

Bill Wilder

Cloud Architecture Patterns

ISBN: 978-1-449-31977-9

[LSI]

Cloud Architecture Patterns
by Bill Wilder

Copyright © 2012 Bill Wilder. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis
Production Editor: Holly Bauer

Proofreader: BIM Publishing Services
Indexer: BIM Publishing Services
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Elizabeth O’Connor, Rebecca Demarest

Revision History for the First Edition:

2012-09-20 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449319779 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Cloud Architecture Patterns, the image of a sand martin, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449319779

Table of Contents

Preface. ix

1. Scalability Primer. 1
Scalability Defined 1

Vertically Scaling Up 3
Horizontally Scaling Out 3
Describing Scalability 5
The Scale Unit 6

Resource Contention Limits Scalability 6
Easing Resource Contention 6

Scalability is a Business Concern 7
The Cloud-Native Application 9

Cloud Platform Defined 9
Cloud-Native Application Defined 10

Summary 11

2. Horizontally Scaling Compute Pattern. 13
Context 13

Cloud Significance 14
Impact 14
Mechanics 14

Cloud Scaling is Reversible 14
Managing Session State 17
Managing Many Nodes 20

Example: Building PoP on Windows Azure 22
Web Tier 23
Stateless Role Instances (or Nodes) 23
Service Tier 24
Operational Logs and Metrics 25

iii

Summary 26

3. Queue-Centric Workflow Pattern. 27
Context 28

Cloud Significance 28
Impact 28
Mechanics 28

Queues are Reliable 30
Programming Model for Receiver 31
User Experience Implications 36
Scaling Tiers Independently 37

Example: Building PoP on Windows Azure 38
User Interface Tier 38
Service Tier 39
Synopsis of Changes to Page of Photos System 40

Summary 41

4. Auto-Scaling Pattern. 43
Context 43

Cloud Significance 44
Impact 44
Mechanics 44

Automation Based on Rules and Signals 45
Separate Concerns 46
Be Responsive to Horizontally Scaling Out 47
Don’t Be Too Responsive to Horizontally Scaling In 47
Set Limits, Overriding as Needed 48
Take Note of Platform-Enforced Scaling Limits 48

Example: Building PoP on Windows Azure 48
Throttling 50
Auto-Scaling Other Resource Types 50

Summary 51

5. Eventual Consistency Primer. 53
CAP Theorem and Eventual Consistency 53
Eventual Consistency Examples 54
Relational ACID and NoSQL BASE 55
Impact of Eventual Consistency on Application Logic 56

User Experience Concerns 57
Programmatic Differences 57

iv | Table of Contents

Summary 58

6. MapReduce Pattern. 59
Context 60

Cloud Significance 61
Impact 61
Mechanics 61

MapReduce Use Cases 62
Beyond Custom Map and Reduce Functions 63
More Than Map and Reduce 64

Example: Building PoP on Windows Azure 64
Summary 65

7. Database Sharding Pattern. 67
Context 67

Cloud Significance 68
Impact 68
Mechanics 68

Shard Identification 70
Shard Distribution 70
When Not to Shard 71
Not All Tables Are Sharded 71
Cloud Database Instances 72

Example: Building PoP on Windows Azure 72
Rebalancing Federations 73
Fan-Out Queries Across Federations 74
NoSQL Alternative 75

Summary 76

8. Multitenancy and Commodity Hardware Primer. 77
Multitenancy 77

Security 78
Performance Management 78
Impact of Multitenancy on Application Logic 79

Commodity Hardware 79
Shift in Emphasis from MTBF to MTTR 80
Impact of Commodity Hardware on Application Logic 81
Homogeneous Hardware 82

Summary 82

9. Busy Signal Pattern. 83
Context 83

Table of Contents | v

Cloud Significance 84
Impact 84
Mechanics 84

Transient Failures Result in Busy Signals 85
Recognizing Busy Signals 87
Responding to Busy Signals 87
User Experience Impact 88
Logging and Reducing Busy Signals 89
Testing 89

Example: Building PoP on Windows Azure 90
Summary 91

10. Node Failure Pattern. 93
Context 93

Cloud Significance 94
Impact 94
Mechanics 94

Failure Scenarios 94
Treat All Interruptions as Node Failures 95
Maintain Sufficient Capacity for Failure with N+1 Rule 96
Handling Node Shutdown 96
Recovering From Node Failure 98

Example: Building PoP on Windows Azure 99
Preparing PoP for Failure 99
Handling PoP Role Instance Shutdown 101
Recovering PoP From Failure 104

Summary 104

11. Network Latency Primer. 105
Network Latency Challenges 105
Reducing Perceived Network Latency 107
Reducing Network Latency 107
Summary 107

12. Colocate Pattern. 109
Context 109

Cloud Significance 110
Impact 110
Mechanics 110

Automation Helps 111
Cost Considerations 111
Non-Technical Considerations 111

vi | Table of Contents

Example: Building PoP on Windows Azure 111
Affinity Groups 112
Operational Logs and Metrics 112

Summary 113

13. Valet Key Pattern. 115
Context 115

Cloud Significance 116
Impact 116
Mechanics 117

Public Access 118
Granting Temporary Access 119
Security Considerations 120

Example: Building PoP on Windows Azure 121
Public Read Access 121
Shared Access Signatures 122

Summary 123

14. CDN Pattern. 125
Context 126

Cloud Significance 127
Impact 127
Mechanics 127

Caches Can Be Inconsistent 128
Example: Building PoP on Windows Azure 129

Cost Considerations 130
Security Considerations 130
Additional Capabilities 130

Summary 131

15. Multisite Deployment Pattern. 133
Context 133

Cloud Significance 134
Impact 134
Mechanics 134

Non-Technical Considerations in Data Center Selection 135
Cost Implications 136
Failover Across Data Centers 136

Example: Building PoP on Windows Azure 137
Choosing a Data Center 138
Routing to the Closest Data Center 138
Replicating User Data for Performance 138

Table of Contents | vii

Replicating Identity Information for Account Owners 140
Data Center Failover 141
Colocation Alternatives 142

Summary 143

A. Further Reading. 145

Index. 153

viii | Table of Contents

Preface

This book focuses on the development of cloud-native applications. A cloud-native ap
plication is architected to take advantage of specific engineering practices that have
proven successful in some of the world’s largest and most successful web properties.
Many of these practices are unconventional, yet the need for unprecedented scalability
and efficiency inspired development and drove adoption in the relatively small number
of companies that truly needed them. After an approach has been adopted successfully
enough times, it becomes a pattern. In this book, a pattern is an approach that can be
duplicated to produce an expected outcome. Use of any of the patterns included in this
book will impact the architecture of your application, some in small ways, some in large
ways.

Historically, many of these patterns have been risky and expensive to implement, and
it made sense for most companies to avoid them. That has changed. Cloud computing
platforms now offer services that dramatically lower the risk and cost by shielding the
application from most of the complexity. The desired benefit of using the pattern is the
same, but the cost and complexity of realizing that benefit is lower. The majority of
modern applications can now make practical use of these heretofore seldom used
patterns.

Cloud platform services simplify building cloud-native applications.

The architecture patterns described in this book were selected because they are useful
for building cloud-native applications. None are specific to the cloud. All are relevant to
the cloud.

ix

Concisely stated, cloud-native applications leverage cloud-platform services to cost-
efficiently and automatically allocate resources horizontally to match current needs,
handle transient and hardware failures without downtime, and minimize network la
tency. These terms are explained throughout the book.

An application need not support millions of users to benefit from cloud-native patterns.
There are benefits beyond scalability that are applicable to many web and mobile ap
plications. These are also explored throughout the book.

The patterns assume the use of a cloud platform, though not any specific one. General
expectations are outlined in Scalability Primer (Chapter 1).

This book will not help you move traditional applications to the cloud
“as is.”

Audience
This book is written for those involved in—or who wish to become involved in—con
versations around software architecture, especially cloud architecture. The audience is
not limited to those with “architect” in their job title. The material should be relevant
to developers, CTOs, and CIOs; more technical testers, designers, analysts, product
managers, and others who wish to understand the basic concepts.

For learning beyond the material in this book, paths will diverge. Some readers will not
require information beyond what is provided in this book. For those going deeper, this
book is just a starting point. Many references for further reading are provided in Ap
pendix A.

Why This Book Exists
I have been studying cloud computing and the Windows Azure Platform since it was
unveiled at the Microsoft Professional Developer’s Conference (PDC) in 2008. I started
the Boston Azure Cloud User Group in 2009 to accelerate my learning, I began writing
and speaking on cloud topics, and then started consulting. I realized there were many
technologists who had not been exposed to the interesting differences between the
application-building techniques they’d been using for years and those used in creating
cloud-native applications.

The most important conversations about the cloud are more about
architecture than technology.

x | Preface

This is the book I wish I could have read myself when I was starting to learn about cloud
and Azure, or even ten years ago when I was learning about scaling. Because such a
book did not materialize on its own, I have written it. The principles, concepts, and
patterns in this book are growing more important every day, making this book more
relevant than ever.

Assumptions This Book Makes
This book assumes that the reader knows what the cloud is and has some familiarity
with how cloud services can be used to build applications with Windows Azure, Amazon
Web Services, Google App Engine, or similar public or private cloud platforms. The
reader is not expected to be familiar with the concept of a cloud-native application and
how cloud platform services can be used to build one.

This book is written to educate and inform. While this book will help the reader un
derstand cloud architecture, it is not actually advising the use of any particular patterns.
The goal of the book is to provide readers with enough information to make informed
decisions.

This book focuses on concepts and patterns, and does not always directly discuss costs.
Readers should consider the costs of using cloud platform services, as well as trade-offs
in development effort. Get to know the pricing calculator for your cloud platform of
choice.

This book includes patterns useful for architecting cloud-native applications. This book
is not focused on how to (beyond what is needed to understand), but rather about when
and why you might want to apply certain patterns, and then which features in Windows
Azure you might find useful. This book intentionally does not delve into the detailed
implementation level because there are many other resources for those needs, and that
would distract from the real focus: architecture.

This book does not provide a comprehensive treatment of how to build cloud applica
tions. The focus of the pattern chapters is on understanding each pattern in the context
of its value in building cloud-native applications. Thus, not all facets are covered; em
phasis is on the big picture. For example, in Database Sharding Pattern (Chapter 7),
techniques such as optimizing queries and examining query plans are not discussed
because they are no different in the cloud. Further, this book is not intended to guide
development, but rather provide some options for architecture; some references are
given pointing to more resources for realizing many of the patterns, but that is not
otherwise intended to be part of this book.

Contents of This Book
There are two types of chapters in this book: primers and patterns.

Preface | xi

Individual chapters include:
Scalability Primer (Chapter 1)

This primer explains scalability with an emphasis on the key differences between
vertical and horizontal scaling.

Horizontally Scaling Compute Pattern (Chapter 2)
This fundamental pattern focuses on horizontally scaling compute nodes.

Queue-Centric Workflow Pattern (Chapter 3)
This essential pattern for loose coupling focuses on asynchronous delivery of com
mand requests sent from the user interface to a processing service. This pattern is
a subset of the CQRS pattern.

Auto-Scaling Pattern (Chapter 4)
This essential pattern for automating operations makes horizontal scaling more
practical and cost-efficient.

Eventual Consistency Primer (Chapter 5)
This primer introduces eventual consistency and explains some ways to use it.

MapReduce Pattern (Chapter 6)
This pattern focuses on applying the MapReduce data processing pattern.

Database Sharding Pattern (Chapter 7)
This advanced pattern focuses on horizontally scaling data through sharding.

Multitenancy and Commodity Hardware Primer (Chapter 8)
This primer introduces multitenancy and commodity hardware and explains why
they are used by cloud platforms.

Busy Signal Pattern (Chapter 9)
This pattern focuses on how an application should respond when a cloud service
responds to a programmatic request with a busy signal rather than success.

Node Failure Pattern (Chapter 10)
This pattern focuses on how an application should respond when the compute node
on which it is running shuts down or fails.

Network Latency Primer (Chapter 11)
This basic primer explains network latency and why delays due to network latency
matter.

Colocate Pattern (Chapter 12)
This basic pattern focuses on avoiding unnecessary network latency.

Valet Key Pattern (Chapter 13)
This pattern focuses on efficiently using cloud storage services with untrusted cli
ents.

xii | Preface

CDN Pattern (Chapter 14)
This pattern focuses on reducing network latency for commonly accessed files
through globally distributed edge caching.

Multisite Deployment Pattern (Chapter 15)
This advanced pattern focuses on deploying a single application to more than one
data center.

Appendix A
The appendix contains a list of references for readers interested in additional ma
terial related to the primers and patterns presented in the book.

The primers exist to ensure that readers have the proper background to appreciate the
pattern; primers precede the pattern chapters for which that background is needed. The
patterns are the heart of the book and describe how to address specific challenges you
are likely to encounter in the cloud.

Because individual patterns tend to impact multiple architectural concerns, these pat
terns defy placement into a clean hierarchy or taxonomy; instead, each pattern chapter
includes an Impact section (listing the areas of architectural impact). Other sections
include Context (when this pattern might be useful in the cloud); Mechanics (how the
pattern works); an Example (which uses the Page of Photos sample application and
Windows Azure); and finally a brief Summary. Also, many cross-chapter references are
included to highlight where patterns overlap or can be used in tandem.

Although the Example section uses the Windows Azure platform, it is intended to be
read as a core part of the chapter because a specific example of applying the pattern is
discussed.

The book is intended to be vendor-neutral, with the exception that Example sections in
pattern chapters necessarily use terminology and features specific to Windows Azure.
Existing well-known names for concepts and patterns are used wherever possible. Some
patterns and concepts did not have standard vendor-neutral names, so these are pro
vided.

Building Page of Photos on Windows Azure
Each pattern chapter provides a general introduction to one cloud architecture pattern.
After the general pattern is introduced, a specific use case with that pattern is described
in more depth. This is intended to be a concrete example of applying that pattern to
improve a cloud-native application. A single demonstration application called Page of
Photos is used throughout the book.

The Page of Photos application, or PoP for short, is a simple web application that allows
anyone to create an account and add photos to that account.

Preface | xiii

Each PoP account gets its own web address, which is the main web address followed by
a folder name. For example, http://www.pageofphotos.com/widaketi displays photos un
der the folder name widaketi.

The PoP application was chosen because it is very simple to understand, while also
allowing for enough complexity to illustrate the patterns without having sample appli
cation details get in the way.

This very basic introduction to PoP should get you started. Features are added to PoP
in the Example section in each pattern chapter, always using Windows Azure capabilities,
and always related to the general cloud pattern that is the focus of the chapter. By the
end of the book, PoP will be a more complete, well-architected cloud-native application.

The PoP application was created as a concrete example for readers of
this book and also as an exercise for double-checking some of the pat
terns. Look for it at http://www.pageofphotos.com.

Windows Azure is used for the PoP example, but the concepts apply as readily to Amazon
Web Services and other cloud services platforms. I chose Windows Azure because that’s
where I have deep expertise and know it to be a rich and capable platform for cloud-
native application development. It was a pragmatic choice.

Terminology
The book uses the terms application and web application broadly, even though service,
system, and other terms may be just as applicable in some contexts. More specific terms
are used as needed.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

xiv | Preface

http://www.pageofphotos.com/widaketi
http://www.pageofphotos.com

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this
book in your programs and documentation. You do not need to contact us for permis
sion unless you’re reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O’Reilly books does require per
mission. Answering a question by citing this book and quoting example code does not
require permission. Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Cloud Architecture Patterns by Bill Wilder
(O’Reilly). Copyright 2012 Bill Wilder, 978-1-449-31977-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand
digital library that delivers expert content in both book and video
form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley

Preface | xv

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals

Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/cloud_architecture_patterns.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
This is a far better book than I could have possibly written myself because of the generous
support of many talented people. I was thrilled that so many family members, friends,
and professional colleagues (note: categories are not mutually exclusive!) were willing
to spend their valuable time to help me create a better book. Roughly in order of
appearance…

Joan Wortman (UX Specialist) was the first to review the earliest book drafts (which
were painful to read). To my delight, Joan stayed with me, continuing to provide valuable,
insightful comments though to the very last drafts. Joan was also really creative in
brainstorming ideas for the illustrations in the book. Elizabeth O’Connor (majoring in
Illustration at Mass College of Art) created the original versions of the beautiful illus
trations in the book. Jason Haley was the second to review early (and still painful to

xvi | Preface

http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/cloud_architecture_patterns
mailto:bookquestions
mailto:@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

read) drafts. Later Jason was kind enough to sign on as the official technical editor,
remarking at one point (with a straight face), “Oh, was that the same book?” I guess it
got better over time. Rahul Rai (Microsoft) offered detailed technical feedback and sug
gestions, with insights relating to every area in the book. Nuno Godinho (Cloud Solution
Architect – World Wide, Aditi) commented on early drafts and helped point out chal
lenges with some confusing concepts. Michael Collier (Windows Azure National
Architect, Neudesic) offered detailed comments and many suggestions in all chapters.
Michael and Nuno are fellow Windows Azure MVPs. John Ahearn (a sublime entity)
made every chapter in the book clearer and more pleasant to read, tirelessly reviewing
chapters and providing detailed edits. John did not proofread the prior sentence, but if
he did, I’m sure he would improve it. Richard Duggan is one of the smartest people I
know, and also one of the funniest. I always looked forward to his comments since they
were guaranteed to make the book better while making me laugh in the process. Mark
Eisenberg (Fino Consulting) offered thought-provoking feedback that helped me see
the topic more clearly and be more to the point. Jen Heney provided helpful comments
and edits on the earliest chapters. Michael Stiefel (Reliable Software) provided pointed
and insightful feedback that really challenged me to write a better book. Both Mark and
Michael forced me to rethink my approach in multiple places. Edmond O'Connor (SS&C
Technologies Inc.) offered many improvements where needed and confirmation where
things were on the right track. Nazik Huq and George Babey have been helping me run
the Boston Azure User Group for the past couple of years, and now their book comments
have also helped me to write a better book. Also from the Boston Azure community is
Nathan Pickett (KGS Buildings); Nate read the whole book, provided feedback on every
chapter, and was one of the few who actually answered the annoying questions I posed
in the text to reviewers. John Zablocki reviewed one of the chapters, as a last-minute
request from me; John’s feedback was both speedy and helpful. Don McNamara and
William Gross (both from Geek Dinner) provided useful feedback, some good pushback,
and even encouragement. Liam McNamara (a truly top-notch software professional,
and my personal guide to the pubs of Dublin) read the whole manuscript late in the
process and identified many (of my) errors and offered improved examples and clearer
language. Will Wilder and Daniel Wilder proofread chapters and helped make sure the
book made sense. Kevin Wilder and T.J. Wilder helped with data crunching to add
context to the busy signal and network latency topics, proofreading, and assisted with
writing the Page of Photos sample application. Many, many thanks to all of you for all
of your valuable help, support, insights, and encouragement.

Special thanks to the team at O’Reilly, especially those I worked directly with: editor
Rachel Roumeliotis (from inception to the end), production editor Holly Bauer, and
copy editor Gillian McGarvey. Thanks also to the other staffers behind the scenes. And
a special shout-out to Julie Lerman (who happens to live near the Long Trail in Vermont)

Preface | xvii

who changed my thinking about this book; originally I was thinking about a really short,
self-published ebook, but Julie ended up introducing me to O’Reilly who liked my idea
enough to sign me on. And here we are. By the way, the Preface for Julie’s Programming
Entity Framework book is a lot more entertaining than this one.

I know my Mom would be very proud of me for writing this book. She was always deeply
interested in my software career and was always willing to listen to me babble on about
the technological marvels I was creating. My Dad thinks it is pretty cool that I have
written a book and is looking forward to seeing "his" name on the cover—finally, after
all these years, naming a son after him has paid off (yes, I am Bill Jr.).

Most importantly of all, I am also deeply grateful to my wife Maura for encouraging me
and making this possible. This book would simply not exist without her unflagging
support.

xviii | Preface

http://shop.oreilly.com/product/9780596807252.do
http://shop.oreilly.com/product/9780596807252.do

CHAPTER 1

Scalability Primer

This primer explains scalability with an emphasis on the key differences between vertical
and horizontal scaling.

Scaling is about allocating resources for an application and managing those resources
efficiently to minimize contention. The user experience (UX) is negatively impacted
when an application requires more resources than are available. The two primary ap
proaches to scaling are vertical scaling and horizontal scaling. Vertical scaling is the
simpler approach, though it is more limiting. Horizontal scaling is more complex, but
can offer scales that far exceed those that are possible with vertical scaling. Horizontal
scaling is the more cloud-native approach.

This chapter assumes we are scaling a distributed multi-tier web application, though
the principles are also more generally applicable.

This chapter is not specific to the cloud except where explicitly stated.

Scalability Defined
The scalability of an application is a measure of the number of users it can effectively
support at the same time. The point at which an application cannot handle additional
users effectively is the limit of its scalability. Scalability reaches its limit when a critical
hardware resource runs out, though scalability can sometimes be extended by providing
additional hardware resources. The hardware resources needed by an application usu
ally include CPU, memory, disk (capacity and throughput), and network bandwidth.

1

An application runs on multiple nodes, which have hardware resources. Application
logic runs on compute nodes and data is stored on data nodes. There are other types of
nodes, but these are the primary ones. A node might be part of a physical server (usually
a virtual machine), a physical server, or even a cluster of servers, but the generic term
node is useful when the underlying resource doesn’t matter. Usually it doesn’t matter.

In the public cloud, a compute node is most likely a virtual machine,
while a data node provisioned through a cloud service is most likely a
cluster of servers.

Application scale can be extended by providing additional hardware resources, as long
as the application can effectively utilize those resources. The manner in which we add
these resources defines which of two scaling approaches we take.

• To vertically scale up is to increase overall application capacity by increasing the
resources within existing nodes.

• To horizontally scale out is to increase overall application capacity by adding nodes.

These scaling approaches are neither mutually exclusive nor all-or-nothing. Any appli
cation is capable of vertically scaling up, horizontally scaling out, neither, or both. For
example, parts of an application might only vertically scale up, while other parts might
also horizontally scale out.

Increasing Capacity of Roadways
Consider a roadway for automobile travel. If the roadway was unable to support the desired
volume of traffic, we could improve matters in a number of possible ways. One improve
ment would be to upgrade the road materials (“the hardware”) from a dirt road to pave
ment to support higher travel speeds. This is vertically scaling up; the cars and trucks (“the
software”) will be able to go faster. Alternatively, we could widen the road to multiple lanes.
This is horizontally scaling out; more cars and trucks can drive in parallel. And of course
we could both upgrade the road materials and add more lanes, combining scaling up with
scaling out.

The horizontal and vertical scaling approaches apply to any resources, including both
computation and data storage. Once either approach is implemented, scaling typically
does not require changes to application logic. However, converting an application from
vertical scaling to horizontal scaling usually requires significant changes.

2 | Chapter 1: Scalability Primer

Vertically Scaling Up
Vertically scaling up is also known simply as vertical scaling or scaling up. The main idea
is to increase the capacity of individual nodes through hardware improvements. This
might include adding memory, increasing the number of CPU cores, or other single-
node changes.

Historically, this has been the most common approach to scaling due to its broad ap
plicability, (often) low risk and complexity, and relatively modest cost of hardware im
provements when compared to algorithmic improvements. Scaling up applies equally
to standalone applications (such as desktop video editing, high-end video games, and
mobile apps) and server-based applications (such as web applications, distributed multi-
player games, and mobile apps connected to backend services for heavy lifting such as
for mapping and navigation).

Scaling up is limited by the utilizable capability of available hardware.

Vertical scaling can also refer to running multiple instances of software
within a single machine. The architecture patterns in this book only
consider vertical scaling as it relates to physical system resources.

There are no guarantees that sufficiently capable hardware exists or is affordable. And
once you have the hardware, you are also limited by the extent to which your software
is able to take advantage of the hardware.

Because hardware changes are involved, usually this approach involves downtime.

Horizontally Scaling Out
Horizontally scaling out, also known simply as horizontal scaling or scaling out, increases
overall application capacity by adding entire nodes. Each additional node typically adds
equivalent capacity, such as the same amount of memory and the same CPU.

The architectural challenges in vertical scaling differ from those in horizontal scaling;
the focus shifts from maximizing the power of individual nodes to combining the power
of many nodes. Horizontal scaling tends to be more complex than vertical scaling, and
has a more fundamental influence on application architecture. Vertical scaling is often
hardware- and infrastructure-focused—we “throw hardware at the problem”—whereas
horizontal scaling is development- and architecture-focused. Depending on which scal
ing strategy is employed, the responsibility may fall to specialists in different depart
ments, complicating matters for some companies.

Scalability Defined | 3

Imperfect Terminology
To align with well-established industry practice, we use the term horizontal scaling, al
though horizontal resource allocation is more descriptive. The pattern is really about how
resources are allocated and assembled; application scalability is simply one of many pos
sible outcomes from the use of this pattern. Some specific benefits are listed later in the
section that defines cloud-native application.

Parallel or multicore programming to fully leverage CPU cores within
a single node should not be confused with using multiple nodes to
gether. This book is concerned only with the latter.

Applications designed for horizontal scaling generally have nodes allocated to specific
functions. For example, you may have web server nodes and invoicing service nodes.
When we increase overall capacity by adding a node, we do so by adding a node for a
specific function such as a web server or an invoicing service; we don’t just “add a node”
because node configuration is specific to the supported function.

When all the nodes supporting a specific function are configured identically—same
hardware resources, same operating system, same function-specific software—we say
these nodes are homogeneous.

Not all nodes in the application are homogeneous, just nodes within a function. While
the web server nodes are homogeneous and the invoicing service nodes are homoge
neous, the web server nodes don’t need to be the same as the invoicing service nodes.

Horizontal scaling is more efficient with homogeneous nodes.

Horizontal scaling with homogeneous nodes is an important simplification. If the nodes
are homogeneous, then basic round-robin load balancing works nicely, capacity plan
ning is easier, and it is easier to write rules for auto-scaling. If nodes can be different, it
becomes more complicated to efficiently distribute requests because more context is
needed.

Within a specific type of node (such as a web server), nodes operate autonomously,
independent of one another. One node does not need to communicate with other similar
nodes in order to do its job. The degree to which nodes coordinate resources will limit
efficiency.

4 | Chapter 1: Scalability Primer

An autonomous node does not know about other nodes of the same type.

Autonomy is important so that nodes can maintain their own efficiency regardless of
what other nodes are doing.

Horizontal scaling is limited by the efficiency of added nodes. The best outcome is when
each additional node adds the same incremental amount of usable capacity.

Describing Scalability
Descriptions of application scalability often simply reference the number of application
users: “it scales to 100 users.” A more rigorous description can be more meaningful.
Consider the following definitions.

• Concurrent users: the number of users with activity within a specific time interval
(such as ten minutes).

• Response time: the elapsed time between a user initiating a request (such as by
clicking a button) and receiving the round-trip response.

Response time will vary somewhat from user to user. A meaningful statement can use
the number of concurrent users and response time collectively as an indicator of overall
system scalability.

Example: With 100 concurrent users, the response time will be under 2
seconds 60% of the time, 2-5 seconds 38% of the time, and 5 seconds or
greater 2% of the time.

This is a good start, but not all application features have the same impact on system
resources. A mix of features is being used: home page view, image upload, watching
videos, searching, and so forth. Some features may be low impact (like a home page
view), and others high impact (like image upload). An average usage mix may be 90%
low impact and 10% high impact, but the mix may also vary over time.

An application may also have different types of users. For example, some users may be
interacting directly with your web application through a web browser while others may
be interacting indirectly through a native mobile phone application that accesses re
sources through programmatic interfaces (such as REST services). Other dimensions
may be relevant, such as the user’s location or the capabilities of the device they are
using. Logging actual feature and resource usage will help improve this model over time.

Scalability Defined | 5

The above measures can help in formulating scalability goals for your application or a
more formal service level agreement (SLA) provided to paying users.

The Scale Unit
When scaling horizontally, we add homogeneous nodes, though possibly of multiple
types. This is a predictable amount of capacity that ideally equates to specific application
functionality that can be supported. For example, for every 100 users, we may need 2
web server nodes, one application service node, and 100 MB of disk space.

These combinations of resources that need to be scaled together are known as a scale
unit. The scale unit is a useful modeling concept, such as with Auto-Scaling Pattern
(Chapter 4).

For business analysis, scalability goals combined with resource needs organized by scale
units are useful in developing cost projections.

Resource Contention Limits Scalability
Scalability problems are resource contention problems. It is not the number of concurrent
users, per se, that limits scalability, but the competing demands on limited resources
such as CPU, memory, and network bandwidth. There are not enough resources to go
around for each user, and they have to be shared. This results in some users either being
slowed down or blocked. These are referred to as resource bottlenecks.

For example, if we have high performing web and database servers, but a network con
nection that does not offer sufficient bandwidth to handle traffic needs, the resource
bottleneck is the network connection. The application is limited by its inability to move
data over the network quickly enough.

To scale beyond the current bottleneck, we need to either reduce demands on the re
source or increase its capacity. To reduce a network bandwidth bottleneck, compressing
the data before transmission may be a good approach.

Of course, eliminating the current bottleneck only reveals the next one. And so it goes.

Easing Resource Contention
There are two ways to ease contention for resources: don’t use them up so fast, and add
more of them.

An application can utilize resources more or less efficiently. Because scale is limited by
resource contention, if you tune your application to more efficiently use resources that

6 | Chapter 1: Scalability Primer

could become bottlenecks, you will improve scalability. For example, tuning a database
query can improve resource efficiency (not to mention performance). This efficiency
allows us to process more transactions per second. Let’s call these algorithmic improve
ments.

Efficiency often requires a trade-off. Compressing data will enable more efficient use of
network bandwidth, but at the expense of CPU utilization and memory. Be sure that
removing one resource bottleneck does not introduce another.

Another approach is to improve our hardware. We could upgrade our mobile device for
more storage space. We could migrate our database to a more powerful server and
benefit from faster CPU, more memory, and a larger and faster disk drive. Moore’s
Law, which simply states that computer hardware performance approximately doubles
every couple of years, neatly captures why this is possible: hardware continuously im
proves. Let’s call these hardware improvements.

Not only does hardware continuously improve year after year, but so
does the price/performance ratio: our money goes further every year.

Algorithmic and hardware improvements can help us extend limits only to a certain
point. With algorithmic improvements, we are limited by our cleverness in devising new
ways to make better use of existing hardware resources. Algorithmic improvements may
be expensive, risky, and time consuming to implement. Hardware improvements tend
to be straightforward to implement, though ultimately will be limited by the capability
of the hardware you are able to purchase. It could turn out that the hardware you need
is prohibitively expensive or not available at all.

What happens when we can’t think of any more algorithmic improvements and hard
ware improvements aren’t coming fast enough? This depends on our scaling approach.
We may be stuck if we are scaling vertically.

Scalability is a Business Concern
A speedy website is good for business. A Compuware analysis of 33 major retailers across
10 million home page views showed that a 1-second delay in page load time reduced
conversions by 7%. Google observed that adding a 500-millisecond delay to page re
sponse time caused a 20% decrease in traffic, while Yahoo! observed a 400-millisecond
delay caused a 5-9% decrease. Amazon.com reported that a 100-millisecond delay
caused a 1% decrease in retail revenue. Google has started using website performance
as a signal in its search engine rankings. (Sources for statistics are provided in Appen
dix A.)

Scalability is a Business Concern | 7

There are many examples of companies that have improved customer satisfaction and
increased revenue by speeding up their web applications, and even more examples of
utter failure where a web application crashed because it simply was not equipped to
handle an onslaught of traffic. Self-inflicted failures can happen, such as when large
retailers advertise online sales for which they have not adequately prepared (this hap
pens routinely on the Monday after Thanksgiving in the United States, a popular online
shopping day known as Cyber Monday). Similar failures are associated with Super Bowl
commercials.

Comparing Performance and Scalability
Discussions of web application speed (or “slowness”) sometimes conflate two concepts:
performance and scalability.

Performance is what an individual user experiences; scalability is how many users get to
experience it.

Performance refers to the experience of an individual user. Servicing a single user request
might involve data access, web server page generation, and the delivery of HTML and
images over an Internet connection. Each of these steps takes time. Once the HTML and
images are delivered to the user, a web browser still needs to assemble and render the page.
The elapsed time necessary to complete all these steps limits overall performance. For
interactive web applications, the most important of the performance-related measure
ments is response time.

Scalability refers to the number of users who have a positive experience. If the application
sustains consistent performance for individual users as the number of concurrent users
grows, it is scaling. For example, if the average response time is 1 second with 10 concurrent
users, but the average response time climbs to 5 seconds with 100 concurrent users, then
the application is not scaling. An application might scale well (handling many concurrent
users with consistent performance), but not perform well (that consistent performance
might be slow, whether with 100 concurrent users or just one). There is always a threshold
at which scalability problems take hold; an application might perform well up to 100
concurrent users, and then degrade as the number of concurrent users increases beyond
100. In this last scenario, the application does not scale beyond 100 concurrent users.

Network latency can be an important performance factor influencing
user experience. This is considered in more depth starting with Network
Latency Primer (Chapter 11).

8 | Chapter 1: Scalability Primer

The Cloud-Native Application
This is a book for building cloud-native applications, so it is important that the term be
defined clearly. First, we spell out the assumed characteristics of a cloud platform, which
enables cloud-native applications. We then cover the expected characteristics of cloud-
native applications that are built on such a platform using the patterns and ideas included
in this book.

Cloud Platform Defined
The following characteristics of a cloud platform make cloud-native applications
possible:

• Enabled by (the illusion of) infinite resources and limited by the maximum capacity
of individual virtual machines, cloud scaling is horizontal.

• Enabled by a short-term resource rental model, cloud scaling releases resources as
easily as they are added.

• Enabled by a metered pay-for-use model, cloud applications only pay for currently
allocated resources and all usage costs are transparent.

• Enabled by self-service, on-demand, programmatic provisioning and releasing of
resources, cloud scaling is automatable.

• Both enabled and constrained by multitenant services running on commodity
hardware, cloud applications are optimized for cost rather than reliability; failure
is routine, but downtime is rare.

• Enabled by a rich ecosystem of managed platform services such as for virtual ma
chines, data storage, messaging, and networking, cloud application development is
simplified.

While none of these are impossible outside the cloud, if they are all present at once, they
are likely enabled by a cloud platform. In particular, Windows Azure and Amazon Web
Services have all of these characteristics. Any significant cloud platform—public, pri
vate, or otherwise—will have most of these properties.

The patterns in this book apply to platforms with the above properties, though many
will be useful on platforms with just some of these properties. For example, some private
clouds may not have a metered pay-for-use mechanism, so pay-for-use may not literally
apply. However, relevant patterns can still be used to drive down overall costs allowing
the company to save money, even if the savings are not directly credited back to specific
applications.

Where did these characteristics come from? There is published evidence that companies
with a large web presence such as eBay, Facebook, and Yahoo! have internal clouds with
some similar capabilities, though this evidence is not always as detailed as desired. The

The Cloud-Native Application | 9

best evidence comes from three of the largest players—Amazon, Google, and Microsoft
—who have all used lessons learned from years of running their own internal high-
capacity infrastructure to create public cloud platforms for other companies to use as a
service.

These characteristics are leveraged repeatedly throughout the book.

Cloud-Native Application Defined
A cloud-native application is architected to take full advantage of cloud platforms. A
cloud-native application is assumed to have the following properties, as applicable:

• Leverages cloud-platform services for reliable, scalable infrastructure. (“Let the
platform do the hard stuff.”)

