutral, with the exception that Example sections in 
pattern chapters necessarily use terminology and features specific to Windows Azure. 
Existing well-known names for concepts and patterns are used wherever possible. Some 
patterns and concepts did not have standard vendor-neutral names, so these are pro
vided.

Building Page of Photos on Windows Azure
Each pattern chapter provides a general introduction to one cloud architecture pattern. 
After the general pattern is introduced, a specific use case with that pattern is described 
in more depth. This is intended to be a concrete example of applying that pattern to 
improve a cloud-native application. A single demonstration application called Page of 
Photos is used throughout the book.

The Page of Photos application, or PoP for short, is a simple web application that allows 
anyone to create an account and add photos to that account.
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Each PoP account gets its own web address, which is the main web address followed by 
a folder name. For example, http://www.pageofphotos.com/widaketi displays photos un
der the folder name widaketi.

The PoP application was chosen because it is very simple to understand, while also 
allowing for enough complexity to illustrate the patterns without having sample appli
cation details get in the way.

This very basic introduction to PoP should get you started. Features are added to PoP 
in the Example section in each pattern chapter, always using Windows Azure capabilities, 
and always related to the general cloud pattern that is the focus of the chapter. By the 
end of the book, PoP will be a more complete, well-architected cloud-native application.

The PoP application was created as a concrete example for readers of 
this book and also as an exercise for double-checking some of the pat
terns. Look for it at http://www.pageofphotos.com.

Windows Azure is used for the PoP example, but the concepts apply as readily to Amazon 
Web Services and other cloud services platforms. I chose Windows Azure because that’s 
where I have deep expertise and know it to be a rich and capable platform for cloud-
native application development. It was a pragmatic choice.

Terminology
The book uses the terms application and web application broadly, even though service, 
system, and other terms may be just as applicable in some contexts. More specific terms 
are used as needed.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements 
such as variable or function names, databases, data types, environment variables, 
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.
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Constant width italic

Shows text that should be replaced with user-supplied values or by values deter
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this 
book in your programs and documentation. You do not need to contact us for permis
sion unless you’re reproducing a significant portion of the code. For example, writing a 
program that uses several chunks of code from this book does not require permission. 
Selling or distributing a CD-ROM of examples from O’Reilly books does require per
mission. Answering a question by citing this book and quoting example code does not 
require permission. Incorporating a significant amount of example code from this book 
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, 
author, publisher, and ISBN. For example: “Cloud Architecture Patterns by Bill Wilder 
(O’Reilly). Copyright 2012 Bill Wilder, 978-1-449-31977-9.”

If you feel your use of code examples falls outside fair use or the permission given above, 
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand 
digital library that delivers expert content in both book and video 
form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative 
professionals use Safari Books Online as their primary resource for research, problem 
solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi
zations, government agencies, and individuals. Subscribers have access to thousands of 
books, training videos, and prepublication manuscripts in one fully searchable database 
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley 
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Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John 
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT 
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol
ogy, and dozens more. For more information about Safari Books Online, please visit us 
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional 
information. You can access this page at http://oreil.ly/cloud_architecture_patterns.

To comment or ask technical questions about this book, send email to 
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website 
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
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brainstorming ideas for the illustrations in the book. Elizabeth O’Connor (majoring in 
Illustration at Mass College of Art) created the original versions of the beautiful illus
trations in the book. Jason Haley was the second to review early (and still painful to 

xvi | Preface

http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/cloud_architecture_patterns
mailto:bookquestions
mailto:@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia


read) drafts. Later Jason was kind enough to sign on as the official technical editor, 
remarking at one point (with a straight face), “Oh, was that the same book?” I guess it 
got better over time. Rahul Rai (Microsoft) offered detailed technical feedback and sug
gestions, with insights relating to every area in the book. Nuno Godinho (Cloud Solution 
Architect – World Wide, Aditi) commented on early drafts and helped point out chal
lenges with some confusing concepts. Michael Collier (Windows Azure National 
Architect, Neudesic) offered detailed comments and many suggestions in all chapters. 
Michael and Nuno are fellow Windows Azure MVPs. John Ahearn (a sublime entity) 
made every chapter in the book clearer and more pleasant to read, tirelessly reviewing 
chapters and providing detailed edits. John did not proofread the prior sentence, but if 
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and insightful feedback that really challenged me to write a better book. Both Mark and 
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CHAPTER 1

Scalability Primer

This primer explains scalability with an emphasis on the key differences between vertical 
and horizontal scaling.

Scaling is about allocating resources for an application and managing those resources 
efficiently to minimize contention. The user experience (UX) is negatively impacted 
when an application requires more resources than are available. The two primary ap
proaches to scaling are vertical scaling and horizontal scaling. Vertical scaling is the 
simpler approach, though it is more limiting. Horizontal scaling is more complex, but 
can offer scales that far exceed those that are possible with vertical scaling. Horizontal 
scaling is the more cloud-native approach.

This chapter assumes we are scaling a distributed multi-tier web application, though 
the principles are also more generally applicable.

This chapter is not specific to the cloud except where explicitly stated.

Scalability Defined
The scalability of an application is a measure of the number of users it can effectively 
support at the same time. The point at which an application cannot handle additional 
users effectively is the limit of its scalability. Scalability reaches its limit when a critical 
hardware resource runs out, though scalability can sometimes be extended by providing 
additional hardware resources. The hardware resources needed by an application usu
ally include CPU, memory, disk (capacity and throughput), and network bandwidth.

1



An application runs on multiple nodes, which have hardware resources. Application 
logic runs on compute nodes and data is stored on data nodes. There are other types of 
nodes, but these are the primary ones. A node might be part of a physical server (usually 
a virtual machine), a physical server, or even a cluster of servers, but the generic term 
node is useful when the underlying resource doesn’t matter. Usually it doesn’t matter.

In the public cloud, a compute node is most likely a virtual machine, 
while a data node provisioned through a cloud service is most likely a 
cluster of servers.

Application scale can be extended by providing additional hardware resources, as long 
as the application can effectively utilize those resources. The manner in which we add 
these resources defines which of two scaling approaches we take.

• To vertically scale up is to increase overall application capacity by increasing the 
resources within existing nodes.

• To horizontally scale out is to increase overall application capacity by adding nodes.

These scaling approaches are neither mutually exclusive nor all-or-nothing. Any appli
cation is capable of vertically scaling up, horizontally scaling out, neither, or both. For 
example, parts of an application might only vertically scale up, while other parts might 
also horizontally scale out.

Increasing Capacity of Roadways
Consider a roadway for automobile travel. If the roadway was unable to support the desired 
volume of traffic, we could improve matters in a number of possible ways. One improve
ment would be to upgrade the road materials (“the hardware”) from a dirt road to pave
ment to support higher travel speeds. This is vertically scaling up; the cars and trucks (“the 
software”) will be able to go faster. Alternatively, we could widen the road to multiple lanes. 
This is horizontally scaling out; more cars and trucks can drive in parallel. And of course 
we could both upgrade the road materials and add more lanes, combining scaling up with 
scaling out.

The horizontal and vertical scaling approaches apply to any resources, including both 
computation and data storage. Once either approach is implemented, scaling typically 
does not require changes to application logic. However, converting an application from 
vertical scaling to horizontal scaling usually requires significant changes.
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Vertically Scaling Up
Vertically scaling up is also known simply as vertical scaling or scaling up. The main idea 
is to increase the capacity of individual nodes through hardware improvements. This 
might include adding memory, increasing the number of CPU cores, or other single-
node changes.

Historically, this has been the most common approach to scaling due to its broad ap
plicability, (often) low risk and complexity, and relatively modest cost of hardware im
provements when compared to algorithmic improvements. Scaling up applies equally 
to standalone applications (such as desktop video editing, high-end video games, and 
mobile apps) and server-based applications (such as web applications, distributed multi-
player games, and mobile apps connected to backend services for heavy lifting such as 
for mapping and navigation).

Scaling up is limited by the utilizable capability of available hardware.

Vertical scaling can also refer to running multiple instances of software 
within a single machine. The architecture patterns in this book only 
consider vertical scaling as it relates to physical system resources.

There are no guarantees that sufficiently capable hardware exists or is affordable. And 
once you have the hardware, you are also limited by the extent to which your software 
is able to take advantage of the hardware.

Because hardware changes are involved, usually this approach involves downtime.

Horizontally Scaling Out
Horizontally scaling out, also known simply as horizontal scaling or scaling out, increases 
overall application capacity by adding entire nodes. Each additional node typically adds 
equivalent capacity, such as the same amount of memory and the same CPU.

The architectural challenges in vertical scaling differ from those in horizontal scaling; 
the focus shifts from maximizing the power of individual nodes to combining the power 
of many nodes. Horizontal scaling tends to be more complex than vertical scaling, and 
has a more fundamental influence on application architecture. Vertical scaling is often 
hardware- and infrastructure-focused—we “throw hardware at the problem”—whereas 
horizontal scaling is development- and architecture-focused. Depending on which scal
ing strategy is employed, the responsibility may fall to specialists in different depart
ments, complicating matters for some companies.
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Imperfect Terminology
To align with well-established industry practice, we use the term horizontal scaling, al
though horizontal resource allocation is more descriptive. The pattern is really about how 
resources are allocated and assembled; application scalability is simply one of many pos
sible outcomes from the use of this pattern. Some specific benefits are listed later in the 
section that defines cloud-native application.

Parallel or multicore programming to fully leverage CPU cores within 
a single node should not be confused with using multiple nodes to 
gether. This book is concerned only with the latter.

Applications designed for horizontal scaling generally have nodes allocated to specific 
functions. For example, you may have web server nodes and invoicing service nodes. 
When we increase overall capacity by adding a node, we do so by adding a node for a 
specific function such as a web server or an invoicing service; we don’t just “add a node” 
because node configuration is specific to the supported function.

When all the nodes supporting a specific function are configured identically—same 
hardware resources, same operating system, same function-specific software—we say 
these nodes are homogeneous.

Not all nodes in the application are homogeneous, just nodes within a function. While 
the web server nodes are homogeneous and the invoicing service nodes are homoge
neous, the web server nodes don’t need to be the same as the invoicing service nodes.

Horizontal scaling is more efficient with homogeneous nodes.

Horizontal scaling with homogeneous nodes is an important simplification. If the nodes 
are homogeneous, then basic round-robin load balancing works nicely, capacity plan
ning is easier, and it is easier to write rules for auto-scaling. If nodes can be different, it 
becomes more complicated to efficiently distribute requests because more context is 
needed.

Within a specific type of node (such as a web server), nodes operate autonomously, 
independent of one another. One node does not need to communicate with other similar 
nodes in order to do its job. The degree to which nodes coordinate resources will limit 
efficiency.
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An autonomous node does not know about other nodes of the same type.

Autonomy is important so that nodes can maintain their own efficiency regardless of 
what other nodes are doing.

Horizontal scaling is limited by the efficiency of added nodes. The best outcome is when 
each additional node adds the same incremental amount of usable capacity.

Describing Scalability
Descriptions of application scalability often simply reference the number of application 
users: “it scales to 100 users.” A more rigorous description can be more meaningful. 
Consider the following definitions.

• Concurrent users: the number of users with activity within a specific time interval 
(such as ten minutes).

• Response time: the elapsed time between a user initiating a request (such as by 
clicking a button) and receiving the round-trip response.

Response time will vary somewhat from user to user. A meaningful statement can use 
the number of concurrent users and response time collectively as an indicator of overall 
system scalability.

Example: With 100 concurrent users, the response time will be under 2 
seconds 60% of the time, 2-5 seconds 38% of the time, and 5 seconds or 
greater 2% of the time.

This is a good start, but not all application features have the same impact on system 
resources. A mix of features is being used: home page view, image upload, watching 
videos, searching, and so forth. Some features may be low impact (like a home page 
view), and others high impact (like image upload). An average usage mix may be 90% 
low impact and 10% high impact, but the mix may also vary over time.

An application may also have different types of users. For example, some users may be 
interacting directly with your web application through a web browser while others may 
be interacting indirectly through a native mobile phone application that accesses re
sources through programmatic interfaces (such as REST services). Other dimensions 
may be relevant, such as the user’s location or the capabilities of the device they are 
using. Logging actual feature and resource usage will help improve this model over time.
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The above measures can help in formulating scalability goals for your application or a 
more formal service level agreement (SLA) provided to paying users.

The Scale Unit
When scaling horizontally, we add homogeneous nodes, though possibly of multiple 
types. This is a predictable amount of capacity that ideally equates to specific application 
functionality that can be supported. For example, for every 100 users, we may need 2 
web server nodes, one application service node, and 100 MB of disk space.

These combinations of resources that need to be scaled together are known as a scale 
unit. The scale unit is a useful modeling concept, such as with Auto-Scaling Pattern 
(Chapter 4).

For business analysis, scalability goals combined with resource needs organized by scale 
units are useful in developing cost projections.

Resource Contention Limits Scalability
Scalability problems are resource contention problems. It is not the number of concurrent 
users, per se, that limits scalability, but the competing demands on limited resources 
such as CPU, memory, and network bandwidth. There are not enough resources to go 
around for each user, and they have to be shared. This results in some users either being 
slowed down or blocked. These are referred to as resource bottlenecks.

For example, if we have high performing web and database servers, but a network con
nection that does not offer sufficient bandwidth to handle traffic needs, the resource 
bottleneck is the network connection. The application is limited by its inability to move 
data over the network quickly enough.

To scale beyond the current bottleneck, we need to either reduce demands on the re
source or increase its capacity. To reduce a network bandwidth bottleneck, compressing 
the data before transmission may be a good approach.

Of course, eliminating the current bottleneck only reveals the next one. And so it goes.

Easing Resource Contention
There are two ways to ease contention for resources: don’t use them up so fast, and add 
more of them.

An application can utilize resources more or less efficiently. Because scale is limited by 
resource contention, if you tune your application to more efficiently use resources that 
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could become bottlenecks, you will improve scalability. For example, tuning a database 
query can improve resource efficiency (not to mention performance). This efficiency 
allows us to process more transactions per second. Let’s call these algorithmic improve
ments.

Efficiency often requires a trade-off. Compressing data will enable more efficient use of 
network bandwidth, but at the expense of CPU utilization and memory. Be sure that 
removing one resource bottleneck does not introduce another.

Another approach is to improve our hardware. We could upgrade our mobile device for 
more storage space. We could migrate our database to a more powerful server and 
benefit from faster CPU, more memory, and a larger and faster disk drive. Moore’s 
Law, which simply states that computer hardware performance approximately doubles 
every couple of years, neatly captures why this is possible: hardware continuously im
proves. Let’s call these hardware improvements.

Not only does hardware continuously improve year after year, but so 
does the price/performance ratio: our money goes further every year.

Algorithmic and hardware improvements can help us extend limits only to a certain 
point. With algorithmic improvements, we are limited by our cleverness in devising new 
ways to make better use of existing hardware resources. Algorithmic improvements may 
be expensive, risky, and time consuming to implement. Hardware improvements tend 
to be straightforward to implement, though ultimately will be limited by the capability 
of the hardware you are able to purchase. It could turn out that the hardware you need 
is prohibitively expensive or not available at all.

What happens when we can’t think of any more algorithmic improvements and hard
ware improvements aren’t coming fast enough? This depends on our scaling approach. 
We may be stuck if we are scaling vertically.

Scalability is a Business Concern
A speedy website is good for business. A Compuware analysis of 33 major retailers across 
10 million home page views showed that a 1-second delay in page load time reduced 
conversions by 7%. Google observed that adding a 500-millisecond delay to page re
sponse time caused a 20% decrease in traffic, while Yahoo! observed a 400-millisecond 
delay caused a 5-9% decrease. Amazon.com reported that a 100-millisecond delay 
caused a 1% decrease in retail revenue. Google has started using website performance 
as a signal in its search engine rankings. (Sources for statistics are provided in Appen
dix A.)
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There are many examples of companies that have improved customer satisfaction and 
increased revenue by speeding up their web applications, and even more examples of 
utter failure where a web application crashed because it simply was not equipped to 
handle an onslaught of traffic. Self-inflicted failures can happen, such as when large 
retailers advertise online sales for which they have not adequately prepared (this hap
pens routinely on the Monday after Thanksgiving in the United States, a popular online 
shopping day known as Cyber Monday). Similar failures are associated with Super Bowl 
commercials.

Comparing Performance and Scalability
Discussions of web application speed (or “slowness”) sometimes conflate two concepts: 
performance and scalability.

Performance is what an individual user experiences; scalability is how many users get to 
experience it.

Performance refers to the experience of an individual user. Servicing a single user request 
might involve data access, web server page generation, and the delivery of HTML and 
images over an Internet connection. Each of these steps takes time. Once the HTML and 
images are delivered to the user, a web browser still needs to assemble and render the page. 
The elapsed time necessary to complete all these steps limits overall performance. For 
interactive web applications, the most important of the performance-related measure 
ments is response time.

Scalability refers to the number of users who have a positive experience. If the application 
sustains consistent performance for individual users as the number of concurrent users 
grows, it is scaling. For example, if the average response time is 1 second with 10 concurrent 
users, but the average response time climbs to 5 seconds with 100 concurrent users, then 
the application is not scaling. An application might scale well (handling many concurrent 
users with consistent performance), but not perform well (that consistent performance 
might be slow, whether with 100 concurrent users or just one). There is always a threshold 
at which scalability problems take hold; an application might perform well up to 100 
concurrent users, and then degrade as the number of concurrent users increases beyond 
100. In this last scenario, the application does not scale beyond 100 concurrent users.

Network latency can be an important performance factor influencing 
user experience. This is considered in more depth starting with Network 
Latency Primer (Chapter 11).
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The Cloud-Native Application
This is a book for building cloud-native applications, so it is important that the term be 
defined clearly. First, we spell out the assumed characteristics of a cloud platform, which 
enables cloud-native applications. We then cover the expected characteristics of cloud-
native applications that are built on such a platform using the patterns and ideas included 
in this book.

Cloud Platform Defined
The following characteristics of a cloud platform make cloud-native applications 
possible:

• Enabled by (the illusion of) infinite resources and limited by the maximum capacity 
of individual virtual machines, cloud scaling is horizontal.

• Enabled by a short-term resource rental model, cloud scaling releases resources as 
easily as they are added.

• Enabled by a metered pay-for-use model, cloud applications only pay for currently 
allocated resources and all usage costs are transparent.

• Enabled by self-service, on-demand, programmatic provisioning and releasing of 
resources, cloud scaling is automatable.

• Both enabled and constrained by multitenant services running on commodity 
hardware, cloud applications are optimized for cost rather than reliability; failure 
is routine, but downtime is rare.

• Enabled by a rich ecosystem of managed platform services such as for virtual ma
chines, data storage, messaging, and networking, cloud application development is 
simplified.

While none of these are impossible outside the cloud, if they are all present at once, they 
are likely enabled by a cloud platform. In particular, Windows Azure and Amazon Web 
Services have all of these characteristics. Any significant cloud platform—public, pri
vate, or otherwise—will have most of these properties.

The patterns in this book apply to platforms with the above properties, though many 
will be useful on platforms with just some of these properties. For example, some private 
clouds may not have a metered pay-for-use mechanism, so pay-for-use may not literally 
apply. However, relevant patterns can still be used to drive down overall costs allowing 
the company to save money, even if the savings are not directly credited back to specific 
applications.

Where did these characteristics come from? There is published evidence that companies 
with a large web presence such as eBay, Facebook, and Yahoo! have internal clouds with 
some similar capabilities, though this evidence is not always as detailed as desired. The 
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best evidence comes from three of the largest players—Amazon, Google, and Microsoft
—who have all used lessons learned from years of running their own internal high-
capacity infrastructure to create public cloud platforms for other companies to use as a 
service.

These characteristics are leveraged repeatedly throughout the book.

Cloud-Native Application Defined
A cloud-native application is architected to take full advantage of cloud platforms. A 
cloud-native application is assumed to have the following properties, as applicable:

• Leverages cloud-platform services for reliable, scalable infrastructure. (“Let the 
platform do the hard stuff.”)

• Uses non-blocking asynchronous communication in a loosely coupled architecture.
• Scales horizontally, adding resources as demand increases and releasing resources 

as demand decreases.
• Cost-optimizes to run efficiently, not wasting resources.
• Handles scaling events without downtime or user experience degradation.
• Handles transient failures without user experience degradation.
• Handles node failures without downtime.
• Uses geographical distribution to minimize network latency.
• Upgrades without downtime.
• Scales automatically using proactive and reactive actions.
• Monitors and manages application logs even as nodes come and go.

As these characteristics show, an application does not need to support millions of users 
to benefit from cloud-native patterns. Architecting an application using the patterns in 
this book will lead to a cloud-native application. Applications using these patterns 
should have advantages over applications that use cloud services without being cloud-
native. For example, a cloud-native application should have higher availability, lower 
complexity, lower operational costs, better performance, and higher maximum scale.

Windows Azure and Amazon Web Services are full-featured public cloud platforms for 
running cloud-native applications. However, just because an application runs on Azure 
or Amazon does not make it cloud-native. Both platforms offer Platform as a Service 
(PaaS) features that definitely facilitate focusing on application logic for cloud-native 
applications, rather than plumbing. Both platforms also offer Infrastructure as a Service 
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(IaaS) features that allow a great deal of flexibility for running non-cloud-native appli
cations. But using PaaS does not imply that the application is cloud-native, and using 
IaaS does not imply that it isn’t. The architecture of your application and how it uses the 
platform is the decisive factor in whether or not it is cloud-native.

It is the application architecture that makes an application cloud-native, 
not the choice of platform.

A cloud-native application is not the best choice for every situation. It is usually most 
cost-effective to architect new applications to be cloud-native from the start. Significant 
(and costly) changes may be needed to convert a legacy application to being cloud-
native, and the benefit may not be worth the cost. Not every application should be cloud-
native, and many more cloud applications need not be 100% cloud-native. This is a 
business decision, guided by technical insight.

Patterns in this book can also benefit cloud applications that are not fully cloud-native.

Summary
Scalability impacts performance and efficiency impacts scalability. Two common scaling 
patterns are vertical and horizontal scaling. Vertical scaling is generally easier to im
plement, though it is more limiting than horizontal scaling. Cloud-native applications 
allocate resources horizontally, and scalability is only one benefit.
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CHAPTER 2

Horizontally Scaling Compute Pattern

This fundamental pattern focuses on horizontally scaling compute nodes. Primary con
cerns are efficient utilization of cloud resources and operational efficiency.

The key to efficiently utilizing resources is stateless autonomous compute nodes. State
less nodes do not imply a stateless application. Important state can be stored external 
to the nodes in a cloud cache or storage service, which for the web tier is usually done 
with the help of cookies. Services in the service tier typically do not use session state, so 
implementation is even easier: all required state is provided by the caller in each call.

The key to operations management is to lean on cloud services for automation to reduce 
complexity in deploying and managing homogeneous nodes.

Context
The Horizontal Scaling Compute Pattern effectively deals with the following challenges:

• Cost-efficient scaling of compute nodes is required, such as in the web tier or service 
tier.

• Application capacity requirements exceed (or may exceed after growth) the capacity 
of the largest available compute node.

• Application capacity requirements vary seasonally, monthly, weekly, or daily, or are 
subject to unpredictable spikes in usage.

• Application compute nodes require minimal downtime, including resilience in the 
event of hardware failure, system upgrades, and resource changes due to scaling.

This pattern is typically used in combination with the Node Termination Pattern (which 
covers concerns when releasing compute nodes) and the Auto-Scaling Pattern (which 
covers automation).
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Cloud Significance
Public cloud platforms are optimized for horizontal scaling. Instantiating a single com
pute node (virtual machine) is as easy as instantiating 100. And with 100 nodes deployed, 
we can just as easily release 50 of them with a simple request to the cloud platform. The 
platform ensures that all nodes deploy with the same virtual machine image, offer serv
ices for node management, and provide load balancing as a service.

Impact
Availability, Cost Optimization, Scalability, User Experience

Mechanics
When a cloud-native application is ready to horizontally scale by adding or releasing 
compute nodes, this is achieved through the cloud platform management user interface, 
a scaling tool, or directly through the cloud platform management service. (The man
agement user interface and any scaling tools ultimately also use cloud platform man
agement service.)

The management service requires that a specific configuration is specified (one or more 
virtual machine images or an application image) and the number of desired nodes for 
each. If the number of desired compute nodes is larger than the current number, nodes 
are added. If the number of desired compute nodes is lower than the current number, 
nodes are released. The number of nodes in use (and commensurate costs) will vary 
over time according to needs, as shown in Figure 2-1.

The process is very simple. However, with nodes coming and going, care must be taken 
in managing user session state and maintaining operational efficiency.

It is also important to understand why we want an application with fluctuating resources 
rather than fixed resources. It is because reversible scaling saves us money.

Cloud Scaling is Reversible
Historically, scalability has been about adding capacity. While it has always been tech
nically possible to reduce capacity, in practice it has been as uncommon as unicorn 
sightings. Rarely do we hear “hey everyone, the company time-reporting application is 
running great – let’s come in this weekend and migrate it to less capable hardware and 
see what happens.” This is the case for a couple of reasons.

It is difficult and time-consuming to ascertain the precise maximum resource require
ments needed for an application. It is safer to overprovision. Further, once the hardware 
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is paid for, acquired, installed, and in use, there is little organizational pressure to fiddle 
with it. For example, if the company time-reporting application requires very little ca
pacity during most of the week, but 20 times that capacity on Fridays, no one is trying 
to figure out a better use for the “extra” capacity that’s available 6 days a week.

With cloud-native applications, it is far less risky and much simpler to exploit extra 
capacity; we just give it back to our cloud platform (and stop paying for it) until we need 
it again. And we can do this without touching a screwdriver.

Figure 2-1. Cloud scaling is easily reversed. Costs vary in proportion to scale as scale 
varies over time.

Cloud resources are available on-demand for short-term rental as virtual machines and 
services. This model, which is as much a business innovation as a technical one, makes 
reversible scaling practical and important as a tool for cost minimization. We say re
versible scaling is elastic because it can easily contract after being stretched.

Practical, reversible scaling helps optimize operational costs.
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If our allocated resources exceed our needs, we can remove some of those resources. 
Similarly, if our allocated resources fall short of our needs, we can add resources to match 
our needs. We horizontally scale in either direction depending on the current resource 
needs. This minimizes costs because after releasing a resource, we do not pay for it 
beyond the current rental period.

Consider All Rental Options
The caveat “beyond the current rental period” is important. Rental periods in the cloud 
vary from instantaneous (delete a byte and you stop paying for its storage immediately) 
to increments of the wall clock (as with virtual machine rentals) to longer periods that 
may come with bulk (or long-term) purchasing. Bulk purchasing is an additional cost 
optimization not covered in this book. You, however, should not ignore it.

Consider a line-of-business application that is expected to be available only during 
normal business hours, in one time zone. Only 50 hours of availability are needed per 
week. Because there are 168 hours in a calendar week, we could save money by removing 
any excess compute nodes during the other 118 hours. For some applications, removing 
all compute nodes for certain time periods is acceptable and will maximize cost savings. 
Rarely used applications can be deployed on demand.

An application may be lightly used by relatively few people most of the time, but heavily 
used by tens of thousands of people during the last three business days of the month. 
We can adjust capacity accordingly, aligning cost to usage patterns: during most of the 
month two nodes are deployed, but for the last three business days of the month this is 
increased to ten.

The simplest mechanism for adjusting deployed capacity is through the cloud vendor’s 
web-hosted management tool. For example, the number of deployed nodes is easily 
managed with a few clicks of the mouse in both the Windows Azure portal and the 
Amazon Web Services dashboard. In Auto-Scaling Pattern (Chapter 4) we examine ad
ditional approaches to making this more automated and dynamic.

Cloud scaling terminology

Previously in the book, we note that the terms vertical scaling and scaling up are syno
nyms, as are horizontal scaling and scaling out. Reversible scaling is so easy in the cloud 
that it is far more popular than in traditional environments. Among synonyms, it is 
valuable to prefer the more suitable terms. Because the terms scaling up and scaling out 
are biased towards increasing capacity, which does not reflect the flexibility that cloud-
native applications exhibit, in this book the terms vertical and horizontal scaling are 
preferred.
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The term vertical scaling is more neutral than scaling up, and horizontal 
scaling is more neutral than scaling out. The more neutral terms do not 
imply increase or decrease, just change. This is a more accurate depic
tion of cloud-native scaling.

For emphasis when describing specific scaling scenarios, the terms vertically scaling 
up, vertically scaling down, horizontally scaling in, and horizontally scaling out are some
times used.

Managing Session State
Consider an application with two web server nodes supporting interactive users through 
a web browser. A first-time visitor adds an item to a shopping cart. Where is that shop
ping cart data stored? The answer to this simple question lies in how we manage session 
state.

When users interact with a web application, context is maintained as they navigate from 
page to page or interact with a single-page application. This context is known as session 
state. Examples of values stored in session state include security access tokens, the user’s 
name, and shopping cart contents.

Depending on the application tier, the approach for session state will vary.

Session state varies by application tier

A web application is often divided into tiers, usually a web tier, a service tier, and a data 
tier. Each tier can consist of one or many nodes. The web tier runs web servers, is ac
cessible to end users, and provides content to browsers and mobile devices. If we have 
more than one node in the web tier and a user visits our application from a web browser, 
which node will serve their request? We need a way to direct visiting users to one node 
or another. This is usually done using a load balancer. For the first page request of a new 
user session, the typical load balancer directs that user to a node using a round-robin 
algorithm to evenly balance the load. How to handle subsequent page requests in that 
same user session? This is tightly related to how we manage session state and is discussed 
in the following sections.

A web service, or simply service, provides functionality over the network using a standard 
network protocol such as HTTP. Common service styles include SOAP and REST, with 
SOAP being more popular within large enterprises and REST being more popular for 
services exposed publicly. Public cloud platforms favor the REST style.

The service tier in an application hosts services that implement business logic and pro
vide business processing. This tier is accessible to the web tier and other service tier 
services, but not to users directly. The nodes in this tier are stateless.
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The data tier holds business data in one or more types of persistent storage such as 
relational databases, NoSQL databases, and file storage (which we will learn later is 
called blob storage). Sometimes web browsers are given read-only access to certain types 
of storage in the data tier such as files (blobs), though this access typically does not 
extend to databases. Any updates to the data tier are either done within the service tier 
or managed through the service tier as illustrated in Valet Key Pattern (Chapter 13).

Sticky sessions in the web tier

Some web applications use sticky sessions, which assign each user to a specific web server 
node when they first visit. Once assigned, that node satisfies all of that user’s page re
quests for the duration of the visit. This is supported in two places: the load balancer 
ensures that each user is directed to their assigned node, while the web server nodes 
store session state for users between page requests.

The benefits of sticky sessions are simplicity and convenience: it is easy to code and 
convenient to store users’ session state in memory. However, when a user’s session state 
is maintained on a specific node, that node is no longer stateless. That node is a state
ful node.

The Amazon Web Services elastic load balancer supports sticky ses 
sions, although the Windows Azure load balancer does not. It is possible 
to implement sticky sessions using Application Request Routing (ARR) 
on Internet Information Services (IIS) in Windows Azure.
Cloud-native applications do not need sticky session support.

Stateful node challenges

When stateful nodes hold the only copy of a user’s session state, there are user experience 
challenges. If the node that is managing the sticky session state for a user goes away, that 
user’s session state goes with it. This may force a user to log in again or cause the contents 
of a shopping cart to vanish.

A node holding the only copy of user session state is a single point of 
failure. If the node fails, that data is lost.

Sessions may also be unevenly distributed as node instances come and go. Suppose your 
web tier has two web server nodes, each with 1,000 active sessions. You add a third node 
to handle the expected spike in traffic during lunchtime. The typical load balancer ran
domly distributes new requests across all nodes. It will not have enough information to 
send new sessions to the newly added node until it also has 1,000 active sessions. It is 
effectively “catching up” to the other nodes in the rotation. Each of the 3 nodes will get 
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approximately one-third of the next 1,000 new sessions, resulting in an imbalance. This 
imbalance is resolved as older sessions complete, provided that the number of nodes 
remains stable. Overloaded nodes may result in a degraded user experience, while un
derutilized nodes are not operationally efficient. What to do?

Session state without stateful nodes

The cloud-native approach is to have session state without stateful nodes. A node can 
be kept stateless simply by avoiding storing user session state locally (on the node), but 
rather storing it externally. Even though session state will not be stored on individual 
nodes, session state does need to be stored somewhere.

Applications with a very small amount of session state may be able to store all of it in a 
web cookie. This avoids storing session state locally by eliminating all local session state; 
it is transmitted inside a cookie that is sent by the user’s web browser along with page 
requests.

It gets interesting when a cookie is too small (or too inefficient) to store the session state. 
The cookie can still be used, but rather than storing all session state inside it, the cookie 
holds an application-generated session identifier that links to server-side session state; 
using the session identifier, session data can be retrieved and rehydrated at the beginning 
of each request and saved again at the end. Several ready-to-go data storage options are 
available in the cloud, such as NoSQL data stores, cloud storage, and distributed caches.

These approaches to managing session state allow the individual web nodes to remain 
autonomous and avoid the challenges of stateful nodes. Using a simple round-robin load 
balancing solution is sufficient (meaning even the load balancer doesn’t need to know 
about session state). Of course, some of the responsibility for scalability is now shifted 
to the storage mechanism being used. These services are typically up for the task.

As an example, a distributed cache service can be used to externalize session state. The 
major public cloud platforms offer managed services for creating a distributed cache. 
In just a few minutes, you can provision a distributed cache and have it ready to use. 
You don’t need to manage it, upgrade it, monitor it, or configure it; you simply turn it 
on and start using (and paying for) it.

Session state exists to provide continuity as users navigate from one web page to another. 
This need extends to public-facing web services that rely on session state for authenti
cation and other context information. For example, a single-page web application may 
use AJAX to call REST services to grab some JSON data. Because they are user-
accessible, these services are also in the web tier. All other services run in the service 
tier.

Mechanics | 19



Stateless service nodes in the service tier

Web services in the service tier do not have public endpoints because they exist to 
support other internal parts of the application. Typically, they do not rely on any session 
information, but rather are completely stateless: all required state is provided by the 
caller in each call, including security information if needed. Sometimes internal web 
services do not authenticate callers because the cloud platform security prevents exter
nal callers from reaching them, so they can assume they are only being accessed by 
trusted subsystems within the application.

Other services in the service tier cannot be directly invoked. These are the processing 
services described in Queue-Centric Workflow Pattern (Chapter 3). These services pull 
their work directly from a queue.

No new state-related problems are introduced when stateless service nodes are used.

Managing Many Nodes
In any nontrivial cloud application, there will be multiple node types and multiple in
stances of each node type. The number of instances will fluctuate over time. Mixed 
deployments will be common if application upgrades are rolling upgrades, a few nodes 
at a time.

As compute nodes come and go, how do we keep track of them and manage them?

Efficient management enables horizontal scaling

Developing for the cloud means we need to establish a node image for each node type 
by defining what application code should be running. This is simply the code we think 
of as our application: PHP website code may be one node type for which we create an 
image, and a Java invoice processing service may be another.

To create an image with IaaS, we build a virtual machine image; with PaaS, we build a 
web application (or, more specifically, a Cloud Service on Windows Azure). Once a node 
image is established, the cloud platform will take care of deploying it to as many nodes 
as we specify, ensuring all of the nodes are essentially identical.

It is just as easy to deploy 2 identical nodes as is to deploy 200 identical 
nodes.

Your cloud platform of choice will also have a web-hosted management tool that allows 
you to view the current size and health of your deployed application.
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Though you start with a pool of essentially identical nodes, you can change individual 
nodes afterwards. Avoid doing this as it will complicate operations at scale. For inves
tigating issues, your cloud platform will have a way to take a node out of the load balancer 
rotation while you do some diagnostics; consider using that feature, then reimaging the 
node when you are done if you made changes. Homogeneity is your friend.

Capacity planning for large scale

Capacity planning is also different in the cloud. Non-cloud scenarios in big companies 
might have a hardware acquisition process that takes months, which makes ending up 
with too little capacity a big risk. In the cloud, where capacity is available on demand, 
capacity planning takes on a very different risk profile, and need not be so exacting. In 
fact, it often gives way to projections of operational expenses, rather than rigid capital 
investments and long planning cycles.

Cloud providers assume both the financial burden of over-provisioning and the repu
tation risk of under-provisioning that would destroy the illusion of infinite capacity. 
This amounts to an important simplification for customers; if you calculate wrong, and 
need more or less capacity than you planned, the cloud has you covered. It supports 
customer agility and capital preservation.

Are Cloud Resources Infinite?
We often hear that public cloud platforms offer the illusion of infinite resources. Obviously, 
resources are not literally infinite (infinite is rather a lot), but you can expect that any time 
you need more resources, they will be available (though not always instantly). This does 
not mean each resource has infinite capacity, just that you can request as many instances 
of the type of resource that you need.

This is why vertical scaling is limiting, and even more so in the cloud: an individual virtual 
machine or database instance has some maximum capacity, after which it cannot be in
creased. With horizontal scaling, if you need to go beyond that maximum capacity, you 
can do so by allocating an additional virtual machine or database instance. This, of course, 
introduces complexity of its own, but many of the patterns in this book help in taming 
that complexity.

Sizing virtual machines

A horizontal scaling approach supports increasing resources by adding as many node 
instances as we need. Cloud compute nodes are virtual machines. But not all virtual 
machines are the same. The cloud platforms offer many virtual machine configuration 
options with varying capabilities across the number of CPU cores, amount of memory, 
disk space, and available network bandwidth. The best virtual machine configuration 
depends on the application.
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Determining the virtual machine configuration that is appropriate for your application 
is an important aspect of horizontal scaling. If the virtual machine is undersized, your 
application will not perform well and may experience failures. If the virtual machine is 
oversized, your application may not run cost-efficiently since larger virtual machines 
are more expensive.

Often, the optimal virtual machine size for a given application node type is the smallest 
virtual machine size that works well. Of course, there’s no simple way to define “works 
well” across all applications. The optimal virtual machine size for nodes transcoding 
large videos may be larger than nodes sending invoices. How do you decide for your 
application? Testing. (And no excuses! The cloud makes testing with multiple virtual 
machine sizes more convenient than it has ever been.)

Sizing is done independently for each compute node type in your application because 
each type uses resources differently.

Failure is partial

A web tier with many nodes can temporarily lose a node to failure and still continue to 
function correctly. Unlike with single-node vertical scaling, the web server is not a single 
point of failure. (Of course, for this to be the case, you need at least two node instances 
running.) Relevant failure scenarios are discussed further in Multitenancy and Com
modity Hardware Primer (Chapter 8) and Node Failure Pattern (Chapter 10).

Operational data collection

Operational data is generated on every running node in an application. Logging infor
mation directly to the local node is an efficient way to gather data, but is not sufficient. 
To make use of the logged data, it needs to be collected from individual nodes to be 
aggregated.

Collecting operational data can be challenging in a horizontally scaling environment 
since the number of nodes varies over time. Any system that automates gathering of log 
files from individual nodes needs to account for this, and care needs to be taken to ensure 
that logs are captured before nodes are released.

A third-party ecosystem of related products and open source projects exists to address 
these needs (and more), and your cloud platform may also provide services. Some Win
dows Azure platform services are described in the Example section.

Example: Building PoP on Windows Azure
The Page of Photos (PoP) application (which was described in the Preface and will be 
used as an example throughout the book) is designed to scale horizontally throughout. 
The web tier of this application is discussed here. Data storage and other facets will be 
discussed in other chapters.
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Compute node and virtual machine are general industry terms. The 
equivalent Windows Azure-specific term for node is role instance, or 
web role instance or worker role instance if more precision is needed. 
Windows Azure role instances are running on virtual machines, so re
ferring to role instances as virtual machines is redundant. Windows 
Azure terminology is used in the remainder of this section.

Web Tier
The web tier for PoP is implemented using ASP.NET MVC. Using a web role is the most 
natural way to support this. Web roles are a Windows Azure service for providing au
tomated, managed virtual machines running Windows Server and Internet Information 
Services (IIS). Windows Azure automatically creates all the requested role instances and 
deploys your application to them; you only provide your application and some config
uration settings. Windows Azure also manages your running role instances, monitors 
hardware and software health (and initiates recovery actions as warranted), patches the 
operating system on your role instances as needed, and other useful services.

Your application and configuration settings effectively form a template that can be ap
plied to as many web role instances as required. Your effort is the same if you deploy 2 
role instances or 20; Windows Azure does all the work.

It is instructive to consider the infrastructure management we no longer worry about 
with a web role: configuring routers and load balancers; installing and patching oper
ating systems; upgrading to newer operating systems; monitoring hardware for failures 
(and recovering); and more.

Cloud Services Are Still Flexible
While Windows Azure Cloud Services are designed to shield you from infrastructure 
management so you can focus on simply building your application, you still have flexibility 
for advanced configuration if you need it. For example, using Startup Tasks, you can install 
additional Windows Services, configure IIS or Windows, and run custom installation 
scripts. For the most part, if an administrator can do it on Windows, you can do it on 
Windows Azure, though the more cloud-native your application is, the more likely things 
will “just work” without needing complex custom configuration. One advanced configu
ration possibility is to enable Application Request Routing (ARR) in IIS in order to support 
sticky sessions.

Stateless Role Instances (or Nodes)
As of this writing, the Windows Azure load balancer supports round robin delivery of 
web requests to the web role instances; there is no support for sticky sessions. Of course, 
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this is fine because we are demonstrating cloud-native patterns and we want our hori
zontally scalable web tier to consist of stateless, autonomous nodes for maximum flex
ibility. Because all web role instances for an application are interchangeable, the load 
balancer can also be stateless, as is the case in Windows Azure.

As described earlier, browser cookies can be used to store a session identifier linked to 
session data. In Windows Azure some of the storage options include SQL Azure (rela
tional database), Windows Azure Table Storage (a wide-column NoSQL data store), 
Windows Azure Blob Storage (file/object store), and the Windows Azure distributed 
caching service. Because PoP is an ASP.NET application, we opt to use the Session State 
Provider for Windows Azure Caching, and the programming model that uses the fa
miliar Session object abstraction while still being cloud-native with stateless, autono
mous nodes. This allows PoP to benefit from a scalable and reliable caching solution 
provided by Windows Azure as a service.

Service Tier
PoP features a separate service tier so that the web tier can focus on page rendering and 
user interaction. The service tier in PoP includes services that process user input in the 
background.

Is a Separate Tier Necessary?
For PoP to be architected appropriately for its modest success, the service tier makes sense. 
Don’t forget all the successful practices we’ve been using outside of the cloud, such as 
Service Oriented Architecture (SOA) techniques. This book is focused on architecture 
patterns that have a unique impact on cloud-native applications, but so many other prac
tices of great value are not discussed directly, though SOA can be extremely valuable when 
developing applications for the cloud.

The PoP service tier will be hosted in worker roles, which are similar to web roles, though 
with a different emphasis. The worker role instances do not start the IIS service and 
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instances are not added to the load balancer by default. The worker role is ideal for 
application tiers that do not have interfaces to the outside world. Horizontal scaling 
works smoothly with the service tier; refer to Queue-Centric Workflow Pattern (Chap
ter 3) for details on its inner workings.

Loose Coupling Adds Implementation Flexibility
The web and service tiers can be implemented with different technologies. The web tier 
might use PHP, ASP.NET MVC, or other front-end solutions. The service tier might use 
Java, Python, Node.js, F#, C#, C++, and so forth. This adds flexibility when teams working 
on different application tiers have different skills.

Operational Logs and Metrics
Managing operational data is another challenge encountered when horizontally scaling 
out to many role instances. Operational data is generated during the process of operating 
your application, but is not usually considered part of the business data collected by the 
application itself.

Examples of operational data sources:

• Logs from IIS or other web servers
• Windows Event Log
• Performance Counters
• Debug messages output from your application
• Custom logs generated from your application

Collecting log data from so many instances can be daunting. The Windows Azure Di
agnostics (WAD) Monitor is a platform service that can be used to gather data from all 
of your role instances and store it centrally in a single Windows Azure Storage Account. 
Once the data is gathered, analysis and reporting becomes possible.

Another source of operational data is the Windows Azure Storage Analytics feature that 
includes metrics and access logs from Windows Azure Storage Blobs, Tables, and 
Queues.

Examples of analytics data:

• Number of times a specific blob or blob container was accessed
• The most frequently accessed blob containers
• Number of anonymous requests originating from a given IP Address range
• Request durations
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• Requests per hour that are hitting blob, table, or queue services
• Amount of space blobs are consuming

Analytics data is not collected by the WAD, so not automatically combined, but is avail
able for analysis. For example, an application could combine blob storage access logs 
with IIS logs to create a more comprehensive picture of user activity.

Both Windows Azure Diagnostics and Windows Azure Storage Ana
lytics support an application-defined data retention policy. This allows 
applications to easily limit the size and age of operational data because 
the cloud platform will handle purging details.

There are general purpose reporting tools in the Windows Azure Platform that might 
be useful for analyzing log and metric data. The Hadoop on Azure service is described 
in MapReduce Pattern (Chapter 6). The Windows Azure SQL Reporting service may 
also be useful.

Related Chapters

• Queue-Centric Workflow Pattern (Chapter 3)
• Auto-Scaling Pattern (Chapter 4)
• MapReduce Pattern (Chapter 6)
• Database Sharding Pattern (Chapter 7)
• Multitenancy and Commodity Hardware Primer (Chapter 8)
• Node Failure Pattern (Chapter 10)

Summary
The Horizontal Scaling Compute Pattern architecturally aligns applications with the 
most cloud-native approach for resource allocation. There are many potential benefits 
for applications, including high scalability, high availability, and cost optimization, all 
while maintaining a robust user experience. User state management should be handled 
without sticky sessions in the web tier. Keeping nodes stateless makes them inter           
changeable so that we can add nodes at any time without getting the workloads out of 
balance and can lose nodes without losing customer state.
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CHAPTER 3

Queue-Centric Workflow Pattern

This essential pattern for loose coupling focuses on asynchronous delivery of command 
requests sent from the user interface to a back-end service for processing. This pattern 
is a subset of the CQRS pattern.

The pattern is used to allow interactive users to make updates through the web tier 
without slowing down the web server. It is especially useful for processing updates that 
are time consuming, resource intensive, or depend on remote services that may not 
always be available. For example, a social media site may benefit from this pattern when 
handling status updates, photo uploads, video uploads, or sending email.

The pattern is used in response to an update request from an interactive user. This is 
first handled by user interface code (in the web tier) that creates a message describing 
work needing to be done to satisfy the update request. This message is added to a queue. 
At some future time, a service on another node (running in the service tier) removes 
messages from the queue and does the needed work. Messages flow only in one direction, 
from the web tier, onto the queue, and into the service tier. This pattern does not specify 
how (or if) the user is informed of progress.

This is an asynchronous model, as the sender does not wait around for a response. In 
fact, no response is directly available. (In programming parlance, the return value is 
void.) It helps the user interface maintain consistently fast response times.

The web tier does not use this pattern for read-only page view requests; 
this pattern is for making updates.
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Context
The Queue-Centric Workflow Pattern is effective in dealing with the following chal
lenges:

• Application is decoupled across tiers, though the tiers still need to collaborate
• Application needs to guarantee at-least-once processing of messages across tiers
• A consistently responsive user experience is expected in the user interface tier, even 

though dependent processing happens in other tiers
• A consistently responsive user experience is expected in the user interface tier, even 

though third-party services are accessed during processing

This pattern is equally applicable to web applications and mobile applications that access 
the same functionality through web services. Any application serving interactive users 
is a candidate.

Cloud Significance
By using cloud services, the infrastructure aspects of this pattern are generally straight
forward to implement. They can be far more complex outside the cloud. Reliable queues 
are available as a cloud service.

Storage of intermediate data is also simplified using cloud services. Cloud services are 
available for storage, NoSQL databases, and relational databases.

Impact
Availability, Reliability, Scalability, User Experience

Mechanics
The Queue-Centric Workflow Pattern is used in web applications to decouple commu
nication between the web tier (which implements the user interface) and the service tier 
(where business processing happens).

Applications that do not use a pattern like this typically respond to a web page request 
by having user interface code call directly into the service tier. This approach is simple, 
but there are challenges in a distributed system. One challenge is that all service calls 
must complete before a web request is completed. This model also requires that the 
scalability and availability of the service tier meet or exceed that of the web tier, which 
can be tenuous with third-party services. A service tier that is unreliable or slow can 
ruin the user experience in the web tier and can negatively impact scalability.
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The solution is to communicate asynchronously. The web tier sends commands to the 
service tier, where a command is a request to do something. Examples of commands 
include: create new user account, add photo, update status (such as on Twitter or Face
book), reserve hotel room, and cancel order.

The term asynchronous can apply to different aspects of application 
implementation. User interface code running in the web tier may invoke 
services asynchronously. This enables work to be done in parallel, po
tentially speeding up processing of that user request. Once all asyn   
chronous services calls complete, the user request can be satisfied. This 
handy coding tactic should not be confused with this pattern.

Commands are sent in the form of messages over a queue. A queue is a simple data 
structure with two fundamental operations: add and remove. The behavior that makes 
it a queue is that the remove operation returns the message that has been in the queue 
the longest. Sometimes this is referred to as FIFO ordering: first in, first out. Invoking 
the add operation is commonly referred to as enqueuing and invoking the delete oper
ation is dequeuing.

In the simplest (and most common) scenarios, the pattern is trivial: the sender adds 
command messages to the queue (enqueues messages), and a receiver removes those 
command messages from the queue (dequeues messages) and processes them. This is 
illustrated in Figure 3-1. (We’ll see later that the programming model for removing 
messages from the queue is more involved than a simple dequeue.)

The sender and receiver are said to be loosely coupled. They communicate only through 
messages on a queue. This pattern allows the sender and receiver to operate at different 
paces or schedules; the receiver does not even need to be running when the sender adds 
a message to the queue. Neither one knows anything about the implementation of the 
other, though both sides do need to agree on which queue instance they will use, and 
on the structure of the command message that passes through the queue from sender 
to receiver.
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Figure 3-1. The web tier adds messages to the queue. The service tier removes and pro
cesses messages from the queue. The number of command messages in the queue fluctu
ates, providing a buffer so that the web tier can offload work quickly, while never over
whelming the service tier. The service tier can take its time, only processing new messag
es when it has available resources.

The sender need not be a web user interface; it could also be a native mobile application, 
for example, communicating through web services (as with a REST API). There could 
also be multiple senders and multiple receivers. The pattern still works.

The rest of this pattern description is concerned with guarding against failure scenarios 
and handling user experience concerns.

Queues are Reliable
The workflow involves the sender adding a message to a queue that is removed at some 
point by the receiver. Are we sure it will get there?

It is important to emphasize that the cloud queue service provides a reliable queue. The 
“reliable” claim stems primarily from two sources: durability of the data, and high 
throughput (at least hundreds of interactions per second).

The queue achieves data durability the same way that other cloud stor
age services do: by storing each byte entrusted to the service in triplicate 
(across three disk nodes) to overcome risks from hardware failure.

The queue itself is reliable and will not lose our data, but this pattern is not designed to 
shield our application from all failures. Rather, the pattern requires that our application 
implement specific behaviors to respond successfully to failure scenarios.
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Programming Model for Receiver
When implementing the receiver, the programming model for using the reliable queue 
service sometimes surprises developers, as it is slightly more complicated than for a 
basic queue:

1. Get the next available message from the queue
2. Process the message
3. Delete the message from the queue

The implementation first dequeues the message, and then later deletes the message. Why 
the two-phase removal? This is to ensure at-least-once processing.

Invisibility window and at-least-once processing

Processing a command request involves getting a message from the queue, understand
ing the message contents, and carrying out the requested command accordingly. The 
details for this are specific to the application. If everything goes as planned, deleting the 
message from the queue is the last step. Only at that point is the command completely 
processed.

But everything does not always go as planned. For example, there might be a failure that 
is outside the control of your application code. These types of failures can happen for a 
number of reasons, but the easiest to understand is a hardware failure. If the hardware 
you are using fails out from under you, your process will be stopped, no matter where 
it is in its life cycle. Failure can occur if the cloud platform shuts down a running node 
because the auto-scaling logic decided it wasn’t needed. Or, your node may be rebooted.

Refer to Node Failure Pattern (Chapter 10) for more scenarios that make 
use of this pattern to recover from interruptions.

Regardless of the reason for the failure, your processing has been interrupted and needs 
to recover. How does it do that?
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When a message is dequeued, it is not removed entirely from the queue, but is instead 
hidden. The message is hidden for a specified amount of time (the duration is specified 
during the dequeue operation, and can be increased later). We call this period the 
invisibility window. When a message is within its invisibility window, it is not available 
for dequeuing.

Invisibility Window Nuances
During a message’s invisibility window, there is usually exactly one copy of the message 
being processed. There are a couple of edge cases where this might not be true. One edge 
case is when the code processing the message has not finished, but the invisibility window 
lapses, and another copy of the same message gets dequeued. At this point, there are two 
active copies of that message being processed. If this happens, it may be due to a bug in 
your code. Instead of exceeding the invisibility window, you should inform the queue that 
you are still working on this message and increase its invisibility window to allow sufficient 
time with exclusive access. (See also the discussion of poison messages below.) However, 
as you will learn from the CAP Theorem discussion in Eventual Consistency Primer 
(Chapter 5), this may not always be possible in a distributed system due to partitioning. 
Though rare, the possibility should be accounted for.

An edge case can also occur with reliable queues that are eventually consistent (refer to 
Chapter 5 for more context). The bottom line here is that if two requests for the next queue 
item happen at nearly the same time, in rare cases, the queuing system may issue the same 
message in response to both requests. Amazon’s Scalable Storage Service (S3) is eventually 
consistent and the documentation warns of this possibility. Both Windows Azure Storage 
Queues and Windows Azure ServiceBus Queues are immediately consistent, so this edge 
case does not apply.

The invisibility window comes into play only when processing takes longer than is al
lowed. The automatic reappearance of messages on the queue is one key to overcoming 
failures and is responsible for the at-least-once part of this at-least-once processing model. 
Any message not fully processed the first time it is dequeued will have another chance. 
The code keeps trying until processing completes (or we give up, as explained in the 
poison message handling section later).

Any message that is dequeued a second time may have been partially processed the first 
time. This can cause problems if not guarded against.
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Idempotent processing for repeat messages

An idempotent operation is one that can be repeated such that any number of successful 
operations is indistinguishable from a single successful operation. For example, ac         
cording to the HTTP specification, the HTTP verbs PUT, GET, and DELETE are all 
idempotent operations: we can DELETE a specific resource once or 100 times and the 
end result is equivalent; (assuming success) the resource is gone.

Some operations are considered naturally idempotent, such as HTTP DELETE, where 
idempotency essentially comes for free. A multistep financial transaction involving 
withdrawing money from one account and depositing it into another can be made to 
be idempotent, but it is definitely not naturally idempotent. Some cases are more difficult 
than others.

Idempotence Is Business Equivalent
No matter how many times it partially or fully completes, an idempotent process has an 
equivalent outcome, as long as the last instance completes successfully. Note that equiv
alent outcome means business equivalence, not technical equivalence. It is fine that appli
cation logs contain remnants of multiple attempts, for example, as long as the result is 
indistinguishable to a business user.

Cloud queue services keep track of how many times a message has been dequeued. Any 
time a message is dequeued, the queue service provides this value along with the mes
sage. We call this the dequeue count. The first time a message is dequeued, this value is 
one. By checking this value, application code can tell whether this is the first processing 
attempt or a repeat attempt.

Application logic can be streamlined for first-time processing, but for repeat attempts 
some additional logic may be needed to support idempotency.

Long Processing Tasks
Some cloud queue services support updating a message on the queue. For multi-step 
processes, as each step is completed, it can be handy to update the message on the queue 
with an indicator of the last completed step. As a simple example, you can design the 
message object so that it includes a LastCompletedStep field, which your application can 
use to track progress. If processing is interrupted, the updated LastCompletedStep field 
will be returned the next time the message is dequeued; message processing can resume 
with the LastCompletedStep step rather than starting from the beginning.
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Consider a command to create a new user account based on a user-provided email 
address and the message dequeue count is two. Proper processing needs to consider the 
possibility that some (or all) of the processing work has been done previously and so 
needs to act smartly. Exactly how to “act smartly” will vary from application to appli
cation.

Simpler scenarios may not require any specific idempotency support. Consider the 
sending of a confirmation email. Because failure events are rare, and there is little harm 
in the occasional duplicate email, just sending the email every time may be sufficient.

Options for Idempotent Processing
Idempotent handling is easy to prescribe but not always easy to implement. More advanced 
approaches to idempotency are required for more complex idempotency scenarios, such 
as a multi-step financial transaction or an operation that spans multiple data stores.

A database transaction is sometimes very useful in the cloud: all operations succeed or 
they all fail. However, often a database transaction is not practical in a cloud application 
either because the supported transaction scope is too narrow (for example, a transaction 
cannot span partitions (or shards) in a NoSQL database or a sharded relational database) 
or the data is being written to multiple stores across which distributed transactions are 
simply not supported (for example, it is not possible to wrap a transaction around changes 
that span a relational database and blob storage).

A compensating transaction, where we reverse the net effect of a prior attempt, is one tool 
in our idempotency toolbox. Another is event sourcing, which is briefly mentioned in the 
context of CQRS in this chapter, and can sometimes provide a robust model for dealing 
with complex cases.

Idempotent handling is the correct first step in dealing with repeat messages. If the 
message repeats excessively, beyond an application-defined threshold, it should be 
treated as a poison message.

Poison messages handling for excessive repeats

Some messages cannot be processed successfully due to the contents of the message. 
These are known as poison messages.

Consider a message containing a command to create a new user account based on a 
user-provided email address. If it turns out that the email address is already in use, your 
application should still process the message successfully, but not create a new user ac
count. This is not a poison message.