• Uses non-blocking asynchronous communication in a loosely coupled architecture.
• Scales horizontally, adding resources as demand increases and releasing resources

as demand decreases.
• Cost-optimizes to run efficiently, not wasting resources.
• Handles scaling events without downtime or user experience degradation.
• Handles transient failures without user experience degradation.
• Handles node failures without downtime.
• Uses geographical distribution to minimize network latency.
• Upgrades without downtime.
• Scales automatically using proactive and reactive actions.
• Monitors and manages application logs even as nodes come and go.

As these characteristics show, an application does not need to support millions of users
to benefit from cloud-native patterns. Architecting an application using the patterns in
this book will lead to a cloud-native application. Applications using these patterns
should have advantages over applications that use cloud services without being cloud-
native. For example, a cloud-native application should have higher availability, lower
complexity, lower operational costs, better performance, and higher maximum scale.

Windows Azure and Amazon Web Services are full-featured public cloud platforms for
running cloud-native applications. However, just because an application runs on Azure
or Amazon does not make it cloud-native. Both platforms offer Platform as a Service
(PaaS) features that definitely facilitate focusing on application logic for cloud-native
applications, rather than plumbing. Both platforms also offer Infrastructure as a Service

10 | Chapter 1: Scalability Primer

(IaaS) features that allow a great deal of flexibility for running non-cloud-native appli
cations. But using PaaS does not imply that the application is cloud-native, and using
IaaS does not imply that it isn’t. The architecture of your application and how it uses the
platform is the decisive factor in whether or not it is cloud-native.

It is the application architecture that makes an application cloud-native,
not the choice of platform.

A cloud-native application is not the best choice for every situation. It is usually most
cost-effective to architect new applications to be cloud-native from the start. Significant
(and costly) changes may be needed to convert a legacy application to being cloud-
native, and the benefit may not be worth the cost. Not every application should be cloud-
native, and many more cloud applications need not be 100% cloud-native. This is a
business decision, guided by technical insight.

Patterns in this book can also benefit cloud applications that are not fully cloud-native.

Summary
Scalability impacts performance and efficiency impacts scalability. Two common scaling
patterns are vertical and horizontal scaling. Vertical scaling is generally easier to im
plement, though it is more limiting than horizontal scaling. Cloud-native applications
allocate resources horizontally, and scalability is only one benefit.

Summary | 11

CHAPTER 2

Horizontally Scaling Compute Pattern

This fundamental pattern focuses on horizontally scaling compute nodes. Primary con
cerns are efficient utilization of cloud resources and operational efficiency.

The key to efficiently utilizing resources is stateless autonomous compute nodes. State
less nodes do not imply a stateless application. Important state can be stored external
to the nodes in a cloud cache or storage service, which for the web tier is usually done
with the help of cookies. Services in the service tier typically do not use session state, so
implementation is even easier: all required state is provided by the caller in each call.

The key to operations management is to lean on cloud services for automation to reduce
complexity in deploying and managing homogeneous nodes.

Context
The Horizontal Scaling Compute Pattern effectively deals with the following challenges:

• Cost-efficient scaling of compute nodes is required, such as in the web tier or service
tier.

• Application capacity requirements exceed (or may exceed after growth) the capacity
of the largest available compute node.

• Application capacity requirements vary seasonally, monthly, weekly, or daily, or are
subject to unpredictable spikes in usage.

• Application compute nodes require minimal downtime, including resilience in the
event of hardware failure, system upgrades, and resource changes due to scaling.

This pattern is typically used in combination with the Node Termination Pattern (which
covers concerns when releasing compute nodes) and the Auto-Scaling Pattern (which
covers automation).

13

Cloud Significance
Public cloud platforms are optimized for horizontal scaling. Instantiating a single com
pute node (virtual machine) is as easy as instantiating 100. And with 100 nodes deployed,
we can just as easily release 50 of them with a simple request to the cloud platform. The
platform ensures that all nodes deploy with the same virtual machine image, offer serv
ices for node management, and provide load balancing as a service.

Impact
Availability, Cost Optimization, Scalability, User Experience

Mechanics
When a cloud-native application is ready to horizontally scale by adding or releasing
compute nodes, this is achieved through the cloud platform management user interface,
a scaling tool, or directly through the cloud platform management service. (The man
agement user interface and any scaling tools ultimately also use cloud platform man
agement service.)

The management service requires that a specific configuration is specified (one or more
virtual machine images or an application image) and the number of desired nodes for
each. If the number of desired compute nodes is larger than the current number, nodes
are added. If the number of desired compute nodes is lower than the current number,
nodes are released. The number of nodes in use (and commensurate costs) will vary
over time according to needs, as shown in Figure 2-1.

The process is very simple. However, with nodes coming and going, care must be taken
in managing user session state and maintaining operational efficiency.

It is also important to understand why we want an application with fluctuating resources
rather than fixed resources. It is because reversible scaling saves us money.

Cloud Scaling is Reversible
Historically, scalability has been about adding capacity. While it has always been tech
nically possible to reduce capacity, in practice it has been as uncommon as unicorn
sightings. Rarely do we hear “hey everyone, the company time-reporting application is
running great – let’s come in this weekend and migrate it to less capable hardware and
see what happens.” This is the case for a couple of reasons.

It is difficult and time-consuming to ascertain the precise maximum resource require
ments needed for an application. It is safer to overprovision. Further, once the hardware

14 | Chapter 2: Horizontally Scaling Compute Pattern

is paid for, acquired, installed, and in use, there is little organizational pressure to fiddle
with it. For example, if the company time-reporting application requires very little ca
pacity during most of the week, but 20 times that capacity on Fridays, no one is trying
to figure out a better use for the “extra” capacity that’s available 6 days a week.

With cloud-native applications, it is far less risky and much simpler to exploit extra
capacity; we just give it back to our cloud platform (and stop paying for it) until we need
it again. And we can do this without touching a screwdriver.

Figure 2-1. Cloud scaling is easily reversed. Costs vary in proportion to scale as scale
varies over time.

Cloud resources are available on-demand for short-term rental as virtual machines and
services. This model, which is as much a business innovation as a technical one, makes
reversible scaling practical and important as a tool for cost minimization. We say re
versible scaling is elastic because it can easily contract after being stretched.

Practical, reversible scaling helps optimize operational costs.

Mechanics | 15

If our allocated resources exceed our needs, we can remove some of those resources.
Similarly, if our allocated resources fall short of our needs, we can add resources to match
our needs. We horizontally scale in either direction depending on the current resource
needs. This minimizes costs because after releasing a resource, we do not pay for it
beyond the current rental period.

Consider All Rental Options
The caveat “beyond the current rental period” is important. Rental periods in the cloud
vary from instantaneous (delete a byte and you stop paying for its storage immediately)
to increments of the wall clock (as with virtual machine rentals) to longer periods that
may come with bulk (or long-term) purchasing. Bulk purchasing is an additional cost
optimization not covered in this book. You, however, should not ignore it.

Consider a line-of-business application that is expected to be available only during
normal business hours, in one time zone. Only 50 hours of availability are needed per
week. Because there are 168 hours in a calendar week, we could save money by removing
any excess compute nodes during the other 118 hours. For some applications, removing
all compute nodes for certain time periods is acceptable and will maximize cost savings.
Rarely used applications can be deployed on demand.

An application may be lightly used by relatively few people most of the time, but heavily
used by tens of thousands of people during the last three business days of the month.
We can adjust capacity accordingly, aligning cost to usage patterns: during most of the
month two nodes are deployed, but for the last three business days of the month this is
increased to ten.

The simplest mechanism for adjusting deployed capacity is through the cloud vendor’s
web-hosted management tool. For example, the number of deployed nodes is easily
managed with a few clicks of the mouse in both the Windows Azure portal and the
Amazon Web Services dashboard. In Auto-Scaling Pattern (Chapter 4) we examine ad
ditional approaches to making this more automated and dynamic.

Cloud scaling terminology

Previously in the book, we note that the terms vertical scaling and scaling up are syno
nyms, as are horizontal scaling and scaling out. Reversible scaling is so easy in the cloud
that it is far more popular than in traditional environments. Among synonyms, it is
valuable to prefer the more suitable terms. Because the terms scaling up and scaling out
are biased towards increasing capacity, which does not reflect the flexibility that cloud-
native applications exhibit, in this book the terms vertical and horizontal scaling are
preferred.

16 | Chapter 2: Horizontally Scaling Compute Pattern

The term vertical scaling is more neutral than scaling up, and horizontal
scaling is more neutral than scaling out. The more neutral terms do not
imply increase or decrease, just change. This is a more accurate depic
tion of cloud-native scaling.

For emphasis when describing specific scaling scenarios, the terms vertically scaling
up, vertically scaling down, horizontally scaling in, and horizontally scaling out are some
times used.

Managing Session State
Consider an application with two web server nodes supporting interactive users through
a web browser. A first-time visitor adds an item to a shopping cart. Where is that shop
ping cart data stored? The answer to this simple question lies in how we manage session
state.

When users interact with a web application, context is maintained as they navigate from
page to page or interact with a single-page application. This context is known as session
state. Examples of values stored in session state include security access tokens, the user’s
name, and shopping cart contents.

Depending on the application tier, the approach for session state will vary.

Session state varies by application tier

A web application is often divided into tiers, usually a web tier, a service tier, and a data
tier. Each tier can consist of one or many nodes. The web tier runs web servers, is ac
cessible to end users, and provides content to browsers and mobile devices. If we have
more than one node in the web tier and a user visits our application from a web browser,
which node will serve their request? We need a way to direct visiting users to one node
or another. This is usually done using a load balancer. For the first page request of a new
user session, the typical load balancer directs that user to a node using a round-robin
algorithm to evenly balance the load. How to handle subsequent page requests in that
same user session? This is tightly related to how we manage session state and is discussed
in the following sections.

A web service, or simply service, provides functionality over the network using a standard
network protocol such as HTTP. Common service styles include SOAP and REST, with
SOAP being more popular within large enterprises and REST being more popular for
services exposed publicly. Public cloud platforms favor the REST style.

The service tier in an application hosts services that implement business logic and pro
vide business processing. This tier is accessible to the web tier and other service tier
services, but not to users directly. The nodes in this tier are stateless.

Mechanics | 17

The data tier holds business data in one or more types of persistent storage such as
relational databases, NoSQL databases, and file storage (which we will learn later is
called blob storage). Sometimes web browsers are given read-only access to certain types
of storage in the data tier such as files (blobs), though this access typically does not
extend to databases. Any updates to the data tier are either done within the service tier
or managed through the service tier as illustrated in Valet Key Pattern (Chapter 13).

Sticky sessions in the web tier

Some web applications use sticky sessions, which assign each user to a specific web server
node when they first visit. Once assigned, that node satisfies all of that user’s page re
quests for the duration of the visit. This is supported in two places: the load balancer
ensures that each user is directed to their assigned node, while the web server nodes
store session state for users between page requests.

The benefits of sticky sessions are simplicity and convenience: it is easy to code and
convenient to store users’ session state in memory. However, when a user’s session state
is maintained on a specific node, that node is no longer stateless. That node is a state
ful node.

The Amazon Web Services elastic load balancer supports sticky ses
sions, although the Windows Azure load balancer does not. It is possible
to implement sticky sessions using Application Request Routing (ARR)
on Internet Information Services (IIS) in Windows Azure.
Cloud-native applications do not need sticky session support.

Stateful node challenges

When stateful nodes hold the only copy of a user’s session state, there are user experience
challenges. If the node that is managing the sticky session state for a user goes away, that
user’s session state goes with it. This may force a user to log in again or cause the contents
of a shopping cart to vanish.

A node holding the only copy of user session state is a single point of
failure. If the node fails, that data is lost.

Sessions may also be unevenly distributed as node instances come and go. Suppose your
web tier has two web server nodes, each with 1,000 active sessions. You add a third node
to handle the expected spike in traffic during lunchtime. The typical load balancer ran
domly distributes new requests across all nodes. It will not have enough information to
send new sessions to the newly added node until it also has 1,000 active sessions. It is
effectively “catching up” to the other nodes in the rotation. Each of the 3 nodes will get

18 | Chapter 2: Horizontally Scaling Compute Pattern

approximately one-third of the next 1,000 new sessions, resulting in an imbalance. This
imbalance is resolved as older sessions complete, provided that the number of nodes
remains stable. Overloaded nodes may result in a degraded user experience, while un
derutilized nodes are not operationally efficient. What to do?

Session state without stateful nodes

The cloud-native approach is to have session state without stateful nodes. A node can
be kept stateless simply by avoiding storing user session state locally (on the node), but
rather storing it externally. Even though session state will not be stored on individual
nodes, session state does need to be stored somewhere.

Applications with a very small amount of session state may be able to store all of it in a
web cookie. This avoids storing session state locally by eliminating all local session state;
it is transmitted inside a cookie that is sent by the user’s web browser along with page
requests.

It gets interesting when a cookie is too small (or too inefficient) to store the session state.
The cookie can still be used, but rather than storing all session state inside it, the cookie
holds an application-generated session identifier that links to server-side session state;
using the session identifier, session data can be retrieved and rehydrated at the beginning
of each request and saved again at the end. Several ready-to-go data storage options are
available in the cloud, such as NoSQL data stores, cloud storage, and distributed caches.

These approaches to managing session state allow the individual web nodes to remain
autonomous and avoid the challenges of stateful nodes. Using a simple round-robin load
balancing solution is sufficient (meaning even the load balancer doesn’t need to know
about session state). Of course, some of the responsibility for scalability is now shifted
to the storage mechanism being used. These services are typically up for the task.

As an example, a distributed cache service can be used to externalize session state. The
major public cloud platforms offer managed services for creating a distributed cache.
In just a few minutes, you can provision a distributed cache and have it ready to use.
You don’t need to manage it, upgrade it, monitor it, or configure it; you simply turn it
on and start using (and paying for) it.

Session state exists to provide continuity as users navigate from one web page to another.
This need extends to public-facing web services that rely on session state for authenti
cation and other context information. For example, a single-page web application may
use AJAX to call REST services to grab some JSON data. Because they are user-
accessible, these services are also in the web tier. All other services run in the service
tier.

Mechanics | 19

Stateless service nodes in the service tier

Web services in the service tier do not have public endpoints because they exist to
support other internal parts of the application. Typically, they do not rely on any session
information, but rather are completely stateless: all required state is provided by the
caller in each call, including security information if needed. Sometimes internal web
services do not authenticate callers because the cloud platform security prevents exter
nal callers from reaching them, so they can assume they are only being accessed by
trusted subsystems within the application.

Other services in the service tier cannot be directly invoked. These are the processing
services described in Queue-Centric Workflow Pattern (Chapter 3). These services pull
their work directly from a queue.

No new state-related problems are introduced when stateless service nodes are used.

Managing Many Nodes
In any nontrivial cloud application, there will be multiple node types and multiple in
stances of each node type. The number of instances will fluctuate over time. Mixed
deployments will be common if application upgrades are rolling upgrades, a few nodes
at a time.

As compute nodes come and go, how do we keep track of them and manage them?

Efficient management enables horizontal scaling

Developing for the cloud means we need to establish a node image for each node type
by defining what application code should be running. This is simply the code we think
of as our application: PHP website code may be one node type for which we create an
image, and a Java invoice processing service may be another.

To create an image with IaaS, we build a virtual machine image; with PaaS, we build a
web application (or, more specifically, a Cloud Service on Windows Azure). Once a node
image is established, the cloud platform will take care of deploying it to as many nodes
as we specify, ensuring all of the nodes are essentially identical.

It is just as easy to deploy 2 identical nodes as is to deploy 200 identical
nodes.

Your cloud platform of choice will also have a web-hosted management tool that allows
you to view the current size and health of your deployed application.

20 | Chapter 2: Horizontally Scaling Compute Pattern

Though you start with a pool of essentially identical nodes, you can change individual
nodes afterwards. Avoid doing this as it will complicate operations at scale. For inves
tigating issues, your cloud platform will have a way to take a node out of the load balancer
rotation while you do some diagnostics; consider using that feature, then reimaging the
node when you are done if you made changes. Homogeneity is your friend.

Capacity planning for large scale

Capacity planning is also different in the cloud. Non-cloud scenarios in big companies
might have a hardware acquisition process that takes months, which makes ending up
with too little capacity a big risk. In the cloud, where capacity is available on demand,
capacity planning takes on a very different risk profile, and need not be so exacting. In
fact, it often gives way to projections of operational expenses, rather than rigid capital
investments and long planning cycles.

Cloud providers assume both the financial burden of over-provisioning and the repu
tation risk of under-provisioning that would destroy the illusion of infinite capacity.
This amounts to an important simplification for customers; if you calculate wrong, and
need more or less capacity than you planned, the cloud has you covered. It supports
customer agility and capital preservation.

Are Cloud Resources Infinite?
We often hear that public cloud platforms offer the illusion of infinite resources. Obviously,
resources are not literally infinite (infinite is rather a lot), but you can expect that any time
you need more resources, they will be available (though not always instantly). This does
not mean each resource has infinite capacity, just that you can request as many instances
of the type of resource that you need.

This is why vertical scaling is limiting, and even more so in the cloud: an individual virtual
machine or database instance has some maximum capacity, after which it cannot be in
creased. With horizontal scaling, if you need to go beyond that maximum capacity, you
can do so by allocating an additional virtual machine or database instance. This, of course,
introduces complexity of its own, but many of the patterns in this book help in taming
that complexity.

Sizing virtual machines

A horizontal scaling approach supports increasing resources by adding as many node
instances as we need. Cloud compute nodes are virtual machines. But not all virtual
machines are the same. The cloud platforms offer many virtual machine configuration
options with varying capabilities across the number of CPU cores, amount of memory,
disk space, and available network bandwidth. The best virtual machine configuration
depends on the application.

Mechanics | 21

Determining the virtual machine configuration that is appropriate for your application
is an important aspect of horizontal scaling. If the virtual machine is undersized, your
application will not perform well and may experience failures. If the virtual machine is
oversized, your application may not run cost-efficiently since larger virtual machines
are more expensive.

Often, the optimal virtual machine size for a given application node type is the smallest
virtual machine size that works well. Of course, there’s no simple way to define “works
well” across all applications. The optimal virtual machine size for nodes transcoding
large videos may be larger than nodes sending invoices. How do you decide for your
application? Testing. (And no excuses! The cloud makes testing with multiple virtual
machine sizes more convenient than it has ever been.)

Sizing is done independently for each compute node type in your application because
each type uses resources differently.

Failure is partial

A web tier with many nodes can temporarily lose a node to failure and still continue to
function correctly. Unlike with single-node vertical scaling, the web server is not a single
point of failure. (Of course, for this to be the case, you need at least two node instances
running.) Relevant failure scenarios are discussed further in Multitenancy and Com
modity Hardware Primer (Chapter 8) and Node Failure Pattern (Chapter 10).

Operational data collection

Operational data is generated on every running node in an application. Logging infor
mation directly to the local node is an efficient way to gather data, but is not sufficient.
To make use of the logged data, it needs to be collected from individual nodes to be
aggregated.

Collecting operational data can be challenging in a horizontally scaling environment
since the number of nodes varies over time. Any system that automates gathering of log
files from individual nodes needs to account for this, and care needs to be taken to ensure
that logs are captured before nodes are released.

A third-party ecosystem of related products and open source projects exists to address
these needs (and more), and your cloud platform may also provide services. Some Win
dows Azure platform services are described in the Example section.

Example: Building PoP on Windows Azure
The Page of Photos (PoP) application (which was described in the Preface and will be
used as an example throughout the book) is designed to scale horizontally throughout.
The web tier of this application is discussed here. Data storage and other facets will be
discussed in other chapters.

22 | Chapter 2: Horizontally Scaling Compute Pattern

Compute node and virtual machine are general industry terms. The
equivalent Windows Azure-specific term for node is role instance, or
web role instance or worker role instance if more precision is needed.
Windows Azure role instances are running on virtual machines, so re
ferring to role instances as virtual machines is redundant. Windows
Azure terminology is used in the remainder of this section.

Web Tier
The web tier for PoP is implemented using ASP.NET MVC. Using a web role is the most
natural way to support this. Web roles are a Windows Azure service for providing au
tomated, managed virtual machines running Windows Server and Internet Information
Services (IIS). Windows Azure automatically creates all the requested role instances and
deploys your application to them; you only provide your application and some config
uration settings. Windows Azure also manages your running role instances, monitors
hardware and software health (and initiates recovery actions as warranted), patches the
operating system on your role instances as needed, and other useful services.

Your application and configuration settings effectively form a template that can be ap
plied to as many web role instances as required. Your effort is the same if you deploy 2
role instances or 20; Windows Azure does all the work.

It is instructive to consider the infrastructure management we no longer worry about
with a web role: configuring routers and load balancers; installing and patching oper
ating systems; upgrading to newer operating systems; monitoring hardware for failures
(and recovering); and more.

Cloud Services Are Still Flexible
While Windows Azure Cloud Services are designed to shield you from infrastructure
management so you can focus on simply building your application, you still have flexibility
for advanced configuration if you need it. For example, using Startup Tasks, you can install
additional Windows Services, configure IIS or Windows, and run custom installation
scripts. For the most part, if an administrator can do it on Windows, you can do it on
Windows Azure, though the more cloud-native your application is, the more likely things
will “just work” without needing complex custom configuration. One advanced configu
ration possibility is to enable Application Request Routing (ARR) in IIS in order to support
sticky sessions.

Stateless Role Instances (or Nodes)
As of this writing, the Windows Azure load balancer supports round robin delivery of
web requests to the web role instances; there is no support for sticky sessions. Of course,

Example: Building PoP on Windows Azure | 23

this is fine because we are demonstrating cloud-native patterns and we want our hori
zontally scalable web tier to consist of stateless, autonomous nodes for maximum flex
ibility. Because all web role instances for an application are interchangeable, the load
balancer can also be stateless, as is the case in Windows Azure.

As described earlier, browser cookies can be used to store a session identifier linked to
session data. In Windows Azure some of the storage options include SQL Azure (rela
tional database), Windows Azure Table Storage (a wide-column NoSQL data store),
Windows Azure Blob Storage (file/object store), and the Windows Azure distributed
caching service. Because PoP is an ASP.NET application, we opt to use the Session State
Provider for Windows Azure Caching, and the programming model that uses the fa
miliar Session object abstraction while still being cloud-native with stateless, autono
mous nodes. This allows PoP to benefit from a scalable and reliable caching solution
provided by Windows Azure as a service.

Service Tier
PoP features a separate service tier so that the web tier can focus on page rendering and
user interaction. The service tier in PoP includes services that process user input in the
background.

Is a Separate Tier Necessary?
For PoP to be architected appropriately for its modest success, the service tier makes sense.
Don’t forget all the successful practices we’ve been using outside of the cloud, such as
Service Oriented Architecture (SOA) techniques. This book is focused on architecture
patterns that have a unique impact on cloud-native applications, but so many other prac
tices of great value are not discussed directly, though SOA can be extremely valuable when
developing applications for the cloud.

The PoP service tier will be hosted in worker roles, which are similar to web roles, though
with a different emphasis. The worker role instances do not start the IIS service and

24 | Chapter 2: Horizontally Scaling Compute Pattern

instances are not added to the load balancer by default. The worker role is ideal for
application tiers that do not have interfaces to the outside world. Horizontal scaling
works smoothly with the service tier; refer to Queue-Centric Workflow Pattern (Chap
ter 3) for details on its inner workings.

Loose Coupling Adds Implementation Flexibility
The web and service tiers can be implemented with different technologies. The web tier
might use PHP, ASP.NET MVC, or other front-end solutions. The service tier might use
Java, Python, Node.js, F#, C#, C++, and so forth. This adds flexibility when teams working
on different application tiers have different skills.

Operational Logs and Metrics
Managing operational data is another challenge encountered when horizontally scaling
out to many role instances. Operational data is generated during the process of operating
your application, but is not usually considered part of the business data collected by the
application itself.

Examples of operational data sources:

• Logs from IIS or other web servers
• Windows Event Log
• Performance Counters
• Debug messages output from your application
• Custom logs generated from your application

Collecting log data from so many instances can be daunting. The Windows Azure Di
agnostics (WAD) Monitor is a platform service that can be used to gather data from all
of your role instances and store it centrally in a single Windows Azure Storage Account.
Once the data is gathered, analysis and reporting becomes possible.

Another source of operational data is the Windows Azure Storage Analytics feature that
includes metrics and access logs from Windows Azure Storage Blobs, Tables, and
Queues.

Examples of analytics data:

• Number of times a specific blob or blob container was accessed
• The most frequently accessed blob containers
• Number of anonymous requests originating from a given IP Address range
• Request durations

Example: Building PoP on Windows Azure | 25

• Requests per hour that are hitting blob, table, or queue services
• Amount of space blobs are consuming

Analytics data is not collected by the WAD, so not automatically combined, but is avail
able for analysis. For example, an application could combine blob storage access logs
with IIS logs to create a more comprehensive picture of user activity.

Both Windows Azure Diagnostics and Windows Azure Storage Ana
lytics support an application-defined data retention policy. This allows
applications to easily limit the size and age of operational data because
the cloud platform will handle purging details.

There are general purpose reporting tools in the Windows Azure Platform that might
be useful for analyzing log and metric data. The Hadoop on Azure service is described
in MapReduce Pattern (Chapter 6). The Windows Azure SQL Reporting service may
also be useful.

Related Chapters

• Queue-Centric Workflow Pattern (Chapter 3)
• Auto-Scaling Pattern (Chapter 4)
• MapReduce Pattern (Chapter 6)
• Database Sharding Pattern (Chapter 7)
• Multitenancy and Commodity Hardware Primer (Chapter 8)
• Node Failure Pattern (Chapter 10)

Summary
The Horizontal Scaling Compute Pattern architecturally aligns applications with the
most cloud-native approach for resource allocation. There are many potential benefits
for applications, including high scalability, high availability, and cost optimization, all
while maintaining a robust user experience. User state management should be handled
without sticky sessions in the web tier. Keeping nodes stateless makes them inter
changeable so that we can add nodes at any time without getting the workloads out of
balance and can lose nodes without losing customer state.

26 | Chapter 2: Horizontally Scaling Compute Pattern

CHAPTER 3

Queue-Centric Workflow Pattern

This essential pattern for loose coupling focuses on asynchronous delivery of command
requests sent from the user interface to a back-end service for processing. This pattern
is a subset of the CQRS pattern.

The pattern is used to allow interactive users to make updates through the web tier
without slowing down the web server. It is especially useful for processing updates that
are time consuming, resource intensive, or depend on remote services that may not
always be available. For example, a social media site may benefit from this pattern when
handling status updates, photo uploads, video uploads, or sending email.

The pattern is used in response to an update request from an interactive user. This is
first handled by user interface code (in the web tier) that creates a message describing
work needing to be done to satisfy the update request. This message is added to a queue.
At some future time, a service on another node (running in the service tier) removes
messages from the queue and does the needed work. Messages flow only in one direction,
from the web tier, onto the queue, and into the service tier. This pattern does not specify
how (or if) the user is informed of progress.

This is an asynchronous model, as the sender does not wait around for a response. In
fact, no response is directly available. (In programming parlance, the return value is
void.) It helps the user interface maintain consistently fast response times.

The web tier does not use this pattern for read-only page view requests;
this pattern is for making updates.

27

Context
The Queue-Centric Workflow Pattern is effective in dealing with the following chal
lenges:

• Application is decoupled across tiers, though the tiers still need to collaborate
• Application needs to guarantee at-least-once processing of messages across tiers
• A consistently responsive user experience is expected in the user interface tier, even

though dependent processing happens in other tiers
• A consistently responsive user experience is expected in the user interface tier, even

though third-party services are accessed during processing

This pattern is equally applicable to web applications and mobile applications that access
the same functionality through web services. Any application serving interactive users
is a candidate.

Cloud Significance
By using cloud services, the infrastructure aspects of this pattern are generally straight
forward to implement. They can be far more complex outside the cloud. Reliable queues
are available as a cloud service.

Storage of intermediate data is also simplified using cloud services. Cloud services are
available for storage, NoSQL databases, and relational databases.

Impact
Availability, Reliability, Scalability, User Experience

Mechanics
The Queue-Centric Workflow Pattern is used in web applications to decouple commu
nication between the web tier (which implements the user interface) and the service tier
(where business processing happens).

Applications that do not use a pattern like this typically respond to a web page request
by having user interface code call directly into the service tier. This approach is simple,
but there are challenges in a distributed system. One challenge is that all service calls
must complete before a web request is completed. This model also requires that the
scalability and availability of the service tier meet or exceed that of the web tier, which
can be tenuous with third-party services. A service tier that is unreliable or slow can
ruin the user experience in the web tier and can negatively impact scalability.

28 | Chapter 3: Queue-Centric Workflow Pattern

The solution is to communicate asynchronously. The web tier sends commands to the
service tier, where a command is a request to do something. Examples of commands
include: create new user account, add photo, update status (such as on Twitter or Face
book), reserve hotel room, and cancel order.

The term asynchronous can apply to different aspects of application
implementation. User interface code running in the web tier may invoke
services asynchronously. This enables work to be done in parallel, po
tentially speeding up processing of that user request. Once all asyn
chronous services calls complete, the user request can be satisfied. This
handy coding tactic should not be confused with this pattern.

Commands are sent in the form of messages over a queue. A queue is a simple data
structure with two fundamental operations: add and remove. The behavior that makes
it a queue is that the remove operation returns the message that has been in the queue
the longest. Sometimes this is referred to as FIFO ordering: first in, first out. Invoking
the add operation is commonly referred to as enqueuing and invoking the delete oper
ation is dequeuing.

In the simplest (and most common) scenarios, the pattern is trivial: the sender adds
command messages to the queue (enqueues messages), and a receiver removes those
command messages from the queue (dequeues messages) and processes them. This is
illustrated in Figure 3-1. (We’ll see later that the programming model for removing
messages from the queue is more involved than a simple dequeue.)

The sender and receiver are said to be loosely coupled. They communicate only through
messages on a queue. This pattern allows the sender and receiver to operate at different
paces or schedules; the receiver does not even need to be running when the sender adds
a message to the queue. Neither one knows anything about the implementation of the
other, though both sides do need to agree on which queue instance they will use, and
on the structure of the command message that passes through the queue from sender
to receiver.

Mechanics | 29

Figure 3-1. The web tier adds messages to the queue. The service tier removes and pro
cesses messages from the queue. The number of command messages in the queue fluctu
ates, providing a buffer so that the web tier can offload work quickly, while never over
whelming the service tier. The service tier can take its time, only processing new messag
es when it has available resources.

The sender need not be a web user interface; it could also be a native mobile application,
for example, communicating through web services (as with a REST API). There could
also be multiple senders and multiple receivers. The pattern still works.

The rest of this pattern description is concerned with guarding against failure scenarios
and handling user experience concerns.

Queues are Reliable
The workflow involves the sender adding a message to a queue that is removed at some
point by the receiver. Are we sure it will get there?

It is important to emphasize that the cloud queue service provides a reliable queue. The
“reliable” claim stems primarily from two sources: durability of the data, and high
throughput (at least hundreds of interactions per second).

The queue achieves data durability the same way that other cloud stor
age services do: by storing each byte entrusted to the service in triplicate
(across three disk nodes) to overcome risks from hardware failure.

The queue itself is reliable and will not lose our data, but this pattern is not designed to
shield our application from all failures. Rather, the pattern requires that our application
implement specific behaviors to respond successfully to failure scenarios.

30 | Chapter 3: Queue-Centric Workflow Pattern

Programming Model for Receiver
When implementing the receiver, the programming model for using the reliable queue
service sometimes surprises developers, as it is slightly more complicated than for a
basic queue:

1. Get the next available message from the queue
2. Process the message
3. Delete the message from the queue

The implementation first dequeues the message, and then later deletes the message. Why
the two-phase removal? This is to ensure at-least-once processing.

Invisibility window and at-least-once processing

Processing a command request involves getting a message from the queue, understand
ing the message contents, and carrying out the requested command accordingly. The
details for this are specific to the application. If everything goes as planned, deleting the
message from the queue is the last step. Only at that point is the command completely
processed.

But everything does not always go as planned. For example, there might be a failure that
is outside the control of your application code. These types of failures can happen for a
number of reasons, but the easiest to understand is a hardware failure. If the hardware
you are using fails out from under you, your process will be stopped, no matter where
it is in its life cycle. Failure can occur if the cloud platform shuts down a running node
because the auto-scaling logic decided it wasn’t needed. Or, your node may be rebooted.

Refer to Node Failure Pattern (Chapter 10) for more scenarios that make
use of this pattern to recover from interruptions.

Regardless of the reason for the failure, your processing has been interrupted and needs
to recover. How does it do that?

Mechanics | 31

When a message is dequeued, it is not removed entirely from the queue, but is instead
hidden. The message is hidden for a specified amount of time (the duration is specified
during the dequeue operation, and can be increased later). We call this period the
invisibility window. When a message is within its invisibility window, it is not available
for dequeuing.

Invisibility Window Nuances
During a message’s invisibility window, there is usually exactly one copy of the message
being processed. There are a couple of edge cases where this might not be true. One edge
case is when the code processing the message has not finished, but the invisibility window
lapses, and another copy of the same message gets dequeued. At this point, there are two
active copies of that message being processed. If this happens, it may be due to a bug in
your code. Instead of exceeding the invisibility window, you should inform the queue that
you are still working on this message and increase its invisibility window to allow sufficient
time with exclusive access. (See also the discussion of poison messages below.) However,
as you will learn from the CAP Theorem discussion in Eventual Consistency Primer
(Chapter 5), this may not always be possible in a distributed system due to partitioning.
Though rare, the possibility should be accounted for.

An edge case can also occur with reliable queues that are eventually consistent (refer to
Chapter 5 for more context). The bottom line here is that if two requests for the next queue
item happen at nearly the same time, in rare cases, the queuing system may issue the same
message in response to both requests. Amazon’s Scalable Storage Service (S3) is eventually
consistent and the documentation warns of this possibility. Both Windows Azure Storage
Queues and Windows Azure ServiceBus Queues are immediately consistent, so this edge
case does not apply.

The invisibility window comes into play only when processing takes longer than is al
lowed. The automatic reappearance of messages on the queue is one key to overcoming
failures and is responsible for the at-least-once part of this at-least-once processing model.
Any message not fully processed the first time it is dequeued will have another chance.
The code keeps trying until processing completes (or we give up, as explained in the
poison message handling section later).

Any message that is dequeued a second time may have been partially processed the first
time. This can cause problems if not guarded against.

32 | Chapter 3: Queue-Centric Workflow Pattern

Idempotent processing for repeat messages

An idempotent operation is one that can be repeated such that any number of successful
operations is indistinguishable from a single successful operation. For example, ac
cording to the HTTP specification, the HTTP verbs PUT, GET, and DELETE are all
idempotent operations: we can DELETE a specific resource once or 100 times and the
end result is equivalent; (assuming success) the resource is gone.

Some operations are considered naturally idempotent, such as HTTP DELETE, where
idempotency essentially comes for free. A multistep financial transaction involving
withdrawing money from one account and depositing it into another can be made to
be idempotent, but it is definitely not naturally idempotent. Some cases are more difficult
than others.

Idempotence Is Business Equivalent
No matter how many times it partially or fully completes, an idempotent process has an
equivalent outcome, as long as the last instance completes successfully. Note that equiv
alent outcome means business equivalence, not technical equivalence. It is fine that appli
cation logs contain remnants of multiple attempts, for example, as long as the result is
indistinguishable to a business user.

Cloud queue services keep track of how many times a message has been dequeued. Any
time a message is dequeued, the queue service provides this value along with the mes
sage. We call this the dequeue count. The first time a message is dequeued, this value is
one. By checking this value, application code can tell whether this is the first processing
attempt or a repeat attempt.