But if the email address field contained a 10,000-character string and this is a scenario 
unanticipated in your application code, it may result in a crash. This is a poison message.
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If our application crashes while processing a message, eventually its invisibility window 
will lapse, and the message will appear on the queue again for another attempt. The need 
for idempotent handling for that scenario is explained in the previous section. When 
dealing with a poison message, the idempotent handling will never terminate.

Two decisions need to be made around poison messages: how to detect 
one, and what to do with it.

As a message is dequeued, cloud queuing services offer a dequeue count that can be 
examined to determine if this is the first attempt at processing. This is the same value 
used for detecting repeats for purposes of idempotent handling. Your poison message 
detection logic must include a rule that considers any message that keeps reappearing 
to be treated as a poison message when it shows up the Nth time. Choosing a value for 
N is a business decision that balances the cost of wastefully processing a poison message 
with the risk of not processing a valid message. In practice, interruptions to execution 
tend to be infrequent, so take that into account when setting up your poison message 
strategy. If processing is resource intensive, perhaps taking 60 minutes, you may not 
want to retry any failed processes; so for N > 1, the message is treated as a poison message. 
It is common, however, to retry from once to a few times, depending on circumstances.

Correct poison message detection has some nuances. For example, 
having selected N=3 to trigger poison message handling, the application 
code needs to check for a dequeue count of at least 3, not exactly 3. A 
system interruption could have occurred during the time after detecting 
the dequeue count is 3, but before removing the message from the main 
queue.

Once a poison message has been identified, deciding how to deal with it is another 
business decision. If it is desirable to have a human review the poison messages to con
sider how to improve handling, then one approach is to use what is known as a dead 
letter queue, a place for storing messages that cannot be processed normally. Some 
queuing systems have built-in support for a dead letter queue, but it is not hard to roll 
your own. For low importance messages, you may even consider deleting them outright. 
The key point is to remove poison messages from the main processing queue as soon 
as the application detects them.

Unless we guard against the poison message scenario, a poison message 
will last a long time on our queue and waste processing resources. In 
extreme cases, with many active poison messages, all processing re        
sources could end up dedicated to poison message processing!
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A dequeue count greater than one does not necessarily mean a poison message is present. 
The value is a dequeue count, not a poison message count.

User Experience Implications
This pattern deals with asynchronous processing, repeated processing, and failed re
quests. All of these have user experience implications.

Handling asynchronous processing in a user interface can be tricky and application 
specific. We want the human-facing user interface to be responsive, so instead of per
forming lengthy work while the user waits, we queue up a command request for that 
work. This allows the user interface to return as soon as possible to the user (improving 
user experience) and allows the web server tier to remain focused on serving web pages 
(enhancing scalability).

The flip side here is that you now need your users to understand that even though the 
system has acknowledged their action (and a command posted), processing of that ac
tion was not immediately completed. There are a number of approaches to this.

In some cases, users cannot readily tell if the action completed, so special action is not 
required.

In cases where the user wants to be notified when their action will be completed, an 
email upon completion might do the trick. This is common in ecommerce scenarios 
where “your order has shipped” and other notifications of progress are common.

Sometimes users will prefer to wait around while a task completes. This requires either 
that the user interface layer polls the service tier until the task completes or the service 
tier proactively notifies the user interface layer. The proactive notification can be im
plemented using long polling. In long polling, the web client creates an HTTP connection 
to the server, but the server intentionally does not respond until it has an answer.

Ready-made implementations of the long polling (also known as Com
et) technique are available. Examples include: SignalR for ASP.NET and 
Socket.IO for Node.js. These libraries will take advantage of HTML5 
Web Sockets if available.

36 | Chapter 3: Queue-Centric Workflow Pattern



Using the long polling technique is different than having the original (time-consuming) 
action done “inline” from the web tier. Blocking at the web tier until the action is com
plete would hurt scalability. This approach still allows for the time-consuming work to 
be done in the service tier.

Is This the Same as CQRS?
Readers familiar with the Command Query Responsibility Segregation (CQRS) Pattern 
may wonder if the Queue-Centric Workflow (QCW) Pattern is really the same pattern. 
While similar, they are not the same. CQW is only a stepping-stone to CQRS. Under
standing some of the differences and overlap will help you avoid confusing them.

The defining characteristic of CQRS is the use of two distinct models: one for writing (the 
write model), and one for reading (the read model). Two key terms are command and 
query. A command is a request to make an update via the write model. A query is a request 
for information from the read model. Serving commands and queries are distinct activities 
(the “responsibility segregation”); you would never issue a command and expect data 
results as a return value. Even though the read model and write model may be based on 
the same underlying data, they surface different data models.

QCW focuses on the flow of commands to the write model, while only alluding to the 
read model such as in support of long polling from the user interface. In this regard, it is 
consistent with CQRS, though not complete since QCW does not fully articulate the read 
model. A command in QCW is the same as a command in CQRS.

A full CQRS treatment would also consider event sourcing and Domain Driven Design 
(DDD). With event sourcing, as commands result in system state changes, resulting change 
events are captured and stored individually rather than simply reflecting the change in the 
master data. For example, an address changed event would hold the new address infor
mation rather than just overwrite a single address field in a database. The result is a 
chronological history that can be replayed to arrive at current state (or any state along the 
way). Using event sourcing may simplify handling idempotent operations. DDD is a 
technology-agnostic methodology to understand business context. Neither event sourcing 
nor DDD are required with CQRS, but they are frequently used together.

Scaling Tiers Independently
The queue length and the time messages spend in the queue are useful environmental 
signals for auto-scaling. The cloud queue services make these key metrics readily avail
able. A growing queue may indicate the need to increase capacity in the service tier, for 
example. Note that the signals might indicate that only one tier or one specific processing 
service needs to be scaled. This concern-independent scaling helps to optimize for cost 
and efficiency.

Mechanics | 37



At very high scale, the queue itself could become a bottleneck requiring multiple queue 
instances. This does not change the core pattern.

Example: Building PoP on Windows Azure
The Page of Photos (PoP) application (which was described in the Preface and will be 
used as an example throughout the book) uses Chapter 3 to handle ingestion of new 
photos into the system.

Two application tiers within PoP collaborate. The user interface on the web tier is re
sponsible for facilitating photo uploads for logged-in users and enqueuing command 
messages. The service tier is responsible for dequeuing and processing command mes
sages.

User Interface Tier
The PoP user interface running in the web tier consists of ASP.NET MVC code running 
on a variable number of web role instances. User authentication (logging in) is handled 
here, and authenticated users are allowed to upload photos.

The location of the photo being processed, a plain-text description of the photo, and the 
PoP user’s account identifier are stored in a message object, which is then enqueued. 
With PoP, the photo being processed is assumed to already have been uploaded to blob 
storage (using Valet Key Pattern (Chapter 13), when possible) and stored in Windows 
Azure Storage as a blob; only the reference to this blob (a URL) is stored in the message 
object that is enqueued. And while this particular process operates on an external re
source (the photo stored as a blob), that does not imply that external resources are 
needed in order for this pattern to be of value. It is also common for all of the required 
data to be entirely contained within the message object.

Regardless of how many web role instances are running, they all submit their messages 
to the same Windows Azure Queue.

PoP uses the Windows Azure Storage Queue service, but Windows 
Azure also offers a ServiceBus Queue service. The two services share 
many characteristics and either is an excellent choice for PoP.

The same message queue is used by both sender and receiver:

• Example message queue name: http://popuploads.queue.core.windows.net

Fields included in the message that goes in the queue are similar to the following:
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• Location of uploaded photo (in blob storage): http://popup
loads.blob.core.windows.net/publicphotos/william.jpg

• Authenticated account identifier from the emailaddress claim, as described in Mul
tisite Deployment Pattern (Chapter 15): kd1hn@example.com

• LastCompletedStep: 0

Note that the image is not part of the message that goes on the queue, but rather a 
reference to the image. The practical reason for this is the queue does not allow messages 
to be larger than a certain size (64 KB as of this writing). The more philosophical reason 
is that blob storage is the “right” place to store uploaded images on Windows Azure.

Service Tier
PoP services are running on a variable number of worker role instances in the service 
tier. C# code in these services is written to constantly check the queue for new messages. 
Once a message becomes available on the queue, it is removed and processed.

There will be times when no messages are available on the queue. In such cases, any 
dequeue attempt returns immediately. It is important to avoid code hammering the 
queue service in a tight loop as every queue operation will cost a tiny amount of money. 
Be sure to add an appropriate delay.

Watch Out for Money Leaks!
As of this writing, ten million Windows Azure Storage operations will cost $1.00. Con
sidering that this fee is charged for dequeue requests even if there is no message waiting, 
how expensive is that? Attempting to dequeue from an empty queue at the rate of 500 
requests per second, every 200 seconds would cost one penny, and every day would add 
up to $4.32. Of course, you will never want to do this.

Be sure to code in a delay of at least a few seconds after each unsuccessful dequeue attempt 
to prevent a money leak, a cloud platform expense that adds no business value. Just like 
memory leaks that, unchecked, can bring down your application, money leaks can degrade 
the cost efficiency of your cloud applications. Also consider variable delay techniques, 
similar to those described in Busy Signal Pattern (Chapter 9), which offer an even more 
sophisticated approach to battling money leaks, while also further explaining that you 
risk being throttled by the queue service for being hyperactive.

Each message represents a new photo upload waiting to be integrated with the rest of 
the PoP site. A few steps are involved: a thumbnail is created, any geotagging data is 
extracted, and then user account data is updated to include the new photo on their public 
page. After each step, the message is updated back in blob storage with an updated value 
for LastCompletedStep.
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PoP thumbnail creation is idempotent. This is important because if we are careless, we 
could end up with orphaned image files littering our blob storage account. To handle 
idempotent thumbnail creation, PoP chose to make the thumbnail filename determin
istic by deriving it from the filename of the full-sized photo. All uploaded photos are 
issued a unique system-generated name such as william.jpg. The name of the thumbnail 
is derived from this by appending “_thumb” to the root filename resulting in wil
liam_thumb.jpg. This simple approach will ensure that we always end up with a single 
thumbnail in blob storage. Note that while the results are not identical to having suc
cessfully generated the thumbnail the first time through—the time stamp on the file will 
be different, for example—we can safely conclude that the results are equivalent.

PoP has a business rule that states any message coming from the popuploads queue with 
a dequeue count of 3 or more is considered poison. When a poison message is detected, 
PoP sends an email informing the user who submitted the photo that it has been rejected 
as invalid and has been deleted.

If an application does not deal proactively with poison messages, the 
Windows Azure Queue service will delete them from the queue after 
seven days.

Synopsis of Changes to Page of Photos System
In order to process new photo uploads:

• The photo is stored in a public blob container created for that purpose.
• A message containing relevant data about the newly created photo is enqueued. 

This is done from the web tier (from a web role).
• A worker role in the service tier monitors the queue for messages available for 

processing, processing them as available.

After the message processing has completed, the at-rest state of PoP includes:

• Original photo is stored as a blob.
• Generated thumbnail is stored as a blob.
• Metadata about the photo is stored in a Windows Azure SQL Database (discussed 

in Database Sharding Pattern (Chapter 7)).

Related Chapters

• Scalability Primer (Chapter 1)
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• Horizontally Scaling Compute Pattern (Chapter 2)
• Auto-Scaling Pattern (Chapter 4)
• Eventual Consistency Primer (Chapter 5)
• Node Failure Pattern (Chapter 10)
• Colocate Pattern (Chapter 12)
• Valet Key Pattern (Chapter 13)

Summary
This pattern is for decoupling tiers of your application, especially between the web (user 
interface) tier and a service tier that does business processing. It is not useful for routine, 
read-only page requests. Communication is in one direction, from the web tier to the 
service tier, and is handled by adding messages onto a queue. Reliable cloud queue 
services simplify implementation. A decoupled web tier can be more responsive and 
reliable, providing a better user experience. Concern-independent scaling also allows 
each tier to be provisioned with the ideal level of resources for that tier.
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CHAPTER 4

Auto-Scaling Pattern

This essential pattern for automating operations makes horizontal scaling more prac
tical and cost-efficient.

Scaling manually through your cloud vendor’s web-hosted management tool helps lower 
your monthly cloud bill, but automation can do a better job of cost optimization, with 
less manual effort spent on routine scaling tasks. It can also be more dynamic. Auto
mation can respond to signals from the cloud service itself and scale reactively to actual 
need.

The two goals of auto-scaling are to optimize resources used by a cloud application 
(which saves money), and to minimize human intervention (which saves time and re
duces errors).

Context
The Auto-Scaling Pattern is effective in dealing with the following challenges:

• Cost-efficient scaling of computational resources, such as web tier or service tier.
• Continuous monitoring of fluctuating resources is needed to maximize cost savings 

and avoid delays.
• Frequent scaling requirements involve cloud resources such as compute nodes, data 

storage, queues, or other elastic components.

This pattern assumes a horizontally scaling architecture and an environment that is 
friendly to reversible scaling. Vertically scaling (by changing virtual machine size) is 
also possible, although is not considered in this pattern.
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Cloud Significance
Cloud platforms, supporting a full range of resource management, expose rich auto
mation capabilities to customers. These capabilities allow reversible scaling and make 
it highly effective when used in combination with cloud-native applications that are 
built to gracefully adjust to dynamic resource management and scaling. This pattern 
embraces the inherent increase in overlap across the development and operations ac
tivities in the cloud. This overlap is known as DevOps, a portmanteau of “development” 
and “operations.”

Impact
Cost Optimization, Scalability

This pattern does not impact scalability of the application, per se. It 
either scales or it does not, regardless of whether it is automated. The 
impact is felt on operational efficiency at scale. Operational efficiency 
helps to lower direct costs paid to the cloud provider, while reducing 
the time a staff devotes to routine manual operations.

Mechanics
Compute nodes are the most common resource to scale, to ensure the right number of 
web server or service nodes. Auto-scaling can maintain the right resources for right 
now and can do so across any resource that might benefit from auto-scaling, such as 
data storage and queues. This pattern focuses on auto-scaling compute nodes. Other 
scenarios follow the same basic ideas, but are generally more involved.

Auto-scaling with a minimum of human intervention requires that you schedule for 
known events (such as halftime during the Superbowl or business vs. non-business 
hours) and create rules that react to environmental signals (such as sudden surges or 
drops in usage). A well-tuned auto-scaling approach will resemble Figure 4-1, where 
resources vary according to need. Anticipated needs can be driven through a schedule, 
with less predictable scenarios handled in reaction to environmental signals.
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Figure 4-1. Proactive auto-scaling rules are planned, for example to add and release re
sources throughout the day on a schedule.

Automation Based on Rules and Signals
Cloud platforms can be automated, which includes programmatic interfaces for provi
sioning and releasing resources of all types. While it’s possible to directly program an 
auto-scaling solution using cloud platform management services, using an off-the-shelf 
solution is more common. Several are available for Amazon Web Services and Windows 
Azure, some are available from the cloud vendors, and some from third parties.

Be aware that auto-scaling has its own costs. Using a Software as a Ser
vice (SaaS) offering may have direct costs, as can the act of probing your 
runtime environment for signals, using programmatic provisioning 
services (whether from your code or the SaaS solution), and self-hosting 
an auto-scaling tool. These are often relatively small costs.

Off-the-shelf solutions vary in complexity and completeness. Consult the documenta
tion for any tools you consider. Functionality should allow expressing the following rules 
for a line-of-business application that is heavily used during normal business hours, but 
sporadically used outside of normal business hours:

• At 7:00 p.m. (local time), decrease the number of web server nodes to two.
• At 7:00 a.m., increase the number of web server nodes to ten.
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• At 7:00 p.m. on Friday, decrease the number of web server nodes to one.

The individual rules listed are not very complicated, but still help drive down costs. Note 
that the last rule overlaps the first rule. Your auto-scaling tool of choice should allow 
you to express priorities, so that the Friday night rule takes precedent. Furthermore, 
rules can be scheduled; in the set listed above, the first two rules could be constrained 
to not run on weekends. You are limited only by your imagination and the flexibility of 
your auto-scaling solution.

Here are some more dynamic rules based on less predictable signals from the environ
ment:

• If average queue length for past hour was less than 25, increase the number of 
invoice-processing nodes by 1.

• If average queue length for past hour was less than 5, decrease the number of invoice-
processing nodes by 1.

These rules are reactive to environmental conditions. See Queue-Centric Workflow Pat
tern (Chapter 3) for an example where a rule based on queue length would be helpful.

Rules can also be written to respond to machine performance, such as memory used, 
CPU utilization, and so on. It is usually possible to express custom conditions that are 
meaningful to your application, for example:

• If average time to confirm a customer order for the past hour was more than ten 
minutes, increase the number of order processing nodes by one.

Some signals (such as response time from a compute node) may be triggered in the case 
of a node failure, as response time would drop to zero. Be aware that the cloud platform 
also intervenes to replace failed nodes or nodes that no longer respond.

Your auto-scaling solution may also support rules that understand overall cost and help 
you to stick to a budget.

Separate Concerns
The first set of example rules is applied to web server nodes and the second is applied 
to invoice-processing nodes. Both sets of rules could apply to the same application.

Scaling part of an application does not imply scaling all of an applica
tion.
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In fact, the ability to independently scale the concerns within your architecture is an 
important property of cost-optimization.

When defined scale units require that resources be allocated in lockstep, they can be 
combined in the auto-scaling rules.

Be Responsive to Horizontally Scaling Out
Cloud provisioning is not instantaneous. Deploying and booting up a new compute 
node takes time (ten or more minutes, perhaps). If a smooth user experience is impor
tant, favor rules that respond to trends early enough that capacity is available in time 
for demand.

Some applications will opt to follow the N+1 rule, described in Node Failure Pattern 
(Chapter 10), where N+1 nodes are deployed even though only N nodes are really 
needed for current activity. This provides a buffer in case of a sudden spike in activity, 
while providing extra insurance in the event of an unexpected hardware failure on a 
node. Without this buffer, there is a risk that incoming requests can overburden the 
remaining nodes, reduce their performance, and even result in user requests that time 
out or fail. An overwhelmed node does not provide a favorable user experience.

Don’t Be Too Responsive to Horizontally Scaling In
Your auto-scaling tool should have some built-in smarts relevant to your cloud platform 
that prevent it from being too active. For example, on Amazon Web Services and Win
dows Azure, compute node rentals happens in clock-hour increments: renting from 
1:00-1:30 costs the same as renting from 1:00-2:00. More importantly, renting from 
1:50-2:10 spans two clock hours, so you will be billed for both.

If you request that a node be released at 1:59 and it takes two minutes 
for it to drain in-process work before being released, will you be billed? 
Check the documentation for your cloud vendor on how strictly the 
clock-hour rules are enforced for these edge cases; there may be a small 
grace period.

Set lower limits thoughtfully. If you allow reduction to a single node, realize that the 
cloud is built on commodity hardware with occasional failures. This is usually not a best 
practice for nodes servicing interactive users, but may be appropriate in some cases, 
such as rare/sporadic over-the-weekend availability. Being down to a single node is 
usually fine for nodes that do not have interactive users (e.g., an invoice generation 
node).
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Set Limits, Overriding as Needed
Implementing auto-scaling does not mean giving up full control. We can add upper and 
lower scaling boundaries to limit the range of permitted auto-scaling (for example, we 
may want to always have some redundancy on the low end, and we may need to stay 
within a financial budget on the high end). Auto-scaling rules can be modified as needs 
evolve and can be disabled whenever human intervention is needed. For tricky cases 
that cannot be fully automated, auto-scaling solutions can usually raise alerts, informing 
a human of any condition that needs special attention.

Your cloud platform most likely offers a Service Level Agreement (SLA) 
that asserts that your virtual machine instance will be running and ac
cessible from the Internet some percent of time in any given month. 
Both Windows Azure and Amazon Web Services offer a 99.95% avail
ability SLA. However, there is a caveat: they also require running at least 
two node instances of any given type in order for the SLA to be in effect.
This requirement makes perfect sense: when running with only a single 
node, any disruption to that node will result in downtime.

Take Note of Platform-Enforced Scaling Limits
Public cloud platforms usually have default scaling limits for new accounts. This serves 
to protect new account owners from themselves (by not accidentally scaling to 10,000 
nodes), and limits exposure for the public cloud vendors. Because billing on pay-as-
you-go accounts usually happens at the end of each month, consider the example of 
someone with nefarious intentions signing up with a stolen credit card; it would be hard 
to hold them accountable. Countermeasures are in place, including requiring a one-
time support request in order to lift soft limits on your account, such as the number of 
cores your account can provision.

Example: Building PoP on Windows Azure
The Page of Photos (PoP) application (which was described in the Preface) will benefit 
from auto-scaling. There are a number of options for auto-scaling on Windows Azure. 
PoP uses a tool from the Microsoft Patterns & Practices team known officially as the 
Windows Azure Autoscaling Application Block, or (thankfully) WASABi for short.

Unlike some of the other options, WASABi is not Software as a Service but rather soft
ware we run ourselves. We choose to run it on a single worker role node using the 
smallest available instance (Extra Small, which costs $0.02/hour as of this writing).
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It is common for cloud applications to make use of a single-role “admin” 
role instance for handling miscellaneous duties. This is a good home 
for WASABi.

WASABi can handle all the rules mentioned in this chapter. WASABi distinguishes two 
types of rules:

• Proactive rules, known as constraint rules, handle scheduled changes, minimum 
and maximum instance counts, and can be prioritized.

• Reactive rules respond to signals in the environment.

Rules for your application are chosen to align with budgets, historical activity, planned 
events, and current trends. PoP uses the following constraint rules:

• Minimum/Maximum number of web role instances = 2 / 6
• Minimum/Maximum number of image processing worker role instances (handling 

newly uploaded images) = 1 / 3

PoP has reactive rules and actions based on the following signals in the environment:

• If the ASP.NET Request Wait Time (performance counter) > 500ms, then add a web 
role instance.

• If the ASP.NET Request Wait Time (performance counter) < 50ms, then release a 
web role instance.

• If average Windows Azure Storage queue length for past 15 minutes > 20, then add 
an image processing worker role instance.

• If average Windows Azure Storage queue length for past 15 minutes < 5, then release 
an image processing worker role instance.

The third rule has the highest priority (so will take precedence over the others), while 
the other rule priorities are in the order listed.

WASABi rules are specified using an XML configuration file and can 
be managed (after deployment) using PowerShell cmdlets.

To implement the ASP.NET Request Wait Time, WASABi needs access to the perfor
mance counters from the running web role instances. This is handled through Windows 
Azure Diagnostics, operating at two levels.
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First, each running instance is configured to gather data that you specify such as log 
files, application trace output (“debug statements”), and performance counters.

Second, there is a coordinated process that rounds up the data from each node and 
consolidates them in a central location in Azure Storage. It is from the central location 
that WASABi looks for the data it needs to drive reactive rules.

The Windows Azure Storage queue length data is gathered directly by WASABi. 
WASABi uses the Windows Azure Storage programmatic interface, which makes it a 
simple matter to access the current queue length. The queue in question here lies be
tween the web tier and the service tier, where the image processing service runs; please 
see Queue-Centric Workflow Pattern (Chapter 3) for further context.

Although not described, PoP takes advantage of WASABi stabilizing rules that limit an 
overreaction to rules that might be costly. These help avoid thrashing (such as allocating 
a new virtual machine), releasing it before its rental interval has expired, and then al
locating another right away; in some cases, the need could be met less expensively by 
just keeping the first virtual machine longer.

Throttling
WASABi also distinguishes between instance scaling, which is what we usually mean 
when scaling (adding or removing instances), and throttling. Throttling is selectively 
enabling or disabling features or functionality based on environmental signals. Throt
tling complements instance scaling. Suppose the PoP image processing implemented a 
really fancy photo enhancement technique that was also resource intensive. Using our 
throttling rules, we could disable this fancy feature when our image processing service 
was overloaded and wait for auto-scaling to bring up an additional node. The point is 
that the throttling can kick in very quickly, buying time for the additional node to spin 
up and start accepting work.

Beyond buying time while more nodes spin up, throttling is useful when constraint rules 
disallow adding any more nodes.

WASABi throttling should not be confused with throttling described in Busy Signal 
Pattern (Chapter 9).

Auto-Scaling Other Resource Types
Virtually all the discussion in this chapter has focused on auto-scaling for virtual ma
chines, so what about other resource types? Let’s consider a couple of more advanced 
scenarios.

The web tier funnels data to the service tier through a Windows Azure Queue. This is 
explained further in Queue-Centric Workflow Pattern (Chapter 3), but the key point is 
that both sides depend upon reliable and fast access to that queue. While most appli
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cations will not run into this problem, individual queues have scalability limits. What 
happens if PoP is so popular that it must process so many queue messages per second 
that one queue is no longer sufficient? When one queue isn’t sufficient, the solution is 
to horizontally scale out to two queues, then three queues, and so on. Conversely, we 
can horizontally scale back (or scale in) as the demand recedes.

For databases, consider an online ticket sales scenario for a major event. Shortly before 
tickets go on sale, ticketing data is distributed (or sharded; see Database Sharding Pat
tern (Chapter 7)) over many SQL Database instances to handle the load needed to sell 
tens of thousands of tickets within minutes. Due to the many database instances, user 
traffic is easily handled. Once all the tickets are sold, data is consolidated and the excess 
database instances are released. This example is inspired by the TicketDirect case study 
mentioned in Appendix A.

Related Chapters

• Horizontally Scaling Compute Pattern (Chapter 2)
• Queue-Centric Workflow Pattern (Chapter 3)
• Database Sharding Pattern (Chapter 7)

Summary
The Auto-Scaling Pattern is an essential operations pattern for automating cloud ad
ministration. By automating routine scaling activities, cost optimization becomes more 
efficient with less effort. Cloud-native applications gracefully handle the dynamic in
creases or decreases in resource levels. The cloud makes it easy to plug into cloud mon
itoring and scaling services, with self-hosted options also available.
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CHAPTER 5

Eventual Consistency Primer

The Eventual Consistency primer introduces eventual consistency and explains some 
ways to use it. This primer uses the CAP Theorem to highlight the challenges of main
taining data consistency across a distributed system and explains how eventual consis
tency can be a viable alternative.

In an eventually consistent database, simultaneous requests for the same data value can 
return different values. This condition is temporary, as the values become “eventually” 
consistent.

Eventual consistency stems from a choice in the way data is updated. It is an alternative 
to the use of distributed transactions. It can lead to better scalability, higher performance, 
and lower cost. Using it or not is a business decision.

At any moment, most of an eventually consistent database is consistent, with some small 
number of values still being updated. It is common for data values to be inconsistent for 
only seconds, but is not required. It depends on the application and can vary depending 
upon current circumstances.

CAP Theorem and Eventual Consistency
Brewer’s CAP Theorem (or simply the CAP Theorem) considers three possible guarantees 
for data within a distributed application: Consistency, Availability, and Partition Toler
ance (which spell CAPT, though the more pronounceable CAP is used). Consistency 
means everyone gets the same answer; availability means clients have ongoing access 
(even if there is partial system failure); and partition tolerance means correct operation, 
even if nodes within the application are cut off from the network and unable to com
municate. The CAP Theorem posits that of these three possible guarantees, an appli
cation can only pick two.
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Guaranteeing consistency is easy when data is on a single node, but once the data is 
distributed, partition tolerance needs to be considered. What happens if our nodes can
not communicate with each other due to failure, or simply cannot do so fast enough to 
meet our performance and scalability targets? Different tradeoffs are possible. One 
popular choice for cloud-native applications is to favor partition tolerance and availa
bility and give up the guarantee of immediate consistency.

Applications that do not guarantee immediate consistency are said to be eventually 
consistent. The use of eventual consistency makes sense when the business value (risk, 
downside, or cost) is deemed superior to immediate consistency.

While this approach is not as familiar to those from the relational database world, even
tual consistency can be a powerful feature that enables better scalability. Eventual con
sistency is not a deficiency or design flaw. When used appropriately, it is a feature.

Eventual Consistency Examples
The term eventual consistency is relatively new, but the idea is not. An old example can 
be found with the Domain Name System (DNS). DNS powers the Internet name reso
lution that is responsible for turning human-friendly web addresses (such as http://
www.pageofphotos.com) into a computer-friendly IP address (such as 12.34.56.789). 
When the IP Address for a domain name is changed, it usually takes hours before the 
update propagates to all DNS servers (which may have the old address cached) across 
the Internet. This is considered a good tradeoff; IP addresses change infrequently 
enough that we tolerate the occasional inconsistency in exchange for superb scalability. 
After the IP address has been changed but before it is fully propagated, some users will 
be directed to the old site IP address, and some to the new site IP address.

Eventual Satisfaction
Eventually consistent does not mean that the system doesn’t care about consistency. Most 
data is consistent virtually all of the time. There is just a business-tolerable delay before 
updates fully propagate. During this delay, different users may see different versions of 
the data.

The Page of Photos (PoP) application is eventually consistent because there is a delay 
after a photo is uploaded, but before it appears to visitors on the site. Furthermore, some 
viewers may see the photo before others do. Part of this is due to data replication across 
data centers, but some is just internal processing, such as the ingestion process for newly 
uploaded photos.
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Data values that are no longer current are referred to as being stale. 
Sometimes stale data is visible to users. When a user sees data they know 
is stale, and there is a delay before they see the most current data, we 
call this resolution eventual satisfaction.

If you've ever experienced "buying" tickets online, only to find out that 
they have already been sold, you've seen eventual consistency in action.

Windows Azure, Amazon Web Services, Google App Engine, and other cloud platforms 
are themselves eventually consistent in a variety of circumstances. For example, it takes 
many minutes after activating global services such as CloudFront (a global CDN service 
from Amazon) and Traffic Manager (a global load-balancing service from Windows 
Azure) for them to propagate to nodes around the world.

The CAP Theorem has formalized these ideas and they have taken hold in distributed 
systems in the cloud and become popular with some databases.

Relational ACID and NoSQL BASE
The traditional relational database offers four so-called ACID guarantees:
Atomicity

All of a transaction completes, or none of it does.

Consistency
Data is always valid according to schema constraints.

Isolation
Transactions competing to change the same data are applied sequentially.

Durability
Committed changes are not lost.

These guarantees originated in a world where databases ran on a single node. They 
become more complex and expensive if the database is distributed.

For a single-node application, the CAP Theorem is not interesting, as partition tolerance 
need not be considered. As databases become more distributed (clustered, or with a 
geographically distributed failover node), the CAP Theorem consideration comes into 
play.
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The CAP Theorem informs us that we must pick two of the three guarantees, which can 
be written in shorthand as CA, AP, and CP. All three combinations result in different 
behaviors. The one we will focus on here is AP (availability and partition tolerance), 
also known as eventually consistent.

By definition, eventually consistent databases do not support ACID guarantees, though 
they do support BASE. A BASE database is:
Basically Available

The system will respond even with stale data.
Soft State

State might not be consistent and might be corrected.
Eventually Consistent

We allow for a delay before any individual data change completely propagates 
through the system.

BASE is commonly associated with NoSQL databases, and NoSQL database services are 
popular in the cloud. NoSQL, or Not Only SQL, is a database style that has emerged in 
recent years. NoSQL databases tend to be designed for very high scale at the expense of 
some advanced features of traditional relational databases. For example, they tend to 
have limited transactional capabilities and no ACID guarantees. Notably, they are usu
ally designed to support sharding, which is further explored in Database Sharding Pat
tern (Chapter 7).

Unlike the acid and base you may have learned about in high school chemistry class, 
ACID and BASE can be used together safely, even in the same application.

Impact of Eventual Consistency on Application Logic
Previous examples have focused on eventual consistency scenarios that may be familiar 
or seem intuitive. Developers are often surprised when eventual consistency is used in 
a database. We have all come to expect that we can read a value back from a database 
after we’ve written it. This is not guaranteed if the database is eventually consistent.

Google’s App Engine Datastore service and Amazon’s S3 storage service are eventually 
consistent. Sometimes you get a choice: Amazon’s SimpleDB database service has con
figurable consistency (with different performance characteristics). Many NoSQL data
bases are eventually consistent.

Windows Azure Storage is immediately consistent; you can immediately 
read back whatever you wrote. Sometimes this is also referred to as 
strongly consistent or strictly consistent.
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It is important to note that eventually consistent databases always support some level 
of atomicity. Check the documentation for your eventually consistent database to un
derstand what is considered atomic, but typically a database operation that writes a 
single record that changes ten properties will propagate as an atomic unit. Eventually 
consistent does not extend inside this atomic unit. None of the ten changes will show 
up individually; there is no partial update. None of the updates are visible until all of 
the updates are visible.

How should a developer deal with data storage that is eventually consistent?

User Experience Concerns
Sometimes, a reasonable approach is to act like it doesn’t matter. Just go with the data 
you have at the moment. Surprisingly, this works very well in many scenarios where 
eventually consistent data makes sense. Often, users can’t tell the difference.

However, sometimes that depends on who the user is. If the user is the one who just 
updated the data, it is more important to show the data the user expects, rather than 
wait for eventual satisfaction. In such cases, it may be sufficient for the user interface to 
update the user interface to reflect the most recent user-initiated change. In this case, 
the user interface intentionally does not refresh data from the database, knowing it may 
be stale.

Programmatic Differences
Data storage systems vary, but there are some common threads. Optimistic concurrency 
and “last write wins” models are common. These two features go hand-in-hand because 
they allow an application to retrieve a value, update it in memory, and then conditionally 
write it back. The condition is the timestamp from the original value; if the timestamp 
in storage is the same as the timestamp on the original value, there have been no changes 
in the meantime, so the update does not lose data.

Other systems are more sophisticated than “last write wins.” The Amazon Dynamo 
Database was built for the shopping cart on Amazon.com. Dynamo is designed to merge 
multiple versions of the same shopping cart, such as might occur through temporary 
system partitions (the “P” in CAP), a sensible feature given the purpose.

If all writes go to a single location, dealing with eventual consistency is simplified. This 
is the case with the Couchbase and MongoDB NoSQL databases, which only accept 
writes to the master node for a particular data value. Once written, that updated value 
propagates to other nodes which are not allowed to modify it. In these scenarios, even
tual consistency only matters during reads.
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Summary
The CAP Theorem provides the theoretical basis that explains why we cannot guarantee 
both consistency and availability in a distributed database. A useful compromise is to 
allow for eventual consistency in favor of better scalability. Determining if your appli
cation data is a suitable candidate for eventual consistency is a business decision. The 
choice is between displaying stale data and scaling more efficiently.
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CHAPTER 6

MapReduce Pattern

This pattern focuses on applying the MapReduce data processing pattern.

MapReduce in this chapter is explicitly tied to the use of Hadoop since 
that helps pin down its capabilities and avoid confusion with other var
iants. The term MapReduce is used except when directly referencing 
the Hadoop project (which is introduced below).

MapReduce is a data processing approach that presents a simple programming model 
for processing highly parallelizable data sets. It is implemented as a cluster, with many 
nodes working in parallel on different parts of the data. There is large overhead in 
starting a MapReduce job, but once begun, the job can be completed rapidly (relative 
to conventional approaches).

MapReduce requires writing two functions: a mapper and a reducer. These functions 
accept data as input and then return transformed data as output. The functions are called 
repeatedly, with subsets of the data, with the output of the mapper being aggregated and 
then sent to the reducer. These two phases sift through large volumes of data a little bit 
at a time.

MapReduce is designed for batch processing of data sets. The limiting factor is the size 
of the cluster. The same map and reduce functions can be written to work on very small 
data sets, and will not need to change as the data set grows from kilobytes to megabytes 
to gigabytes to petabytes.

Some examples of data that MapReduce can easily be programmed to process include 
text documents (such as all the documents in Wikipedia), web server logs, and users’ 
social graphs (so that new connection recommendations can be discovered).

Data is divvied up across all nodes in the cluster for efficient processing.
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Context
The MapReduce Pattern is effective in dealing with the following challenges:

• Application processes large volumes of relational data stored in the cloud
• Application processes large volumes of semi-structured or irregular data stored in 

the cloud
• Application data analysis requirements change frequently or are ad hoc
• Application requires reports that traditional database reporting tools cannot effi

ciently create because the input data is too large or is not in a compatible structure

Other cloud platforms may support Hadoop as an on-demand service. 
This pattern assumes a Hadoop-based service.

Hadoop implements MapReduce as a batch-processing system. It is optimized for the 
flexible and efficient processing of massive amounts of data, not for response time.

The output from MapReduce is flexible, but is commonly used for data mining, for 
reporting, or for shaping data to be used by more traditional reporting tools.

MapReduce as a Service
Amazon Web Services, Google, and Windows Azure all offer MapReduce as an on-
demand service.

The Amazon Web Services and Windows Azure services are based on the open source 
Apache Hadoop project (http://hadoop.apache.org).

The Google service also uses the MapReduce pattern, but not with Hadoop. In fact, Google 
invented MapReduce to solve problems it faced in processing the vast data it was collecting, 
such as page-to-page hyperlinks that were gathered by crawling public websites. In par
ticular, MapReduce was used to analyze these links to apply Google’s famous PageRank 
algorithm to decide which websites are most worthy of showing up in searches. After
wards, they published some academic papers explaining their approach, and the Hadoop 
project was modeled after it. (Relevant links are in Appendix A.)
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Cloud Significance
Cloud platforms are good at managing large volumes of data. One of the tenets of big 
data analysis is bring the compute to the data, since moving large amounts of data is 
expensive and slow. A cloud service for the analysis of data already nearby in the cloud 
will usually be the most cost-effective and efficient.

Large volumes of data stored on-premises are more effectively analyzed 
by using a Hadoop cluster that is also on-premises.

Hadoop greatly simplifies building distributed data processing flows. Running Hadoop 
as a Service in the cloud takes this a step further by also simplifying Hadoop installation 
and administration. The Hadoop cloud service can access data directly from certain 
cloud storage services such as S3 on Amazon and Blob Storage on Windows Azure.

Using MapReduce through a Hadoop cloud platform service lets you rent instances for 
short amounts of time. Since a Hadoop cluster can involve many compute nodes, even 
hundreds, the cost savings can be substantial. This is especially convenient when data 
is stored in cloud storage services that integrate well with Hadoop.

Impact
Cost Optimization, Availability, Scalability

Mechanics

Map and Reduce from Computer Science
For context, it is helpful to be aware that the name of this pattern derives from the func
tional programming concepts of map and reduce. In computer science, map and reduce 
describe functions that can be applied to lists of elements. A map function is applied to 
each element in a list, resulting in a new list of elements (sometimes called a projection). 
A reduce function is applied to all elements in a list, resulting in a single scalar value.

Consider the list [“foo”, “bar”]. A map function that converts a single string to uppercase 
would result in a list where the letters have all been converted to uppercase ([“FOO”, 
“BAR”]); a corresponding reduce function that accepts a list of strings and concatenates 
them would produce a single result string (“FOOBAR”). A map function that returns the 
length of a string would result in a list of word lengths ([3, 3]); a corresponding reduce 
function that accepts a list of integers and adds them up would produce a sum (6).
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Map produces a new list, while reduce produces a scalar result. While simple concepts, 
they are powerful.

The map and reduce functions implemented in this pattern are conceptually similar to 
the computer science versions, but not exactly the same. In the MapReduce Pattern, the 
lists consist of key/value pairs rather than just values. The values can also vary widely: 
a text block, a number, even a video file.

Hadoop is a sophisticated framework for applying map and reduce functions to arbi
trarily large data sets. Data is divvied up into small units that are distributed across the 
cluster of data nodes. A typical Hadoop cluster contains from several to hundreds of 
data nodes. Each data node receives a subset of the data and applies the map and reduce 
functions to locally stored data as instructed by a job tracker that coordinates jobs across 
the cluster. In the cloud, "locally stored" may actually be durable cloud storage rather 
than the local disk drive of a compute node, but the principle is the same.

Data may be processed in a workflow where multiple sets of map and reduce functions 
are applied sequentially, with the output of one map/reduce pair becoming the input for 
the next. The resulting output typically ends up on the local disk of a compute node or 
in cloud storage. This output might be the final results needed or may be just a data 
shaping exercise to prepare the data for further analytical tools such as Excel, traditional 
reporting tools, or Business Intelligence (BI) tools.

MapReduce Use Cases
MapReduce excels at many data processing workloads, especially those known as em
barrassingly parallel problems. Embarrassingly parallel problems can be effortlessly par
allelized because data elements are independent and can be processed in any order. The 
possibilities are extensive, and while a full treatment is out of scope for this brief survey, 
they can range from web log file processing to seismic data analysis.

MapReduce and You
You may see the results of MapReduce without realizing it. LinkedIn uses it to suggest 
contacts you might want to add to your network. Facebook uses it to help you find friends 
you may know. Amazon uses it to recommend books. It is heavily used by travel and dating 
sites, for risk analysis, and in data security. The list of uses is extensive.

This pattern is not typically used on small data sets, but rather on what the industry 
refers to as big data. The criteria for what is or is not big data is not firmly established, 
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but usually starts in the hundreds of megabytes or gigabytes range and goes up to pe
tabytes. Since MapReduce is a distributed computing framework that simplifies data 
processing, one might reasonably conclude that big data begins when the data is too big 
to handle with a single machine or with conventional tooling.

If the data being processed will grow to those levels, the pattern can be developed on 
smaller data and it will continue to scale. From a programming point of view, there is 
no difference between analyzing a couple of small files and analyzing petabytes of data 
spread out over millions of files. The map and reduce functions do not need to change.

Beyond Custom Map and Reduce Functions
Hadoop supports expressing map and reduce functions in Java. However, any pro          
gramming language with support for standard input and standard output (such as 
C++, C#, Python) can be used to implement map and reduce functions using Hadoop 
streams. Also, depending on details of the cloud environment, other higher-level pro
gramming languages may be supported in some cases. For example, in Hadoop on 
Azure, JavaScript can be used to script Pig (Pig is introduced shortly).

Hadoop is more than a robust distributed map/reduce engine. In fact, there are so many 
other libraries in the Apache Hadoop Project, that it is more accurate to consider Hadoop 
to be an ecosystem. This ecosystem includes higher-level abstractions beyond map/
reduce.

For example, the Hive project provides a query language abstraction that is similar to 
traditional SQL; when one issues a query, Hive generates map/reduce functions and 
runs them behind the scenes to carry out the requested query. Using Hive interactively 
as an ad hoc query tool is a similar experience to using a traditional relational database. 
However, since Hadoop is a batch-processing environment, it may not run as fast.

Pig is another query abstraction with a data flow language known as Pig Latin. Pig also 
generates map/reduce functions and runs them behind the scenes to implement the 
higher-level operations described in Pig Latin.

Mahout is a machine-learning abstraction responsible for some of the more sophisti
cated jobs, such as music classification and recommendations. Like Hive and Pig, Ma
hout generates map/reduce functions and runs them behind the scenes.

Hive, Pig, and Mahout are abstractions that, comparable to a compiler, turn a higher-
level abstraction (such as Java code) into machine instructions.

The ecosystem includes many other tools, not all of which generate and execute map/
reduce functions. For example, Sqoop is a relational database connector that gives you 
access to advanced traditional data analysis tools. This is often the most potent combi
nation: use Hadoop to get the right data subset and shape it to the desired form, then 
use Business Intelligence tools to finish the processing.
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More Than Map and Reduce
Hadoop is more than just capable of running MapReduce. It is a high-performance 
operating system for building distributed systems cost-efficiently.

Each byte of data is also stored in triplicate, for safety. This is similar to cloud storage 
services that typically store data in triplicate, but refers to Hadoop writing data to the 
local disk drives of its data nodes. Cloud storage can be used to substitute for this, but 
that is not required.

Automatic failure recovery is also supported. If a node in the cluster fails, it is replaced, 
any active jobs restarted, and no data will be lost. Tracking and monitoring adminis
trative features are built in.

Example: Building PoP on Windows Azure
A new feature we want to add to the Page of Photos (PoP) application (which was 
described in the Preface) is to highlight the most popular page of all time. To do this, 
we first need data on page views. These are traditionally tracked in web server logs, and 
so can easily be parsed out. As described in Horizontally Scaling Compute Pattern 
(Chapter 2), the PoP IIS web logs are collected and conveniently available in blob storage.

We can set up Hadoop on Azure to use our web log files as input directly out of blob 
storage. We need to provide map and reduce functions to process the web log files. These 
map and reduce functions would parse the web logs, one line at a time, extracting just 
the visited page from that line. Each line of the log file would contain a reference to a 
page; for example, a row in the web log indicating a visit to http://www.pageofphotos.com/
jebaka would include the string “/jebaka.” Our map function can remove the leading 
forward slash character. We could also have our map function ignore any rows that were 
not for visited pages, such as rows that were for image downloads. Because MapReduce 
expects a map function to return an attribute value pair, our simple map function would 
output a single string such as “jebaka, 1” where the “1” indicates a count of 1.

MapReduce will collect all instances of “jebaka, 1” and pass them on as a single list to 
our reduce function. The key here is “jebaka” and the list passed to the reduce function 
is a key followed by many values. The input to the reduce function would be “jebaka, 1 
1 1 1 1 1 1 1 1 1” (and so on, depending upon how many views that page got). The reduce 
function needs to add up all the hits (10 in this example) and output it as “jebaka, 10” 
and that’s all.

MapReduce will take care of the rest of the bookkeeping. In the end, there will be a 
bunch of output files with totals in them. While more map/reduce functions could be 
written to further simplify, we’ll assume that a simple text scan (not using MapReduce) 
could find the page with the greatest number of views and cache that value for use by 
the PoP logic that displays the most popular site on the home page.
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If we wanted to update this value once a week, we could schedule the launching of a 
MapReduce job. The individual nodes (which are worker role instances under the cov
ers) in the Hadoop on Azure cluster will only be allocated for a short time each week.

Enabling clusters to be spun up only periodically without losing their data depends on 
their ability to persist data into cloud storage. In our scenario, Hadoop on Azure reads 
web logs from blob storage and writes its analysis back to blob storage. This is convenient 
and cuts down on the cost of compute nodes since they can be allocated on demand to 
run a Hadoop job, then released when done. If the data was instead maintained on local 
disks of compute nodes (which is how traditional, non-cloud Hadoop usually works), 
the compute nodes would need to be kept running continually.

As of this writing, the Hadoop on Azure service is in preview. It is not 
yet supported for production use.

Related Chapters

• Horizontally Scaling Compute Pattern (Chapter 2)
• Eventual Consistency Primer (Chapter 5)
• Colocate Pattern (Chapter 12)

Summary
The MapReduce Pattern provides simple tools to efficiently process arbitrary amounts 
of data. There are abundant examples of common use that are not economically viable 
using traditional means. The Hadoop ecosystem provides higher-level libraries that 
simplify creation and execution of sophisticated map and reduce functions. Hadoop 
also makes it easy to integrate MapReduce output with other tools, such as Excel and BI 
tools.
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CHAPTER 7

Database Sharding Pattern

This advanced pattern focuses on horizontally scaling data through sharding.

To shard a database is to start with a single database and then divvy up its data across 
two or more databases (shards). Each shard has the same database schema as the original 
database. Most data is distributed such that each row appears in exactly one shard. The 
combined data from all shards is the same as the data from the original database.

The collection of shards is a single logical database, even though there are now multiple 
physical databases involved.

Context
The Database Sharding Pattern is effective in dealing with the following challenges:

• Application database query volume exceeds the query capability of a single database 
node resulting in unacceptable response times or timeouts

• Application database update volume exceeds the transactional capability of a single 
database node resulting in unacceptable response times or timeouts

• Application database network bandwidth needs exceed the bandwidth available to 
a single database node resulting in unacceptable response times or timeouts

• Application database storage requirements exceed the capacity of a single database 
node

This chapter assumes sharding is done with a database service that offers integrated 
sharding support. Without integrated sharding support, sharding happens entirely in 
the application layer, which is substantially more complex.
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Cloud Significance
Historically, sharding has not been a popular pattern because sharding logic was usually 
custom-built as part of the application. The result was a significant increase in cost and 
complexity, both in database administration and in the application logic that interacts 
with the database. Cloud platforms significantly mask this complexity.

Integrated database sharding support is available with some cloud database services, in 
both relational and NoSQL varieties.

Integrated sharding support pushes complexity down the stack: out of 
the application code and into the database service.

Any database running on a single node is ultimately limited. Capacity limits are lower 
in the cloud than they are with customer-owned high-end hardware. Therefore, limits 
in the cloud will be reached sooner, requiring that database sharding occur sooner. This 
may lead to an increase in sharding popularity for cloud-native applications.

Impact
Scalability, User Experience

Mechanics
Traditional (non-sharded) databases are deployed to a single database server node. Any 
database running on a single node is limited by the capacity of that node. Contention 
for resources such as CPU, memory, disk speed, data size, and network bandwidth can 
impair the database’s ability to handle database activity; excessive contention may over
whelm the database. This limited capacity is exacerbated with cloud database services 
because the database is running on commodity hardware and the database server is 
multitenant. (Multitenancy is described in Multitenancy and Commodity 
Hardware Primer (Chapter 8).)

There are many potential approaches for scaling an application database when a single 
node is no longer sufficient. Some examples include: distributing query load to slave 
nodes, splitting into multiple databases according to the type of data, and vertically 
scaling the database server. To handle query load (but not write/update), slave nodes 
are replicated from a master database; slave nodes are read-only and are typically even
tually consistent. Another option is splitting into multiple databases according to the 
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type of data, such as inventory data in one database and employee data in another. In 
the cloud, vertically scaling the database is possible if you are willing to manage your 
own database server—a painful tradeoff—while still constrained by maximum available 
virtual machine size. The cloud-native option is database sharding.

The Database Sharding Pattern is a horizontal scaling approach that overcomes the 
capacity limits of a single database node by distributing the database across multiple 
database nodes. Each node contains a subset of the data and is known as a shard. Col
lectively, the data in all the shards represents a complete logical database. In a database 
service with integrated sharding, the collection of shards appears to applications as a 
single database with a single database connection string. This abstraction is a great boon 
to simplifying the programming model for applications. However, as we shall see, there 
are also limitations.

Shards Are Autonomous
Sharding is a horizontal scaling strategy in which resources from each shard (or node) 
contribute to the overall capacity of the sharded database. Database shards are said to 
implement a shared nothing architecture that simply means that nodes do not share with 
other nodes; they do not share disk, memory, or other resources.

For the approach to be efficient, common business operations must be satisfied by inter
acting with a single shard at a time. Cross-shard transactions are not supported.

Basically, shards do not reference other shards. Each shard is autonomous.

Figure 7-1. Data rows are distributed across shards, while maintaining the same struc
ture. Two shards are depicted: one shard holds rows with ID=1-2, the other holds rows 
with ID=3-5.
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In the most straightforward model as shown in Figure 7-1, all shards have the same 
database schema as the original database, so they are structurally identical, and the 
database rows are divvied up across the shards. The exact manner in which these rows 
are divvied up is critical if sharding is to provide the desired benefits.

Shard Identification
A specific database column designated as the shard key determines which shard node 
stores any particular database row. The shard key is needed to access data.

As a naïve but easily understood example, the shard key is the username column and 
the first letter is used to determine the shard. Any usernames starting with A-J are in 
the first shard, and K-Z in the second shard. When your customer logs in with their 
username, you can immediately access their data because you have a valid shard key.

A more complex example might shard on the customerid column that is a GUID. When 
your customer logs in with their username, you do not have a valid shard key. You can 
maintain a mapping table, perhaps in a distributed cache, to look up the shard key 
(customerid) from their username. Then you can access their data.

Shard Distribution
Why are you sharding? Answering this question is a good start for determining a rea
sonable sharding strategy. When you are sharding because data will not fit into a single 
node instance, divide the data into similarly sized shards to make it fit. When you are 
sharding for performance reasons, divide the data across shard nodes in such a way that 
all shard nodes experience a similar volume of database queries and updates.

When sharding for scalability or query performance, shards should be added before 
individual nodes can no longer keep pace with demand. Runtime logging and analytics 
are important in understanding the behavior of a sharded database. Some commercial 
databases do this analysis for you and shard automatically.

It is important that a single shard at a time can satisfy most of the common database 
operations. Otherwise, sharding will not be efficient.

Reporting functions such as aggregating data can be complicated because they span 
shards. Some database servers offer services to facilitate this. For example, Couchbase 
supports MapReduce jobs that span shards. If the database server does not have support 
for this, such scenarios must be handled in the application layer, which adds complexity.

More advanced scenarios are possible. Different sets of tables might use different shard 
keys, resulting in multiple sets of shards. For example, separate shards may be based on 
customer and inventory tables. It might also be possible to create a composite shard key 
by combining keys from different database entities.
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When Not to Shard
Database schemas designed for cloud-native applications will support sharding. How
ever, it should not be assumed that any database is easily updated to support sharding. 
This may be especially true of older databases that have evolved over many years. While 
a detailed analysis is beyond the scope of this chapter, a poorly modeled database is a 
bad choice.

It is worth emphasizing that even though they are not the subject of this book because 
they are not different in the cloud, database optimization techniques, proper indexing, 
query tuning, and caching are still completely useful and valid in the cloud. Just because 
the cloud allows you to more easily shard doesn’t make it the solution to every database 
scaling or performance problem.

Is Cloud-Native Right for Your Application?
To maximize the value of the cloud, we build cloud-native applications. Building cloud-
native applications requires that we think differently about some important aspects of 
architecture. However, building cloud-native applications does not mean that we forget 
all of our database tuning skills, as so many of them remain extremely useful.

Furthermore, while this is a book of patterns for building cloud-native applications, that’s 
not the right approach for every application. Database architecture is central to many 
existing applications, and changing from a vertical scaling approach to a horizontal scaling 
approach is a big change. Sometimes the right business decision will be to host your own 
instance of a relational database so that you can still move to the cloud without changing 
the database architecture. Of course, you will forego many of the benefits, but at least it is 
possible through use of Linux or Windows virtual machines running on the Amazon or 
Windows Azure platforms. This can also serve as a temporary or transitional solution on 
the way to becoming fully cloud-native.

Not All Tables Are Sharded
Some tables are not sharded, but rather replicated into each shard. These tables contain 
reference data, which is not specific to any particular business entity and is read-
mostly. For example, a list of zip codes is reference data; the application may use this 
data to determine the city from a zip code. We duplicate reference data in each shard to 
maintain shard autonomy: all of the data needed for queries must be in the shard.

The rest of the tables are typically sharded. Unlike reference data, any given row of a 
sharded table is stored on exactly one shard node; there is no duplication.

The sharded tables typically include those tables responsible for the bulk of the data size 
and database traffic. Reference data typically does not change very often and is much 
smaller than business data.
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Cloud Database Instances
Using multiple database instances as a single logical database can bring some surprises. 
It is a distributed system, so the internal clocks on instances are never exactly the same. 
Be careful in making assumptions about timestamps across shards when using the da
tabase time to establish chronological order.

Further, cloud databases are set to Universal Coordinated Time (UTC), not local time. 
This means that application code is responsible for translating into local time as needed 
for reporting and user interface display.

Example: Building PoP on Windows Azure
The Page of Photos (PoP) application (which was described in the Preface) uses Win
dows Azure SQL Database to manage user-generated data about the photos. Basic ac
count information includes name, login identifier (email address), and folder name; for 
example, the folder kevin corresponds to the photo page http://pageofphotos.com/
kevin. Photo data includes a description, timestamp, and geographic location.

In June 2012, the SQL Azure service was renamed to Windows Azure 
SQL Database, or simply SQL Database. Because the SQL Azure name 
was around for a long time, many people still use the old name and most 
existing web information was written with the old name. The new name 
is used in this book.

There is also data that spans photos and spans accounts. Photo tags are shared across 
photos, geographic data is correlated (“other photos taken nearby”), and comments from 
one user to another create cross-references to other accounts. Users can follow other 
users’ pages (so you can get an alert email when they post a new photo), and so forth. 
Data that is naturally relational suggests that using a relational database may be a good 
choice.

PoP grew in popularity over time and eventually reached the point where there were so 
many active users that the volume of database activity started to become a bottleneck. 
As explained in Busy Signal Pattern (Chapter 9), occasional throttling should be ex
pected, but usage was too high for a single database instance to handle. To overcome 
this, the PoP database was sharded: we spread the demand across shards so that any 
individual shard can easily handle its share of the volume.

Windows Azure SQL Database offers integrated sharding support through a feature 
known as Federations. This feature helps applications flexibly manage a collection of 
shards, keeping the complexity out of the application layer. PoP uses the Federations 
feature to implement sharding.
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The Federations feature uses different terminology than is used so far 
in this chapter. A federation is equivalent to a shard, a federation key is 
equivalent to a shard key, and a federation member is a database node 
hosting a federation. The remainder of this section will use the termi
nology specific to Windows Azure SQL Database.

PoP identifies users by their email address and uses that as its federation key. With 
Federations, the application is responsible for specifying the range of data in each fed
eration based on the federation key. In the case of PoP, the first step is to simply spread 
the workload across two federations. This works well with data associated with email 
addresses beginning with characters “a” through “g” in the first federation, and the rest 
of the data in the second federation.

A one-time configuration is necessary to enable federations, with the most important 
operation being the establishment of the federation ranges. This is done using a new 
database update command, ALTER FEDERATION. Once federation ranges are defined by 
the application, the Federations feature gets busy moving data to the appropriate fed
eration members. There is a small amount of boilerplate code needed in application 
code (issuing a USE FEDERATION command), but the application logic is otherwise es
sentially the same as when using SQL Database without Federations.

The ALTER FEDERATION command currently supports a SPLIT AT di
rective, which is used to specify how to divvy up the data across shards. 
The inverse, MERGE AT, has not yet been released. Until MERGE AT (or 
equivalent) is released, reducing the number of shards in your SQL Da
tabase is more cumbersome than it will be ultimately. See Appendix A 
for a reference on how to simulate MERGE AT today.

Rebalancing Federations
Through growth, PoP will eventually need to rebalance the federations. For example, 
the next step could be to spread the data equally across three federations. This is one of 
the most powerful aspects of Federations: it will handle all rebalancing details behind 
the scenes, without database downtime, and maintain all ACID guarantees, without the 
application code needing to change.