Application logic can be streamlined for first-time processing, but for repeat attempts
some additional logic may be needed to support idempotency.

Long Processing Tasks
Some cloud queue services support updating a message on the queue. For multi-step
processes, as each step is completed, it can be handy to update the message on the queue
with an indicator of the last completed step. As a simple example, you can design the
message object so that it includes a LastCompletedStep field, which your application can
use to track progress. If processing is interrupted, the updated LastCompletedStep field
will be returned the next time the message is dequeued; message processing can resume
with the LastCompletedStep step rather than starting from the beginning.

Mechanics | 33

Consider a command to create a new user account based on a user-provided email
address and the message dequeue count is two. Proper processing needs to consider the
possibility that some (or all) of the processing work has been done previously and so
needs to act smartly. Exactly how to “act smartly” will vary from application to appli
cation.

Simpler scenarios may not require any specific idempotency support. Consider the
sending of a confirmation email. Because failure events are rare, and there is little harm
in the occasional duplicate email, just sending the email every time may be sufficient.

Options for Idempotent Processing
Idempotent handling is easy to prescribe but not always easy to implement. More advanced
approaches to idempotency are required for more complex idempotency scenarios, such
as a multi-step financial transaction or an operation that spans multiple data stores.

A database transaction is sometimes very useful in the cloud: all operations succeed or
they all fail. However, often a database transaction is not practical in a cloud application
either because the supported transaction scope is too narrow (for example, a transaction
cannot span partitions (or shards) in a NoSQL database or a sharded relational database)
or the data is being written to multiple stores across which distributed transactions are
simply not supported (for example, it is not possible to wrap a transaction around changes
that span a relational database and blob storage).

A compensating transaction, where we reverse the net effect of a prior attempt, is one tool
in our idempotency toolbox. Another is event sourcing, which is briefly mentioned in the
context of CQRS in this chapter, and can sometimes provide a robust model for dealing
with complex cases.

Idempotent handling is the correct first step in dealing with repeat messages. If the
message repeats excessively, beyond an application-defined threshold, it should be
treated as a poison message.

Poison messages handling for excessive repeats

Some messages cannot be processed successfully due to the contents of the message.
These are known as poison messages.

Consider a message containing a command to create a new user account based on a
user-provided email address. If it turns out that the email address is already in use, your
application should still process the message successfully, but not create a new user ac
count. This is not a poison message.

But if the email address field contained a 10,000-character string and this is a scenario
unanticipated in your application code, it may result in a crash. This is a poison message.

34 | Chapter 3: Queue-Centric Workflow Pattern

If our application crashes while processing a message, eventually its invisibility window
will lapse, and the message will appear on the queue again for another attempt. The need
for idempotent handling for that scenario is explained in the previous section. When
dealing with a poison message, the idempotent handling will never terminate.

Two decisions need to be made around poison messages: how to detect
one, and what to do with it.

As a message is dequeued, cloud queuing services offer a dequeue count that can be
examined to determine if this is the first attempt at processing. This is the same value
used for detecting repeats for purposes of idempotent handling. Your poison message
detection logic must include a rule that considers any message that keeps reappearing
to be treated as a poison message when it shows up the Nth time. Choosing a value for
N is a business decision that balances the cost of wastefully processing a poison message
with the risk of not processing a valid message. In practice, interruptions to execution
tend to be infrequent, so take that into account when setting up your poison message
strategy. If processing is resource intensive, perhaps taking 60 minutes, you may not
want to retry any failed processes; so for N > 1, the message is treated as a poison message.
It is common, however, to retry from once to a few times, depending on circumstances.

Correct poison message detection has some nuances. For example,
having selected N=3 to trigger poison message handling, the application
code needs to check for a dequeue count of at least 3, not exactly 3. A
system interruption could have occurred during the time after detecting
the dequeue count is 3, but before removing the message from the main
queue.

Once a poison message has been identified, deciding how to deal with it is another
business decision. If it is desirable to have a human review the poison messages to con
sider how to improve handling, then one approach is to use what is known as a dead
letter queue, a place for storing messages that cannot be processed normally. Some
queuing systems have built-in support for a dead letter queue, but it is not hard to roll
your own. For low importance messages, you may even consider deleting them outright.
The key point is to remove poison messages from the main processing queue as soon
as the application detects them.

Unless we guard against the poison message scenario, a poison message
will last a long time on our queue and waste processing resources. In
extreme cases, with many active poison messages, all processing re
sources could end up dedicated to poison message processing!

Mechanics | 35

A dequeue count greater than one does not necessarily mean a poison message is present.
The value is a dequeue count, not a poison message count.

User Experience Implications
This pattern deals with asynchronous processing, repeated processing, and failed re
quests. All of these have user experience implications.

Handling asynchronous processing in a user interface can be tricky and application
specific. We want the human-facing user interface to be responsive, so instead of per
forming lengthy work while the user waits, we queue up a command request for that
work. This allows the user interface to return as soon as possible to the user (improving
user experience) and allows the web server tier to remain focused on serving web pages
(enhancing scalability).

The flip side here is that you now need your users to understand that even though the
system has acknowledged their action (and a command posted), processing of that ac
tion was not immediately completed. There are a number of approaches to this.

In some cases, users cannot readily tell if the action completed, so special action is not
required.

In cases where the user wants to be notified when their action will be completed, an
email upon completion might do the trick. This is common in ecommerce scenarios
where “your order has shipped” and other notifications of progress are common.

Sometimes users will prefer to wait around while a task completes. This requires either
that the user interface layer polls the service tier until the task completes or the service
tier proactively notifies the user interface layer. The proactive notification can be im
plemented using long polling. In long polling, the web client creates an HTTP connection
to the server, but the server intentionally does not respond until it has an answer.

Ready-made implementations of the long polling (also known as Com
et) technique are available. Examples include: SignalR for ASP.NET and
Socket.IO for Node.js. These libraries will take advantage of HTML5
Web Sockets if available.

36 | Chapter 3: Queue-Centric Workflow Pattern

Using the long polling technique is different than having the original (time-consuming)
action done “inline” from the web tier. Blocking at the web tier until the action is com
plete would hurt scalability. This approach still allows for the time-consuming work to
be done in the service tier.

Is This the Same as CQRS?
Readers familiar with the Command Query Responsibility Segregation (CQRS) Pattern
may wonder if the Queue-Centric Workflow (QCW) Pattern is really the same pattern.
While similar, they are not the same. CQW is only a stepping-stone to CQRS. Under
standing some of the differences and overlap will help you avoid confusing them.

The defining characteristic of CQRS is the use of two distinct models: one for writing (the
write model), and one for reading (the read model). Two key terms are command and
query. A command is a request to make an update via the write model. A query is a request
for information from the read model. Serving commands and queries are distinct activities
(the “responsibility segregation”); you would never issue a command and expect data
results as a return value. Even though the read model and write model may be based on
the same underlying data, they surface different data models.

QCW focuses on the flow of commands to the write model, while only alluding to the
read model such as in support of long polling from the user interface. In this regard, it is
consistent with CQRS, though not complete since QCW does not fully articulate the read
model. A command in QCW is the same as a command in CQRS.

A full CQRS treatment would also consider event sourcing and Domain Driven Design
(DDD). With event sourcing, as commands result in system state changes, resulting change
events are captured and stored individually rather than simply reflecting the change in the
master data. For example, an address changed event would hold the new address infor
mation rather than just overwrite a single address field in a database. The result is a
chronological history that can be replayed to arrive at current state (or any state along the
way). Using event sourcing may simplify handling idempotent operations. DDD is a
technology-agnostic methodology to understand business context. Neither event sourcing
nor DDD are required with CQRS, but they are frequently used together.

Scaling Tiers Independently
The queue length and the time messages spend in the queue are useful environmental
signals for auto-scaling. The cloud queue services make these key metrics readily avail
able. A growing queue may indicate the need to increase capacity in the service tier, for
example. Note that the signals might indicate that only one tier or one specific processing
service needs to be scaled. This concern-independent scaling helps to optimize for cost
and efficiency.

Mechanics | 37

At very high scale, the queue itself could become a bottleneck requiring multiple queue
instances. This does not change the core pattern.

Example: Building PoP on Windows Azure
The Page of Photos (PoP) application (which was described in the Preface and will be
used as an example throughout the book) uses Chapter 3 to handle ingestion of new
photos into the system.

Two application tiers within PoP collaborate. The user interface on the web tier is re
sponsible for facilitating photo uploads for logged-in users and enqueuing command
messages. The service tier is responsible for dequeuing and processing command mes
sages.

User Interface Tier
The PoP user interface running in the web tier consists of ASP.NET MVC code running
on a variable number of web role instances. User authentication (logging in) is handled
here, and authenticated users are allowed to upload photos.

The location of the photo being processed, a plain-text description of the photo, and the
PoP user’s account identifier are stored in a message object, which is then enqueued.
With PoP, the photo being processed is assumed to already have been uploaded to blob
storage (using Valet Key Pattern (Chapter 13), when possible) and stored in Windows
Azure Storage as a blob; only the reference to this blob (a URL) is stored in the message
object that is enqueued. And while this particular process operates on an external re
source (the photo stored as a blob), that does not imply that external resources are
needed in order for this pattern to be of value. It is also common for all of the required
data to be entirely contained within the message object.

Regardless of how many web role instances are running, they all submit their messages
to the same Windows Azure Queue.

PoP uses the Windows Azure Storage Queue service, but Windows
Azure also offers a ServiceBus Queue service. The two services share
many characteristics and either is an excellent choice for PoP.

The same message queue is used by both sender and receiver:

• Example message queue name: http://popuploads.queue.core.windows.net

Fields included in the message that goes in the queue are similar to the following:

38 | Chapter 3: Queue-Centric Workflow Pattern

http://popuploads.queue.core.windows.net

• Location of uploaded photo (in blob storage): http://popup
loads.blob.core.windows.net/publicphotos/william.jpg

• Authenticated account identifier from the emailaddress claim, as described in Mul
tisite Deployment Pattern (Chapter 15): kd1hn@example.com

• LastCompletedStep: 0

Note that the image is not part of the message that goes on the queue, but rather a
reference to the image. The practical reason for this is the queue does not allow messages
to be larger than a certain size (64 KB as of this writing). The more philosophical reason
is that blob storage is the “right” place to store uploaded images on Windows Azure.

Service Tier
PoP services are running on a variable number of worker role instances in the service
tier. C# code in these services is written to constantly check the queue for new messages.
Once a message becomes available on the queue, it is removed and processed.

There will be times when no messages are available on the queue. In such cases, any
dequeue attempt returns immediately. It is important to avoid code hammering the
queue service in a tight loop as every queue operation will cost a tiny amount of money.
Be sure to add an appropriate delay.

Watch Out for Money Leaks!
As of this writing, ten million Windows Azure Storage operations will cost $1.00. Con
sidering that this fee is charged for dequeue requests even if there is no message waiting,
how expensive is that? Attempting to dequeue from an empty queue at the rate of 500
requests per second, every 200 seconds would cost one penny, and every day would add
up to $4.32. Of course, you will never want to do this.

Be sure to code in a delay of at least a few seconds after each unsuccessful dequeue attempt
to prevent a money leak, a cloud platform expense that adds no business value. Just like
memory leaks that, unchecked, can bring down your application, money leaks can degrade
the cost efficiency of your cloud applications. Also consider variable delay techniques,
similar to those described in Busy Signal Pattern (Chapter 9), which offer an even more
sophisticated approach to battling money leaks, while also further explaining that you
risk being throttled by the queue service for being hyperactive.

Each message represents a new photo upload waiting to be integrated with the rest of
the PoP site. A few steps are involved: a thumbnail is created, any geotagging data is
extracted, and then user account data is updated to include the new photo on their public
page. After each step, the message is updated back in blob storage with an updated value
for LastCompletedStep.

Example: Building PoP on Windows Azure | 39

http://popuploads.blob.core.windows.net/publicphotos/william.jpg
http://popuploads.blob.core.windows.net/publicphotos/william.jpg
mailto:kd1hn@example.com

PoP thumbnail creation is idempotent. This is important because if we are careless, we
could end up with orphaned image files littering our blob storage account. To handle
idempotent thumbnail creation, PoP chose to make the thumbnail filename determin
istic by deriving it from the filename of the full-sized photo. All uploaded photos are
issued a unique system-generated name such as william.jpg. The name of the thumbnail
is derived from this by appending “_thumb” to the root filename resulting in wil
liam_thumb.jpg. This simple approach will ensure that we always end up with a single
thumbnail in blob storage. Note that while the results are not identical to having suc
cessfully generated the thumbnail the first time through—the time stamp on the file will
be different, for example—we can safely conclude that the results are equivalent.

PoP has a business rule that states any message coming from the popuploads queue with
a dequeue count of 3 or more is considered poison. When a poison message is detected,
PoP sends an email informing the user who submitted the photo that it has been rejected
as invalid and has been deleted.

If an application does not deal proactively with poison messages, the
Windows Azure Queue service will delete them from the queue after
seven days.

Synopsis of Changes to Page of Photos System
In order to process new photo uploads:

• The photo is stored in a public blob container created for that purpose.
• A message containing relevant data about the newly created photo is enqueued.

This is done from the web tier (from a web role).
• A worker role in the service tier monitors the queue for messages available for

processing, processing them as available.

After the message processing has completed, the at-rest state of PoP includes:

• Original photo is stored as a blob.
• Generated thumbnail is stored as a blob.
• Metadata about the photo is stored in a Windows Azure SQL Database (discussed

in Database Sharding Pattern (Chapter 7)).

Related Chapters

• Scalability Primer (Chapter 1)

40 | Chapter 3: Queue-Centric Workflow Pattern

• Horizontally Scaling Compute Pattern (Chapter 2)
• Auto-Scaling Pattern (Chapter 4)
• Eventual Consistency Primer (Chapter 5)
• Node Failure Pattern (Chapter 10)
• Colocate Pattern (Chapter 12)
• Valet Key Pattern (Chapter 13)

Summary
This pattern is for decoupling tiers of your application, especially between the web (user
interface) tier and a service tier that does business processing. It is not useful for routine,
read-only page requests. Communication is in one direction, from the web tier to the
service tier, and is handled by adding messages onto a queue. Reliable cloud queue
services simplify implementation. A decoupled web tier can be more responsive and
reliable, providing a better user experience. Concern-independent scaling also allows
each tier to be provisioned with the ideal level of resources for that tier.

Summary | 41

CHAPTER 4

Auto-Scaling Pattern

This essential pattern for automating operations makes horizontal scaling more prac
tical and cost-efficient.

Scaling manually through your cloud vendor’s web-hosted management tool helps lower
your monthly cloud bill, but automation can do a better job of cost optimization, with
less manual effort spent on routine scaling tasks. It can also be more dynamic. Auto
mation can respond to signals from the cloud service itself and scale reactively to actual
need.

The two goals of auto-scaling are to optimize resources used by a cloud application
(which saves money), and to minimize human intervention (which saves time and re
duces errors).

Context
The Auto-Scaling Pattern is effective in dealing with the following challenges:

• Cost-efficient scaling of computational resources, such as web tier or service tier.
• Continuous monitoring of fluctuating resources is needed to maximize cost savings

and avoid delays.
• Frequent scaling requirements involve cloud resources such as compute nodes, data

storage, queues, or other elastic components.

This pattern assumes a horizontally scaling architecture and an environment that is
friendly to reversible scaling. Vertically scaling (by changing virtual machine size) is
also possible, although is not considered in this pattern.

43

Cloud Significance
Cloud platforms, supporting a full range of resource management, expose rich auto
mation capabilities to customers. These capabilities allow reversible scaling and make
it highly effective when used in combination with cloud-native applications that are
built to gracefully adjust to dynamic resource management and scaling. This pattern
embraces the inherent increase in overlap across the development and operations ac
tivities in the cloud. This overlap is known as DevOps, a portmanteau of “development”
and “operations.”

Impact
Cost Optimization, Scalability

This pattern does not impact scalability of the application, per se. It
either scales or it does not, regardless of whether it is automated. The
impact is felt on operational efficiency at scale. Operational efficiency
helps to lower direct costs paid to the cloud provider, while reducing
the time a staff devotes to routine manual operations.

Mechanics
Compute nodes are the most common resource to scale, to ensure the right number of
web server or service nodes. Auto-scaling can maintain the right resources for right
now and can do so across any resource that might benefit from auto-scaling, such as
data storage and queues. This pattern focuses on auto-scaling compute nodes. Other
scenarios follow the same basic ideas, but are generally more involved.

Auto-scaling with a minimum of human intervention requires that you schedule for
known events (such as halftime during the Superbowl or business vs. non-business
hours) and create rules that react to environmental signals (such as sudden surges or
drops in usage). A well-tuned auto-scaling approach will resemble Figure 4-1, where
resources vary according to need. Anticipated needs can be driven through a schedule,
with less predictable scenarios handled in reaction to environmental signals.

44 | Chapter 4: Auto-Scaling Pattern

Figure 4-1. Proactive auto-scaling rules are planned, for example to add and release re
sources throughout the day on a schedule.

Automation Based on Rules and Signals
Cloud platforms can be automated, which includes programmatic interfaces for provi
sioning and releasing resources of all types. While it’s possible to directly program an
auto-scaling solution using cloud platform management services, using an off-the-shelf
solution is more common. Several are available for Amazon Web Services and Windows
Azure, some are available from the cloud vendors, and some from third parties.

Be aware that auto-scaling has its own costs. Using a Software as a Ser
vice (SaaS) offering may have direct costs, as can the act of probing your
runtime environment for signals, using programmatic provisioning
services (whether from your code or the SaaS solution), and self-hosting
an auto-scaling tool. These are often relatively small costs.

Off-the-shelf solutions vary in complexity and completeness. Consult the documenta
tion for any tools you consider. Functionality should allow expressing the following rules
for a line-of-business application that is heavily used during normal business hours, but
sporadically used outside of normal business hours:

• At 7:00 p.m. (local time), decrease the number of web server nodes to two.
• At 7:00 a.m., increase the number of web server nodes to ten.

Mechanics | 45

• At 7:00 p.m. on Friday, decrease the number of web server nodes to one.

The individual rules listed are not very complicated, but still help drive down costs. Note
that the last rule overlaps the first rule. Your auto-scaling tool of choice should allow
you to express priorities, so that the Friday night rule takes precedent. Furthermore,
rules can be scheduled; in the set listed above, the first two rules could be constrained
to not run on weekends. You are limited only by your imagination and the flexibility of
your auto-scaling solution.

Here are some more dynamic rules based on less predictable signals from the environ
ment:

• If average queue length for past hour was less than 25, increase the number of
invoice-processing nodes by 1.

• If average queue length for past hour was less than 5, decrease the number of invoice-
processing nodes by 1.

These rules are reactive to environmental conditions. See Queue-Centric Workflow Pat
tern (Chapter 3) for an example where a rule based on queue length would be helpful.

Rules can also be written to respond to machine performance, such as memory used,
CPU utilization, and so on. It is usually possible to express custom conditions that are
meaningful to your application, for example:

• If average time to confirm a customer order for the past hour was more than ten
minutes, increase the number of order processing nodes by one.

Some signals (such as response time from a compute node) may be triggered in the case
of a node failure, as response time would drop to zero. Be aware that the cloud platform
also intervenes to replace failed nodes or nodes that no longer respond.

Your auto-scaling solution may also support rules that understand overall cost and help
you to stick to a budget.

Separate Concerns
The first set of example rules is applied to web server nodes and the second is applied
to invoice-processing nodes. Both sets of rules could apply to the same application.

Scaling part of an application does not imply scaling all of an applica
tion.

46 | Chapter 4: Auto-Scaling Pattern

In fact, the ability to independently scale the concerns within your architecture is an
important property of cost-optimization.

When defined scale units require that resources be allocated in lockstep, they can be
combined in the auto-scaling rules.

Be Responsive to Horizontally Scaling Out
Cloud provisioning is not instantaneous. Deploying and booting up a new compute
node takes time (ten or more minutes, perhaps). If a smooth user experience is impor
tant, favor rules that respond to trends early enough that capacity is available in time
for demand.

Some applications will opt to follow the N+1 rule, described in Node Failure Pattern
(Chapter 10), where N+1 nodes are deployed even though only N nodes are really
needed for current activity. This provides a buffer in case of a sudden spike in activity,
while providing extra insurance in the event of an unexpected hardware failure on a
node. Without this buffer, there is a risk that incoming requests can overburden the
remaining nodes, reduce their performance, and even result in user requests that time
out or fail. An overwhelmed node does not provide a favorable user experience.

Don’t Be Too Responsive to Horizontally Scaling In
Your auto-scaling tool should have some built-in smarts relevant to your cloud platform
that prevent it from being too active. For example, on Amazon Web Services and Win
dows Azure, compute node rentals happens in clock-hour increments: renting from
1:00-1:30 costs the same as renting from 1:00-2:00. More importantly, renting from
1:50-2:10 spans two clock hours, so you will be billed for both.

If you request that a node be released at 1:59 and it takes two minutes
for it to drain in-process work before being released, will you be billed?
Check the documentation for your cloud vendor on how strictly the
clock-hour rules are enforced for these edge cases; there may be a small
grace period.

Set lower limits thoughtfully. If you allow reduction to a single node, realize that the
cloud is built on commodity hardware with occasional failures. This is usually not a best
practice for nodes servicing interactive users, but may be appropriate in some cases,
such as rare/sporadic over-the-weekend availability. Being down to a single node is
usually fine for nodes that do not have interactive users (e.g., an invoice generation
node).

Mechanics | 47

Set Limits, Overriding as Needed
Implementing auto-scaling does not mean giving up full control. We can add upper and
lower scaling boundaries to limit the range of permitted auto-scaling (for example, we
may want to always have some redundancy on the low end, and we may need to stay
within a financial budget on the high end). Auto-scaling rules can be modified as needs
evolve and can be disabled whenever human intervention is needed. For tricky cases
that cannot be fully automated, auto-scaling solutions can usually raise alerts, informing
a human of any condition that needs special attention.

Your cloud platform most likely offers a Service Level Agreement (SLA)
that asserts that your virtual machine instance will be running and ac
cessible from the Internet some percent of time in any given month.
Both Windows Azure and Amazon Web Services offer a 99.95% avail
ability SLA. However, there is a caveat: they also require running at least
two node instances of any given type in order for the SLA to be in effect.
This requirement makes perfect sense: when running with only a single
node, any disruption to that node will result in downtime.

Take Note of Platform-Enforced Scaling Limits
Public cloud platforms usually have default scaling limits for new accounts. This serves
to protect new account owners from themselves (by not accidentally scaling to 10,000
nodes), and limits exposure for the public cloud vendors. Because billing on pay-as-
you-go accounts usually happens at the end of each month, consider the example of
someone with nefarious intentions signing up with a stolen credit card; it would be hard
to hold them accountable. Countermeasures are in place, including requiring a one-
time support request in order to lift soft limits on your account, such as the number of
cores your account can provision.

Example: Building PoP on Windows Azure
The Page of Photos (PoP) application (which was described in the Preface) will benefit
from auto-scaling. There are a number of options for auto-scaling on Windows Azure.
PoP uses a tool from the Microsoft Patterns & Practices team known officially as the
Windows Azure Autoscaling Application Block, or (thankfully) WASABi for short.

Unlike some of the other options, WASABi is not Software as a Service but rather soft
ware we run ourselves. We choose to run it on a single worker role node using the
smallest available instance (Extra Small, which costs $0.02/hour as of this writing).

48 | Chapter 4: Auto-Scaling Pattern

It is common for cloud applications to make use of a single-role “admin”
role instance for handling miscellaneous duties. This is a good home
for WASABi.

WASABi can handle all the rules mentioned in this chapter. WASABi distinguishes two
types of rules:

• Proactive rules, known as constraint rules, handle scheduled changes, minimum
and maximum instance counts, and can be prioritized.

• Reactive rules respond to signals in the environment.

Rules for your application are chosen to align with budgets, historical activity, planned
events, and current trends. PoP uses the following constraint rules:

• Minimum/Maximum number of web role instances = 2 / 6
• Minimum/Maximum number of image processing worker role instances (handling

newly uploaded images) = 1 / 3

PoP has reactive rules and actions based on the following signals in the environment:

• If the ASP.NET Request Wait Time (performance counter) > 500ms, then add a web
role instance.

• If the ASP.NET Request Wait Time (performance counter) < 50ms, then release a
web role instance.

• If average Windows Azure Storage queue length for past 15 minutes > 20, then add
an image processing worker role instance.

• If average Windows Azure Storage queue length for past 15 minutes < 5, then release
an image processing worker role instance.

The third rule has the highest priority (so will take precedence over the others), while
the other rule priorities are in the order listed.

WASABi rules are specified using an XML configuration file and can
be managed (after deployment) using PowerShell cmdlets.

To implement the ASP.NET Request Wait Time, WASABi needs access to the perfor
mance counters from the running web role instances. This is handled through Windows
Azure Diagnostics, operating at two levels.

Example: Building PoP on Windows Azure | 49

First, each running instance is configured to gather data that you specify such as log
files, application trace output (“debug statements”), and performance counters.

Second, there is a coordinated process that rounds up the data from each node and
consolidates them in a central location in Azure Storage. It is from the central location
that WASABi looks for the data it needs to drive reactive rules.

The Windows Azure Storage queue length data is gathered directly by WASABi.
WASABi uses the Windows Azure Storage programmatic interface, which makes it a
simple matter to access the current queue length. The queue in question here lies be
tween the web tier and the service tier, where the image processing service runs; please
see Queue-Centric Workflow Pattern (Chapter 3) for further context.

Although not described, PoP takes advantage of WASABi stabilizing rules that limit an
overreaction to rules that might be costly. These help avoid thrashing (such as allocating
a new virtual machine), releasing it before its rental interval has expired, and then al
locating another right away; in some cases, the need could be met less expensively by
just keeping the first virtual machine longer.

Throttling
WASABi also distinguishes between instance scaling, which is what we usually mean
when scaling (adding or removing instances), and throttling. Throttling is selectively
enabling or disabling features or functionality based on environmental signals. Throt
tling complements instance scaling. Suppose the PoP image processing implemented a
really fancy photo enhancement technique that was also resource intensive. Using our
throttling rules, we could disable this fancy feature when our image processing service
was overloaded and wait for auto-scaling to bring up an additional node. The point is
that the throttling can kick in very quickly, buying time for the additional node to spin
up and start accepting work.

Beyond buying time while more nodes spin up, throttling is useful when constraint rules
disallow adding any more nodes.

WASABi throttling should not be confused with throttling described in Busy Signal
Pattern (Chapter 9).

Auto-Scaling Other Resource Types
Virtually all the discussion in this chapter has focused on auto-scaling for virtual ma
chines, so what about other resource types? Let’s consider a couple of more advanced
scenarios.

The web tier funnels data to the service tier through a Windows Azure Queue. This is
explained further in Queue-Centric Workflow Pattern (Chapter 3), but the key point is
that both sides depend upon reliable and fast access to that queue. While most appli

50 | Chapter 4: Auto-Scaling Pattern

cations will not run into this problem, individual queues have scalability limits. What
happens if PoP is so popular that it must process so many queue messages per second
that one queue is no longer sufficient? When one queue isn’t sufficient, the solution is
to horizontally scale out to two queues, then three queues, and so on. Conversely, we
can horizontally scale back (or scale in) as the demand recedes.

For databases, consider an online ticket sales scenario for a major event. Shortly before
tickets go on sale, ticketing data is distributed (or sharded; see Database Sharding Pat
tern (Chapter 7)) over many SQL Database instances to handle the load needed to sell
tens of thousands of tickets within minutes. Due to the many database instances, user
traffic is easily handled. Once all the tickets are sold, data is consolidated and the excess
database instances are released. This example is inspired by the TicketDirect case study
mentioned in Appendix A.

Related Chapters

• Horizontally Scaling Compute Pattern (Chapter 2)
• Queue-Centric Workflow Pattern (Chapter 3)
• Database Sharding Pattern (Chapter 7)

Summary
The Auto-Scaling Pattern is an essential operations pattern for automating cloud ad
ministration. By automating routine scaling activities, cost optimization becomes more
efficient with less effort. Cloud-native applications gracefully handle the dynamic in
creases or decreases in resource levels. The cloud makes it easy to plug into cloud mon
itoring and scaling services, with self-hosted options also available.

Summary | 51

CHAPTER 5

Eventual Consistency Primer

The Eventual Consistency primer introduces eventual consistency and explains some
ways to use it. This primer uses the CAP Theorem to highlight the challenges of main
taining data consistency across a distributed system and explains how eventual consis
tency can be a viable alternative.

In an eventually consistent database, simultaneous requests for the same data value can
return different values. This condition is temporary, as the values become “eventually”
consistent.

Eventual consistency stems from a choice in the way data is updated. It is an alternative
to the use of distributed transactions. It can lead to better scalability, higher performance,
and lower cost. Using it or not is a business decision.

At any moment, most of an eventually consistent database is consistent, with some small
number of values still being updated. It is common for data values to be inconsistent for
only seconds, but is not required. It depends on the application and can vary depending
upon current circumstances.

CAP Theorem and Eventual Consistency
Brewer’s CAP Theorem (or simply the CAP Theorem) considers three possible guarantees
for data within a distributed application: Consistency, Availability, and Partition Toler
ance (which spell CAPT, though the more pronounceable CAP is used). Consistency
means everyone gets the same answer; availability means clients have ongoing access
(even if there is partial system failure); and partition tolerance means correct operation,
even if nodes within the application are cut off from the network and unable to com
municate. The CAP Theorem posits that of these three possible guarantees, an appli
cation can only pick two.

53

Guaranteeing consistency is easy when data is on a single node, but once the data is
distributed, partition tolerance needs to be considered. What happens if our nodes can
not communicate with each other due to failure, or simply cannot do so fast enough to
meet our performance and scalability targets? Different tradeoffs are possible. One
popular choice for cloud-native applications is to favor partition tolerance and availa
bility and give up the guarantee of immediate consistency.

Applications that do not guarantee immediate consistency are said to be eventually
consistent. The use of eventual consistency makes sense when the business value (risk,
downside, or cost) is deemed superior to immediate consistency.

While this approach is not as familiar to those from the relational database world, even
tual consistency can be a powerful feature that enables better scalability. Eventual con
sistency is not a deficiency or design flaw. When used appropriately, it is a feature.

Eventual Consistency Examples
The term eventual consistency is relatively new, but the idea is not. An old example can
be found with the Domain Name System (DNS). DNS powers the Internet name reso
lution that is responsible for turning human-friendly web addresses (such as http://
www.pageofphotos.com) into a computer-friendly IP address (such as 12.34.56.789).
When the IP Address for a domain name is changed, it usually takes hours before the
update propagates to all DNS servers (which may have the old address cached) across
the Internet. This is considered a good tradeoff; IP addresses change infrequently
enough that we tolerate the occasional inconsistency in exchange for superb scalability.
After the IP address has been changed but before it is fully propagated, some users will
be directed to the old site IP address, and some to the new site IP address.

Eventual Satisfaction
Eventually consistent does not mean that the system doesn’t care about consistency. Most
data is consistent virtually all of the time. There is just a business-tolerable delay before
updates fully propagate. During this delay, different users may see different versions of
the data.

The Page of Photos (PoP) application is eventually consistent because there is a delay
after a photo is uploaded, but before it appears to visitors on the site. Furthermore, some
viewers may see the photo before others do. Part of this is due to data replication across
data centers, but some is just internal processing, such as the ingestion process for newly
uploaded photos.

54 | Chapter 5: Eventual Consistency Primer

http://www.pageofphotos.com
http://www.pageofphotos.com

Data values that are no longer current are referred to as being stale.
Sometimes stale data is visible to users. When a user sees data they know
is stale, and there is a delay before they see the most current data, we
call this resolution eventual satisfaction.

If you've ever experienced "buying" tickets online, only to find out that
they have already been sold, you've seen eventual consistency in action.

Windows Azure, Amazon Web Services, Google App Engine, and other cloud platforms
are themselves eventually consistent in a variety of circumstances. For example, it takes
many minutes after activating global services such as CloudFront (a global CDN service
from Amazon) and Traffic Manager (a global load-balancing service from Windows
Azure) for them to propagate to nodes around the world.

The CAP Theorem has formalized these ideas and they have taken hold in distributed
systems in the cloud and become popular with some databases.

Relational ACID and NoSQL BASE
The traditional relational database offers four so-called ACID guarantees:
Atomicity

All of a transaction completes, or none of it does.

Consistency
Data is always valid according to schema constraints.

Isolation
Transactions competing to change the same data are applied sequentially.

Durability
Committed changes are not lost.

These guarantees originated in a world where databases ran on a single node. They
become more complex and expensive if the database is distributed.

For a single-node application, the CAP Theorem is not interesting, as partition tolerance
need not be considered. As databases become more distributed (clustered, or with a
geographically distributed failover node), the CAP Theorem consideration comes into
play.

Relational ACID and NoSQL BASE | 55

The CAP Theorem informs us that we must pick two of the three guarantees, which can
be written in shorthand as CA, AP, and CP. All three combinations result in different
behaviors. The one we will focus on here is AP (availability and partition tolerance),
also known as eventually consistent.

By definition, eventually consistent databases do not support ACID guarantees, though
they do support BASE. A BASE database is:
Basically Available

The system will respond even with stale data.
Soft State

State might not be consistent and might be corrected.
Eventually Consistent

We allow for a delay before any individual data change completely propagates
through the system.

BASE is commonly associated with NoSQL databases, and NoSQL database services are
popular in the cloud. NoSQL, or Not Only SQL, is a database style that has emerged in
recent years. NoSQL databases tend to be designed for very high scale at the expense of
some advanced features of traditional relational databases. For example, they tend to
have limited transactional capabilities and no ACID guarantees. Notably, they are usu
ally designed to support sharding, which is further explored in Database Sharding Pat
tern (Chapter 7).

Unlike the acid and base you may have learned about in high school chemistry class,
ACID and BASE can be used together safely, even in the same application.

Impact of Eventual Consistency on Application Logic
Previous examples have focused on eventual consistency scenarios that may be familiar
or seem intuitive. Developers are often surprised when eventual consistency is used in
a database. We have all come to expect that we can read a value back from a database
after we’ve written it. This is not guaranteed if the database is eventually consistent.

Google’s App Engine Datastore service and Amazon’s S3 storage service are eventually
consistent. Sometimes you get a choice: Amazon’s SimpleDB database service has con
figurable consistency (with different performance characteristics). Many NoSQL data
bases are eventually consistent.

Windows Azure Storage is immediately consistent; you can immediately
read back whatever you wrote. Sometimes this is also referred to as
strongly consistent or strictly consistent.

56 | Chapter 5: Eventual Consistency Primer

It is important to note that eventually consistent databases always support some level
of atomicity. Check the documentation for your eventually consistent database to un
derstand what is considered atomic, but typically a database operation that writes a
single record that changes ten properties will propagate as an atomic unit. Eventually
consistent does not extend inside this atomic unit. None of the ten changes will show
up individually; there is no partial update. None of the updates are visible until all of
the updates are visible.

How should a developer deal with data storage that is eventually consistent?

User Experience Concerns
Sometimes, a reasonable approach is to act like it doesn’t matter. Just go with the data
you have at the moment. Surprisingly, this works very well in many scenarios where
eventually consistent data makes sense. Often, users can’t tell the difference.

However, sometimes that depends on who the user is. If the user is the one who just
updated the data, it is more important to show the data the user expects, rather than
wait for eventual satisfaction. In such cases, it may be sufficient for the user interface to
update the user interface to reflect the most recent user-initiated change. In this case,
the user interface intentionally does not refresh data from the database, knowing it may
be stale.