Example: Building PoP on Windows Azure | 73



Federations will handle the distribution of data across federations, in
cluding redistributes, without database downtime. This is one of the 
two big differences between sharding at the application layer. The other 
big difference is that Federations appears as a single database to the 
application, regardless of how many federation members there are. This 
abstraction allows the application to deal with only a single database 
connection string, simplifying caching and database connection pool
ing.

Fan-Out Queries Across Federations
Recall that in database sharding, not all tables are federated. Reference data is replicated 
to all federation members in order to maintain autonomy. If reference tables are not 
replicated to individual federation members, they cannot be joined to during database 
queries without involving multiple federations.

PoP has some reference data that supports a feature that allows users to tag photos with 
a word such as redsox, theater, heavy metal, or manga. In order to promote consistency 
across users, these tags are stored in a shared table in a Windows Azure SQL Database 
that is frequently used in queries and updates across multiple federations. This is ref
erence data, so we replicate it to each federation.

What happens when we need to add a new tag? We write application code to replicate 
our changes across all federations. We do this using a fan-out query that visits each 
federation member and applies the update. Because it happens from application code, 
the different federation members will have different sets of tags while the fan-out query 
is in progress. It is an acceptable business risk for PoP if the list of photos tags is eventually 
consistent.

Fanning Out
The PoP reference data example uses a fan-out query to replicate a reference data change 
across all federation members. This is known as a fan-out query since it “fans out” to every 
federation member, but it isn’t actually a query. It is an update. Queries are also possible, 
though be aware that all joins happen in application code. Windows Azure SQL Data Sync 
could also be used to keep the tags in sync across federations.

A fanout query implementation resembles MapReduce: apply a query to individual fed
eration members (map), then combine and refine that intermediate data into a final result 
(reduce).
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Not surprisingly, Hadoop on Azure is another tool that can be useful in processing large 
amounts of data spanning federation members. Hadoop jobs can be used for data shaping 
where large data sets are preprocessed such that the resulting subset can be conveniently 
analyzed using Excel or traditional reporting tools. As mentioned previously, Sqoop can 
be used to allow Hadoop to connect to a Windows Azure SQL Database instance.

NoSQL Alternative
PoP data is relational, so a relational database is an appropriate tool for data manage
ment. However, other reasonable options are available, specifically a NoSQL database. 
There are tradeoffs.

Relational or NoSQL?
The PoP application is contrived to demonstrate use cases for cloud architecture patterns 
that, in turn, inspire the use of Windows Azure services and features. A reasonable review 
of the PoP data requirements may show that while the data contains some relationships, 
the relationships are not so complex that a full-featured relational database is needed. This 
is reasonable. No hard-and-fast rules exist regarding when to go with a full-featured re
lational database versus a NoSQL database, with pros and cons for either approach.

Windows Azure offers a NoSQL database as a service. This is the Table service that is 
part of Windows Azure Storage.

The Table service is an key-value store, meaning that application code specifies a key to 
set or get a value. It is a simple programming model. Each value can consist of many 
properties (up to 252 custom and 3 system properties). The programmer can choose 
among some standard data types for each custom property such as integer, string, binary 
data (up to 64 KB), double, GUID, and a few more. The three system properties are a 
timestamp (useful for optimistic locking), a partition key, and a row key.

The partition key is conceptually similar to a federation (or shard) key, and defines a 
grouping of data rows (each identified by row key) that are guaranteed to be stored on 
the same storage node. Federations are different in that each federation member hosts 
exactly one federation, whereas the Table service decides how many partition keys will 
be on each storage node, based on usage. The Table service automatically moves parti
tions between storage nodes to optimize for observed usage, which is more automated 
than Federations.
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Hopefully the Federations feature will go beyond “integrated sharding” 
to a fully “auto-sharding” service in the future. In this (hypothetical) 
scenario, Federations monitors database analytics on your behalf and 
makes reasonable decisions to balance federations based on data size, 
query volume, and database transaction volume.

The Azure Table service is less capable than SQL Database in managing relationships. 
The Table service does not support a database schema, there is nothing akin to relational 
database referential integrity or a constraint between two tables, and there are no foreign 
keys. This means that the application layer is handling any relations between values. 
Transactions are supported, but only within a single partition. Two related values in 
separate partitions cannot be updated atomically, though they can be eventually con
sistent.

In summary, NoSQL can work just fine, and some aspects are easier than using SQL 
Database with Federations, but other aspects are more challenging.

Cost of using the services should also be a factor. Use the Windows 
Azure Pricing Calculator to model the costs.

Related Chapters

• Horizontally Scaling Compute Pattern (Chapter 2)
• Auto-Scaling Pattern (Chapter 4)
• Eventual Consistency Primer (Chapter 5)
• MapReduce Pattern (Chapter 6)

Summary
When using the Database Sharding Pattern, workloads can be distributed over many 
database nodes rather than concentrated in one. This helps overcome size, query per
formance, and transaction throughput limits of the traditional single-node database. 
The economics of sharding a database become favorable with managed sharding sup
port, such as found in some cloud database services.

The data model must be able to support sharding, a possible barrier for some applica
tions not designed with this in mind. Cross-shard operations can be more complex.
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CHAPTER 8

Multitenancy and Commodity 
Hardware Primer

This primer introduces multitenancy and commodity hardware and explains why they 
are used by cloud platforms.

Cloud platforms are optimized for cost-efficiency. This optimization is partially driven 
by the high utilization of services running on cost-efficient hardware that manifests as 
multitenant services running on commodity hardware.

The decisions made in building the cloud platform also influence the applications that 
run on it. The impact to the application architecture of cloud-native applications man
ifests through horizontal scaling and handling failure.

Multitenancy
Multitenancy means there are multiple tenants sharing a system. Usually the system is 
a software application operated by one company, the host, for use by other companies, 
the tenants. Each tenant company has individual employees who access the software. 
All employees of a tenant company can be connected within the application while other 
tenants are invisible; this creates the illusion for each tenant that they are the only cus
tomers using the software.

In a single tenant model, if an application needs a database, it gets its 
own instance. This simplifies capacity management (for individual ap
plications), but at the expense of overall efficiency, as many database 
servers (and other types of servers) will be running with low overall 
utilization much of the time.
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In the cloud, multitenant services are standard: data services, DNS services, hardware 
for virtual machines, load balancers, identity management, and so forth. Cloud data 
centers are optimized for high hardware utilization and that drives down costs.

Multitenancy: Not Just for Cloud Platform Services
Cloud platforms have embraced multitenant services, so why not you? Software as a Ser
vice (SaaS) is a delivery model in which a software application is offered as a managed 
service; customers simply rent access. You may wish to build your SaaS application as 
multitenant on the cloud so that you can leverage the cost-efficiencies of shared instances. 
You can choose to be multitenant all the way through for maximum savings, or just in 
some areas but not others, such as with compute nodes but not database instances, for 
example.

Sometimes SaaS applications are also able to (perhaps anonymously) glean valuable busi
ness insights and analytics from the aggregate data they are managing across many cus
tomers.

There are also downsides to multitenant services. Your architecture will need to ensure 
tenant isolation so that one customer cannot access another customer’s data, while still 
allowing individual customers access to their own data and reporting.

Two common areas of concern are security and performance management.

Security
Any individual tenant on a multitenant service is placed in a security sandbox that limits 
its ability to know anything about the other tenants, even the existence of other tenants. 
This is handled in different ways on different services. For example, hypervisors manage 
security on virtual machines, relational databases have robust user management fea
tures, and cryptographically secure keys are used as controls for cloud storage.

Unlike a tenant in an apartment building, you won’t be running into neighbors, and 
won’t need to remember their names. If tenant isolation is successful, you operate under 
the illusion that you are the only tenant.

Performance Management
Applications in a multitenant environment compete for system resources. The cloud 
platform is responsible for fairly managing competing resource needs among tenants. 
The goal is to achieve high hardware utilization in all service instances without com
promising the performance or behavior of the tenants. One strategy employed is to 
enforce quotas on individual tenants to prevent them from overwhelming specific 
shared resources. Another strategy is to deploy resource-hungry tenants alongside ten
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ants with low resource demands. Of course resource needs are dynamic and therefore 
unpredictable. The cloud platform is continuously monitoring, reorganizing (moving 
tenants around), and horizontally scaling service instances—but it’s all done transpar
ently. See Auto-Scaling Pattern (Chapter 4).

This type of automated performance management is less common in the non-cloud 
world, but the approach is important to understand as it will impact your cloud-native 
application.

Impact of Multitenancy on Application Logic
While the cloud platform can do a very good job of monitoring active tenants and 
continually rebalancing resources, there are scenarios where a burst of activity can tem
porarily overwhelm a service instance. This can happen when multiple applications get 
really busy all of a sudden. What happens? The cloud platform will proactively decide 
how to redistribute tenants as needed, but in the meantime (usually a few seconds to a 
few minutes), attempts to access these resources may experience transient failures that 
manifest as busy signals. For more information about responding to transient failures 
or busy signals, refer to Busy Signal Pattern (Chapter 9).

Multitenancy services get busy, occasionally responding to service calls 
with a busy signal. Plan on it happening to your application and plan 
on handling it.

Commodity Hardware
Cloud platforms are built using commodity hardware. In contrast to either low-end 
hardware or high-end hardware, commodity hardware is in the middle, chosen because 
it has the most attractive value-to-cost ratio; it’s the-biggest-bang-for-the-buck hard
ware. High-end hardware is more expensive than commodity hardware. Twice as much 
memory and twice as many CPU cores typically will be more than twice the total cost. 
A dominant driver for using cloud data centers is cost-efficiency.

Data Center Is a Competitive Differentiator
It is not credible to claim that traditional data centers were developed without cost con
cerns. But with more heterogeneous and higher-end hardware populating those data 
centers, the emphasis was certainly different. These data centers were there to serve as 
home for the applications we already had on the hardware we were already using, opti
mized for individual vertically scaling applications rather than the far more ambitious 
goal of optimizing across all applications.
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The larger cloud platform vendors are tackling this ambitious goal of optimizing across 
the whole data center. While Windows Azure, Amazon Web Services, and other cloud 
platforms support virtual machine rentals that can run legacy software on Windows Server 
or Linux, the greatest runtime efficiency lies with cloud-native applications. This model 
should become attractive to more and more customers over time as it becomes increasingly 
cost-efficient as cloud platform vendors drive further efficiencies and pass along the cost 
savings.

In particular, Microsoft enjoys economies of scale not available to most companies. Partly 
this is because it is a very large technology company in its own right, but also stems from 
its broad, mature product lines and platforms. By methodically updating its own internal 
applications and existing products to leverage Windows Azure, while also adding new 
cloud offerings, Microsoft benefits from a practice known as eating your own dogfood, or 
dogfooding. Through dogfooding, Microsoft's internal product teams use the Windows 
Azure platform as customers would, identify feature gaps or other concerns, and then 
work directly with the Windows Azure team so that more features can be developed using 
real world scenarios, resulting in a more mature platform sooner than might otherwise 
be possible.

The largest cloud platform vendors are in a battle to produce and offer advanced features 
more efficiently than their competitors so that they can offer competitive pricing. Al  
though I don't know which cloud platform vendors will win in the end (and I don't envision 
a world where Windows Azure and Amazon Web Services aren't both big players), the 
clear winners in this battle are the customers—that's us.

This is an economic decision that helps optimize for cost in the cloud. The main chal
lenge to applications is that commodity hardware fails more frequently than high-end 
hardware.

Shift in Emphasis from MTBF to MTTR
The ethos in the traditional application development world emphasized minimizing the 
mean time between failures (MTBF), meaning that we worked hard to ensure that hard
ware did not fail. This translated into high-end hardware, redundant components (such 
as RAID disk drives and multiple power supplies), and redundant servers (such as sec
ondary servers that were not put into use unless the primary server failed for the most 
critical systems). On occasion when hardware did fail, the application was down until 
a human fixed the problem. It was expensive and complex to build software that effort
lessly survived a hardware failure, so for the most part we attacked that problem with 
hardware.

The new ethos in the cloud-native world emphasizes minimizing the mean time to re
covery (MTTR), meaning that we work hard to ensure that when hardware fails, only 
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some application capacity is impacted, and the application keeps on working. In concert 
with patterns in this book and in alignment with the services offered by the major cloud 
platforms, this approach is not only viable, but also attractive due to the great reduction 
in complexity and new economic efficiencies.

Hardware Failure Is Inevitable, but Not Frequent
Discussion of recovering from failures in commodity hardware can be misleading. Just 
because commodity hardware fails more frequently than high-end hardware does not 
mean it fails frequently. Hardware failures impact only a small percentage of the com
modity servers in the data center every year. But be ready: eventually it will be your turn.

The cloud platform assumes that much of the MTTR duties are completed through 
automation, but also imposes requirements on your application, forming something of 
a partnership in handling failure.

Impact of Commodity Hardware on Application Logic
Cloud-native applications expect failure and are able to detect and automatically recover 
from common scenarios. Some of these failure scenarios are present because the appli
cation is relying on commodity hardware.

Commodity hardware fails occasionally. Plan on it happening to your 
compute nodes and plan on handling it.

Failure may simply be due to an issue with a specific physical server such as bad memory, 
a crashed disk drive, or coffee spilled on the motherboard. Other scenarios originate 
from software failures. For more information about responding to failures at the indi
vidual node level, refer to Node Failure Pattern (Chapter 10).

The failure scenario just described may be obvious: your application code is running 
on commodity hardware, and when that hardware fails your application is impacted. 
What is less obvious is that cloud services on which your application also depends 
(databases, persistent file storage, messaging, and so on) on are also running on com
modity hardware. When these services experience a disruption due to a hardware failure, 
your application may also be impacted. In many scenarios, the cloud platform service 
recovers without any visible degradation, but sometimes capacity is temporarily re         
duced, forcing the calling application to handle transient failure. For more information 
about responding to failures encountered during calls to a cloud service, refer to Chap
ter 3.

Commodity Hardware | 81



Homogeneous Hardware
Cloud data centers also strive to use homogeneous hardware for easier management 
and maintenance of resources. Procurement of large scale homogeneous hardware is 
possible through inexpensive and readily available commodity hardware.

The level of homogeneity in the hardware is unlikely to directly impact applications as 
long as the allocated capacity in a virtual machine remains predictable.

Homogeneous Hardware Benefits in the Real World
Southwest Airlines is one of the most consistently profitable airlines in the world, in part 
fueled by their insistence on homogeneous commodity hardware: the Boeing 737. This is 
the only type of plane in the whole fleet, vastly reducing complexity in breadth of skills 
needed by mechanics and pilots, streamlining parts inventory, and probably even sim
plifying software that runs the airlines since there are fewer differences between flights.

Summary
Cloud platform vendors make choices around cost-efficiency that directly impact the 
architecture of applications. Architecting to deal with failure is part of what distinguishes 
a cloud-native application from a traditional application. Rather than attempting to 
shield the application from all failures, dealing with failure is a shared responsibility 
between the cloud platform and the application.
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CHAPTER 9

Busy Signal Pattern

This pattern focuses on how an application should react when a cloud service responds 
to a programmatic request with a busy signal rather than success.

This pattern reflects the perspective of a client, not the service. The client is program
matically making a request of a service, but the service replies with a busy signal. The 
client is responsible for correct interpretation of the busy signal followed by an appro
priate number of retry attempts. If the busy signals continue during retries, the client 
treats the service as unavailable.

Dialing a telephone occasionally results in a busy signal. The normal response is to retry, 
which usually results in a successful telephone call.

Similarly, invoking a service occasionally results in a failure code being returned, indi
cating the cloud service is not currently able to satisfy the request. The normal response 
is to retry which usually results in the service call succeeding.

The main reason a cloud service cannot satisfy a request is because it is too busy. Some
times a service is “too busy” for just a few hundred milliseconds, or one or two seconds. 
Smart retry policies will help handle busy signals without compromising user experience 
or overwhelming busy services.

Applications that do not handle busy signals will be unreliable.

Context
The Busy Signal Pattern is effective in dealing with the following challenges:

83



• Your application uses cloud platform services that are not guaranteed to respond 
successfully every time

This pattern applies to accessing cloud platform services of all types, such as manage
ment services, data services, and more.

More generally, this pattern can be applied to applications accessing services or resources 
over a network, whether in the cloud or not. In all of these cases, periodic transient 
failures should be expected. A familiar non-cloud example is when a web browser fails 
to load a website fully, but a simple refresh or retry fixes the problem.

Cloud Significance
For reasons explained in Multitenancy and Commodity Hardware Primer (Chapter 8), 
applications using cloud services will experience periodic transient failures that result 
in a busy signal response. If applications do not respond appropriately to these busy 
signals, user experience will suffer and applications will experience errors that are dif
ficult to diagnose or reproduce. Applications that expect and plan for busy signals can 
respond appropriately.

The pattern makes sense for robust applications even in on-premises environments, but 
historically has not been as important because such failures are far less frequent than in 
the cloud.

Impact
Availability, Scalability, User Experience

Mechanics
Use the Busy Signal Pattern to detect and handle normal transient failures that occur 
when your application (the client in this relationship) accesses a cloud service. A tran
sient failure is a short-lived failure that is not the fault of the client. In fact, if the client 
reissues the identical request only milliseconds later, it will often succeed.
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Transient failures are expected occurrences, not exceptional ones, similar to making a 
telephone call and getting a busy signal.

Busy Signals Are Normal
Consider making a phone call to a call center where your call will be answered by one of 
hundreds of agents standing by. Usually your call goes through without any problem, but 
not every time. Occasionally you get a busy signal. You don’t suspect anything is wrong, 
you simply hit redial on your phone and usually you get through. This is a transient failure, 
with an appropriate response: retry.

However, many consecutive busy signals will be an indicator to stop calling for a while, 
perhaps until later in the day. Further, we only will retry if there is a true busy signal. If 
we’ve dialed the wrong number or a number that is no longer in service, we do not retry.

Although network connectivity issues might sometimes be the cause of transient fail
ures, we will focus on transient failures at the service boundary, which is when a request 
reaches the cloud service, but is not immediately satisfied by the service. This pattern 
applies to any cloud service that can be accessed programmatically, such as relational 
databases, NoSQL databases, storage services, and management services.

Transient Failures Result in Busy Signals
There are several reasons for a cloud service request to fail: the requesting account is 
being too aggressive, an overall activity spike across all tenants, or it could be due to a 
hardware failure in the cloud service. In any case, the service is proactively managing 
access to its resources, trying to balance the experience across all tenants, and even 
reconfiguring itself on the fly in reaction to spikes, workload shifts, and internal hard
ware failures.

Cloud services have limits; check with your cloud vendor for documentation. Examples 
of limits are the maximum number of service operations that can be performed per 
second, how much data can be transferred per second, and how much data can be 
transferred in a single operation.

In the first two examples, operations per second and data transferred per second, even 
with no individual service operation at fault it is possible that multiple operations will 
cumulatively exceed the limits. In contrast, the third example, amount of data transfer
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red in a single operation, is different. If this limit is exceeded, it will not be due to a 
cumulative effect, but rather it is an invalid operation that should always be refused. 
Because an invalid operation should always fail, it is different from a transient failure 
and will not be considered further with this pattern.

Handling Busy Signals Does Not Replace Addressing Scalability 
Challenges

For cloud services, limits are not usually a problem except for very busy applications. For 
example, a Windows Azure Storage Queue is able to handle up to 500 operations per 
second for any individual queue. If your application needs to sustain more than 500 queue 
operations per second on an individual queue, this is no longer a transient failure, but 
rather a scalability challenge. Techniques for overcoming such a scalability challenge are 
covered under Horizontally Scaling Compute Pattern (Chapter 2) and Auto-Scaling Pat
tern (Chapter 4).

Limits in cloud services can be exceeded by an individual client or by multiple clients 
collectively. Whenever your use of a service exceeds the maximum allowed throughput, 
this will be detected by the service and your access would be subject to throttling. 
Throttling is a self-defense response by services to limit or slow down usage, sometimes 
delaying responses, other times rejecting all or some of an application’s requests. It is up 
to the application to retry any requests rejected by the service.

Multiple clients that do not exceed the maximum allowed throughput individually can 
still exceed throttling limits collectively. Even though no individual client is at fault, 
aggregate demand cannot be satisfied. In this case the service will also throttle one or 
more of the connected clients. This second situation is known as the noisy neighbor 
problem where you just happen to be using the same service instance (or virtual machine) 
that some other tenant is using, and that other tenant just got real busy. You might get 
throttled even if, technically, you do nothing wrong. The service is so busy it needs to 
throttle someone, and sometimes that someone is you.

Cloud services are dynamic; a usage spike caused by a bunch of noisy neighbors might 
be resolved milliseconds later. Sustained congestion caused by multiple active clients 
who, as individuals, are compliant with rate limits, should be handled by the sophisti
cated resource monitoring and management capabilities in the cloud platform. Resource 
monitoring should detect the issue and resolve it, perhaps by spreading some of the load 
to other servers.

Cloud services also experience internal failures, such as with a failed disk drive. While 
the service automatically repairs itself by failing over to a healthy disk drive, redirecting 
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traffic to a healthy node, and initiating replication of the data that was on the failed disk 
(usually there are three copies for just this kind of situation), it may not be able to do so 
instantaneously. During the recovery process, the service will have diminished capacity 
and service calls are more likely to be rejected or time out.

Recognizing Busy Signals
For cloud services accessed over HTTP, transient failures are indicated by the service 
rejecting the request and usually responded to with an appropriate HTTP status code 
such as: 503 Service Unavailable. For a relational database service accessed over TCP, 
the database connection might be closed. Other short-lived service outages may result 
in different error codes, but the handling will be similar. Refer to your cloud service 
documentation for guidance, but it should be clear when you have encountered a tran
sient failure and documentation may also prescribe how best to respond. Handle (and 
log) unexpected status codes.

It is important that you clearly distinguish between busy signals and 
errors. For example, if code is attempting to access a resource and the 
response indicates it has failed because the resource does not exist or 
the caller does not have sufficient permissions, then retries will not help 
and should not be attempted.

Responding to Busy Signals
Once you have detected a busy signal, the basic reaction is to simply retry. For an HTTP 
service, this just means reissuing the request. For a database accessed over TCP, this may 
require reestablishing a database connection and then reissuing the query.

How should your application respond if the service fails again? This depends on cir
cumstances. Some responses to consider include:

• Retry immediately (no delay).
• Retry after delay (fixed or random delay).
• Retry with increasing delays (linear or exponential backoff) with a maximum delay.
• Throw an exception in your application.

Access to a cloud service involves traversing a network that already introduces a short 
delay (longer when accessing over the public Internet, shorter when accessing within a 
data center). A retry immediately approach is appropriate if failures are rare and the 
documentation for the service you are accessing does not recommend a different ap
proach.
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When a service throttles requests, multiple client requests may be rejected in a short 
time. If all those clients retry quickly at the same time, the service may need to reject 
many of them again. A retry after delay approach can give the service a little time to clear 
its queue or rebalance. If the duration of the delay is random (e.g., 50 to 250ms), retries 
to the busy service across clients will be more distributed, improving the likelihood of 
success for all.

The least aggressive retry approach is retry with increasing delays. If the service is expe
riencing a temporary problem, don’t make it worse by hammering the service with retry 
requests, but instead get less aggressive over time. A retry happens after some delay; if 
further retries are needed, the delay is increased before each successive retry. The delay 
time can increase by a fixed amount (linear backoff), or the delay time can, for example, 
double each time (exponential backoff).

Cloud platform vendors routinely provide client code libraries to make 
it as easy as possible to use your favorite programming language to 
access their platform services. Avoid duplication of effort: some client 
libraries may already have retry logic built in.

Regardless of the particular retry approach, it should limit the number of retry attempts 
and should cap the backoff. An aggressive retry may degrade performance and overly 
tax a system that may already be near its capacity limits. Logging retries is useful for 
analysis to identify areas where excessive retrying is happening.

After some reasonable number of delays, backoffs, and retries, if the service still does 
not respond, it is time to give up. This is both so the service can recover and so the 
application isn’t locked up. The usual way for application code to indicate that it cannot 
do its job (such as store some data) is to throw an exception. Other code in the application 
will handle that exception in an application-appropriate manner. This type of handling 
needs to be programmed into every cloud-native application.

User Experience Impact
Handling transient failures sometimes impacts the user experience. The details of han
dling this well are specific to every application, but there are a couple of general guide
lines.

The choice of a retry approach and the maximum number of retry attempts should be 
influenced by whether there is an interactive user waiting for some result or if this is a 
batch operation. For a batch operation, exponential backoff with a high retry limit may 
make sense, giving the service time to recover from a spike in activity, while also taking 
advantage of the lack of interactive users.
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With an interactive user waiting, consider several retries within a small interval before 
informing the user that “the system is too busy right now – please try again later”. The 
social networking service Twitter is well-known for this behavior. Consider the Queue-
Centric Workflow Pattern (Chapter 3) for ways to decouple time-consuming work from 
the user interface.

When a service does not succeed within a reasonable time or number of retries, your 
application should take action. Though unsatisfying, sometimes passing the informa
tion back to the user is a reasonable approach, such as “the server is busy and your update 
will be retried in ten seconds”. (This is similar to how Google Mail and Quora handle 
temporary network connectivity issues in their web user interfaces.)

Be careful with server-side code that ties up resources while retrying 
some operation, even when that code is retrying in an attempt to im
prove the user experience. If a busy web application has lots of user 
requests, each holding resources during retries, this could bump up 
against other resource constraints, reducing scalability.

Logging and Reducing Busy Signals
Logging busy signals can be helpful in understanding failure patterns. Robustly tracking 
and handling transient failures is extremely important in the cloud due to the innate 
challenges in debugging and managing distributed cloud applications.

Analysis of busy signal logs can lead to changes that will reduce future busy signals. For 
example, analysis may reveal that busy signals trend higher when accessing a cloud 
database service. Remember, the cloud provides the illusion of infinite resources, but 
this does not mean that each resource has infinite capacity. To access more capacity, you 
must provision more instances. When one database instance is not enough, it may be 
time to apply Database Sharding Pattern (Chapter 7).

Testing
It is common to test cloud applications in non-cloud environments. Code that runs in 
a development or test environment, especially at lower-than-production volumes or 
with dedicated hardware, may not experience the transient failures seen in the cloud. 
Be sure to test and load test in an environment as close to production as possible.
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It is becoming more common for companies to test against the pro   
duction environment because it is the most realistic. For example, load 
testing against production, though perhaps at non-peak times. Netflix 
goes even further by continually stressing their production (cloud) en
vironment with errors using a home-grown tool they call Chaos Mon
key. To ensure they can handle any kind of disruption, Chaos Monkey 
continually and randomly turns off services and reboots servers in the 
production environment.

Example: Building PoP on Windows Azure
The Page of Photos (PoP) application (which was described in the Preface) uses a num
ber of Windows Azure cloud services. Two of these are Windows Azure SQL Databases 
for storing account profile information and Windows Azure Storage blobs for storing 
photos. Because these are cloud services, PoP code is written to handle transient failures.

The Windows Azure Platform includes software libraries for use with a variety of pro
gramming environments such as C#, Java, Node.js, Python, and mobile devices. These 
libraries all simplify accessing blobs by automatically detecting transient failures and 
retrying up to three times. There are a number of other predefined retry behaviors 
available, and it is also possible to create a custom retry policy. Most applications won’t 
need anything beyond the default behavior.

Busy Signals in the Real World
How frequently do retries happen in practice? Here are some real numbers gathered in 
running an upload utility that saturated a network connection for an extended period of 
time (measured in days), pushing data over the public Internet into Windows Azure Blob 
storage. A custom retry policy was used to implement exponential backoff while also 
logging each retry attempt. During the uploading of nearly a million files averaging four 
megabytes in size, around 1.8% of the files required at least one retry. Note that because 
the files were so large, each file upload involved many storage operations, so retries on 
storage operations were needed much less frequently than 0.1% of the time. However, 
because logging was at the granularity of a file upload level, exact statistics are not available. 
Further, many factors can impact retry behavior, such as competition for the network 
resources locally and network connectivity across the public Internet. Your results will 
vary.

Applications accessing Windows Azure SQL Databases use the same TCP protocol used 
for accessing SQL Server. However, a more robust approach to transient failure detection 
and retry logic is needed. This comes in the form of a library known as the Transient 
Fault Handling Application Block, also known as Topaz. Like the retry support in the 
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libraries mentioned previously for blob access, Topaz has some predefined retry behav
iors, but also a rich model for customization. The easiest way to take advantage of Topaz 
features when writing database access code is to replace standard database objects with 
the transient-failure-aware equivalents that ship with Topaz. For example, use a Relia
bleSqlConnection object in place of the standard .NET SqlConnection object.

Some SQL Database transient failures are due to throttling and inform you of this by 
returning a well-known error code. Sometimes SQL Database will drop your database 
connection, requiring that you reconnect.

Expect Your Database Connection to Drop
Why would SQL Database drop your connection? When you connect, behind the scenes 
it is not a single instance but rather a cluster of three collaborating servers. This provides 
multiple benefits. One benefit is resilience to disk drive failure as each byte written to SQL 
Database is written to all three servers within the cluster. Another benefit is that, as a 
multitenant service, SQL Database can distribute (and redistribute) load across servers to 
keep it balanced. These benefits come at a cost. If SQL Database chooses your connection 
to move to another of the three servers in the cluster, it needs to first disconnect you; when 
you reconnect, you will connect to your newly assigned cluster node, though you won’t 
be able to tell the difference.

While the focus here has been on using Topaz with SQL Database, it also supports 
Windows Azure Storage, Windows Azure Caching, and Windows Azure Service Bus, 
including advanced retry possibilities if you need them.

Related Chapters

• Queue-Centric Workflow Pattern (Chapter 3)
• Multitenancy and Commodity Hardware Primer (Chapter 8)
• Node Failure Pattern (Chapter 10)

Summary
Handling transient failures is essential for building reliable cloud-native applications. 
Using the Busy Signal Pattern, your application can detect and handle transient failures 
appropriately. Further, your approach can be tuned for batch or interactive user sce
narios.
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It may be difficult to test your application’s response to transient failure conditions if 
running on non-cloud hardware or with an unrealistically light load.
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CHAPTER 10

Node Failure Pattern

This pattern focuses on how an application should respond when the compute node on 
which it is running shuts down or fails.

This pattern reflects the perspective of application code running on a node (virtual 
machine) that is shut down or suddenly fails due to a software or hardware issue. The 
application has three responsibilities: prepare the application to minimize issues when 
nodes fail, handle node shutdowns gracefully, and recover once a node has failed.

Some common reasons for shutdown are unresponsive application due to application 
failure, routine maintenance activities managed by the cloud vendor, and auto-scaling 
activities initiated by the application. Failures might be caused by hardware failure or 
an unhandled exception in your application code.

While there are many reasons for a node shutdown or failure, we can still treat them 
uniformly. Handling the various forms of failure is sufficient; all shutdown scenarios 
will also be handled. The pattern name derives from the more encompassing node fail
ures.

Applications that do not handle node shutdowns and failures will be 
unreliable.

Context
The Node Interruption Pattern is effective in dealing with the following challenges:

• Your application is using the Queue-Centric Workflow Pattern and requires at-
least-once processing for messages sent across tiers



• Your application is using the Auto-Scaling Pattern and requires graceful shutdown 
of compute nodes that are being released

• Your application requires graceful handling of sudden hardware failures
• Your application requires graceful handling of unexpected application software 

failures
• Your application requires graceful handling of reboots initiated by the cloud plat

form
• Your application requires sufficient resiliency to handle the unplanned loss of a 

compute node without downtime

All of these challenges result in interruptions that need to be addressed and many of 
them have overlapping solutions.

Cloud Significance
Cloud applications will experience failures that result in node shutdowns. Cloud-native 
applications expect these and respond appropriately when notified of shutdowns by the 
cloud platform.

Impact
Availability, User Experience

Mechanics
The goal of this pattern is to allow individual nodes to fail while the application as a 
whole remains available. There are several categories of failure scenarios to consider, 
but all of them share characteristics for preparing for failure, handling node shutdown 
(when possible), and then recovering.

Failure Scenarios
When your application code runs in a virtual machine (especially on commodity hard
ware and on a public cloud platform), there are a number of scenarios in which a shut
down or failure could occur. There are other potential scenarios, but from the point of 
view of the application, the scenarios always look like one of those listed in Table 10-1.

Table 10-1. Node Failure Scenarios
Scenario Initiated By Advanced 

Warning
Impact

Sudden failure + restart Sudden hardware failure No Local data is lost

94 | Chapter 10: Node Failure Pattern

94



Scenario Initiated By Advanced 
Warning

Impact

Node shutdown + restart Cloud platform (vacate failing hardware, 
software update)

Yes Local data may be available

Node shutdown + restart Application (application update, application 
bug, managed reboot)

Yes Local data is available

Node shutdown + termination Application (node released such as via auto-
scale)

Yes Local data is lost

Table 10-1 is correct for the Windows Azure and Amazon Web Services 
platforms. It is not correct for every platform, though the pattern is still 
generally applicable.

The scenarios have a number of triggers listed; some provide advanced warning, some 
don’t. Advanced warning can come in multiple forms, but amounts to a proactive signal, 
sent by the cloud platform that allows the node to gracefully shut down. In some cases, 
local data written to the local virtual machine disk is available after the interruption, 
sometimes it is lost. How do we deal with this?

Scenarios can be initiated by hardware or software failures, by the cloud platform, or by 
your application.

Treat All Interruptions as Node Failures
None of the scenarios are predictable from the point of view of the individual node. 
Further, the application code does not know which scenario it is in, but it can handle 
all of the scenarios gracefully if it treats them all as failures.

All application compute nodes should be ready to fail at any time.

Given that failure can happen at any time, your application should not use the local disk 
drive of the compute node as the system of record for any business data. As mentioned 
in Table 10-1, it can be lost. Remember that an application using stateless nodes is not 
the same as a stateless application. Application state is persistent in reliable storage, not 
on the local disk of an individual node.

By treating all shutdown and failure scenarios the same, there is a clear path for handling 
them: maintain capacity, handle node shutdowns, shield users when possible, and re
sume work-in-progress after the fact.
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Maintain Sufficient Capacity for Failure with N+1 Rule
An application prepares first by assuming node failures will happen, then taking pro
active measures to ensure failures don’t result in application downtime. The primary 
proactive measure is to ensure sufficient capacity.

How many node instances are needed for high availability? Apply the N+1 rule: If N 
nodes are needed to support user demand, deploy N+1 nodes. One node can fail or be 
interrupted without impact to the application. It is especially important to avoid any 
single points of failure for nodes directly supporting users. If a single node is required, 
deploy two.

The N+1 rule should be considered and applied independently for each type of node. 
For example, some types of node can experience downtime without anyone noticing or 
caring. These are good candidates for not applying the N+1 rule.

A buffer more extensive than a single node may be needed, though rarely, due to an 
unusual failure. A severe weather-related incident could render an entire data center 
unavailable, for example. A top-of-rack switch failure is discussed in the Example and 
cross-data center failover is touched on in Multisite Deployment Pattern (Chapter 15).

There is a time lag between the failure occurrence and the recognition of that failure by 
the cloud platform monitoring system. Your service will run at diminished capacity until 
a new node has been fully deployed. For nodes configured to accept traffic through the 
cloud platform load balancer, traffic will continue to be routed there; once the failed 
node is recognized it will be promptly removed from the load balancer, but there will 
still be more time until the replacement node is booted up and added to the load balancer. 
See Auto-Scaling Pattern (Chapter 4) for a discussion of borrowing already-deployed 
resources from less critical functions to service more important ones during periods of 
diminished capacity.

Handling Node Shutdown
We can responsibly handle node shutdown, but there is no equivalent handling for 
sudden node failure because the node just stops in an instant. Not all hardware failures 
result in node failure: the cloud platforms are adept at detecting signals that hardware 
failure is imminent and can preemptively initiate a controlled shutdown to move tenants 
to different hardware.

Some node failures are also preventable: is your application code handling exceptions? 
At a minimum, do this for logging purposes.

Regardless of the reason the node is shutting down, the goals are to allow in-progress 
work to complete, gather operational data from that node before shutdown completes, 
and do so without negatively impacting the user experience.
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Cloud platforms provide signals to let running applications know that a node is either 
about to be, or is in the process of being, shut down. For example, one of the signals 
provided by Amazon Web Services is an advanced alert, and one of the signals provided 
by Windows Azure is to raise an event within the node indicating that shutdown has 
begun.

Node shutdown with minimal impact to user experience

Cloud platforms managing both load balancing and service shutdown stop sending web 
traffic to nodes they are in the process of shutting down. This will prevent many types 
of user experience issues, as new web requests will be routed to other instances. Only 
those pending web requests that will not be complete by the time the service shuts down 
are problematic. Some applications will not have any problem as all requests are re
sponded to nearly instantly.

If your application is using sticky sessions, new requests will not always 
be routed to other instances. This topic was covered in Horizontally 
Scaling Compute Pattern (Chapter 2). However, cloud-native applica
tions avoid sticky sessions.

It is possible that a node will begin shutting down while some work visible to a user is 
in progress. The longer it takes to satisfy a web request, the more of a problem this can 
be. The goal is to avoid having users see server errors just because they were accessing 
a web page when a web node shuts down while processing their request. The application 
should wait for these requests to be satisfied before shutting down. How to best handle 
this is application-, operating system-, and cloud platform-specific; an example for a 
Windows Cloud Service running on Windows Azure is provided in the Example.

Failures that result in sudden termination can cause user experience problems if they 
happen in nodes serving user requests. One tactic for minimizing this is to design the 
user interface code to retry when there are failures, as described in Busy Signal Pat
tern (Chapter 9). Note that the busy signal here is not coming from a cloud platform 
service, but the application’s own internal service.

Node shutdown without losing partially completed work

The node should immediately stop pulling new items from the queue once shutdown is 
underway and let current work finish if possible.

Queue-Centric Workflow Pattern (Chapter 3) describes processing services that can 
sometimes be lengthy. If processing is too lengthy to be completed before the node is 
terminated, that node has the option of saving any in-progress work outside of the local 
node (such as to cloud storage) in a form that can be resumed.
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Node shutdown without losing operational data

Web server logs and custom application logs are typically written to local disk on indi
vidual nodes. This is a reasonable approach, as it makes efficient use of available local 
resources to capture this log data.

As described in Horizontally Scaling Compute Pattern (Chapter 2), part of managing 
many nodes is the challenge of consolidating operational data. Usually this data is col
lected periodically. If the collection process is not aware that a node is in the process of 
shutdown, that data may not be collected in time, and may be lost. This is your oppor
tunity to trigger collection of that operational data.

Recovering From Node Failure
There are aspects to recovering from node failure: maintaining a positive user experience 
during the failure process, and resuming any work-in-progress that was interrupted.

Shielding interactive users from failures

Some node instances support interactive users directly. These nodes might be serving 
up web pages directly or providing web services that power mobile apps or web appli
cations. A positive user experience would shield users from the occasional failure. This 
happens in a few ways.

If a node fails on the server, the cloud platform will detect this and stop sending traffic 
to that node. Once detected, service calls and web page requests will be routed to healthy 
node instances. You don’t need to do anything to make this happen (other than follow 
the N+1 rule), and this is sometimes good enough.

However, to be completely robust, you should consider the small window of exposure 
to failure that can occur while in the middle of processing a request for a web page or 
while executing a service call. For example, the disk drive on the node may suddenly 
fail. The best response to this edge case is to place retry logic on the client, basically 
applying Busy Signal Pattern (Chapter 9). This is straightforward for a native mobile 
app or a single-page web application managing updates through web service calls (Goo
gle Mail is an example of a single-page web application that handles this scenario nicely). 
For a traditional web application that redisplays the entire page each time, it is possible 
that users could see an error surface through their web browser. This is out of your 
control. It will be up to the users to retry the operation.

Don’t Be Overprotective
The strategy of shielding users from errors only makes sense up to a point. Eventually you 
will need to communicate errors to the user, though “service is not available, please retry 
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in a couple of minutes” is sometimes the best we can do. Further, make sure any retry 
policies are appropriate for interactive users; in other words, a policy that retries 10 times 
with a 30-second sleep in between may be fine for a nightly batch process, but totally 
inappropriate when supporting an interactive user.

Resuming work-in-progress on backend systems

In addition to user experience impact, sudden node failure can interrupt processing in 
the service tier. This can be robustly handled by building processes to be idempotent so 
they can safely execute multiple times on the same inputs. Successful recovery depends 
on nodes being stateless and important data being stored in reliable storage rather than 
on a local disk drive of the node (assuming that disk is not backed by reliable storage). 
A common technique for cloud-native applications is detailed in Queue-Centric Work
flow Pattern (Chapter 3), which covers restarting interrupted processes as well as saving 
in-progress work to make recovery faster.

Example: Building PoP on Windows Azure
Page of Photos (PoP) application (which was described in the Preface) is architected to 
provide a consistently reliable user experience and to not lose data. In order to maintain 
this through occasional failures and interruptions, PoP prepares for failure, handles role 
instance (node) shutdowns gracefully, and recovers from failures as appropriate.

Preparing PoP for Failure
PoP is constantly increasing and decreasing capacity to take advantage of the cost sav
ings; we only want to pay for the capacity needed to run well, and no more. PoP also 
does not wish to sustain downtime or sacrifice the user experience due to diminished 
capacity in the case of an occasional failure or interruption.

N+1 rule

The N+1 rule is honored for roles that directly serve users, because user experience is 
very important. However, because no users are directly impacted by occasional inter
ruptions, PoP management made the business decision to not apply the N+1 rule for 
worker roles which make up the service tier.

These decisions are accounted for in PoP auto-scaling rules.

Windows Azure fault domains

Windows Azure (through a service known as the Windows Azure Fabric Controller) 
determines where in the data center to deploy each role instance of your application 
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within specific constraints. The most important of these constraints for failure scenarios 
is a fault domain. A fault domain is a potential single point of failure (SPoF) within a 
data center, and any roles with a minimum of two instances are guaranteed to be dis
tributed across at least two fault domains.

The discerning reader will realize that this means up to half of your application’s web 
and worker role instances can go down at once (assuming two fault domains). While it 
is possible, it is unlikely. The good news is that if it does happen, the Fabric Controller 
begins immediate remediation, although your application will run with diminished 
capacity during recovery.

Auto-Scaling Pattern (Chapter 4) introduced the idea of internally 
throttling some application features during periods of diminished or 
insufficient resources. This is another scenario where that tactic may 
be useful. Note that you may not want to auto-scale in response to such 
a failure, but rather allow the Fabric Controller to recover for you.

For the most part, a hardware failure results in the outage of a single role instance. The 
N+1 rule accounts for this possibility.

PoP makes the business decision that N+1 is sufficient, as described previously.

When N + 1 Is Not Enough
If a failure impacts more than a single hardware node (for example, a failure at the rack 
level), N+1 may not be enough, depending on your business requirements. If this level of 
potential (albeit rare) downtime is too much, consider even more capacity, depending on 
how many fault domains are in effect. Currently, all Windows Azure cloud services run 
with two fault domains and (as of this writing) the number cannot be changed. Extra 
capacity for critical times can be scheduled as a proactive auto-scaling task. Also consider 
Multisite Deployment Pattern (Chapter 15).

Note that fault domains only apply with unexpected hardware failures. For operating 
system updates, hypervisor updates, or application-initiated upgrades, downtime is 
distributed across upgrade domains.
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Upgrade domains

Conceptually similar to fault domains, Windows Azure also has upgrade domains that 
provide logical partitioning of role instances into groups (by default, five) which are 
considered to be independently updatable. This goes hand-in-hand with the in-place 
upgrade feature, which upgrades your application in increments, one upgrade domain 
at a time.

If your application has N upgrade domains, the Fabric Controller will manage the up
dates such that 1/N role instances will be impacted at a time. After these updates com
plete, updating the next 1/N role instances can begin. This continues until the applica
tion is completely updated. Progressing from one upgrade domain to the next can be 
automated or manual.

Upgrade domains are useful to the Fabric Controller since it uses them during operating 
system upgrades (if the customer has opted for automatic updates), hypervisor updates, 
emergency moves of role instances from one machine or rack to another, and so forth. 
Your application uses upgrade domains if it updates itself using the in-place upgrade 
process where the application is upgraded one upgrade domain at a time. You may 
choose to manually approve the progression from one upgrade domain to the next, or 
have the Fabric Controller proceed automatically.

Multiple Concurrent Versions
Cloud-native applications commonly have a single deployment with mixed releases (and 
features) across the role instances. This staged upgrade can be managed using upgrade 
domains with an in-place upgrade. Another way to look at this: an application upgrade 
does not happen at a particular time, rather it spans time. During that time span the 
application is running two versions. Two customers visiting the application at the same 
time may be routed to different versions. If you wish to avoid deploying multiple concur
rent versions, look into Windows Azure's VIP Swap feature.

What is the right number of upgrade domains for my application? There is a tradeoff: 
more upgrade domains take longer to roll out, while fewer upgrade domains increase 
the level of diminished capacity. For PoP, the default of five upgrade domains works 
well.

Handling PoP Role Instance Shutdown
Graceful role shutdown avoids loss of operational data and degradation of the user 
experience.
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When we instruct Windows Azure to release a role instance, there is a defined process 
for shutdown; it does not shut off immediately. In the first step, Windows Azure chooses 
the role instance that will be terminated

You don’t get to decide which role instances will be terminated.

First, let’s consider terminating a web role instance.

Web role instance shutdown

Once a specific web role instance is selected for termination, Windows Azure (specifi
cally the Fabric Controller) removes that instance from the load balancer so that no new 
requests will be routed to it. The Fabric Controller then provides a series of signals to 
the running role that a shutdown is coming. The last of these signals is to invoke the 
role’s OnStop method, which is allowed five minutes for a graceful shutdown. If the 
instance finishes the cleanup within five minutes, it can return from OnStop at that point; 
if your instance does not return from OnStop within five minutes, it will be forcibly 
terminated. Only after OnStop has completed does Azure consider your instances to be 
released for billing purposes, providing an incentive for you to make OnStop exit as 
efficiently as possible. However, there are a couple of steps you could take to make the 
shutdown more graceful.

Although the first step in the shutdown process is to remove the web role from the load 
balancer, it may have existing web requests being handled. Depending on how long it 
takes to satisfy individual web requests, you may wish to take proactive steps to allow 
these existing web requests to be satisfied before allowing the shutdown to complete. 
One example of a slower-than-usual operation is a user uploading a file, though even 
routine operations may need to be considered if they don’t complete quickly enough. A 
simple technique to ensure your Web Role is gracefully shutting down is to monitor an 
IIS performance counter such as Web Service\Current Connections in a loop inside your 
OnStop method, continuing to termination only when it has drained to zero.

Application diagnostic information from role instances is logged to the current virtual 
machine and collected by the Diagnostics Manager on a schedule of your choosing, such 
as every ten minutes. Regardless of your schedule, triggering an unscheduled collection 
within your OnStop method will allow you to wrap up safely and exit as soon as you are 
ready. An on-demand collection can be initiated using Service Management features.
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Worker role instance shutdown

Gracefully terminating a worker role instance is similar to terminating a web role in
stance, although there are some differences. Because Azure does not load balance PoP 
worker role instances, there are no active web requests to drain. However, triggering an 
on-demand collection of application diagnostic information does make sense, and you 
would usually want to do this.

Although PoP worker role instances do not have public-facing end        
points, Windows Azure does support it, so applications may have active 
connections when instance shutdown begins. A worker role can define 
public-facing endpoints that will be load balanced. This feature is useful 
in running your own web server such as Apache, Mongoose, or Nginx. 
It may also be useful for exposing self-hosted WCF endpoints. Further, 
public endpoints are not limited to HTTP, as TCP and UDP are also 
supported.

A worker role instance will want to stop pulling new items from the queue for processing 
as soon as possible once shutdown is underway. As with the web role, instance shutdown 
signals such as OnStop can be useful; a worker role could set a global flag to indicate that 
the role instance is shutting down. The code that pulls new items from the queue could 
check that flag and not pull in new items if the instance is shutting down. Worker roles 
can use OnStop as a signal, or hook an earlier signal such as the OnStopping event.

If the worker role instance is processing a message pulled from a Windows Azure Storage 
queue and it does not complete before the instance is terminated, that message will time 
out and be returned to the queue so it can be pulled again. (Refer to Queue-Centric 
Workflow Pattern (Chapter 3) for details.) If there are distinct steps in processing, the 
underlying message can be updated on the queue to indicate progress. For example, PoP 
processes newly uploaded photos in three steps: extract geolocation information from 
the photo, create two sizes of thumbnail, and update all SQL Database references. If two 
of these steps were completed, but not the third, it is indicated by a LastCompleted
Step field in the message object that was pulled from the queue, and that message object 
can be used to update the copy on the queue. When this message is pulled again from 
the queue (by a subsequent role instance), processing logic will know to skip the first 
two steps because LastCompletedStep field is set to two. The first time a message is 
pulled, the value is set to zero.

Use controlled reboots

Sometimes you may wish to reboot a role instance. The controlled shutdown that allows 
draining active work is supported if reboots are triggered using the Reboot Role Instance 
operation in the Windows Azure Service Management service.
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If other means of initiating a reboot are used, such as directly on the node using Windows 
commands, Windows Azure is not able to manage the process to allow for a graceful 
shutdown.

Recovering PoP From Failure
Queue-Centric Workflow Pattern (Chapter 3) details recovering from a long-running 
process.

Otherwise, there is usually little to do in recovering a stateless role instance, whether a 
web role or worker role.

Some user experience glitches are addressed in PoP because client-side JavaScript code 
that fetches data (though AJAX calls to REST services) implements Busy Signal Pat
tern (Chapter 9). This code will retry if a service does not respond, and the retry will 
eventually be load balanced to a different role instance that is able to satisfy the request.

Related Chapters

• Queue-Centric Workflow Pattern (Chapter 3)
• MapReduce Pattern (Chapter 6)
• Multitenancy and Commodity Hardware Primer (Chapter 8)
• Busy Signal Pattern (Chapter 9)
• Multisite Deployment Pattern (Chapter 15)

Summary
Failure in the cloud is commonplace, though downtime is rare for cloud-native appli
cations. Using the Node Failure Pattern helps your application prepare for, gracefully 
handle, and recover from occasional interruptions and failures of compute nodes on 
which it is running. Many scenarios are handled with the same implementation.

Cloud applications that do not account for node failure scenarios will be unreliable: user 
experience will suffer and data can be lost.
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CHAPTER 11

Network Latency Primer

This basic primer explains network latency and why delays due to network latency 
matter.

The time it takes to transmit data across a network is known as network latency. Network 
latency slows down our application.

While individual networking devices like routers, switches, wireless access points, and 
network cards all introduce latencies of their own, this primer blends them all together 
into a bigger picture view, the total delay experienced by data having to travel over the 
network.

As cloud application developers, we can decrease the impact of network latency through 
caching, compression, moving nodes closer together, and shortening the distance be
tween users and our application.

Network Latency Challenges
Highly scalable and high performing (even infinitely fast!) servers do not guarantee that 
our application will perform well. This is due to the main performance challenge that 
lies outside of raw computational power: movement of data. Transmitting data across 
a network does not happen instantly and the resultant delay is known as network latency.

Network latency is a function of distance and bandwidth: how far the data needs to 
travel and how fast it moves. The challenge is that any time compute nodes, data sources, 
and end users are not all using a single computer, network latency comes into play; the 
more distribution, the greater the impact. Network quality plays an important role, 
although it is one you might not be able to control; quality may vary as users connect 
through networks from disparate locations.
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Application performance and scalability will suffer if it takes too long for data to get to 
the client computer. The effects of network latency can also vary based on the user’s 
geographical location: to some users of the system, it may seem blazingly fast, while to 
other users it may seem as slow as cold molasses (which means really slow).

Admittedly, understanding the actual distance traveled by the data and the effective 
bandwidth can be challenging. The actual path traveled is not the same as the ideal great 
circle path you might imagine from a map. The path from router to router is jagged, and 
indeed may even be impacted by the capability of individual routers, and individual legs 
of the route may have different bandwidths. And it can vary over time.

A simple way to estimate effective bandwidth (at some point in time) is to use ping. Ping 
is a simple but useful program that calculates the time it takes to travel from one point 
on the Internet to another point, by actually sending network packets, counting the 
nodes along the way, and showing how long it takes the packets to get to the destination 
and back. Some measured ping times are shown in Table 11-1. These pings originated 
from Boston which is in the eastern USA. The fastest networks today use fiber optic 
cable, which supports data transmission at around 66% of the speed of light (186,000 
miles/sec × 66% = 122,760 miles/sec). As you can see from Table 11-1, shorter distances 
are dominated by factors other than pure distance traveled, and none are close to the 
theoretical maximum speed. HTTP and TCP traffic will be slower than pings. Network 
latency impact can add up quickly, especially as web pages get heavier with more objects 
to download. In An Analysis of Application Performance Data and Trends (Jan 2012), 
Compuware reports that the average (yes, average) page download size for a non-mobile 
news site is more than a megabyte and 790 KB for a non-mobile travel site.

Table 11-1. Ping Times from Boston – distance matters
Domain Location Elapsed Time each way (ms) Approximate Distance (miles) Speed (miles/sec)

www.bu.edu Boston, USA 17 10 1,000

www.gsu.edu Atlanta, USA 75 900 12,000

www.usc.edu Los Angeles, USA 51 2600 52,000

www.cam.ac.uk Cambridge, UK 50 3300 67,000

www.msu.ru Moscow, RU 81 4500 56,000

www.u-tokyo.ac.jp Tokyo, JP 107 6700 63,000

www.auckland.ac.nz Auckland, NZ 115 9000 79,000

Doing the Math
How much data transfer can I get for my bandwidth? Let’s do some math. Consider a T1 
connection that provides 1.544 Mb/sec of bandwidth. Translating from kilobits (Kb) to 
kilobytes (KB) we end up with about 193 KB/sec (1544/8=193 kilobytes per second, ig
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noring errors, retries, speed degradation, and assuming no other uses of the connection). 
Uploading a full CD-ROM (~660 MB) would take nearly an hour. Uploading a full DVD 
(~4.7 GB) would take around 7 hours. These calculations assume ideal network condi
tions, which of course you will never have.

Reducing Perceived Network Latency
The perceived network latency, the network latency as experienced by a user, can be 
reduced through techniques such as:

• Data compression
• Background processing, where screen updates don’t happen until the data arrives 

(though not actually faster, it may improve a user’s subjective experience, as with 
single page web applications)

• Predictive fetching, where data is loaded in anticipation of need (as with map tiles 
in a mapping app, although it is possible that not all the map tiles will be referenced)

Eventual consistency is another tool we can use, if we can serve users with slightly stale 
data. These are reasonable approaches for reducing the impact of network latency, but 
do not change the network latency. They are essentially the same for cloud-native 
applications as they are for non-cloud applications.

Reducing Network Latency
We can reduce network latency by:

• Moving application closer to users
• Moving application data closer to users
• Ensuring nodes within our application are close together

These reduction techniques are the topics of the Colocate, Valet Key, CDN, and Multisite 
Deployment patterns.

Summary
A comprehensive strategy for dealing with network latency will use multiple strategies. 
One set of strategies focuses on reducing the perceived network latency. Another set of 
strategies focuses on actually reducing network latency by shortening the distance be
tween users and the instances of our application.
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CHAPTER 12

Colocate Pattern

This basic pattern focuses on avoiding unnecessary network latency.

Communication between nodes is faster when the nodes are close together. Distance 
adds network latency. In the cloud, “close together” means in the same data center 
(sometimes even closer, such as on the same rack).

There are good reasons for nodes to be in different data centers, but this chapter focuses 
on ensuring that nodes that should be in the same data center actually are. Accidentally 
deploying across multiple data centers can result in terrible application performance 
and unnecessarily inflated costs due to data transfer charges.

This applies to nodes running application code, such as compute nodes, and nodes 
implementing cloud storage and database services. It also encompasses related deci
sions, such as where log files should be stored.

Context
The Colocation Pattern effectively deals with the following challenges:

• One node makes frequent use of another node, such as a compute node accessing 
a database

• Application deployment is basic, with no need for more than a single data center
• Application deployment is complex, involving multiple data centers, but nodes 

within each data center make frequent use of other nodes, which can be colocated 
in the same data center

In general, resources that are heavily reliant on each other should be colocated.
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A multitier application generally has a web or application server tier that accesses a 
database tier. It is often desirable to minimize network latency across these tiers by 
colocating them in the same data center. This helps maximize performance between 
these tiers and can avoid the costs of cloud provider data transmission.

This pattern is typically used in combination with the Valet Key and CDN Patterns. 
Reasons to deviate from this pattern, such as proximity to consumers and overall reli
ability, are discussed in Multisite Deployment Pattern (Chapter 15).

Cloud Significance
Public cloud platforms typically offer many worldwide data center locations to which 
applications can be easily deployed. These data centers span continents, and sometimes 
multiple data centers are available within the same continent. An application can be 
easily deployed to and use the cloud platform services in any of these data centers. This 
multi-data center flexibility brings great advantages, but also introduces the risk that 
application code and services will be unnecessarily distributed across multiple data 
centers, resulting in extra costs and a degraded user experience.

Impact
Cost Optimization, Scalability, User Experience

Mechanics
When you think about it, this may seem an obvious pattern, and in many respects it is. 
Depending on the structure of your company’s hardware infrastructure (whether a pri
vate data center or rented space), it may have been very difficult to do anything other 
than colocate databases and the servers that accessed them.

With public cloud providers, multiple data centers are typically offered across multiple 
continents, sometimes with more than one data center per continent or region. If you 
plan to deploy to a single data center, there may be more than one reasonable choice. 
This is good news and bad news, since it is possible (and easy) to choose any data center 
as a deployment target. This makes it possible to deploy a database to one data center, 
while the servers that access the database are deployed to a different data center.

The performance penalty of a split deployment can be severe for a data-intensive ap
plication.