Programmatic Differences
Data storage systems vary, but there are some common threads. Optimistic concurrency
and “last write wins” models are common. These two features go hand-in-hand because
they allow an application to retrieve a value, update it in memory, and then conditionally
write it back. The condition is the timestamp from the original value; if the timestamp
in storage is the same as the timestamp on the original value, there have been no changes
in the meantime, so the update does not lose data.

Other systems are more sophisticated than “last write wins.” The Amazon Dynamo
Database was built for the shopping cart on Amazon.com. Dynamo is designed to merge
multiple versions of the same shopping cart, such as might occur through temporary
system partitions (the “P” in CAP), a sensible feature given the purpose.

If all writes go to a single location, dealing with eventual consistency is simplified. This
is the case with the Couchbase and MongoDB NoSQL databases, which only accept
writes to the master node for a particular data value. Once written, that updated value
propagates to other nodes which are not allowed to modify it. In these scenarios, even
tual consistency only matters during reads.

Impact of Eventual Consistency on Application Logic | 57

Summary
The CAP Theorem provides the theoretical basis that explains why we cannot guarantee
both consistency and availability in a distributed database. A useful compromise is to
allow for eventual consistency in favor of better scalability. Determining if your appli
cation data is a suitable candidate for eventual consistency is a business decision. The
choice is between displaying stale data and scaling more efficiently.

58 | Chapter 5: Eventual Consistency Primer

CHAPTER 6

MapReduce Pattern

This pattern focuses on applying the MapReduce data processing pattern.

MapReduce in this chapter is explicitly tied to the use of Hadoop since
that helps pin down its capabilities and avoid confusion with other var
iants. The term MapReduce is used except when directly referencing
the Hadoop project (which is introduced below).

MapReduce is a data processing approach that presents a simple programming model
for processing highly parallelizable data sets. It is implemented as a cluster, with many
nodes working in parallel on different parts of the data. There is large overhead in
starting a MapReduce job, but once begun, the job can be completed rapidly (relative
to conventional approaches).

MapReduce requires writing two functions: a mapper and a reducer. These functions
accept data as input and then return transformed data as output. The functions are called
repeatedly, with subsets of the data, with the output of the mapper being aggregated and
then sent to the reducer. These two phases sift through large volumes of data a little bit
at a time.

MapReduce is designed for batch processing of data sets. The limiting factor is the size
of the cluster. The same map and reduce functions can be written to work on very small
data sets, and will not need to change as the data set grows from kilobytes to megabytes
to gigabytes to petabytes.

Some examples of data that MapReduce can easily be programmed to process include
text documents (such as all the documents in Wikipedia), web server logs, and users’
social graphs (so that new connection recommendations can be discovered).

Data is divvied up across all nodes in the cluster for efficient processing.

59

Context
The MapReduce Pattern is effective in dealing with the following challenges:

• Application processes large volumes of relational data stored in the cloud
• Application processes large volumes of semi-structured or irregular data stored in

the cloud
• Application data analysis requirements change frequently or are ad hoc
• Application requires reports that traditional database reporting tools cannot effi

ciently create because the input data is too large or is not in a compatible structure

Other cloud platforms may support Hadoop as an on-demand service.
This pattern assumes a Hadoop-based service.

Hadoop implements MapReduce as a batch-processing system. It is optimized for the
flexible and efficient processing of massive amounts of data, not for response time.

The output from MapReduce is flexible, but is commonly used for data mining, for
reporting, or for shaping data to be used by more traditional reporting tools.

MapReduce as a Service
Amazon Web Services, Google, and Windows Azure all offer MapReduce as an on-
demand service.

The Amazon Web Services and Windows Azure services are based on the open source
Apache Hadoop project (http://hadoop.apache.org).

The Google service also uses the MapReduce pattern, but not with Hadoop. In fact, Google
invented MapReduce to solve problems it faced in processing the vast data it was collecting,
such as page-to-page hyperlinks that were gathered by crawling public websites. In par
ticular, MapReduce was used to analyze these links to apply Google’s famous PageRank
algorithm to decide which websites are most worthy of showing up in searches. After
wards, they published some academic papers explaining their approach, and the Hadoop
project was modeled after it. (Relevant links are in Appendix A.)

60 | Chapter 6: MapReduce Pattern

http://hadoop.apache.org

Cloud Significance
Cloud platforms are good at managing large volumes of data. One of the tenets of big
data analysis is bring the compute to the data, since moving large amounts of data is
expensive and slow. A cloud service for the analysis of data already nearby in the cloud
will usually be the most cost-effective and efficient.

Large volumes of data stored on-premises are more effectively analyzed
by using a Hadoop cluster that is also on-premises.

Hadoop greatly simplifies building distributed data processing flows. Running Hadoop
as a Service in the cloud takes this a step further by also simplifying Hadoop installation
and administration. The Hadoop cloud service can access data directly from certain
cloud storage services such as S3 on Amazon and Blob Storage on Windows Azure.

Using MapReduce through a Hadoop cloud platform service lets you rent instances for
short amounts of time. Since a Hadoop cluster can involve many compute nodes, even
hundreds, the cost savings can be substantial. This is especially convenient when data
is stored in cloud storage services that integrate well with Hadoop.

Impact
Cost Optimization, Availability, Scalability

Mechanics

Map and Reduce from Computer Science
For context, it is helpful to be aware that the name of this pattern derives from the func
tional programming concepts of map and reduce. In computer science, map and reduce
describe functions that can be applied to lists of elements. A map function is applied to
each element in a list, resulting in a new list of elements (sometimes called a projection).
A reduce function is applied to all elements in a list, resulting in a single scalar value.

Consider the list [“foo”, “bar”]. A map function that converts a single string to uppercase
would result in a list where the letters have all been converted to uppercase ([“FOO”,
“BAR”]); a corresponding reduce function that accepts a list of strings and concatenates
them would produce a single result string (“FOOBAR”). A map function that returns the
length of a string would result in a list of word lengths ([3, 3]); a corresponding reduce
function that accepts a list of integers and adds them up would produce a sum (6).

Impact | 61

Map produces a new list, while reduce produces a scalar result. While simple concepts,
they are powerful.

The map and reduce functions implemented in this pattern are conceptually similar to
the computer science versions, but not exactly the same. In the MapReduce Pattern, the
lists consist of key/value pairs rather than just values. The values can also vary widely:
a text block, a number, even a video file.

Hadoop is a sophisticated framework for applying map and reduce functions to arbi
trarily large data sets. Data is divvied up into small units that are distributed across the
cluster of data nodes. A typical Hadoop cluster contains from several to hundreds of
data nodes. Each data node receives a subset of the data and applies the map and reduce
functions to locally stored data as instructed by a job tracker that coordinates jobs across
the cluster. In the cloud, "locally stored" may actually be durable cloud storage rather
than the local disk drive of a compute node, but the principle is the same.

Data may be processed in a workflow where multiple sets of map and reduce functions
are applied sequentially, with the output of one map/reduce pair becoming the input for
the next. The resulting output typically ends up on the local disk of a compute node or
in cloud storage. This output might be the final results needed or may be just a data
shaping exercise to prepare the data for further analytical tools such as Excel, traditional
reporting tools, or Business Intelligence (BI) tools.

MapReduce Use Cases
MapReduce excels at many data processing workloads, especially those known as em
barrassingly parallel problems. Embarrassingly parallel problems can be effortlessly par
allelized because data elements are independent and can be processed in any order. The
possibilities are extensive, and while a full treatment is out of scope for this brief survey,
they can range from web log file processing to seismic data analysis.

MapReduce and You
You may see the results of MapReduce without realizing it. LinkedIn uses it to suggest
contacts you might want to add to your network. Facebook uses it to help you find friends
you may know. Amazon uses it to recommend books. It is heavily used by travel and dating
sites, for risk analysis, and in data security. The list of uses is extensive.

This pattern is not typically used on small data sets, but rather on what the industry
refers to as big data. The criteria for what is or is not big data is not firmly established,

62 | Chapter 6: MapReduce Pattern

but usually starts in the hundreds of megabytes or gigabytes range and goes up to pe
tabytes. Since MapReduce is a distributed computing framework that simplifies data
processing, one might reasonably conclude that big data begins when the data is too big
to handle with a single machine or with conventional tooling.

If the data being processed will grow to those levels, the pattern can be developed on
smaller data and it will continue to scale. From a programming point of view, there is
no difference between analyzing a couple of small files and analyzing petabytes of data
spread out over millions of files. The map and reduce functions do not need to change.

Beyond Custom Map and Reduce Functions
Hadoop supports expressing map and reduce functions in Java. However, any pro
gramming language with support for standard input and standard output (such as
C++, C#, Python) can be used to implement map and reduce functions using Hadoop
streams. Also, depending on details of the cloud environment, other higher-level pro
gramming languages may be supported in some cases. For example, in Hadoop on
Azure, JavaScript can be used to script Pig (Pig is introduced shortly).

Hadoop is more than a robust distributed map/reduce engine. In fact, there are so many
other libraries in the Apache Hadoop Project, that it is more accurate to consider Hadoop
to be an ecosystem. This ecosystem includes higher-level abstractions beyond map/
reduce.

For example, the Hive project provides a query language abstraction that is similar to
traditional SQL; when one issues a query, Hive generates map/reduce functions and
runs them behind the scenes to carry out the requested query. Using Hive interactively
as an ad hoc query tool is a similar experience to using a traditional relational database.
However, since Hadoop is a batch-processing environment, it may not run as fast.

Pig is another query abstraction with a data flow language known as Pig Latin. Pig also
generates map/reduce functions and runs them behind the scenes to implement the
higher-level operations described in Pig Latin.

Mahout is a machine-learning abstraction responsible for some of the more sophisti
cated jobs, such as music classification and recommendations. Like Hive and Pig, Ma
hout generates map/reduce functions and runs them behind the scenes.

Hive, Pig, and Mahout are abstractions that, comparable to a compiler, turn a higher-
level abstraction (such as Java code) into machine instructions.

The ecosystem includes many other tools, not all of which generate and execute map/
reduce functions. For example, Sqoop is a relational database connector that gives you
access to advanced traditional data analysis tools. This is often the most potent combi
nation: use Hadoop to get the right data subset and shape it to the desired form, then
use Business Intelligence tools to finish the processing.

Mechanics | 63

More Than Map and Reduce
Hadoop is more than just capable of running MapReduce. It is a high-performance
operating system for building distributed systems cost-efficiently.

Each byte of data is also stored in triplicate, for safety. This is similar to cloud storage
services that typically store data in triplicate, but refers to Hadoop writing data to the
local disk drives of its data nodes. Cloud storage can be used to substitute for this, but
that is not required.

Automatic failure recovery is also supported. If a node in the cluster fails, it is replaced,
any active jobs restarted, and no data will be lost. Tracking and monitoring adminis
trative features are built in.

Example: Building PoP on Windows Azure
A new feature we want to add to the Page of Photos (PoP) application (which was
described in the Preface) is to highlight the most popular page of all time. To do this,
we first need data on page views. These are traditionally tracked in web server logs, and
so can easily be parsed out. As described in Horizontally Scaling Compute Pattern
(Chapter 2), the PoP IIS web logs are collected and conveniently available in blob storage.

We can set up Hadoop on Azure to use our web log files as input directly out of blob
storage. We need to provide map and reduce functions to process the web log files. These
map and reduce functions would parse the web logs, one line at a time, extracting just
the visited page from that line. Each line of the log file would contain a reference to a
page; for example, a row in the web log indicating a visit to http://www.pageofphotos.com/
jebaka would include the string “/jebaka.” Our map function can remove the leading
forward slash character. We could also have our map function ignore any rows that were
not for visited pages, such as rows that were for image downloads. Because MapReduce
expects a map function to return an attribute value pair, our simple map function would
output a single string such as “jebaka, 1” where the “1” indicates a count of 1.

MapReduce will collect all instances of “jebaka, 1” and pass them on as a single list to
our reduce function. The key here is “jebaka” and the list passed to the reduce function
is a key followed by many values. The input to the reduce function would be “jebaka, 1
1 1 1 1 1 1 1 1 1” (and so on, depending upon how many views that page got). The reduce
function needs to add up all the hits (10 in this example) and output it as “jebaka, 10”
and that’s all.

MapReduce will take care of the rest of the bookkeeping. In the end, there will be a
bunch of output files with totals in them. While more map/reduce functions could be
written to further simplify, we’ll assume that a simple text scan (not using MapReduce)
could find the page with the greatest number of views and cache that value for use by
the PoP logic that displays the most popular site on the home page.

64 | Chapter 6: MapReduce Pattern

http://www.pageofphotos.com/jebaka
http://www.pageofphotos.com/jebaka

If we wanted to update this value once a week, we could schedule the launching of a
MapReduce job. The individual nodes (which are worker role instances under the cov
ers) in the Hadoop on Azure cluster will only be allocated for a short time each week.

Enabling clusters to be spun up only periodically without losing their data depends on
their ability to persist data into cloud storage. In our scenario, Hadoop on Azure reads
web logs from blob storage and writes its analysis back to blob storage. This is convenient
and cuts down on the cost of compute nodes since they can be allocated on demand to
run a Hadoop job, then released when done. If the data was instead maintained on local
disks of compute nodes (which is how traditional, non-cloud Hadoop usually works),
the compute nodes would need to be kept running continually.

As of this writing, the Hadoop on Azure service is in preview. It is not
yet supported for production use.

Related Chapters

• Horizontally Scaling Compute Pattern (Chapter 2)
• Eventual Consistency Primer (Chapter 5)
• Colocate Pattern (Chapter 12)

Summary
The MapReduce Pattern provides simple tools to efficiently process arbitrary amounts
of data. There are abundant examples of common use that are not economically viable
using traditional means. The Hadoop ecosystem provides higher-level libraries that
simplify creation and execution of sophisticated map and reduce functions. Hadoop
also makes it easy to integrate MapReduce output with other tools, such as Excel and BI
tools.

Summary | 65

CHAPTER 7

Database Sharding Pattern

This advanced pattern focuses on horizontally scaling data through sharding.

To shard a database is to start with a single database and then divvy up its data across
two or more databases (shards). Each shard has the same database schema as the original
database. Most data is distributed such that each row appears in exactly one shard. The
combined data from all shards is the same as the data from the original database.

The collection of shards is a single logical database, even though there are now multiple
physical databases involved.

Context
The Database Sharding Pattern is effective in dealing with the following challenges:

• Application database query volume exceeds the query capability of a single database
node resulting in unacceptable response times or timeouts

• Application database update volume exceeds the transactional capability of a single
database node resulting in unacceptable response times or timeouts

• Application database network bandwidth needs exceed the bandwidth available to
a single database node resulting in unacceptable response times or timeouts

• Application database storage requirements exceed the capacity of a single database
node

This chapter assumes sharding is done with a database service that offers integrated
sharding support. Without integrated sharding support, sharding happens entirely in
the application layer, which is substantially more complex.

67

Cloud Significance
Historically, sharding has not been a popular pattern because sharding logic was usually
custom-built as part of the application. The result was a significant increase in cost and
complexity, both in database administration and in the application logic that interacts
with the database. Cloud platforms significantly mask this complexity.

Integrated database sharding support is available with some cloud database services, in
both relational and NoSQL varieties.

Integrated sharding support pushes complexity down the stack: out of
the application code and into the database service.

Any database running on a single node is ultimately limited. Capacity limits are lower
in the cloud than they are with customer-owned high-end hardware. Therefore, limits
in the cloud will be reached sooner, requiring that database sharding occur sooner. This
may lead to an increase in sharding popularity for cloud-native applications.

Impact
Scalability, User Experience

Mechanics
Traditional (non-sharded) databases are deployed to a single database server node. Any
database running on a single node is limited by the capacity of that node. Contention
for resources such as CPU, memory, disk speed, data size, and network bandwidth can
impair the database’s ability to handle database activity; excessive contention may over
whelm the database. This limited capacity is exacerbated with cloud database services
because the database is running on commodity hardware and the database server is
multitenant. (Multitenancy is described in Multitenancy and Commodity
Hardware Primer (Chapter 8).)

There are many potential approaches for scaling an application database when a single
node is no longer sufficient. Some examples include: distributing query load to slave
nodes, splitting into multiple databases according to the type of data, and vertically
scaling the database server. To handle query load (but not write/update), slave nodes
are replicated from a master database; slave nodes are read-only and are typically even
tually consistent. Another option is splitting into multiple databases according to the

68 | Chapter 7: Database Sharding Pattern

type of data, such as inventory data in one database and employee data in another. In
the cloud, vertically scaling the database is possible if you are willing to manage your
own database server—a painful tradeoff—while still constrained by maximum available
virtual machine size. The cloud-native option is database sharding.

The Database Sharding Pattern is a horizontal scaling approach that overcomes the
capacity limits of a single database node by distributing the database across multiple
database nodes. Each node contains a subset of the data and is known as a shard. Col
lectively, the data in all the shards represents a complete logical database. In a database
service with integrated sharding, the collection of shards appears to applications as a
single database with a single database connection string. This abstraction is a great boon
to simplifying the programming model for applications. However, as we shall see, there
are also limitations.

Shards Are Autonomous
Sharding is a horizontal scaling strategy in which resources from each shard (or node)
contribute to the overall capacity of the sharded database. Database shards are said to
implement a shared nothing architecture that simply means that nodes do not share with
other nodes; they do not share disk, memory, or other resources.

For the approach to be efficient, common business operations must be satisfied by inter
acting with a single shard at a time. Cross-shard transactions are not supported.

Basically, shards do not reference other shards. Each shard is autonomous.

Figure 7-1. Data rows are distributed across shards, while maintaining the same struc
ture. Two shards are depicted: one shard holds rows with ID=1-2, the other holds rows
with ID=3-5.

Mechanics | 69

In the most straightforward model as shown in Figure 7-1, all shards have the same
database schema as the original database, so they are structurally identical, and the
database rows are divvied up across the shards. The exact manner in which these rows
are divvied up is critical if sharding is to provide the desired benefits.

Shard Identification
A specific database column designated as the shard key determines which shard node
stores any particular database row. The shard key is needed to access data.

As a naïve but easily understood example, the shard key is the username column and
the first letter is used to determine the shard. Any usernames starting with A-J are in
the first shard, and K-Z in the second shard. When your customer logs in with their
username, you can immediately access their data because you have a valid shard key.

A more complex example might shard on the customerid column that is a GUID. When
your customer logs in with their username, you do not have a valid shard key. You can
maintain a mapping table, perhaps in a distributed cache, to look up the shard key
(customerid) from their username. Then you can access their data.

Shard Distribution
Why are you sharding? Answering this question is a good start for determining a rea
sonable sharding strategy. When you are sharding because data will not fit into a single
node instance, divide the data into similarly sized shards to make it fit. When you are
sharding for performance reasons, divide the data across shard nodes in such a way that
all shard nodes experience a similar volume of database queries and updates.

When sharding for scalability or query performance, shards should be added before
individual nodes can no longer keep pace with demand. Runtime logging and analytics
are important in understanding the behavior of a sharded database. Some commercial
databases do this analysis for you and shard automatically.

It is important that a single shard at a time can satisfy most of the common database
operations. Otherwise, sharding will not be efficient.

Reporting functions such as aggregating data can be complicated because they span
shards. Some database servers offer services to facilitate this. For example, Couchbase
supports MapReduce jobs that span shards. If the database server does not have support
for this, such scenarios must be handled in the application layer, which adds complexity.

More advanced scenarios are possible. Different sets of tables might use different shard
keys, resulting in multiple sets of shards. For example, separate shards may be based on
customer and inventory tables. It might also be possible to create a composite shard key
by combining keys from different database entities.

70 | Chapter 7: Database Sharding Pattern

When Not to Shard
Database schemas designed for cloud-native applications will support sharding. How
ever, it should not be assumed that any database is easily updated to support sharding.
This may be especially true of older databases that have evolved over many years. While
a detailed analysis is beyond the scope of this chapter, a poorly modeled database is a
bad choice.

It is worth emphasizing that even though they are not the subject of this book because
they are not different in the cloud, database optimization techniques, proper indexing,
query tuning, and caching are still completely useful and valid in the cloud. Just because
the cloud allows you to more easily shard doesn’t make it the solution to every database
scaling or performance problem.

Is Cloud-Native Right for Your Application?
To maximize the value of the cloud, we build cloud-native applications. Building cloud-
native applications requires that we think differently about some important aspects of
architecture. However, building cloud-native applications does not mean that we forget
all of our database tuning skills, as so many of them remain extremely useful.

Furthermore, while this is a book of patterns for building cloud-native applications, that’s
not the right approach for every application. Database architecture is central to many
existing applications, and changing from a vertical scaling approach to a horizontal scaling
approach is a big change. Sometimes the right business decision will be to host your own
instance of a relational database so that you can still move to the cloud without changing
the database architecture. Of course, you will forego many of the benefits, but at least it is
possible through use of Linux or Windows virtual machines running on the Amazon or
Windows Azure platforms. This can also serve as a temporary or transitional solution on
the way to becoming fully cloud-native.

Not All Tables Are Sharded
Some tables are not sharded, but rather replicated into each shard. These tables contain
reference data, which is not specific to any particular business entity and is read-
mostly. For example, a list of zip codes is reference data; the application may use this
data to determine the city from a zip code. We duplicate reference data in each shard to
maintain shard autonomy: all of the data needed for queries must be in the shard.

The rest of the tables are typically sharded. Unlike reference data, any given row of a
sharded table is stored on exactly one shard node; there is no duplication.

The sharded tables typically include those tables responsible for the bulk of the data size
and database traffic. Reference data typically does not change very often and is much
smaller than business data.

Mechanics | 71

Cloud Database Instances
Using multiple database instances as a single logical database can bring some surprises.
It is a distributed system, so the internal clocks on instances are never exactly the same.
Be careful in making assumptions about timestamps across shards when using the da
tabase time to establish chronological order.

Further, cloud databases are set to Universal Coordinated Time (UTC), not local time.
This means that application code is responsible for translating into local time as needed
for reporting and user interface display.

Example: Building PoP on Windows Azure
The Page of Photos (PoP) application (which was described in the Preface) uses Win
dows Azure SQL Database to manage user-generated data about the photos. Basic ac
count information includes name, login identifier (email address), and folder name; for
example, the folder kevin corresponds to the photo page http://pageofphotos.com/
kevin. Photo data includes a description, timestamp, and geographic location.

In June 2012, the SQL Azure service was renamed to Windows Azure
SQL Database, or simply SQL Database. Because the SQL Azure name
was around for a long time, many people still use the old name and most
existing web information was written with the old name. The new name
is used in this book.

There is also data that spans photos and spans accounts. Photo tags are shared across
photos, geographic data is correlated (“other photos taken nearby”), and comments from
one user to another create cross-references to other accounts. Users can follow other
users’ pages (so you can get an alert email when they post a new photo), and so forth.
Data that is naturally relational suggests that using a relational database may be a good
choice.

PoP grew in popularity over time and eventually reached the point where there were so
many active users that the volume of database activity started to become a bottleneck.
As explained in Busy Signal Pattern (Chapter 9), occasional throttling should be ex
pected, but usage was too high for a single database instance to handle. To overcome
this, the PoP database was sharded: we spread the demand across shards so that any
individual shard can easily handle its share of the volume.

Windows Azure SQL Database offers integrated sharding support through a feature
known as Federations. This feature helps applications flexibly manage a collection of
shards, keeping the complexity out of the application layer. PoP uses the Federations
feature to implement sharding.

72 | Chapter 7: Database Sharding Pattern

http://pageofphotos.com/kevin
http://pageofphotos.com/kevin

The Federations feature uses different terminology than is used so far
in this chapter. A federation is equivalent to a shard, a federation key is
equivalent to a shard key, and a federation member is a database node
hosting a federation. The remainder of this section will use the termi
nology specific to Windows Azure SQL Database.

PoP identifies users by their email address and uses that as its federation key. With
Federations, the application is responsible for specifying the range of data in each fed
eration based on the federation key. In the case of PoP, the first step is to simply spread
the workload across two federations. This works well with data associated with email
addresses beginning with characters “a” through “g” in the first federation, and the rest
of the data in the second federation.

A one-time configuration is necessary to enable federations, with the most important
operation being the establishment of the federation ranges. This is done using a new
database update command, ALTER FEDERATION. Once federation ranges are defined by
the application, the Federations feature gets busy moving data to the appropriate fed
eration members. There is a small amount of boilerplate code needed in application
code (issuing a USE FEDERATION command), but the application logic is otherwise es
sentially the same as when using SQL Database without Federations.

The ALTER FEDERATION command currently supports a SPLIT AT di
rective, which is used to specify how to divvy up the data across shards.
The inverse, MERGE AT, has not yet been released. Until MERGE AT (or
equivalent) is released, reducing the number of shards in your SQL Da
tabase is more cumbersome than it will be ultimately. See Appendix A
for a reference on how to simulate MERGE AT today.

Rebalancing Federations
Through growth, PoP will eventually need to rebalance the federations. For example,
the next step could be to spread the data equally across three federations. This is one of
the most powerful aspects of Federations: it will handle all rebalancing details behind
the scenes, without database downtime, and maintain all ACID guarantees, without the
application code needing to change.

Example: Building PoP on Windows Azure | 73

Federations will handle the distribution of data across federations, in
cluding redistributes, without database downtime. This is one of the
two big differences between sharding at the application layer. The other
big difference is that Federations appears as a single database to the
application, regardless of how many federation members there are. This
abstraction allows the application to deal with only a single database
connection string, simplifying caching and database connection pool
ing.

Fan-Out Queries Across Federations
Recall that in database sharding, not all tables are federated. Reference data is replicated
to all federation members in order to maintain autonomy. If reference tables are not
replicated to individual federation members, they cannot be joined to during database
queries without involving multiple federations.

PoP has some reference data that supports a feature that allows users to tag photos with
a word such as redsox, theater, heavy metal, or manga. In order to promote consistency
across users, these tags are stored in a shared table in a Windows Azure SQL Database
that is frequently used in queries and updates across multiple federations. This is ref
erence data, so we replicate it to each federation.

What happens when we need to add a new tag? We write application code to replicate
our changes across all federations. We do this using a fan-out query that visits each
federation member and applies the update. Because it happens from application code,
the different federation members will have different sets of tags while the fan-out query
is in progress. It is an acceptable business risk for PoP if the list of photos tags is eventually
consistent.

Fanning Out
The PoP reference data example uses a fan-out query to replicate a reference data change
across all federation members. This is known as a fan-out query since it “fans out” to every
federation member, but it isn’t actually a query. It is an update. Queries are also possible,
though be aware that all joins happen in application code. Windows Azure SQL Data Sync
could also be used to keep the tags in sync across federations.

A fanout query implementation resembles MapReduce: apply a query to individual fed
eration members (map), then combine and refine that intermediate data into a final result
(reduce).

74 | Chapter 7: Database Sharding Pattern

Not surprisingly, Hadoop on Azure is another tool that can be useful in processing large
amounts of data spanning federation members. Hadoop jobs can be used for data shaping
where large data sets are preprocessed such that the resulting subset can be conveniently
analyzed using Excel or traditional reporting tools. As mentioned previously, Sqoop can
be used to allow Hadoop to connect to a Windows Azure SQL Database instance.

NoSQL Alternative
PoP data is relational, so a relational database is an appropriate tool for data manage
ment. However, other reasonable options are available, specifically a NoSQL database.
There are tradeoffs.

Relational or NoSQL?
The PoP application is contrived to demonstrate use cases for cloud architecture patterns
that, in turn, inspire the use of Windows Azure services and features. A reasonable review
of the PoP data requirements may show that while the data contains some relationships,
the relationships are not so complex that a full-featured relational database is needed. This
is reasonable. No hard-and-fast rules exist regarding when to go with a full-featured re
lational database versus a NoSQL database, with pros and cons for either approach.

Windows Azure offers a NoSQL database as a service. This is the Table service that is
part of Windows Azure Storage.

The Table service is an key-value store, meaning that application code specifies a key to
set or get a value. It is a simple programming model. Each value can consist of many
properties (up to 252 custom and 3 system properties). The programmer can choose
among some standard data types for each custom property such as integer, string, binary
data (up to 64 KB), double, GUID, and a few more. The three system properties are a
timestamp (useful for optimistic locking), a partition key, and a row key.

The partition key is conceptually similar to a federation (or shard) key, and defines a
grouping of data rows (each identified by row key) that are guaranteed to be stored on
the same storage node. Federations are different in that each federation member hosts
exactly one federation, whereas the Table service decides how many partition keys will
be on each storage node, based on usage. The Table service automatically moves parti
tions between storage nodes to optimize for observed usage, which is more automated
than Federations.

Example: Building PoP on Windows Azure | 75

Hopefully the Federations feature will go beyond “integrated sharding”
to a fully “auto-sharding” service in the future. In this (hypothetical)
scenario, Federations monitors database analytics on your behalf and
makes reasonable decisions to balance federations based on data size,
query volume, and database transaction volume.

The Azure Table service is less capable than SQL Database in managing relationships.
The Table service does not support a database schema, there is nothing akin to relational
database referential integrity or a constraint between two tables, and there are no foreign
keys. This means that the application layer is handling any relations between values.
Transactions are supported, but only within a single partition. Two related values in
separate partitions cannot be updated atomically, though they can be eventually con
sistent.

In summary, NoSQL can work just fine, and some aspects are easier than using SQL
Database with Federations, but other aspects are more challenging.

Cost of using the services should also be a factor. Use the Windows
Azure Pricing Calculator to model the costs.

Related Chapters

• Horizontally Scaling Compute Pattern (Chapter 2)
• Auto-Scaling Pattern (Chapter 4)
• Eventual Consistency Primer (Chapter 5)
• MapReduce Pattern (Chapter 6)

Summary
When using the Database Sharding Pattern, workloads can be distributed over many
database nodes rather than concentrated in one. This helps overcome size, query per
formance, and transaction throughput limits of the traditional single-node database.
The economics of sharding a database become favorable with managed sharding sup
port, such as found in some cloud database services.

The data model must be able to support sharding, a possible barrier for some applica
tions not designed with this in mind. Cross-shard operations can be more complex.

76 | Chapter 7: Database Sharding Pattern

CHAPTER 8

Multitenancy and Commodity
Hardware Primer

This primer introduces multitenancy and commodity hardware and explains why they
are used by cloud platforms.

Cloud platforms are optimized for cost-efficiency. This optimization is partially driven
by the high utilization of services running on cost-efficient hardware that manifests as
multitenant services running on commodity hardware.

The decisions made in building the cloud platform also influence the applications that
run on it. The impact to the application architecture of cloud-native applications man
ifests through horizontal scaling and handling failure.

Multitenancy
Multitenancy means there are multiple tenants sharing a system. Usually the system is
a software application operated by one company, the host, for use by other companies,
the tenants. Each tenant company has individual employees who access the software.
All employees of a tenant company can be connected within the application while other
tenants are invisible; this creates the illusion for each tenant that they are the only cus
tomers using the software.

In a single tenant model, if an application needs a database, it gets its
own instance. This simplifies capacity management (for individual ap
plications), but at the expense of overall efficiency, as many database
servers (and other types of servers) will be running with low overall
utilization much of the time.

77

In the cloud, multitenant services are standard: data services, DNS services, hardware
for virtual machines, load balancers, identity management, and so forth. Cloud data
centers are optimized for high hardware utilization and that drives down costs.

Multitenancy: Not Just for Cloud Platform Services
Cloud platforms have embraced multitenant services, so why not you? Software as a Ser
vice (SaaS) is a delivery model in which a software application is offered as a managed
service; customers simply rent access. You may wish to build your SaaS application as
multitenant on the cloud so that you can leverage the cost-efficiencies of shared instances.
You can choose to be multitenant all the way through for maximum savings, or just in
some areas but not others, such as with compute nodes but not database instances, for
example.

Sometimes SaaS applications are also able to (perhaps anonymously) glean valuable busi
ness insights and analytics from the aggregate data they are managing across many cus
tomers.

There are also downsides to multitenant services. Your architecture will need to ensure
tenant isolation so that one customer cannot access another customer’s data, while still
allowing individual customers access to their own data and reporting.

Two common areas of concern are security and performance management.

Security
Any individual tenant on a multitenant service is placed in a security sandbox that limits
its ability to know anything about the other tenants, even the existence of other tenants.
This is handled in different ways on different services. For example, hypervisors manage
security on virtual machines, relational databases have robust user management fea
tures, and cryptographically secure keys are used as controls for cloud storage.

Unlike a tenant in an apartment building, you won’t be running into neighbors, and
won’t need to remember their names. If tenant isolation is successful, you operate under
the illusion that you are the only tenant.

Performance Management
Applications in a multitenant environment compete for system resources. The cloud
platform is responsible for fairly managing competing resource needs among tenants.
The goal is to achieve high hardware utilization in all service instances without com
promising the performance or behavior of the tenants. One strategy employed is to
enforce quotas on individual tenants to prevent them from overwhelming specific
shared resources. Another strategy is to deploy resource-hungry tenants alongside ten

78 | Chapter 8: Multitenancy and Commodity Hardware Primer

ants with low resource demands. Of course resource needs are dynamic and therefore
unpredictable. The cloud platform is continuously monitoring, reorganizing (moving
tenants around), and horizontally scaling service instances—but it’s all done transpar
ently. See Auto-Scaling Pattern (Chapter 4).

This type of automated performance management is less common in the non-cloud
world, but the approach is important to understand as it will impact your cloud-native
application.

Impact of Multitenancy on Application Logic
While the cloud platform can do a very good job of monitoring active tenants and
continually rebalancing resources, there are scenarios where a burst of activity can tem
porarily overwhelm a service instance. This can happen when multiple applications get
really busy all of a sudden. What happens? The cloud platform will proactively decide
how to redistribute tenants as needed, but in the meantime (usually a few seconds to a
few minutes), attempts to access these resources may experience transient failures that
manifest as busy signals. For more information about responding to transient failures
or busy signals, refer to Busy Signal Pattern (Chapter 9).

Multitenancy services get busy, occasionally responding to service calls
with a busy signal. Plan on it happening to your application and plan
on handling it.

Commodity Hardware
Cloud platforms are built using commodity hardware. In contrast to either low-end
hardware or high-end hardware, commodity hardware is in the middle, chosen because
it has the most attractive value-to-cost ratio; it’s the-biggest-bang-for-the-buck hard
ware. High-end hardware is more expensive than commodity hardware. Twice as much
memory and twice as many CPU cores typically will be more than twice the total cost.
A dominant driver for using cloud data centers is cost-efficiency.

Data Center Is a Competitive Differentiator
It is not credible to claim that traditional data centers were developed without cost con
cerns. But with more heterogeneous and higher-end hardware populating those data
centers, the emphasis was certainly different. These data centers were there to serve as
home for the applications we already had on the hardware we were already using, opti
mized for individual vertically scaling applications rather than the far more ambitious
goal of optimizing across all applications.

Commodity Hardware | 79

The larger cloud platform vendors are tackling this ambitious goal of optimizing across
the whole data center. While Windows Azure, Amazon Web Services, and other cloud
platforms support virtual machine rentals that can run legacy software on Windows Server
or Linux, the greatest runtime efficiency lies with cloud-native applications. This model
should become attractive to more and more customers over time as it becomes increasingly
cost-efficient as cloud platform vendors drive further efficiencies and pass along the cost
savings.