Hadoop-based “big data” applications tend to be data-intensive in the 
extreme and require that data and compute be colocated. See MapRe
duce Pattern (Chapter 6).
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Automation Helps
Enforcing colocation is really not a technological problem, but rather a process issue. 
However, it can be mitigated with automation.

You will want to take proactive steps to avoid accidentally splitting a deployment across 
data centers. Automating deployments into the cloud is a good practice, as it limits 
human error from repetitive tasks. If your application spans multiple data centers but 
each site operates essentially independently, add checks to ensure that data access is not 
accidentally spanning data.

Outside of automation, your cloud platform may have specific features that make co
location mistakes less likely.

Cost Considerations
Operations will generally be less expensive if your databases and the compute resources 
that access them are in the same data center. There are cost implications when splitting 
them.

As of this writing, the Amazon Web Services and Windows Azure platforms do not 
charge for network traffic to enter a data center, but do charge for network traffic leaving 
a data center (even if it is to another of their data centers). There are no traffic charges 
when data stays within a single data center.

Non-Technical Considerations
There may be non-technical influences on application architecture that result in data
bases being stored at a different location than the compute resources that access them. 
This topic is considered further in Multisite Deployment Pattern (Chapter 15).

Example: Building PoP on Windows Azure
When the Page of Photos (PoP) application (which was described in the Preface) was 
first developed, it made sense to deploy it and use cloud services inside of a single data 
center.

Windows Azure allows you to specify the target data center for any resource that is 
deployable to a specific data center. As examples, the target data center can be specified 
for code deployment (such as Web Roles, Worker Roles, or Virtual Machines) and cloud 
services (such as Windows Azure Storage, SQL Database, and more). When such re
sources will be used together, they should be colocated in the same data center.
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Affinity Groups
Windows Azure goes a step further for some resources, supporting affinity groups. An 
affinity group is a logical grouping of resources tied to a data center. You can provide a 
custom name for an affinity group, using a name that makes sense for your business and 
is not simply a generic data center name. This is an example of a cloud platform feature 
that can help avoid colocation mistakes.

In the case of PoP, if we deploy to a single North American data center, we can have an 
affinity group called PoP-North America-Production for our production data center. 
Upon creation, the decision is made as to which North American data center will be 
chosen, which removes this as a decision point for any downstream deployments that 
use the PoP-North America-Production affinity group.

As of this writing, not all Windows Azure resources support affinity groups; currently 
only Windows Azure Compute and Windows Azure Storage are supported. Most nota
bly, SQL Database is not supported, although it can still be placed in the same data center 
as the other resources.

While affinity groups are tied to a specific data center, they also provide a hint to Win
dows Azure that allows for further local optimization for supported resource types. Not 
only are they in the same data center, but your Windows Azure Storage, the code ac
cessing it from web, and the worker roles are even closer together, with fewer router 
hops and less distance for data to traverse. This further reduces network latency.

Using the same affinity group across storage accounts and cloud services will ensure 
that they are all colocated in the same data center.

Operational Logs and Metrics
You will also likely be gathering operational log files with Windows Azure Diagnostics 
(WAD) and Windows Azure Storage Analytics, available with Windows Azure Storage 
accounts. Apply the same affinity group to storage as you apply to compute instances.

It is a best practice to persist WAD into a special operational storage account (different 
from other storage accounts within your production system) both to minimize potential 
for contention and to make it easier to manage access to logs and metrics. Depending 
on the specific type of data items, individual diagnostic values are stored in either Win
dows Azure Blob or Windows Azure Table storage. Use the same affinity group for WAD 
storage to ensure it is stored in the same data center as the rest of the application.

Windows Azure Storage Analytics data are stored alongside the regular data, and are 
not stored in a separate storage account, so colocation is automatic.
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More details about the capabilities of Windows Azure Diagnostics and 
Windows Azure Storage Analytics can be found in Horizontally Scaling 
Compute Pattern (Chapter 2) in the Example section under Operational 
Logs and Metrics. Both features support allow applications to set a basic 
data retention policy that Windows Azure Storage uses to automatically 
purge data.

When colocation is not possible due to technical or business reasons, Windows Azure 
has some services that can help. These services are mentioned in the Example section 
of Multisite Deployment Pattern (Chapter 15).

Related Chapters

• MapReduce Pattern (Chapter 6)
• Network Latency Primer (Chapter 11)
• Valet Key Pattern (Chapter 13)
• CDN Pattern (Chapter 14)
• Multisite Deployment Pattern (Chapter 15)

Summary
The simplest way to get started in the cloud is to colocate nodes, usually all in a single 
data center. This is appropriate for many applications, and should be the usual config
uration. Only deviate for good reason, and avoid the mistake of accidental deployment 
across more than one data center, including for storage of operational data.
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CHAPTER 13

Valet Key Pattern

This pattern focuses on efficiently using cloud storage services with untrusted clients.

This pattern loosely models the use of valet keys from the real world. Valet keys are 
useful when you are willing to trust a valet parking attendant to park your car, but don't 
want to also give them access to areas in the car not needed for this purpose, such as the 
glove compartment. This pattern enables specifying that a user of your application is 
allowed to access very specific areas within your cloud storage account, with specific 
permissions, and for a limited amount of time. You can issue as many cloud storage valet 
keys as you like and they can all be different.

Cloud storage services simplify securely transferring data directly between untrusted 
clients and to secure data storage, without the data needing to pass through a trusted 
intermediate layer (the web tier in this case) to implement security. Both uploads and 
downloads are supported.

Going directly to the final storage location eliminates the need for data to unnecessarily 
pass through an intermediary, so these operations will be faster with lower latency, while 
reducing the load on the web tier. Because this pattern avoids load on the web tier, it 
will result in needing less capacity, which may further result in needing fewer web server 
nodes (thus saving money). Realize, however, that this pattern also requires the ability 
to securely allow access to cloud storage, typically by issuing temporary access URLs. 
Depending on how this is done, it may necessitate the creation of a web service, which 
may require some infrastructure of its own. Generally, however, the performance, scal
ability, and cost savings favor the use of this pattern.

Context
The Valet Key Pattern is effective in dealing with the following challenges:
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• Application data files are stored in cloud storage, which clients need to access
• Application data files are stored in cloud storage, which clients need to access on a 

case-by-case basis
• Application supports clients uploading data that will end up in cloud storage

This pattern is useful when reading and writing data from mobile apps, desktop apps, 
and during server-to-server communication. Reading data from a web application is 
also a very common use, though due to security limitations imposed by web browsers 
it is much trickier to write data to blob storage from a web application; however, see the 
appendix as it is possible in some cases using emerging HTML5 standards. Still, many 
web browsers do not support this scenario today.

Example of practical uses are many. A for-pay video or training site can allow access to 
a video for 24 hours. A photo sharing site can allow a user to upload a new photo or 
video directly into cloud storage. An enterprise can securely and efficiently share assets 
with employees or partners who are outside the firewall. A backup service running on 
a consumer desktop can efficiently interact directly with cloud storage, while only ever 
having access to files for that single user. A translation service can allow customers to 
upload text, audio, and video files; translated can be delivered back through the same 
secure means.

Cloud Significance
This pattern is possible because cloud services mask significant technical complexity by 
offering an easy-to-use service to applications. Additionally, software libraries support
ing a broad range of clients further simplifies client coding.

The cloud platform data storage services are optimized for reading and writing files of 
all sizes at very high scale, shielding the application’s web tier from needing to provide 
the bandwidth and computational power to handle this same data.

Some applications use the Gatekeeper Pattern, which does exactly what this pattern 
avoids: move all data through an intermediary in order to control access. Both patterns 
can be used securely, though this pattern offers efficiency and scalability benefits.

Impact
Scalability, User Experience
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Mechanics
Access to cloud storage services is a privileged operation. Typically, you will allow only 
trusted subsystems within your application to have unfettered access to your cloud stor
age accounts, where trusted subsystems are running entirely under your control on the 
server.

Securing and managing access to data is always a high priority, but there is also a tension 
between security and efficiency; we want to remain secure, but would like to do so with 
the most efficient use of resources that allows us to deliver an optimized user experience. 
This pattern focuses on securely using blob storage while also reading and writing data 
with maximum efficiency. This is illustrated in Figure 13-1, which shows the flow of 
files directly between the client and the cloud storage service. The data flow is as efficient 
as possible, and in particular does not need to flow through the web tier of the appli
cation.

Using vendor-neutral terms can be challenging. A blob is a binary large 
object in the sense that’s been used in the industry for many years and 
is commonly used with relational databases. Basically, a blob is a file. 
Windows Azure Storage happens to also call this concept a blob, while 
Amazon’s Simple Storage Service (S3) calls it an object, Rackspace has 
cloud files, and the list goes on. In this chapter, a blob is just a file, and 
blob storage is a cloud platform service that allows you to store files in 
the cloud.

A storage access key is cryptographically generated by the cloud platform for each storage 
account, and applications are expected to use this key to access blob storage. It is not 
easy to safely store this key on client devices, whether for a desktop, mobile, or web 
application. A compromised key exposes the entire storage account. This pattern will 
not cover any techniques for protecting keys on client devices, but will instead focus on 
two other approaches: public access and temporary access.
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Figure 13-1. Data is uploaded efficiently, going directly from the client to cloud storage 
without passing through the web tier. The issuing of a temporary access URL—the valet 
key—is not shown, but is needed before the data can be uploaded.

Public Access
There are two sides to this pattern from the point of view of the client: reading blob data 
and writing blob data. For blob data that is intended to be publicly visible anyway, blob 
storage allows us to configure blobs for public read access. Because each blob resource 
is addressable as a URL, this opens up a considerable number of possibilities. Sharing 
is easy: just distribute the individual links. Blob URL references can be referenced just 
like other files from HTML pages so that web applications can benefit from the scala
bility features of blob storage, reducing the burden on the web tier that would otherwise 
be responsible for delivering files such as images, videos, JavaScript, and documents.

Anonymous public read access is very powerful. However, anonymous 
public write access is not supported. Temporary access for both read 
and write are possible if managed by the application.
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Granting Temporary Access
Public read access allows any client knowing the URL to access the blob resource at any 
time without limit. This may not be what you want. If more control is desired, it is 
possible to grant temporary access to specific resources by constructing a temporary 
access URL using the storage key. The temporary access URL can be shared with clients 
who can then access the specific resource, but not all resources, just like with a valet key.

The Valet Key
Some cars come with two types of keys: regular keys that work on every lock in the car, 
and valet keys that provide only limited access. The valet key is useful when you wish to 
temporarily allow some access, but do not want to give full access. The classic case is valet 
parking. With valet parking, you turn over your car to a stranger who will park it for you. 
In exchange for this convenience, you need to give this stranger a key to your car. The 
valet key is ideal for this, as it will only allow the driver to unlock the doors and start the 
car; it will not allow access to storage areas. In some newer cars, it will even limit the speed 
at which the car can be driven.

In the cloud storage world, the temporary access URL serves as a flexible and powerful 
valet key, allowing efficient and convenient access to storage while still being able to limit 
that access to only specific resources and during specific times.

Temporary access URLs are not limited to reading, but can be extended to allow other 
permissions, including writing. Thus is it possible to create one that would enable a 
client to upload a file directly into a predetermined location in blob storage.

The temporary access URLs are time-limited by your application-supplied expiration. 
The expiration time might be selected to be just long enough to safely finish an upload, 
watch a movie, or set to match the expected duration of the login session; this is a policy 
decision for your application.

Temporary access URLs need to be generated on the server and made available to the 
client. Reasonable approaches will depend on your application, but might include pro
viding them during login, or separately issuing them on demand to authenticated callers 
via a web service.

When uploading blobs, transient failures may require retries. See Busy 
Signal Pattern (Chapter 9).
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Security Considerations
Any code (in the cloud or elsewhere) with access to the storage access key will be able 
to create temporary access URLs.

Temporary access URLs are secured through hashing, a proven cryptographic technique 
that requires accesses to the storage key and uses it to create a unique signature for any 
string, in this case the temporary access URL. The associated hash is checked every time 
a client attempts to use the temporary access URL; without a correct one, access is denied. 
Adversaries without access to the storage key cannot tamper with an existing temporary 
access URL, create a new one, or guess a valid one.

However, as with a real-life valet key, any client in possession of a temporary access URL 
can use it. Any permissions granted by the temporary access URL are available. Like 
any other security access token, follow the principle of least privilege and provide only 
those rights necessary, and only for as long as necessary. Further, when transporting a 
temporary access URL, do so over a secure channel. Since the cloud platforms support 
secure HTTPS access to blob storage, clients outside the cloud provider's data center 
can safely use temporary access URLs. Temporary access URLs can even be used safely 
to serve pages to a regular web browser; as far as the browser is concerned, it is just 
requesting resources via HTTPS since the security key is part of the URL (the query 
string), HTTPS protects the query string during transport, and the cloud storage service 
handles authorization.

In the physical world, a lost valet key cannot be revoked; the only way 
to render it useless is by changing the locks. In the cloud, we have other 
tools such as expiration dates. The Windows Azure cloud platform goes 
further, supporting temporary access URLs that do not directly contain 
permissions or an expiration date, but rather reference a policy, known 
as a stored access policy, which dictates permissions and expiration. 
This policy can be changed independently of the URLs that reference 
it. This allows temporary access URLs to be issued that can later be 
revoked, extended, or have their permissions tweaked. Many URLs can 
reference the same policy.

There is no limit on the number of temporary access URLs that can be issued and all 
are independent of one another.
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Example: Building PoP on Windows Azure
The Page of Photos (PoP) application (which was described in the Preface) supports 
publishing photos directly from a smart phone. Since smart phones can now routinely 
take high-resolution photos and capture HD video, the file may be large (multiple meg
abytes for a photo to tens of megabytes for a video), making this an especially good use 
case for this pattern.

From the point of view of the mobile application, it does not care whether it is uploading 
directly to cloud storage or uploading through a wrapper web service in the web tier; it 
is the same amount of work. To write a blob into Windows Azure, a mobile application 
only requires a few lines of code if it is using one of the mobile libraries provided as part 
of the platform. At the time of this writing, mobile client libraries were available for 
Android, iOS (iPhone, iPad), and Windows Phone.

Windows Azure Blobs offer a couple of handy features that allow us to streamline this 
process: public read access and Shared Access Signatures.

Public Read Access
Enabling public read access to blobs is trivial.

Blob storage containers (which are like directories or folders) can be marked as available 
for either public or private access. Photos stored in PoP are intended to be publicly 
viewable by anyone, so we can go ahead and mark them all as publicly visible. Once 
marked, anyone who knows the URL can read it. This is ideal for PoP for uploaded 
photos and videos, generated thumbnails, and any other size or format variants.

It is not possible to configure blobs in Windows Azure Storage to allow anonymous 
public updates of any kind; updates always require security credentials (which are de
scribed next).

Public read access to photos in PoP will likely result in users sharing URLs to specific 
photos. This exposes the underlying URL to users. By default, the URL points to a 
Windows Azure domain, but in our case we would like it to point to a http://pageofpho
tos.com domain; we do this with a vanity domain.

Using a Vanity Domain
Example of a regular photo URL from blob storage:

http://pageofphotos.blob.core.windows.net/photos/daniel.png

Example of a photo URL form blob storage after configuring our vanity domain:

http://www.pageofphotos.com/photos/daniel.png
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Shared Access Signatures
A Shared Access Signature (SAS) is the Windows Azure Storage feature used to construct 
temporary access URLs for blobs that have temporary permission for reading or writing 
blobs.

PoP takes advantage of SAS for blob storage. Windows Azure Storage 
also features SAS support for its NoSQL database, Windows Azure 
Tables, as well as Windows Azure Queues.

For PoP, the goal is to permit users to upload photos from a mobile application directly 
into blob storage without allowing them to upload photos to other user accounts. Per
missions are part of the special URL and will not allow one user to interfere with blobs 
belonging to another user. This level of security is sufficient for PoP. Once the temporary 
access URL is constructed and delivered to the mobile application, it is a simple matter 
for the mobile application to upload directly from the mobile device to blob storage, 
perhaps using one of the mobile client libraries mentioned previously.

SAS for Selective Read Access
The SAS technique can also be used to provide temporary access URLs for reading non-
public blob resources. PoP does not require this since all images are public anyway.

If PoP did require that some photos be publicly accessible while others were not, it could 
use a private container to hold photos and use the SAS technique to provide temporary 
access to all URLs as needed. Alternatively, private photos could be moved into a separate 
blob container, allowing public photos in the original blob container to maintain open 
permissions.

Once a temporary access URL is generated, it is up to your application to safely deliver 
it to the appropriate client. In the case of the PoP mobile app, the SAS will be returned 
to the mobile app in response to an authenticated web service call over a secure (HTTPS) 
connection.

Windows Azure Storage also supports the notion of an access policy which is a named 
collection of permissions. An access policy can be used when creating a SAS. If a SAS 

122 | Chapter 13: Valet Key Pattern



is constructed using an access policy, it is possible to later change that access policy. Any 
valid SAS will be immediately adjusted to use the new permissions. One common use 
of access policies is to maintain the ability to revoke permissions if it later becomes 
necessary.

Related Chapters

• Eventual Consistency Primer (Chapter 5)
• Busy Signal Pattern (Chapter 9)
• Network Latency Primer (Chapter 11)
• Colocate Pattern (Chapter 12)
• CDN Pattern (Chapter 14)
• Multisite Deployment Pattern (Chapter 15)

Summary
Use of this pattern should be considered anywhere it can be safely applied. The ability 
to manage temporary access for reading and writing makes this a broadly usable pattern. 
The most common troublesome use case will be an upload directly from a web browser, 
but reading is well supported, and writing from more flexible clients such as mobile apps 
is also well supported.

When used with storage containers that support this pattern, applications can avoid 
having a web page or web service act as a security proxy to read or write data stored in 
a secure container. This reduces load on the web tier because it is not acting as a mid
dleman for data transfer. Also, the code for implementing all the variants of data passing 
through is replaced by the far simpler generation and issuing of temporary access URLs, 
while the upload code is offloaded to the client. The client code should utilize existing 
helper libraries where available to minimize complexity.

The end result is that applications scale better and the user experience is improved.
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CHAPTER 14

CDN Pattern

This pattern focuses on reducing network latency for commonly accessed files through 
globally distributed edge caching.

The goal is to speed up delivery of application content to users. Content is anything that 
can be stored in a file such as images, videos, and documents. The Content Delivery 
Network (CDN) is a service that functions as a globally distributed cache. The CDN 
keeps copies of application files in many places around the world. When these places 
are close to users, content does not need to travel as far to be delivered, so it will arrive 
faster, improving the user experience.

CDN nodes are strategically located around the globe, hopefully close to application 
users. The CDN has its own URLs that are resolved by a geographic load balancer that 
directs users to the nearest node, regardless of where the user is.

The flow of files is shown in Figure 14-1. When a CDN URL is requested for the first 
time, the CDN will retrieve the file from the main source (usually known as the origin 
server), and then return that to the requesting user while also caching a local copy to 
satisfy subsequent requests for that file. When a CDN URL is requested and the file has 
already been cached, the CDN returns a locally cached copy of that file to the requesting 
user. This is faster than if the user retrieved it from the origin server, which is (presum
ably) further away. When many users access the same content from a CDN node, the 
initial request is slower (so the first user to request a file has to wait longer), but subse
quent requests are much faster.

A CDN is only helpful for files that will be accessed multiple times. Files that are intended 
to be rarely accessed or that are for only a single user are usually not good candidates 
for a CDN.

Each CDN node operates independently of the others.
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Figure 14-1. Users get content directly from the nearest CDN node. The CDN node fetch
es content from the source as needed.

Context
The CDN Pattern is effective in dealing with the following challenges:

• Application data is accessed from geographic locations that may not be close to the 
data center from which it originates

• Multiple clients access the same application data objects (such as HTML, JavaScript, 
image, video, or other files)

• Application includes large downloads, streaming video, or other heavyweight con
tent delivery

A CDN can effectively reduce the load on other types of nodes that might be serving 
up content.
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Cloud Significance
Cloud platform CDN services are easy to enable and are integrated into the cloud ven
dor’s web-hosted management tool, appear on the same bill, and are supported by the 
same organization as other services offered within the cloud platform. Some other 
services, such as blob storage, can be easily CDN-enabled with a few mouse clicks. For 
these reasons, cloud CDN services can be more convenient than working directly with 
an independent CDN service provider.

Impact
Scalability, User Experience

Mechanics
Generally speaking, transmitting data over the Internet is faster when the source data 
and recipient are closer together. One way to bring source data and recipients closer 
together is by caching copies of the source data in locations that are closer to the recip
ients. When a user needs the data, retrieving it from the closest location will be faster 
than retrieving it from the origin, which might potentially be much further away. This 
practice is commonly known as edge caching and is the role of the CDN. Specifically, we 
will focus on accessing files over HTTP.

To enable the CDN to cache our files, we need to make one change: instead of using our 
normal domain name in our file URLs, we use one designated for us by the CDN pro
vider. All file resources that we want to be cached by the CDN are changed to the new 
scheme.

Whenever a user attempts to access a file being managed by the CDN, the request goes 
to the CDN service to be fulfilled. However, because one of the benefits of the CDN 
service is that it has cache nodes in many geographical locations, somehow the request 
needs to be directed to the location nearest to the requesting user. This is usually handled 
through the anycast routing protocol that helps identify the closest CDN node, and the 
request is smartly routed accordingly.

Even though all users see the same URL for the file, different users will 
be routed to different CDN nodes. This is the whole point of the CDN: 
route requests to the nearest CDN node to improve responsiveness.

A CDN is a specialized cache, and as such, is not necessarily already populated with 
every desired file. This would be the case if the file had never been requested before 
through this CDN node, or the file had been requested but subsequently expired from 
the CDN cache. Any resource stored in a CDN has a defined expiration time that your 
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application sets, so this is something you will want to think about. Some resources, such 
as a company logo, may be stable for months or years, while other resources such as a 
user profile photo may have a shorter shelf life of perhaps one hour (users like to update 
them frequently). The expiration is expressed through the HTTP Cache-Control header. 
Because the Cache-Control caching directive is a long-established Internet standard, 
web browsers understand and handle this directive with ease. Beyond individual brows
ers, sometimes proxy servers or other intermediaries will cache, extending the caching 
benefits beyond a single user and beyond the CDN. Once the resource has expired, the 
CDN will remove it from its cache. (There are other possible behaviors with some CDN 
services, such as having the CDN check with the origin server to ascertain whether 
expired content has indeed changed, and still using the cached object if it has not.)

If a requested file is not available at the CDN node, the CDN service effectively acts as 
a middleman, and behind the scenes retrieves the file from the origin server, caches 
(stores) it in the CDN node, and then responds to the original request (which it can now 
do successfully).

Limitations of CDN
A CDN is not effective for use on resources that are infrequently accessed. A CDN is only 
efficient for use on resources that are usually accessed at least twice before expiring from 
the CDN cache.

A CDN is not effective for use on resources that change constantly, such as those changing 
with each request.

A CDN may be a poor choice for content that is not intended for public viewing.

A CDN really shines when used on frequently accessed files that seldom change.

Caches Can Be Inconsistent
The CDN stores copies of resources with a specified expiration date; thus a cached image 
file might be declared to be valid for one hour, one month, or whatever is appropriate 
for that resource. Any resource cached in a CDN is potentially stale because there is 
always a delay between updates to the source copy and propagation to the copy that is 
cached at the CDN. This is not necessarily a problem, but is a factor to consider carefully 
when deciding what to cache and for how long.

Caching resources in a CDN is an application of eventual consistency: 
immediate consistency is traded off for performance and scalability 
benefits.
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Example: Building PoP on Windows Azure
The Page of Photos (PoP) application (which was described in the Preface) stores all 
photos in Windows Azure Blob Storage. To improve the download experience for PoP 
users, all photo downloads are CDN-enabled.

In Windows Azure Blob Storage, individual blobs are stored in a blob container which, 
among other benefits, establishes a default security context for the blobs within it. Only 
blobs stored in public containers—where public means anyone knowing the URL to a 
file within the container can view that file—are eligible for caching in the CDN.

Configuring the CDN
Enabling the CDN for blobs is a trivial configuration change at the storage account level. 
In order for the CDN to sit between users and blob storage, a new domain name is created. 
This new domain name is system generated. That is, rather than using our own domain 
name (such as example.com), we use one assigned to us by the CDN service (such as 
jaromijo1213.vo.msecnd.net). A URL that used to be http://example.com/maura.png be
fore the CDN becomes http://jaromijo.vo.msecnd.net/maura.png with the CDN. You can 
optionally configure a vanity domain name of your own to make the CDN addresses 
appear less chaotic; this vanity domain name is also known as canonical name (or 
CNAME) in DNS terms. PoP takes advantage of this vanity feature, creating http://
cdn.pageofphotos.com as the CDN domain so that photo URLs will be more consistent 
with the URL for the main application.

As of this writing, there are 8 Windows Azure data centers worldwide, but 24 Windows 
Azure CDN node locations. Since there are so many additional geographic locations 
brought into the mix, use of the CDN network greatly increases global coverage for lower 
latency content distribution. A resource needs to have been requested at least once in 
order to be loaded into the CDN cache. The first request for that resource will therefore 
have a poorer user experience than subsequent requestors. This scenario plays out at 
each CDN node, as each node needs to fill its own local cache. The scenario also repeats 
any time a resource is requested, but has expired from the CDN cache.

Each of the 24 CDN nodes operates independently, so each populates 
independently.

PoP photos do not change frequently, so when the photos are saved in blob storage, a 
Cache-Control header is set as a property on the individual blob, with the duration set 
to one month. If we ever needed to update a photo sooner, we would need to change the 
filename.
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The Windows Azure CDN does not currently have built-in support for 
pre-fetching an object to warm up a particular CDN node. Further, once 
an object is cached by the CDN, you can’t easily change your mind about 
it since there is no way to evict a particular object from the CDN before 
its specified cache expiration. Thus, tricks like file renaming or ap         
pending a “cache-buster” like a query string are used. For example, we 
could append a query string so that the cached image kd1hn.png be
comes kd1hn.png?v=1 to cause it to reload without finding the one in 
the current CDN. This requires a change to the reference used to access 
the image (such as the HTML page referencing it). These are cache tricks 
that happen to work with the CDN (since it is also a cache honoring 
HTTP headers); nothing is specific to the Windows Azure Cache.

Cost Considerations
The Windows Azure CDN access charges are the same as directly from blob storage, 
with no additional at-rest storage charge. Other than the cost of the one additional 
request needed to populate the CDN node, the cost will be identical to direct-from-blob 
access. Note that this “one additional request” happens for (a) each resource, (b) each 
time it is loaded from blob storage (the first time as well as the next time after cache 
expiration), and (c) in each CDN node from which the resource is accessed.

Security Considerations
The Windows Azure CDN only supports caching of files that are already freely visible 
to the public, so they do not decrease security or increase the attack surface.

The Windows Azure CDN supports access using HTTP or HTTPS. This is primarily a 
user experience benefit (because the files are already freely visible to the public) and 
comes into play when a user loads a page using HTTPS. Modern browsers typically 
display a warning if an HTTPS page references an image as HTTP, complaining about 
mixed security models. Such images can instead be accessed as HTTPS to improve the 
user experience.

Additional Capabilities
Though not explored in this chapter, there are other Windows Azure services related to 
CDN. For example, the CDN can serve files directly from a Web Role. Also, Windows 
Azure Media Services provide video streaming to the Windows Azure CDN. There are 
also other integrated services that help applications prepare media for download by 
many types of devices, such as transcoding services that make content equally accessible 
across mobile phone brands and desktop operating systems.
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As of this writing, the Windows Azure Media Services are currently in 
preview and not yet supported for production use.

Related Chapters

• Eventual Consistency Primer (Chapter 5)
• Network Latency Primer (Chapter 11)
• Colocate Pattern (Chapter 12)
• Valet Key Pattern (Chapter 13)
• Multisite Deployment Pattern (Chapter 15)

Summary
Adding CDN support to a cloud application is a great example of a low-friction adoption 
of a cloud service. Enabling a CDN can be accomplished either programmatically or 
through a one-time manual configuration via the cloud vendor’s web-hosted manage
ment tool. This is substantially easier to get started with than traditional CDNs due to 
the degree of convenience and integration.

Once enabled, this is a great technique for reducing the load on web servers, distributing 
load across many servers (there are many more CDN locations than data centers), while 
decreasing network latency. All this helps to both improve scalability and improve user 
experience.
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CHAPTER 15

Multisite Deployment Pattern

This advanced pattern focuses on deploying a single application to more than one data 
center.

Deploying to multiple data centers helps reduce network latency by routing a client to 
the nearest data center, which improves the user experience. This also provides the seeds 
of a solution that can handle failover across data centers and improve availability.

If multisite deployment does not improve user experience and your application does 
not need cross-data center failover, use of this pattern may be overkill.

Context
The Multisite Deployment Pattern is effective in dealing with the following challenges:

• Users are not clustered near any single data center, but form clusters around multiple 
data centers or are widely distributed geographically

• Regulations limit options for storing data in specific data centers
• Circumstances require that the public cloud be used in concert with on-premises 

resources
• Application must be resilient to the loss of a single data center

This pattern helps deal with a user base that is not conveniently clustered in a single 
geographic area. Some of the reasons for this include use of the application from un
predictable locations during travel, globally distributed mobile applications, and com
panies with offices distributed across many geographical locations.