In particular, Microsoft enjoys economies of scale not available to most companies. Partly
this is because it is a very large technology company in its own right, but also stems from
its broad, mature product lines and platforms. By methodically updating its own internal
applications and existing products to leverage Windows Azure, while also adding new
cloud offerings, Microsoft benefits from a practice known as eating your own dogfood, or
dogfooding. Through dogfooding, Microsoft's internal product teams use the Windows
Azure platform as customers would, identify feature gaps or other concerns, and then
work directly with the Windows Azure team so that more features can be developed using
real world scenarios, resulting in a more mature platform sooner than might otherwise
be possible.

The largest cloud platform vendors are in a battle to produce and offer advanced features
more efficiently than their competitors so that they can offer competitive pricing. Al
though I don't know which cloud platform vendors will win in the end (and I don't envision
a world where Windows Azure and Amazon Web Services aren't both big players), the
clear winners in this battle are the customers—that's us.

This is an economic decision that helps optimize for cost in the cloud. The main chal
lenge to applications is that commodity hardware fails more frequently than high-end
hardware.

Shift in Emphasis from MTBF to MTTR
The ethos in the traditional application development world emphasized minimizing the
mean time between failures (MTBF), meaning that we worked hard to ensure that hard
ware did not fail. This translated into high-end hardware, redundant components (such
as RAID disk drives and multiple power supplies), and redundant servers (such as sec
ondary servers that were not put into use unless the primary server failed for the most
critical systems). On occasion when hardware did fail, the application was down until
a human fixed the problem. It was expensive and complex to build software that effort
lessly survived a hardware failure, so for the most part we attacked that problem with
hardware.

The new ethos in the cloud-native world emphasizes minimizing the mean time to re
covery (MTTR), meaning that we work hard to ensure that when hardware fails, only

80 | Chapter 8: Multitenancy and Commodity Hardware Primer

some application capacity is impacted, and the application keeps on working. In concert
with patterns in this book and in alignment with the services offered by the major cloud
platforms, this approach is not only viable, but also attractive due to the great reduction
in complexity and new economic efficiencies.

Hardware Failure Is Inevitable, but Not Frequent
Discussion of recovering from failures in commodity hardware can be misleading. Just
because commodity hardware fails more frequently than high-end hardware does not
mean it fails frequently. Hardware failures impact only a small percentage of the com
modity servers in the data center every year. But be ready: eventually it will be your turn.

The cloud platform assumes that much of the MTTR duties are completed through
automation, but also imposes requirements on your application, forming something of
a partnership in handling failure.

Impact of Commodity Hardware on Application Logic
Cloud-native applications expect failure and are able to detect and automatically recover
from common scenarios. Some of these failure scenarios are present because the appli
cation is relying on commodity hardware.

Commodity hardware fails occasionally. Plan on it happening to your
compute nodes and plan on handling it.

Failure may simply be due to an issue with a specific physical server such as bad memory,
a crashed disk drive, or coffee spilled on the motherboard. Other scenarios originate
from software failures. For more information about responding to failures at the indi
vidual node level, refer to Node Failure Pattern (Chapter 10).

The failure scenario just described may be obvious: your application code is running
on commodity hardware, and when that hardware fails your application is impacted.
What is less obvious is that cloud services on which your application also depends
(databases, persistent file storage, messaging, and so on) on are also running on com
modity hardware. When these services experience a disruption due to a hardware failure,
your application may also be impacted. In many scenarios, the cloud platform service
recovers without any visible degradation, but sometimes capacity is temporarily re
duced, forcing the calling application to handle transient failure. For more information
about responding to failures encountered during calls to a cloud service, refer to Chap
ter 3.

Commodity Hardware | 81

Homogeneous Hardware
Cloud data centers also strive to use homogeneous hardware for easier management
and maintenance of resources. Procurement of large scale homogeneous hardware is
possible through inexpensive and readily available commodity hardware.

The level of homogeneity in the hardware is unlikely to directly impact applications as
long as the allocated capacity in a virtual machine remains predictable.

Homogeneous Hardware Benefits in the Real World
Southwest Airlines is one of the most consistently profitable airlines in the world, in part
fueled by their insistence on homogeneous commodity hardware: the Boeing 737. This is
the only type of plane in the whole fleet, vastly reducing complexity in breadth of skills
needed by mechanics and pilots, streamlining parts inventory, and probably even sim
plifying software that runs the airlines since there are fewer differences between flights.

Summary
Cloud platform vendors make choices around cost-efficiency that directly impact the
architecture of applications. Architecting to deal with failure is part of what distinguishes
a cloud-native application from a traditional application. Rather than attempting to
shield the application from all failures, dealing with failure is a shared responsibility
between the cloud platform and the application.

82 | Chapter 8: Multitenancy and Commodity Hardware Primer

CHAPTER 9

Busy Signal Pattern

This pattern focuses on how an application should react when a cloud service responds
to a programmatic request with a busy signal rather than success.

This pattern reflects the perspective of a client, not the service. The client is program
matically making a request of a service, but the service replies with a busy signal. The
client is responsible for correct interpretation of the busy signal followed by an appro
priate number of retry attempts. If the busy signals continue during retries, the client
treats the service as unavailable.

Dialing a telephone occasionally results in a busy signal. The normal response is to retry,
which usually results in a successful telephone call.

Similarly, invoking a service occasionally results in a failure code being returned, indi
cating the cloud service is not currently able to satisfy the request. The normal response
is to retry which usually results in the service call succeeding.

The main reason a cloud service cannot satisfy a request is because it is too busy. Some
times a service is “too busy” for just a few hundred milliseconds, or one or two seconds.
Smart retry policies will help handle busy signals without compromising user experience
or overwhelming busy services.

Applications that do not handle busy signals will be unreliable.

Context
The Busy Signal Pattern is effective in dealing with the following challenges:

83

• Your application uses cloud platform services that are not guaranteed to respond
successfully every time

This pattern applies to accessing cloud platform services of all types, such as manage
ment services, data services, and more.

More generally, this pattern can be applied to applications accessing services or resources
over a network, whether in the cloud or not. In all of these cases, periodic transient
failures should be expected. A familiar non-cloud example is when a web browser fails
to load a website fully, but a simple refresh or retry fixes the problem.

Cloud Significance
For reasons explained in Multitenancy and Commodity Hardware Primer (Chapter 8),
applications using cloud services will experience periodic transient failures that result
in a busy signal response. If applications do not respond appropriately to these busy
signals, user experience will suffer and applications will experience errors that are dif
ficult to diagnose or reproduce. Applications that expect and plan for busy signals can
respond appropriately.

The pattern makes sense for robust applications even in on-premises environments, but
historically has not been as important because such failures are far less frequent than in
the cloud.

Impact
Availability, Scalability, User Experience

Mechanics
Use the Busy Signal Pattern to detect and handle normal transient failures that occur
when your application (the client in this relationship) accesses a cloud service. A tran
sient failure is a short-lived failure that is not the fault of the client. In fact, if the client
reissues the identical request only milliseconds later, it will often succeed.

84 | Chapter 9: Busy Signal Pattern

Transient failures are expected occurrences, not exceptional ones, similar to making a
telephone call and getting a busy signal.

Busy Signals Are Normal
Consider making a phone call to a call center where your call will be answered by one of
hundreds of agents standing by. Usually your call goes through without any problem, but
not every time. Occasionally you get a busy signal. You don’t suspect anything is wrong,
you simply hit redial on your phone and usually you get through. This is a transient failure,
with an appropriate response: retry.

However, many consecutive busy signals will be an indicator to stop calling for a while,
perhaps until later in the day. Further, we only will retry if there is a true busy signal. If
we’ve dialed the wrong number or a number that is no longer in service, we do not retry.

Although network connectivity issues might sometimes be the cause of transient fail
ures, we will focus on transient failures at the service boundary, which is when a request
reaches the cloud service, but is not immediately satisfied by the service. This pattern
applies to any cloud service that can be accessed programmatically, such as relational
databases, NoSQL databases, storage services, and management services.

Transient Failures Result in Busy Signals
There are several reasons for a cloud service request to fail: the requesting account is
being too aggressive, an overall activity spike across all tenants, or it could be due to a
hardware failure in the cloud service. In any case, the service is proactively managing
access to its resources, trying to balance the experience across all tenants, and even
reconfiguring itself on the fly in reaction to spikes, workload shifts, and internal hard
ware failures.

Cloud services have limits; check with your cloud vendor for documentation. Examples
of limits are the maximum number of service operations that can be performed per
second, how much data can be transferred per second, and how much data can be
transferred in a single operation.

In the first two examples, operations per second and data transferred per second, even
with no individual service operation at fault it is possible that multiple operations will
cumulatively exceed the limits. In contrast, the third example, amount of data transfer

Mechanics | 85

red in a single operation, is different. If this limit is exceeded, it will not be due to a
cumulative effect, but rather it is an invalid operation that should always be refused.
Because an invalid operation should always fail, it is different from a transient failure
and will not be considered further with this pattern.

Handling Busy Signals Does Not Replace Addressing Scalability
Challenges

For cloud services, limits are not usually a problem except for very busy applications. For
example, a Windows Azure Storage Queue is able to handle up to 500 operations per
second for any individual queue. If your application needs to sustain more than 500 queue
operations per second on an individual queue, this is no longer a transient failure, but
rather a scalability challenge. Techniques for overcoming such a scalability challenge are
covered under Horizontally Scaling Compute Pattern (Chapter 2) and Auto-Scaling Pat
tern (Chapter 4).

Limits in cloud services can be exceeded by an individual client or by multiple clients
collectively. Whenever your use of a service exceeds the maximum allowed throughput,
this will be detected by the service and your access would be subject to throttling.
Throttling is a self-defense response by services to limit or slow down usage, sometimes
delaying responses, other times rejecting all or some of an application’s requests. It is up
to the application to retry any requests rejected by the service.

Multiple clients that do not exceed the maximum allowed throughput individually can
still exceed throttling limits collectively. Even though no individual client is at fault,
aggregate demand cannot be satisfied. In this case the service will also throttle one or
more of the connected clients. This second situation is known as the noisy neighbor
problem where you just happen to be using the same service instance (or virtual machine)
that some other tenant is using, and that other tenant just got real busy. You might get
throttled even if, technically, you do nothing wrong. The service is so busy it needs to
throttle someone, and sometimes that someone is you.

Cloud services are dynamic; a usage spike caused by a bunch of noisy neighbors might
be resolved milliseconds later. Sustained congestion caused by multiple active clients
who, as individuals, are compliant with rate limits, should be handled by the sophisti
cated resource monitoring and management capabilities in the cloud platform. Resource
monitoring should detect the issue and resolve it, perhaps by spreading some of the load
to other servers.

Cloud services also experience internal failures, such as with a failed disk drive. While
the service automatically repairs itself by failing over to a healthy disk drive, redirecting

86 | Chapter 9: Busy Signal Pattern

traffic to a healthy node, and initiating replication of the data that was on the failed disk
(usually there are three copies for just this kind of situation), it may not be able to do so
instantaneously. During the recovery process, the service will have diminished capacity
and service calls are more likely to be rejected or time out.

Recognizing Busy Signals
For cloud services accessed over HTTP, transient failures are indicated by the service
rejecting the request and usually responded to with an appropriate HTTP status code
such as: 503 Service Unavailable. For a relational database service accessed over TCP,
the database connection might be closed. Other short-lived service outages may result
in different error codes, but the handling will be similar. Refer to your cloud service
documentation for guidance, but it should be clear when you have encountered a tran
sient failure and documentation may also prescribe how best to respond. Handle (and
log) unexpected status codes.

It is important that you clearly distinguish between busy signals and
errors. For example, if code is attempting to access a resource and the
response indicates it has failed because the resource does not exist or
the caller does not have sufficient permissions, then retries will not help
and should not be attempted.

Responding to Busy Signals
Once you have detected a busy signal, the basic reaction is to simply retry. For an HTTP
service, this just means reissuing the request. For a database accessed over TCP, this may
require reestablishing a database connection and then reissuing the query.

How should your application respond if the service fails again? This depends on cir
cumstances. Some responses to consider include:

• Retry immediately (no delay).
• Retry after delay (fixed or random delay).
• Retry with increasing delays (linear or exponential backoff) with a maximum delay.
• Throw an exception in your application.

Access to a cloud service involves traversing a network that already introduces a short
delay (longer when accessing over the public Internet, shorter when accessing within a
data center). A retry immediately approach is appropriate if failures are rare and the
documentation for the service you are accessing does not recommend a different ap
proach.

Mechanics | 87

When a service throttles requests, multiple client requests may be rejected in a short
time. If all those clients retry quickly at the same time, the service may need to reject
many of them again. A retry after delay approach can give the service a little time to clear
its queue or rebalance. If the duration of the delay is random (e.g., 50 to 250ms), retries
to the busy service across clients will be more distributed, improving the likelihood of
success for all.

The least aggressive retry approach is retry with increasing delays. If the service is expe
riencing a temporary problem, don’t make it worse by hammering the service with retry
requests, but instead get less aggressive over time. A retry happens after some delay; if
further retries are needed, the delay is increased before each successive retry. The delay
time can increase by a fixed amount (linear backoff), or the delay time can, for example,
double each time (exponential backoff).

Cloud platform vendors routinely provide client code libraries to make
it as easy as possible to use your favorite programming language to
access their platform services. Avoid duplication of effort: some client
libraries may already have retry logic built in.

Regardless of the particular retry approach, it should limit the number of retry attempts
and should cap the backoff. An aggressive retry may degrade performance and overly
tax a system that may already be near its capacity limits. Logging retries is useful for
analysis to identify areas where excessive retrying is happening.

After some reasonable number of delays, backoffs, and retries, if the service still does
not respond, it is time to give up. This is both so the service can recover and so the
application isn’t locked up. The usual way for application code to indicate that it cannot
do its job (such as store some data) is to throw an exception. Other code in the application
will handle that exception in an application-appropriate manner. This type of handling
needs to be programmed into every cloud-native application.

User Experience Impact
Handling transient failures sometimes impacts the user experience. The details of han
dling this well are specific to every application, but there are a couple of general guide
lines.

The choice of a retry approach and the maximum number of retry attempts should be
influenced by whether there is an interactive user waiting for some result or if this is a
batch operation. For a batch operation, exponential backoff with a high retry limit may
make sense, giving the service time to recover from a spike in activity, while also taking
advantage of the lack of interactive users.

88 | Chapter 9: Busy Signal Pattern

With an interactive user waiting, consider several retries within a small interval before
informing the user that “the system is too busy right now – please try again later”. The
social networking service Twitter is well-known for this behavior. Consider the Queue-
Centric Workflow Pattern (Chapter 3) for ways to decouple time-consuming work from
the user interface.

When a service does not succeed within a reasonable time or number of retries, your
application should take action. Though unsatisfying, sometimes passing the informa
tion back to the user is a reasonable approach, such as “the server is busy and your update
will be retried in ten seconds”. (This is similar to how Google Mail and Quora handle
temporary network connectivity issues in their web user interfaces.)

Be careful with server-side code that ties up resources while retrying
some operation, even when that code is retrying in an attempt to im
prove the user experience. If a busy web application has lots of user
requests, each holding resources during retries, this could bump up
against other resource constraints, reducing scalability.

Logging and Reducing Busy Signals
Logging busy signals can be helpful in understanding failure patterns. Robustly tracking
and handling transient failures is extremely important in the cloud due to the innate
challenges in debugging and managing distributed cloud applications.

Analysis of busy signal logs can lead to changes that will reduce future busy signals. For
example, analysis may reveal that busy signals trend higher when accessing a cloud
database service. Remember, the cloud provides the illusion of infinite resources, but
this does not mean that each resource has infinite capacity. To access more capacity, you
must provision more instances. When one database instance is not enough, it may be
time to apply Database Sharding Pattern (Chapter 7).

Testing
It is common to test cloud applications in non-cloud environments. Code that runs in
a development or test environment, especially at lower-than-production volumes or
with dedicated hardware, may not experience the transient failures seen in the cloud.
Be sure to test and load test in an environment as close to production as possible.

Mechanics | 89

It is becoming more common for companies to test against the pro
duction environment because it is the most realistic. For example, load
testing against production, though perhaps at non-peak times. Netflix
goes even further by continually stressing their production (cloud) en
vironment with errors using a home-grown tool they call Chaos Mon
key. To ensure they can handle any kind of disruption, Chaos Monkey
continually and randomly turns off services and reboots servers in the
production environment.

Example: Building PoP on Windows Azure
The Page of Photos (PoP) application (which was described in the Preface) uses a num
ber of Windows Azure cloud services. Two of these are Windows Azure SQL Databases
for storing account profile information and Windows Azure Storage blobs for storing
photos. Because these are cloud services, PoP code is written to handle transient failures.

The Windows Azure Platform includes software libraries for use with a variety of pro
gramming environments such as C#, Java, Node.js, Python, and mobile devices. These
libraries all simplify accessing blobs by automatically detecting transient failures and
retrying up to three times. There are a number of other predefined retry behaviors
available, and it is also possible to create a custom retry policy. Most applications won’t
need anything beyond the default behavior.

Busy Signals in the Real World
How frequently do retries happen in practice? Here are some real numbers gathered in
running an upload utility that saturated a network connection for an extended period of
time (measured in days), pushing data over the public Internet into Windows Azure Blob
storage. A custom retry policy was used to implement exponential backoff while also
logging each retry attempt. During the uploading of nearly a million files averaging four
megabytes in size, around 1.8% of the files required at least one retry. Note that because
the files were so large, each file upload involved many storage operations, so retries on
storage operations were needed much less frequently than 0.1% of the time. However,
because logging was at the granularity of a file upload level, exact statistics are not available.
Further, many factors can impact retry behavior, such as competition for the network
resources locally and network connectivity across the public Internet. Your results will
vary.

Applications accessing Windows Azure SQL Databases use the same TCP protocol used
for accessing SQL Server. However, a more robust approach to transient failure detection
and retry logic is needed. This comes in the form of a library known as the Transient
Fault Handling Application Block, also known as Topaz. Like the retry support in the

90 | Chapter 9: Busy Signal Pattern

libraries mentioned previously for blob access, Topaz has some predefined retry behav
iors, but also a rich model for customization. The easiest way to take advantage of Topaz
features when writing database access code is to replace standard database objects with
the transient-failure-aware equivalents that ship with Topaz. For example, use a Relia
bleSqlConnection object in place of the standard .NET SqlConnection object.

Some SQL Database transient failures are due to throttling and inform you of this by
returning a well-known error code. Sometimes SQL Database will drop your database
connection, requiring that you reconnect.

Expect Your Database Connection to Drop
Why would SQL Database drop your connection? When you connect, behind the scenes
it is not a single instance but rather a cluster of three collaborating servers. This provides
multiple benefits. One benefit is resilience to disk drive failure as each byte written to SQL
Database is written to all three servers within the cluster. Another benefit is that, as a
multitenant service, SQL Database can distribute (and redistribute) load across servers to
keep it balanced. These benefits come at a cost. If SQL Database chooses your connection
to move to another of the three servers in the cluster, it needs to first disconnect you; when
you reconnect, you will connect to your newly assigned cluster node, though you won’t
be able to tell the difference.

While the focus here has been on using Topaz with SQL Database, it also supports
Windows Azure Storage, Windows Azure Caching, and Windows Azure Service Bus,
including advanced retry possibilities if you need them.

Related Chapters

• Queue-Centric Workflow Pattern (Chapter 3)
• Multitenancy and Commodity Hardware Primer (Chapter 8)
• Node Failure Pattern (Chapter 10)

Summary
Handling transient failures is essential for building reliable cloud-native applications.
Using the Busy Signal Pattern, your application can detect and handle transient failures
appropriately. Further, your approach can be tuned for batch or interactive user sce
narios.

Summary | 91

It may be difficult to test your application’s response to transient failure conditions if
running on non-cloud hardware or with an unrealistically light load.

92 | Chapter 9: Busy Signal Pattern

CHAPTER 10

Node Failure Pattern

This pattern focuses on how an application should respond when the compute node on
which it is running shuts down or fails.

This pattern reflects the perspective of application code running on a node (virtual
machine) that is shut down or suddenly fails due to a software or hardware issue. The
application has three responsibilities: prepare the application to minimize issues when
nodes fail, handle node shutdowns gracefully, and recover once a node has failed.

Some common reasons for shutdown are unresponsive application due to application
failure, routine maintenance activities managed by the cloud vendor, and auto-scaling
activities initiated by the application. Failures might be caused by hardware failure or
an unhandled exception in your application code.

While there are many reasons for a node shutdown or failure, we can still treat them
uniformly. Handling the various forms of failure is sufficient; all shutdown scenarios
will also be handled. The pattern name derives from the more encompassing node fail
ures.

Applications that do not handle node shutdowns and failures will be
unreliable.

Context
The Node Interruption Pattern is effective in dealing with the following challenges:

• Your application is using the Queue-Centric Workflow Pattern and requires at-
least-once processing for messages sent across tiers

• Your application is using the Auto-Scaling Pattern and requires graceful shutdown
of compute nodes that are being released

• Your application requires graceful handling of sudden hardware failures
• Your application requires graceful handling of unexpected application software

failures
• Your application requires graceful handling of reboots initiated by the cloud plat

form
• Your application requires sufficient resiliency to handle the unplanned loss of a

compute node without downtime

All of these challenges result in interruptions that need to be addressed and many of
them have overlapping solutions.

Cloud Significance
Cloud applications will experience failures that result in node shutdowns. Cloud-native
applications expect these and respond appropriately when notified of shutdowns by the
cloud platform.

Impact
Availability, User Experience

Mechanics
The goal of this pattern is to allow individual nodes to fail while the application as a
whole remains available. There are several categories of failure scenarios to consider,
but all of them share characteristics for preparing for failure, handling node shutdown
(when possible), and then recovering.

Failure Scenarios
When your application code runs in a virtual machine (especially on commodity hard
ware and on a public cloud platform), there are a number of scenarios in which a shut
down or failure could occur. There are other potential scenarios, but from the point of
view of the application, the scenarios always look like one of those listed in Table 10-1.

Table 10-1. Node Failure Scenarios
Scenario Initiated By Advanced

Warning
Impact

Sudden failure + restart Sudden hardware failure No Local data is lost

94 | Chapter 10: Node Failure Pattern

94

Scenario Initiated By Advanced
Warning

Impact

Node shutdown + restart Cloud platform (vacate failing hardware,
software update)

Yes Local data may be available

Node shutdown + restart Application (application update, application
bug, managed reboot)

Yes Local data is available

Node shutdown + termination Application (node released such as via auto-
scale)

Yes Local data is lost

Table 10-1 is correct for the Windows Azure and Amazon Web Services
platforms. It is not correct for every platform, though the pattern is still
generally applicable.

The scenarios have a number of triggers listed; some provide advanced warning, some
don’t. Advanced warning can come in multiple forms, but amounts to a proactive signal,
sent by the cloud platform that allows the node to gracefully shut down. In some cases,
local data written to the local virtual machine disk is available after the interruption,
sometimes it is lost. How do we deal with this?

Scenarios can be initiated by hardware or software failures, by the cloud platform, or by
your application.

Treat All Interruptions as Node Failures
None of the scenarios are predictable from the point of view of the individual node.
Further, the application code does not know which scenario it is in, but it can handle
all of the scenarios gracefully if it treats them all as failures.

All application compute nodes should be ready to fail at any time.

Given that failure can happen at any time, your application should not use the local disk
drive of the compute node as the system of record for any business data. As mentioned
in Table 10-1, it can be lost. Remember that an application using stateless nodes is not
the same as a stateless application. Application state is persistent in reliable storage, not
on the local disk of an individual node.

By treating all shutdown and failure scenarios the same, there is a clear path for handling
them: maintain capacity, handle node shutdowns, shield users when possible, and re
sume work-in-progress after the fact.

Mechanics | 95

Maintain Sufficient Capacity for Failure with N+1 Rule
An application prepares first by assuming node failures will happen, then taking pro
active measures to ensure failures don’t result in application downtime. The primary
proactive measure is to ensure sufficient capacity.

How many node instances are needed for high availability? Apply the N+1 rule: If N
nodes are needed to support user demand, deploy N+1 nodes. One node can fail or be
interrupted without impact to the application. It is especially important to avoid any
single points of failure for nodes directly supporting users. If a single node is required,
deploy two.

The N+1 rule should be considered and applied independently for each type of node.
For example, some types of node can experience downtime without anyone noticing or
caring. These are good candidates for not applying the N+1 rule.

A buffer more extensive than a single node may be needed, though rarely, due to an
unusual failure. A severe weather-related incident could render an entire data center
unavailable, for example. A top-of-rack switch failure is discussed in the Example and
cross-data center failover is touched on in Multisite Deployment Pattern (Chapter 15).

There is a time lag between the failure occurrence and the recognition of that failure by
the cloud platform monitoring system. Your service will run at diminished capacity until
a new node has been fully deployed. For nodes configured to accept traffic through the
cloud platform load balancer, traffic will continue to be routed there; once the failed
node is recognized it will be promptly removed from the load balancer, but there will
still be more time until the replacement node is booted up and added to the load balancer.
See Auto-Scaling Pattern (Chapter 4) for a discussion of borrowing already-deployed
resources from less critical functions to service more important ones during periods of
diminished capacity.

Handling Node Shutdown
We can responsibly handle node shutdown, but there is no equivalent handling for
sudden node failure because the node just stops in an instant. Not all hardware failures
result in node failure: the cloud platforms are adept at detecting signals that hardware
failure is imminent and can preemptively initiate a controlled shutdown to move tenants
to different hardware.

Some node failures are also preventable: is your application code handling exceptions?
At a minimum, do this for logging purposes.

Regardless of the reason the node is shutting down, the goals are to allow in-progress
work to complete, gather operational data from that node before shutdown completes,
and do so without negatively impacting the user experience.

96 | Chapter 10: Node Failure Pattern

Cloud platforms provide signals to let running applications know that a node is either
about to be, or is in the process of being, shut down. For example, one of the signals
provided by Amazon Web Services is an advanced alert, and one of the signals provided
by Windows Azure is to raise an event within the node indicating that shutdown has
begun.

Node shutdown with minimal impact to user experience

Cloud platforms managing both load balancing and service shutdown stop sending web
traffic to nodes they are in the process of shutting down. This will prevent many types
of user experience issues, as new web requests will be routed to other instances. Only
those pending web requests that will not be complete by the time the service shuts down
are problematic. Some applications will not have any problem as all requests are re
sponded to nearly instantly.

If your application is using sticky sessions, new requests will not always
be routed to other instances. This topic was covered in Horizontally
Scaling Compute Pattern (Chapter 2). However, cloud-native applica
tions avoid sticky sessions.

It is possible that a node will begin shutting down while some work visible to a user is
in progress. The longer it takes to satisfy a web request, the more of a problem this can
be. The goal is to avoid having users see server errors just because they were accessing
a web page when a web node shuts down while processing their request. The application
should wait for these requests to be satisfied before shutting down. How to best handle
this is application-, operating system-, and cloud platform-specific; an example for a
Windows Cloud Service running on Windows Azure is provided in the Example.

Failures that result in sudden termination can cause user experience problems if they
happen in nodes serving user requests. One tactic for minimizing this is to design the
user interface code to retry when there are failures, as described in Busy Signal Pat
tern (Chapter 9). Note that the busy signal here is not coming from a cloud platform
service, but the application’s own internal service.

Node shutdown without losing partially completed work

The node should immediately stop pulling new items from the queue once shutdown is
underway and let current work finish if possible.

Queue-Centric Workflow Pattern (Chapter 3) describes processing services that can
sometimes be lengthy. If processing is too lengthy to be completed before the node is
terminated, that node has the option of saving any in-progress work outside of the local
node (such as to cloud storage) in a form that can be resumed.

Mechanics | 97

Node shutdown without losing operational data

Web server logs and custom application logs are typically written to local disk on indi
vidual nodes. This is a reasonable approach, as it makes efficient use of available local
resources to capture this log data.

As described in Horizontally Scaling Compute Pattern (Chapter 2), part of managing
many nodes is the challenge of consolidating operational data. Usually this data is col
lected periodically. If the collection process is not aware that a node is in the process of
shutdown, that data may not be collected in time, and may be lost. This is your oppor
tunity to trigger collection of that operational data.

Recovering From Node Failure
There are aspects to recovering from node failure: maintaining a positive user experience
during the failure process, and resuming any work-in-progress that was interrupted.

Shielding interactive users from failures

Some node instances support interactive users directly. These nodes might be serving
up web pages directly or providing web services that power mobile apps or web appli
cations. A positive user experience would shield users from the occasional failure. This
happens in a few ways.

If a node fails on the server, the cloud platform will detect this and stop sending traffic
to that node. Once detected, service calls and web page requests will be routed to healthy
node instances. You don’t need to do anything to make this happen (other than follow
the N+1 rule), and this is sometimes good enough.

However, to be completely robust, you should consider the small window of exposure
to failure that can occur while in the middle of processing a request for a web page or
while executing a service call. For example, the disk drive on the node may suddenly
fail. The best response to this edge case is to place retry logic on the client, basically
applying Busy Signal Pattern (Chapter 9). This is straightforward for a native mobile
app or a single-page web application managing updates through web service calls (Goo
gle Mail is an example of a single-page web application that handles this scenario nicely).
For a traditional web application that redisplays the entire page each time, it is possible
that users could see an error surface through their web browser. This is out of your
control. It will be up to the users to retry the operation.

Don’t Be Overprotective
The strategy of shielding users from errors only makes sense up to a point. Eventually you
will need to communicate errors to the user, though “service is not available, please retry

98 | Chapter 10: Node Failure Pattern

in a couple of minutes” is sometimes the best we can do. Further, make sure any retry
policies are appropriate for interactive users; in other words, a policy that retries 10 times
with a 30-second sleep in between may be fine for a nightly batch process, but totally
inappropriate when supporting an interactive user.

Resuming work-in-progress on backend systems

In addition to user experience impact, sudden node failure can interrupt processing in
the service tier. This can be robustly handled by building processes to be idempotent so
they can safely execute multiple times on the same inputs. Successful recovery depends
on nodes being stateless and important data being stored in reliable storage rather than
on a local disk drive of the node (assuming that disk is not backed by reliable storage).
A common technique for cloud-native applications is detailed in Queue-Centric Work
flow Pattern (Chapter 3), which covers restarting interrupted processes as well as saving
in-progress work to make recovery faster.

Example: Building PoP on Windows Azure
Page of Photos (PoP) application (which was described in the Preface) is architected to
provide a consistently reliable user experience and to not lose data. In order to maintain
this through occasional failures and interruptions, PoP prepares for failure, handles role
instance (node) shutdowns gracefully, and recovers from failures as appropriate.

Preparing PoP for Failure
PoP is constantly increasing and decreasing capacity to take advantage of the cost sav
ings; we only want to pay for the capacity needed to run well, and no more. PoP also
does not wish to sustain downtime or sacrifice the user experience due to diminished
capacity in the case of an occasional failure or interruption.

N+1 rule

The N+1 rule is honored for roles that directly serve users, because user experience is
very important. However, because no users are directly impacted by occasional inter
ruptions, PoP management made the business decision to not apply the N+1 rule for
worker roles which make up the service tier.

These decisions are accounted for in PoP auto-scaling rules.

Windows Azure fault domains

Windows Azure (through a service known as the Windows Azure Fabric Controller)
determines where in the data center to deploy each role instance of your application

Example: Building PoP on Windows Azure | 99

within specific constraints. The most important of these constraints for failure scenarios
is a fault domain. A fault domain is a potential single point of failure (SPoF) within a
data center, and any roles with a minimum of two instances are guaranteed to be dis
tributed across at least two fault domains.

The discerning reader will realize that this means up to half of your application’s web
and worker role instances can go down at once (assuming two fault domains). While it
is possible, it is unlikely. The good news is that if it does happen, the Fabric Controller
begins immediate remediation, although your application will run with diminished
capacity during recovery.

Auto-Scaling Pattern (Chapter 4) introduced the idea of internally
throttling some application features during periods of diminished or
insufficient resources. This is another scenario where that tactic may
be useful. Note that you may not want to auto-scale in response to such
a failure, but rather allow the Fabric Controller to recover for you.

For the most part, a hardware failure results in the outage of a single role instance. The
N+1 rule accounts for this possibility.

PoP makes the business decision that N+1 is sufficient, as described previously.

When N + 1 Is Not Enough
If a failure impacts more than a single hardware node (for example, a failure at the rack
level), N+1 may not be enough, depending on your business requirements. If this level of
potential (albeit rare) downtime is too much, consider even more capacity, depending on
how many fault domains are in effect. Currently, all Windows Azure cloud services run
with two fault domains and (as of this writing) the number cannot be changed. Extra
capacity for critical times can be scheduled as a proactive auto-scaling task. Also consider
Multisite Deployment Pattern (Chapter 15).

Note that fault domains only apply with unexpected hardware failures. For operating
system updates, hypervisor updates, or application-initiated upgrades, downtime is
distributed across upgrade domains.

100 | Chapter 10: Node Failure Pattern

Upgrade domains

Conceptually similar to fault domains, Windows Azure also has upgrade domains that
provide logical partitioning of role instances into groups (by default, five) which are
considered to be independently updatable. This goes hand-in-hand with the in-place
upgrade feature, which upgrades your application in increments, one upgrade domain
at a time.

If your application has N upgrade domains, the Fabric Controller will manage the up
dates such that 1/N role instances will be impacted at a time. After these updates com
plete, updating the next 1/N role instances can begin. This continues until the applica
tion is completely updated. Progressing from one upgrade domain to the next can be
automated or manual.

Upgrade domains are useful to the Fabric Controller since it uses them during operating
system upgrades (if the customer has opted for automatic updates), hypervisor updates,
emergency moves of role instances from one machine or rack to another, and so forth.
Your application uses upgrade domains if it updates itself using the in-place upgrade
process where the application is upgraded one upgrade domain at a time. You may
choose to manually approve the progression from one upgrade domain to the next, or
have the Fabric Controller proceed automatically.

Multiple Concurrent Versions
Cloud-native applications commonly have a single deployment with mixed releases (and
features) across the role instances. This staged upgrade can be managed using upgrade
domains with an in-place upgrade. Another way to look at this: an application upgrade
does not happen at a particular time, rather it spans time. During that time span the
application is running two versions. Two customers visiting the application at the same
time may be routed to different versions. If you wish to avoid deploying multiple concur
rent versions, look into Windows Azure's VIP Swap feature.

What is the right number of upgrade domains for my application? There is a tradeoff:
more upgrade domains take longer to roll out, while fewer upgrade domains increase
the level of diminished capacity. For PoP, the default of five upgrade domains works
well.

Handling PoP Role Instance Shutdown
Graceful role shutdown avoids loss of operational data and degradation of the user
experience.

Example: Building PoP on Windows Azure | 101

When we instruct Windows Azure to release a role instance, there is a defined process
for shutdown; it does not shut off immediately. In the first step, Windows Azure chooses
the role instance that will be terminated

You don’t get to decide which role instances will be terminated.

First, let’s consider terminating a web role instance.

Web role instance shutdown

Once a specific web role instance is selected for termination, Windows Azure (specifi
cally the Fabric Controller) removes that instance from the load balancer so that no new
requests will be routed to it. The Fabric Controller then provides a series of signals to
the running role that a shutdown is coming. The last of these signals is to invoke the
role’s OnStop method, which is allowed five minutes for a graceful shutdown. If the
instance finishes the cleanup within five minutes, it can return from OnStop at that point;
if your instance does not return from OnStop within five minutes, it will be forcibly
terminated. Only after OnStop has completed does Azure consider your instances to be
released for billing purposes, providing an incentive for you to make OnStop exit as
efficiently as possible. However, there are a couple of steps you could take to make the
shutdown more graceful.