This pattern is similar in some ways to CDN Pattern (Chapter 14), in that we strive to 
bring our application closer to our users. The CDN focus is on bringing files closer to 
our users, and it only helps when sending data to our users, not users sending data to 
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the application. This pattern is more powerful than a CDN because it brings more ap
plication facilities closer to users with lower latency, even when users send data to the 
application. This pattern is more limited in one way: there are many more CDN nodes 
than there are full-blown data centers. For these reasons, these two patterns are often 
used together.

Cloud Significance
Networking cloud services are available for geographic load balancing and cross-data 
center failover. Data-oriented cloud services are also available for database synchroni
zation and geo-replication of cloud storage. These services, plus access to multiple geo
graphically distributed data centers, simplify some of the most complex aspects of mul
tisite deployment.

Impact
Availability, Reliability, Scalability, User Experience

Mechanics
If all global traffic for an application is served from a single data center, then respon
siveness is better near that data center than from more distant regions of the world. 
Generally speaking, the farther away, the poorer the responsiveness. Which data center 
to choose then? This pattern is about choosing more than one data center to offer the 
best available user experience throughout the world.

The major public cloud platforms have multiple data centers on multiple continents. 
With Windows Azure and Amazon Web Services, you select the specific data center to 
which you will deploy. Let’s assume you choose one data center location in Asia, one in 
Europe, and one in the United States, and deploy an instance of your application to each 
data center.

Once your application is deployed to multiple data centers, you need to decide how users 
will be directed to the appropriate one. In this pattern, we will strive to make this process 
transparent to users in order to provide the best user experience. In the most basic 
scenarios, this requires smart routing and data replication services.

To route users to the closest data center, use your cloud platform’s service for geographic 
load balancing and configure it to direct users to the closest data center. These services 
include the Windows Azure Traffic Manager and Elastic Load Balancing from Amazon 
Web Services.

You also need to replicate data across all data centers if you want users to see the same 
data, regardless of the data center to which they route. This is further explored in the 
example given later in this chapter. The end result can be seen in Figure 15-1, where 
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data centers replicate data as needed. Since each data center has a local copy of any 
needed data, users can be conveniently routed to the one nearest to them for the best 
performance. As we shall see later, this topology also can be leveraged to handle rare 
scenarios when one of the data centers is not available.

Another possibility is to assign each user to a single data center, though 
that scenario is not explored.

With geographic load balancing and data replication in place, you have the basics of a 
multisite deployment. Users will experience better performance than if they always had 
to directly access data and services from a data center located on another continent.

Figure 15-1. Data centers stay in sync so that users can access the closest one, or an alter
nate in case of failure. The connection spanning the continents represents data center-to-
data center synchronization. External user devices are shown accessing the closest data 
center.

Non-Technical Considerations in Data Center Selection
Sometimes there are non-technical considerations that compel you to separate appli
cation tiers across data centers or to choose one data center over another. Sometimes a 
data center location is chosen in order to comply with government regulations, industry 
requirements, and other so-called data sovereignty issues. For example, some countries 
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in the European Union (EU) require that applications operating in the EU store per
sonally identifying information within the EU. As another example, the credit card in
dustry has specific expectations of applications handling credit card data. These ex
pectations may further limit or influence options in data center selection.

Finally, consider a business constraint in which a customer is not ready to move a da
tabase from its on-premises location into the cloud but wants to access it from cloud 
servers. Cloud platform services can extend a company’s internal network into the cloud 
with a Virtual Private Network (VPN). It securely handles this scenario so that appli
cations running on cloud resources can easily query databases located elsewhere. This 
is yet another factor influencing your data center footprint.

Thus, business considerations may override purely performance-based data center se
lection criteria. While these considerations can impact cloud architecture, a treatment 
of this complex topic is not the focus of this pattern.

Cost Implications
As of this writing, both Windows Azure and Amazon platforms charge a fee for data 
leaving the data center, but not for data coming into the data center. Thus, traffic across 
data centers would incur these charges. Of course, this applies even within a single data 
center location because remotely accessing a cloud application from outside the data 
center results in data leaving the data center. In the context of this pattern, this also 
applies to keeping databases in sync across data centers and accessing on-premises da
tabases.

Deploying your application across multiple data centers has cost implications. Such costs 
should be weighed against the user experience and the robustness limitations of a single 
data center. And of course, if multisite deployment is needed, consider the cost and 
complexity of doing this without the convenience of cloud services.

Failover Across Data Centers
Failover is a feature of an application that enables the application to continue to function 
using secondary resources when there is a failure with the primary resources. In the 
context of this pattern, we are concerned with the loss of a data center and the ability of 
our application to continue to function using the other available data centers. We may 
want to failover from one data center to another due to a natural disaster, such as a 
hurricane, or due to a failure by the cloud provider, such as a software bug or configu
ration error that impacts services.

The tools and techniques used to create a multisite deployment can also help to make 
your application more failure-resistant. The same services used for geographic load 
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balancing that route users to the closest data center can be used to account for failover 
scenarios. In particular, they can be configured to monitor the health of the services to 
which they are directing users, and if any service is unavailable, traffic will be routed to 
a healthy instance.

It takes time for the geographic load balancer to figure out that a service is not responding 
before it fails over to a healthy copy. During that time, application access may result in 
errors. Client-side retries, such as Busy Signal Pattern (Chapter 9), can help shield users 
from these errors. Once failover is complete, users will be routed to data centers; if these 
data centers are on other continents, their experience will be degraded, but it will work. 
This is usually better than not working at all, although that depends on the specific 
application.

As unhealthy services become healthy again, traffic can be delivered, returning system 
responsiveness to maximum levels.

This scheme does not guarantee instant or seamless failover. There will 
be downtime.

One approach to failover is to have the secondary resources already deployed, just in 
case they are needed. This arrangement is known as either active/passive or active/
active, depending on whether the secondary resources are just sitting around in case 
they are needed or are in active use (the primary data center accounts for the first “active” 
resource). Another option is to not have any spare resources that are already running, 
but to deploy those resources as needed for a failover. This obviously would take longer, 
but is also less costly. This topic is explored further in the Example.

This is part of a larger disaster recovery (DR) plan. Many of these concerns parallel those 
for non-cloud applications, but are beyond the scope of this chapter.

Example: Building PoP on Windows Azure
The Page of Photos (PoP) application (which was described in the Preface) faces a few 
challenges in providing a seamless user experience across the globe:

• Routing users to the nearest data center so that they have the best user experience
• Replicating account data so that it is available at all data centers, both for account 

owners and visitors
• Replicating identity information so that we can correctly authenticate a user in any 

data center and know they are the same user
• Serving photos globally and efficiently

Example: Building PoP on Windows Azure | 137



Choosing a Data Center
As of this writing, Windows Azure offers eight geographically distributed data centers:

• Two in Asia: East (Hong Kong) and Southeast (Singapore)
• Two in Europe: North (Netherlands) and West (Ireland)
• Four in the United States: North Central (Illinois), East (Virginia), South Central 

(Texas), and West (California)

Since PoP users are all over the world, we will deploy to one data center in Asia (Sin
gapore), one in Europe (Ireland), and one in North America (Virginia). However, PoP 
users should not need to know about the three data centers; using PoP should just work, 
regardless of where the user is. In other words, http://www.pageofphotos.com should be 
the only address a user ever needs to remember.

Routing to the Closest Data Center
Windows Azure Traffic Manager is a scalable, highly available, easily configured, geo
graphic load balancing service that continually monitors the responsiveness of all ap
plication deployments behind the scenes. It ensures that a visitor to http://www.pageof
photos.com is transparently directed to the data center that will give the visitor the best 
response.

Configuring Traffic Manager
Traffic Manager configuration includes specifying a public domain name (http://
www.pageofphotos.com) that users see, listing the individual instances (http://pop-
asia.cloudapp.net, http://pop-eur.cloudapp.net, http://pop-usa.cloudapp.net), and config 
uring the routing rules for the closest instance. The endpoint names listed are just exam
ples, but show use of a consistent naming pattern that can help avoid confusion and errors.

In our case, as an example, visiting http://www.pageofphotos.com/timothy from Asia 
would be satisfied by the http://pop-asia.cloudapp.net instance.

Replicating User Data for Performance
Consider a PoP user in Ireland who posts some new photos. They can be neatly and 
efficiently stored in the Ireland data center with a minimum of network latency. The 
collection can be shared with friends in Ireland who also access them from the Ireland 
data center. So far, so good.
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Now consider that a link to this page of photos is emailed to some friends in Boston. 
Traffic from Boston will be routed to the Virginia data center. What will happen? To 
make it work, the Virginia data center needs access to the same data that was saved to 
the Ireland data center. Our approach with PoP is split into two complementary schemes: 
one for uploaded photos, another for the rest of the account data.

The photos are uploaded to blobs in Window Azure Storage in the nearest data center. 
The application makes no effort to explicitly replicate these photos to other data centers. 
Thumbnails for these photos are generated in the same data center [using Queue-Centric 
Workflow Pattern (Chapter 3)] and also stored as blobs. Photos are not replicated to all 
data centers as we plan to rely on CDN Pattern (Chapter 14) to deliver them most effi
ciently to users.

In addition to the photos, there is metadata around the photos such as:

• The account responsible for uploading the photo
• The URL needed for accessing the photo
• The text description of the photo
• And so on.

This data is stored in a Windows Azure SQL Database. The new photo is uploaded to 
the nearest data center. The metadata is saved to SQL Database in the nearest data center. 
But, unlike the photo blobs, the SQL Database data is replicated across all three data 
centers using SQL Database Data Sync service.

Configuring Data Sync
SQL Data Sync service configuration requests the provisioning of a Data Sync Server, 
creates a Sync Group that will specify the database instances to be kept in sync, then adds 
the database names of the three instances that will be kept in sync to the Sync Group. It 
selects the desired sync rules, and lets it run. Syncs happen on a schedule; the most ag
gressive supported frequency is five minutes between synchronization jobs.

As of this writing, the SQL Database Data Sync service is currently in 
preview. It is not yet supported for production use.

A user from anywhere in the world will be directed to the nearest data center when 
accessing a page of photos. It returns the HTML page of photos; the individual photos 
will be served up from one of the 24 global CDN nodes.
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Note the eventual consistency of SQL Database instances. Consider our earlier example 
of a PoP user from Ireland sharing a page of photos with a friend in Boston. There will 
be a short window of time during which PoP users in Ireland see new photos, but PoP 
users in the United States (and Asia) do not; this is eventually resolved as the SQL 
Database Data Sync service catches up.

Replicating Identity Information for Account Owners
While any anonymous user can view any page of photos, all uploaded photos belong to 
a PoP account holder. An account on PoP is easily created because it does not manage 
user credentials, but rather relies on federated authentication. PoP is configured to allow 
users to log in using an identity provider (IdP) that they are likely already using. Sup
ported IdPs leveraged by PoP include Google, Yahoo!, and Facebook. (Many other 
identity providers can be supported, but PoP chooses not to make use of them.) The 
first time a user signs into their IdP, they give their IdP permission to share login in
formation with PoP. (Actually, the IdP shares with the Access Control Service (ACS), 
not directly with PoP. PoP gets the information from ACS.) For any IdP supported by 
PoP, the important item we want is a validated email address. Because each IdP trusted 
by PoP is reputable, we trust it. We then use the email address as a unique account key 
in our SQL Database instances. This way, we can tie uploaded photos to a specific user 
account.

Note further that PoP does not know or store the user’s password. Only the underlying 
IdP does. Using cryptographic techniques, the IdP can securely communicate to PoP 
that users are who they say they are and pass along a cryptographically secure claim that 
provides their email address. This is all PoP needs. The PoP development effort can be 
focused on features, not infrastructure.

Federated identity, claims, and identity providers are important con
cepts for building applications that deal with identity in a cloud-native 
manner. A whole book could be written to explain these important 
topics. (In fact, Appendix A references such a book.) The key takeaway 
for this chapter is that some external entity (an IdP) is telling us the 
current user owns a specific email address (indicated by a claim) and 
that we can trust that this is accurate.

The Windows Azure Access Control Service (ACS) acts as an intermediary between PoP 
and each IdP. It turns out that this is a huge simplification for PoP because there is so 
much variation in how an IdP can behave. It can be fairly complicated if your application 
needs to interact with the IdP directly. ACS helps applications manage the relationship 
with one or more identity providers, abstracting away the implementation details and 
normalizing them so that claims are consistent when they reach your application.
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Configuring ACS
Access Control Service configuration consists of establishing a set of rules for each sup
ported provider. The basic process is mostly handled through a set of well-defined steps 
in a wizard-like user interface; this is appropriate as such configurations are routine. 
Google and Yahoo! configurations can be completed in the ACS interface, though Face
book requires additional configuration at the Facebook site. ACS also can be configured 
programmatically. The configuration for PoP is simple: pass through all claims from the 
IdP (which will include an email address claim), and inject an "Admin" role claim for a 
few special email accounts (for PoP site administrators).

This description of how ACS helps authentication work for PoP is necessary to provide 
context for the multisite deployment. The upshot is that this configuration needs to be 
repeated for each identity provider in each supported data center.

Data Center Failover
Given the measures we have taken to make PoP available in three data centers, what 
more do we need to do to ensure we can failover in the event one of the data centers 
fails?

Supporting data center failover is a big decision with many risks and 
tradeoffs. The approach outlined here is appropriate for the PoP appli
cation and business. These risks and tradeoffs may or may not be ac
ceptable for your application and business.

PoP replicates Windows Azure SQL Database instances. As mentioned previously, there 
is still a window within which data loss could occur. If this is not good enough, it may 
be challenging to overcome.

PoP has Access Control Service identity providers configured in each data center so that 
PoP will recognize the data center, regardless of which one is used to authenticate.

PoP uses Windows Azure Storage to save photos and thumbnails as blobs. We have taken 
no measures to replicate them because the Windows Azure Platform geo-replicates blobs 
on our behalf. (Windows Azure Storage Tables are also geo-replicated.) Each data center 
is paired with another on the same continent. In the list of data centers above, the two 
Asia data centers replicate, the two Europe data centers replicate, and in the United 
States, North Central replicates with South Central, and East replicates with West. In 
the extremely rare event of a disaster so great that a data center is lost or unavailable for 
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an extended period of time, storage will failover to its replication pair. You do not need 
to do anything. There will be a period of time when blob requests fail, but once the 
failover is complete, they will resume working correctly. Note, however, that there is still 
a window within which data loss could occur.

PoP uses the CDN to deliver photos and thumbnails close to the users. Because all of 
the eight Windows Azure data centers also host CDN nodes, a data center failure could 
likewise impact the CDN. Furthermore, the other CDN nodes could be impacted in
dependently. The built-in CDN routing logic will notice a failure of a CDN node and 
change where traffic is routed. There is still a window within which files may not be 
delivered. Given the nature of the CDN, it is likely that the many distributed CDN nodes 
will somewhat shield users during the interval where blobs are unavailable and in the 
process of being failed over because many photos will already be cached around the 
world.

The final step is to update the configuration in Traffic Manager. Earlier we described 
how Traffic Manager routes to the closest (most responsive) data center. Traffic Manager 
also handles failover scenarios. For example, if a hurricane rendered the Virginia data 
center unavailable, Traffic Manager can route users to Singapore or Ireland (whichever 
it determines to be faster for any individual user). While the user experience is degraded 
compared to direct access to the North American data center, it is a better user experi
ence than no availability. There is still a window within which Traffic Manager may 
route to a failing data center.

Because the data center can failover to resources that are already provisioned and in 
active use, this is an active/active failover configuration.

Considering Disaster Recovery and User Experience
How should use of multisite deployment balance disaster recovery (DR) and user expe
rience (primarily performance) benefits? There is no single right answer, but it is generally 
helpful to look at DR and user experience as independent concerns that happen to have 
overlapping solutions. Either could drive the decision to go multisite, or the combined 
value may be needed to justify a multisite deployment.

Colocation Alternatives
As mentioned earlier, there are a number of non-technical business factors that may 
limit location options for data storage. In Windows Azure, there are a number of features 
that might be of use in making the most of such constraints. Briefly, these include:
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• Windows Azure Virtual Networking and Windows Azure Connect support a secure 
Virtual Private Network (VPN) connection between your Windows Azure service 
and another network. This enables many integration scenarios, such as allowing 
compute resources running in Windows Azure to access a database running in a 
private data center.

• Windows Azure Service Bus supports several secure scenarios for communication 
across firewalls, publish/subscribe to connected devices, and publish/subscribe to 
disconnected devices. These capabilities enable secure and efficient communica
tion across applications regardless of firewall or data center configurations.

• SQL Data Sync Service use for cloud-to-cloud synchronization was already de         
scribed. This service can also be used to synchronize between the cloud and on-
premises databases.

These services can help integrate with a database or services that are on premises or in 
another data center.

Related Chapters

• Horizontally Scaling Compute Pattern (Chapter 2)
• Queue-Centric Workflow Pattern (Chapter 3)
• Eventual Consistency Primer (Chapter 5)
• Node Failure Pattern (Chapter 10)
• Network Latency Primer (Chapter 11)
• Colocate Pattern (Chapter 12)
• Valet Key Pattern (Chapter 13)
• CDN Pattern (Chapter 14)

Summary
Using the Multisite Deployment Pattern primarily helps improve the user experience 
for a geographically distributed user base. Users need not be all over the world, but at 
least distributed such that more than one data center provides sufficient value if the goal 
is to improve performance.

This pattern is also useful for applications requiring a failover strategy in case one data 
center becomes unavailable. This is a complex subject, but many of the components in 
this chapter will get you started.
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Because the use of this pattern will result in a more complex and more expensive ap
plication than a single data center solution, the business value needs to be assessed and 
compared with the cost.
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APPENDIX A

Further Reading

Page of Photos (PoP) Sample
The Page of Photos sample application is used throughout the book. Parts of it have 
already been implemented using Windows Azure to demonstrate ideas in the book. The 
code for Page of Photos (minimalist at first, then built out over time by the author and 
some accomplices) will be shared in a public repo on GitHub.

• Run the Page of Photos (PoP) sample application: http://www.pageofphotos.com
• View the Page of Photos (PoP) sample application source code: http://

www.github.com/codingoutloud/pageofphotos
• Find information about the book and possibly related content in the future: http://

www.cloudarchitecturebook.com

Resources From Preface and Chapters
• Windows Azure Platform: http://www.windowsazure.com
• Amazon Web Services: http://aws.amazon.com/
• Google App Engine: http://developers.google.com/appengine/
• A NIST Definition of Cloud Computing (SP 800-145 Sept. 2011): http://

csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
• (NIST) Cloud Computing Synopsis and Recommendations (SP 800-146 May 2012): 

http://csrc.nist.gov/publications/nistpubs/800-146/sp800-146.pdf
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Chapter 1
• “A Compuware analysis of 33 major retailers across 10 million home page views 

showed that a 1-second delay in page load time reduced conversions by 7%.” Source: 
Compuware, April 2011.

• “Google observed that adding a 500-millisecond delay to page response time caused 
a 20% decrease in traffic” Source: Marissa Mayer, “What Google Knows” talk at 
Web 2.0 Conf 2006 (11/09/2006): http://conferences.oreillynet.com/presentations/
web2con06/mayer.ppt

• “Yahoo! observed a 400-millisecond delay caused a 5-9% decrease [in traffic].” And 
“Amazon.com reported that a 100-millisecond delay caused a 1% decrease in retail 
revenue.” Source: http://blog.yottaa.com/2010/11/secret-sauce-for-successful-web-
site-web-performance-optimization-wpo

• “Google has started using web-site performance as a signal in its search engine 
rankings.” Source: Using site speed in web search ranking: http://googlewebmaster
central.blogspot.com/2010/04/using-site-speed-in-web-search-ranking.html

• Example of a self-inflicted scaling failure: http://glinden.blogspot.com/2006/11/
amazon-crashes-itself-with-promotion.html

• ITIL: http://en.wikipedia.org/wiki/Information_Technology_Infrastructure_Library

Chapter 2
• Windows Azure Storage Analytics: Logs and Metrics: http://blogs.msdn.com/b/

windowsazurestorage/archive/2011/08/03/windows-azure-storage-analytics.aspx
• Windows Azure Diagnostics: http://msdn.microsoft.com/en-us/library/windowsa

zure/gg433048.aspx
• About Load Balancers: http://1wt.eu/articles/2006_lb/

Chapter 3
• Comparing Windows Azure Storage Queues with Amazon Simple Queue Service: 

http://gauravmantri.com/2012/04/15/comparing-windows-azure-queue-service-
and-amazon-simple-queue-servicesummary/

• Comparing the two queue services offered by Windows Azure: http://msdn.micro
soft.com/en-us/library/windowsazure/hh767287.aspx

• Update Message on a Windows Azure Queue: http://msdn.microsoft.com/en-us/
library/windowsazure/hh452234

• Loose coupling: http://en.wikipedia.org/wiki/Loose_coupling
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• Long Polling with SignalR for ASP.NET: http://signalr.net
• Long Polling with Socket.IO for Node.js: http://socket.io
• CQRS Pattern: http://martinfowler.com/bliki/CQRS.html
• CQRS: http://www.cqrsinfo.com/
• Event Sourcing: http://martinfowler.com/eaaDev/EventSourcing.html

Chapter 4
• Enterprise Library 5.0 Integration Pack for Windows Azure (contains WASABi): 

http://msdn.microsoft.com/en-us/library/hh680918
• Hosted services that can be used to monitor and autoscale your Windows Azure 

applications include AzureWatch from Paraleap Technologies and AzureOps from 
Opstera.

• Auto-Scaling on Amazon Web Services: http://aws.amazon.com/autoscaling
• Ticket Direct case study that sharded databases then consolidated depending on 

ticket sales: New Zealand-based TicketDirect International: http://www.micro
soft.com/casestudies/Case_Study_Detail.aspx?CaseStudyID=4000005890

Chapter 5
• Life beyond Distributed Transactions: an Apostate’s Opinion (by Pat Helland): 

http://www-db.cs.wisc.edu/cidr/cidr2007/papers/cidr07p15.pdf
• CAP Twelve Years Later: How the “Rules” Have Changed (by Eric Brewer): http://

www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
• Introducing BASE: http://queue.acm.org/detail.cfm?id=1394128
• Introducing Eventual Consistency: http://queue.acm.org/detail.cfm?id=1466448
• Eventual consistency in CloudFront: http://docs.amazonwebservices.com/Amazon

CloudFront/latest/DeveloperGuide/Concepts.html
• Google BigTable: https://developers.google.com/appengine/docs/python/datastore/

overview
• Amazon Dynamo SOSP paper: http://www.allthingsdistributed.com/files/amazon-

dynamo-sosp2007.pdf
• Azure Storage SOSP paper: http://sigops.org/sosp/sosp11/current/2011-Cascais/

printable/11-calder.pdf
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Chapter 6
• Hadoop: http://hadoop.apache.org
• Hadoop on Windows Azure: http://www.hadooponazure.com

Chapter 7
• An Unorthodox Approach to Database Design: The Coming of the Shard from High 

Scalability blog: http://highscalability.com/unorthodox-approach-database-design-
coming-shard.

• The official source for learning about Federations in Windows Azure SQL Database.
• For anyone interested in Federations for Windows Azure SQL Database, Cihan 

Biyikoglu's blog is a must-read. Some particularly useful posts are listed below.
— Implementing MERGE command using SQL Azure Migration Wizard by 

@gihuey: http://blogs.msdn.com/b/cbiyikoglu/archive/2012/02/20/implementing-
alter-federation-merge-at-command-using-sql-azure-migration-wizard-by-
gihuey.aspx.

— Introduction to Fan-out Queries for Federations in SQL Azure (Part 1): Scalable 
Queries over Multiple Federation Members, MapReduce Style!: http://
blogs.msdn.com/b/cbiyikoglu/archive/2011/12/29/introduction-to-fan-out-
queries-querying-multiple-federation-members-with-federations-in-sql-
azure.aspx.

• Integrated sharding support with Windows Azure SQL Database Federations: 
http://blogs.msdn.com/b/cbiyikoglu/archive/2012/02/08/connection-pool-
fragmentation-scale-to-100s-of-nodes-with-federations-and-you-won-t-need-to-
ever-learn-what-these-nasty-problems-are.aspx

• Federations: http://msdn.microsoft.com/en-us/magazine/hh848258.aspx
• Choosing a shard key in MongoDB: http://www.mongodb.org/display/DOCS/Choos

ing+a+Shard+Key
• SQL Azure Data Sync: http://msdn.microsoft.com/en-us/library/windowsazure/

hh667301.aspx
• Windows Azure Table Storage service: http://www.windowsazure.com/en-us/devel

op/net/how-to-guides/table-services/
• Generating a GUID as a cluster key with NEWID for Federations on SQL Database: 

http://msdn.microsoft.com/en-us/library/ms190348.aspx
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Chapter 8
• Definition of multitenancy: http://en.wikipedia.org/wiki/Multitenancy
• Definition of commodity hardware: http://en.wikipedia.org/wiki/Commodity_hard

ware

Chapter 9
• Definition of multitenancy: http://en.wikipedia.org/wiki/Multitenancy
• Transient Fault Handling Application Block (Topaz): http://msdn.microsoft.com/en-

us/library/hh680934(v=PandP.50).aspx
• Scalability Targets for Windows Azure Storage: http://blogs.msdn.com/b/windowsa

zurestorage/archive/2010/05/10/windows-azure-storage-abstractions-and-their-
scalability-targets.aspx

• Implementing Retry Logic on Windows Azure: http://www.davidaiken.com/
2011/10/10/implementing-windows-azure-retry-logic/

• Fault isolation and recovery: http://www.faqs.org/rfcs/rfc816.html
• Chaos Monkey from Netflix: http://techblog.netflix.com/2011/07/netflix-simian-

army.html

Chapter 10
• Understanding Network Failures in Data Centers: Measurement, Analysis, and Im

plications: http://research.microsoft.com/en-us/um/people/navendu/papers/green
berg09vl2.pdf

• How Windows Azure knows a Role Instance (node) is faulty: http://blogs.msdn.com/
b/mcsuksoldev/archive/2010/05/10/how-does-azure-identify-a-faulty-role-
instance.aspx

• Windows Azure Troubleshooting Best Practices: http://msdn.microsoft.com/en-us/
library/windowsazure/hh771389.aspx

• Updating a Windows Azure deployment, including Fault Domains and Update 
Domains: http://msdn.microsoft.com/en-us/library/ff966479.aspx

Chapter 11
• Ping utility: http://en.wikipedia.org/wiki/Ping
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• It’s the Latency Stupid essay: http://rescomp.stanford.edu/~cheshire/rants/Laten
cy.html

Chapter 12
• On the importance of affinity groups: https://msmvps.com/blogs/nunogodinho/

archive/2012/03/04/importance-of-affinity-groups-in-windows-azure.aspx

Chapter 13
• Windows Azure Toolkits for Mobile Devices (Android, iOS, Windows Phone, and 

more): https://github.com/WindowsAzure-Toolkits
• Restricting Access to Containers and Blobs Windows Azure: http://msdn.micro

soft.com/en-us/library/windowsazure/dd179354
• Web Browser Same Origin Policy: http://en.wikipedia.org/wiki/Same_origin_policy
• Using a Shared Access Signature (REST API): http://msdn.microsoft.com/en-us/

library/windowsazure/ee395415.aspx
• Rahul Rai’s sample code showing access to Windows Azure Blob Storage from 

HTML 5 Web Browser: http://code.msdn.microsoft.com/windowsazure/Silverlight-
Azure-Blob-3b773e26

• Trusted Subsystem Design: http://msdn.microsoft.com/en-us/library/
aa905320.aspx

Chapter 14
• Anycast protocol enables geographic load balancing for CDN: http://en.wikipe

dia.org/wiki/Anycast
• Windows Azure Media Service: https://www.windowsazure.com/en-us/home/

features/media-services/
• Recorded talk on Windows Azure CDN: http://channel9.msdn.com/Events/TechEd/

NorthAmerica/2011/COS401

Chapter 15
• Windows Azure SQL Data Sync service: http://msdn.microsoft.com/en-us/library/

windowsazure/hh456371.aspx
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• Windows Azure Traffic Manager: http://msdn.microsoft.com/en-us/wazplatform
trainingcourse_windowsazuretrafficmanager.aspx

• A Guide to Claims-Based Identity and Access Control: http://msdn.microsoft.com/
en-us/library/ff423674.aspx

• Windows Azure Access Control Service: http://msdn.microsoft.com/en-us/library/
windowsazure/gg429786.aspx

• Automating the Windows Azure Access Control Service (ACS): http://msdn.micro
soft.com/en-us/library/gg185927.aspx

• ACS automation sample code: http://acs.codeplex.com/releases/view/57595
• SQL Azure Point In Time Restore now available in preview: http://www.micro

soft.com/en-us/download/details.aspx?id=28364
• Business Continuity in Windows Azure SQL Database: http://msdn.microsoft.com/

en-us/library/windowsazure/hh852669.aspx
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We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.
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