Although the first step in the shutdown process is to remove the web role from the load
balancer, it may have existing web requests being handled. Depending on how long it
takes to satisfy individual web requests, you may wish to take proactive steps to allow
these existing web requests to be satisfied before allowing the shutdown to complete.
One example of a slower-than-usual operation is a user uploading a file, though even
routine operations may need to be considered if they don’t complete quickly enough. A
simple technique to ensure your Web Role is gracefully shutting down is to monitor an
IIS performance counter such as Web Service\Current Connections in a loop inside your
OnStop method, continuing to termination only when it has drained to zero.

Application diagnostic information from role instances is logged to the current virtual
machine and collected by the Diagnostics Manager on a schedule of your choosing, such
as every ten minutes. Regardless of your schedule, triggering an unscheduled collection
within your OnStop method will allow you to wrap up safely and exit as soon as you are
ready. An on-demand collection can be initiated using Service Management features.

102 | Chapter 10: Node Failure Pattern

Worker role instance shutdown

Gracefully terminating a worker role instance is similar to terminating a web role in
stance, although there are some differences. Because Azure does not load balance PoP
worker role instances, there are no active web requests to drain. However, triggering an
on-demand collection of application diagnostic information does make sense, and you
would usually want to do this.

Although PoP worker role instances do not have public-facing end
points, Windows Azure does support it, so applications may have active
connections when instance shutdown begins. A worker role can define
public-facing endpoints that will be load balanced. This feature is useful
in running your own web server such as Apache, Mongoose, or Nginx.
It may also be useful for exposing self-hosted WCF endpoints. Further,
public endpoints are not limited to HTTP, as TCP and UDP are also
supported.

A worker role instance will want to stop pulling new items from the queue for processing
as soon as possible once shutdown is underway. As with the web role, instance shutdown
signals such as OnStop can be useful; a worker role could set a global flag to indicate that
the role instance is shutting down. The code that pulls new items from the queue could
check that flag and not pull in new items if the instance is shutting down. Worker roles
can use OnStop as a signal, or hook an earlier signal such as the OnStopping event.

If the worker role instance is processing a message pulled from a Windows Azure Storage
queue and it does not complete before the instance is terminated, that message will time
out and be returned to the queue so it can be pulled again. (Refer to Queue-Centric
Workflow Pattern (Chapter 3) for details.) If there are distinct steps in processing, the
underlying message can be updated on the queue to indicate progress. For example, PoP
processes newly uploaded photos in three steps: extract geolocation information from
the photo, create two sizes of thumbnail, and update all SQL Database references. If two
of these steps were completed, but not the third, it is indicated by a LastCompleted
Step field in the message object that was pulled from the queue, and that message object
can be used to update the copy on the queue. When this message is pulled again from
the queue (by a subsequent role instance), processing logic will know to skip the first
two steps because LastCompletedStep field is set to two. The first time a message is
pulled, the value is set to zero.

Use controlled reboots

Sometimes you may wish to reboot a role instance. The controlled shutdown that allows
draining active work is supported if reboots are triggered using the Reboot Role Instance
operation in the Windows Azure Service Management service.

Example: Building PoP on Windows Azure | 103

If other means of initiating a reboot are used, such as directly on the node using Windows
commands, Windows Azure is not able to manage the process to allow for a graceful
shutdown.

Recovering PoP From Failure
Queue-Centric Workflow Pattern (Chapter 3) details recovering from a long-running
process.

Otherwise, there is usually little to do in recovering a stateless role instance, whether a
web role or worker role.

Some user experience glitches are addressed in PoP because client-side JavaScript code
that fetches data (though AJAX calls to REST services) implements Busy Signal Pat
tern (Chapter 9). This code will retry if a service does not respond, and the retry will
eventually be load balanced to a different role instance that is able to satisfy the request.

Related Chapters

• Queue-Centric Workflow Pattern (Chapter 3)
• MapReduce Pattern (Chapter 6)
• Multitenancy and Commodity Hardware Primer (Chapter 8)
• Busy Signal Pattern (Chapter 9)
• Multisite Deployment Pattern (Chapter 15)

Summary
Failure in the cloud is commonplace, though downtime is rare for cloud-native appli
cations. Using the Node Failure Pattern helps your application prepare for, gracefully
handle, and recover from occasional interruptions and failures of compute nodes on
which it is running. Many scenarios are handled with the same implementation.

Cloud applications that do not account for node failure scenarios will be unreliable: user
experience will suffer and data can be lost.

104 | Chapter 10: Node Failure Pattern

CHAPTER 11

Network Latency Primer

This basic primer explains network latency and why delays due to network latency
matter.

The time it takes to transmit data across a network is known as network latency. Network
latency slows down our application.

While individual networking devices like routers, switches, wireless access points, and
network cards all introduce latencies of their own, this primer blends them all together
into a bigger picture view, the total delay experienced by data having to travel over the
network.

As cloud application developers, we can decrease the impact of network latency through
caching, compression, moving nodes closer together, and shortening the distance be
tween users and our application.

Network Latency Challenges
Highly scalable and high performing (even infinitely fast!) servers do not guarantee that
our application will perform well. This is due to the main performance challenge that
lies outside of raw computational power: movement of data. Transmitting data across
a network does not happen instantly and the resultant delay is known as network latency.

Network latency is a function of distance and bandwidth: how far the data needs to
travel and how fast it moves. The challenge is that any time compute nodes, data sources,
and end users are not all using a single computer, network latency comes into play; the
more distribution, the greater the impact. Network quality plays an important role,
although it is one you might not be able to control; quality may vary as users connect
through networks from disparate locations.

105

Application performance and scalability will suffer if it takes too long for data to get to
the client computer. The effects of network latency can also vary based on the user’s
geographical location: to some users of the system, it may seem blazingly fast, while to
other users it may seem as slow as cold molasses (which means really slow).

Admittedly, understanding the actual distance traveled by the data and the effective
bandwidth can be challenging. The actual path traveled is not the same as the ideal great
circle path you might imagine from a map. The path from router to router is jagged, and
indeed may even be impacted by the capability of individual routers, and individual legs
of the route may have different bandwidths. And it can vary over time.

A simple way to estimate effective bandwidth (at some point in time) is to use ping. Ping
is a simple but useful program that calculates the time it takes to travel from one point
on the Internet to another point, by actually sending network packets, counting the
nodes along the way, and showing how long it takes the packets to get to the destination
and back. Some measured ping times are shown in Table 11-1. These pings originated
from Boston which is in the eastern USA. The fastest networks today use fiber optic
cable, which supports data transmission at around 66% of the speed of light (186,000
miles/sec × 66% = 122,760 miles/sec). As you can see from Table 11-1, shorter distances
are dominated by factors other than pure distance traveled, and none are close to the
theoretical maximum speed. HTTP and TCP traffic will be slower than pings. Network
latency impact can add up quickly, especially as web pages get heavier with more objects
to download. In An Analysis of Application Performance Data and Trends (Jan 2012),
Compuware reports that the average (yes, average) page download size for a non-mobile
news site is more than a megabyte and 790 KB for a non-mobile travel site.

Table 11-1. Ping Times from Boston – distance matters
Domain Location Elapsed Time each way (ms) Approximate Distance (miles) Speed (miles/sec)

www.bu.edu Boston, USA 17 10 1,000

www.gsu.edu Atlanta, USA 75 900 12,000

www.usc.edu Los Angeles, USA 51 2600 52,000

www.cam.ac.uk Cambridge, UK 50 3300 67,000

www.msu.ru Moscow, RU 81 4500 56,000

www.u-tokyo.ac.jp Tokyo, JP 107 6700 63,000

www.auckland.ac.nz Auckland, NZ 115 9000 79,000

Doing the Math
How much data transfer can I get for my bandwidth? Let’s do some math. Consider a T1
connection that provides 1.544 Mb/sec of bandwidth. Translating from kilobits (Kb) to
kilobytes (KB) we end up with about 193 KB/sec (1544/8=193 kilobytes per second, ig

106 | Chapter 11: Network Latency Primer

http://www.bu.edu
http://www.gsu.edu
http://www.usc.edu
http://www.cam.ac.uk
http://www.msu.ru
http://www.u-tokyo.ac.jp
http://www.auckland.ac.nz

noring errors, retries, speed degradation, and assuming no other uses of the connection).
Uploading a full CD-ROM (~660 MB) would take nearly an hour. Uploading a full DVD
(~4.7 GB) would take around 7 hours. These calculations assume ideal network condi
tions, which of course you will never have.

Reducing Perceived Network Latency
The perceived network latency, the network latency as experienced by a user, can be
reduced through techniques such as:

• Data compression
• Background processing, where screen updates don’t happen until the data arrives

(though not actually faster, it may improve a user’s subjective experience, as with
single page web applications)

• Predictive fetching, where data is loaded in anticipation of need (as with map tiles
in a mapping app, although it is possible that not all the map tiles will be referenced)

Eventual consistency is another tool we can use, if we can serve users with slightly stale
data. These are reasonable approaches for reducing the impact of network latency, but
do not change the network latency. They are essentially the same for cloud-native
applications as they are for non-cloud applications.

Reducing Network Latency
We can reduce network latency by:

• Moving application closer to users
• Moving application data closer to users
• Ensuring nodes within our application are close together

These reduction techniques are the topics of the Colocate, Valet Key, CDN, and Multisite
Deployment patterns.

Summary
A comprehensive strategy for dealing with network latency will use multiple strategies.
One set of strategies focuses on reducing the perceived network latency. Another set of
strategies focuses on actually reducing network latency by shortening the distance be
tween users and the instances of our application.

Reducing Perceived Network Latency | 107

CHAPTER 12

Colocate Pattern

This basic pattern focuses on avoiding unnecessary network latency.

Communication between nodes is faster when the nodes are close together. Distance
adds network latency. In the cloud, “close together” means in the same data center
(sometimes even closer, such as on the same rack).

There are good reasons for nodes to be in different data centers, but this chapter focuses
on ensuring that nodes that should be in the same data center actually are. Accidentally
deploying across multiple data centers can result in terrible application performance
and unnecessarily inflated costs due to data transfer charges.

This applies to nodes running application code, such as compute nodes, and nodes
implementing cloud storage and database services. It also encompasses related deci
sions, such as where log files should be stored.

Context
The Colocation Pattern effectively deals with the following challenges:

• One node makes frequent use of another node, such as a compute node accessing
a database

• Application deployment is basic, with no need for more than a single data center
• Application deployment is complex, involving multiple data centers, but nodes

within each data center make frequent use of other nodes, which can be colocated
in the same data center

In general, resources that are heavily reliant on each other should be colocated.

109

A multitier application generally has a web or application server tier that accesses a
database tier. It is often desirable to minimize network latency across these tiers by
colocating them in the same data center. This helps maximize performance between
these tiers and can avoid the costs of cloud provider data transmission.

This pattern is typically used in combination with the Valet Key and CDN Patterns.
Reasons to deviate from this pattern, such as proximity to consumers and overall reli
ability, are discussed in Multisite Deployment Pattern (Chapter 15).

Cloud Significance
Public cloud platforms typically offer many worldwide data center locations to which
applications can be easily deployed. These data centers span continents, and sometimes
multiple data centers are available within the same continent. An application can be
easily deployed to and use the cloud platform services in any of these data centers. This
multi-data center flexibility brings great advantages, but also introduces the risk that
application code and services will be unnecessarily distributed across multiple data
centers, resulting in extra costs and a degraded user experience.

Impact
Cost Optimization, Scalability, User Experience

Mechanics
When you think about it, this may seem an obvious pattern, and in many respects it is.
Depending on the structure of your company’s hardware infrastructure (whether a pri
vate data center or rented space), it may have been very difficult to do anything other
than colocate databases and the servers that accessed them.

With public cloud providers, multiple data centers are typically offered across multiple
continents, sometimes with more than one data center per continent or region. If you
plan to deploy to a single data center, there may be more than one reasonable choice.
This is good news and bad news, since it is possible (and easy) to choose any data center
as a deployment target. This makes it possible to deploy a database to one data center,
while the servers that access the database are deployed to a different data center.

The performance penalty of a split deployment can be severe for a data-intensive ap
plication.

Hadoop-based “big data” applications tend to be data-intensive in the
extreme and require that data and compute be colocated. See MapRe
duce Pattern (Chapter 6).

110 | Chapter 12: Colocate Pattern

Automation Helps
Enforcing colocation is really not a technological problem, but rather a process issue.
However, it can be mitigated with automation.

You will want to take proactive steps to avoid accidentally splitting a deployment across
data centers. Automating deployments into the cloud is a good practice, as it limits
human error from repetitive tasks. If your application spans multiple data centers but
each site operates essentially independently, add checks to ensure that data access is not
accidentally spanning data.

Outside of automation, your cloud platform may have specific features that make co
location mistakes less likely.

Cost Considerations
Operations will generally be less expensive if your databases and the compute resources
that access them are in the same data center. There are cost implications when splitting
them.

As of this writing, the Amazon Web Services and Windows Azure platforms do not
charge for network traffic to enter a data center, but do charge for network traffic leaving
a data center (even if it is to another of their data centers). There are no traffic charges
when data stays within a single data center.

Non-Technical Considerations
There may be non-technical influences on application architecture that result in data
bases being stored at a different location than the compute resources that access them.
This topic is considered further in Multisite Deployment Pattern (Chapter 15).

Example: Building PoP on Windows Azure
When the Page of Photos (PoP) application (which was described in the Preface) was
first developed, it made sense to deploy it and use cloud services inside of a single data
center.

Windows Azure allows you to specify the target data center for any resource that is
deployable to a specific data center. As examples, the target data center can be specified
for code deployment (such as Web Roles, Worker Roles, or Virtual Machines) and cloud
services (such as Windows Azure Storage, SQL Database, and more). When such re
sources will be used together, they should be colocated in the same data center.

Example: Building PoP on Windows Azure | 111

Affinity Groups
Windows Azure goes a step further for some resources, supporting affinity groups. An
affinity group is a logical grouping of resources tied to a data center. You can provide a
custom name for an affinity group, using a name that makes sense for your business and
is not simply a generic data center name. This is an example of a cloud platform feature
that can help avoid colocation mistakes.

In the case of PoP, if we deploy to a single North American data center, we can have an
affinity group called PoP-North America-Production for our production data center.
Upon creation, the decision is made as to which North American data center will be
chosen, which removes this as a decision point for any downstream deployments that
use the PoP-North America-Production affinity group.

As of this writing, not all Windows Azure resources support affinity groups; currently
only Windows Azure Compute and Windows Azure Storage are supported. Most nota
bly, SQL Database is not supported, although it can still be placed in the same data center
as the other resources.

While affinity groups are tied to a specific data center, they also provide a hint to Win
dows Azure that allows for further local optimization for supported resource types. Not
only are they in the same data center, but your Windows Azure Storage, the code ac
cessing it from web, and the worker roles are even closer together, with fewer router
hops and less distance for data to traverse. This further reduces network latency.

Using the same affinity group across storage accounts and cloud services will ensure
that they are all colocated in the same data center.

Operational Logs and Metrics
You will also likely be gathering operational log files with Windows Azure Diagnostics
(WAD) and Windows Azure Storage Analytics, available with Windows Azure Storage
accounts. Apply the same affinity group to storage as you apply to compute instances.

It is a best practice to persist WAD into a special operational storage account (different
from other storage accounts within your production system) both to minimize potential
for contention and to make it easier to manage access to logs and metrics. Depending
on the specific type of data items, individual diagnostic values are stored in either Win
dows Azure Blob or Windows Azure Table storage. Use the same affinity group for WAD
storage to ensure it is stored in the same data center as the rest of the application.

Windows Azure Storage Analytics data are stored alongside the regular data, and are
not stored in a separate storage account, so colocation is automatic.

112 | Chapter 12: Colocate Pattern

More details about the capabilities of Windows Azure Diagnostics and
Windows Azure Storage Analytics can be found in Horizontally Scaling
Compute Pattern (Chapter 2) in the Example section under Operational
Logs and Metrics. Both features support allow applications to set a basic
data retention policy that Windows Azure Storage uses to automatically
purge data.

When colocation is not possible due to technical or business reasons, Windows Azure
has some services that can help. These services are mentioned in the Example section
of Multisite Deployment Pattern (Chapter 15).

Related Chapters

• MapReduce Pattern (Chapter 6)
• Network Latency Primer (Chapter 11)
• Valet Key Pattern (Chapter 13)
• CDN Pattern (Chapter 14)
• Multisite Deployment Pattern (Chapter 15)

Summary
The simplest way to get started in the cloud is to colocate nodes, usually all in a single
data center. This is appropriate for many applications, and should be the usual config
uration. Only deviate for good reason, and avoid the mistake of accidental deployment
across more than one data center, including for storage of operational data.

Summary | 113

CHAPTER 13

Valet Key Pattern

This pattern focuses on efficiently using cloud storage services with untrusted clients.

This pattern loosely models the use of valet keys from the real world. Valet keys are
useful when you are willing to trust a valet parking attendant to park your car, but don't
want to also give them access to areas in the car not needed for this purpose, such as the
glove compartment. This pattern enables specifying that a user of your application is
allowed to access very specific areas within your cloud storage account, with specific
permissions, and for a limited amount of time. You can issue as many cloud storage valet
keys as you like and they can all be different.

Cloud storage services simplify securely transferring data directly between untrusted
clients and to secure data storage, without the data needing to pass through a trusted
intermediate layer (the web tier in this case) to implement security. Both uploads and
downloads are supported.

Going directly to the final storage location eliminates the need for data to unnecessarily
pass through an intermediary, so these operations will be faster with lower latency, while
reducing the load on the web tier. Because this pattern avoids load on the web tier, it
will result in needing less capacity, which may further result in needing fewer web server
nodes (thus saving money). Realize, however, that this pattern also requires the ability
to securely allow access to cloud storage, typically by issuing temporary access URLs.
Depending on how this is done, it may necessitate the creation of a web service, which
may require some infrastructure of its own. Generally, however, the performance, scal
ability, and cost savings favor the use of this pattern.

Context
The Valet Key Pattern is effective in dealing with the following challenges:

115

• Application data files are stored in cloud storage, which clients need to access
• Application data files are stored in cloud storage, which clients need to access on a

case-by-case basis
• Application supports clients uploading data that will end up in cloud storage

This pattern is useful when reading and writing data from mobile apps, desktop apps,
and during server-to-server communication. Reading data from a web application is
also a very common use, though due to security limitations imposed by web browsers
it is much trickier to write data to blob storage from a web application; however, see the
appendix as it is possible in some cases using emerging HTML5 standards. Still, many
web browsers do not support this scenario today.

Example of practical uses are many. A for-pay video or training site can allow access to
a video for 24 hours. A photo sharing site can allow a user to upload a new photo or
video directly into cloud storage. An enterprise can securely and efficiently share assets
with employees or partners who are outside the firewall. A backup service running on
a consumer desktop can efficiently interact directly with cloud storage, while only ever
having access to files for that single user. A translation service can allow customers to
upload text, audio, and video files; translated can be delivered back through the same
secure means.

Cloud Significance
This pattern is possible because cloud services mask significant technical complexity by
offering an easy-to-use service to applications. Additionally, software libraries support
ing a broad range of clients further simplifies client coding.

The cloud platform data storage services are optimized for reading and writing files of
all sizes at very high scale, shielding the application’s web tier from needing to provide
the bandwidth and computational power to handle this same data.

Some applications use the Gatekeeper Pattern, which does exactly what this pattern
avoids: move all data through an intermediary in order to control access. Both patterns
can be used securely, though this pattern offers efficiency and scalability benefits.

Impact
Scalability, User Experience

116 | Chapter 13: Valet Key Pattern

Mechanics
Access to cloud storage services is a privileged operation. Typically, you will allow only
trusted subsystems within your application to have unfettered access to your cloud stor
age accounts, where trusted subsystems are running entirely under your control on the
server.

Securing and managing access to data is always a high priority, but there is also a tension
between security and efficiency; we want to remain secure, but would like to do so with
the most efficient use of resources that allows us to deliver an optimized user experience.
This pattern focuses on securely using blob storage while also reading and writing data
with maximum efficiency. This is illustrated in Figure 13-1, which shows the flow of
files directly between the client and the cloud storage service. The data flow is as efficient
as possible, and in particular does not need to flow through the web tier of the appli
cation.

Using vendor-neutral terms can be challenging. A blob is a binary large
object in the sense that’s been used in the industry for many years and
is commonly used with relational databases. Basically, a blob is a file.
Windows Azure Storage happens to also call this concept a blob, while
Amazon’s Simple Storage Service (S3) calls it an object, Rackspace has
cloud files, and the list goes on. In this chapter, a blob is just a file, and
blob storage is a cloud platform service that allows you to store files in
the cloud.

A storage access key is cryptographically generated by the cloud platform for each storage
account, and applications are expected to use this key to access blob storage. It is not
easy to safely store this key on client devices, whether for a desktop, mobile, or web
application. A compromised key exposes the entire storage account. This pattern will
not cover any techniques for protecting keys on client devices, but will instead focus on
two other approaches: public access and temporary access.

Mechanics | 117

Figure 13-1. Data is uploaded efficiently, going directly from the client to cloud storage
without passing through the web tier. The issuing of a temporary access URL—the valet
key—is not shown, but is needed before the data can be uploaded.

Public Access
There are two sides to this pattern from the point of view of the client: reading blob data
and writing blob data. For blob data that is intended to be publicly visible anyway, blob
storage allows us to configure blobs for public read access. Because each blob resource
is addressable as a URL, this opens up a considerable number of possibilities. Sharing
is easy: just distribute the individual links. Blob URL references can be referenced just
like other files from HTML pages so that web applications can benefit from the scala
bility features of blob storage, reducing the burden on the web tier that would otherwise
be responsible for delivering files such as images, videos, JavaScript, and documents.

Anonymous public read access is very powerful. However, anonymous
public write access is not supported. Temporary access for both read
and write are possible if managed by the application.

118 | Chapter 13: Valet Key Pattern

Granting Temporary Access
Public read access allows any client knowing the URL to access the blob resource at any
time without limit. This may not be what you want. If more control is desired, it is
possible to grant temporary access to specific resources by constructing a temporary
access URL using the storage key. The temporary access URL can be shared with clients
who can then access the specific resource, but not all resources, just like with a valet key.

The Valet Key
Some cars come with two types of keys: regular keys that work on every lock in the car,
and valet keys that provide only limited access. The valet key is useful when you wish to
temporarily allow some access, but do not want to give full access. The classic case is valet
parking. With valet parking, you turn over your car to a stranger who will park it for you.
In exchange for this convenience, you need to give this stranger a key to your car. The
valet key is ideal for this, as it will only allow the driver to unlock the doors and start the
car; it will not allow access to storage areas. In some newer cars, it will even limit the speed
at which the car can be driven.

In the cloud storage world, the temporary access URL serves as a flexible and powerful
valet key, allowing efficient and convenient access to storage while still being able to limit
that access to only specific resources and during specific times.

Temporary access URLs are not limited to reading, but can be extended to allow other
permissions, including writing. Thus is it possible to create one that would enable a
client to upload a file directly into a predetermined location in blob storage.

The temporary access URLs are time-limited by your application-supplied expiration.
The expiration time might be selected to be just long enough to safely finish an upload,
watch a movie, or set to match the expected duration of the login session; this is a policy
decision for your application.

Temporary access URLs need to be generated on the server and made available to the
client. Reasonable approaches will depend on your application, but might include pro
viding them during login, or separately issuing them on demand to authenticated callers
via a web service.

When uploading blobs, transient failures may require retries. See Busy
Signal Pattern (Chapter 9).

Mechanics | 119

Security Considerations
Any code (in the cloud or elsewhere) with access to the storage access key will be able
to create temporary access URLs.

Temporary access URLs are secured through hashing, a proven cryptographic technique
that requires accesses to the storage key and uses it to create a unique signature for any
string, in this case the temporary access URL. The associated hash is checked every time
a client attempts to use the temporary access URL; without a correct one, access is denied.
Adversaries without access to the storage key cannot tamper with an existing temporary
access URL, create a new one, or guess a valid one.

However, as with a real-life valet key, any client in possession of a temporary access URL
can use it. Any permissions granted by the temporary access URL are available. Like
any other security access token, follow the principle of least privilege and provide only
those rights necessary, and only for as long as necessary. Further, when transporting a
temporary access URL, do so over a secure channel. Since the cloud platforms support
secure HTTPS access to blob storage, clients outside the cloud provider's data center
can safely use temporary access URLs. Temporary access URLs can even be used safely
to serve pages to a regular web browser; as far as the browser is concerned, it is just
requesting resources via HTTPS since the security key is part of the URL (the query
string), HTTPS protects the query string during transport, and the cloud storage service
handles authorization.

In the physical world, a lost valet key cannot be revoked; the only way
to render it useless is by changing the locks. In the cloud, we have other
tools such as expiration dates. The Windows Azure cloud platform goes
further, supporting temporary access URLs that do not directly contain
permissions or an expiration date, but rather reference a policy, known
as a stored access policy, which dictates permissions and expiration.
This policy can be changed independently of the URLs that reference
it. This allows temporary access URLs to be issued that can later be
revoked, extended, or have their permissions tweaked. Many URLs can
reference the same policy.

There is no limit on the number of temporary access URLs that can be issued and all
are independent of one another.

120 | Chapter 13: Valet Key Pattern

Example: Building PoP on Windows Azure
The Page of Photos (PoP) application (which was described in the Preface) supports
publishing photos directly from a smart phone. Since smart phones can now routinely
take high-resolution photos and capture HD video, the file may be large (multiple meg
abytes for a photo to tens of megabytes for a video), making this an especially good use
case for this pattern.

From the point of view of the mobile application, it does not care whether it is uploading
directly to cloud storage or uploading through a wrapper web service in the web tier; it
is the same amount of work. To write a blob into Windows Azure, a mobile application
only requires a few lines of code if it is using one of the mobile libraries provided as part
of the platform. At the time of this writing, mobile client libraries were available for
Android, iOS (iPhone, iPad), and Windows Phone.

Windows Azure Blobs offer a couple of handy features that allow us to streamline this
process: public read access and Shared Access Signatures.

Public Read Access
Enabling public read access to blobs is trivial.

Blob storage containers (which are like directories or folders) can be marked as available
for either public or private access. Photos stored in PoP are intended to be publicly
viewable by anyone, so we can go ahead and mark them all as publicly visible. Once
marked, anyone who knows the URL can read it. This is ideal for PoP for uploaded
photos and videos, generated thumbnails, and any other size or format variants.

It is not possible to configure blobs in Windows Azure Storage to allow anonymous
public updates of any kind; updates always require security credentials (which are de
scribed next).

Public read access to photos in PoP will likely result in users sharing URLs to specific
photos. This exposes the underlying URL to users. By default, the URL points to a
Windows Azure domain, but in our case we would like it to point to a http://pageofpho
tos.com domain; we do this with a vanity domain.

Using a Vanity Domain
Example of a regular photo URL from blob storage:

http://pageofphotos.blob.core.windows.net/photos/daniel.png

Example of a photo URL form blob storage after configuring our vanity domain:

http://www.pageofphotos.com/photos/daniel.png

Example: Building PoP on Windows Azure | 121

http://pageofphotos.com
http://pageofphotos.com
http://pageofphotos.blob.core.windows.net/photos/daniel.png
http://www.pageofphotos.com/photos/daniel.png

Shared Access Signatures
A Shared Access Signature (SAS) is the Windows Azure Storage feature used to construct
temporary access URLs for blobs that have temporary permission for reading or writing
blobs.

PoP takes advantage of SAS for blob storage. Windows Azure Storage
also features SAS support for its NoSQL database, Windows Azure
Tables, as well as Windows Azure Queues.

For PoP, the goal is to permit users to upload photos from a mobile application directly
into blob storage without allowing them to upload photos to other user accounts. Per
missions are part of the special URL and will not allow one user to interfere with blobs
belonging to another user. This level of security is sufficient for PoP. Once the temporary
access URL is constructed and delivered to the mobile application, it is a simple matter
for the mobile application to upload directly from the mobile device to blob storage,
perhaps using one of the mobile client libraries mentioned previously.

SAS for Selective Read Access
The SAS technique can also be used to provide temporary access URLs for reading non-
public blob resources. PoP does not require this since all images are public anyway.

If PoP did require that some photos be publicly accessible while others were not, it could
use a private container to hold photos and use the SAS technique to provide temporary
access to all URLs as needed. Alternatively, private photos could be moved into a separate
blob container, allowing public photos in the original blob container to maintain open
permissions.

Once a temporary access URL is generated, it is up to your application to safely deliver
it to the appropriate client. In the case of the PoP mobile app, the SAS will be returned
to the mobile app in response to an authenticated web service call over a secure (HTTPS)
connection.

Windows Azure Storage also supports the notion of an access policy which is a named
collection of permissions. An access policy can be used when creating a SAS. If a SAS

122 | Chapter 13: Valet Key Pattern

is constructed using an access policy, it is possible to later change that access policy. Any
valid SAS will be immediately adjusted to use the new permissions. One common use
of access policies is to maintain the ability to revoke permissions if it later becomes
necessary.

Related Chapters

• Eventual Consistency Primer (Chapter 5)
• Busy Signal Pattern (Chapter 9)
• Network Latency Primer (Chapter 11)
• Colocate Pattern (Chapter 12)
• CDN Pattern (Chapter 14)
• Multisite Deployment Pattern (Chapter 15)

Summary
Use of this pattern should be considered anywhere it can be safely applied. The ability
to manage temporary access for reading and writing makes this a broadly usable pattern.
The most common troublesome use case will be an upload directly from a web browser,
but reading is well supported, and writing from more flexible clients such as mobile apps
is also well supported.

When used with storage containers that support this pattern, applications can avoid
having a web page or web service act as a security proxy to read or write data stored in
a secure container. This reduces load on the web tier because it is not acting as a mid
dleman for data transfer. Also, the code for implementing all the variants of data passing
through is replaced by the far simpler generation and issuing of temporary access URLs,
while the upload code is offloaded to the client. The client code should utilize existing
helper libraries where available to minimize complexity.

The end result is that applications scale better and the user experience is improved.

Summary | 123

CHAPTER 14

CDN Pattern

This pattern focuses on reducing network latency for commonly accessed files through
globally distributed edge caching.

The goal is to speed up delivery of application content to users. Content is anything that
can be stored in a file such as images, videos, and documents. The Content Delivery
Network (CDN) is a service that functions as a globally distributed cache. The CDN
keeps copies of application files in many places around the world. When these places
are close to users, content does not need to travel as far to be delivered, so it will arrive
faster, improving the user experience.

CDN nodes are strategically located around the globe, hopefully close to application
users. The CDN has its own URLs that are resolved by a geographic load balancer that
directs users to the nearest node, regardless of where the user is.

The flow of files is shown in Figure 14-1. When a CDN URL is requested for the first
time, the CDN will retrieve the file from the main source (usually known as the origin
server), and then return that to the requesting user while also caching a local copy to
satisfy subsequent requests for that file. When a CDN URL is requested and the file has
already been cached, the CDN returns a locally cached copy of that file to the requesting
user. This is faster than if the user retrieved it from the origin server, which is (presum
ably) further away. When many users access the same content from a CDN node, the
initial request is slower (so the first user to request a file has to wait longer), but subse
quent requests are much faster.

A CDN is only helpful for files that will be accessed multiple times. Files that are intended
to be rarely accessed or that are for only a single user are usually not good candidates
for a CDN.

Each CDN node operates independently of the others.

125

Figure 14-1. Users get content directly from the nearest CDN node. The CDN node fetch
es content from the source as needed.

Context
The CDN Pattern is effective in dealing with the following challenges:

• Application data is accessed from geographic locations that may not be close to the
data center from which it originates

• Multiple clients access the same application data objects (such as HTML, JavaScript,
image, video, or other files)

• Application includes large downloads, streaming video, or other heavyweight con
tent delivery

A CDN can effectively reduce the load on other types of nodes that might be serving
up content.

126 | Chapter 14: CDN Pattern

Cloud Significance
Cloud platform CDN services are easy to enable and are integrated into the cloud ven
dor’s web-hosted management tool, appear on the same bill, and are supported by the
same organization as other services offered within the cloud platform. Some other
services, such as blob storage, can be easily CDN-enabled with a few mouse clicks. For
these reasons, cloud CDN services can be more convenient than working directly with
an independent CDN service provider.

Impact
Scalability, User Experience

Mechanics
Generally speaking, transmitting data over the Internet is faster when the source data
and recipient are closer together. One way to bring source data and recipients closer
together is by caching copies of the source data in locations that are closer to the recip
ients. When a user needs the data, retrieving it from the closest location will be faster
than retrieving it from the origin, which might potentially be much further away. This
practice is commonly known as edge caching and is the role of the CDN. Specifically, we
will focus on accessing files over HTTP.

To enable the CDN to cache our files, we need to make one change: instead of using our
normal domain name in our file URLs, we use one designated for us by the CDN pro
vider. All file resources that we want to be cached by the CDN are changed to the new
scheme.

Whenever a user attempts to access a file being managed by the CDN, the request goes
to the CDN service to be fulfilled. However, because one of the benefits of the CDN
service is that it has cache nodes in many geographical locations, somehow the request
needs to be directed to the location nearest to the requesting user. This is usually handled
through the anycast routing protocol that helps identify the closest CDN node, and the
request is smartly routed accordingly.

Even though all users see the same URL for the file, different users will
be routed to different CDN nodes. This is the whole point of the CDN:
route requests to the nearest CDN node to improve responsiveness.

A CDN is a specialized cache, and as such, is not necessarily already populated with
every desired file. This would be the case if the file had never been requested before
through this CDN node, or the file had been requested but subsequently expired from
the CDN cache. Any resource stored in a CDN has a defined expiration time that your

Impact | 127

application sets, so this is something you will want to think about. Some resources, such
as a company logo, may be stable for months or years, while other resources such as a
user profile photo may have a shorter shelf life of perhaps one hour (users like to update
them frequently). The expiration is expressed through the HTTP Cache-Control header.
Because the Cache-Control caching directive is a long-established Internet standard,
web browsers understand and handle this directive with ease. Beyond individual brows
ers, sometimes proxy servers or other intermediaries will cache, extending the caching
benefits beyond a single user and beyond the CDN. Once the resource has expired, the
CDN will remove it from its cache. (There are other possible behaviors with some CDN
services, such as having the CDN check with the origin server to ascertain whether
expired content has indeed changed, and still using the cached object if it has not.)

If a requested file is not available at the CDN node, the CDN service effectively acts as
a middleman, and behind the scenes retrieves the file from the origin server, caches
(stores) it in the CDN node, and then responds to the original request (which it can now
do successfully).

Limitations of CDN
A CDN is not effective for use on resources that are infrequently accessed. A CDN is only
efficient for use on resources that are usually accessed at least twice before expiring from
the CDN cache.

A CDN is not effective for use on resources that change constantly, such as those changing
with each request.

A CDN may be a poor choice for content that is not intended for public viewing.

A CDN really shines when used on frequently accessed files that seldom change.

Caches Can Be Inconsistent
The CDN stores copies of resources with a specified expiration date; thus a cached image
file might be declared to be valid for one hour, one month, or whatever is appropriate
for that resource. Any resource cached in a CDN is potentially stale because there is
always a delay between updates to the source copy and propagation to the copy that is
cached at the CDN. This is not necessarily a problem, but is a factor to consider carefully
when deciding what to cache and for how long.

Caching resources in a CDN is an application of eventual consistency:
immediate consistency is traded off for performance and scalability
benefits.

128 | Chapter 14: CDN Pattern

Example: Building PoP on Windows Azure
The Page of Photos (PoP) application (which was described in the Preface) stores all
photos in Windows Azure Blob Storage. To improve the download experience for PoP
users, all photo downloads are CDN-enabled.

In Windows Azure Blob Storage, individual blobs are stored in a blob container which,
among other benefits, establishes a default security context for the blobs within it. Only
blobs stored in public containers—where public means anyone knowing the URL to a
file within the container can view that file—are eligible for caching in the CDN.

Configuring the CDN
Enabling the CDN for blobs is a trivial configuration change at the storage account level.
In order for the CDN to sit between users and blob storage, a new domain name is created.
This new domain name is system generated. That is, rather than using our own domain
name (such as example.com), we use one assigned to us by the CDN service (such as
jaromijo1213.vo.msecnd.net). A URL that used to be http://example.com/maura.png be
fore the CDN becomes http://jaromijo.vo.msecnd.net/maura.png with the CDN. You can
optionally configure a vanity domain name of your own to make the CDN addresses
appear less chaotic; this vanity domain name is also known as canonical name (or
CNAME) in DNS terms. PoP takes advantage of this vanity feature, creating http://
cdn.pageofphotos.com as the CDN domain so that photo URLs will be more consistent
with the URL for the main application.

As of this writing, there are 8 Windows Azure data centers worldwide, but 24 Windows
Azure CDN node locations. Since there are so many additional geographic locations
brought into the mix, use of the CDN network greatly increases global coverage for lower
latency content distribution. A resource needs to have been requested at least once in
order to be loaded into the CDN cache. The first request for that resource will therefore
have a poorer user experience than subsequent requestors. This scenario plays out at
each CDN node, as each node needs to fill its own local cache. The scenario also repeats
any time a resource is requested, but has expired from the CDN cache.

Each of the 24 CDN nodes operates independently, so each populates
independently.

PoP photos do not change frequently, so when the photos are saved in blob storage, a
Cache-Control header is set as a property on the individual blob, with the duration set
to one month. If we ever needed to update a photo sooner, we would need to change the
filename.

Example: Building PoP on Windows Azure | 129

http://jaromijo1213.vo.msecnd.net
http://example.com/maura.png
http://jaromijo.vo.msecnd.net/maura.png
http://cdn.pageofphotos.com
http://cdn.pageofphotos.com

The Windows Azure CDN does not currently have built-in support for
pre-fetching an object to warm up a particular CDN node. Further, once
an object is cached by the CDN, you can’t easily change your mind about
it since there is no way to evict a particular object from the CDN before
its specified cache expiration. Thus, tricks like file renaming or ap
pending a “cache-buster” like a query string are used. For example, we
could append a query string so that the cached image kd1hn.png be
comes kd1hn.png?v=1 to cause it to reload without finding the one in
the current CDN. This requires a change to the reference used to access
the image (such as the HTML page referencing it). These are cache tricks
that happen to work with the CDN (since it is also a cache honoring
HTTP headers); nothing is specific to the Windows Azure Cache.

Cost Considerations
The Windows Azure CDN access charges are the same as directly from blob storage,
with no additional at-rest storage charge. Other than the cost of the one additional
request needed to populate the CDN node, the cost will be identical to direct-from-blob
access. Note that this “one additional request” happens for (a) each resource, (b) each
time it is loaded from blob storage (the first time as well as the next time after cache
expiration), and (c) in each CDN node from which the resource is accessed.

Security Considerations
The Windows Azure CDN only supports caching of files that are already freely visible
to the public, so they do not decrease security or increase the attack surface.

The Windows Azure CDN supports access using HTTP or HTTPS. This is primarily a
user experience benefit (because the files are already freely visible to the public) and
comes into play when a user loads a page using HTTPS. Modern browsers typically
display a warning if an HTTPS page references an image as HTTP, complaining about
mixed security models. Such images can instead be accessed as HTTPS to improve the
user experience.

Additional Capabilities
Though not explored in this chapter, there are other Windows Azure services related to
CDN. For example, the CDN can serve files directly from a Web Role. Also, Windows
Azure Media Services provide video streaming to the Windows Azure CDN. There are
also other integrated services that help applications prepare media for download by
many types of devices, such as transcoding services that make content equally accessible
across mobile phone brands and desktop operating systems.

130 | Chapter 14: CDN Pattern

As of this writing, the Windows Azure Media Services are currently in
preview and not yet supported for production use.

Related Chapters

• Eventual Consistency Primer (Chapter 5)
• Network Latency Primer (Chapter 11)
• Colocate Pattern (Chapter 12)
• Valet Key Pattern (Chapter 13)
• Multisite Deployment Pattern (Chapter 15)

Summary
Adding CDN support to a cloud application is a great example of a low-friction adoption
of a cloud service. Enabling a CDN can be accomplished either programmatically or
through a one-time manual configuration via the cloud vendor’s web-hosted manage
ment tool. This is substantially easier to get started with than traditional CDNs due to
the degree of convenience and integration.

Once enabled, this is a great technique for reducing the load on web servers, distributing
load across many servers (there are many more CDN locations than data centers), while
decreasing network latency. All this helps to both improve scalability and improve user
experience.

Summary | 131

CHAPTER 15

Multisite Deployment Pattern

This advanced pattern focuses on deploying a single application to more than one data
center.

Deploying to multiple data centers helps reduce network latency by routing a client to
the nearest data center, which improves the user experience. This also provides the seeds
of a solution that can handle failover across data centers and improve availability.

If multisite deployment does not improve user experience and your application does
not need cross-data center failover, use of this pattern may be overkill.

Context
The Multisite Deployment Pattern is effective in dealing with the following challenges:

• Users are not clustered near any single data center, but form clusters around multiple
data centers or are widely distributed geographically

• Regulations limit options for storing data in specific data centers
• Circumstances require that the public cloud be used in concert with on-premises

resources
• Application must be resilient to the loss of a single data center

This pattern helps deal with a user base that is not conveniently clustered in a single
geographic area. Some of the reasons for this include use of the application from un
predictable locations during travel, globally distributed mobile applications, and com
panies with offices distributed across many geographical locations.

This pattern is similar in some ways to CDN Pattern (Chapter 14), in that we strive to
bring our application closer to our users. The CDN focus is on bringing files closer to
our users, and it only helps when sending data to our users, not users sending data to

133

the application. This pattern is more powerful than a CDN because it brings more ap
plication facilities closer to users with lower latency, even when users send data to the
application. This pattern is more limited in one way: there are many more CDN nodes
than there are full-blown data centers. For these reasons, these two patterns are often
used together.

Cloud Significance
Networking cloud services are available for geographic load balancing and cross-data
center failover. Data-oriented cloud services are also available for database synchroni
zation and geo-replication of cloud storage. These services, plus access to multiple geo
graphically distributed data centers, simplify some of the most complex aspects of mul
tisite deployment.

Impact
Availability, Reliability, Scalability, User Experience

Mechanics
If all global traffic for an application is served from a single data center, then respon
siveness is better near that data center than from more distant regions of the world.
Generally speaking, the farther away, the poorer the responsiveness. Which data center
to choose then? This pattern is about choosing more than one data center to offer the
best available user experience throughout the world.

The major public cloud platforms have multiple data centers on multiple continents.
With Windows Azure and Amazon Web Services, you select the specific data center to
which you will deploy. Let’s assume you choose one data center location in Asia, one in
Europe, and one in the United States, and deploy an instance of your application to each
data center.

Once your application is deployed to multiple data centers, you need to decide how users
will be directed to the appropriate one. In this pattern, we will strive to make this process
transparent to users in order to provide the best user experience. In the most basic
scenarios, this requires smart routing and data replication services.

To route users to the closest data center, use your cloud platform’s service for geographic
load balancing and configure it to direct users to the closest data center. These services
include the Windows Azure Traffic Manager and Elastic Load Balancing from Amazon
Web Services.

You also need to replicate data across all data centers if you want users to see the same
data, regardless of the data center to which they route. This is further explored in the
example given later in this chapter. The end result can be seen in Figure 15-1, where

134 | Chapter 15: Multisite Deployment Pattern

data centers replicate data as needed. Since each data center has a local copy of any
needed data, users can be conveniently routed to the one nearest to them for the best
performance. As we shall see later, this topology also can be leveraged to handle rare
scenarios when one of the data centers is not available.

Another possibility is to assign each user to a single data center, though
that scenario is not explored.

With geographic load balancing and data replication in place, you have the basics of a
multisite deployment. Users will experience better performance than if they always had
to directly access data and services from a data center located on another continent.

Figure 15-1. Data centers stay in sync so that users can access the closest one, or an alter
nate in case of failure. The connection spanning the continents represents data center-to-
data center synchronization. External user devices are shown accessing the closest data
center.

Non-Technical Considerations in Data Center Selection
Sometimes there are non-technical considerations that compel you to separate appli
cation tiers across data centers or to choose one data center over another. Sometimes a
data center location is chosen in order to comply with government regulations, industry
requirements, and other so-called data sovereignty issues. For example, some countries

Mechanics | 135

in the European Union (EU) require that applications operating in the EU store per
sonally identifying information within the EU. As another example, the credit card in
dustry has specific expectations of applications handling credit card data. These ex
pectations may further limit or influence options in data center selection.

Finally, consider a business constraint in which a customer is not ready to move a da
tabase from its on-premises location into the cloud but wants to access it from cloud
servers. Cloud platform services can extend a company’s internal network into the cloud
with a Virtual Private Network (VPN). It securely handles this scenario so that appli
cations running on cloud resources can easily query databases located elsewhere. This
is yet another factor influencing your data center footprint.

Thus, business considerations may override purely performance-based data center se
lection criteria. While these considerations can impact cloud architecture, a treatment
of this complex topic is not the focus of this pattern.

Cost Implications
As of this writing, both Windows Azure and Amazon platforms charge a fee for data
leaving the data center, but not for data coming into the data center. Thus, traffic across
data centers would incur these charges. Of course, this applies even within a single data
center location because remotely accessing a cloud application from outside the data
center results in data leaving the data center. In the context of this pattern, this also
applies to keeping databases in sync across data centers and accessing on-premises da
tabases.

Deploying your application across multiple data centers has cost implications. Such costs
should be weighed against the user experience and the robustness limitations of a single
data center. And of course, if multisite deployment is needed, consider the cost and
complexity of doing this without the convenience of cloud services.

Failover Across Data Centers
Failover is a feature of an application that enables the application to continue to function
using secondary resources when there is a failure with the primary resources. In the
context of this pattern, we are concerned with the loss of a data center and the ability of
our application to continue to function using the other available data centers. We may
want to failover from one data center to another due to a natural disaster, such as a
hurricane, or due to a failure by the cloud provider, such as a software bug or configu
ration error that impacts services.

The tools and techniques used to create a multisite deployment can also help to make
your application more failure-resistant. The same services used for geographic load

136 | Chapter 15: Multisite Deployment Pattern

balancing that route users to the closest data center can be used to account for failover
scenarios. In particular, they can be configured to monitor the health of the services to
which they are directing users, and if any service is unavailable, traffic will be routed to
a healthy instance.

It takes time for the geographic load balancer to figure out that a service is not responding
before it fails over to a healthy copy. During that time, application access may result in
errors. Client-side retries, such as Busy Signal Pattern (Chapter 9), can help shield users
from these errors. Once failover is complete, users will be routed to data centers; if these
data centers are on other continents, their experience will be degraded, but it will work.
This is usually better than not working at all, although that depends on the specific
application.

As unhealthy services become healthy again, traffic can be delivered, returning system
responsiveness to maximum levels.

This scheme does not guarantee instant or seamless failover. There will
be downtime.

One approach to failover is to have the secondary resources already deployed, just in
case they are needed. This arrangement is known as either active/passive or active/
active, depending on whether the secondary resources are just sitting around in case
they are needed or are in active use (the primary data center accounts for the first “active”
resource). Another option is to not have any spare resources that are already running,
but to deploy those resources as needed for a failover. This obviously would take longer,
but is also less costly. This topic is explored further in the Example.

This is part of a larger disaster recovery (DR) plan. Many of these concerns parallel those
for non-cloud applications, but are beyond the scope of this chapter.

Example: Building PoP on Windows Azure
The Page of Photos (PoP) application (which was described in the Preface) faces a few
challenges in providing a seamless user experience across the globe:

• Routing users to the nearest data center so that they have the best user experience
• Replicating account data so that it is available at all data centers, both for account

owners and visitors
• Replicating identity information so that we can correctly authenticate a user in any

data center and know they are the same user
• Serving photos globally and efficiently

Example: Building PoP on Windows Azure | 137

Choosing a Data Center
As of this writing, Windows Azure offers eight geographically distributed data centers:

• Two in Asia: East (Hong Kong) and Southeast (Singapore)
• Two in Europe: North (Netherlands) and West (Ireland)
• Four in the United States: North Central (Illinois), East (Virginia), South Central

(Texas), and West (California)

Since PoP users are all over the world, we will deploy to one data center in Asia (Sin
gapore), one in Europe (Ireland), and one in North America (Virginia). However, PoP
users should not need to know about the three data centers; using PoP should just work,
regardless of where the user is. In other words, http://www.pageofphotos.com should be
the only address a user ever needs to remember.

Routing to the Closest Data Center
Windows Azure Traffic Manager is a scalable, highly available, easily configured, geo
graphic load balancing service that continually monitors the responsiveness of all ap
plication deployments behind the scenes. It ensures that a visitor to http://www.pageof
photos.com is transparently directed to the data center that will give the visitor the best
response.

Configuring Traffic Manager
Traffic Manager configuration includes specifying a public domain name (http://
www.pageofphotos.com) that users see, listing the individual instances (http://pop-
asia.cloudapp.net, http://pop-eur.cloudapp.net, http://pop-usa.cloudapp.net), and config
uring the routing rules for the closest instance. The endpoint names listed are just exam
ples, but show use of a consistent naming pattern that can help avoid confusion and errors.

In our case, as an example, visiting http://www.pageofphotos.com/timothy from Asia
would be satisfied by the http://pop-asia.cloudapp.net instance.

Replicating User Data for Performance
Consider a PoP user in Ireland who posts some new photos. They can be neatly and
efficiently stored in the Ireland data center with a minimum of network latency. The
collection can be shared with friends in Ireland who also access them from the Ireland
data center. So far, so good.

138 | Chapter 15: Multisite Deployment Pattern

http://www.pageofphotos.com
http://www.pageofphotos.com
http://www.pageofphotos.com
http://www.pageofphotos.com
http://www.pageofphotos.com
http://pop-asia.cloudapp.net
http://pop-asia.cloudapp.net
http://pop-eur.cloudapp.net
http://pop-usa.cloudapp.net
http://www.pageofphotos.com/timothy
http://pop-asia.cloudapp.net

Now consider that a link to this page of photos is emailed to some friends in Boston.
Traffic from Boston will be routed to the Virginia data center. What will happen? To
make it work, the Virginia data center needs access to the same data that was saved to
the Ireland data center. Our approach with PoP is split into two complementary schemes:
one for uploaded photos, another for the rest of the account data.

The photos are uploaded to blobs in Window Azure Storage in the nearest data center.
The application makes no effort to explicitly replicate these photos to other data centers.
Thumbnails for these photos are generated in the same data center [using Queue-Centric
Workflow Pattern (Chapter 3)] and also stored as blobs. Photos are not replicated to all
data centers as we plan to rely on CDN Pattern (Chapter 14) to deliver them most effi
ciently to users.

In addition to the photos, there is metadata around the photos such as:

• The account responsible for uploading the photo
• The URL needed for accessing the photo
• The text description of the photo
• And so on.

This data is stored in a Windows Azure SQL Database. The new photo is uploaded to
the nearest data center. The metadata is saved to SQL Database in the nearest data center.
But, unlike the photo blobs, the SQL Database data is replicated across all three data
centers using SQL Database Data Sync service.

Configuring Data Sync
SQL Data Sync service configuration requests the provisioning of a Data Sync Server,
creates a Sync Group that will specify the database instances to be kept in sync, then adds
the database names of the three instances that will be kept in sync to the Sync Group. It
selects the desired sync rules, and lets it run. Syncs happen on a schedule; the most ag
gressive supported frequency is five minutes between synchronization jobs.

As of this writing, the SQL Database Data Sync service is currently in
preview. It is not yet supported for production use.

A user from anywhere in the world will be directed to the nearest data center when
accessing a page of photos. It returns the HTML page of photos; the individual photos
will be served up from one of the 24 global CDN nodes.

Example: Building PoP on Windows Azure | 139

Note the eventual consistency of SQL Database instances. Consider our earlier example
of a PoP user from Ireland sharing a page of photos with a friend in Boston. There will
be a short window of time during which PoP users in Ireland see new photos, but PoP
users in the United States (and Asia) do not; this is eventually resolved as the SQL
Database Data Sync service catches up.

Replicating Identity Information for Account Owners
While any anonymous user can view any page of photos, all uploaded photos belong to
a PoP account holder. An account on PoP is easily created because it does not manage
user credentials, but rather relies on federated authentication. PoP is configured to allow
users to log in using an identity provider (IdP) that they are likely already using. Sup
ported IdPs leveraged by PoP include Google, Yahoo!, and Facebook. (Many other
identity providers can be supported, but PoP chooses not to make use of them.) The
first time a user signs into their IdP, they give their IdP permission to share login in
formation with PoP. (Actually, the IdP shares with the Access Control Service (ACS),
not directly with PoP. PoP gets the information from ACS.) For any IdP supported by
PoP, the important item we want is a validated email address. Because each IdP trusted
by PoP is reputable, we trust it. We then use the email address as a unique account key
in our SQL Database instances. This way, we can tie uploaded photos to a specific user
account.

Note further that PoP does not know or store the user’s password. Only the underlying
IdP does. Using cryptographic techniques, the IdP can securely communicate to PoP
that users are who they say they are and pass along a cryptographically secure claim that
provides their email address. This is all PoP needs. The PoP development effort can be
focused on features, not infrastructure.

Federated identity, claims, and identity providers are important con
cepts for building applications that deal with identity in a cloud-native
manner. A whole book could be written to explain these important
topics. (In fact, Appendix A references such a book.) The key takeaway
for this chapter is that some external entity (an IdP) is telling us the
current user owns a specific email address (indicated by a claim) and
that we can trust that this is accurate.

The Windows Azure Access Control Service (ACS) acts as an intermediary between PoP
and each IdP. It turns out that this is a huge simplification for PoP because there is so
much variation in how an IdP can behave. It can be fairly complicated if your application
needs to interact with the IdP directly. ACS helps applications manage the relationship
with one or more identity providers, abstracting away the implementation details and
normalizing them so that claims are consistent when they reach your application.

140 | Chapter 15: Multisite Deployment Pattern

Configuring ACS
Access Control Service configuration consists of establishing a set of rules for each sup
ported provider. The basic process is mostly handled through a set of well-defined steps
in a wizard-like user interface; this is appropriate as such configurations are routine.
Google and Yahoo! configurations can be completed in the ACS interface, though Face
book requires additional configuration at the Facebook site. ACS also can be configured
programmatically. The configuration for PoP is simple: pass through all claims from the
IdP (which will include an email address claim), and inject an "Admin" role claim for a
few special email accounts (for PoP site administrators).

This description of how ACS helps authentication work for PoP is necessary to provide
context for the multisite deployment. The upshot is that this configuration needs to be
repeated for each identity provider in each supported data center.

Data Center Failover
Given the measures we have taken to make PoP available in three data centers, what
more do we need to do to ensure we can failover in the event one of the data centers
fails?

Supporting data center failover is a big decision with many risks and
tradeoffs. The approach outlined here is appropriate for the PoP appli
cation and business. These risks and tradeoffs may or may not be ac
ceptable for your application and business.

PoP replicates Windows Azure SQL Database instances. As mentioned previously, there
is still a window within which data loss could occur. If this is not good enough, it may
be challenging to overcome.

PoP has Access Control Service identity providers configured in each data center so that
PoP will recognize the data center, regardless of which one is used to authenticate.

PoP uses Windows Azure Storage to save photos and thumbnails as blobs. We have taken
no measures to replicate them because the Windows Azure Platform geo-replicates blobs
on our behalf. (Windows Azure Storage Tables are also geo-replicated.) Each data center
is paired with another on the same continent. In the list of data centers above, the two
Asia data centers replicate, the two Europe data centers replicate, and in the United
States, North Central replicates with South Central, and East replicates with West. In
the extremely rare event of a disaster so great that a data center is lost or unavailable for

Example: Building PoP on Windows Azure | 141

an extended period of time, storage will failover to its replication pair. You do not need
to do anything. There will be a period of time when blob requests fail, but once the
failover is complete, they will resume working correctly. Note, however, that there is still
a window within which data loss could occur.

PoP uses the CDN to deliver photos and thumbnails close to the users. Because all of
the eight Windows Azure data centers also host CDN nodes, a data center failure could
likewise impact the CDN. Furthermore, the other CDN nodes could be impacted in
dependently. The built-in CDN routing logic will notice a failure of a CDN node and
change where traffic is routed. There is still a window within which files may not be
delivered. Given the nature of the CDN, it is likely that the many distributed CDN nodes
will somewhat shield users during the interval where blobs are unavailable and in the
process of being failed over because many photos will already be cached around the
world.

The final step is to update the configuration in Traffic Manager. Earlier we described
how Traffic Manager routes to the closest (most responsive) data center. Traffic Manager
also handles failover scenarios. For example, if a hurricane rendered the Virginia data
center unavailable, Traffic Manager can route users to Singapore or Ireland (whichever
it determines to be faster for any individual user). While the user experience is degraded
compared to direct access to the North American data center, it is a better user experi
ence than no availability. There is still a window within which Traffic Manager may
route to a failing data center.

Because the data center can failover to resources that are already provisioned and in
active use, this is an active/active failover configuration.

Considering Disaster Recovery and User Experience
How should use of multisite deployment balance disaster recovery (DR) and user expe
rience (primarily performance) benefits? There is no single right answer, but it is generally
helpful to look at DR and user experience as independent concerns that happen to have
overlapping solutions. Either could drive the decision to go multisite, or the combined
value may be needed to justify a multisite deployment.

Colocation Alternatives
As mentioned earlier, there are a number of non-technical business factors that may
limit location options for data storage. In Windows Azure, there are a number of features
that might be of use in making the most of such constraints. Briefly, these include:

142 | Chapter 15: Multisite Deployment Pattern

• Windows Azure Virtual Networking and Windows Azure Connect support a secure
Virtual Private Network (VPN) connection between your Windows Azure service
and another network. This enables many integration scenarios, such as allowing
compute resources running in Windows Azure to access a database running in a
private data center.

• Windows Azure Service Bus supports several secure scenarios for communication
across firewalls, publish/subscribe to connected devices, and publish/subscribe to
disconnected devices. These capabilities enable secure and efficient communica
tion across applications regardless of firewall or data center configurations.

• SQL Data Sync Service use for cloud-to-cloud synchronization was already de
scribed. This service can also be used to synchronize between the cloud and on-
premises databases.

These services can help integrate with a database or services that are on premises or in
another data center.

Related Chapters

• Horizontally Scaling Compute Pattern (Chapter 2)
• Queue-Centric Workflow Pattern (Chapter 3)
• Eventual Consistency Primer (Chapter 5)
• Node Failure Pattern (Chapter 10)
• Network Latency Primer (Chapter 11)
• Colocate Pattern (Chapter 12)
• Valet Key Pattern (Chapter 13)
• CDN Pattern (Chapter 14)

Summary
Using the Multisite Deployment Pattern primarily helps improve the user experience
for a geographically distributed user base. Users need not be all over the world, but at
least distributed such that more than one data center provides sufficient value if the goal
is to improve performance.

This pattern is also useful for applications requiring a failover strategy in case one data
center becomes unavailable. This is a complex subject, but many of the components in
this chapter will get you started.

Summary | 143

Because the use of this pattern will result in a more complex and more expensive ap
plication than a single data center solution, the business value needs to be assessed and
compared with the cost.

144 | Chapter 15: Multisite Deployment Pattern

APPENDIX A

Further Reading

Page of Photos (PoP) Sample
The Page of Photos sample application is used throughout the book. Parts of it have
already been implemented using Windows Azure to demonstrate ideas in the book. The
code for Page of Photos (minimalist at first, then built out over time by the author and
some accomplices) will be shared in a public repo on GitHub.

• Run the Page of Photos (PoP) sample application: http://www.pageofphotos.com
• View the Page of Photos (PoP) sample application source code: http://

www.github.com/codingoutloud/pageofphotos
• Find information about the book and possibly related content in the future: http://

www.cloudarchitecturebook.com

Resources From Preface and Chapters
• Windows Azure Platform: http://www.windowsazure.com
• Amazon Web Services: http://aws.amazon.com/
• Google App Engine: http://developers.google.com/appengine/
• A NIST Definition of Cloud Computing (SP 800-145 Sept. 2011): http://

csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
• (NIST) Cloud Computing Synopsis and Recommendations (SP 800-146 May 2012):

http://csrc.nist.gov/publications/nistpubs/800-146/sp800-146.pdf

145

http://www.pageofphotos.com
http://www.github.com/codingoutloud/pageofphotos
http://www.github.com/codingoutloud/pageofphotos
http://www.cloudarchitecturebook.com
http://www.cloudarchitecturebook.com
http://www.windowsazure.com
http://aws.amazon.com/
http://developers.google.com/appengine/
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-146/sp800-146.pdf

Chapter 1
• “A Compuware analysis of 33 major retailers across 10 million home page views

showed that a 1-second delay in page load time reduced conversions by 7%.” Source:
Compuware, April 2011.

• “Google observed that adding a 500-millisecond delay to page response time caused
a 20% decrease in traffic” Source: Marissa Mayer, “What Google Knows” talk at
Web 2.0 Conf 2006 (11/09/2006): http://conferences.oreillynet.com/presentations/
web2con06/mayer.ppt

• “Yahoo! observed a 400-millisecond delay caused a 5-9% decrease [in traffic].” And
“Amazon.com reported that a 100-millisecond delay caused a 1% decrease in retail
revenue.” Source: http://blog.yottaa.com/2010/11/secret-sauce-for-successful-web-
site-web-performance-optimization-wpo

• “Google has started using web-site performance as a signal in its search engine
rankings.” Source: Using site speed in web search ranking: http://googlewebmaster
central.blogspot.com/2010/04/using-site-speed-in-web-search-ranking.html

• Example of a self-inflicted scaling failure: http://glinden.blogspot.com/2006/11/
amazon-crashes-itself-with-promotion.html

• ITIL: http://en.wikipedia.org/wiki/Information_Technology_Infrastructure_Library

Chapter 2
• Windows Azure Storage Analytics: Logs and Metrics: http://blogs.msdn.com/b/

windowsazurestorage/archive/2011/08/03/windows-azure-storage-analytics.aspx
• Windows Azure Diagnostics: http://msdn.microsoft.com/en-us/library/windowsa

zure/gg433048.aspx
• About Load Balancers: http://1wt.eu/articles/2006_lb/

Chapter 3
• Comparing Windows Azure Storage Queues with Amazon Simple Queue Service:

http://gauravmantri.com/2012/04/15/comparing-windows-azure-queue-service-
and-amazon-simple-queue-servicesummary/

• Comparing the two queue services offered by Windows Azure: http://msdn.micro
soft.com/en-us/library/windowsazure/hh767287.aspx

• Update Message on a Windows Azure Queue: http://msdn.microsoft.com/en-us/
library/windowsazure/hh452234

• Loose coupling: http://en.wikipedia.org/wiki/Loose_coupling

146 | Appendix A: Further Reading

http://conferences.oreillynet.com/presentations/web2con06/mayer.ppt
http://conferences.oreillynet.com/presentations/web2con06/mayer.ppt
http://blog.yottaa.com/2010/11/secret-sauce-for-successful-web-site-web-performance-optimization-wpo
http://blog.yottaa.com/2010/11/secret-sauce-for-successful-web-site-web-performance-optimization-wpo
http://googlewebmastercentral.blogspot.com/2010/04/using-site-speed-in-web-search-ranking.html
http://googlewebmastercentral.blogspot.com/2010/04/using-site-speed-in-web-search-ranking.html
http://glinden.blogspot.com/2006/11/amazon-crashes-itself-with-promotion.html
http://glinden.blogspot.com/2006/11/amazon-crashes-itself-with-promotion.html
http://en.wikipedia.org/wiki/Information_Technology_Infrastructure_Library
http://blogs.msdn.com/b/windowsazurestorage/archive/2011/08/03/windows-azure-storage-analytics.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2011/08/03/windows-azure-storage-analytics.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg433048.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg433048.aspx
http://1wt.eu/articles/2006_lb/
http://gauravmantri.com/2012/04/15/comparing-windows-azure-queue-service-and-amazon-simple-queue-servicesummary/
http://gauravmantri.com/2012/04/15/comparing-windows-azure-queue-service-and-amazon-simple-queue-servicesummary/
http://msdn.microsoft.com/en-us/library/windowsazure/hh767287.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh767287.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh452234
http://msdn.microsoft.com/en-us/library/windowsazure/hh452234
http://en.wikipedia.org/wiki/Loose_coupling

• Long Polling with SignalR for ASP.NET: http://signalr.net
• Long Polling with Socket.IO for Node.js: http://socket.io
• CQRS Pattern: http://martinfowler.com/bliki/CQRS.html
• CQRS: http://www.cqrsinfo.com/
• Event Sourcing: http://martinfowler.com/eaaDev/EventSourcing.html

Chapter 4
• Enterprise Library 5.0 Integration Pack for Windows Azure (contains WASABi):

http://msdn.microsoft.com/en-us/library/hh680918
• Hosted services that can be used to monitor and autoscale your Windows Azure

applications include AzureWatch from Paraleap Technologies and AzureOps from
Opstera.

• Auto-Scaling on Amazon Web Services: http://aws.amazon.com/autoscaling
• Ticket Direct case study that sharded databases then consolidated depending on

ticket sales: New Zealand-based TicketDirect International: http://www.micro
soft.com/casestudies/Case_Study_Detail.aspx?CaseStudyID=4000005890

Chapter 5
• Life beyond Distributed Transactions: an Apostate’s Opinion (by Pat Helland):

http://www-db.cs.wisc.edu/cidr/cidr2007/papers/cidr07p15.pdf
• CAP Twelve Years Later: How the “Rules” Have Changed (by Eric Brewer): http://

www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
• Introducing BASE: http://queue.acm.org/detail.cfm?id=1394128
• Introducing Eventual Consistency: http://queue.acm.org/detail.cfm?id=1466448
• Eventual consistency in CloudFront: http://docs.amazonwebservices.com/Amazon

CloudFront/latest/DeveloperGuide/Concepts.html
• Google BigTable: https://developers.google.com/appengine/docs/python/datastore/

overview
• Amazon Dynamo SOSP paper: http://www.allthingsdistributed.com/files/amazon-

dynamo-sosp2007.pdf
• Azure Storage SOSP paper: http://sigops.org/sosp/sosp11/current/2011-Cascais/

printable/11-calder.pdf

Resources From Preface and Chapters | 147

http://signalr.net
http://socket.io
http://martinfowler.com/bliki/CQRS.html
http://www.cqrsinfo.com/
http://martinfowler.com/eaaDev/EventSourcing.html
http://msdn.microsoft.com/en-us/library/hh680918
http://www.paraleap.com
http://www.opstera.com
http://aws.amazon.com/autoscaling
http://www.microsoft.com/casestudies/Case_Study_Detail.aspx?CaseStudyID=4000005890
http://www.microsoft.com/casestudies/Case_Study_Detail.aspx?CaseStudyID=4000005890
http://www-db.cs.wisc.edu/cidr/cidr2007/papers/cidr07p15.pdf
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed;jsessionid=59872CAEB9D05C319F22C0E0CDD39ADE
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
http://queue.acm.org/detail.cfm?id=1394128
http://queue.acm.org/detail.cfm?id=1466448
http://docs.amazonwebservices.com/AmazonCloudFront/latest/DeveloperGuide/Concepts.html
http://docs.amazonwebservices.com/AmazonCloudFront/latest/DeveloperGuide/Concepts.html
https://developers.google.com/appengine/docs/python/datastore/overview
https://developers.google.com/appengine/docs/python/datastore/overview
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://sigops.org/sosp/sosp11/current/2011-Cascais/printable/11-calder.pdf
http://sigops.org/sosp/sosp11/current/2011-Cascais/printable/11-calder.pdf

Chapter 6
• Hadoop: http://hadoop.apache.org
• Hadoop on Windows Azure: http://www.hadooponazure.com

Chapter 7
• An Unorthodox Approach to Database Design: The Coming of the Shard from High

Scalability blog: http://highscalability.com/unorthodox-approach-database-design-
coming-shard.

• The official source for learning about Federations in Windows Azure SQL Database.
• For anyone interested in Federations for Windows Azure SQL Database, Cihan

Biyikoglu's blog is a must-read. Some particularly useful posts are listed below.
— Implementing MERGE command using SQL Azure Migration Wizard by

@gihuey: http://blogs.msdn.com/b/cbiyikoglu/archive/2012/02/20/implementing-
alter-federation-merge-at-command-using-sql-azure-migration-wizard-by-
gihuey.aspx.

— Introduction to Fan-out Queries for Federations in SQL Azure (Part 1): Scalable
Queries over Multiple Federation Members, MapReduce Style!: http://
blogs.msdn.com/b/cbiyikoglu/archive/2011/12/29/introduction-to-fan-out-
queries-querying-multiple-federation-members-with-federations-in-sql-
azure.aspx.

• Integrated sharding support with Windows Azure SQL Database Federations:
http://blogs.msdn.com/b/cbiyikoglu/archive/2012/02/08/connection-pool-
fragmentation-scale-to-100s-of-nodes-with-federations-and-you-won-t-need-to-
ever-learn-what-these-nasty-problems-are.aspx

• Federations: http://msdn.microsoft.com/en-us/magazine/hh848258.aspx
• Choosing a shard key in MongoDB: http://www.mongodb.org/display/DOCS/Choos

ing+a+Shard+Key
• SQL Azure Data Sync: http://msdn.microsoft.com/en-us/library/windowsazure/

hh667301.aspx
• Windows Azure Table Storage service: http://www.windowsazure.com/en-us/devel

op/net/how-to-guides/table-services/
• Generating a GUID as a cluster key with NEWID for Federations on SQL Database:

http://msdn.microsoft.com/en-us/library/ms190348.aspx

148 | Appendix A: Further Reading

http://hadoop.apache.org
http://www.hadooponazure.com
http://highscalability.com/unorthodox-approach-database-design-coming-shard
http://highscalability.com/unorthodox-approach-database-design-coming-shard
http://msdn.microsoft.com/en-us/library/windowsazure/hh597452.aspx
http://blogs.msdn.com/b/cbiyikoglu
http://blogs.msdn.com/b/cbiyikoglu
http://blogs.msdn.com/b/cbiyikoglu/archive/2012/02/20/implementing-alter-federation-merge-at-command-using-sql-azure-migration-wizard-by-gihuey.aspx
http://blogs.msdn.com/b/cbiyikoglu/archive/2012/02/20/implementing-alter-federation-merge-at-command-using-sql-azure-migration-wizard-by-gihuey.aspx
http://blogs.msdn.com/b/cbiyikoglu/archive/2012/02/20/implementing-alter-federation-merge-at-command-using-sql-azure-migration-wizard-by-gihuey.aspx
http://blogs.msdn.com/b/cbiyikoglu/archive/2011/12/29/introduction-to-fan-out-queries-querying-multiple-federation-members-with-federations-in-sql-azure.aspx
http://blogs.msdn.com/b/cbiyikoglu/archive/2011/12/29/introduction-to-fan-out-queries-querying-multiple-federation-members-with-federations-in-sql-azure.aspx
http://blogs.msdn.com/b/cbiyikoglu/archive/2011/12/29/introduction-to-fan-out-queries-querying-multiple-federation-members-with-federations-in-sql-azure.aspx
http://blogs.msdn.com/b/cbiyikoglu/archive/2011/12/29/introduction-to-fan-out-queries-querying-multiple-federation-members-with-federations-in-sql-azure.aspx
http://blogs.msdn.com/b/cbiyikoglu/archive/2012/02/08/connection-pool-fragmentation-scale-to-100s-of-nodes-with-federations-and-you-won-t-need-to-ever-learn-what-these-nasty-problems-are.aspx
http://blogs.msdn.com/b/cbiyikoglu/archive/2012/02/08/connection-pool-fragmentation-scale-to-100s-of-nodes-with-federations-and-you-won-t-need-to-ever-learn-what-these-nasty-problems-are.aspx
http://blogs.msdn.com/b/cbiyikoglu/archive/2012/02/08/connection-pool-fragmentation-scale-to-100s-of-nodes-with-federations-and-you-won-t-need-to-ever-learn-what-these-nasty-problems-are.aspx
http://msdn.microsoft.com/en-us/magazine/hh848258.aspx
http://www.mongodb.org/display/DOCS/Choosing+a+Shard+Key
http://www.mongodb.org/display/DOCS/Choosing+a+Shard+Key
http://msdn.microsoft.com/en-us/library/windowsazure/hh667301.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh667301.aspx
http://www.windowsazure.com/en-us/develop/net/how-to-guides/table-services/
http://www.windowsazure.com/en-us/develop/net/how-to-guides/table-services/
http://msdn.microsoft.com/en-us/library/ms190348.aspx

Chapter 8
• Definition of multitenancy: http://en.wikipedia.org/wiki/Multitenancy
• Definition of commodity hardware: http://en.wikipedia.org/wiki/Commodity_hard

ware

Chapter 9
• Definition of multitenancy: http://en.wikipedia.org/wiki/Multitenancy
• Transient Fault Handling Application Block (Topaz): http://msdn.microsoft.com/en-

us/library/hh680934(v=PandP.50).aspx
• Scalability Targets for Windows Azure Storage: http://blogs.msdn.com/b/windowsa

zurestorage/archive/2010/05/10/windows-azure-storage-abstractions-and-their-
scalability-targets.aspx

• Implementing Retry Logic on Windows Azure: http://www.davidaiken.com/
2011/10/10/implementing-windows-azure-retry-logic/

• Fault isolation and recovery: http://www.faqs.org/rfcs/rfc816.html
• Chaos Monkey from Netflix: http://techblog.netflix.com/2011/07/netflix-simian-

army.html

Chapter 10
• Understanding Network Failures in Data Centers: Measurement, Analysis, and Im

plications: http://research.microsoft.com/en-us/um/people/navendu/papers/green
berg09vl2.pdf

• How Windows Azure knows a Role Instance (node) is faulty: http://blogs.msdn.com/
b/mcsuksoldev/archive/2010/05/10/how-does-azure-identify-a-faulty-role-
instance.aspx

• Windows Azure Troubleshooting Best Practices: http://msdn.microsoft.com/en-us/
library/windowsazure/hh771389.aspx

• Updating a Windows Azure deployment, including Fault Domains and Update
Domains: http://msdn.microsoft.com/en-us/library/ff966479.aspx

Chapter 11
• Ping utility: http://en.wikipedia.org/wiki/Ping

Resources From Preface and Chapters | 149

http://en.wikipedia.org/wiki/Multitenancy
http://en.wikipedia.org/wiki/Commodity_hardware
http://en.wikipedia.org/wiki/Commodity_hardware
http://en.wikipedia.org/wiki/Multitenancy
http://msdn.microsoft.com/en-us/library/hh680934(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680934(v=PandP.50).aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/05/10/windows-azure-storage-abstractions-and-their-scalability-targets.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/05/10/windows-azure-storage-abstractions-and-their-scalability-targets.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/05/10/windows-azure-storage-abstractions-and-their-scalability-targets.aspx
http://www.davidaiken.com/2011/10/10/implementing-windows-azure-retry-logic/
http://www.davidaiken.com/2011/10/10/implementing-windows-azure-retry-logic/
http://www.faqs.org/rfcs/rfc816.html
http://techblog.netflix.com/2011/07/netflix-simian-army.html
http://techblog.netflix.com/2011/07/netflix-simian-army.html
http://research.microsoft.com/en-us/um/people/navendu/papers/greenberg09vl2.pdf
http://research.microsoft.com/en-us/um/people/navendu/papers/greenberg09vl2.pdf
http://blogs.msdn.com/b/mcsuksoldev/archive/2010/05/10/how-does-azure-identify-a-faulty-role-instance.aspx
http://blogs.msdn.com/b/mcsuksoldev/archive/2010/05/10/how-does-azure-identify-a-faulty-role-instance.aspx
http://blogs.msdn.com/b/mcsuksoldev/archive/2010/05/10/how-does-azure-identify-a-faulty-role-instance.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh771389.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh771389.aspx
http://msdn.microsoft.com/en-us/library/ff966479.aspx
http://en.wikipedia.org/wiki/Ping

• It’s the Latency Stupid essay: http://rescomp.stanford.edu/~cheshire/rants/Laten
cy.html

Chapter 12
• On the importance of affinity groups: https://msmvps.com/blogs/nunogodinho/

archive/2012/03/04/importance-of-affinity-groups-in-windows-azure.aspx

Chapter 13
• Windows Azure Toolkits for Mobile Devices (Android, iOS, Windows Phone, and

more): https://github.com/WindowsAzure-Toolkits
• Restricting Access to Containers and Blobs Windows Azure: http://msdn.micro

soft.com/en-us/library/windowsazure/dd179354
• Web Browser Same Origin Policy: http://en.wikipedia.org/wiki/Same_origin_policy
• Using a Shared Access Signature (REST API): http://msdn.microsoft.com/en-us/

library/windowsazure/ee395415.aspx
• Rahul Rai’s sample code showing access to Windows Azure Blob Storage from

HTML 5 Web Browser: http://code.msdn.microsoft.com/windowsazure/Silverlight-
Azure-Blob-3b773e26

• Trusted Subsystem Design: http://msdn.microsoft.com/en-us/library/
aa905320.aspx

Chapter 14
• Anycast protocol enables geographic load balancing for CDN: http://en.wikipe

dia.org/wiki/Anycast
• Windows Azure Media Service: https://www.windowsazure.com/en-us/home/

features/media-services/
• Recorded talk on Windows Azure CDN: http://channel9.msdn.com/Events/TechEd/

NorthAmerica/2011/COS401

Chapter 15
• Windows Azure SQL Data Sync service: http://msdn.microsoft.com/en-us/library/

windowsazure/hh456371.aspx

150 | Appendix A: Further Reading

http://rescomp.stanford.edu/~cheshire/rants/Latency.html
http://rescomp.stanford.edu/~cheshire/rants/Latency.html
https://msmvps.com/blogs/nunogodinho/archive/2012/03/04/importance-of-affinity-groups-in-windows-azure.aspx
https://msmvps.com/blogs/nunogodinho/archive/2012/03/04/importance-of-affinity-groups-in-windows-azure.aspx
https://github.com/WindowsAzure-Toolkits
http://msdn.microsoft.com/en-us/library/windowsazure/dd179354
http://msdn.microsoft.com/en-us/library/windowsazure/dd179354
http://en.wikipedia.org/wiki/Same_origin_policy
http://msdn.microsoft.com/en-us/library/windowsazure/ee395415.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/ee395415.aspx
http://code.msdn.microsoft.com/windowsazure/Silverlight-Azure-Blob-3b773e26
http://code.msdn.microsoft.com/windowsazure/Silverlight-Azure-Blob-3b773e26
http://msdn.microsoft.com/en-us/library/aa905320.aspx
http://msdn.microsoft.com/en-us/library/aa905320.aspx
http://en.wikipedia.org/wiki/Anycast
http://en.wikipedia.org/wiki/Anycast
https://www.windowsazure.com/en-us/home/features/media-services/
https://www.windowsazure.com/en-us/home/features/media-services/
http://channel9.msdn.com/Events/TechEd/NorthAmerica/2011/COS401
http://channel9.msdn.com/Events/TechEd/NorthAmerica/2011/COS401
http://msdn.microsoft.com/en-us/library/windowsazure/hh456371.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh456371.aspx

• Windows Azure Traffic Manager: http://msdn.microsoft.com/en-us/wazplatform
trainingcourse_windowsazuretrafficmanager.aspx

• A Guide to Claims-Based Identity and Access Control: http://msdn.microsoft.com/
en-us/library/ff423674.aspx

• Windows Azure Access Control Service: http://msdn.microsoft.com/en-us/library/
windowsazure/gg429786.aspx

• Automating the Windows Azure Access Control Service (ACS): http://msdn.micro
soft.com/en-us/library/gg185927.aspx

• ACS automation sample code: http://acs.codeplex.com/releases/view/57595
• SQL Azure Point In Time Restore now available in preview: http://www.micro

soft.com/en-us/download/details.aspx?id=28364
• Business Continuity in Windows Azure SQL Database: http://msdn.microsoft.com/

en-us/library/windowsazure/hh852669.aspx

Resources From Preface and Chapters | 151

http://msdn.microsoft.com/en-us/wazplatformtrainingcourse_windowsazuretrafficmanager.aspx
http://msdn.microsoft.com/en-us/wazplatformtrainingcourse_windowsazuretrafficmanager.aspx
http://msdn.microsoft.com/en-us/library/ff423674.aspx
http://msdn.microsoft.com/en-us/library/ff423674.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg429786.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg429786.aspx
http://msdn.microsoft.com/en-us/library/gg185927.aspx
http://msdn.microsoft.com/en-us/library/gg185927.aspx
http://acs.codeplex.com/releases/view/57595
http://www.microsoft.com/en-us/download/details.aspx?id=28364
http://www.microsoft.com/en-us/download/details.aspx?id=28364
http://msdn.microsoft.com/en-us/library/windowsazure/hh852669.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh852669.aspx

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
503 Service Unavailable status code, 87

A
Access Control Service (ACS), 140
access policy, 122
ACID principles, 55–56
ACS (Access Control Service), 140, 151
Active Directory, 141
active/active failover configuration, 137, 142
active/passive failover configuration, 137
affinity groups, 150

defined, 112
for Colocate Pattern, 112
support for, 112

algorithmic improvements, 6, 7
Amazon, 62
Amazon Dynamo Database, 57, 147
Amazon S3 (Simple Storage Service), 32, 56, 117
Amazon Simple Queue Service, 146
Amazon Web Services, xi, xiv, 10, 55, 80, 95, 97,

111, 134, 145, 147
costs, 136
Elastic Load Balancing for, 18, 134
MapReduce in, 60

An Analysis of Application Performance Data
and Trends, 106

Android, 121

anycast routing protocol, 127
Application Request Routing (ARR), 18
applications

logic for
and commodity hardware, 81
multitenancy, 79

tiers in, 17–18
upgrades initiated by, 100

architecture vs. technology, x
Areas of Impact

Availability
Busy Signal Pattern, 84
Horizontally Scaling Compute Pattern,

14
MapReduce Pattern, 61
Multisite Deployment Pattern, 134
Node Failure Pattern, 94
Queue-Centric Worflow Pattern, 28

Cost Optimization
Auto-Scaling Pattern, 44
Colocate Pattern, 110
Horizontally Scaling Compute Pattern,

14
MapReduce Pattern, 61

Reliability
Multisite Deployment Pattern, 134
Queue-Centric Worflow Pattern, 28

Scalability
Auto-Scaling Pattern, 44

153

Busy Signal Pattern, 84
CDN Pattern, 127
Colocate Pattern, 110
Database Sharding Pattern, 68
Horizontally Scaling Compute Pattern,

14
MapReduce Pattern, 61
Multisite Deployment Pattern, 134
Queue-Centric Worflow Pattern, 28
Valet Key Pattern, 116

User Experience
Busy Signal Pattern, 84
CDN Pattern, 127
Colocate Pattern, 110
Database Sharding Pattern, 68
Horizontally Scaling Compute Pattern,

14
Multisite Deployment Pattern, 134
Node Failure Pattern, 94
Queue-Centric Workflow Pattern, 28
Valet Key Pattern, 116

ARR (Application Request Routing), 18
ASP.NET MVC, 25, 38
asynchronous model, 27, 29
at-least-once processing, 32
atomicity, 57
audience for this book, x
Auto-Scaling pattern

and responsiveness, 47
limits in

platform-enforced, 48
setting, 48

PoP application example in, 48–51
auto-scaling resources for, 50–51
throttling for, 50

purpose of, 43–44
rules and signals for, 45–46
using with Horizontally Scaling Compute

pattern with, 13
automation for Colocate Pattern, 111
automobile roadway example, 2
autonomous node, 5
availability, 48

B
bandwidth, 106
BASE principles, 55–56, 147
beyond current rental period caveat, 16
BI (Business Intelligence), 62

big data, 62
blob storage, 18, 117
Boston Azure Cloud User Group, x
bottlenecks, 6
Brewer’s CAP Theorem, 53
business equivalence, 33
Business Intelligence (BI), 62
Busy Signal pattern

and user experience, 88–89
busy signals for

logging, 89–89
PoP application example in, 90–91
purpose of, 83–84
testing, 89–90
transient failures for, 85–87

C
C#, 25, 39, 90
C++, 25
Cache-Control header, 128–129
caching

and proxy servers, 128
in CDN pattern, 128

canonical name (CNAME), 129
CAP Theorem, 53–54
capacity planning, 21
CDN (Content Delivery Network) pattern, 110

and eventual consistency, 128
caches in, 128
load balancing for, 150
PoP application example in, 129–131

and cost, 130
security considerations, 130

purpose of, 126–127
vs. Multisite Deployment pattern, 133

Chaos Monkey, 90, 149
clients, 84
cloud computing, benefits of, ix
cloud platform, 9–10
cloud-native applications, ix–11
CloudFront, 55, 147
CNAME (canonical name), 129
Colocate pattern

and cost, 111
and network latency, 109
automation for, 111
non-technical considerations, 111
PoP application example in, 111–113

affinity groups for, 112

154 | Index

logging, 112–113
metrics for, 112–113

purpose of, 109–110
colocation alternatives, 142–143
Command Query Responsibility Segregation

(CQRS) pattern, 36–37, 147
commands, 29, 37
commodity hardware, 79–82

and application logic, 81
defined, 149
homogeneous hardware, 82
MTBF of, 80
MTTR of, 80

compensating transaction, 34
compression, data, 107
compute nodes, 2, 13
concurrent users, 5
constraint rules, 49
Content Delivery Network (CDN) pattern (see

CDN (Content Delivery Network) pattern)
controlled reboots, 103–104
conventions in this book, xiv–xv
cookies, 19
costs, 47, 76, 115

and CDN pattern, 130
and Colocate pattern, 111
and Multisite Deployment pattern, 136
calculating, xi
for Amazon Web Services, 136
for Windows Azure, 136
for Windows Azure Storage, 39

Couchbase, 57, 70
CQRS (Command Query Responsibility Segre

gation) pattern, 37, 147
Cyber Monday, 8

D
data centers

choosing, 138
routing to closest, 138

data nodes, 2
data sovereignty, 135
data tier, 18
Database Sharding pattern

and database instances, 72
and reference data tables, 71
distributing shards, 70
PoP application example in, 72–76

fan-out queries across federations, 74–75

NoSQL alternative, 75–76
rebalancing federations, 73–74

purpose of, 67–68
shard keys, 70
when not to use, 71

databases
NoSQL BASE principles, 55–56
programmatic differences in, 57
relational ACID principles, 55–56

DDD (Domain Driven Design), 37
dead letter queue, 35
dequeue count, 33
dequeuing, 29
DevOps, 44
disaster recovery (DR) plan, 137, 142
distributed cache, 19
distributed transactions, 53
distributing shards, 70
DNS (Domain Name System), 54
Domain Driven Design (DDD), 37
DR (disaster recovery) plan, 137, 142

E
edge caching, 127
elastic, 15
Elastic Load Balancing, 18, 134
embarrassingly parallel problems, 62
enqueuing, 29
Enterprise Library 5.0 Integration Pack for Win

dows Azure, 147
environmental signals, 44, 50
EU (European Union), 136
event sourcing, 37
eventual consistency, 68, 76, 147

and CAP Theorem, 53–54
and CDN pattern, 128
and databases

NoSQL BASE principles, 55–56
programmatic differences in, 57
relational ACID principles, 55–56

examples of, 54–55
impact on application logic, 56–57
in PoP application example, 54
vs. distributed transactions, 53
vs. immediate consistency, 54

exponential backoff, 88

Index | 155

F
F#, 25
Facebook, 62, 140–141
failover

and Multisite Deployment pattern, 136–137,
141–142

defined, 136
failures, hardware, 81, 86
failures, node, 22, 93–104

preparing for, 99–101
fault domains, 99–100
N+1 rule, 99
upgrade domains, 101

recovering from, 98–99, 104
resuming work-in-progress, 99
shielding users from, 98–99

treating all interruptions as, 95
fault domains, 99–100
federated authentication, 140
federation keys, 73
federation members, 73
federations, 73

defined, 72
fan-out queries across, 74–75
rebalancing, 73–74

FIFO (first in, first out) ordering, 29

G
Gatekeeper pattern, 116
Google, 140–141
Google App Engine, xi, 55, 60, 145
Google App Engine Datastore service, 56
Google BigTable, 147
Google Mail, 89, 98

H
Hadoop, 59, 148

as a service, 61
capabilities of, 64

handling poison messages, 34–36
hardware

failures, 81
improvements to, 7

hashing, 120
HD video, 121
Hive, 63
homogeneous hardware, 82

homogeneous nodes, 4
horizontal resource allocation, 4
horizontal scaling, 1, 3–5
Horizontal Scaling Compute pattern

impact for, 14
is reversible, 14–17
managing many nodes, 20–22

capacity planning, 21
efficient management of, 20–21
failure in, 22
operational data collection, 22
sizing virtual machines, 21–22

PoP application example in, 22–26
logs for, 25–26
metrics for, 25–26
service tier for, 24–25
stateless nodes, 23–24
web tier for, 23

purpose of, 13–14
session state in, 17–20

and application tiers, 17–18
stateful nodes, 18–19
stateless nodes, 20
sticky sessions, 18
without stateful nodes, 19

using with Auto-Scaling pattern with, 13
using with Node Termination pattern with,

13
HTML5 (HyperText Markup Language 5), 36,

116
HTTP (Hypertext Transfer Protocol)/HTTPS

(Hypertext Transfer Protocol Secure), 130
hypervisor updates, 100

I
IaaS (Infrastructure as a Service), 10, 20
idempotent processing

defined, 33
for Queue-Centric Workflow pattern, 33–34
naturally idempotent operations, 33

identity provider (IdP), 140
IdP (identity provider), 140
IIS (Internet Information Services), 18
immediate consistency, 54
immediately consistent, 32
in-place upgrade feature, 101
infinite resources, illusion of, 21, 89
infinite scalability, illusion of, 9
Infrastructure as a Service (IaaS), 10, 20

156 | Index

instance scaling, 50
integrated sharding, 76
Internet Information Services (IIS), 18
invisibility window, 31–32
iOS (iPhone, iPad), 121

J
Java, 25, 90
JavaScript, 63

K
Kb (kilobits), 106
KB (kilobytes), 106
key-value store, 75
keys, 75

L
last write wins model, 57
limits

for Cloud Services, 85–86
platform-enforced, 48
setting, 48

linear backoff, 88
load balancing

defined, 17
for CDN, 150

logging
busy signals, 89
data, 22
files for, 64
in PoP application example, 25–26, 112–113

long polling, 36, 147
loose coupling, 29, 146

M
Mahout, 63
MapReduce pattern, 61–64

abstractions for, 63
defined, 59
Hadoop capabilities, 64
PoP application example in, 64–65
purpose of, 60–61
use cases for, 62–63

mean time between failures (MTBF), 80–81
mean time to recovery (MTTR), 80–81
measuring scalability, 5–6
metrics for Colocate pattern, 112–113

mixed security models, 130
money leak, 39
MongoDB, 57, 148
Moore’s Law, 7
MTBF (mean time between failures), 80–81
MTTR (mean time to recovery), 80–81
Multisite Deployment pattern, 110

and cost, 136–136
and failover, 136–137
non-technical considerations, 135–136
PoP application example in, 137–143

and failover, 141–142
choosing data centers, 138
colocation alternatives, 142–143
replicating identity information, 140–141
replicating user data, 138–140
routing to closest data center, 138

purpose of, 133–134
vs. CDN pattern, 133

multitenancy, 77–79
and application logic, 79
defined, 149, 149
performance for, 78–79
security for, 78

multitier application, 110

N
N+1 rule, 99
naturally idempotent operations, 33
Netflix, 90, 149
network latency, 133

and Colocation pattern, 109
challenges for, 105–107
perceived network latency, 107
reducing, 107
reducing perception of, 107

NIST Definition of Cloud Computing, 145
node, xi, 13
Node Failure pattern

capacity for failure, 96–96
handling shutdown, 96–98

with minimal impact to user experience,
97

without losing operational data, 98
without losing partially completed work,

97
PoP application example in, 99–104

preparing for failure, 99–101
recovering from failure, 104

Index | 157

role instance shutdown, 101–104
purpose of, 93–94
recovering from failure, 98–99

resuming work-in-progress, 99
shielding users from, 98–99

scenarios for, 94–95
treating all interruptions as node failures,

95–95
Node.js, 25, 90
nodes

defined, 2
managing, 20–22

capacity planning, 21
efficient management of, 20–21
failure in, 22
operational data collection, 22–22
sizing virtual machines, 21–22

noisy neighbor problem, 86
NoSQL databases, 28, 56, 75, 85, 122

BASE principles for, 55–56
in PoP application example, 75–76

O
OnStop method, 102, 103
OnStopping event, 103
optimistic concurrency model, 57

P
PaaS (Platform as a Service), 10, 20
Page of Photos (PoP) application example (see

PoP (Page of Photos) application example)
partition keys, 75
partition tolerance, 53
patterns, ix
perceived network latency, 107
performance

and DR plan, 142
defined, 8
for multitenancy, 78–79

PHP, 25
Pig, 63
Pig Latin, 63
ping utility, 106, 149
Platform as a Service (PaaS), 10, 20
poison messages, 34–36
PoP (Page of Photos) application example, xiii,

145
eventual consistency in, 54

in Auto-Scaling pattern, 48–51
auto-scaling resources for, 50–51
throttling for, 50

in Busy Signal pattern, 90–91
in CDN pattern, 129–131

and cost, 130
security considerations, 130

in Colocate pattern, 111–113
affinity groups for, 112
logging, 112–113
metrics for, 112–113

in Database Sharding pattern, 72–76
fan-out queries across federations, 74–75
NoSQL alternative, 75–76
rebalancing federations, 73–74

in Horizontal Scaling Compute pattern, 22–
26
logs for, 25–26
service tier for, 24–25
stateless nodes, 23–24
web tier for, 23

in MapReduce pattern, 64–65
in Multisite Deployment pattern, 137–143

and failover, 141–142
choosing data centers, 138
colocation alternatives, 142–143
replicating identity information, 140–141
replicating user data, 138–140
routing to closest data center, 138

in Node Failure pattern, 99–104
preparing for failure, 99–101
recovering from failure, 104
role instance shutdown, 101–104

in Queue-Centric Workflow pattern, 38–41
service tier for, 39–40
user interface tier for, 38–39

in Valet Key pattern, 121–123
public read access in, 121
shared access signatures, 122–123

pre-fetching objects, 130
proactive rules, 49
properties, 75
proxy servers, 128
public read access, 117

in PoP application example, 121
in Valet Key pattern, 118

public, defined, 129
Python, 25, 90

158 | Index

Q
queries, 37
Queue-Centric Workflow pattern

PoP application example, 38–41
service tier for, 39–40
user interface tier for, 38–39

purpose of, 28
queues in, 30
receiver for, 31–36

at-least-once processing, 31–32
handling poison messages, 34–36
idempotent processing, 33–34
invisibility window, 31–32

scaling tiers independently, 37–38
user experience, 36–37
vs. Command Query Responsibility Segrega

tion pattern, 36
queues, 30
Quora, 89

R
Rackspace, 117
Rai, Rahul, 150
reactive rules, 49
read-mostly data, 71
Reboot Role Instance operation, 103
receivers, 31–36

handling poison messages, 34–36
idempotent processing, 33–34
invisibility window, 31–32

reducing network latency, 107
reference data tables, 71
relational databases, 55–56
reliable queue, 30
replicating

identity information, 140–141
user data, 138–140

resource bottlenecks, 6
resource contention, 6–7
resources, 145–151
responsiveness, 5, 47
retry policies, 83

on Windows Azure, 149
retry after delay, 88
retry immediately, 87
retry with increasing delays, 88

role instance, 23
round-robin load balancing, 4

S
SaaS (Software as a Service), 45, 78
SAS (Shared Access Signatures), 121–123, 150
scalability

business concerns, 7–8
defined, 1, 8
horizontal scaling, 3–5
measuring, 5–6
resource contentions, 6–7
scale units, 6
vertical scaling, 3

scale units, 6
scaling, 37–38, 37, 37

(see also horizontal scaling)
(see also vertical scaling)

scenarios for Node Failure pattern, 94–95
security considerations

for multitenancy, 78
for Valet Key pattern, 120
in CDN pattern, 130

self-inflicted failures, 8
Service Level Agreement (SLA), 48
Service Oriented Architecture (SOA), 24
service tier

defined, 17
for PoP application example, 24–25, 39–40

services
defined, 17
usage of, xiv

session state, 17–20
and application tiers, 17–18
stateful nodes, 18–19
stateless nodes, 20
sticky sessions, 18
without stateful nodes, 19

shard keys, 70, 70–70
shards, 51, 67, 69, 73
Shared Access Signatures (SAS), 121–123, 150
shared nothing architecture, 69
shutdown

handling, 96–98
with minimal impact to user experience,

97
without losing operational data, 98
without losing partially completed work,

97
of role instance, 101–104

using controlled reboots, 103–104
web role instance shutdown, 102

Index | 159

worker role instance shutdown, 103
SignalR for ASP.NET, 36, 147
SimpleDB database, 56
single point of failure (SPoF), 99
SLA (Service Level Agreement), 48
slave nodes, 68
SOA (Service Oriented Architecture), 24
SOAP, 17
Socket.IO for Node.js, 36, 147
Software as a Service (SaaS), 45, 78
Southwest Airlines, 82
speed, 8, 106
SPoF (single point of failure), 99
SQL Azure, 24
SQL Azure Data Sync, 148
SQL Azure Point In Time Restore, 151
SQL Data Sync service, 139
SQL Data Sync Service, 143
Sqoop, 63
Startup Tasks, 23
stateful nodes, 18–19
stateless nodes

for PoP application example, 23–24
in Horizontal Scaling Compute pattern, 20

sticky sessions, 18, 97
storage access key, 117
Super Bowl commercials, 8
systems, xiv

T
technology vs. architecture, x
temporary access, 117–119
tenant isolation, 78
terminology, xiv, 16–17
testing, 89–90
throttling

defined, 50, 86
for PoP application example, 50

TicketDirect case study, 51, 147
time lag between failure and recognition of, 96
Topaz, 90, 149
transient failures, 79, 85–87
Transient Fault Handling Application Block, 90,

149
trusted subsystems, 117
Twitter, 89

U
Universal Coordinated Time (UTC), 72
upgrade domains, 101
use cases for MapReduce pattern, 62–63
user experience, 99

and Busy Signal pattern, 88–89
and eventual consistency, 57
and Queue-Centric Workflow pattern, 36–37
handling shutdown without impacting, 97

user interface tier, 38–39
UTC (Universal Coordinated Time), 72
UX, 99

V
Valet Key pattern

PoP application example in, 121–123
shared access signatures, 122–123

public read access in, 118
purpose of, 115–116
security considerations for, 120
temporary access, 119
vs. Gatekeeper pattern, 116

vertical scaling, 1–3
virtual machines, 21–22
VPN (Virtual Private Network), 136

W
WAD (Windows Azure Diagnostics), 25, 26,

112, 146
WASABi (Windows Azure Autoscaling Applica

tion Block), 48
web applications, xiv
Web Role, 23, 102, 111, 130
web service, 17
Web Service\Current Connections counter, 102
web tier

defined, 17
for PoP application example, 23

Windows Azure, xi, xiv, 10, 55, 80, 95, 97, 101,
102, 111, 134, 145, 146
costs, 136
Enterprise Library 5.0 Integration Pack for,

147
for mobile devices, 150
MapReduce in, 60
Retry Logic on, 149

160 | Index

Windows Azure Autoscaling Application Block
(WASABi), 48

Windows Azure Blob Storage Service, 24, 112,
129, 150

Windows Azure Caching, 91
Windows Azure Compute, 112
Windows Azure Connect, 143
Windows Azure Diagnostics (WAD), 25, 112,

146
Windows Azure Fabric Controller, 99
Windows Azure Media Services, 130, 150
Windows Azure Pricing Calculator, 76
Windows Azure Service Bus, 91, 143
Windows Azure SQL Data Sync service, 150
Windows Azure SQL Database Federations, 148
Windows Azure SQL Databases, 72, 90, 139

Windows Azure Storage, 25, 39, 56, 90, 91, 103,
112, 141

Windows Azure Storage Analytics, 26, 112, 146
Windows Azure Storage service, 146
Windows Azure Table Storage service, 24, 112,

148
Windows Azure Traffic Manager, 55, 134, 138,

142, 151
Windows Azure Virtual Networking, 143
Windows Live ID, 141
Windows Phone, 121
Worker Role, 23, 24, 103, 111

Y
Yahoo!, 140

Index | 161

About the Author
Bill Wilder is a hands-on developer, architect, consultant, trainer, speaker, writer, and
community leader focused on helping companies and individuals succeed with the cloud
using the Windows Azure Platform. Bill began working with Windows Azure when it
was unveiled at the Microsoft PDC in 2008 and subsequently founded Boston Azure,
the first/oldest Windows Azure user group in the world, in October 2009. Bill is recog
nized by Microsoft as a Windows Azure MVP and is the author of Cloud Architecture
Patterns. Bill can be found blogging at blog.codingoutloud.com and on Twitter at @co
dingoutloud.

http://www.twitter.com/codingoutloud
http://www.twitter.com/codingoutloud

	Copyright
	Table of Contents
	Preface
	Audience
	Why This Book Exists
	Assumptions This Book Makes
	Contents of This Book
	Building Page of Photos on Windows Azure
	Terminology
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Scalability Primer
	Scalability Defined
	Vertically Scaling Up
	Horizontally Scaling Out
	Describing Scalability
	The Scale Unit

	Resource Contention Limits Scalability
	Easing Resource Contention

	Scalability is a Business Concern
	The Cloud-Native Application
	Cloud Platform Defined
	Cloud-Native Application Defined

	Summary

	Chapter 2. Horizontally Scaling Compute Pattern
	Context
	Cloud Significance

	Impact
	Mechanics
	Cloud Scaling is Reversible
	Managing Session State
	Managing Many Nodes

	Example: Building PoP on Windows Azure
	Web Tier
	Stateless Role Instances (or Nodes)
	Service Tier
	Operational Logs and Metrics

	Summary

	Chapter 3. Queue-Centric Workflow Pattern
	Context
	Cloud Significance

	Impact
	Mechanics
	Queues are Reliable
	Programming Model for Receiver
	User Experience Implications
	Scaling Tiers Independently

	Example: Building PoP on Windows Azure
	User Interface Tier
	Service Tier
	Synopsis of Changes to Page of Photos System

	Summary

	Chapter 4. Auto-Scaling Pattern
	Context
	Cloud Significance

	Impact
	Mechanics
	Automation Based on Rules and Signals
	Separate Concerns
	Be Responsive to Horizontally Scaling Out
	Don’t Be Too Responsive to Horizontally Scaling In
	Set Limits, Overriding as Needed
	Take Note of Platform-Enforced Scaling Limits

	Example: Building PoP on Windows Azure
	Throttling
	Auto-Scaling Other Resource Types

	Summary

	Chapter 5. Eventual Consistency Primer
	CAP Theorem and Eventual Consistency
	Eventual Consistency Examples
	Relational ACID and NoSQL BASE
	Impact of Eventual Consistency on Application Logic
	User Experience Concerns
	Programmatic Differences

	Summary

	Chapter 6. MapReduce Pattern
	Context
	Cloud Significance

	Impact
	Mechanics
	MapReduce Use Cases
	Beyond Custom Map and Reduce Functions
	More Than Map and Reduce

	Example: Building PoP on Windows Azure
	Summary

	Chapter 7. Database Sharding Pattern
	Context
	Cloud Significance

	Impact
	Mechanics
	Shard Identification
	Shard Distribution
	When Not to Shard
	Not All Tables Are Sharded
	Cloud Database Instances

	Example: Building PoP on Windows Azure
	Rebalancing Federations
	Fan-Out Queries Across Federations
	NoSQL Alternative

	Summary

	Chapter 8. Multitenancy and Commodity Hardware Primer
	Multitenancy
	Security
	Performance Management
	Impact of Multitenancy on Application Logic

	Commodity Hardware
	Shift in Emphasis from MTBF to MTTR
	Impact of Commodity Hardware on Application Logic
	Homogeneous Hardware

	Summary

	Chapter 9. Busy Signal Pattern
	Context
	Cloud Significance

	Impact
	Mechanics
	Transient Failures Result in Busy Signals
	Recognizing Busy Signals
	Responding to Busy Signals
	User Experience Impact
	Logging and Reducing Busy Signals
	Testing

	Example: Building PoP on Windows Azure
	Summary

	Chapter 10. Node Failure Pattern
	Context
	Cloud Significance

	Impact
	Mechanics
	Failure Scenarios
	Treat All Interruptions as Node Failures
	Maintain Sufficient Capacity for Failure with N+1 Rule
	Handling Node Shutdown
	Recovering From Node Failure

	Example: Building PoP on Windows Azure
	Preparing PoP for Failure
	Handling PoP Role Instance Shutdown
	Recovering PoP From Failure

	Summary

	Chapter 11. Network Latency Primer
	Network Latency Challenges
	Reducing Perceived Network Latency
	Reducing Network Latency
	Summary

	Chapter 12. Colocate Pattern
	Context
	Cloud Significance

	Impact
	Mechanics
	Automation Helps
	Cost Considerations
	Non-Technical Considerations

	Example: Building PoP on Windows Azure
	Affinity Groups
	Operational Logs and Metrics

	Summary

	Chapter 13. Valet Key Pattern
	Context
	Cloud Significance

	Impact
	Mechanics
	Public Access
	Granting Temporary Access
	Security Considerations

	Example: Building PoP on Windows Azure
	Public Read Access
	Shared Access Signatures

	Summary

	Chapter 14. CDN Pattern
	Context
	Cloud Significance

	Impact
	Mechanics
	Caches Can Be Inconsistent

	Example: Building PoP on Windows Azure
	Cost Considerations
	Security Considerations
	Additional Capabilities

	Summary

	Chapter 15. Multisite Deployment Pattern
	Context
	Cloud Significance

	Impact
	Mechanics
	Non-Technical Considerations in Data Center Selection
	Cost Implications
	Failover Across Data Centers

	Example: Building PoP on Windows Azure
	Choosing a Data Center
	Routing to the Closest Data Center
	Replicating User Data for Performance
	Replicating Identity Information for Account Owners
	Data Center Failover
	Colocation Alternatives

	Summary

	Appendix A. Further Reading
	Page of Photos (PoP) Sample
	Resources From Preface and Chapters
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15

	Index
	About the Author

